1
|
Lin J, Zhao D, Liang Y, Liang Z, Wang M, Tang X, Zhuang H, Wang H, Yin X, Huang Y, Yin L, Shen L. Proteomic analysis of plasma total exosomes and placenta-derived exosomes in patients with gestational diabetes mellitus in the first and second trimesters. BMC Pregnancy Childbirth 2024; 24:713. [PMID: 39478498 PMCID: PMC11523606 DOI: 10.1186/s12884-024-06919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is the first spontaneous hyperglycemia during pregnancy. Early diagnosis and intervention are important for the management of the disease. This study compared and analyzed the proteins of total plasma exosomes (T-EXO) and placental-derived exosomes (PLAP-EXO) in pregnant women who subsequently developed GDM (12-16 weeks), GDM patients (24-28 weeks) and their corresponding controls to investigate the pathogenesis and biomarkers of GDM associated with exosomes. The exosomal proteins were extracted and studied by proteomics approach, then bioinformatics analysis was applied to the differentially expressed proteins (DEPs) between the groups. At 12-16 and 24-28 weeks of gestation, 36 and 21 DEPs were identified in T-EXO, while 34 and 20 DEPs were identified in PLAP-EXO between GDM and controls, respectively. These proteins are mainly involved in complement pathways, immunity, inflammation, coagulation and other pathways, most of them have been previously reported as blood or exosomal proteins associated with GDM. The findings suggest that the development of GDM is a progressive process and that early changes promote the development of the disease. Maternal and placental factors play a key role in the pathogenesis of GDM. These proteins especially Hub proteins have the potential to become predictive and diagnostic biomarkers for GDM.
Collapse
Affiliation(s)
- Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Danqing Zhao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Yi Liang
- Department of Clinical Nutrition, Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Mingxian Wang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Hanghang Wang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Xiaoping Yin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Yuhan Huang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Li Yin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, P. R. China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, P. R. China.
| |
Collapse
|
2
|
Fan J, Hu J. Retinol binding protein 4 and type 2 diabetes: from insulin resistance to pancreatic β-cell function. Endocrine 2024; 85:1020-1034. [PMID: 38520616 DOI: 10.1007/s12020-024-03777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/01/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND AND AIM Retinol binding protein 4 (RBP4) is an adipokine that has been explored as a key biomarker of type 2 diabetes mellitus (T2DM) in recent years. Researchers have conducted a series of experiments to understand the interplay between RBP4 and T2DM, including its role in insulin resistance and pancreatic β-cell function. The results of these studies indicate that RBP4 has a significant influence on T2DM and is considered a potential biomarker of T2DM. However, there have also been some controversies about the relationship between RBP4 levels and T2DM. In this review, we update and summarize recent studies focused on the relationship between RBP4 and T2DM and its role in insulin resistance and pancreatic β-cell function to clarify the existing controversy and provide evidence for future studies. We also assessed the potential therapeutic applications of RBP4 in treating T2DM. METHODS A narrative review. RESULTS Overall, there were significant associations between RBP4 levels, insulin resistance, pancreatic β-cell function, and T2DM. CONCLUSIONS More mechanistic studies are needed to determine the role of RBP4 in the onset of T2DM, especially in terms of pancreatic β-cell function. In addition, further studies are required to evaluate the effects of drug intervention, lifestyle intervention, and bariatric surgery on RBP4 levels to control T2DM and the role of reducing RBP4 levels in improving insulin sensitivity and pancreatic β-cell function.
Collapse
Affiliation(s)
- Jiahua Fan
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Clinical Nutrition, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, 510095, Guangdong, PR China.
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, 510095, Guangdong, PR China
| |
Collapse
|
3
|
Kim HJ, Zhao J, Walewski JL, Sparrow JR. A High Fat Diet Fosters Elevated Bisretinoids. J Biol Chem 2023; 299:104784. [PMID: 37146972 DOI: 10.1016/j.jbc.2023.104784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/07/2023] Open
Abstract
High dietary fat intake is associated with metabolic dysregulation, but little is known regarding the effects of a high fat diet (HFD) on photoreceptor cell functioning. We explored the intersection of a high fat diet (HFD) and the visual cycle adducts that form in photoreceptor cells by non-enzymatic reactions. In black C57BL/6J mice and albino C57BL/6Jc2j mice raised on a high fat diet until age 3, 6 or 12 months, chromatographically quantified bisretinoids were increased relative to mice on a standard diet. In vivo measurement of fundus autofluorescence, the source of which is bisretinoid, also revealed a significant increase in the HFD-mice. Additionally, mice provided with a diet high in fat presented with elevated retinol-binding protein 4 (RBP4) the protein responsible for transporting retinol in plasma. Vitamin A was elevated in plasma although not in ocular tissue. Bisretinoids form in photoreceptor cell outer segments by random reactions of retinaldehyde with phosphatidylethanolamine. We found that the latter phospholipid was significantly increased in mice fed a HFD versus mice on a control diet. In leptin-deficient ob/ob mice, a genetic model of obesity, plasma levels of Rbp4 protein were higher but bisretinoids in retina were not elevated. Photoreceptor cell viability measured as outer nuclear layer thickness was reduced in the ob/ob mice relative to wild-type. The accelerated formation of bisretinoid we observed in diet induced obese mice is related to the high fat intake and to increased delivery of vitamin A to the visual cycle.
Collapse
Affiliation(s)
- Hye Jin Kim
- Departments of Ophthalmology, Columbia University Medical Center, 635 W. 165(th) Street, New York NY, 10032
| | - Jin Zhao
- Departments of Ophthalmology, Columbia University Medical Center, 635 W. 165(th) Street, New York NY, 10032
| | - Jose L Walewski
- Departments of Medicine, Columbia University Medical Center, 635 W. 165(th) Street, New York NY, 10032
| | - Janet R Sparrow
- Departments of Ophthalmology, Columbia University Medical Center, 635 W. 165(th) Street, New York NY, 10032; Departments of Pathology and Cell Biology, Columbia University Medical Center, 635 W. 165(th) Street, New York NY, 10032.
| |
Collapse
|
4
|
Sobieh BH, El-Mesallamy HO, Kassem DH. Beyond mechanical loading: The metabolic contribution of obesity in osteoarthritis unveils novel therapeutic targets. Heliyon 2023; 9:e15700. [PMID: 37180899 PMCID: PMC10172930 DOI: 10.1016/j.heliyon.2023.e15700] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent progressive disease that frequently coexists with obesity. For several decades, OA was thought to be the result of ageing and mechanical stress on cartilage. Researchers' perspective has been greatly transformed when cumulative findings emphasized the role of adipose tissue in the diseases. Nowadays, the metabolic effect of obesity on cartilage tissue has become an integral part of obesity research; hoping to discover a disease-modifying drug for OA. Recently, several adipokines have been reported to be associated with OA. Particularly, metrnl (meteorin-like) and retinol-binding protein 4 (RBP4) have been recognized as emerging adipokines that can mediate OA pathogenesis. Accordingly, in this review, we will summarize the latest findings concerned with the metabolic contribution of obesity in OA pathogenesis, with particular emphasis on dyslipidemia, insulin resistance and adipokines. Additionally, we will discuss the most recent adipokines that have been reported to play a role in this context. Careful consideration of these molecular mechanisms interrelated with obesity and OA will undoubtedly unveil new avenues for OA treatment.
Collapse
Affiliation(s)
- Basma H. Sobieh
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hala O. El-Mesallamy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Dina H. Kassem
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Corresponding author. Associate Professor of Biochemistry Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, street of African Union Organization, 11566, Cairo, Egypt.
| |
Collapse
|
5
|
Ioannou A, Fontana M, Gillmore JD. RNA Targeting and Gene Editing Strategies for Transthyretin Amyloidosis. BioDrugs 2023; 37:127-142. [PMID: 36795354 PMCID: PMC9933836 DOI: 10.1007/s40259-023-00577-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/17/2023]
Abstract
Transthyretin (TTR) is a tetrameric protein synthesized primarily by the liver. TTR can misfold into pathogenic ATTR amyloid fibrils that deposit in the nerves and heart, causing a progressive and debilitating polyneuropathy (PN) and life-threatening cardiomyopathy (CM). Therapeutic strategies, which are aimed at reducing ongoing ATTR amyloid fibrillogenesis, include stabilization of the circulating TTR tetramer or reduction of TTR synthesis. Small interfering RNA (siRNA) or antisense oligonucleotide (ASO) drugs are highly effective at disrupting the complementary mRNA and inhibiting TTR synthesis. Since their development, patisiran (siRNA), vutrisiran (siRNA) and inotersen (ASO) have all been licensed for treatment of ATTR-PN, and early data suggest these drugs may have efficacy in treating ATTR-CM. An ongoing phase 3 clinical trial will evaluate the efficacy of eplontersen (ASO) in the treatment of both ATTR-PN and ATTR-CM, and a recent phase 1 trial demonstrated the safety of novel in vivo CRISPR-Cas9 gene-editing therapy in patients with ATTR amyloidosis. Recent results from trials of gene silencer and gene-editing therapies suggest these novel therapeutic agents have the potential to substantially alter the landscape of treatment for ATTR amyloidosis. Their success has already changed the perception of ATTR amyloidosis from a universally progressive and fatal disease to one that is treatable through availability of highly specific and effective disease-modifying therapies. However, important questions remain including long-term safety of these drugs, potential for off-target gene editing, and how best to monitor the cardiac response to treatment.Kindly check and confirm the processed running title.This is correct.
