1
|
Mei Y, Li A, Zhao J, Li Y, Zhou Q, Yang M, Zhao M, Xu J, Li K, Yin G, Wu J, Xu Q. Disturbed glucose homeostasis and its increased allostatic load in response to individual, joint and fluctuating air pollutants exposure: Evidence from a longitudinal study in prediabetes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175498. [PMID: 39151627 DOI: 10.1016/j.scitotenv.2024.175498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
We investigated the effect of individual, joint and fluctuating exposure to air pollution (PM2.5, BC, NO3-, NH4+, OM, SO42-, PM10, NO2, SO2, O3) on glucose metabolisms among prediabetes, and simultaneously explored the modifying effect of lifestyle. We conducted a longitudinal study among prediabetes during 2018-2022. Exposure windows within 60-days moving averages and their variabilities were calculated. FBG, insulin, HOMA-IR, HOMA-B, triglyceride glucose index (TyG), glucose insulin ratio (GI) and allostatic load of glucose homeostasis system (AL-GHS) was included. Linear mixed-effects model and BKMR were adopted to investigate the individual and overall effects, respectively. We also explored the preventive role of lifestyle. Individual air pollutant was associated with increased FBG, insulin, HOMA-IR, HOMA-B, TyG, and decreased GI. People with FBG ≥6.1 mmol/L were more susceptible. Air pollutants mixture were only associated with increased HOMA-B, and constituents have the highest group-PIP. Air pollutants variation also exert harmful effect. We observed similar diabetic effect on AL-GHS. Finally, the diabetic effect of air pollutants disappeared if participants adopt a favorable lifestyle. Our findings highlighted the importance of comprehensively assessing multiple air pollutants and their variations, focusing on metabolic health status in the early prevention of T2D, and adopting healthy lifestyle to mitigate such harmful effect.
Collapse
Affiliation(s)
- Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Big Data Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100046, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Guohuan Yin
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
2
|
Song L, Gao Y, Tian J, Liu N, Nasier H, Wang C, Zhen H, Guan L, Niu Z, Shi D, Zhang H, Zhao L, Zhang Z. The mediation effect of asprosin on the association between ambient air pollution and diabetes mellitus in the elderly population in Taiyuan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19674-19686. [PMID: 38363509 DOI: 10.1007/s11356-024-32255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Evidence around the relationship between air pollution and the development of diabetes mellitus (DM) remains limited and inconsistent. To investigate the potential mediation effect of asprosin on the association between fine particulate matter (PM2.5), tropospheric ozone (O3) and blood glucose homeostasis. A case-control study was conducted on a total of 320 individuals aged over 60 years, including both diabetic and non-diabetic individuals, from six communities in Taiyuan, China, from July to September 2021. Generalized linear models (GLMs) suggested that short-term exposure to PM2.5 was associated with elevated fasting blood glucose (FBG), insulin resistance index (HOMA-IR), as well as reduced pancreatic β-cell function index (HOMA-β), and short-term exposure to O3 was associated with increased FBG and decreased HOMA-β in the total population and elderly diabetic patients. Mediation analysis showed that asprosin played a mediating role in the relationship of PM2.5 and O3 with FBG, with mediating ratios of 10.2% and 18.4%, respectively. Our study provides emerging evidence supporting that asprosin mediates the short-term effects of exposure to PM2.5 and O3 on elevated FBG levels in an elderly population. Additionally, the elderly who are diabetic, over 70 years, and BMI over 24 kg/m2 are more vulnerable to air pollutants and need additional protection to reduce their exposure to air pollution.
Collapse
Affiliation(s)
- Lulu Song
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Yuhui Gao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jiayu Tian
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Nannan Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Halimaimaiti Nasier
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Caihong Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Huiqiu Zhen
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Linlin Guan
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Zeyu Niu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Dongxing Shi
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Lifang Zhao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, Taiyuan, 030001, China.
- Key Laboratory of Coal Environmental Pathogenicity and Prevention Shanxi Medical University, Ministry of Education, Taiyuan, China.
| |
Collapse
|
3
|
Gong X, Wang S, Wang X, Zhong S, Yuan J, Zhong Y, Jiang Q. Long-term exposure to air pollution and risk of insulin resistance: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115909. [PMID: 38199220 DOI: 10.1016/j.ecoenv.2023.115909] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVE The effects of air pollution on metabolism have become a popular research topic, and a large number of studies had confirmed that air pollution exposure could induce insulin resistance (IR) to varying degrees, but the results were inconsistent, especially for the long-term exposures. The aim of the current study was to further investigate the potential effects of air pollution on IR. METHODS A systematic review and meta-analysis of four electronic databases, including PubMed, Embase, Web of Science and Cochrane were conducted, searching for relevant studies published before June 10, 2023, in order to explore the potential relationships between long-term exposure to air pollution and IR. A total of 10 studies were included for data analysis, including seven cohort studies and three cross-sectional studies. Four major components of air pollution, including PM2.5 (particulate matter with an aerodynamic diameter of 2.5 µm or less), PM10 (particulate matter with an aerodynamic diameter of 10 µm or less), NO2, and SO2 were selected, and each analyzed for the potential impacts on insulin resistance, in the form of adjusted percentage changes in the homeostasis assessment model of insulin resistance (HOMA-IR). RESULTS This systematic review and meta-analysis showed that for every 1 μg/m³ increase in the concentration of selected air pollutants, PM2.5 induced a 0.40% change in HOMA-IR (95%CI: -0.03, 0.84; I2 =67.4%, p = 0.009), while PM10 induced a 1.61% change (95%CI: 0.243, 2.968; I2 =49.1%, p = 0.001). Meanwhile, the change in HOMA-IR due to increased NO2 or SO2 exposure concentration was only 0.09% (95%CI: -0.01, 0.19; I2 =83.2%, p = 0.002) or 0.01% (95%CI: -0.04, 0.06; I2 =0.0%, p = 0.638), respectively. CONCLUSIONS Long-term exposures to PM2.5, PM10, NO2 or SO2 are indeed associated with the odds of IR. Among the analyzed pollutants, inhalable particulate matters appear to exert greater impacts on IR.
