1
|
Mauvais FX, van Endert PM. Type 1 Diabetes: A Guide to Autoimmune Mechanisms for Clinicians. Diabetes Obes Metab 2025. [PMID: 40375390 DOI: 10.1111/dom.16460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/18/2025]
Abstract
Type 1 diabetes (T1D) results from the destruction of pancreatic beta cells by autoreactive T lymphocytes, leading to insulin deficiency and lifelong insulin dependence. It develops in genetically predisposed individuals, triggered by environmental or immunological factors. Although the exact causes of T1D remain unknown, the autoimmune pathogenesis of the disease is clearly indicated by the genetic risk conferred by allelic human leukocyte antigens (HLA), the almost obligatory presence of islet cell autoantibodies (AAbs) and immune cell infiltration of pancreatic islets from patients. At the same time, epidemiological data point to a role of environmental factors, notably enteroviral infections, in the disease, although precise causative links between specific pathogens and T1D have been difficult to establish. Studies of human pancreas organs from patients made available through repositories and the advent of high-dimensional high-throughput technologies for genomic and proteomic studies have significantly elucidated our understanding of the disease in recent years and provided mechanistic insights that can be exploited for innovative targeted therapeutic approaches. This short overview will summarise current salient knowledge on immune cell and beta cell dysfunction in T1D pathogenesis. PLAIN LANGUAGE SUMMARY: Type 1 diabetes (T1D) is a chronic disease where the body's own immune system attacks and destroys the insulin-producing beta cells in the pancreas. This leads to a lack of insulin, a hormone essential for regulating blood sugar, which means people with T1D need insulin for life. The disease can develop at any age but is most diagnosed in children and young adults. Despite advances in treatment, T1D still significantly reduces life expectancy, especially in countries with fewer healthcare resources. T1D develops in people with a genetic predisposition, often triggered by environmental factors such as viral infections or changes in the gut microbiome. The disease progresses silently through three stages: Stage 1: Autoantibodies to beta cell components appear, signalling the immune system is reacting against the pancreas, but there are no symptoms; Stage 2: Beta cell function starts to decline, but fasting blood sugar is still normal; Stage 3: Enough beta cells are destroyed that fasting blood sugar rises, and symptoms of diabetes appear. The risk of progressing from stage 1 to full-blown diabetes is about 35-50% within five years, and even higher from stage 2. Over 60 genes are linked to T1D risk, most of which affect how the immune system works. The strongest genetic risk comes from specific versions of histocompatibility genes, which help the immune system distinguish between the body's own cells and invaders. Some types of these genes make it easier for the immune system to mistakenly attack beta cells. However, 90% of people diagnosed with T1D have no family member with T1D, showing that genetics is only part of the story. Environmental factors also play a big role. For example, certain viral infections, especially with viruses infecting the intestine, are associated with a higher risk of developing T1D. The gut microbiome - the community of bacteria living in our intestines - also influences risk, with healthier, more diverse microbiomes appearing to offer some protection. In T1D, immune cells - especially so-called T lymphocytes - mistake beta cells in the pancreas for threats and destroy them. This process is called autoimmunity. The attack is often reflected by the presence of autoantibodies against proteins found in beta cells. Over time, as more beta cells are lost, the body can no longer produce enough insulin, leading to the symptoms of diabetes. Interestingly, not all people with T1D have the same pattern of disease. For example, children diagnosed before age 7 often have more aggressive disease, more autoantibodies, and stronger genetic risk factors than those diagnosed later. Much of our understanding of T1D has come from studying animal models, but new technologies now allow researchers to study human pancreas tissue and blood immune cells in greater detail. Scientists are also exploring how the gut microbiome, diet, and environmental exposures contribute to T1D risk and progression. Treatment currently focuses on replacing insulin, but researchers are working on therapies that target the immune system or aim to protect or replace beta cells. Strategies include immunotherapy, gene therapy, and even modifying the gut microbiome. The goal is to prevent or reverse the disease, not just manage its symptoms. In summary, T1D is a complex autoimmune disease influenced by both genes and the environment. It progresses silently before symptoms appear, and while insulin therapy is life-saving, new research is paving the way for treatments that could one day halt or even prevent the disease.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Service de Physiologie - Explorations Fonctionnelles Pédiatriques, AP-HP, Hôpital Universitaire Robert Debré, Paris, France
| | - Peter M van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker - Enfants Malades, Paris, France