Collapse
Affiliation(s)
- Adam Ioannou
- National Amyloidosis Centre, Royal Free Hospital, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Marianna Fontana
- National Amyloidosis Centre, Royal Free Hospital, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Julian D Gillmore
- National Amyloidosis Centre, Royal Free Hospital, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
6
|
Yadav AS, Isoherranen N, Rubinow KB. Vitamin A homeostasis and cardiometabolic disease in humans: lost in translation? J Mol Endocrinol 2022; 69:R95-R108. [PMID: 35900842 PMCID: PMC9534526 DOI: 10.1530/jme-22-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Vitamin A (retinol) is an essential, fat-soluble vitamin that plays critical roles in embryonic development, vision, immunity, and reproduction. Severe vitamin A deficiency results in profound embryonic dysgenesis, blindness, and infertility. The roles of bioactive vitamin A metabolites in regulating cell proliferation, cellular differentiation, and immune cell function form the basis of their clinical use in the treatment of dermatologic conditions and hematologic malignancies. Increasingly, vitamin A also has been recognized to play important roles in cardiometabolic health, including the regulation of adipogenesis, energy partitioning, and lipoprotein metabolism. While these roles are strongly supported by animal and in vitro studies, they remain poorly understood in human physiology and disease. This review briefly introduces vitamin A biology and presents the key preclinical data that have generated interest in vitamin A as a mediator of cardiometabolic health. The review also summarizes clinical studies performed to date, highlighting the limitations of many of these studies and the ongoing controversies in the field. Finally, additional perspectives are suggested that may help position vitamin A metabolism within a broader biological context and thereby contribute to enhanced understanding of vitamin A's complex roles in clinical cardiometabolic disease.
Collapse
Affiliation(s)
- Aprajita S Yadav
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Katya B Rubinow
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Plasma Transthyretin Levels and Risk of Type 2 Diabetes Mellitus and Impaired Glucose Regulation in a Chinese Population. Nutrients 2022; 14:nu14142953. [PMID: 35889910 PMCID: PMC9321865 DOI: 10.3390/nu14142953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 12/10/2022] Open
Abstract
Plasma transthyretin may be engaged in glucose regulation. We aimed to investigate the association between plasma transthyretin levels and the risk of newly diagnosed T2DM and impaired glucose regulation (IGR) in a Chinese population. We conducted a case-control study including 1244 newly diagnosed T2DM patients, 837 newly diagnosed IGR patients, and 1244 individuals with normal glucose tolerance (NGT) matched by sex and age. Multivariate logistic regression analysis was utilized to estimate the independent association of plasma transthyretin concentrations with the risk of T2DM and IGR. Plasma transthyretin concentrations were significantly higher in T2DM and IGR patients compared with control subjects (p < 0.005). After multiple adjustment and comparison with the lowest quartile of plasma transthyretin concentrations, the odds ratios (95% confidence intervals) of T2DM and IGR in the highest quartile were 2.22 (1.66, 2.98) and 2.29 (1.72, 3.05), respectively. Plasma transthyretin concentrations also showed a great performance in predicting the risk of T2DM (AUC: 0.76). Moreover, a potential nonlinear trend was observed. Our results demonstrated that higher plasma transthyretin concentrations, especially more than 290 mg/L, were associated with an increased risk of T2DM and IGR. Further studies are warranted to confirm our findings and elucidate the potential mechanisms.
Collapse
|
8
|
Interplay between Fatty Acid Binding Protein 4, Fetuin-A, Retinol Binding Protein 4 and Thyroid Function in Metabolic Dysregulation. Metabolites 2022; 12:metabo12040300. [PMID: 35448487 PMCID: PMC9026429 DOI: 10.3390/metabo12040300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/22/2022] Open
Abstract
Signalling between the tissues integrating synthesis, transformation and utilization of energy substrates and their regulatory hormonal axes play a substantial role in the development of metabolic disorders. Interactions between cytokines, particularly liver derived hepatokines and adipokines, secreted from adipose tissue, constitute one of major areas of current research devoted to metabolic dysregulation. The thyroid exerts crucial influence on the maintenance of basal metabolic rate, thermogenesis, carbohydrate and lipid metabolism, while its dysfunction promotes the development of metabolic disorders. In this review, we discuss the interplay between three adipokines: fatty acid binding protein type 4, fetuin-A, retinol binding protein type 4 and thyroid hormones, that shed a new light onto mechanisms underlying atherosclerosis, cardiovascular complications, obesity, insulin resistance and diabetes accompanying thyroid dysfunction. Furthermore, we summarize clinical findings on those cytokines in the course of thyroid disorders.
Collapse
|
9
|
Liu J, Song C, Nie C, Sun Y, Wang Y, Xue L, Fan M, Qian H, Wang L, Li Y. A novel regulatory mechanism of geniposide for improving glucose homeostasis mediated by circulating RBP4. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153862. [PMID: 34856473 DOI: 10.1016/j.phymed.2021.153862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Systemic insulin signal transduction is influenced by the inter-tissue crosstalk, which might be the potential therapeutic strategy for T2DM. Although anti-diabetic function of geniposide has been previously reported, the underlying mechanism was not completely clear in light of the complex pathogenesis of T2DM. PURPOSE The present experiment is devoted to investigate the potential effects of geniposide on systemic insulin sensitivity mediated by hepatokine-RBP4 in high fat diet (HFD)-fed mice. METHODS The HFD-fed wild type mice were administered with geniposide (25 or 50 mg/kg/d) by intraperitoneal injection, and the normal saline and Metformin were used as negative control group and positive control group, respectively. After administration for 4 weeks, the food intake, body weight, glucose tolerance tests, insulin tolerance tests and serum biochemical indices were examined, along with insulin signaling pathway-associated proteins and hepatic histomorphological analysis. The liver, gastrocnemius and mouse primary hepatocytes were also harvested for molecular mechanism study. RESULTS After geniposide treatment for 4 weeks, the blood glucose level was reduced in HFD-fed mice. Furthermore, geniposide treatment improved insulin sensitivity both in the liver and gastrocnemius (GAS). In terms of mechanism, geniposide disturbed circulating RBP4 level including its synthesis, secretion and homeostasis. Moreover, geniposide modified fuel selection and promoted glucose uptake in skeletal muscle and reduced glycogen storage, which were closely related to impaired circulating RBP4 homeostasis, leading to ameliorative systemic insulin sensitivity. CONCLUSION Our current study proposes a novel regulatory mechanism of geniposide for improving glucose homeostasis through regulating circulating RBP4 level, which also provides new strategies for the prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Jinxin Liu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Chunmei Song
- Food & Pharmacy College, Xuchang University, Xuchang 461000, China
| | - Chenzhipeng Nie
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yujie Sun
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yu Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Lamei Xue
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingcong Fan
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Yan Li
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
10
|
Kim N, Priefer R. Retinol binding protein 4 antagonists and protein synthesis inhibitors: Potential for therapeutic development. Eur J Med Chem 2021; 226:113856. [PMID: 34547506 DOI: 10.1016/j.ejmech.2021.113856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Retinol-binding protein 4 (RBP4) is a serum protein that transports Vitamin A. RBP4 is correlated with numerous diseases and metabolic syndromes, including insulin resistance in type 2 diabetes, cardiovascular diseases, obesity, and macular degeneration. Recently, RBP4 antagonists and protein synthesis inhibitors are under development to regulate the effect of RBP4. Several RBP4 antagonists, especially BPN-14136, have demonstrated promising safety profiles and potential therapeutic benefits in animal studies. Two RBP4 antagonists, specifically tinlarebant (Belite Bio) and STG-001 (Stargazer) are currently undergoing clinical trials. Some antidiabetic drugs and nutraceuticals have been reported to reduce RBP4 expression, but more clinical data is needed to evaluate their therapeutical benefits. As regulating RBP4 levels or its activities would benefit a wide range of patients, further research is highly recommended to develop clinically useful RBP4 antagonists or protein synthesis inhibitors.
Collapse
Affiliation(s)
- Noheul Kim
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA.
| |
Collapse
|
11
|
Adipose-Derived Lipid-Binding Proteins: The Good, the Bad and the Metabolic Diseases. Int J Mol Sci 2021; 22:ijms221910460. [PMID: 34638803 PMCID: PMC8508731 DOI: 10.3390/ijms221910460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue releases a large range of bioactive factors called adipokines, many of which are involved in inflammation, glucose homeostasis and lipid metabolism. Under pathological conditions such as obesity, most of the adipokines are upregulated and considered as deleterious, due to their pro-inflammatory, pro-atherosclerotic or pro-diabetic properties, while only a few are downregulated and would be designated as beneficial adipokines, thanks to their counteracting properties against the onset of comorbidities. This review focuses on six adipose-derived lipid-binding proteins that have emerged as key factors in the development of obesity and diabetes: Retinol binding protein 4 (RBP4), Fatty acid binding protein 4 (FABP4), Apolipoprotein D (APOD), Lipocalin-2 (LCN2), Lipocalin-14 (LCN14) and Apolipoprotein M (APOM). These proteins share structural homology and capacity to bind small hydrophobic molecules but display opposite effects on glucose and lipid metabolism. RBP4 and FABP4 are positively associated with metabolic syndrome, while APOD and LCN2 are ubiquitously expressed proteins with deleterious or beneficial effects, depending on their anatomical site of expression. LCN14 and APOM have been recently identified as adipokines associated with healthy metabolism. Recent findings on these lipid-binding proteins exhibiting detrimental or protective roles in human and murine metabolism and their involvement in metabolic diseases are also discussed.
