1
|
Walker EM, Pearson GL, Lawlor N, Stendahl AM, Lietzke A, Sidarala V, Zhu J, Stromer T, Reck EC, Li J, Levi-D’Ancona E, Pasmooij MB, Hubers DL, Renberg A, Mohamed K, Parekh VS, Zhang IX, Thompson B, Zhang D, Ware SA, Haataja L, Qi N, Parker SCJ, Arvan P, Yin L, Kaufman BA, Satin LS, Sussel L, Stitzel ML, Soleimanpour SA. Retrograde mitochondrial signaling governs the identity and maturity of metabolic tissues. Science 2025; 388:eadf2034. [PMID: 39913641 PMCID: PMC11985298 DOI: 10.1126/science.adf2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 09/13/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
Mitochondrial damage is a hallmark of metabolic diseases, including diabetes, yet the consequences of compromised mitochondria in metabolic tissues are often unclear. In this work, we report that dysfunctional mitochondrial quality control engages a retrograde (mitonuclear) signaling program that impairs cellular identity and maturity in β cells, hepatocytes, and brown adipocytes. Targeted deficiency throughout the mitochondrial quality control pathway, including genome integrity, dynamics, or turnover, impaired the oxidative phosphorylation machinery, activating the mitochondrial integrated stress response, eliciting chromatin remodeling, and promoting cellular immaturity rather than apoptosis to yield metabolic dysfunction. Pharmacologic blockade of the integrated stress response in vivo restored β cell identity after the loss of mitochondrial quality control. Targeting mitochondrial retrograde signaling may therefore be promising in the treatment or prevention of metabolic disorders.
Collapse
Affiliation(s)
- Emily M. Walker
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Gemma L. Pearson
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nathan Lawlor
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Ava M. Stendahl
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Anne Lietzke
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vaibhav Sidarala
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jie Zhu
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tracy Stromer
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Emma C. Reck
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jin Li
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Elena Levi-D’Ancona
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mabelle B. Pasmooij
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Dre L. Hubers
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Aaron Renberg
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kawthar Mohamed
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vishal S. Parekh
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Irina X. Zhang
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Thompson
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sarah A. Ware
- Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nathan Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Stephen C. J. Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Brett A. Kaufman
- Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Leslie S. Satin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael L. Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - Scott A. Soleimanpour
- Division of Metabolism, Endocrinology & Diabetes and Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Rendell M. Pharmacotherapy of type 1 diabetes - part 2 Today. Expert Opin Pharmacother 2025; 26:719-730. [PMID: 40082213 DOI: 10.1080/14656566.2025.2479598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION In the 100 years since isolation and administration of animal insulin to sustain life in Type 1 diabetes, there has been increasing progress in the administration of exogenous insulin to lower glucose levels. AREAS COVERED We reviewed using standard search engines and PubMed present-day techniques of management of type 1 diabetes. EXPERT OPINION Long-acting insulin formulations have been developed to maintain basal glucose levels in the normal range, while rapid acting insulins have been synthesized to address the sharp rise in glucose levels after a meal. Insulin pumps administer insulin continuously subcutaneously guided by continuous glucose monitoring systems. These almost closed loop systems achieve near normal glucose levels other than at meal times where the rapid glucose rise and then fall pose a significant challenge due to the extended duration of subcutaneous insulin depots. Implanted insulin pumps with intraperitoneal delivery may eventually permit improved post meal glucose control. Type 1 diabetes has now been redefined as an autoimmune disease which may be diagnosed purely from the presence of anti-beta cell antibodies with no abnormality of glucose levels. The future will see an intensification of efforts to combat the immune process which destroys beta cells.
Collapse
Affiliation(s)
- Marc Rendell
- The Association of Diabetes Investigators, Omaha, NE, USA
- The Rose Salter Medica Research Foundation, Newport Coast, CA, USA
| |
Collapse
|
3
|
Sun W. Integrative functional logistic regression model for genome-wide association studies. Comput Biol Med 2025; 187:109766. [PMID: 39919666 DOI: 10.1016/j.compbiomed.2025.109766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 01/08/2025] [Accepted: 01/28/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Progress in rapid genomic sequencing techniques have transformed the field of disease biomarker identification by offering vast genetic information. The complexity of traits is not only influenced by single genetic loci but also by interactions among multiple genetic loci. When the dimensionality of SNP data is large, identifying a significant number of genetic variants associated with diseases becomes extremely challenging. To address these high-dimensionality issues, we employed functional data analysis techniques. METHODS Because there are a lot of ordered genetic variants spread out across a small space, multiple gene variations are handled as a continuous data set rather than discrete variables in some areas. This paper introduces a novel approach for analyzing the association of multiple genes within a region, by employing an integrative functional logistic regression model. RESULTS The proposed technique has shown promising results in both simulation and real data analysis, indicating its ability to generate smooth signals and accurately estimate the coefficients of the function while recognizing the null regions. CONCLUSIONS Integrative functional logistic regression method adopt functional data analysis and assume that high-dimensional genetic data follow a continuous process. It not only naturally accommodates correlations among adjacent SNPs but also avoids the unstable estimation of a large number of parameters. This is especially desirable with the rapidly increasing dimensions of SNP data but still limited sample size. In summary, the suggested approach offers a valuable new avenue for identifying disease-related genetic variants in GWAS.
Collapse
Affiliation(s)
- Wenyuan Sun
- Department of Mathematics, College of Science, Yanbian University, Yanji, 133002, Jilin, China.
| |
Collapse
|
4
|
Wu Y, Wang H, Xu H. Autophagy-lysosome pathway in insulin & glucagon homeostasis. Front Endocrinol (Lausanne) 2025; 16:1541794. [PMID: 39996055 PMCID: PMC11847700 DOI: 10.3389/fendo.2025.1541794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Lysosome, a highly dynamic organelle, is an important nutrient sensing center. They utilize different ion channels and transporters to complete the mission in degradation, trafficking, nutrient sensing and integration of various metabolic pathways to maintain cellular homeostasis. Glucose homeostasis relies on tightly regulated insulin secretion by pancreatic β cells, and their dysfunction is a hallmark of type 2 diabetes. Glucagon also plays an important role in hyperglycemia in diabetic patients. Currently, lysosome has been recognized as a nutrient hub to regulate the homeostasis of insulin and other hormones. In this review, we will discuss recent advances in understanding lysosome-mediated autophagy and lysosomal proteins involved in maintaining insulin and glucagon homeostasis, as well as their contributions to the etiology of diabetes.
Collapse
Affiliation(s)
- Yi Wu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Hui Wang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Huoyan Xu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
5
|
Ou Y, Zhao YL, Su H. Pancreatic β-Cells, Diabetes and Autophagy. Endocr Res 2025; 50:12-27. [PMID: 39429147 DOI: 10.1080/07435800.2024.2413064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/23/2024] [Accepted: 08/18/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE Pancreatic β-cells play a critical role in regulating plasma insulin levels and glucose metabolism balance, with their dysfunction being a key factor in the progression of diabetes. This review aims to explore the role of autophagy, a vital cellular self-maintenance process, in preserving pancreatic β-cell functionality and its implications in diabetes pathogenesis. METHODS We examine the current literature on the role of autophagy in β-cells, highlighting its function in maintaining cell structure, quantity, and function. The review also discusses the effects of both excessive and insufficient autophagy on β-cell dysfunction and glucose metabolism imbalance. Furthermore, we discuss potential therapeutic agents that modulate the autophagy pathway to influence β-cell function, providing insights into therapeutic strategies for diabetes management. RESULTS Autophagy acts as a self-protective mechanism within pancreatic β-cells, clearing damaged organelles and proteins to maintain cellular stability. Abnormal autophagy activity, either overactive or deficient, can disrupt β-cell function and glucose regulation, contributing to diabetes progression. CONCLUSION Autophagy plays a pivotal role in maintaining pancreatic β-cell function, and its dysregulation is implicated in the development of diabetes. Targeting the autophagy pathway offers potential therapeutic strategies for diabetes management, with agents that modulate autophagy showing promise in preserving β-cell function.
Collapse
Affiliation(s)
- Yang Ou
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, P.R. China
- Department of Endocrinology and Metabolism, First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, P.R. China
| | - Yan-Li Zhao
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Heng Su
- Department of Endocrinology and Metabolism, First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, P.R. China
| |
Collapse
|
6
|
Luo Y, Li JE, Zeng H, Zhang Y, Yang S, Liu J. Semaglutide alleviates the pancreatic β cell function via the METTL14 signaling and modulating gut microbiota in type 2 diabetes mellitus mice. Life Sci 2025; 361:123328. [PMID: 39719165 DOI: 10.1016/j.lfs.2024.123328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
AIMS Semaglutide, a novel long-acting GLP-1RA, stimulates insulin and suppresses islet-secreted glucagon to reduce glucose levels. It has been unveiled that m6A mRNA modification plays a pivotal role in regulating β cell function. However, it remains unclear whether semaglutide can elicit protective effects through manipulating m6A modification and the underlying mechanism. We aimed to elucidate the role played by semaglutide in m6A modification, and to explore its specific regulatory targets. Furthermore, we also delve into its effects on gut microbiota. MAIN METHODS Five-week-old male C57BL/6 mice were assigned to two dietary groups and fed a control or high-fat diet for 4 weeks. Then T2DM was induced in high-fat diet-fed mice via streptozotocin (STZ), the main groups were resampled to include treatment with semaglutide (SEM, 40 μg/kg) for another 4 weeks, totaling three groups: Control, Model (T2DM), T2DM + SEM. Additionally, we elucidated specific regulatory targets and signaling pathways in palmitic acid (PA)-stimulated beta-TC-6 cells. Immunofluorescence, Western blot, and RT-qPCR were used in the study. KEY FINDINGS Semaglutide mitigated pancreatic damage, enhanced islet cell proliferation, and restored islet size and alpha- and beta-cell masses. It also improved the expression of METTL14, pancreatic duodenal homeobox 1 (PDX-1), and protecting mitochondria, and modulated the PDX1 expression in an m6A-dependent manner. Concurrently, semaglutide significantly decreases the abundance of Firmicutes, Actinobacteriota, and Lactobacillus, while increasing the Bacteroides and norank_f_Muribaculaceae content, and the production of short-chain fatty acids (SCFA). SIGNIFICANCE Semaglutide positively influences by regulating m6A modifications to alleviate pancreatic beta cell dysfunction and modulate the gut microbiome.
Collapse
Affiliation(s)
- Yunfei Luo
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Jin-E Li
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Haixia Zeng
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Yuying Zhang
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Shiqi Yang
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism of the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang City, Jiangxi Province, China; Branch of National Clinical Research Center for Metabolic Diseases, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
7
|
Hao M, Sebag SC, Qian Q, Yang L. Lysosomal physiology and pancreatic lysosomal stress in diabetes mellitus. EGASTROENTEROLOGY 2024; 2:e100096. [PMID: 39512752 PMCID: PMC11542681 DOI: 10.1136/egastro-2024-100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Endocrine and exocrine functions of the pancreas control nutritional absorption, utilisation and systemic metabolic homeostasis. Under basal conditions, the lysosome is pivotal in regulating intracellular organelles and metabolite turnover. In response to acute or chronic stress, the lysosome senses metabolic flux and inflammatory challenges, thereby initiating the adaptive programme to re-establish cellular homeostasis. A growing body of evidence has demonstrated the pathophysiological relevance of the lysosomal stress response in metabolic diseases in diverse sets of tissues/organs, such as the liver and the heart. In this review, we discuss the pathological relevance of pancreatic lysosome stress in diabetes mellitus. We begin by summarising lysosomal biology, followed by exploring the immune and metabolic functions of lysosomes and finally discussing the interplay between lysosomal stress and the pathogenesis of pancreatic diseases. Ultimately, our review aims to enhance our understanding of lysosomal stress in disease pathogenesis, which could potentially lead to the discovery of innovative treatment methods for these conditions.