Collapse
Affiliation(s)
- Xinxian Gong
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Siyi Wang
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Xiaokang Wang
- Department of Cardiac Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Shuping Zhong
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Junhua Yuan
- Department of Special Medicine, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, China.
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China.
| |
Collapse
|
4
|
Mei Y, Li A, Zhao J, Zhou Q, Zhao M, Xu J, Li R, Li Y, Li K, Ge X, Guo C, Wei Y, Xu Q. Association of long-term air pollution exposure with the risk of prediabetes and diabetes: Systematic perspective from inflammatory mechanisms, glucose homeostasis pathway to preventive strategies. ENVIRONMENTAL RESEARCH 2023; 216:114472. [PMID: 36209785 DOI: 10.1016/j.envres.2022.114472] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/29/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Limited evidence suggests the association of air pollutants with a series of diabetic cascades including inflammatory pathways, glucose homeostasis disorder, and prediabetes and diabetes. Subclinical strategies for preventing such pollutants-induced effects remain unknown. METHODS We conducted a cross-sectional study in two typically air-polluted Chinese cities in 2018-2020. One-year average PM1, PM2.5, PM10, SO2, NO2, and O3 were calculated according to participants' residence. GAM multinomial logistic regression was performed to investigate the association of air pollutants with diabetes status. GAM and quantile g-computation were respectively performed to investigate individual and joint effects of air pollutants on glucose homeostasis markers (glucose, insulin, HbA1c, HOMA-IR, HOMA-B and HOMA-S). Complement C3 and hsCRP were analyzed as potential mediators. The ABCS criteria and hemoglobin glycation index (HGI) were examined for their potential in preventive strategy. RESULTS Long-term air pollutants exposure was associated with the risk of prediabetes [Prevalence ratio for O3 (PR_O3) = 1.96 (95% CI: 1.24, 3.03)] and diabetes [PR_PM1 = 1.18 (95% CI: 1.05, 1.32); PR_PM2.5 = 1.08 (95% CI: 1.00, 1.16); PR_O3 = 1.35 (95% CI: 1.03, 1.74)]. PM1, PM10, SO2 or O3 exposure was associated with glucose-homeostasis disorder. For example, O3 exposure was associated with increased levels of glucose [7.67% (95% CI: 1.75, 13.92)], insulin [19.98% (95% CI: 4.53, 37.72)], HOMA-IR [34.88% (95% CI: 13.81, 59.84)], and decreased levels of HOMA-S [-25.88% (95% CI: -37.46, -12.16)]. Complement C3 and hsCRP played mediating roles in these relationships with proportion mediated ranging from 6.95% to 60.64%. Participants with HGI ≤ -0.53 were protected from the adverse effects of air pollutants. CONCLUSION Our study provides comprehensive insights into air pollutant-associated diabetic cascade and suggests subclinical preventive strategies.
Collapse
Affiliation(s)
- Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Runkui Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
5
|
Stewart EJ, Dye JA, Schladweiler MC, Phillips PM, McDaniel KL, Richards JH, Grindstaff RD, Padgett WT, Moore ML, Hill D, Gordon CJ, Kodavanti UP, Miller CN. Prenatal ozone exposure programs a sexually dimorphic susceptibility to high-fat diet in adolescent Long Evans rats. FASEB J 2022; 36:e22664. [PMID: 36412511 PMCID: PMC10010258 DOI: 10.1096/fj.202201514r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
Altered fetal growth, which can occur due to environmental stressors during pregnancy, may program a susceptibility to metabolic disease. Gestational exposure to the air pollutant ozone is associated with fetal growth restriction in humans and rodents. However, the impact of this early life ozone exposure on offspring metabolic risk has not yet been investigated. In this study, fetal growth restriction was induced by maternal inhalation of 0.8 ppm ozone on gestation days 5 and 6 (4 hr/day) in Long Evans rats. To uncover any metabolic inflexibility, or an impaired ability to respond to a high-fat diet (HFD), a subset of peri-adolescent male and female offspring from filtered air or ozone exposed dams were fed HFD (45% kcal from fat) for 3 days. By 6 weeks of age, male and female offspring from ozone-exposed dams were heavier than offspring from air controls. Furthermore, offspring from ozone-exposed dams had greater daily caloric consumption and reduced metabolic rate when fed HFD. In addition to energy imbalance, HFD-fed male offspring from ozone-exposed dams had dyslipidemia and increased adiposity, which was not evident in females. HFD consumption in males resulted in the activation of the protective 5'AMP-activated protein kinase (AMPKα) and sirtuin 1 (SIRT1) pathways in the liver, regardless of maternal exposure. Unlike males, ozone-exposed female offspring failed to activate these pathways, retaining hepatic triglycerides following HFD consumption that resulted in increased inflammatory gene expression and reduced insulin signaling genes. Taken together, maternal ozone exposure in early pregnancy programs impaired metabolic flexibility in offspring, which may increase susceptibility to obesity in males and hepatic dysfunction in females.