Collapse
|
12
|
Liu J, Nie C, Xue L, Yan Y, Liu S, Sun J, Fan M, Qian H, Ying H, Wang L, Li Y. Growth hormone receptor disrupts glucose homeostasis via promoting and stabilizing retinol binding protein 4. Theranostics 2021; 11:8283-8300. [PMID: 34373742 PMCID: PMC8344001 DOI: 10.7150/thno.61192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Rationale: The molecular mechanisms underlying the pathogenesis of systemic insulin resistance in type 2 diabetes remain elusive. Growth hormone receptor (GHR) deficiency has long been known to improved insulin sensitivity. However, whether hepatic GHR overexpression or activation is a cause of insulin resistance is still unknown. The aim of this study was to identify the new role of GHR in systemic insulin resistance and explore the underlying mechanism. Method: Different samples obtained from obese humans, ob/ob mice, db/db mice, high-fat diet (HFD)-fed mice and primary mouse hepatocytes were used to evaluate the correlations between GHR and metabolic disorders. Recombinant adeno-associated viruses encoding GHR and STAT5 and GHR knockout mice were used to investigate the roles of hepatic GHR in glucose homeostasis. Tissue H&E, Oil Red O and PAS staining were performed for histomorphological analysis. Gel filtration chromatography was employed for the separation of serum RBP4-TTR complexes. Plasmids (related to GHR, STAT5 and HIF1α), siRNA oligos (siGHR and siSTAT5), luciferase activity and ChIP assays were used to explore the potential mechanism of hepatic GHR. Results: Here, we found that hepatic GHR expression was elevated during metabolic disorder. Accordingly, hepatic GHR overexpression disrupted systemic glucose homeostasis by promoting gluconeogenesis and disturbing insulin responsiveness in the liver. Meanwhile, hepatic GHR overexpression promoted lipolysis in white adipose tissue and repressed glucose utilization in skeletal muscle by promoting the circulating level of RBP4, which contributed to impaired systemic insulin action. A mechanistic study revealed that hepatic GHR disrupted systemic insulin sensitivity by increasing RBP4 transcription by activating STAT5. Additionally, overexpression of hepatic GHR promoted TTR transcriptional levels by enhancing the expression of HIF1α, which not only increased the protein stability of RBP4 but also inhibited renal clearance of RBP4 in serum. Conclusions: Hepatic GHR overexpression and activation accelerated systemic insulin resistance by increasing hepatic RBP4 production and maintaining circulating RBP4 homeostasis. Our current study provides novel insights into the pathogenesis of type 2 diabetes and its associated metabolic complications.
Collapse
|
13
|
Nono Nankam PA, Blüher M. Retinol-binding protein 4 in obesity and metabolic dysfunctions. Mol Cell Endocrinol 2021; 531:111312. [PMID: 33957191 DOI: 10.1016/j.mce.2021.111312] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Excessive increased adipose tissue mass in obesity is associated with numerous co-morbid disorders including increased risk of type 2 diabetes, fatty liver disease, hypertension, dyslipidemia, cardiovascular diseases, dementia, airway disease and some cancers. The causal mechanisms explaining these associations are not fully understood. Adipose tissue is an active endocrine organ that secretes many adipokines, cytokines and releases metabolites. These biomolecules referred to as adipocytokines play a significant role in the regulation of whole-body energy homeostasis and metabolism by influencing and altering target tissues function. Understanding the mechanisms of adipocytokine actions represents a hot topic in obesity research. Among several secreted bioactive signalling molecules from adipose tissue and liver, retinol-binding protein 4 (RBP4) has been associated with systemic insulin resistance, dyslipidemia, type 2 diabetes and other metabolic diseases. Here, we aim to review and discuss the current knowledge on RBP4 with a focus on its role in the pathogenesis of obesity comorbid diseases.
Collapse
Affiliation(s)
- Pamela A Nono Nankam
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany.
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Germany
| |
Collapse
|
14
|
Exploring the Physiological Role of Transthyretin in Glucose Metabolism in the Liver. Int J Mol Sci 2021; 22:ijms22116073. [PMID: 34199897 PMCID: PMC8200108 DOI: 10.3390/ijms22116073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022] Open
Abstract
Transthyretin (TTR), a 55 kDa evolutionarily conserved protein, presents altered levels in several conditions, including malnutrition, inflammation, diabetes, and Alzheimer’s Disease. It has been shown that TTR is involved in several functions, such as insulin release from pancreatic β-cells, recovery of blood glucose and glucagon levels of the islets of Langerhans, food intake, and body weight. Here, the role of TTR in hepatic glucose metabolism was explored by studying the levels of glucose in mice with different TTR genetic backgrounds, namely with two copies of the TTR gene, TTR+/+; with only one copy, TTR+/−; and without TTR, TTR−/−. Results showed that TTR haploinsufficiency (TTR+/−) leads to higher glucose in both plasma and in primary hepatocyte culture media and lower expression of the influx glucose transporters, GLUT1, GLUT3, and GLUT4. Further, we showed that TTR haploinsufficiency decreases pyruvate kinase M type (PKM) levels in mice livers, by qRT-PCR, but it does not affect the hepatic production of the studied metabolites, as determined by 1H NMR. Finally, we demonstrated that TTR increases mitochondrial density in HepG2 cells and that TTR insufficiency triggers a higher degree of oxidative phosphorylation in the liver. Altogether, these results indicate that TTR contributes to the homeostasis of glucose by regulating the levels of glucose transporters and PKM enzyme and by protecting against mitochondrial oxidative stress.
Collapse
|
15
|
He Y, Qiu R, Wu B, Gui W, Lin X, Li H, Zheng F. Transthyretin contributes to insulin resistance and diminishes exercise-induced insulin sensitivity in obese mice by inhibiting AMPK activity in skeletal muscle. Am J Physiol Endocrinol Metab 2021; 320:E808-E821. [PMID: 33682458 DOI: 10.1152/ajpendo.00495.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Exercise improves obesity-induced insulin resistance and metabolic disorders via mechanisms that remain unclear. Here, we show that the levels of the hepatokine transthyretin (TTR) in circulation are elevated in insulin-resistant individuals including high-fat diet (HFD)-induced obese mice, db/db mice, and patients with metabolic syndrome. Liver Ttr mRNA and circulating TTR levels were reduced in mice by treadmill training, as was the TTR levels in quadriceps femoris muscle; however, AMP-activated protein kinase (AMPK) signaling activity was enhanced. Transgenic overexpression of TTR or injection of purified TTR triggered insulin resistance in mice fed on regular chow (RC). Furthermore, TTR overexpression reduced the beneficial effects of exercise on insulin sensitivity in HFD-fed mice. TTR was internalized by muscle cells via the membrane receptor Grp78 and the internalization into the quadriceps femoris was reduced by treadmill training. The TTR/Grp78 combination in C2C12 cells was increased, whereas the AMPK activity of C2C12 cells was decreased as the TTR concentration rose. In addition, Grp78 silencing prevented the TTR internalization and reversed its inhibitory effect on AMPK activity in C2C12 cells. Our study suggests that elevated circulating TTR may contribute to insulin resistance and counteract the exercise-induced insulin sensitivity improvement; the TTR suppression might be an adaptive response to exercise through enhancing AMPK activity in skeletal muscles.NEW & NOTEWORTHY Exercise improves obesity-induced insulin resistance via mechanisms that remain unclear. The novel findings of the study are that circulating TTR (a hepatokine) level is decreased by exercise, and the elevated circulating TTR, as was the elevated transthyretin internalization mediated by Grp78, counteracts the exercise-induced insulin sensitivity by downregulating AMPK activity in skeletal muscle of obese mice. These data suggest that TTR suppression might be an adaptive response to exercise through the crosstalk between liver and muscle.
Collapse
Affiliation(s)
- Yingzi He
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Ruojun Qiu
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Beibei Wu
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Weiwei Gui
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xihua Lin
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Hong Li
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Fenping Zheng
- Department of Endocrinology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
16
|
Liu C, Zhou XR, Ye MY, Xu XQ, Zhang YW, Liu H, Huang XZ. RBP4 Is Associated With Insulin Resistance in Hyperuricemia-Induced Rats and Patients With Hyperuricemia. Front Endocrinol (Lausanne) 2021; 12:653819. [PMID: 34177800 PMCID: PMC8223863 DOI: 10.3389/fendo.2021.653819] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Hyperuricemia (HUA) is strongly associated with abnormal glucose metabolism and insulin resistance (IR). However, the precise molecular mechanism of HUA-induced IR is still unclear. Retinol binding protein 4 (RBP4) has been shown to induce IR in type 2 diabetes mellitus. This study was designed to clarify the relationship between RBP4 and HUA-induced IR and its potential mechanisms. METHODS Patients with HUA were collected to detect the levels of plasma RBP4 and clinical biochemical indicators. Rats were fed with 10% high yeast and oteracil potassium (300 mg/kg) via intraperitoneal injection once daily for eight weeks, and gavage with adenine (100 mg/kg) once daily from the fifth week to induce the HUA model. Glucose consumption testing was performed to determine the capacity of glucose intake and consumption in 3T3-L1 adipocytes. Real-time polymerase chain reaction (RT-PCR) and western blot were used to detect the mRNA and protein level of RBP4 and insulin receptor substrate-phosphatidylinositol 3-kinase-active protein kinase (IRS/PI3K/Akt) signaling pathway-related proteins. RESULTS The levels of plasma RBP4 in both HUA patients and HUA rat models were significantly higher than that in the control groups. The level of plasma RBP4 was positively correlated with plasma uric acid, creatinine, fasting insulin, IR index, total cholesterol and triglyceride levels in patients with HUA. In HUA rats, the level of plasma RBP4 was positively correlated with plasma uric acid, IR index, and triglycerides. HUA rats also exhibited IR. After inhibition of RBP4 expression, the phosphorylation levels of the IRS/PI3K/Akt signaling pathway were increased, and IR was significantly improved. CONCLUSION HUA induced IR both in vitro and in vivo. RBP4 may be involved in HUA-induced IR by inhibiting IRS/PI3K/Akt phosphorylation. Our findings may provide a new insight for the treatment of IR caused by HUA.