Collapse
Affiliation(s)
- Meihua Hao
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Sara C Sebag
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Qingwen Qian
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ling Yang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Carroll DT, Miller A, Fuhr J, Elsakr JM, Ricciardi V, Del Bene AN, Stephens S, Krystofiak E, Lindsley SR, Kirigiti M, Takahashi DL, Dean TA, Wesolowski SR, McCurdy CE, Friedman JE, Aagaard KM, Kievit P, Gannon M. Analysis of beta-cell maturity and mitochondrial morphology in juvenile non-human primates exposed to maternal Western-style diet during development. Front Endocrinol (Lausanne) 2024; 15:1417437. [PMID: 39114287 PMCID: PMC11304003 DOI: 10.3389/fendo.2024.1417437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Using a non-human primate (NHP) model of maternal Western-style diet (mWSD) feeding during pregnancy and lactation, we previously reported altered offspring beta:alpha cell ratio in vivo and insulin hyper-secretion ex vivo. Mitochondria are known to maintain beta-cell function by producing ATP for insulin secretion. In response to nutrient stress, the mitochondrial network within beta cells undergoes morphological changes to maintain respiration and metabolic adaptability. Given that mitochondrial dynamics have also been associated with cellular fate transitions, we assessed whether mWSD exposure was associated with changes in markers of beta-cell maturity and/or mitochondrial morphology that might explain the offspring islet phenotype. Methods We evaluated the expression of beta-cell identity/maturity markers (NKX6.1, MAFB, UCN3) via florescence microscopy in islets of Japanese macaque pre-adolescent (1 year old) and peri-adolescent (3-year-old) offspring born to dams fed either a control diet or WSD during pregnancy and lactation and weaned onto WSD. Mitochondrial morphology in NHP offspring beta cells was analyzed in 2D by transmission electron microscopy and in 3D using super resolution microscopy to deconvolve the beta-cell mitochondrial network. Results There was no difference in the percent of beta cells expressing key maturity markers in NHP offspring from WSD-fed dams at 1 or 3 years of age; however, beta cells of WSD-exposed 3 year old offspring showed increased levels of NKX6.1 per beta cell at 3 years of age. Regardless of maternal diet, the beta-cell mitochondrial network was found to be primarily short and fragmented at both ages in NHP; overall mitochondrial volume increased with age. In utero and lactational exposure to maternal WSD consumption may increase mitochondrial fragmentation. Discussion Despite mWSD consumption having clear developmental effects on offspring beta:alpha cell ratio and insulin secretory response to glucose, this does not appear to be mediated by changes to beta-cell maturity or the beta-cell mitochondrial network. In general, the more fragmented mitochondrial network in NHP beta cells suggests greater ability for metabolic flexibility.
Collapse
Affiliation(s)
- Darian T. Carroll
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Allie Miller
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer Fuhr
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Veterans Affairs Tennessee Valley, Nashville, TN, United States
| | - Joseph M. Elsakr
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Valerie Ricciardi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Alexa N. Del Bene
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Stedman Stephens
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Evan Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Sarah R. Lindsley
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Melissa Kirigiti
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Diana L. Takahashi
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Tyler A. Dean
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Stephanie R. Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Carrie E. McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Jacob E. Friedman
- Department of Physiology and Biochemistry and Harold Hamm Diabetes Center at the University of Oklahoma, Oklahoma City, OK, United States
| | - Kjersti M. Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, United States
| | - Paul Kievit
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Veterans Affairs Tennessee Valley, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
9
|
Rohli KE, Stubbe NJ, Walker EM, Pearson GL, Soleimanpour SA, Stephens SB. A metabolic redox relay supports ER proinsulin export in pancreatic islet β cells. JCI Insight 2024; 9:e178725. [PMID: 38935435 PMCID: PMC11383593 DOI: 10.1172/jci.insight.178725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
ER stress and proinsulin misfolding are heralded as contributing factors to β cell dysfunction in type 2 diabetes, yet how ER function becomes compromised is not well understood. Recent data identify altered ER redox homeostasis as a critical mechanism that contributes to insulin granule loss in diabetes. Hyperoxidation of the ER delays proinsulin export and limits the proinsulin supply available for insulin granule formation. In this report, we identified glucose metabolism as a critical determinant in the redox homeostasis of the ER. Using multiple β cell models, we showed that loss of mitochondrial function or inhibition of cellular metabolism elicited ER hyperoxidation and delayed ER proinsulin export. Our data further demonstrated that β cell ER redox homeostasis was supported by the metabolic supply of reductive redox donors. We showed that limiting NADPH and thioredoxin flux delayed ER proinsulin export, whereas thioredoxin-interacting protein suppression restored ER redox and proinsulin trafficking. Taken together, we propose that β cell ER redox homeostasis is buffered by cellular redox donor cycles, which are maintained through active glucose metabolism.
Collapse
Affiliation(s)
- Kristen E Rohli
- Fraternal Order of Eagles Diabetes Research Center
- Interdisciplinary Graduate Program in Genetics, and
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | - Emily M Walker
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, and
| | - Gemma L Pearson
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, and
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center
- Interdisciplinary Graduate Program in Genetics, and
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Yasasilka XR, Lee M. Role of β-cell autophagy in β-cell physiology and the development of diabetes. J Diabetes Investig 2024; 15:656-668. [PMID: 38470018 PMCID: PMC11143416 DOI: 10.1111/jdi.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Elucidating the molecular mechanism of autophagy was a landmark in understanding not only the physiology of cells and tissues, but also the pathogenesis of diverse diseases, including diabetes and metabolic disorders. Autophagy of pancreatic β-cells plays a pivotal role in the maintenance of the mass, structure and function of β-cells, whose dysregulation can lead to abnormal metabolic profiles or diabetes. Modulators of autophagy are being developed to improve metabolic profile and β-cell function through the removal of harmful materials and rejuvenation of organelles, such as mitochondria and endoplasmic reticulum. Among the known antidiabetic drugs, glucagon-like peptide-1 receptor agonists enhance the autophagic activity of β-cells, which might contribute to the profound effects of glucagon-like peptide-1 receptor agonists on systemic metabolism. In this review, the results from studies on the role of autophagy in β-cells and their implication in the development of diabetes are discussed. In addition to non-selective (macro)autophagy, the role and mechanisms of selective autophagy and other minor forms of autophagy that might occur in β-cells are discussed. As β-cell failure is the ultimate cause of diabetes and unresponsiveness to conventional therapy, modulation of β-cell autophagy might represent a future antidiabetic treatment approach, particularly in patients who are not well managed with current antidiabetic therapy.
Collapse
Affiliation(s)
- Xaviera Riani Yasasilka
- Soonchunhyang Institute of Medi‐bio Science and Division of Endocrinology, Department of Internal MedicineSoonchunhyang University College of MedicineCheonanKorea
| | - Myung‐Shik Lee
- Soonchunhyang Institute of Medi‐bio Science and Division of Endocrinology, Department of Internal MedicineSoonchunhyang University College of MedicineCheonanKorea
| |
Collapse
|
11
|
Jasra IT, Cuesta-Gomez N, Verhoeff K, Marfil-Garza BA, Dadheech N, Shapiro AMJ. Mitochondrial regulation in human pluripotent stem cells during reprogramming and β cell differentiation. Front Endocrinol (Lausanne) 2023; 14:1236472. [PMID: 37929027 PMCID: PMC10623316 DOI: 10.3389/fendo.2023.1236472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Mitochondria are the powerhouse of the cell and dynamically control fundamental biological processes including cell reprogramming, pluripotency, and lineage specification. Although remarkable progress in induced pluripotent stem cell (iPSC)-derived cell therapies has been made, very little is known about the role of mitochondria and the mechanisms involved in somatic cell reprogramming into iPSC and directed reprogramming of iPSCs in terminally differentiated cells. Reprogramming requires changes in cellular characteristics, genomic and epigenetic regulation, as well as major mitochondrial metabolic changes to sustain iPSC self-renewal, pluripotency, and proliferation. Differentiation of autologous iPSC into terminally differentiated β-like cells requires further metabolic adaptation. Many studies have characterized these alterations in signaling pathways required for the generation and differentiation of iPSC; however, very little is known regarding the metabolic shifts that govern pluripotency transition to tissue-specific lineage differentiation. Understanding such metabolic transitions and how to modulate them is essential for the optimization of differentiation processes to ensure safe iPSC-derived cell therapies. In this review, we summarize the current understanding of mitochondrial metabolism during somatic cell reprogramming to iPSCs and the metabolic shift that occurs during directed differentiation into pancreatic β-like cells.
Collapse
Affiliation(s)
- Ila Tewari Jasra
- Clinical Islet Transplant Program, Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Nerea Cuesta-Gomez
- Clinical Islet Transplant Program, Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Kevin Verhoeff
- Clinical Islet Transplant Program, Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Braulio A. Marfil-Garza
- Clinical Islet Transplant Program, Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Nuevo Leon, Mexico
| | - Nidheesh Dadheech
- Clinical Islet Transplant Program, Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - A. M. James Shapiro
- Clinical Islet Transplant Program, Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Oh SJ, Park K, Sonn SK, Oh GT, Lee MS. Pancreatic β-cell mitophagy as an adaptive response to metabolic stress and the underlying mechanism that involves lysosomal Ca 2+ release. Exp Mol Med 2023; 55:1922-1932. [PMID: 37653033 PMCID: PMC10545665 DOI: 10.1038/s12276-023-01055-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 05/11/2023] [Indexed: 09/02/2023] Open
Abstract
Mitophagy is an excellent example of selective autophagy that eliminates damaged or dysfunctional mitochondria, and it is crucial for the maintenance of mitochondrial integrity and function. The critical roles of autophagy in pancreatic β-cell structure and function have been clearly shown. Furthermore, morphological abnormalities and decreased function of mitochondria have been observed in autophagy-deficient β-cells, suggesting the importance of β-cell mitophagy. However, the role of authentic mitophagy in β-cell function has not been clearly demonstrated, as mice with pancreatic β-cell-specific disruption of Parkin, one of the most important players in mitophagy, did not exhibit apparent abnormalities in β-cell function or glucose homeostasis. Instead, the role of mitophagy in pancreatic β-cells has been investigated using β-cell-specific Tfeb-knockout mice (TfebΔβ-cell mice); Tfeb is a master regulator of lysosomal biogenesis or autophagy gene expression and participates in mitophagy. TfebΔβ-cell mice were unable to adaptively increase mitophagy or mitochondrial complex activity in response to high-fat diet (HFD)-induced metabolic stress. Consequently, TfebΔβ-cell mice exhibited impaired β-cell responses and further exacerbated metabolic deterioration after HFD feeding. TFEB was activated by mitochondrial or metabolic stress-induced lysosomal Ca2+ release, which led to calcineurin activation and mitophagy. After lysosomal Ca2+ release, depleted lysosomal Ca2+ stores were replenished by ER Ca2+ through ER→lysosomal Ca2+ refilling, which supplemented the low lysosomal Ca2+ capacity. The importance of mitophagy in β-cell function was also demonstrated in mice that developed β-cell dysfunction and glucose intolerance after treatment with a calcineurin inhibitor that hampered TFEB activation and mitophagy.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, Korea
| | - Kihyoun Park
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, Korea
| | - Seong Keun Sonn
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03767, Korea
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03767, Korea
| | - Myung-Shik Lee
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, Korea.
| |
Collapse
|
13
|
Mohammadi-Motlagh HR, Sadeghalvad M, Yavari N, Primavera R, Soltani S, Chetty S, Ganguly A, Regmi S, Fløyel T, Kaur S, Mirza AH, Thakor AS, Pociot F, Yarani R. β Cell and Autophagy: What Do We Know? Biomolecules 2023; 13:biom13040649. [PMID: 37189396 DOI: 10.3390/biom13040649] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Pancreatic β cells are central to glycemic regulation through insulin production. Studies show autophagy as an essential process in β cell function and fate. Autophagy is a catabolic cellular process that regulates cell homeostasis by recycling surplus or damaged cell components. Impaired autophagy results in β cell loss of function and apoptosis and, as a result, diabetes initiation and progress. It has been shown that in response to endoplasmic reticulum stress, inflammation, and high metabolic demands, autophagy affects β cell function, insulin synthesis, and secretion. This review highlights recent evidence regarding how autophagy can affect β cells' fate in the pathogenesis of diabetes. Furthermore, we discuss the role of important intrinsic and extrinsic autophagy modulators, which can lead to β cell failure.