Collapse
Affiliation(s)
- Erica J. Stewart
- Oak Ridge Institute for Science and Education, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Janice A. Dye
- Cardiopulmonary Immunotoxicology Branch, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mette C. Schladweiler
- Cardiopulmonary Immunotoxicology Branch, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Pamela M. Phillips
- Neuroendocrine Toxicology Branch, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Katherine L. McDaniel
- Neuroendocrine Toxicology Branch, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Judy H. Richards
- Cardiopulmonary Immunotoxicology Branch, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Rachel D. Grindstaff
- Neuroendocrine Toxicology Branch, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - William T. Padgett
- Neuroendocrine Toxicology Branch, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Makala L. Moore
- Oak Ridge Institute for Science and Education, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Donna Hill
- Reproductive and Developmental Toxicology Branch, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Christopher J. Gordon
- Neuroendocrine Toxicology Branch, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Urmila P. Kodavanti
- Cardiopulmonary Immunotoxicology Branch, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Colette N. Miller
- Cardiopulmonary Immunotoxicology Branch, Public Health and Integrative Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
6
|
Letellier N, Zamora S, Spoon C, Yang JA, Mortamais M, Escobar GC, Sears DD, Jankowska MM, Benmarhnia T. Air pollution and metabolic disorders: Dynamic versus static measures of exposure among Hispanics/Latinos and non-Hispanics. ENVIRONMENTAL RESEARCH 2022; 209:112846. [PMID: 35120894 PMCID: PMC8976727 DOI: 10.1016/j.envres.2022.112846] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 05/11/2023]
Abstract
INTRODUCTION Exposure to air pollution disproportionately affects racial/ethnic minorities that could contribute to health inequalities including metabolic disorders. However, most existing studies used a static assessment of air pollution exposure (mostly using the residential address) and do not account for activity space when modelling exposure to air pollution. The aim of this study is to understand how exposure to air pollution impacts metabolic disorders biomarkers, how this effect differs according to ethnicity, and for the first time compare these findings with two methods of exposure assessment: dynamic and static measures. METHODS Among the Community of Mine study, a cross-sectional study conducted in San Diego County, insulin resistance, diabetes, hypertension, obesity, dyslipidemia, and metabolic syndrome (MetS) were assessed. Exposure to air pollution (PM2.5, NO2, traffic) was calculated using static measures around the home, and dynamic measures of mobility derived from Global Positioning Systems (GPS) traces using kernel density estimators to account for exposure variability across space and time. Associations of air pollution with metabolic disorders were quantified using generalized estimating equation models to account for the clustered nature of the data. RESULTS Among 552 participants (mean age 58.7 years, 42% Hispanic/Latino), Hispanics/Latinos had a higher exposure to PM2.5 compared to non-Hispanics using static measures. In contrast, Hispanics/Latinos had less exposure to PM2.5 using dynamic measures. For all participants, higher dynamic exposure to PM2.5 and NO2 was associated with increased insulin resistance and cholesterol levels, and increased risk of obesity, dyslipidemia and MetS (RR 1.17, 95% CI: 1.07-1.28; RR 1.21, 95% CI: 1.12-1.30, respectively). The association between dynamic PM2.5 exposure and MetS differed by Hispanic/Latino ethnicity. CONCLUSION These results highlight the importance of considering people's daily mobility in assessing the impact of air pollution on health.
Collapse
Affiliation(s)
- Noémie Letellier
- Herbert Wertheim School of Public Health and Human Longevity Science & Scripps Institution of Oceanography, UC San Diego, 8885 Biological Grade, La Jolla, CA, 92037, USA.
| | - Steven Zamora
- Herbert Wertheim School of Public Health and Human Longevity Science & Scripps Institution of Oceanography, UC San Diego, 8885 Biological Grade, La Jolla, CA, 92037, USA
| | - Chad Spoon
- UC San Diego, Department of Family Medicine, USA
| | - Jiue-An Yang
- Population Sciences, Beckman Research Institute, City of Hope, 1500 E Duarte Rd, Duarte, CA, 91010, USA
| | | | - Gabriel Carrasco Escobar
- Health Innovation Laboratory, Institute of Tropical Medicine "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dorothy D Sears
- UC San Diego, Department of Family Medicine, USA; Arizona State University, College of Health Solutions, USA; UC San Diego, Department of Medicine, USA; UC San Diego, Moores Cancer Center, USA
| | - Marta M Jankowska
- Population Sciences, Beckman Research Institute, City of Hope, 1500 E Duarte Rd, Duarte, CA, 91010, USA
| | - Tarik Benmarhnia
- Herbert Wertheim School of Public Health and Human Longevity Science & Scripps Institution of Oceanography, UC San Diego, 8885 Biological Grade, La Jolla, CA, 92037, USA
| |
Collapse
|
7
|
Li A, Mei Y, Zhao M, Xu J, Seery S, Li R, Zhao J, Zhou Q, Ge X, Xu Q. The effect of ambient ozone on glucose-homoeostasis: A prospective study of non-diabetic older adults in Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143308. [PMID: 33223186 DOI: 10.1016/j.scitotenv.2020.143308] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To investigate potential effects of short- and medium-term exposure to low levels of ozone (O3) on glucose-homeostasis in non-diabetic older adults. METHODS 166 non-diabetic, older participants in Beijing were deemed eligible to partake in this longitudinal population-based study. Observations were recorded on three separate occasions from November 2016 up until January 2018. Concentrations of outdoor O3 were monitored throughout the study period. Biomarkers indicative of glucose-homeostasis, including fasting blood glucose, insulin, HbAlc, glycated albumin percentage (glycated albumin/albumin), HOMA-IR and HOMA-B were measured at 3 sessions. A linear mixed effects model with random effects was adopted to quantify the effect of O3 across a comprehensive set of glucose-homeostasis markers. RESULTS Short-term O3 exposure positively associated with increased fasting blood glucose, insulin, HOMA-IR and HOMA-B. The effect on glucose occurred at 3-, 5-, 6- and 7-days, although the largest effect manifested on 6-days (5.6%, 95% CI: 1.4, 9.9). Significant associations with both insulin and HOMA-IR were observed on the 3- and 4-days. For HOMA-B, positive associations were identified from 3- to 7-days with estimates ranging from 40.0% (95% CI: 2.3, 91.5) to 83.1% (95% CI: 25.3, 167.5). Stratification suggests that women may be more susceptible to short-term O3 exposure. There does not appear to be a significant association between O3 and glucose-homeostasis in medium-term exposures. CONCLUSIONS In this study, we found that O3 exposure is at least partially associated with type II diabetes in older adults with no prior history of this condition. O3 therefore appears to be a potential risk factor, which is a particular concern when we consider the rise in global concentrations. Evidence also suggests that women may be more susceptible to short-term O3 exposure although we are not quite sure why. Future research may look to investigate this phenomenon further.