Collapse
Affiliation(s)
- Chan Liu
- International Medical Department, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Rong Zhou
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mu-Yao Ye
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiang-Qing Xu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Wei Zhang
- International Medical Department, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Liu
- International Medical Department, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xian-Zhe Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xian-Zhe Huang,
| |
Collapse
|
17
|
Chen S, Sbuh N, Veedu RN. Antisense Oligonucleotides as Potential Therapeutics for Type 2 Diabetes. Nucleic Acid Ther 2020; 31:39-57. [PMID: 33026966 DOI: 10.1089/nat.2020.0891] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by persistent hyperglycemia resulting from inefficient signaling and insufficient production of insulin. Conventional management of T2D has largely relied on small molecule-based oral hypoglycemic medicines, which do not halt the progression of the disease due to limited efficacy and induce adverse effects as well. To this end, antisense oligonucleotide has attracted immense attention in developing antidiabetic agents because of their ability to downregulate the expression of disease-causing genes at the RNA and protein level. To date, seven antisense agents have been approved by the United States Food and Drug Administration for therapies of a variety of human maladies, including genetic disorders. Herein, we provide a comprehensive review of antisense molecules developed for suppressing the causative genes believed to be responsible for insulin resistance and hyperglycemia toward preventing and treating T2D.
Collapse
Affiliation(s)
- Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Nabayet Sbuh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, Perth, Australia
| |
Collapse
|
18
|
Liu M, Chen Y, Chen D. Association between transthyretin concentrations and gestational diabetes mellitus in Chinese women. Arch Gynecol Obstet 2020; 302:329-335. [PMID: 32451658 DOI: 10.1007/s00404-020-05599-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Transthyretin (TTR) is considered to be associated with insulin resistance in humans. This study aimed to investigate TTR level in gestational diabetes mellitus (GDM) and its association with glucose metabolism. METHODS Fifty pregnant women with GDM and 47 pregnant women with normal glucose tolerance matched for body mass index and age were enrolled in this study. Their blood samples were collected to detect TTR, retinol-binding protein 4 (RBP4), and their association with glucose and lipid metabolism. RESULTS Serum TTR levels in the GDM group were significantly higher than those in the control group (median, 93.44 [interquartile range, 73.81, 117.79] μg/ml vs. 80.83 [74.19, 89.38] μg/ml; P = 0.006). GDM subjects had a lower RBP4/TTR ratio than the control subjects (median, 517.57 [interquartile range, 348.38, 685.27] vs. 602.56 [460.28, 730.62]; P = 0.02). The serum TTR concentrations were positively associated with neonatal weight (r = 0.223, P = 0.028), homeostatic model assessment of insulin resistance (r = 0.246, P = 0.015), and fasting blood glucose (FBG) (r = 0.363, P < 0.001). In stepwise multivariate linear regression analysis, FBG (standardized beta = 0.27, P = 0.004) and neonatal weight (standardized beta = 0.345, P < 0.001) were independent predictors of serum TTR concentrations. Additionally, FBG (standardized beta = - 0.306, P = 0.002) and triglyceride (TG) (beta = 0.219, P = 0.025) were independently associated with RBP4/TTR ratio. CONCLUSIONS Serum TTR concentrations were significantly higher in women with GDM than that in women without GDM, suggesting that elevated TTR level may play a role in the pathogenesis of GDM. Meanwhile, TTR was positively and independently associated with FBG and neonatal weight, while FBG and TG were independent predictors of RBP4/TTR ratio. Moreover, serum TTR levels and RBP4/TTR ratio were considered valuable markers of insulin resistance and GDM.
Collapse
Affiliation(s)
- Mengting Liu
- Obstetrical Department, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang Province, China
| | - Yanmin Chen
- Obstetrical Department, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang Province, China
| | - Danqing Chen
- Obstetrical Department, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
19
|
Undiscovered Roles for Transthyretin: From a Transporter Protein to a New Therapeutic Target for Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21062075. [PMID: 32197355 PMCID: PMC7139926 DOI: 10.3390/ijms21062075] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
Transthyretin (TTR), an homotetrameric protein mainly synthesized by the liver and the choroid plexus, and secreted into the blood and the cerebrospinal fluid, respectively, has been specially acknowledged for its functions as a transporter protein of thyroxine and retinol (the latter through binding to the retinol-binding protein), in these fluids. Still, this protein has managed to stay in the spotlight as it has been assigned new and varied functions. In this review, we cover knowledge on novel TTR functions and the cellular pathways involved, spanning from neuroprotection to vascular events, while emphasizing its involvement in Alzheimer’s disease (AD). We describe details of TTR as an amyloid binding protein and discuss its interaction with the amyloid Aβ peptides, and the proposed mechanisms underlying TTR neuroprotection in AD. We also present the importance of translating advances in the knowledge of the TTR neuroprotective role into drug discovery strategies focused on TTR as a new target in AD therapeutics.
Collapse
|
20
|
Kilicarslan M, de Weijer BA, Simonyté Sjödin K, Aryal P, Ter Horst KW, Cakir H, Romijn JA, Ackermans MT, Janssen IM, Berends FJ, van de Laar AW, Houdijk AP, Kahn BB, Serlie MJ. RBP4 increases lipolysis in human adipocytes and is associated with increased lipolysis and hepatic insulin resistance in obese women. FASEB J 2020; 34:6099-6110. [PMID: 32167208 PMCID: PMC7317205 DOI: 10.1096/fj.201901979rr] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022]
Abstract
Retinol‐binding protein‐4 (RBP4) is elevated in serum and adipose tissue (AT) in obesity‐induced insulin resistance and correlates inversely with insulin‐stimulated glucose disposal. But its role in insulin‐mediated suppression of lipolysis, free fatty acids (FFA), and endogenous glucose production (EGP) in humans is unknown. RBP4 mRNA or protein levels were higher in liver, subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT) in morbidly obese subjects undergoing Roux‐en‐Y gastric bypass surgery compared to lean controls undergoing elective laparoscopic cholecystectomy. RBP4 mRNA expression in SAT correlated with the expression of several macrophage and other inflammation markers. Serum RBP4 levels correlated inversely with glucose disposal and insulin‐mediated suppression of lipolysis, FFA, and EGP. Mechanistically, RBP4 treatment of human adipocytes in vitro directly stimulated basal lipolysis. Treatment of adipocytes with conditioned media from RBP4‐activated macrophages markedly increased basal lipolysis and impaired insulin‐mediated lipolysis suppression. RBP4 treatment of macrophages increased TNFα production. These data suggest that elevated serum or adipose tissue RBP4 levels in morbidly obese subjects may cause hepatic and systemic insulin resistance by stimulating basal lipolysis and by activating macrophages in adipose tissue, resulting in release of pro‐inflammatory cytokines that impair lipolysis suppression. While we have demonstrated this mechanism in human adipocytes in vitro, and correlations from our flux studies in humans strongly support this, further studies are needed to determine whether this mechanism explains RBP4‐induced insulin resistance in humans.
Collapse
Affiliation(s)
- Murat Kilicarslan
- Department of Endocrinology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Barbara A de Weijer
- Department of Endocrinology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Kotryna Simonyté Sjödin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pratik Aryal
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kasper W Ter Horst
- Department of Endocrinology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Hamit Cakir
- Department of Surgery, Northwest Clinics, Alkmaar, the Netherlands
| | - Johannes A Romijn
- Department of Endocrinology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Mariëtte T Ackermans
- Clinical Chemistry, Laboratory of Endocrinology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Ignace M Janssen
- Department of Surgery, Rijnstate Hospital, Arnhem, the Netherlands
| | - Frits J Berends
- Department of Surgery, Rijnstate Hospital, Arnhem, the Netherlands
| | | | | | - Barbara B Kahn
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mireille J Serlie
- Department of Endocrinology & Metabolism, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Sun HX, Ji HH, Chen XL, Wang L, Wang Y, Shen XY, Lu X, Gao W, Wang LS. Serum retinol-binding protein 4 is associated with the presence and severity of coronary artery disease in patients with subclinical hypothyroidism. Aging (Albany NY) 2019; 11:4510-4520. [PMID: 31278889 PMCID: PMC6660052 DOI: 10.18632/aging.102065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/25/2019] [Indexed: 04/12/2023]
Abstract
Subclinical hypothyroidism (SCH) plays a crucial role in the development and progression of coronary heart disease (CAD). Retinol-binding protein 4 (RBP4) is an adipokine correlated with cardiovascular diseases. Recent studies found that RBP4 levels are increased in patients with SCH. However, the relationship of RBP4 with CAD in SCH patients remains unclear. A total of 199 SCH patients (148 with CAD and 51 without CAD) and 102 healthy controls were enrolled in this study. Serum RBP4 was increased in SCH patients than controls. Moreover, serum RBP4 was higher in SCH patients with CAD. Although there was no significant difference of metabolic parameters between SCH patients with and without CAD, serum RBP4 was positively correlated with body mass index, total cholesterol, and low-density lipoprotein cholesterol, as well as thyroid stimulating hormone. Multivariable logistic regression analyses revealed elevated RBP4 was correlated with increased risk for CAD in SCH patients. Serum RBP4 levels were also increased as the number of stenosed vessels increased. Furthermore, increased RBP4 was positively correlated with the severity of CAD quantified by the Gensini score. Our findings demonstrate that serum RBP4 is associated with the presence and severity of CAD in patients with SCH.