Collapse
Affiliation(s)
- Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67155-1616, Iran
| | - Mona Sadeghalvad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rosita Primavera
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 67145-1673, Iran
| | - Shashank Chetty
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Abantika Ganguly
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Shobha Regmi
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Tina Fløyel
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Aashiq H Mirza
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Avnesh S Thakor
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Institute for Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Reza Yarani
- Interventional Regenerative Innovation at Stanford (IRIS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
14
|
Gingerich MA, Liu X, Chai B, Pearson GL, Vincent MP, Stromer T, Zhu J, Sidarala V, Renberg A, Sahu D, Klionsky DJ, Schnell S, Soleimanpour SA. An intrinsically disordered protein region encoded by the human disease gene CLEC16A regulates mitophagy. Autophagy 2023; 19:525-543. [PMID: 35604110 PMCID: PMC9851259 DOI: 10.1080/15548627.2022.2080383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
CLEC16A regulates mitochondrial health through mitophagy and is associated with over 20 human diseases. However, the key structural and functional regions of CLEC16A, and their relevance for human disease, remain unknown. Here, we report that a disease-associated CLEC16A variant lacks a C-terminal intrinsically disordered protein region (IDPR) that is critical for mitochondrial quality control. IDPRs comprise nearly half of the human proteome, yet their mechanistic roles in human disease are poorly understood. Using carbon detect NMR, we find that the CLEC16A C terminus lacks secondary structure, validating the presence of an IDPR. Loss of the CLEC16A C-terminal IDPR in vivo impairs mitophagy, mitochondrial function, and glucose-stimulated insulin secretion, ultimately causing glucose intolerance. Deletion of the CLEC16A C-terminal IDPR increases CLEC16A ubiquitination and degradation, thus impairing assembly of the mitophagy regulatory machinery. Importantly, CLEC16A stability is dependent on proline bias within the C-terminal IDPR, but not amino acid sequence order or charge. Together, we elucidate how an IDPR in CLEC16A regulates mitophagy and implicate pathogenic human gene variants that disrupt IDPRs as novel contributors to diabetes and other CLEC16A-associated diseases.Abbreviations : CAS: carbon-detect amino-acid specific; IDPR: intrinsically disordered protein region; MEFs: mouse embryonic fibroblasts; NMR: nuclear magnetic resonance.
Collapse
Affiliation(s)
- Morgan A. Gingerich
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xueying Liu
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA,Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Biaoxin Chai
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Gemma L. Pearson
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Michael P. Vincent
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Tracy Stromer
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Jie Zhu
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Vaibhav Sidarala
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Aaron Renberg
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Debashish Sahu
- BioNMR Core Facility, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Santiago Schnell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Scott A. Soleimanpour
- Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI, USA,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA,Medicine Service, Endocrinology and Metabolism Section, VA Ann Arbor Health Care System, Ann Arbor, MI, USA,CONTACT Scott A. Soleimanpour Department of Internal Medicine and Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Wall Street, Brehm Tower Room, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Smits DJ, Dekker J, Schot R, Tabarki B, Alhashem A, Demmers JAA, Dekkers DHW, Romito A, van der Spek PJ, van Ham TJ, Bertoli-Avella AM, Mancini GMS. CLEC16A interacts with retromer and TRIM27, and its loss impairs endosomal trafficking and neurodevelopment. Hum Genet 2023; 142:379-397. [PMID: 36538041 PMCID: PMC9950183 DOI: 10.1007/s00439-022-02511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
CLEC16A is a membrane-associated C-type lectin protein that functions as a E3-ubiquitin ligase. CLEC16A regulates autophagy and mitophagy, and reportedly localizes to late endosomes. GWAS studies have associated CLEC16A SNPs to various auto-immune and neurological disorders, including multiple sclerosis and Parkinson disease. Studies in mouse models imply a role for CLEC16A in neurodegeneration. We identified bi-allelic CLEC16A truncating variants in siblings from unrelated families presenting with a severe neurodevelopmental disorder including microcephaly, brain atrophy, corpus callosum dysgenesis, and growth retardation. To understand the function of CLEC16A in neurodevelopment we used in vitro models and zebrafish embryos. We observed CLEC16A localization to early endosomes in HEK293T cells. Mass spectrometry of human CLEC16A showed interaction with endosomal retromer complex subunits and the endosomal ubiquitin ligase TRIM27. Expression of the human variant leading to C-terminal truncated CLEC16A, abolishes both its endosomal localization and interaction with TRIM27, suggesting a loss-of-function effect. CLEC16A knockdown increased TRIM27 adhesion to early endosomes and abnormal accumulation of endosomal F-actin, a sign of disrupted vesicle sorting. Mutagenesis of clec16a by CRISPR-Cas9 in zebrafish embryos resulted in accumulated acidic/phagolysosome compartments, in neurons and microglia, and dysregulated mitophagy. The autophagocytic phenotype was rescued by wild-type human CLEC16A but not the C-terminal truncated CLEC16A. Our results demonstrate that CLEC16A closely interacts with retromer components and regulates endosomal fate by fine-tuning levels of TRIM27 and polymerized F-actin on the endosome surface. Dysregulation of CLEC16A-mediated endosomal sorting is associated with neurodegeneration, but it also causes accumulation of autophagosomes and unhealthy mitochondria during brain development.
Collapse
Affiliation(s)
- Daphne J Smits
- Department of Clinical Genetics, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands.
| | - Jordy Dekker
- Department of Clinical Genetics, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands.
| | - Rachel Schot
- Department of Clinical Genetics, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands
| | - Brahim Tabarki
- Division of Pediatric Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, 12233, Saudi Arabia
| | - Amal Alhashem
- Division of Pediatric Genetics, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, 12233, Saudi Arabia
| | - Jeroen A A Demmers
- Department of Molecular Genetics, Proteomics Center, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands
| | - Dick H W Dekkers
- Department of Molecular Genetics, Proteomics Center, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands
| | | | - Peter J van der Spek
- Department of Pathology, Clinical Bioinformatics, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands
| | - Tjakko J van Ham
- Department of Clinical Genetics, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands
| | | | - Grazia M S Mancini
- Department of Clinical Genetics, ErasmusMC University Medical Center, 3015 CN, Rotterdam, the Netherlands
| |
Collapse
|
16
|
Benaglio P, Zhu H, Okino ML, Yan J, Elgamal R, Nariai N, Beebe E, Korgaonkar K, Qiu Y, Donovan MK, Chiou J, Wang G, Newsome J, Kaur J, Miller M, Preissl S, Corban S, Aylward A, Taipale J, Ren B, Frazer KA, Sander M, Gaulton KJ. Type 1 diabetes risk genes mediate pancreatic beta cell survival in response to proinflammatory cytokines. CELL GENOMICS 2022; 2:100214. [PMID: 36778047 PMCID: PMC9903835 DOI: 10.1016/j.xgen.2022.100214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/17/2022] [Accepted: 10/15/2022] [Indexed: 11/13/2022]
Abstract
We combined functional genomics and human genetics to investigate processes that affect type 1 diabetes (T1D) risk by mediating beta cell survival in response to proinflammatory cytokines. We mapped 38,931 cytokine-responsive candidate cis-regulatory elements (cCREs) in beta cells using ATAC-seq and snATAC-seq and linked them to target genes using co-accessibility and HiChIP. Using a genome-wide CRISPR screen in EndoC-βH1 cells, we identified 867 genes affecting cytokine-induced survival, and genes promoting survival and up-regulated in cytokines were enriched at T1D risk loci. Using SNP-SELEX, we identified 2,229 variants in cytokine-responsive cCREs altering transcription factor (TF) binding, and variants altering binding of TFs regulating stress, inflammation, and apoptosis were enriched for T1D risk. At the 16p13 locus, a fine-mapped T1D variant altering TF binding in a cytokine-induced cCRE interacted with SOCS1, which promoted survival in cytokine exposure. Our findings reveal processes and genes acting in beta cells during inflammation that modulate T1D risk.
Collapse
Affiliation(s)
- Paola Benaglio
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Han Zhu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mei-Lin Okino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jian Yan
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- School of Medicine, Northwest University, Xi’an, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Ruth Elgamal
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Naoki Nariai
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Elisha Beebe
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Katha Korgaonkar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Yunjiang Qiu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Joshua Chiou
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Gaowei Wang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jacklyn Newsome
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jaspreet Kaur
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Michael Miller
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Sierra Corban
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Aylward
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Kelly A. Frazer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Maike Sander
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kyle J. Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Zhang Y, Fang X, Wei J, Miao R, Wu H, Ma K, Tian J. PDX-1: A Promising Therapeutic Target to Reverse Diabetes. Biomolecules 2022; 12:1785. [PMID: 36551213 PMCID: PMC9775243 DOI: 10.3390/biom12121785] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022] Open
Abstract
The pancreatic duodenum homeobox-1 (PDX-1) is a transcription factor encoded by a Hox-like homeodomain gene that plays a crucial role in pancreatic development, β-cell differentiation, and the maintenance of mature β-cell functions. Research on the relationship between PDX-1 and diabetes has gained much attention because of the increasing prevalence of diabetes melitus (DM). Recent studies have shown that the overexpression of PDX-1 regulates pancreatic development and promotes β-cell differentiation and insulin secretion. It also plays a vital role in cell remodeling, gene editing, and drug development. Conversely, the absence of PDX-1 increases susceptibility to DM. Therefore, in this review, we summarized the role of PDX-1 in pancreatic development and the pathogenesis of DM. A better understanding of PDX-1 will deepen our knowledge of the pathophysiology of DM and provide a scientific basis for exploring PDX-1 as a potential target for treating diabetes.