Collapse
Affiliation(s)
- Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Samuel Seery
- School of Humanities and Social Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Runkui Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
8
|
Yang J, Zhou M, Zhang F, Yin P, Wang B, Guo Y, Tong S, Wang H, Zhang C, Sun Q, Song X, Liu Q. Diabetes mortality burden attributable to short-term effect of PM 10 in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18784-18792. [PMID: 32207004 DOI: 10.1007/s11356-020-08376-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/09/2020] [Indexed: 05/06/2023]
Abstract
Ambient air pollution may be associated with diabetes mellitus. However, evidence from developing countries is limited although the concentrations of air pollution are disproportionably higher in these countries. We collected daily data on diabetes mortality, air pollution, and weather conditions from 16 Chinese provincial cities during 2007-2013. A quasi-Poisson regression combined with a distributed lag model was used to quantify the city-specific mortality risk of PM10 (particulate matter with aerodynamic diameter < 10 μm). Then, a random-effect meta-analysis was conducted to pool effect estimates from 16 cities. We also calculated the attributable fraction and attributable number of diabetes mortality due to PM10. Effects of PM10 were found to be acute and limited to 3 days. Harvesting effect of PM10 was found during lag 4-10 days on diabetes mortality. An increase of 0.17% (95%CI: 0.01-0.34), 0.48% (95%CI: 0.22-0.73), and 0.53% (95%CI: 0.27-0.80) in diabetes mortality was associated with per 10 μg/m3 increase in PM10 at lag 0, 0-4 and 0-10 days, respectively. Totally, 5.76% (95%CI: 2.59-8.00%) and 5878 (95%CI: 2639-8163) deaths due to diabetes could be attributable to PM10. If the concentration of PM10 attained the Chinese government and WHO targets, the reduction in number of PM2.5-attributed diabetes deaths was 2016 and 5528, respectively. Higher effect estimates of PM10 were observed among females and those aged 0-64 years old at lag 0 day, while greater cumulative effects of PM10 were among males, the elderly aged 75 or over, and the illiterate at lag 0-10 days. However, the between-group differences were not statistically significant. It is one of the few studies on examining the attributable burden of diabetes mortality caused by particulate matter. Our findings indicated that effective efforts on controlling air pollution could reduce a prominent number of air pollution-related diabetes deaths.
Collapse
Affiliation(s)
- Jun Yang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China.
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 511443, China.
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing, 100050, China
| | - Fengying Zhang
- China National Environmental Monitoring Centre, Beijing, 100012, China
- CAPHRI School of Public Health and Primary Care, Maastricht University, Maastricht, Netherlands
| | - Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Beijing, 100050, China
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 511443, China
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shilu Tong
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Public Health and Institute of Environment and Population Health, Anhui Medical University, Hefei, China
- School of Public Health and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Hao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 511443, China
| | - Chunlin Zhang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, China
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 511443, China
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiuping Song
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
9
|
Activity-expression profiling of glucose-6-phosphate dehydrogenase in tissues of normal and diabetic mice. Biochem Biophys Res Commun 2020; 524:750-755. [PMID: 32035617 DOI: 10.1016/j.bbrc.2020.01.165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) plays a principal role in the regulation of oxidative stress by modulating the nicotinamide adenine dinucleotide phosphate pool and is expected to be associated with metabolic diseases such as diabetes mellitus (DM). However, it is unclear whether hyperglycemia increases G6PD activity levels in DM because suitable assays for quantifying the activity in a high-throughput manner are lacking. Using liquid droplet arrays tailored to analyze tissue lysates, we performed G6PD activity profiling in eight tissues of normal and diabetic mice: brain, heart, kidney, liver, lung, muscle, spleen, and thyroid. Diabetic mice exhibited significantly higher G6PD activities in the kidney, liver, spleen, and thyroid than normal mice; no significant difference was found in the brain, heart, lung, or muscle. We also performed G6PD expression profiling in the eight tissues using Western blot analysis. Diabetic mice showed significantly elevated G6PD expression levels in the kidney, lung, spleen, and thyroid compared with normal mice; no significant difference was found in the brain, heart, liver, or muscle. An analysis of G6PD activity-expression profiles demonstrated tissue-specific changes in response to hyperglycemia. Thus, our approach would be helpful for understanding the role of G6PD in tissue-based pathogenesis of diabetic complications.
Collapse
|
10
|
Henriquez AR, House JS, Snow SJ, Miller CN, Schladweiler MC, Fisher A, Ren H, Valdez M, Kodavanti PR, Kodavanti UP. Ozone-induced dysregulation of neuroendocrine axes requires adrenal-derived stress hormones. Toxicol Sci 2019; 172:38-50. [PMID: 31397875 PMCID: PMC9344225 DOI: 10.1093/toxsci/kfz182] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Acute ozone inhalation increases circulating stress hormones through activation of the sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal axes. Adrenalectomized (AD) rats have attenuated ozone-induced lung responses. We hypothesized that ozone exposure will induce changes in circulating pituitary-derived hormones and global gene expression in the brainstem and hypothalamus, and that AD will ameliorate these effects. Male Wistar-Kyoto rats (13-weeks) that underwent sham-surgery (SHAM) or AD were exposed to ozone (0.8-ppm) or filtered-air for 4-hours. In SHAM rats, ozone exposure decreased circulating thyroid-stimulating hormone (TSH), prolactin (PRL), and luteinizing hormone (LH). AD prevented reductions in TSH and PRL, but not LH. AD increased ACTH ∼5-fold in both air and ozone-exposed rats. AD in air-exposed rats resulted in few significant transcriptional differences in the brainstem and hypothalamus (∼20 genes per tissue). By contrast, ozone-exposure in SHAM rats resulted in increases and decreases in expression of hundreds of genes in brainstem and hypothalamus relative to air-exposed SHAM rats (303 and 568 genes, respectively). Differentially expressed genes from ozone exposure were enriched for pathways involving hedgehog signaling, responses to alpha-interferon, hypoxia, and mTORC1, among others. Gene changes in both brain areas were analogous to those altered by corticosteroids and L-dopa, suggesting a role for endogenous glucocorticoids and catecholamines. AD completely prevented this ozone-induced transcriptional response. These findings show that short-term ozone inhalation promotes a shift in brainstem and hypothalamic gene expression that is dependent on the presence of circulating adrenal-derived stress hormones. This is likely to have profound downstream influence on systemic effects of ozone.