Collapse
Affiliation(s)
- Hui-Xian Sun
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
- Department of Respiratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Hui-Hong Ji
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Internal Medicine, The Hospital of HoHai University, Nanjing, China
| | - Xiao-Lin Chen
- Department of Respiratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Li Wang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Yue Wang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Xi-Yu Shen
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Wei Gao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- Key Laboratory for Aging and Disease, Nanjing Medical University, Nanjing, China
| | - Lian-Sheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Abstract
Much evidence has accumulated in the literature over the last fifteen years that indicates vitamin A has a role in metabolic disease prevention and causation. This literature proposes that vitamin A can affect obesity development and the development of obesity-related diseases including insulin resistance, type 2 diabetes, hepatic steatosis and steatohepatitis, and cardiovascular disease. Retinoic acid, the transcriptionally active form of vitamin A, accounts for many of the reported associations. However, a number of proteins involved in vitamin A metabolism, including retinol-binding protein 4 (RBP4) and aldehyde dehydrogenase 1A1 (ALDH1A1, alternatively known as retinaldehyde dehydrogenase 1 or RALDH1), have also been identified as being associated with metabolic disease. Some of the reported effects of these vitamin A-related proteins are proposed to be independent of their roles in assuring normal retinoic acid homeostasis. This review will consider both human observational data as well as published data from molecular studies undertaken in rodent models and in cells in culture. The primary focus of the review will be on the effects that vitamin A per se and proteins involved in vitamin A metabolism have on adipocytes, adipose tissue biology, and adipose-related disease, as well as on early stage liver disease, including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH).
Collapse
Affiliation(s)
- William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032.
| |
Collapse
|
23
|
Chen L, Pan X, Zhang YH, Huang T, Cai YD. Analysis of Gene Expression Differences between Different Pancreatic Cells. ACS OMEGA 2019; 4:6421-6435. [DOI: 10.1021/acsomega.8b02171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
- Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China
| | - Xiaoyong Pan
- Department of Medical Informatics, Erasmus MC, Rotterdam 3014ZK, Netherlands
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
24
|
Cai H, Li M, Sun X, Plath M, Li C, Lan X, Lei C, Huang Y, Bai Y, Qi X, Lin F, Chen H. Global Transcriptome Analysis During Adipogenic Differentiation and Involvement of Transthyretin Gene in Adipogenesis in Cattle. Front Genet 2018; 9:463. [PMID: 30405687 PMCID: PMC6200853 DOI: 10.3389/fgene.2018.00463] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/21/2018] [Indexed: 12/03/2022] Open
Abstract
Adipose tissue plays central role in determining the gustatory quality of beef, but traditional Chinese beef cattle have low levels of fat content. We applied RNA-seq to study the molecular mechanisms underlying adipocyte differentiation in Qinchuan cattle. A total of 18,283 genes were found to be expressed in preadipocytes and mature adipocytes, respectively. 470 of which were significantly differentially expressed genes (DEGs) [false discovery rate (FDR) values < 0.05 and fold change ≥ 2]. In addition, 4534 alternative splicing (AS) events and 5153 AS events were detected in preadipocytes and adipocytes, respectively. We constructed a protein interaction network, which suggested that collagen plays an important role during bovine adipogenic differentiation. We characterized the function of the most down-regulated DEG (P < 0.001) among genes we have detected by qPCR, namely, the transthyretin (TTR) gene. Overexpression of TTR appears to promote the expression of the peroxisome proliferator activated receptor γ (PPARγ) (P < 0.05) and fatty acid binding Protein 4 (FABP4) (P < 0.05). Hence, TTR appears to be involved in the regulation of bovine adipogenic differentiation. Our study represents the comprehensive approach to explore bovine adipocyte differentiation using transcriptomic data and reports an involvement of TTR during bovine adipogenic differentiation. Our results provide novel insights into the molecular mechanisms underlying bovine adipogenic differentiation.
Collapse
Affiliation(s)
- Hanfang Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Mingxun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaomei Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Congjun Li
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yueyu Bai
- Animal Health Supervision in Henan Province, Zhengzhou, China
| | - Xinglei Qi
- Biyang Bureau of Animal Husbandry of Biyang County, Biyang, China
| | - Fengpeng Lin
- Biyang Bureau of Animal Husbandry of Biyang County, Biyang, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
25
|
Nicholson T, Church C, Baker DJ, Jones SW. The role of adipokines in skeletal muscle inflammation and insulin sensitivity. JOURNAL OF INFLAMMATION-LONDON 2018; 15:9. [PMID: 29760587 PMCID: PMC5944154 DOI: 10.1186/s12950-018-0185-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022]
Abstract
Background There is currently an unmet clinical need to develop better pharmacological treatments to improve glucose handling in Type II Diabetes patients with obesity. To this end, determining the effect of obesity-associated adipokines on skeletal muscle insulin sensitivity has emerged as an important area of drug discovery research. This review draws together the data on the functional role of adipokines on skeletal muscle insulin signalling, highlights several understudied novel adipokines and provides a perspective on the direction of future research. Main body The adipokines leptin, resistin, visfatin and adiponectin have all been shown to affect skeletal muscle insulin sensitivity by impacting on the activity of components within insulin signalling pathways, affecting GLUT4 translocation and modulating insulin-mediated skeletal muscle glucose uptake. Furthermore, proteomic analysis of the adipose tissue secretome has recently identified several novel adipokines including vaspin, chemerin and pref-1 that are associated with obesity and insulin resistance in humans and functionally impact on insulin signalling pathways. However, predominantly, these functional findings are the result of studies in rodents, with in vitro studies utilising either rat L6 or murine C2C12 myoblasts and/or myotubes. Despite the methodology to isolate and culture human myoblasts and to differentiate them into myotubes being established, the use of human muscle in vitro models for the functional validation of adipokines on skeletal muscle insulin sensitivity is limited. Conclusion Understanding the mechanism of action and function of adipokines in mediating insulin sensitivity in skeletal muscle may lead to the development of novel therapeutics for patients with type 2 diabetes. However, to date, studies conducted in human skeletal muscle cells and tissues are limited. Such human in vitro studies should be prioritised in order to reduce the risk of candidate drugs failing in the clinic due to the assumption that rodent skeletal muscle target validation studies will to translate to human.
Collapse
Affiliation(s)
- Thomas Nicholson
- 1MRC-ARUK Centre for Musculoskeletal Ageing Research, Medical School, Queen Elizabeth Hospital, University of Birmingham, Birmingham, B15 2WB UK
| | - Chris Church
- 2MedImmune, Cardiovascular and Metabolic Disease (CVMD), Milstein Building, Granta Park, Cambridge, CB21 6GH UK
| | - David J Baker
- 2MedImmune, Cardiovascular and Metabolic Disease (CVMD), Milstein Building, Granta Park, Cambridge, CB21 6GH UK
| | - Simon W Jones
- 1MRC-ARUK Centre for Musculoskeletal Ageing Research, Medical School, Queen Elizabeth Hospital, University of Birmingham, Birmingham, B15 2WB UK.,3Institute of Inflammation and Ageing, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
26
|
Birerdinc A, Stoddard S, Younossi ZM. The Stomach as an Endocrine Organ: Expression of Key Modulatory Genes and Their Contribution to Obesity and Non-alcoholic Fatty Liver Disease (NAFLD). Curr Gastroenterol Rep 2018; 20:24. [PMID: 29675753 DOI: 10.1007/s11894-018-0629-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE OF REVIEW Obesity is currently seen in epidemic proportions globally and is one of the largest contributors to the development of NAFLD. The spectrum of NAFLD, particularly the progressive forms of NASH, is likely to become the leading cause of liver disease in the next decade. RECENT FINDINGS Soluble molecules, encoded by the stomach tissue, have been shown to have pleiotropic effects in both central and peripheral systems involved in energy homeostasis and obesity regulation. As such, the stomach is one of the important players in the complex, multi-system deregulation leading to obesity and NAFLD. The understanding of the stomach tissue as an active endocrine organ that contributes to the signaling milieu leading to the development of obesity and NAFLD is crucial.
Collapse
Affiliation(s)
- Aybike Birerdinc
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Claude Moore Health Education and Research Building, 3300 Gallows Road, Falls Church, VA, 22042, USA
| | - Sasha Stoddard
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Claude Moore Health Education and Research Building, 3300 Gallows Road, Falls Church, VA, 22042, USA
| | - Zobair M Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Claude Moore Health Education and Research Building, 3300 Gallows Road, Falls Church, VA, 22042, USA.
- Department of Medicine and Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, VA, USA.
| |
Collapse
|
27
|
Alfadda AA, Masood A, Al-Naami MY, Chaurand P, Benabdelkamel H. A Proteomics Based Approach Reveals Differential Regulation of Visceral Adipose Tissue Proteins between Metabolically Healthy and Unhealthy Obese Patients. Mol Cells 2017; 40:685-695. [PMID: 28927258 PMCID: PMC5638776 DOI: 10.14348/molcells.2017.0073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022] Open
Abstract
Obesity and the metabolic disorders that constitute metabolic syndrome are a primary cause of morbidity and mortality in the world. Nonetheless, the changes in the proteins and the underlying molecular pathways involved in the relevant pathogenesis are poorly understood. In this study a proteomic analysis of the visceral adipose tissue isolated from metabolically healthy and unhealthy obese patients was used to identify presence of altered pathway(s) leading to metabolic dysfunction. Samples were obtained from 18 obese patients undergoing bariatric surgery and were subdivided into two groups based on the presence or absence of comorbidities as defined by the International Diabetes Federation. Two dimensional difference in-gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was carried out. A total of 28 proteins were identified with a statistically significant difference in abundance and a 1.5-fold change (ANOVA, p ≤ 0.05) between the groups. 11 proteins showed increased abundance while 17 proteins were decreased in the metabolically unhealthy obese compared to the healthy obese. The differentially expressed proteins belonged broadly to three functional categories: (i) protein and lipid metabolism (ii) cytoskeleton and (iii) regulation of other metabolic processes. Network analysis by Ingenuity pathway analysis identified the NFκB, IRK/MAPK and PKC as the nodes with the highest connections within the connectivity map. The top network pathway identified in our protein data set related to cellular movement, hematological system development and function, and immune cell trafficking. The VAT proteome between the two groups differed substantially between the groups which could potentially be the reason for metabolic dysfunction.