Collapse
Affiliation(s)
- Yanjiao Zhang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
18
|
Chen J, Li R, Knapp S, Zhu G, Whitener RL, Leiter EH, Mathews CE. Intergenomic and epistatic interactions control free radical mediated pancreatic β-cell damage. Front Genet 2022; 13:994501. [PMID: 36276935 PMCID: PMC9585181 DOI: 10.3389/fgene.2022.994501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Alloxan (AL)-generated Reactive Oxygen Species (ROS) selectively destroy insulin-producing pancreatic β-cells. A previous genome-wide scan (GWS) using a cohort of 296 F2 hybrids between NOD (AL-sensitive) and ALR (AL-resistant) mice identified linkages contributing to β-cell susceptibility or resistance to AL-induced diabetes on Chromosomes (Chr) 2, 3, 8, and a single nucleotide polymorphism in mt-Nd2 of the mitochondrial genome (mtDNA). AL treatment of congenic and consomic NOD mouse stocks confirmed resistance linked to both the mtDNA and the Chr 8 locus from ALR [NOD.mtALR.ALR-(D8Mit293-D8Mit137)]. To identify possible epistatic interactions, the GWS analysis was expanded to 678 F2 mice. ALR-derived diabetes-resistance linkages on Chr 8 as well as the mt-Nd2 a allele were confirmed and novel additional linkages on Chr 4, 5, 6, 7, and 13 were identified. Epistasis was observed between the linkages on Chr 8 and 2 and Chr 8 and 6. Furthermore, the mt-Nd2 genotype affected the epistatic interactions between Chr 8 and 2. These results demonstrate that a combination of nuclear-cytoplasmic genome interactions regulates β-cell sensitivity to ROS-mediated ALD.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Renhua Li
- Henry M Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD, United States
| | - Sarah Knapp
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Guizhi Zhu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Robert L. Whitener
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | | | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
19
|
Davidson RK, Weaver SA, Casey N, Kanojia S, Hogarth E, Aguirre RS, Sims EK, Evans-Molina C, Spaeth JM. The Chd4 subunit of the NuRD complex regulates Pdx1-controlled genes involved in β-cell function. J Mol Endocrinol 2022; 69:329-341. [PMID: 35521759 PMCID: PMC9260723 DOI: 10.1530/jme-22-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/03/2022] [Indexed: 11/08/2022]
Abstract
Type 2 diabetes (T2D) is associated with loss of transcription factors (TFs) from a subset of failing β-cells. Among these TFs is Pdx1, which controls the expression of numerous genes involved in maintaining β-cell function and identity. Pdx1 activity is modulated by transcriptional coregulators and has recently been shown, through an unbiased screen, to interact with the Chd4 ATPase subunit of the nucleosome remodeling and deacetylase complex. Chd4 contributes to the maintenance of cellular identity and functional status of numerous different cell types. Here, we demonstrated that Pdx1 dynamically interacts with Chd4 under physiological and stimulatory conditions within islet β-cells and established a fundamental role for Chd4 in regulating insulin secretion and modulating numerous Pdx1-bound genes in vitro, including the MafA TF, where we discovered Chd4 is bound to the MafA region 3 enhancer. Furthermore, we found that Pdx1:Chd4 interactions are significantly compromised in islet β-cells under metabolically induced stress in vivo and in human donor tissues with T2D. Our findings establish a fundamental role for Chd4 in regulating insulin secretion and modulating Pdx1-bound genes in vitro, and disruption of Pdx1:Chd4 interactions coincides with β-cell dysfunction associated with T2D.
Collapse
Affiliation(s)
- Rebecca K. Davidson
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Staci A. Weaver
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nolan Casey
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sukrati Kanojia
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elise Hogarth
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rebecca Schneider Aguirre
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Emily K. Sims
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Carmella Evans-Molina
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Jason M. Spaeth
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes & Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Corresponding Author: Address: 635 Barnhill Drive, MS 2021, Indianapolis, IN 46202 (JMS), (JMS)
| |
Collapse
|
20
|
García-Aguilar A, Guillén C. Targeting pancreatic beta cell death in type 2 diabetes by polyphenols. Front Endocrinol (Lausanne) 2022; 13:1052317. [PMID: 36465657 PMCID: PMC9712222 DOI: 10.3389/fendo.2022.1052317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetes is a very complex disease which is characterized by the appearance of insulin resistance that is primarily compensated by an increase in pancreatic beta cell mass, generating hyperinsulinemia. After time, pancreatic beta cells die by apoptosis appearing in the second phase of the disease, and characterized by hypoinsulinemia. There are multiple conditions that can alter pancreatic beta cell homeostasis and viability, being the most relevant ones; ER stress, cytotoxicity by amylin, mTORC1 hyperactivity, oxidative stress, mitochondrial dysfunction, inflammation and alterations in autophagy/mitophagy flux. In addition, the possible effects that different polyphenols could exert in the modulation of these mechanisms and regulating pancreatic beta cell viability are analyzed. It is necessary a profound analysis and understanding of all the possible mechanisms involved in the control and maintenance of pancreatic beta cell viability to develop more accurate and target treatments for controlling beta cell homeostasis and preventing or even reversing type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ana García-Aguilar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre Centro de Investigación Biomédica en Red. Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Guillén
- Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre Centro de Investigación Biomédica en Red. Diabetes y Enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- *Correspondence: Carlos Guillén,
| |
Collapse
|
21
|
Wen X, Yang Y, Klionsky DJ. Moments in autophagy and disease: Past and present. Mol Aspects Med 2021; 82:100966. [PMID: 33931245 PMCID: PMC8548407 DOI: 10.1016/j.mam.2021.100966] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023]
Abstract
Over the past several decades, research on autophagy, a highly conserved lysosomal degradation pathway, has been advanced by studies in different model organisms, especially in the field of its molecular mechanism and regulation. The malfunction of autophagy is linked to various diseases, among which cancer and neurodegenerative diseases are the major focus. In this review, we cover some other important diseases, including cardiovascular diseases, infectious and inflammatory diseases, and metabolic disorders, as well as rare diseases, with a hope of providing a more complete understanding of the spectrum of autophagy's role in human health.
Collapse
Affiliation(s)
- Xin Wen
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ying Yang
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
The Emerging Roles of Autophagy in Human Diseases. Biomedicines 2021; 9:biomedicines9111651. [PMID: 34829881 PMCID: PMC8615641 DOI: 10.3390/biomedicines9111651] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy, a process of cellular self-digestion, delivers intracellular components including superfluous and dysfunctional proteins and organelles to the lysosome for degradation and recycling and is important to maintain cellular homeostasis. In recent decades, autophagy has been found to help fight against a variety of human diseases, but, at the same time, autophagy can also promote the procession of certain pathologies, which makes the connection between autophagy and diseases complex but interesting. In this review, we summarize the advances in understanding the roles of autophagy in human diseases and the therapeutic methods targeting autophagy and discuss some of the remaining questions in this field, focusing on cancer, neurodegenerative diseases, infectious diseases and metabolic disorders.
Collapse
|
23
|
Mohan R, Jo S, Lockridge A, Ferrington DA, Murray K, Eschenlauer A, Bernal-Mizrachi E, Fujitani Y, Alejandro EU. OGT Regulates Mitochondrial Biogenesis and Function via Diabetes Susceptibility Gene Pdx1. Diabetes 2021; 70:2608-2625. [PMID: 34462257 PMCID: PMC8564412 DOI: 10.2337/db21-0468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022]
Abstract
O-GlcNAc transferase (OGT), a nutrient sensor sensitive to glucose flux, is highly expressed in the pancreas. However, the role of OGT in the mitochondria of β-cells is unexplored. In this study, we identified the role of OGT in mitochondrial function in β-cells. Constitutive deletion of OGT (βOGTKO) or inducible ablation in mature β-cells (iβOGTKO) causes distinct effects on mitochondrial morphology and function. Islets from βOGTKO, but not iβOGTKO, mice display swollen mitochondria, reduced glucose-stimulated oxygen consumption rate, ATP production, and glycolysis. Alleviating endoplasmic reticulum stress by genetic deletion of Chop did not rescue the mitochondrial dysfunction in βOGTKO mice. We identified altered islet proteome between βOGTKO and iβOGTKO mice. Pancreatic and duodenal homeobox 1 (Pdx1) was reduced in in βOGTKO islets. Pdx1 overexpression increased insulin content and improved mitochondrial morphology and function in βOGTKO islets. These data underscore the essential role of OGT in regulating β-cell mitochondrial morphology and bioenergetics. In conclusion, OGT couples nutrient signal and mitochondrial function to promote normal β-cell physiology.
Collapse
Affiliation(s)
- Ramkumar Mohan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Amber Lockridge
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | - Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, MN
| | - Kevin Murray
- University of Minnesota Informatics Institute, University of Minnesota Medical School, Minneapolis, MN
| | - Arthur Eschenlauer
- University of Minnesota Informatics Institute, University of Minnesota Medical School, Minneapolis, MN
| | - Ernesto Bernal-Mizrachi
- Miami VA Healthcare System, Miami, FL
- Division of Endocrinology, Diabetes and Metabolism, University of Miami, Miami, FL
| | - Yoshio Fujitani
- Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
24
|
Muralidharan C, Linnemann AK. β-Cell autophagy in the pathogenesis of type 1 diabetes. Am J Physiol Endocrinol Metab 2021; 321:E410-E416. [PMID: 34338043 PMCID: PMC8461796 DOI: 10.1152/ajpendo.00151.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
Type 1 diabetes is an insulin-dependent, autoimmune disease where the pancreatic β cells are destroyed resulting in hyperglycemia. This multifactorial disease involves multiple environmental and genetic factors, and has no clear etiology. Accumulating evidence suggests that early signaling defects within the β cells may promote a change in the local immune milieu leading to autoimmunity. Therefore, many studies have been focused on intrinsic β-cell mechanisms that aid in the restoration of cellular homeostasis under environmental conditions that cause dysfunction. One of these intrinsic mechanisms to promote homeostasis is autophagy, defects which are clearly linked with β-cell dysfunction in the context of type 2 diabetes. Recent studies have now also pointed towards β-cell autophagy defects in the context of type 1 diabetes. In this perspectives review, we will discuss the evidence supporting a role for β-cell autophagy in the pathogenesis of type 1 diabetes, including a potential role for unconventional secretion of autophagosomes/lysosomes in the changing dialogue between the β cell and immune cells.
Collapse
Affiliation(s)
- Charanya Muralidharan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amelia K Linnemann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
25
|
Yao D, GangYi Y, QiNan W. Autophagic dysfunction of β cell dysfunction in type 2 diabetes, a double-edged sword. Genes Dis 2021; 8:438-447. [PMID: 34179308 PMCID: PMC8209341 DOI: 10.1016/j.gendis.2020.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes is an age-related disease, most of which is type 2 diabetes, and islet β cell dysfunction and insulin resistance are the main mechanisms of type 2 diabetes. Recent studies have revealed that autophagy plays an important role in maintaining the structure and function of islet beta cells and inhibiting insulin resistance and apoptosis induced by oxidative stress. In this review, we discussed the positive and negative effects of autophagy and its dysfunction on type 2 diabetes mellitus, which is the so-called double-edged sword, analysed its possible mechanism, and identified possible research hot spots.