Collapse
Affiliation(s)
- Andres R Henriquez
- Oak Ridge Institute for Science and Education, Research Triangle Park, NC, United States
| | - John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| | - Samantha J Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.,ICF, Durham, NC, United States
| | - Colette N Miller
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Anna Fisher
- Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Hongzu Ren
- Research Cores Unit, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Matthew Valdez
- Oak Ridge Institute for Science and Education, Research Triangle Park, NC, United States
| | - Prasada R Kodavanti
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| |
Collapse
|
11
|
Thomas DD, Corkey BE, Istfan NW, Apovian CM. Hyperinsulinemia: An Early Indicator of Metabolic Dysfunction. J Endocr Soc 2019; 3:1727-1747. [PMID: 31528832 PMCID: PMC6735759 DOI: 10.1210/js.2019-00065] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Hyperinsulinemia is strongly associated with type 2 diabetes. Racial and ethnic minority populations are disproportionately affected by diabetes and obesity-related complications. This mini-review provides an overview of the genetic and environmental factors associated with hyperinsulinemia with a focus on racial and ethnic differences and its metabolic consequences. The data used in this narrative review were collected through research in PubMed and reference review of relevant retrieved articles. Insulin secretion and clearance are regulated processes that influence the development and progression of hyperinsulinemia. Environmental, genetic, and dietary factors are associated with hyperinsulinemia. Certain pharmacotherapies for obesity and bariatric surgery are effective at mitigating hyperinsulinemia and are associated with improved metabolic health. Hyperinsulinemia is associated with many environmental and genetic factors that interact with a wide network of hormones. Recent studies have advanced our understanding of the factors affecting insulin secretion and clearance. Further basic and translational work on hyperinsulinemia may allow for earlier and more personalized treatments for obesity and metabolic diseases.
Collapse
Affiliation(s)
- Dylan D Thomas
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Barbara E Corkey
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Nawfal W Istfan
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| | - Caroline M Apovian
- Department of Medicine, Section of Endocrinology, Diabetes, Nutrition and Weight Management, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
12
|
Morelli V, Ziegler C, Fawibe O. An Overview of Environmental Justice Issues in Primary Care – 2018. PHYSICIAN ASSISTANT CLINICS 2019. [DOI: 10.1016/j.cpha.2018.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Alderete TL, Chen Z, Toledo-Corral CM, Contreras ZA, Kim JS, Habre R, Chatzi L, Bastain T, Breton CV, Gilliland FD. Ambient and Traffic-Related Air Pollution Exposures as Novel Risk Factors for Metabolic Dysfunction and Type 2 Diabetes. CURR EPIDEMIOL REP 2018; 5:79-91. [PMID: 30319933 PMCID: PMC6178230 DOI: 10.1007/s40471-018-0140-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Diabetes mellitus is a top contributor to the global burden of mortality and disability in adults. There has also been a slow, but steady rise in prediabetes and type 2 diabetes in youth. The current review summarizes recent findings regarding the impact of increased exposure to air pollutants on the type 2 diabetes epidemic. RECENT FINDINGS Human and animal studies provide strong evidence that exposure to ambient and traffic-related air pollutants such as particulate matter (PM), nitrogen dioxide (NO2), and nitrogen oxides (NOx) play an important role in metabolic dysfunction and type 2 diabetes etiology. This work is supported by recent findings that have observed similar effect sizes for increased exposure to air pollutants on clinical measures of risk for type 2 diabetes in children and adults. Further, studies indicate that these effects may be more pronounced among individuals with existing risk factors, including obesity and prediabetes. SUMMARY Current epidemiological evidence suggests that increased air pollution exposure contributes to alterations in insulin signaling, glucose metabolism, and beta (β)-cell function. Future work is needed to identify the specific detrimental pollutants that alter glucose metabolism. Additionally, advanced tools and new areas of investigation present unique opportunities to study the underlying mechanisms, including intermediate pathways, that link increased air pollution exposure with type 2 diabetes onset.
Collapse
Affiliation(s)
- Tanya L. Alderete
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
| | - Zhanghua Chen
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
| | - Claudia M. Toledo-Corral
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
- California State University, Los Angeles, Department of Public Health, Los Angeles California, USA
| | - Zuelma A. Contreras
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
| | - Jeniffer S. Kim
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
| | - Rima Habre
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
| | - Leda Chatzi
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
| | - Theresa Bastain
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
| | - Carrie V. Breton
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
| | - Frank D. Gilliland
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
| |
Collapse
|
14
|
Li W, Dorans KS, Wilker EH, Rice MB, Kloog I, Schwartz JD, Koutrakis P, Coull BA, Gold DR, Meigs JB, Fox CS, Mittleman MA. Ambient air pollution, adipokines, and glucose homeostasis: The Framingham Heart Study. ENVIRONMENT INTERNATIONAL 2018; 111:14-22. [PMID: 29161632 PMCID: PMC5800943 DOI: 10.1016/j.envint.2017.11.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 05/22/2023]
Abstract
OBJECTIVE To examine associations of proximity to major roadways, sustained exposure to fine particulate matter (PM2.5), and acute exposure to ambient air pollutants with adipokines and measures of glucose homeostasis among participants living in the northeastern United States. METHODS We included 5958 participants from the Framingham Offspring cohort examination cycle 7 (1998-2001) and 8 (2005-2008) and Third Generation cohort examination cycle 1 (2002-2005) and 2 (2008-2011), who did not have type 2 diabetes at the time of examination visit. We calculated 2003 annual average PM2.5 at participants' home address, residential distance to the nearest major roadway, and daily PM2.5, black carbon (BC), sulfate, nitrogen oxides (NOx), and ozone concentrations. We used linear mixed effects models for fasting glucose, insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) which were measured up to twice, and used linear regression models for adiponectin, resistin, leptin, and hemoglobin A1c (HbA1c) which were measured only once, adjusting for demographics, socioeconomic position, lifestyle, time, and seasonality. RESULTS The mean age was 51years and 55% were women. Participants who lived 64m (25th percentile) from a major roadway had 0.28% (95% CI: 0.05%, 0.51%) higher fasting plasma glucose than participants who lived 413m (75th percentile) away, and the association appeared to be driven by participants who lived within 50m from a major roadway. Higher exposures to 3- to 7-day moving averages of BC and NOx were associated with higher glucose whereas the associations for ozone were negative. The associations otherwise were generally null and did not differ by median age, sex, educational attainment, obesity status, or prediabetes status. CONCLUSIONS Living closer to a major roadway or acute exposure to traffic-related air pollutants were associated with dysregulated glucose homeostasis but not with adipokines among participants from the Framingham Offspring and Third Generation cohorts.