Collapse
Affiliation(s)
- Assim A. Alfadda
- Obesity Research Center, College of Medicine, King Saud University,
Saudi Arabia
- Department of Medicine, College of Medicine, King Saud University,
Saudi Arabia
| | - Afshan Masood
- Obesity Research Center, College of Medicine, King Saud University,
Saudi Arabia
| | | | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montreal,
Canada
| | - Hicham Benabdelkamel
- Obesity Research Center, College of Medicine, King Saud University,
Saudi Arabia
| |
Collapse
|
28
|
Gliniak CM, Brown JM, Noy N. The retinol-binding protein receptor STRA6 regulates diurnal insulin responses. J Biol Chem 2017; 292:15080-15093. [PMID: 28733465 DOI: 10.1074/jbc.m117.782334] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/17/2017] [Indexed: 01/06/2023] Open
Abstract
It has long been appreciated that insulin action is closely tied to circadian rhythms. However, the mechanisms that dictate diurnal insulin sensitivity in metabolic tissues are not well understood. Retinol-binding protein 4 (RBP4) has been implicated as a driver of insulin resistance in rodents and humans, and it has become an attractive drug target in type II diabetes. RBP4 is synthesized primarily in the liver where it binds retinol and transports it to tissues throughout the body. The retinol-RBP4 complex (holo-RBP) can be recognized by a cell-surface receptor known as stimulated by retinoic acid 6 (STRA6), which transports retinol into cells. Coupled to retinol transport, holo-RBP can activate STRA6-driven Janus kinase (JAK) signaling and downstream induction of signal transducer and activator of transcription (STAT) target genes. STRA6 signaling in white adipose tissue has been shown to inhibit insulin receptor responses. Here, we examined diurnal rhythmicity of the RBP4/STRA6 signaling axis and investigated whether STRA6 is necessary for diurnal variations in insulin sensitivity. We show that adipose tissue STRA6 undergoes circadian patterning driven in part by the nuclear transcription factor REV-ERBα. Furthermore, STRA6 is necessary for diurnal rhythmicity of insulin action and JAK/STAT signaling in adipose tissue. These findings establish that holo-RBP and its receptor STRA6 are potent regulators of diurnal insulin responses and suggest that the holo-RBP/STRA6 signaling axis may represent a novel therapeutic target in type II diabetes.
Collapse
Affiliation(s)
- Christy M Gliniak
- From the Department of Cellular and Molecular Medicine and.,the Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106
| | - J Mark Brown
- From the Department of Cellular and Molecular Medicine and .,the Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106.,the Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Noa Noy
- From the Department of Cellular and Molecular Medicine and
| |
Collapse
|
29
|
Concurrent Aerobic and Resistance Training Has Anti-Inflammatory Effects and Increases Both Plasma and Leukocyte Levels of IGF-1 in Late Middle-Aged Type 2 Diabetic Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3937842. [PMID: 28713486 PMCID: PMC5497609 DOI: 10.1155/2017/3937842] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/23/2017] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (T2D) is an age-related chronic disease associated with metabolic dysregulation, chronic inflammation, and activation of peripheral blood mononuclear cells (PBMC). The aim of this study was to assess the effects of a concurrent exercise training program on inflammatory status and metabolic parameters of T2D patients. Sixteen male patients (age range 55–70) were randomly assigned to an intervention group (n = 8), which underwent a concurrent aerobic and resistance training program (3 times a week; 16 weeks), or to a control group, which followed physicians' usual diabetes care advices. Training intervention significantly improved patients' body composition, blood pressure, total cholesterol, and overall fitness level. After training, plasma levels of adipokines leptin (−33.9%) and RBP4 (−21.3%), and proinflammatory markers IL-6 (−25.3%), TNF-α (−19.8%) and MCP-1 (−15.3%) decreased, whereas anabolic hormone IGF-1 level increased (+16.4%). All improvements were significantly greater than those of control patients. Plasma proteomic profile of exercised patients showed a reduction of immunoglobulin K light chain and fibrinogen as well. Training also induced a modulation of IL-6, IGF-1, and IGFBP-3 mRNAs in the PBMCs. These findings confirm that concurrent aerobic and resistance training improves T2D-related metabolic abnormalities and has the potential to reduce the deleterious health effects of diabetes-related inflammation.
Collapse
|
30
|
Wongchitrat P, Klosen P, Pannengpetch S, Kitidee K, Govitrapong P, Isarankura-Na-Ayudhya C. High-fat diet-induced plasma protein and liver changes in obese rats can be attenuated by melatonin supplementation. Nutr Res 2017. [PMID: 28633871 DOI: 10.1016/j.nutres.2017.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Obesity triggers changes in protein expression in various organs that might participate in the pathogenesis of obesity. Melatonin has been reported to prevent or attenuate such pathological protein changes in several chronic diseases. However, such melatonin effects on plasma proteins have not yet been studied in an obesity model. Using a proteomic approach, we investigated the effect of melatonin on plasma protein profiles after rats were fed a high-fat diet (HFD) to induce obesity. We hypothesized that melatonin would attenuate abnormal protein expression in obese rats. After 10weeks of the HFD, animals displayed increased body weight and fat accumulation as well as increased glucose levels, indicating an obesity-induced prediabetes mellitus-like state. Two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry revealed 12 proteins whose expression was altered in response to the HFD and the melatonin treatment. The altered proteins are related to the development of liver pathology, such as cirrhosis (α1-antiproteinase), thrombosis (fibrinogen, plasminogen), and inflammation (mannose-binding protein A, complement C4, complement factor B), contributing to liver steatosis or hepatic cell death. Melatonin treatment most probably reduced the severity of the HFD-induced obesity by reducing the amplitude of HFD-induced plasma protein changes. In conclusion, we identified several potential biomarkers associated with the progression of obesity and its complications, such as liver damage. Furthermore, our findings reveal melatonin's beneficial effect of attenuating plasma protein changes and liver pathogenesis in obese rats.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Rd, Nakhonpathom 73170, Thailand.
| | - Paul Klosen
- Institut des Neurosciences Cellulaires et Intégratives, 5 rue Blaise Pascal, Strasbourg 67084, France; Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Rd, Nakhonpathom 73170, Thailand
| | - Supitcha Pannengpetch
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Rd, Nakhonpathom 73170, Thailand
| | - Kuntida Kitidee
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Rd, Nakhonpathom 73170, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Rd, Nakhonpathom 73170, Thailand; Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Rd, Lak Si, Bangkok 10210, Thailand
| | - Chartchalerm Isarankura-Na-Ayudhya
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Rd, Nakhonpathom 73170, Thailand
| |
Collapse
|
31
|
Xiong T, Zhong C, Zhou X, Chen R, Xiao M, Wu Y, Hu X, Wang W, Li X, Liu C, Xiong G, Yang X, Hao L, Yang N. Maternal Circulating Transthyretin Level Is Longitudinally Associated With Increased Risk of Gestational Diabetes Mellitus: It Is Not Just an Indicator of Nutritional Status. Diabetes Care 2017; 40:e53-e54. [PMID: 28246122 DOI: 10.2337/dc16-2731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/02/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Ting Xiong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunrong Zhong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuezhen Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjuan Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Xiao
- Hubei Maternal and Child Health Hospital, Wuhan, China
| | - Yuanjue Wu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingwen Hu
- Hubei Maternal and Child Health Hospital, Wuhan, China
| | - Weiye Wang
- Department of Epidemiology and Biostatistics and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiating Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nianhong Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Chen J, Chen L, Sanseau P, Freudenberg JM, Rajpal DK. Significant obesity-associated gene expression changes occur in the stomach but not intestines in obese mice. Physiol Rep 2016; 4:4/10/e12793. [PMID: 27207783 PMCID: PMC4886165 DOI: 10.14814/phy2.12793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/07/2016] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal (GI) tract can have significant impact on the regulation of the whole‐body metabolism and may contribute to the development of obesity and diabetes. To systemically elucidate the role of the GI tract in obesity, we performed a transcriptomic analysis in different parts of the GI tract of two obese mouse models: ob/ob and high‐fat diet (HFD) fed mice. Compared to their lean controls, significant changes in the gene expression were observed in both obese mouse groups in the stomach (ob/ob: 959; HFD: 542). In addition, these changes were quantitatively much higher than in the intestine. Despite the difference in genetic background, the two mouse models shared 296 similar gene expression changes in the stomach. Among those genes, some had known associations to obesity, diabetes, and insulin resistance. In addition, the gene expression profiles strongly suggested an increased gastric acid secretion in both obese mouse models, probably through an activation of the gastrin pathway. In conclusion, our data reveal a previously unknown dominant connection between the stomach and obesity in murine models extensively used in research.
Collapse
Affiliation(s)
- Jing Chen
- Computational Biology, Target Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Lihong Chen
- Enteroendocrinology DPU, GlaxoSmithKline, Research Triangle Park, North Carolina
| | - Philippe Sanseau
- Computational Biology, Target Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania
| | | | - Deepak K Rajpal
- Computational Biology, Target Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania
| |
Collapse
|
33
|
Evaluation of Therapeutic Oligonucleotides for Familial Amyloid Polyneuropathy in Patient-Derived Hepatocyte-Like Cells. PLoS One 2016; 11:e0161455. [PMID: 27584576 PMCID: PMC5008816 DOI: 10.1371/journal.pone.0161455] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/05/2016] [Indexed: 01/06/2023] Open
Abstract
Familial amyloid polyneuropathy (FAP) is caused by mutations of the transthyretin (TTR) gene, predominantly expressed in the liver. Two compounds that knockdown TTR, comprising a small interfering RNA (siRNA; ALN-TTR-02) and an antisense oligonucleotide (ASO; IONIS-TTRRx), are currently being evaluated in clinical trials. Since primary hepatocytes from FAP patients are rarely available for molecular analysis and commercial tissue culture cells or animal models lack the patient-specific genetic background, this study uses primary cells derived from urine of FAP patients. Urine-derived cells were reprogrammed to induced pluripotent stem cells (iPSCs) with high efficiency. Hepatocyte-like cells (HLCs) showing typical hepatic marker expression were obtained from iPSCs of the FAP patients. TTR mRNA expression of FAP HLCs almost reached levels measured in human hepatocytes. To assess TTR knockdown, siTTR1 and TTR-ASO were introduced to HLCs. A significant downregulation (>80%) of TTR mRNA was induced in the HLCs by both oligonucleotides. TTR protein present in the cell culture supernatant of HLCs was similarly downregulated. Gene expression of other hepatic markers was not affected by the therapeutic oligonucleotides. Our data indicate that urine cells (UCs) after reprogramming and hepatic differentiation represent excellent primary human target cells to assess the efficacy and specificity of novel compounds.