| |
Collapse
|
2
|
Wang Y, Sun Y, Zhang X, Wang S, Huang X, Xu K, Liu Y, Huang Y, Xu J, Wei X, Cheng H, Pan L, Wang J, Gu Z. A Granzyme B-Cleavable T Cell-Targeted Bispecific Cell Vesicle Connector for Reversing New-Onset Type 1 Diabetes. J Am Chem Soc 2025; 147:4167-4179. [PMID: 39869523 DOI: 10.1021/jacs.4c13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder in which pancreatic β-cells are destroyed by CD8+ T cells. Anti-CD3 antibody effectively treats early-stage T1D when β-cell autoantibodies are detected but before symptoms appear. However, it impairs the immune system temporarily, exposing individuals to infection. A therapeutic that can reverse new-onset T1D without harming the immune system remains urgently needed. Herein, we have constructed cellular vesicles presenting granzyme B-responsive fusion proteins (designated aCD8-GrzBcs-IL2) composed of a single-chain variable fragment of anti-CD8 antibodies and a mutein interleukin-2 (IL2). aCD8-GrzBcs-IL2 is designed to simultaneously inhibit CD8+ T cells and promote Treg cells, especially when CD8+ T cells are attacking β-cells. In vitro, these cellular vesicles can inhibit the cell-killing effect of CD8+ T cells and enhance the expansion of Treg cells. Notably, intravenous administration of aCD8-GrzBcs-IL2-expressed cellular vesicles reversed newly onset diabetes in 77.8% of nonobese diabetic (NOD) mice without reducing blood CD3+ T cells and CD8+ T cells, indicating a favorable safety profile.
Collapse
Affiliation(s)
- Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanping Sun
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiuwen Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuehui Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Kairui Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yun Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingqi Huang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianchang Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinwei Wei
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Hao Cheng
- Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Liqiang Pan
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Liangzhu Laboratory, Hangzhou 311121, China
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Dahl-Jørgensen K. Virus as the cause of type 1 diabetes. Trends Mol Med 2024; 30:1020-1027. [PMID: 39003200 DOI: 10.1016/j.molmed.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/15/2024]
Abstract
Type 1 diabetes (T1D), a severe disease requiring intensive insulin treatment, carries an increased risk for complications and reduced lifespan. Certain viruses have been implicated in T1D's etiology, with 'live', replicating enteroviruses (EVs) recently found in the pancreas at diagnosis. This discovery prompted a trial to slow down disease progression using antiviral drugs. A 6-month treatment combining pleconaril and ribavirin in new-onset T1D patients preserved residual insulin production after 1 year, unlike placebo. The results support the theory that viruses may cause T1D in genetically susceptible individuals. A low-grade, persistent viral infection may initiate a cascade of pathogenic mechanisms initially involving the innate immune system, inducing β-cell stress and neoantigen release, leading to autoimmunity, and eventually the destruction of insulin-producing β-cells.
Collapse
Affiliation(s)
- Knut Dahl-Jørgensen
- Pediatric Department, Oslo University Hospital and Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
Dolton G, Bulek A, Wall A, Thomas H, Hopkins JR, Rius C, Galloway SA, Whalley T, Tan LR, Morin T, Omidvar N, Fuller A, Topley K, Hasan MS, Jain S, D’Souza N, Hodges-Hoyland T, Spiller OB, Kronenberg-Versteeg D, Szomolay B, van den Berg HA, Jones LC, Peakman M, Cole DK, Rizkallah PJ, Sewell AK. HLA A*24:02-restricted T cell receptors cross-recognize bacterial and preproinsulin peptides in type 1 diabetes. J Clin Invest 2024; 134:e164535. [PMID: 39286976 PMCID: PMC11405051 DOI: 10.1172/jci164535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/25/2024] [Indexed: 09/19/2024] Open
Abstract
CD8+ T cells destroy insulin-producing pancreatic β cells in type 1 diabetes through HLA class I-restricted presentation of self-antigens. Combinatorial peptide library screening was used to produce a preferred peptide recognition landscape for a patient-derived T cell receptor (TCR) that recognized the preproinsulin-derived (PPI-derived) peptide sequence LWMRLLPLL in the context of disease risk allele HLA A*24:02. Data were used to generate a strong superagonist peptide, enabling production of an autoimmune HLA A*24:02-peptide-TCR structure by crystal seeding. TCR binding to the PPI epitope was strongly focused on peptide residues Arg4 and Leu5, with more flexibility at other positions, allowing the TCR to strongly engage many peptides derived from pathogenic bacteria. We confirmed an epitope from Klebsiella that was recognized by PPI-reactive T cells from 3 of 3 HLA A*24:02+ patients. Remarkably, the same epitope selected T cells from 7 of 8 HLA A*24+ healthy donors that cross-reacted with PPI, leading to recognition and killing of HLA A*24:02+ cells expressing PPI. These data provide a mechanism by which molecular mimicry between pathogen and self-antigens could have resulted in the breaking of self-tolerance to initiate disease.