Collapse
Affiliation(s)
- Wenyuan Li
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Cardiovascular Epidemiology Research Unit, Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Kirsten S Dorans
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Cardiovascular Epidemiology Research Unit, Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Elissa H Wilker
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Cardiovascular Epidemiology Research Unit, Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mary B Rice
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Joel D Schwartz
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Diane R Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - James B Meigs
- Department of Medicine, Harvard Medical School and Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Caroline S Fox
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, MA, United States; Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, United States
| | - Murray A Mittleman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Cardiovascular Epidemiology Research Unit, Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
15
|
Lipfert FW. Long-term associations of morbidity with air pollution: A catalog and synthesis. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2018; 68:12-28. [PMID: 28679072 DOI: 10.1080/10962247.2017.1349010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/18/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED I searched the National Institutes of Health MEDLINE database through January 2017 for long-term studies of morbidity and air pollution and cataloged them with respect to cardiovascular, respiratory, cancer, diabetes, hospitalization, neurological, and pregnancy-birth endpoints. The catalog is presented as an online appendix. Associations with PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm), PM10 (PM with an aerodynamic diameter <10 μm), and nitrogen dioxide (NO2) were evaluated most frequently among the 417 ambient air quality studies identified. Associations with total suspended particles (TSP), carbon, ozone, sulfur, vehicular traffic, radon, and indoor air quality were also reported. I evaluated each study in terms of pollutant significance (yes, no), duration of exposure, and publication date. I found statistically significant pollutant relationships (P < 0.05) in 224 studies; 220 studies indicated adverse effects. Among 795 individual pollutant effect estimates, 396 are statistically significant. Pollutant associations with cardiovascular indicators, lung function, respiratory symptoms, and low birth weight are more likely to be significant than with disease incidence, heart attacks, diabetes, or neurological endpoints. Elemental carbon (EC), traffic, and PM2.5 are most likely to be significant for cardiovascular outcomes; TSP, EC, and ozone (O3) for respiratory outcomes; NO2 for neurological outcomes; and PM10 for birth/pregnancy outcomes. Durations of exposure range from 60 days to 35 yr, but I found no consistent relationships with the likelihood of statistical significance. Respiratory studies began ca. 1975; studies of diabetes, cardiovascular, and neurological effects increased after about 2005. I found 72 studies of occupational air pollution exposures; 40 reported statistically significant adverse health effects, especially for respiratory conditions. I conclude that the aggregate of these studies supports the existence of nonlethal physiological effects of various pollutants, more so for non-life-threatening endpoints and for noncriteria pollutants (TSP, EC, PM2.5 metals). However, most studies were cross-sectional analyses over limited time spans with no consideration of lag or disease latency. Further longitudinal studies are thus needed to investigate the progress of disease incidence in association with air pollution exposure. IMPLICATIONS Relationships of air pollution with excess mortality are better known than with long-term antecedent morbidity. I cataloged 489 studies of cardiovascular, respiratory, cancer, and neurological effects, diabetes, and birth outcomes with respect to 12 air pollutants. About half of the studies reported statistically significant relationships, more frequently with noncriteria than with criteria pollutants. Indoor and cumulative exposures, coarse or ultrafine particles, and organic carbon were seldom considered. Significant relationships were more likely with less-severe endpoints such as blood pressure, lung function, or respiratory symptoms than with incidence of cancer, chronic obstructive pulmonary disease (COPD), heart failure, or diabetes. Most long-term studies are based on spatial relationships; longitudinal studies are needed to link the progression of pollution-related morbidity to mortality, especially for the cardiovascular system.
Collapse
|
16
|
Snow SJ, McGee MA, Henriquez A, Richards JE, Schladweiler MC, Ledbetter AD, Kodavanti UP. Respiratory Effects and Systemic Stress Response Following Acute Acrolein Inhalation in Rats. Toxicol Sci 2017; 158:454-464. [PMID: 28541489 PMCID: PMC6515527 DOI: 10.1093/toxsci/kfx108] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previous studies have demonstrated that exposure to the pulmonary irritant ozone causes myriad systemic metabolic and pulmonary effects attributed to sympathetic and hypothalamus-pituitary-adrenal (HPA) axis activation, which are exacerbated in metabolically impaired models. We examined respiratory and systemic effects following exposure to a sensory irritant acrolein to elucidate the systemic and pulmonary consequences in healthy and diabetic rat models. Male Wistar and Goto Kakizaki (GK) rats, a nonobese type II diabetic Wistar-derived model, were exposed by inhalation to 0, 2, or 4 ppm acrolein, 4 h/d for 1 or 2 days. Exposure at 4 ppm significantly increased pulmonary and nasal inflammation in both strains with vascular protein leakage occurring only in the nose. Acrolein exposure (4 ppm) also caused metabolic impairment by inducing hyperglycemia and glucose intolerance (GK > Wistar). Serum total cholesterol (GKs only), low-density lipoprotein (LDL) cholesterol (both strains), and free fatty acids (GK > Wistar) levels increased; however, no acrolein-induced changes were noted in branched-chain amino acid or insulin levels. These responses corresponded with a significant increase in corticosterone and modest but insignificant increases in adrenaline in both strains, suggesting activation of the HPA axis. Collectively, these data demonstrate that acrolein exposure has a profound effect on nasal and pulmonary inflammation, as well as glucose and lipid metabolism, with the systemic effects exacerbated in the metabolically impaired GKs. These results are similar to ozone-induced responses with the exception of lung protein leakage and ability to alter branched-chain amino acid and insulin levels, suggesting some differences in neuroendocrine regulation of these two air pollutants.