Collapse
|
34
|
Moraes-Vieira PM, Castoldi A, Aryal P, Wellenstein K, Peroni OD, Kahn BB. Antigen Presentation and T-Cell Activation Are Critical for RBP4-Induced Insulin Resistance. Diabetes 2016; 65:1317-27. [PMID: 26936962 PMCID: PMC4839203 DOI: 10.2337/db15-1696] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/20/2016] [Indexed: 02/06/2023]
Abstract
Adipose tissue (AT) inflammation contributes to impaired insulin action, which is a major cause of type 2 diabetes. RBP4 is an adipocyte- and liver-derived protein with an important role in insulin resistance, metabolic syndrome, and AT inflammation. RBP4 elevation causes AT inflammation by activating innate immunity, which elicits an adaptive immune response. RBP4-overexpressing mice (RBP4-Ox) are insulin resistant and glucose intolerant and have increased AT macrophages and T-helper 1 cells. We show that high-fat diet-fed RBP4(-/-) mice have reduced AT inflammation and improved insulin sensitivity versus wild type. We also elucidate the mechanism for RBP4-induced macrophage antigen presentation and subsequent T-cell activation. In RBP4-Ox, AT macrophages display enhanced c-Jun N-terminal kinase, extracellular signal-related kinase, and p38 phosphorylation. Inhibition of these pathways and of NF-κB reduces activation of macrophages and CD4 T cells. MyD88 is an adaptor protein involved in proinflammatory signaling. In macrophages from MyD88(-/-) mice, RBP4 fails to stimulate secretion of tumor necrosis factor, IL-12, and IL-6 and CD4 T-cell activation. In vivo blockade of antigen presentation by treating RBP4-Ox mice with CTLA4-Ig, which blocks costimulation of T cells, is sufficient to reduce AT inflammation and improve insulin resistance. Thus, MyD88 and downstream mitogen-activated protein kinase and NF-κB pathways are necessary for RBP4-induced macrophage antigen presentation and subsequent T-cell activation. Also, blocking antigen presentation with CTLA4-Ig improves RBP4-induced insulin resistance and macrophage-induced T-cell activation.
Collapse
Affiliation(s)
- Pedro M Moraes-Vieira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Angela Castoldi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Pratik Aryal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Kerry Wellenstein
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Odile D Peroni
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
35
|
Central transthyretin acts to decrease food intake and body weight. Sci Rep 2016; 6:24238. [PMID: 27053000 PMCID: PMC4823743 DOI: 10.1038/srep24238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/22/2016] [Indexed: 01/09/2023] Open
Abstract
Transthyretin (TTR) is a blood and cerebrospinal fluid transporter of thyroxine and retinol. Gene expression profiling revealed an elevation of Ttr expression in the dorsomedial hypothalamus (DMH) of rats with exercise-induced anorexia, implying that central TTR may also play a functional role in modulating food intake and energy balance. To test this hypothesis, we have examined the effects of brain TTR on food intake and body weight and have further determined hypothalamic signaling that may underlie its feeding effect in rats. We found that intracerebroventricular (icv) administration of TTR in normal growing rats decreased food intake and body weight. This effect was not due to sickness as icv TTR did not cause a conditioned taste aversion. ICV TTR decreased neuropeptide Y (NPY) levels in the DMH and the paraventricular nucleus (P < 0.05). Chronic icv infusion of TTR in Otsuka Long-Evans Tokushima Fatty rats reversed hyperphagia and obesity and reduced DMH NPY levels. Overall, these results demonstrate a previously unknown anorectic action of central TTR in the control of energy balance, providing a potential novel target for treating obesity and its comorbidities.
Collapse
|
36
|
Bailey CJ, Tahrani AA, Barnett AH. Future glucose-lowering drugs for type 2 diabetes. Lancet Diabetes Endocrinol 2016; 4:350-9. [PMID: 26809680 DOI: 10.1016/s2213-8587(15)00462-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/13/2015] [Accepted: 11/18/2015] [Indexed: 12/15/2022]
Abstract
The multivariable and progressive natural history of type 2 diabetes limits the effectiveness of available glucose-lowering drugs. Constraints imposed by comorbidities (notably cardiovascular disease and renal impairment) and the need to avoid hypoglycaemia, weight gain, and drug interactions further complicate the treatment process. These challenges have prompted the development of new formulations and delivery methods for existing drugs alongside research into novel pharmacological entities. Advances in incretin-based therapies include a miniature implantable osmotic pump to give continuous delivery of a glucagon-like peptide-1 receptor agonist for 6-12 months and once-weekly tablets of dipeptidyl peptidase-4 inhibitors. Hybrid molecules that combine the properties of selected incretins and other peptides are at early stages of development, and proof of concept has been shown for small non-peptide molecules to activate glucagon-like peptide-1 receptors. Additional sodium-glucose co-transporter inhibitors are progressing in development as well as possible new insulin-releasing biological agents and small-molecule inhibitors of glucagon action. Adiponectin receptor agonists, selective peroxisome proliferator-activated receptor modulators, cellular glucocorticoid inhibitors, and analogues of fibroblast growth factor 21 are being considered as potential new approaches to glucose lowering. Compounds that can enhance insulin receptor and post-receptor signalling cascades or directly promote selected pathways of glucose metabolism have suggested opportunities for future treatments. However, pharmacological interventions that are able to restore normal β-cell function and β-cell mass, normalise insulin action, and fully correct glucose homoeostasis are a distant vision.
Collapse
Affiliation(s)
- Clifford J Bailey
- School of Life and Health Sciences, Aston University, Birmingham, UK.
| | - Abd A Tahrani
- Department of Diabetes and Endocrinology, Heart of England NHS Foundation Trust, Birmingham, UK
| | - Anthony H Barnett
- Department of Diabetes and Endocrinology, Heart of England NHS Foundation Trust, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham, UK
| |
Collapse
|
37
|
Zhong L, Ding Y, Bandyopadhyay G, Waaler J, Börgeson E, Smith S, Zhang M, Phillips SA, Mahooti S, Mahata SK, Shao J, Krauss S, Chi NW. The PARsylation activity of tankyrase in adipose tissue modulates systemic glucose metabolism in mice. Diabetologia 2016; 59:582-91. [PMID: 26631215 DOI: 10.1007/s00125-015-3815-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/30/2015] [Indexed: 12/29/2022]
Abstract
AIMS/HYPOTHESIS Tankyrase (TNKS) is a ubiquitously expressed molecular scaffold that is implicated in diverse processes. The catalytic activity of TNKS modifies substrate proteins through poly-ADP-ribosylation (PARsylation) and is responsive to cellular energetic state. Global deficiency of the TNKS protein in mice accelerates glucose utilisation and raises plasma adiponectin levels. The aim of this study was to investigate whether the PARsylation activity of TNKS in adipocytes plays a role in systemic glucose homeostasis. METHODS To inhibit TNKS-mediated PARsylation, we fed mice with a diet containing the TNKS-specific inhibitor G007-LK. To genetically inactivate TNKS catalysis in adipocytes while preserving its function as a molecular scaffold, we used an adipocyte-selective Cre transgene to delete TNKS exons that encoded the catalytic domain at the C-terminus. Tissue-specific insulin sensitivity in mice was investigated using hyperinsulinaemic-euglycaemic clamps. To model adipose-liver crosstalk ex vivo, we applied adipocyte-conditioned media to hepatocytes and assessed the effect on gluconeogenesis. RESULTS The TNKS inhibitor G007-LK improved glucose tolerance and insulin sensitivity and promptly increased plasma adiponectin levels. In female mice, but not in male mice, adipocyte-selective genetic inactivation of TNKS catalysis improved hepatic insulin sensitivity and post-transcriptionally increased plasma adiponectin levels. Both pharmacological and genetic TNKS inhibition in female mouse-derived adipocytes induced a change in secreted factors to decrease gluconeogenesis in primary hepatocytes. CONCLUSIONS/INTERPRETATION Systemic glucose homeostasis is regulated by the PARsylation activity of TNKS in adipocytes. This regulation is mediated in part by adipocyte-secreted factors that modulate hepatic glucose production. Pharmacological TNKS inhibition could potentially be used to improve glucose tolerance.
Collapse
Affiliation(s)
- Linlin Zhong
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0673, USA
| | - Yun Ding
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0673, USA
| | - Gautam Bandyopadhyay
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0673, USA
| | - Jo Waaler
- Oslo University Hospital, Oslo, Norway
| | - Emma Börgeson
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0673, USA
| | - Susan Smith
- New York University School of Medicine, New York, NY, USA
| | - Mingchen Zhang
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0673, USA
- First Affiliated Hospital of Xinjiang Medical University, Xinjiang, People's Republic of China
| | - Susan A Phillips
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Sepi Mahooti
- Department of Pathology, University of California, San Diego, CA, USA
| | - Sushil K Mahata
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0673, USA
| | - Jianhua Shao
- Department of Pediatrics, University of California, San Diego, CA, USA
| | | | - Nai-Wen Chi
- VA San Diego Healthcare System, San Diego, CA, USA.