Collapse
Affiliation(s)
- Ding Yao
- Endocrinology and Nephrology Department, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, 400030, PR China
| | - Yang GangYi
- Endocrinology Department, The Second Affiliated Hospital of the Chongqing Medical University, Chongqing, 400010, PR China
| | - Wu QiNan
- Endocrinology and Nephrology Department, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, 400030, PR China
| |
Collapse
|
26
|
Pearson GL, Gingerich MA, Walker EM, Biden TJ, Soleimanpour SA. A Selective Look at Autophagy in Pancreatic β-Cells. Diabetes 2021; 70:1229-1241. [PMID: 34016598 PMCID: PMC8275885 DOI: 10.2337/dbi20-0014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/22/2021] [Indexed: 12/15/2022]
Abstract
Insulin-producing pancreatic β-cells are central to glucose homeostasis, and their failure is a principal driver of diabetes development. To preserve optimal health β-cells must withstand both intrinsic and extrinsic stressors, ranging from inflammation to increased peripheral insulin demand, in addition to maintaining insulin biosynthesis and secretory machinery. Autophagy is increasingly being appreciated as a critical β-cell quality control system vital for glycemic control. Here we focus on the underappreciated, yet crucial, roles for selective and organelle-specific forms of autophagy as mediators of β-cell health. We examine the unique molecular players underlying each distinct form of autophagy in β-cells, including selective autophagy of mitochondria, insulin granules, lipid, intracellular amyloid aggregates, endoplasmic reticulum, and peroxisomes. We also describe how defects in selective autophagy pathways contribute to the development of diabetes. As all forms of autophagy are not the same, a refined view of β-cell selective autophagy may inform new approaches to defend against the various insults leading to β-cell failure in diabetes.
Collapse
Affiliation(s)
- Gemma L Pearson
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | - Emily M Walker
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | - Scott A Soleimanpour
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Veterans Affairs Ann Arbor Health Care System, Ann Arbor, MI
| |
Collapse
|
27
|
Hain HS, Pandey R, Bakay M, Strenkowski BP, Harrington D, Romer M, Motley WW, Li J, Lancaster E, Roth L, Grinspan JB, Scherer SS, Hakonarson H. Inducible knockout of Clec16a in mice results in sensory neurodegeneration. Sci Rep 2021; 11:9319. [PMID: 33927318 PMCID: PMC8084945 DOI: 10.1038/s41598-021-88895-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
CLEC16A has been shown to play a role in autophagy/mitophagy processes. Additionally, genetic variants in CLEC16A have been implicated in multiple autoimmune diseases. We generated an inducible whole-body knockout, Clec16aΔUBC mice, to investigate the loss of function of CLEC16A. The mice exhibited a neuronal phenotype including tremors and impaired gait that rapidly progressed to dystonic postures. Nerve conduction studies and pathological analysis revealed loss of sensory axons that are associated with this phenotype. Activated microglia and astrocytes were found in regions of the CNS. Several mitochondrial-related proteins were up- or down-regulated. Upregulation of interferon stimulated gene 15 (IGS15) were observed in neuronal tissues. CLEC16A expression inversely related to IGS15 expression. ISG15 may be the link between CLEC16A and downstream autoimmune, inflammatory processes. Our results demonstrate that a whole-body, inducible knockout of Clec16a in mice results in an inflammatory neurodegenerative phenotype resembling spinocerebellar ataxia.
Collapse
Affiliation(s)
- Heather S Hain
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Rahul Pandey
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Marina Bakay
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Bryan P Strenkowski
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Danielle Harrington
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Micah Romer
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William W Motley
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jian Li
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eunjoo Lancaster
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lindsay Roth
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Judith B Grinspan
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
28
|
Kim YK, Sussel L, Davidson HW. Inherent Beta Cell Dysfunction Contributes to Autoimmune Susceptibility. Biomolecules 2021; 11:biom11040512. [PMID: 33808310 PMCID: PMC8065553 DOI: 10.3390/biom11040512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 01/10/2023] Open
Abstract
The pancreatic beta cell is a highly specialized cell type whose primary function is to secrete insulin in response to nutrients to maintain glucose homeostasis in the body. As such, the beta cell has developed unique metabolic characteristics to achieve functionality; in healthy beta cells, the majority of glucose-derived carbons are oxidized and enter the mitochondria in the form of pyruvate. The pyruvate is subsequently metabolized to induce mitochondrial ATP and trigger the downstream insulin secretion response. Thus, in beta cells, mitochondria play a pivotal role in regulating glucose stimulated insulin secretion (GSIS). In type 2 diabetes (T2D), mitochondrial impairment has been shown to play an important role in beta cell dysfunction and loss. In type 1 diabetes (T1D), autoimmunity is the primary trigger of beta cell loss; however, there is accumulating evidence that intrinsic mitochondrial defects could contribute to beta cell susceptibility during proinflammatory conditions. Furthermore, there is speculation that dysfunctional mitochondrial responses could contribute to the formation of autoantigens. In this review, we provide an overview of mitochondrial function in the beta cells, and discuss potential mechanisms by which mitochondrial dysfunction may contribute to T1D pathogenesis.
Collapse
Affiliation(s)
- Yong Kyung Kim
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (Y.K.K.); (L.S.)
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (Y.K.K.); (L.S.)
| | - Howard W. Davidson
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (Y.K.K.); (L.S.)
- Department of Immunology & Microbiology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +1-303-724-6852; Fax: +1-303-724-6830
| |
Collapse
|
29
|
Type I interferons as key players in pancreatic β-cell dysfunction in type 1 diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:1-80. [PMID: 33832648 DOI: 10.1016/bs.ircmb.2021.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet inflammation (insulitis) and specific pancreatic β-cell destruction by an immune attack. Although the precise underlying mechanisms leading to the autoimmune assault remain poorly understood, it is well accepted that insulitis takes place in the context of a conflicting dialogue between pancreatic β-cells and the immune cells. Moreover, both host genetic background (i.e., candidate genes) and environmental factors (e.g., viral infections) contribute to this inadequate dialogue. Accumulating evidence indicates that type I interferons (IFNs), cytokines that are crucial for both innate and adaptive immune responses, act as key links between environmental and genetic risk factors in the development of T1D. This chapter summarizes some relevant pathways involved in β-cell dysfunction and death, and briefly reviews how enteroviral infections and genetic susceptibility can impact insulitis. Moreover, we present the current evidence showing that, in β-cells, type I IFN signaling pathway activation leads to several outcomes, such as long-lasting major histocompatibility complex (MHC) class I hyperexpression, endoplasmic reticulum (ER) stress, epigenetic changes, and induction of posttranscriptional as well as posttranslational modifications. MHC class I overexpression, when combined with ER stress and posttranscriptional/posttranslational modifications, might lead to sustained neoantigen presentation to immune system and β-cell apoptosis. This knowledge supports the concept that type I IFNs are implicated in the early stages of T1D pathogenesis. Finally, we highlight the promising therapeutic avenues for T1D treatment directed at type I IFN signaling pathway.
Collapse
|
30
|
Sidarala V, Pearson GL, Parekh VS, Thompson B, Christen L, Gingerich MA, Zhu J, Stromer T, Ren J, Reck EC, Chai B, Corbett JA, Mandrup-Poulsen T, Satin LS, Soleimanpour SA. Mitophagy protects β cells from inflammatory damage in diabetes. JCI Insight 2020; 5:141138. [PMID: 33232298 PMCID: PMC7819751 DOI: 10.1172/jci.insight.141138] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory damage contributes to β cell failure in type 1 and 2 diabetes (T1D and T2D, respectively). Mitochondria are damaged by inflammatory signaling in β cells, resulting in impaired bioenergetics and initiation of proapoptotic machinery. Hence, the identification of protective responses to inflammation could lead to new therapeutic targets. Here, we report that mitophagy serves as a protective response to inflammatory stress in both human and rodent β cells. Utilizing in vivo mitophagy reporters, we observed that diabetogenic proinflammatory cytokines induced mitophagy in response to nitrosative/oxidative mitochondrial damage. Mitophagy-deficient β cells were sensitized to inflammatory stress, leading to the accumulation of fragmented dysfunctional mitochondria, increased β cell death, and hyperglycemia. Overexpression of CLEC16A, a T1D gene and mitophagy regulator whose expression in islets is protective against T1D, ameliorated cytokine-induced human β cell apoptosis. Thus, mitophagy promotes β cell survival and prevents diabetes by countering inflammatory injury. Targeting this pathway has the potential to prevent β cell failure in diabetes and may be beneficial in other inflammatory conditions.
Collapse
Affiliation(s)
- Vaibhav Sidarala
- Division of Metabolism, Endocrinology and Diabetes and Department of Internal Medicine, and
| | - Gemma L Pearson
- Division of Metabolism, Endocrinology and Diabetes and Department of Internal Medicine, and
| | - Vishal S Parekh
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Benjamin Thompson
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lisa Christen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morgan A Gingerich
- Division of Metabolism, Endocrinology and Diabetes and Department of Internal Medicine, and.,Program in Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jie Zhu
- Division of Metabolism, Endocrinology and Diabetes and Department of Internal Medicine, and
| | - Tracy Stromer
- Division of Metabolism, Endocrinology and Diabetes and Department of Internal Medicine, and
| | - Jianhua Ren
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Emma C Reck
- Division of Metabolism, Endocrinology and Diabetes and Department of Internal Medicine, and
| | - Biaoxin Chai
- Division of Metabolism, Endocrinology and Diabetes and Department of Internal Medicine, and
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Leslie S Satin
- Division of Metabolism, Endocrinology and Diabetes and Department of Internal Medicine, and.,Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology and Diabetes and Department of Internal Medicine, and.,VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
31
|
Georgiadou E, Rutter GA. Control by Ca 2+ of mitochondrial structure and function in pancreatic β-cells. Cell Calcium 2020; 91:102282. [PMID: 32961506 PMCID: PMC7116533 DOI: 10.1016/j.ceca.2020.102282] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Mitochondria play a central role in glucose metabolism and the stimulation of insulin secretion from pancreatic β-cells. In this review, we discuss firstly the regulation and roles of mitochondrial Ca2+ transport in glucose-regulated insulin secretion, and the molecular machinery involved. Next, we discuss the evidence that mitochondrial dysfunction in β-cells is associated with type 2 diabetes, from a genetic, functional and structural point of view, and then the possibility that these changes may in part be mediated by dysregulation of cytosolic Ca2+. Finally, we review the importance of preserved mitochondrial structure and dynamics for mitochondrial gene expression and their possible relevance to the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Eleni Georgiadou
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, du Cane Road, London, W12 0NN, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
32
|
Rocha M, Apostolova N, Diaz-Rua R, Muntane J, Victor VM. Mitochondria and T2D: Role of Autophagy, ER Stress, and Inflammasome. Trends Endocrinol Metab 2020; 31:725-741. [PMID: 32265079 DOI: 10.1016/j.tem.2020.03.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/08/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes (T2D) is one of the main current threats to human health. Both T2D and its numerous clinical complications are related to mitochondrial dysfunction and oxidative stress. Over the past decade, great progress has been made in extending our knowledge about the signaling events regulated by mitochondria. However, the links among mitochondrial impairment, oxidative stress, autophagy, endoplasmic reticulum (ER) stress, and activation of the inflammasome still need to be clarified. In light of this deficit, we aim to provide a review of the existing literature concerning the complicated crosstalk between mitochondrial impairment, autophagy, ER stress, and the inflammasome in the molecular pathogenesis of T2D.