Collapse
Affiliation(s)
- Samantha J. Snow
- Environmental Public Health Division, NHEERL, US Environmental Protection Agency, Durham, North Carolina
| | - Marie A. McGee
- Oak Ridge Institute for Science and Education, Durham, North Carolina
| | - Andres Henriquez
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Judy E. Richards
- Environmental Public Health Division, NHEERL, US Environmental Protection Agency, Durham, North Carolina
| | - Mette C. Schladweiler
- Environmental Public Health Division, NHEERL, US Environmental Protection Agency, Durham, North Carolina
| | - Allen D. Ledbetter
- Environmental Public Health Division, NHEERL, US Environmental Protection Agency, Durham, North Carolina
| | - Urmila P. Kodavanti
- Environmental Public Health Division, NHEERL, US Environmental Protection Agency, Durham, North Carolina
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
17
|
Abstract
Underserved communities suffer from environmental inequities. Gases lead to hypoxia and respiratory compromise, ozone to increased respiratory illnesses and decreased mental acuity, and mercury to prenatal cognitive disabilities and antisocial behaviors. Lead toxicity is associated with developmental delays. Cadmium is linked with cancer. The smaller sizes of air pollution particulate matter are pathogenic and are associated with cardiovascular and pulmonary disease and nervous system disorders. Bisphenol A is being studied for possible links to cancer and pregnancy risks. Physicians should be aware of these dangers, especially in underserved communities and populations. Investigating possible environmental risks and education are key.
Collapse
Affiliation(s)
- Vincent Morelli
- Sports Medicine Fellowship, Department of Family and Community Medicine, Meharry Medical College, 1005 Dr D. B. Todd Boulevard, Nashville, TN 37208, USA.
| | - Carol Ziegler
- Vanderbilt University School of Nursing, 461 21st Avenue, South, Nashville, TN 37240, USA
| | - Omotayo Fawibe
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
18
|
Lu MC, Wang P, Cheng TJ, Yang CP, Yan YH. Association of temporal distribution of fine particulate matter with glucose homeostasis during pregnancy in women of Chiayi City, Taiwan. ENVIRONMENTAL RESEARCH 2017; 152:81-87. [PMID: 27743970 DOI: 10.1016/j.envres.2016.09.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND To investigate the effects of fine particulate matter (PM2.5) on the indicators of glucose homeostasis during pregnancy. METHODS A total of 3589 non-diabetic pregnant women who underwent a 3-h 100-g oral glucose tolerance test (OGTT) were enrolled from a tertiary teaching hospital in Chiayi City, Taiwan between 2006 and 2014. Fasting, 1-h, 2-h, and 3-h glucose levels after an OGTT were used as indicators of glucose homeostasis. PM2.5 and other air pollution data were obtained from one fixed-site monitoring station (Chiayi City station) operated by Taiwan Environmental Protection Administration (EPA). We used mixed models for indicators of glucose homeostasis to estimate the effects of PM2.5. The models were adjusted for individual-specific effects (nulliparous status, age, body mass index, season, and year) and the moving averages of temperature and relative humidity in the corresponding study period. RESULTS There were significant relationships between PM2.5 and the glucose homeostasis indicators, including fasting, 1-h, 2-h, and 3-h glucose levels in the single-pollutant covariate-adjusted model. The pre-screening 1-month to 1-year moving averages of IQR increases in PM2.5 were significantly associated with elevated fasting OGTT glucose levels (1.32-5.87mg/dL). The two-pollutant covariate-adjusted models had similar results. CONCLUSIONS We found positive associations between PM2.5 and OGTT glucose levels during pregnancy. The association was especially pronounced for the fasting and 1-h glucose levels. PM2.5 exposure in the second trimester may enhance this effect. Exposure to PM2.5 was associated with glucose homeostasis during pregnancy.
Collapse
Affiliation(s)
- Mei-Chun Lu
- Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan
| | - Panchalli Wang
- Department of Obstetrics and Gynecology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City, Taiwan
| | - Tsun-Jen Cheng
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chun-Pai Yang
- Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan; Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan; Department of Nutrition and Institute of Biomedical Nutrition, Hung Kuang University, Taichung, Taiwan
| | - Yuan-Horng Yan
- Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan; Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Nutrition and Institute of Biomedical Nutrition, Hung Kuang University, Taichung, Taiwan; Department of Internal Medicine, Kuang Tien General Hospital, Taichung, Taiwan.
| |
Collapse
|
19
|
Yan W, Ku T, Yue H, Li G, Sang N. NO 2 inhalation causes tauopathy by disturbing the insulin signaling pathway. CHEMOSPHERE 2016; 165:248-256. [PMID: 27657817 DOI: 10.1016/j.chemosphere.2016.09.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Air pollution has been evidenced as a risk factor for neurodegenerative tauopathies. NO2, a primary component of air pollution, is negatively linked to neurodegenerative disorders, but its independent and direct association with tau lesion remains to be elucidated. Considering the fact that the insulin signaling pathway can be targeted by air pollutants and regulate tau function, this study focused on the role of insulin signaling in this NO2-induced tauopathy. Using a dynamic inhalation treatment, we demonstrated that exposure to NO2 induced a disruption of insulin signaling in skeletal muscle, liver, and brain, with associated p38 MAPK and/or JNK activation. We also found that in parallel with these kinase signaling cascades, the compensatory hyperinsulinemia triggered by whole-body insulin resistance (IR) further attenuated the IRS-1/AKT/GSK-3β signaling pathway in the central nervous system, which consequently increased the phosphorylation of tau and reduced the expression of synaptic proteins that contributed to the development of the tau pathology. These findings provide new insight into the possible mechanisms involved in the etiopathogenesis of NO2-induced tauopathy, suggesting that the targeting of insulin signaling may be a promising therapeutic strategy to prevent this disease.