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093-0673, USA.
| |
Collapse
|
38
|
Kuo T, Kim-Muller JY, McGraw TE, Accili D. Altered Plasma Profile of Antioxidant Proteins as an Early Correlate of Pancreatic β Cell Dysfunction. J Biol Chem 2016; 291:9648-56. [PMID: 26917725 DOI: 10.1074/jbc.m115.702183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Indexed: 12/22/2022] Open
Abstract
Insulin resistance and β cell dysfunction contribute to the pathogenesis of type 2 diabetes. Unlike insulin resistance, β cell dysfunction remains difficult to predict and monitor, because of the inaccessibility of the endocrine pancreas, the integrated relationship with insulin sensitivity, and the paracrine effects of incretins. The goal of our study was to survey the plasma response to a metabolic challenge in order to identify factors predictive of β cell dysfunction. To this end, we combined (i) the power of unbiased iTRAQ (isobaric tag for relative and absolute quantification) mass spectrometry with (ii) direct sampling of the portal vein following an intravenous glucose/arginine challenge (IVGATT) in (iii) mice with a genetic β cell defect. By so doing, we excluded the effects of peripheral insulin sensitivity as well as those of incretins on β cells, and focused on the first phase of insulin secretion to capture the early pathophysiology of β cell dysfunction. We compared plasma protein profiles with ex vivo islet secretome and transcriptome analyses. We detected changes to 418 plasma proteins in vivo, and detected changes to 262 proteins ex vivo The impairment of insulin secretion was associated with greater overall changes in the plasma response to IVGATT, possibly reflecting metabolic instability. Reduced levels of proteins regulating redox state and neuronal stress markers, as well as increased levels of coagulation factors, antedated the loss of insulin secretion in diabetic mice. These results suggest that a reduced complement of antioxidants in response to a mixed secretagogue challenge is an early correlate of future β cell failure.
Collapse
Affiliation(s)
- Taiyi Kuo
- From the Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York 10032 and
| | - Ja Young Kim-Muller
- From the Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York 10032 and
| | - Timothy E McGraw
- the Department of Biochemistry, Weill Cornell Medical College, New York, New York 10065
| | - Domenico Accili
- From the Department of Medicine and Berrie Diabetes Center, Columbia University College of Physicians and Surgeons, New York, New York 10032 and
| |
Collapse
|
39
|
Shabrova E, Hoyos B, Vinogradov V, Kim YK, Wassef L, Leitges M, Quadro L, Hammerling U. Retinol as a cofactor for PKCδ-mediated impairment of insulin sensitivity in a mouse model of diet-induced obesity. FASEB J 2015; 30:1339-55. [PMID: 26671999 DOI: 10.1096/fj.15-281543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/23/2015] [Indexed: 12/15/2022]
Abstract
We previously defined that the mitochondria-localized PKCδ signaling complex stimulates the conversion of pyruvate to acetyl-coenzyme A by the pyruvate dehydrogenase complex. We demonstrated in vitro and ex vivo that retinol supplementation enhances ATP synthesis in the presence of the PKCδ signalosome. Here, we tested in vivo if a persistent oversupply of retinol would further impair glucose metabolism in a mouse model of diet-induced insulin resistance. We crossed mice overexpressing human retinol-binding protein (hRBP) under the muscle creatine kinase (MCK) promoter (MCKhRBP) with the PKCδ(-/-) strain to generate mice with a different status of the PKCδ signalosome and retinoid levels. Mice with a functional PKCδ signalosome and elevated retinoid levels (PKCδ(+/+)hRBP) developed the most advanced stage of insulin resistance. In contrast, elevation of retinoid levels in mice with inactive PKCδ did not affect remarkably their metabolism, resulting in phenotypic similarity between PKCδ(-/-)hRBP and PKCδ(-/-) mice. Therefore, in addition to the well-defined role of PKCδ in the etiology of metabolic syndrome, we present a novel PKCδ signaling pathway that requires retinol as a metabolic cofactor and is involved in the regulation of fuel utilization in mitochondria. The distinct role in whole-body energy homeostasis establishes the PKCδ signalosome as a promising target for therapeutic intervention in metabolic disorders.
Collapse
Affiliation(s)
- Elena Shabrova
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Beatrice Hoyos
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Valerie Vinogradov
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Youn-Kyung Kim
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Lesley Wassef
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Michael Leitges
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Loredana Quadro
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Ulrich Hammerling
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| |
Collapse
|
40
|
Niemietz C, Chandhok G, Schmidt H. Therapeutic Oligonucleotides Targeting Liver Disease: TTR Amyloidosis. Molecules 2015; 20:17944-75. [PMID: 26437390 PMCID: PMC6332041 DOI: 10.3390/molecules201017944] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 12/13/2022] Open
Abstract
The liver has become an increasingly interesting target for oligonucleotide therapy. Mutations of the gene encoding transthyretin (TTR), expressed in vast amounts by the liver, result in a complex degenerative disease, termed familial amyloid polyneuropathy (FAP). Misfolded variants of TTR are linked to the establishment of extracellular protein deposition in various tissues, including the heart and the peripheral nervous system. Recent progress in the chemistry and formulation of antisense (ASO) and small interfering RNA (siRNA) designed for a knockdown of TTR mRNA in the liver has allowed to address the issue of gene-specific molecular therapy in a clinical setting of FAP. The two therapeutic oligonucleotides bind to RNA in a sequence specific manner but exploit different mechanisms. Here we describe major developments that have led to the advent of therapeutic oligonucleotides for treatment of TTR-related disease.
Collapse
MESH Headings
- Amyloid Neuropathies, Familial/genetics
- Amyloid Neuropathies, Familial/therapy
- Animals
- Clinical Studies as Topic
- Drug Evaluation, Preclinical
- Gene Silencing
- Genetic Therapy
- Humans
- Liver Diseases/genetics
- Liver Diseases/therapy
- Mutation
- Oligonucleotides/administration & dosage
- Oligonucleotides/chemistry
- Oligonucleotides/genetics
- Oligonucleotides/therapeutic use
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/therapeutic use
- Prealbumin/genetics
- RNA Interference
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Christoph Niemietz
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, D-48149 Münster, Germany.
| | - Gursimran Chandhok
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, D-48149 Münster, Germany.
| | - Hartmut Schmidt
- Klinik für Transplantationsmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A14, D-48149 Münster, Germany.
| |
Collapse
|
41
|
Transgenic Mice Overexpressing Serum Retinol-Binding Protein Develop Progressive Retinal Degeneration through a Retinoid-Independent Mechanism. Mol Cell Biol 2015; 35:2771-89. [PMID: 26055327 DOI: 10.1128/mcb.00181-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/01/2015] [Indexed: 12/19/2022] Open
Abstract
Serum retinol-binding protein 4 (RBP4) is the sole specific transport protein for retinol in the blood, but it is also an adipokine with retinol-independent, proinflammatory activity associated with obesity, insulin resistance, type 2 diabetes, and cardiovascular disease. Moreover, two separate studies reported that patients with proliferative diabetic retinopathy have increased serum RBP4 levels compared to patients with mild or no retinopathy, yet the effect of increased levels of RBP4 on the retina has not been studied. Here we show that transgenic mice overexpressing RBP4 (RBP4-Tg mice) develop progressive retinal degeneration, characterized by photoreceptor ribbon synapse deficiency and subsequent bipolar cell loss. Ocular retinoid and bisretinoid levels are normal in RBP4-Tg mice, demonstrating that a retinoid-independent mechanism underlies retinal degeneration. Increased expression of pro-interleukin-18 (pro-IL-18) mRNA and activated IL-18 protein and early-onset microglia activation in the retina suggest that retinal degeneration is driven by a proinflammatory mechanism. Neither chronic systemic metabolic disease nor other retinal insults are required for RBP4 elevation to promote retinal neurodegeneration, since RBP4-Tg mice do not have coincident retinal vascular pathology, obesity, dyslipidemia, or hyperglycemia. These findings suggest that elevation of serum RBP4 levels could be a risk factor for retinal damage and vision loss in nondiabetic as well as diabetic patients.
Collapse
|
42
|
Andrade-Oliveira V, Câmara NOS, Moraes-Vieira PM. Adipokines as drug targets in diabetes and underlying disturbances. J Diabetes Res 2015; 2015:681612. [PMID: 25918733 PMCID: PMC4397001 DOI: 10.1155/2015/681612] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/19/2015] [Indexed: 12/14/2022] Open
Abstract
Diabetes and obesity are worldwide health problems. White fat dynamically participates in hormonal and inflammatory regulation. White adipose tissue is recognized as a multifactorial organ that secretes several adipose-derived factors that have been collectively termed "adipokines." Adipokines are pleiotropic molecules that gather factors such as leptin, adiponectin, visfatin, apelin, vaspin, hepcidin, RBP4, and inflammatory cytokines, including TNF and IL-1β, among others. Multiple roles in metabolic and inflammatory responses have been assigned to these molecules. Several adipokines contribute to the self-styled "low-grade inflammatory state" of obese and insulin-resistant subjects, inducing the accumulation of metabolic anomalies within these individuals, including autoimmune and inflammatory diseases. Thus, adipokines are an interesting drug target to treat autoimmune diseases, obesity, insulin resistance, and adipose tissue inflammation. The aim of this review is to present an overview of the roles of adipokines in different immune and nonimmune cells, which will contribute to diabetes as well as to adipose tissue inflammation and insulin resistance development. We describe how adipokines regulate inflammation in these diseases and their therapeutic implications. We also survey current attempts to exploit adipokines for clinical applications, which hold potential as novel approaches to drug development in several immune-mediated diseases.
Collapse
Affiliation(s)
- Vinícius Andrade-Oliveira
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, SP, Brazil
| | - Niels O. S. Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, SP, Brazil
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Federal University of São Paulo, SP, Brazil
| | - Pedro M. Moraes-Vieira
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, MA, USA
- *Pedro M. Moraes-Vieira:
| |
Collapse
|