Collapse
Affiliation(s)
- Milagros Rocha
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | | | - Ruben Diaz-Rua
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Jordi Muntane
- Department of Pharmacology, University of Valencia, Valencia, Spain; Institute of Biomedicine of Seville (IBiS), University Hospital 'Virgen del Rocío'/CSIC/University of Seville, Seville, Spain; Department of General Surgery, University Hospital 'Virgen del Rocío'/CSIC/University of Seville/IBiS/CSIC/University of Seville, Spain
| | - Victor M Victor
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
33
|
Zhang L, Hou L, Liu Z, Huang S, Meng Z, Liang L. A mitophagic response to iron overload-induced oxidative damage associated with the PINK1/Parkin pathway in pancreatic beta cells. J Trace Elem Med Biol 2020; 60:126493. [PMID: 32179427 DOI: 10.1016/j.jtemb.2020.126493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Iron overload can result in a disorder in glucose metabolism. However, the underlining mechanism through which iron overload induces beta cell death remains unknown. METHODS According to the concentration of ferric ammonium citrate (FAC) and N-acetylcysteine, INS-1 cells were randomly divided into four groups: normal control (FAC 0 μM) group, FAC 80 μM group, FAC 160 μM group, FAC 160μM + NAC group. Cell proliferation was assessed by Cell Counting Kit-8. Reactive oxygen species (ROS) level was further evaluated using flow cytometer with a fluorescent probe. The mitochondrial membrane potential was detected by JC-1 kit, and transmission electron microscopy was used to observe the mitochondrial changes. The related protein expressions were detected by western bolt to evaluate mitophagy status. RESULTS It was shown that FAC treatment decreased INS-1 cell viability in vitro, resulted in a decline in mitochondrial membrane potential, increased oxidative stress level and suppressed mitophagy. Furthermore, these effects could be alleviated by the ROS scavenger. CONCLUSIONS We proved that increased iron overload primarily increased oxidative stress and further suppressed mitophagy via PTEN-induced putative kinase 1/Parkin pathway, resulting in cytotoxicity in INS-1 cells.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, China
| | - Lele Hou
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, China
| | - Zulin Liu
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, China
| | - Siqi Huang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, China
| | - Zhe Meng
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, China
| | - Liyang Liang
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, China.
| |
Collapse
|
34
|
Abstract
Background Elucidation of the basic molecular mechanism of autophagy was a breakthrough in understanding various physiological events and pathogenesis of diverse diseases. In the fields of diabetes and metabolism, many cellular events associated with the development of disease or its treatment cannot be explained well without taking autophagy into account. While a grand picture of autophagy has been established, detailed aspects of autophagy, particularly that of selective autophagy responsible for homeostasis of specific organelles or metabolic intermediates, are still ambiguous and currently under intensive research. Scope of review Here, results from previous and current studies on the role of autophagy and its dysregulation in the physiology of metabolism and pathogenesis of diabetes are summarized, with an emphasis on the pancreatic β-cell autophagy. In addition to nonselective (bulk) autophagy, machinery and significance of selective autophagy such as mitophagy of pancreatic β-cells is discussed. Novel findings regarding autophagy types other than macroautophagy are also covered, since several types of autophagy or lysosomal degradation pathways other than macroautophagy coexist in pancreatic β-cells. Major conclusion Autophagy plays a critical role in cellular metabolism, homeostasis of the intracellular environment and function of organelles such as mitochondria and endoplasmic reticulum. Impaired autophagic activity due to aging, obesity or genetic predisposition could be a factor in the development of β-cell dysfunction and diabetes associated with lipid overload or human-type diabetes characterized by islet amyloid deposition. Modulation of autophagy of pancreatic β-cells is likely to be possible in the near future, which would be valuable in the treatment of diabetes associated with lipid overload or accumulation of islet amyloid. Autophagy is critical for cellular metabolism, homeostasis and organelle function. Impaired autophagic activity could predispose to β-cell dysfunction and diabetes. Several types of autophagy coexist in pancreatic β-cells.
Collapse
|
35
|
Stojanović SD, Fuchs M, Fiedler J, Xiao K, Meinecke A, Just A, Pich A, Thum T, Kunz M. Comprehensive Bioinformatics Identifies Key microRNA Players in ATG7-Deficient Lung Fibroblasts. Int J Mol Sci 2020; 21:E4126. [PMID: 32527064 PMCID: PMC7312768 DOI: 10.3390/ijms21114126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Deficient autophagy has been recently implicated as a driver of pulmonary fibrosis, yet bioinformatics approaches to study this cellular process are lacking. Autophagy-related 5 and 7 (ATG5/ATG7) are critical elements of macro-autophagy. However, an alternative ATG5/ATG7-independent macro-autophagy pathway was recently discovered, its regulation being unknown. Using a bioinformatics proteome profiling analysis of ATG7-deficient human fibroblasts, we aimed to identify key microRNA (miR) regulators in autophagy. METHOD We have generated ATG7-knockout MRC-5 fibroblasts and performed mass spectrometry to generate a large-scale proteomics dataset. We further quantified the interactions between various proteins combining bioinformatics molecular network reconstruction and functional enrichment analysis. The predicted key regulatory miRs were validated via quantitative polymerase chain reaction. RESULTS The functional enrichment analysis of the 26 deregulated proteins showed decreased cellular trafficking, increased mitophagy and senescence as the major overarching processes in ATG7-deficient lung fibroblasts. The 26 proteins reconstitute a protein interactome of 46 nodes and miR-regulated interactome of 834 nodes. The miR network shows three functional cluster modules around miR-16-5p, miR-17-5p and let-7a related to multiple deregulated proteins. Confirming these results in a biological setting, serially passaged wild-type and autophagy-deficient fibroblasts displayed senescence-dependent expression profiles of miR-16-5p and miR-17-5p. CONCLUSIONS We have developed a bioinformatics proteome profiling approach that successfully identifies biologically relevant miR regulators from a proteomics dataset of the ATG-7-deficient milieu in lung fibroblasts, and thus may be used to elucidate key molecular players in complex fibrotic pathological processes. The approach is not limited to a specific cell-type and disease, thus highlighting its high relevance in proteome and non-coding RNA research.
Collapse
Affiliation(s)
- Stevan D. Stojanović
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany; (S.D.S.); (J.F.); (K.X.); (A.M.); (A.J.)
| | - Maximilian Fuchs
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany;
- Functional Genomics and Systems Biology Group, Department of Bioinformatics, University of Würzburg, Würzburg 97074, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany; (S.D.S.); (J.F.); (K.X.); (A.M.); (A.J.)
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany; (S.D.S.); (J.F.); (K.X.); (A.M.); (A.J.)
| | - Anna Meinecke
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany; (S.D.S.); (J.F.); (K.X.); (A.M.); (A.J.)
| | - Annette Just
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany; (S.D.S.); (J.F.); (K.X.); (A.M.); (A.J.)
| | - Andreas Pich
- Institute of Toxicology and Core Unit Proteomics, Hannover Medical School, 30625 Hannover, Germany;
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany; (S.D.S.); (J.F.); (K.X.); (A.M.); (A.J.)
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany;
| |
Collapse
|
36
|
Kim H, Yoon BH, Oh CM, Lee J, Lee K, Song H, Kim E, Yi K, Kim MY, Kim H, Kim YK, Seo EH, Heo H, Kim HJ, Lee J, Suh JM, Koo SH, Seong JK, Kim S, Ju YS, Shong M, Kim M, Kim H. PRMT1 Is Required for the Maintenance of Mature β-Cell Identity. Diabetes 2020; 69:355-368. [PMID: 31848151 DOI: 10.2337/db19-0685] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/12/2019] [Indexed: 11/13/2022]
Abstract
Loss of functional β-cell mass is an essential feature of type 2 diabetes, and maintaining mature β-cell identity is important for preserving a functional β-cell mass. However, it is unclear how β-cells achieve and maintain their mature identity. Here we demonstrate a novel function of protein arginine methyltransferase 1 (PRMT1) in maintaining mature β-cell identity. Prmt1 knockout in fetal and adult β-cells induced diabetes, which was aggravated by high-fat diet-induced metabolic stress. Deletion of Prmt1 in adult β-cells resulted in the immediate loss of histone H4 arginine 3 asymmetric dimethylation (H4R3me2a) and the subsequent loss of β-cell identity. The expression levels of genes involved in mature β-cell function and identity were robustly downregulated as soon as Prmt1 deletion was induced in adult β-cells. Chromatin immunoprecipitation sequencing and assay for transposase-accessible chromatin sequencing analyses revealed that PRMT1-dependent H4R3me2a increases chromatin accessibility at the binding sites for CCCTC-binding factor (CTCF) and β-cell transcription factors. In addition, PRMT1-dependent open chromatin regions may show an association with the risk of diabetes in humans. Together, our results indicate that PRMT1 plays an essential role in maintaining β-cell identity by regulating chromatin accessibility.
Collapse
Affiliation(s)
- Hyunki Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Byoung-Ha Yoon
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Joonyub Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kanghoon Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Heein Song
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Eunha Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Kijong Yi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Mi-Young Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Korea Mouse Phenotyping Center, Seoul, Republic of Korea
| | - Hyeongseok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Eun-Hye Seo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Haejeong Heo
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Hee-Jin Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Junguee Lee
- Department of Pathology, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University, Seoul, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Mirang Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
37
|
Gingerich MA, Sidarala V, Soleimanpour SA. Clarifying the function of genes at the chromosome 16p13 locus in type 1 diabetes: CLEC16A and DEXI. Genes Immun 2020; 21:79-82. [PMID: 31570815 PMCID: PMC7108966 DOI: 10.1038/s41435-019-0087-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 01/07/2023]
Abstract
More than a decade after the discovery of a novel type 1 diabetes risk locus on chromosome 16p13, there remains complexity and controversy over the specific gene(s) that regulate diabetes pathogenesis. A new study by Nieves-Bonilla et al. shows that one of these genes, DEXI, is unlikely to contribute to type 1 diabetes pathogenesis and positions the endolysosomal E3 ubiquitin ligase CLEC16A as the primary culprit by which this gene locus influences diabetes risk.
Collapse
Affiliation(s)
- Morgan A Gingerich
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Vaibhav Sidarala
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
- Veterans Affairs Ann Arbor Health Care System, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
38
|
Yang X, Pan W, Xu G, Chen L. Mitophagy: A crucial modulator in the pathogenesis of chronic diseases. Clin Chim Acta 2019; 502:245-254. [PMID: 31730816 DOI: 10.1016/j.cca.2019.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023]
Abstract
Mitophagy is an autophagic process through which damaged or dysfunctional mitochondria are specifically degraded to maintain cellular homeostasis. It is highly regulated by various signaling pathways such as the PTEN-induced putative kinase 1 (PINK1)/Parkin and NIP3-like protein X (NIX)/BNIP3 pathways. Additionally, it plays a crucial role in inducing some pathological processes. Notably, some evidence suggesting the association of mitophagy with the occurrence of chronic diseases such as Parkinson's disease (PD), cancer, diabetes, atherosclerosis (AS), and myocardial ischemia reperfusion (MIR) injury is available. Particularly, it has been reported that mitophagy could hinder the development of PD by activating the PINK1/Parkin pathway and acting as a defense mechanism against the induction of diabetes. Conversely, the induction of mitophagy plays dual roles in driving the process of cancer, AS, and MIR injury. In this review, we have explained the role and regulatory mechanisms through which mitophagy plays a role in these chronic pathologies. Importantly, the pharmacological targeting of mitophagy might prove to be a potential alternative for the treatment of these chronic diseases.