Collapse
Affiliation(s)
- Wei Yan
- College of Environment and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Tingting Ku
- College of Environment and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huifeng Yue
- College of Environment and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
20
|
Wolf K, Popp A, Schneider A, Breitner S, Hampel R, Rathmann W, Herder C, Roden M, Koenig W, Meisinger C, Peters A. Association Between Long-term Exposure to Air Pollution and Biomarkers Related to Insulin Resistance, Subclinical Inflammation, and Adipokines. Diabetes 2016; 65:3314-3326. [PMID: 27605624 DOI: 10.2337/db15-1567] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 08/09/2016] [Indexed: 11/13/2022]
Abstract
Insulin resistance (IR) is present long before the onset of type 2 diabetes and results not only from inherited and lifestyle factors but also likely from environmental conditions. We investigated the association between modeled long-term exposure to air pollution at residence and biomarkers related to IR, subclinical inflammation, and adipokines. Data were based on 2,944 participants of the KORA (Cooperative Health Research in the Region Augsburg) F4 study conducted in southern Germany (2006-2008). We analyzed associations between individual air pollution concentration estimated by land use regression and HOMA-IR, glucose, insulin, HbA1c, leptin, and high-sensitivity C-reactive protein levels from fasting samples using multivariable linear regression models. Effect estimates were calculated for the whole study population and subgroups of individuals who did not have diabetes, had prediabetes, or had diabetes. Among all participants, a 7.9 μg/m3 increment in particulate matter of <10 μm was associated with higher HOMA-IR (15.6% [95% CI 4.0; 28.6]) and insulin (14.5% [3.6; 26.5]). Nitrogen dioxide was associated with HOMA-IR, glucose, insulin, and leptin. Effect estimates for individuals with prediabetes were much larger and highly statistically significant, whereas individuals who did not have diabetes or had diabetes showed rather weak associations. No association was seen for HbA1c level. Our results suggested an association between long-term exposure to air pollution and IR in the general population that was attributable mainly to individuals with prediabetes.
Collapse
Affiliation(s)
- Kathrin Wolf
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Anita Popp
- Ludwig-Maximilians-Universität (LMU) Munich, Institute for Medical Informatics, Biometrics and Epidemiology, Munich, Germany
| | - Alexandra Schneider
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Susanne Breitner
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Regina Hampel
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Koenig
- University of Ulm Medical Center, Department of Internal Medicine II-Cardiology, Ulm, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christa Meisinger
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Annette Peters
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | | |
Collapse
|
21
|
Eze IC, Imboden M, Kumar A, von Eckardstein A, Stolz D, Gerbase MW, Künzli N, Pons M, Kronenberg F, Schindler C, Probst-Hensch N. Air pollution and diabetes association: Modification by type 2 diabetes genetic risk score. ENVIRONMENT INTERNATIONAL 2016; 94:263-271. [PMID: 27281273 DOI: 10.1016/j.envint.2016.04.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/11/2016] [Accepted: 04/22/2016] [Indexed: 05/26/2023]
Abstract
Exposure to ambient air pollution (AP) exposure has been linked to type 2 diabetes (T2D) risk. Evidence on the impact of T2D genetic variants on AP susceptibility is lacking. Compared to single variants, joint genetic variants contribute substantially to disease risk. We investigated the modification of AP and diabetes association by a genetic risk score (GRS) covering 63 T2D genes in 1524 first follow-up participants of the Swiss cohort study on air pollution and lung and heart diseases in adults. Genome-wide data and covariates were available from a nested asthma case-control study design. AP was estimated as 10-year mean residential particulate matter <10μm (PM10). We computed count-GRS and weighted-GRS, and applied PM10 interaction terms in mixed logistic regressions, on odds of diabetes. Analyses were stratified by pathways of diabetes pathology and by asthma status. Diabetes prevalence was 4.6% and mean exposure to PM10 was 22μg/m(3). Odds of diabetes increased by 8% (95% confidence interval: 2, 14%) per T2D risk allele and by 35% (-8, 97%) per 10μg/m(3) exposure to PM10. We observed a positive interaction between PM10 and count-GRS on diabetes [ORinteraction=1.10 (1.01, 1.20)], associations being strongest among participants at the highest quartile of count-GRS [OR: 1.97 (1.00, 3.87)]. Stronger interactions were observed with variants of the GRS involved in insulin resistance [(ORinteraction=1.22 (1.00, 1.50)] than with variants related to beta-cell function. Interactions with count-GRS were stronger among asthma cases. We observed similar results with weighted-GRS. Five single variants near GRB14, UBE2E2, PTPRD, VPS26A and KCNQ1 showed nominally significant interactions with PM10 (P<0.05). Our results suggest that genetic risk for T2D may modify susceptibility to air pollution through alterations in insulin sensitivity. These results need confirmation in diabetes cohort consortia.
Collapse
Affiliation(s)
- Ikenna C Eze
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Ashish Kumar
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Karolinska Institutet, Stockholm, Sweden
| | | | - Daiana Stolz
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
| | | | - Nino Künzli
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Marco Pons
- Department of Internal Medicine, Regional Hospital of Lugano, Lugano, Switzerland
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
22
|
Wilkin T, Greene S, McCrimmon R. Testing the accelerator hypothesis: a new approach to type 1 diabetes prevention (adAPT 1). Diabetes Obes Metab 2016; 18:3-5. [PMID: 26511442 DOI: 10.1111/dom.12599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/18/2015] [Accepted: 10/24/2015] [Indexed: 12/30/2022]
Affiliation(s)
- T Wilkin
- Institute of Heath Research, University of Exeter Medical School, Exeter, UK
| | - S Greene
- Department of Child and Adolescent Health, University of Dundee, Dundee, UK
| | - R McCrimmon
- Department of Cardiovascular and Diabetes Medicine, University of Dundee, Dundee, UK
| |
Collapse
|