Collapse
Affiliation(s)
- Xiao Yang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang 421001, China
| | - Weinan Pan
- Hunan Food and Drug Vocational College, No.345 Bachelor's Road, Yue Lu Science and Technology Industrial Park, Changsha City, Hunan Province, China
| | - Gaosheng Xu
- Department of Breast Surgery, Yueyang Maternal and Child Health-Care Hospital, Yueyang 414000, Hunan Province, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, University of South China, Hengyang 421001, China.
| |
Collapse
|
39
|
Mitochondrial Structural Changes in the Pathogenesis of Diabetic Retinopathy. J Clin Med 2019; 8:jcm8091363. [PMID: 31480638 PMCID: PMC6780143 DOI: 10.3390/jcm8091363] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
At the core of proper mitochondrial functionality is the maintenance of its structure and morphology. Physical changes in mitochondrial structure alter metabolic pathways inside mitochondria, affect mitochondrial turnover, disturb mitochondrial dynamics, and promote mitochondrial fragmentation, ultimately triggering apoptosis. In high glucose condition, increased mitochondrial fragmentation contributes to apoptotic death in retinal vascular and Müller cells. Although alterations in mitochondrial morphology have been detected in several diabetic tissues, it remains to be established in the vascular cells of the diabetic retina. From a mechanistic standpoint, our current work supports the notion that increased expression of fission genes and decreased expression of fusion genes are involved in promoting excessive mitochondrial fragmentation. While mechanistic insights are only beginning to reveal how high glucose alters mitochondrial morphology, the consequences are clearly seen as release of cytochrome c from fragmented mitochondria triggers apoptosis. Current findings raise the prospect of targeting excessive mitochondrial fragmentation as a potential therapeutic strategy for treatment of diabetic retinopathy. While biochemical and epigenetic changes have been reported to be associated with mitochondrial dysfunction, this review focuses on alterations in mitochondrial morphology, and their impact on mitochondrial function and pathogenesis of diabetic retinopathy.
Collapse
|
40
|
Breaking Bad and Breaking Good: β-Cell Autophagy Pathways in Diabetes. J Mol Biol 2019; 432:1494-1513. [PMID: 31381897 DOI: 10.1016/j.jmb.2019.07.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 01/01/2023]
Abstract
For many decades the lysosome has been recognized as the terminal center of cellular waste disposal. Products of lysosomal degradation are either recycled in biosynthetic pathways or are further metabolized to produce energy. As such the lysosome was attributed a rather passive role in cellular metabolism merely transforming bulk material into small metabolites. More recently, however, the emerging evidence has brought the lysosome to the center of nutrient sensing as the organelle that harbors a complex signaling machinery which dynamically and actively regulates cell metabolism. The pancreatic β cell is unique in as much as nutrient sensing is directly coupled to insulin secretion. Importantly, defects in insulin secretion constitute a hallmark in the progression of patients from a state of impaired glucose tolerance to full blown type 2 diabetes (T2D). However, mechanisms linking nutrient-dependent lysosomal function to insulin secretion and more generally to β cell health have evolved only very recently. This review discusses emerging concepts in macroautophagy and macroautophagy-independent processes of cargo delivery to lysosomes as well as nutrient-dependent lysosomal signaling specifically in the context of β cell function in health and disease. Such mechanisms may provide a novel source of therapeutic targets to be exploited in the context of β cell failure in diabetes in the near future.
Collapse
|
41
|
Bysani M, Agren R, Davegårdh C, Volkov P, Rönn T, Unneberg P, Bacos K, Ling C. ATAC-seq reveals alterations in open chromatin in pancreatic islets from subjects with type 2 diabetes. Sci Rep 2019; 9:7785. [PMID: 31123324 PMCID: PMC6533306 DOI: 10.1038/s41598-019-44076-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 05/08/2019] [Indexed: 01/08/2023] Open
Abstract
Impaired insulin secretion from pancreatic islets is a hallmark of type 2 diabetes (T2D). Altered chromatin structure may contribute to the disease. We therefore studied the impact of T2D on open chromatin in human pancreatic islets. We used assay for transposase-accessible chromatin using sequencing (ATAC-seq) to profile open chromatin in islets from T2D and non-diabetic donors. We identified 57,105 and 53,284 ATAC-seq peaks representing open chromatin regions in islets of non-diabetic and diabetic donors, respectively. The majority of ATAC-seq peaks mapped near transcription start sites. Additionally, peaks were enriched in enhancer regions and in regions where islet-specific transcription factors (TFs), e.g. FOXA2, MAFB, NKX2.2, NKX6.1 and PDX1, bind. Islet ATAC-seq peaks overlap with 13 SNPs associated with T2D (e.g. rs7903146, rs2237897, rs757209, rs11708067 and rs878521 near TCF7L2, KCNQ1, HNF1B, ADCY5 and GCK, respectively) and with additional 67 SNPs in LD with known T2D SNPs (e.g. SNPs annotated to GIPR, KCNJ11, GLIS3, IGF2BP2, FTO and PPARG). There was enrichment of open chromatin regions near highly expressed genes in human islets. Moreover, 1,078 open chromatin peaks, annotated to 898 genes, differed in prevalence between diabetic and non-diabetic islet donors. Some of these peaks are annotated to candidate genes for T2D and islet dysfunction (e.g. HHEX, HMGA2, GLIS3, MTNR1B and PARK2) and some overlap with SNPs associated with T2D (e.g. rs3821943 near WFS1 and rs508419 near ANK1). Enhancer regions and motifs specific to key TFs including BACH2, FOXO1, FOXA2, NEUROD1, MAFA and PDX1 were enriched in differential islet ATAC-seq peaks of T2D versus non-diabetic donors. Our study provides new understanding into how T2D alters the chromatin landscape, and thereby accessibility for TFs and gene expression, in human pancreatic islets.
Collapse
Affiliation(s)
- Madhusudhan Bysani
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Rasmus Agren
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Göteborg, Sweden
| | - Cajsa Davegårdh
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Petr Volkov
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Per Unneberg
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.
| |
Collapse
|
42
|
Pearson G, Soleimanpour SA. Visualization of Endogenous Mitophagy Complexes In Situ in Human Pancreatic Beta Cells Utilizing Proximity Ligation Assay. J Vis Exp 2019. [PMID: 31107439 DOI: 10.3791/59398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mitophagy is an essential mitochondrial quality control pathway, which is crucial for pancreatic islet beta cell bioenergetics to fuel glucose-stimulated insulin release. Assessment of mitophagy is challenging and often requires genetic reporters or multiple complementary techniques not easily utilized in tissue samples, such as primary human pancreatic islets. Here we demonstrate a robust approach to visualize and quantify formation of key endogenous mitophagy complexes in primary human pancreatic islets. Utilizing the sensitive proximity ligation assay technique to detect interaction of the mitophagy regulators NRDP1 and USP8, we are able to specifically quantify formation of essential mitophagy complexes in situ. By coupling this approach to counterstaining for the transcription factor PDX1, we can quantify mitophagy complexes, and the factors that can impair mitophagy, specifically within beta cells. The methodology we describe overcomes the need for large quantities of cellular extracts required for other protein-protein interaction studies, such as immunoprecipitation (IP) or mass spectrometry, and is ideal for precious human islet samples generally not available in sufficient quantities for these approaches. Further, this methodology obviates the need for flow sorting techniques to purify beta cells from a heterogeneous islet population for downstream protein applications. Thus, we describe a valuable protocol for visualization of mitophagy highly compatible for use in heterogeneous and limited cell populations.
Collapse
Affiliation(s)
- Gemma Pearson
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor
| | - Scott A Soleimanpour
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor; VA Ann Arbor Healthcare System;
| |
Collapse
|
43
|
Subramanian M, Thotakura B, Chandra Sekaran SP, Jyothi AK, Sundaramurthi I. Naringin (4',5,7-Trihydroxyflavanone 7-Rhamnoglucoside) Attenuates β-Cell Dysfunction in Diabetic Rats through Upregulation of PDX-1. Cells Tissues Organs 2019; 206:133-143. [PMID: 30884485 DOI: 10.1159/000496506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/28/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pancreatic duodenal homeobox-1 (PDX-1) is a key transcription factor which regulates Insulin gene expression and insulin secretion in adult β-cells and helps to maintain β-cells mass. Naringin, a flavanone, owing to its anti-oxidant property, is reported to have antidiabetic effects. OBJECTIVES The present study tries to evaluate the role of naringin on the β-cell-specific transcription factor PDX-1 in diabetic rats. METHODS Diabetes was induced in male rats using streptozotocin and treated with naringin (100 mg/kg) orally for 4 and 8 weeks. Serum insulin level, Pdx-1 and Insulin gene expression, and PDX-1 protein expression were assessed in the rat pancreas. Histopathological and ultrastructural changes in the islet and β-cells were observed. RESULTS Naringin prevented leukocytic infiltration in the pancreas of diabetic rats and recouped the β-cells with adequate secretory granules. Naringin-treated diabetic rats showed significantly increased mRNA expression of Pdx-1 and Insulin genes, increased expression of transcription factor PDX-1, and higher serum insulin levels than the diabetic control animals. These changes were more pronounced in the 8-week naringin-treated diabetic animals. CONCLUSIONS Naringin was found to be an effective antidiabetic agent which increased Insulin gene expression and insulin secretion by upregulating the PDX-1 gene and protein expression.
Collapse
Affiliation(s)
- Manickam Subramanian
- Department of Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India,
| | - Balaji Thotakura
- Department of Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | | | - Ashok Kumar Jyothi
- Department of Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| | - Indumathi Sundaramurthi
- Department of Anatomy, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, India
| |
Collapse
|
44
|
Corsa CAS, Pearson GL, Renberg A, Askar MM, Vozheiko T, MacDougald OA, Soleimanpour SA. The E3 ubiquitin ligase parkin is dispensable for metabolic homeostasis in murine pancreatic β cells and adipocytes. J Biol Chem 2019; 294:7296-7307. [PMID: 30877201 DOI: 10.1074/jbc.ra118.006763] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
The E3 ubiquitin ligase parkin is a critical regulator of mitophagy and has been identified as a susceptibility gene for type 2 diabetes (T2D). However, its role in metabolically active tissues that precipitate T2D development is unknown. Specifically, pancreatic β cells and adipocytes both rely heavily on mitochondrial function in the regulation of optimal glycemic control to prevent T2D, but parkin's role in preserving quality control of β cell or adipocyte mitochondria is unclear. Although parkin has been reported previously to control mitophagy, here we show that, surprisingly, parkin is dispensable for glucose homeostasis in both β cells and adipocytes during diet-induced insulin resistance in mice. We observed that insulin secretion, β cell formation, and islet architecture were preserved in parkin-deficient β cells and islets, suggesting that parkin is not necessary for control of β cell function and islet compensation for diet-induced obesity. Although transient parkin deficiency mildly impaired mitochondrial turnover in β cell lines, parkin deletion in primary β cells yielded no deficits in mitochondrial clearance. In adipocyte-specific deletion models, lipid uptake and β-oxidation were increased in cultured cells, whereas adipose tissue morphology, glucose homeostasis, and beige-to-white adipocyte transition were unaffected in vivo In key metabolic tissues where mitochondrial dysfunction has been implicated in T2D development, our experiments unexpectedly revealed that parkin is not an essential regulator of glucose tolerance, whole-body energy metabolism, or mitochondrial quality control. These findings highlight that parkin-independent processes maintain β cell and adipocyte mitochondrial quality control in diet-induced obesity.
Collapse
Affiliation(s)
| | - Gemma L Pearson
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105 and
| | - Aaron Renberg
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105 and
| | - Matthew M Askar
- From the Department of Molecular and Integrative Physiology and
| | - Tracy Vozheiko
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105 and
| | - Ormond A MacDougald
- From the Department of Molecular and Integrative Physiology and .,Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105 and
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105 and .,the Veterans Affairs Ann Arbor Health Care System, Ann Arbor, Michigan 48105
| |
Collapse
|
45
|
The diabetes pandemic and associated infections: suggestions for clinical microbiology. ACTA ACUST UNITED AC 2018; 30:1-17. [PMID: 30662163 PMCID: PMC6319590 DOI: 10.1097/mrm.0000000000000155] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/08/2017] [Indexed: 12/15/2022]
Abstract
There are 425 million people with diabetes mellitus in the world. By 2045, this figure will grow to over 600 million. Diabetes mellitus is classified among noncommunicable diseases. Evidence points to a key role of microbes in diabetes mellitus, both as infectious agents associated with the diabetic status and as possible causative factors of diabetes mellitus. This review takes into account the different forms of diabetes mellitus, the genetic determinants that predispose to type 1 and type 2 diabetes mellitus (especially those with possible immunologic impact), the immune dysfunctions that have been documented in diabetes mellitus. Common infections occurring more frequently in diabetic vs. nondiabetic individuals are reviewed. Infectious agents that are suspected of playing an etiologic/triggering role in diabetes mellitus are presented, with emphasis on enteroviruses, the hygiene hypothesis, and the environment. Among biological agents possibly linked to diabetes mellitus, the gut microbiome, hepatitis C virus, and prion-like protein aggregates are discussed. Finally, preventive vaccines recommended in the management of diabetic patients are considered, including the bacillus calmette-Guerin vaccine that is being tested for type 1 diabetes mellitus. Evidence supports the notion that attenuation of immune defenses (both congenital and secondary to metabolic disturbances as well as to microangiopathy and neuropathy) makes diabetic people more prone to certain infections. Attentive microbiologic monitoring of diabetic patients is thus recommendable. As genetic predisposition cannot be changed, research needs to identify the biological agents that may have an etiologic role in diabetes mellitus, and to envisage curative and preventive ways to limit the diabetes pandemic.
Collapse
|
46
|
Corbin KD, Driscoll KA, Pratley RE, Smith SR, Maahs DM, Mayer-Davis EJ. Obesity in Type 1 Diabetes: Pathophysiology, Clinical Impact, and Mechanisms. Endocr Rev 2018; 39:629-663. [PMID: 30060120 DOI: 10.1210/er.2017-00191] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
There has been an alarming increase in the prevalence of obesity in people with type 1 diabetes in recent years. Although obesity has long been recognized as a major risk factor for the development of type 2 diabetes and a catalyst for complications, much less is known about the role of obesity in the initiation and pathogenesis of type 1 diabetes. Emerging evidence suggests that obesity contributes to insulin resistance, dyslipidemia, and cardiometabolic complications in type 1 diabetes. Unique therapeutic strategies may be required to address these comorbidities within the context of intensive insulin therapy, which promotes weight gain. There is an urgent need for clinical guidelines for the prevention and management of obesity in type 1 diabetes. The development of these recommendations will require a transdisciplinary research strategy addressing metabolism, molecular mechanisms, lifestyle, neuropsychology, and novel therapeutics. In this review, the prevalence, clinical impact, energy balance physiology, and potential mechanisms of obesity in type 1 diabetes are described, with a special focus on the substantial gaps in knowledge in this field. Our goal is to provide a framework for the evidence base needed to develop type 1 diabetes-specific weight management recommendations that account for the competing outcomes of glycemic control and weight management.
Collapse
Affiliation(s)
- Karen D Corbin
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida
| | - Kimberly A Driscoll
- Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, Colorado.,Barbara Davis Center for Diabetes, Aurora, Colorado
| | - Richard E Pratley
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida
| | - David M Maahs
- Division of Pediatric Endocrinology, Department of Pediatrics, Stanford University, Stanford, California
| | - Elizabeth J Mayer-Davis
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | |
Collapse
|
47
|
Altered expression of PGC-1α and PDX1 and their methylation status are associated with fetal glucose metabolism in gestational diabetes mellitus. Biochem Biophys Res Commun 2018; 501:300-306. [PMID: 29730292 DOI: 10.1016/j.bbrc.2018.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 11/23/2022]
Abstract
PURPOSE To investigate the effect of gestational diabetes mellitus (GDM) on the expression and methylation of PGC-1α and PDX1 in placenta and their effects on fetal glucose metabolism. METHODS 20 cases of full-term placenta without pregnancy complications and umbilical cord abnormalities and 20 cases of GDM group were collected. DNA and RNA were isolated from samples of tissue collected from the fetal side of the placenta immediately after delivery. DNA methylation was quantified at 7 CpG sites within the PGC-1α and PDX1 genes using PCR amplification of bisulfite treated DNA and subsequent DNA sequencing. PGC-1α and PDX1 mRNA levels were measured by reverse transcription-quantitative PCR (RT-qPCR). Meanwhile, the placental insulin, blood glucose and HbA1c levels were determined. RESULTS The fetus birth weight and placental weight in GDM group were significantly higher than those in control group (P < 0.05). Insulin, HbA1c and blood glucose levels in GDM group were significantly higher than those in control group (P < 0.01). Insulin content was positively correlated with newborn birth weight and placental weight while HbA1c and blood glucose were positively correlated with insulin concentration (r = 0.92, P < 0.01, r = 0.85, P < 0.01). The levels of PGC-1α and PDX1 mRNA were lower in the GDM group compared to the control group. The methylation level of PGC-1α gene was higher in the GDM group compared to the control group (P < 0.05). Blood glucose was negatively correlated with the expression of PGC-1α and PDX1 mRNA in the placenta (r = -0.42, P < 0.01, r = -0.49, P < 0.01). CONCLUSION The changes of epigenetic modification of PGC-1α gene in pregnant women with gestational diabetes mellitus may be a mechanism of abnormal glucose metabolism in offspring.
Collapse
|
48
|
Marasco MR, Linnemann AK. β-Cell Autophagy in Diabetes Pathogenesis. Endocrinology 2018; 159:2127-2141. [PMID: 29617763 PMCID: PMC5913620 DOI: 10.1210/en.2017-03273] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/27/2018] [Indexed: 12/25/2022]
Abstract
Nearly 100 years have passed since Frederick Banting and Charles Best first discovered and purified insulin. Their discovery and subsequent improvements revolutionized the treatment of diabetes, and the field continues to move at an ever-faster pace with respect to unique treatments for both type 1 and type 2 diabetes. Despite these advances, we still do not fully understand how apoptosis of the insulin-producing β-cells is triggered, presenting a challenge in the development of preventative measures. In recent years, the process of autophagy has generated substantial interest in this realm due to discoveries highlighting its clear role in the maintenance of cellular homeostasis. As a result, the number of studies focused on islet and β-cell autophagy has increased substantially in recent years. In this review, we will discuss what is currently known regarding the role of β-cell autophagy in type 1 and type 2 diabetes pathogenesis, with an emphasis on new and exciting developments over the past 5 years. Further, we will discuss how these discoveries might be translated into unique treatments in the coming years.
Collapse
Affiliation(s)
- Michelle R Marasco
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amelia K Linnemann
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
49
|
Kropp PA, Dunn JC, Carboneau BA, Stoffers DA, Gannon M. Cooperative function of Pdx1 and Oc1 in multipotent pancreatic progenitors impacts postnatal islet maturation and adaptability. Am J Physiol Endocrinol Metab 2018; 314:E308-E321. [PMID: 29351489 PMCID: PMC5966755 DOI: 10.1152/ajpendo.00260.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The transcription factors pancreatic and duodenal homeobox 1 (Pdx1) and onecut1 (Oc1) are coexpressed in multipotent pancreatic progenitors (MPCs), but their expression patterns diverge in hormone-expressing cells, with Oc1 expression being extinguished in the endocrine lineage and Pdx1 being maintained at high levels in β-cells. We previously demonstrated that cooperative function of these two factors in MPCs is necessary for proper specification and differentiation of pancreatic endocrine cells. In those studies, we observed a persistent decrease in expression of the β-cell maturity factor MafA. We therefore hypothesized that Pdx1 and Oc1 cooperativity in MPCs impacts postnatal β-cell maturation and function. Here our model of Pdx1-Oc1 double heterozygosity was used to investigate the impact of haploinsufficiency for both of these factors on postnatal β-cell maturation, function, and adaptability. Examining mice at postnatal day (P) 14, we observed alterations in pancreatic insulin content in both Pdx1 heterozygotes and double heterozygotes. Gene expression analysis at this age revealed significantly decreased expression of many genes important for glucose-stimulated insulin secretion (e.g., Glut2, Pcsk1/2, Abcc8) exclusively in double heterozygotes. Analysis of P14 islets revealed an increase in the number of mixed islets in double heterozygotes. We predicted that double-heterozygous β-cells would have an impaired ability to respond to stress. Indeed, we observed that β-cell proliferation fails to increase in double heterozygotes in response to either high-fat diet or placental lactogen. We thus report here the importance of cooperation between regulatory factors early in development for postnatal islet maturation and adaptability.
Collapse
Affiliation(s)
- Peter A Kropp
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Jennifer C Dunn
- Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University , Nashville, Tennessee
- Department of Medicine, Vanderbilt University , Nashville, Tennessee
| | - Bethany A Carboneau
- Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University , Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Doris A Stoffers
- Department of Medicine, Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Maureen Gannon
- Department of Veterans Affairs, Tennessee Valley Health Authority, Vanderbilt University , Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Department of Medicine, Vanderbilt University , Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
50
|
Zhang J, Liu L, Xue Y, Ma Y, Liu X, Li Z, Li Z, Liu Y. Endothelial Monocyte-Activating Polypeptide-II Induces BNIP3-Mediated Mitophagy to Enhance Temozolomide Cytotoxicity of Glioma Stem Cells via Down-Regulating MiR-24-3p. Front Mol Neurosci 2018; 11:92. [PMID: 29632473 PMCID: PMC5879952 DOI: 10.3389/fnmol.2018.00092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/08/2018] [Indexed: 01/06/2023] Open
Abstract
Preliminary studies have shown that endothelial-monocyte-activating polypeptide-II (EMAP-II) and temozolomide (TMZ) alone can exert cytotoxic effects on glioma cells. This study explored whether EMAP-II can enhance the cytotoxic effects of TMZ on glioma stem cells (GSCs) and the possible mechanisms associated with Bcl-2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3)-mediated mitophagy facilitated by miR-24-3p regulation. The combination of TMZ and EMAP-II significantly inhibited GSCs viability, migration, and invasion, resulting in upregulation of the autophagy biomarker microtubule-associated protein one light chain 3 (LC3)-II/I but down-regulation of the proteins P62, TOMM 20 and CYPD, changes indicative of the occurrence of mitophagy. BNIP3 expression increased significantly in GSCs after treatment with the combination of TMZ and EMAP-II. BNIP3 overexpression strengthened the cytotoxic effects of EMAP-II and TMZ by inducing mitophagy. The combination of EMAP-II and TMZ decreased the expression of miR-24-3p, whose target gene was BNIP3. MiR-24-3p inhibited mitophagy and promoted proliferation, migration and invasion by down-regulating BNIP3 in GSCs. Furthermore, nude mice subjected to miR-24-3p silencing combined with EMAP-II and TMZ treatment displayed the smallest tumors and the longest survival rate. According to the above results, we concluded that EMAP-II enhanced the cytotoxic effects of TMZ on GSCs' proliferation, migration and invasion both in vitro and in vivo.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Yawen Ma
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, China
| | - Zhiqing Li
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Research Center for Translational Medicine in Nervous System Disease, Shenyang, China
| |
Collapse
|