Collapse
Affiliation(s)
- Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Anna Bulek
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Aaron Wall
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Hannah Thomas
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Jade R. Hopkins
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Cristina Rius
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Sarah A.E. Galloway
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Thomas Whalley
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Li Rong Tan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Théo Morin
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Nader Omidvar
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Katie Topley
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Md Samiul Hasan
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Shikha Jain
- Cwm Taf Morgannwg University Health Board, Princess of Wales Hospital, Mountain Ash, United Kingdom
| | - Nirupa D’Souza
- Cwm Taf Morgannwg University Health Board, Princess of Wales Hospital, Mountain Ash, United Kingdom
| | | | | | - Owen B. Spiller
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | | | - Barbara Szomolay
- Systems Immunology Research Institute, Cardiff University, Cardiff, United Kingdom
| | | | - Lucy C. Jones
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
- Cwm Taf Morgannwg University Health Board, Princess of Wales Hospital, Mountain Ash, United Kingdom
| | - Mark Peakman
- Department of Immunobiology, King’s College London, United Kingdom
| | - David K. Cole
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Pierre J. Rizkallah
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Andrew K. Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
- Systems Immunology Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
5
|
Rojas M, Acosta-Ampudia Y, Heuer LS, Zang W, M Monsalve D, Ramírez-Santana C, Anaya JM, M Ridgway W, A Ansari A, Gershwin ME. Antigen-specific T cells and autoimmunity. J Autoimmun 2024; 148:103303. [PMID: 39141985 DOI: 10.1016/j.jaut.2024.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Autoimmune diseases (ADs) showcase the intricate balance between the immune system's protective functions and its potential for self-inflicted damage. These disorders arise from the immune system's erroneous targeting of the body's tissues, resulting in damage and disease. The ability of T cells to distinguish between self and non-self-antigens is pivotal to averting autoimmune reactions. Perturbations in this process contribute to AD development. Autoreactive T cells that elude thymic elimination are activated by mimics of self-antigens or are erroneously activated by self-antigens can trigger autoimmune responses. Various mechanisms, including molecular mimicry and bystander activation, contribute to AD initiation, with specific triggers and processes varying across the different ADs. In addition, the formation of neo-epitopes could also be implicated in the emergence of autoreactivity. The specificity of T cell responses centers on the antigen recognition sequences expressed by T cell receptors (TCRs), which recognize peptide fragments displayed by major histocompatibility complex (MHC) molecules. The assortment of TCR gene combinations yields a diverse array of T cell populations, each with distinct affinities for self and non-self antigens. However, new evidence challenges the traditional notion that clonal expansion solely steers the selection of higher-affinity T cells. Lower-affinity T cells also play a substantial role, prompting the "two-hit" hypothesis. High-affinity T cells incite initial responses, while their lower-affinity counterparts perpetuate autoimmunity. Precision treatments that target antigen-specific T cells hold promise for avoiding widespread immunosuppression. Nevertheless, detection of such antigen-specific T cells remains a challenge, and multiple technologies have been developed with different sensitivities while still harboring several drawbacks. In addition, elements such as human leukocyte antigen (HLA) haplotypes and validation through animal models are pivotal for advancing these strategies. In brief, this review delves into the intricate mechanisms contributing to ADs, accentuating the pivotal role(s) of antigen-specific T cells in steering immune responses and disease progression, as well as the novel strategies for the identification of antigen-specific cells and their possible future use in humans. Grasping the mechanisms behind ADs paves the way for targeted therapeutic interventions, potentially enhancing treatment choices while minimizing the risk of systemic immunosuppression.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Weici Zang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | | | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Aftab A Ansari
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
7
|
Thompson PJ, Pipella J, Rutter GA, Gaisano HY, Santamaria P. Islet autoimmunity in human type 1 diabetes: initiation and progression from the perspective of the beta cell. Diabetologia 2023; 66:1971-1982. [PMID: 37488322 PMCID: PMC10542715 DOI: 10.1007/s00125-023-05970-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 07/26/2023]
Abstract
Type 1 diabetes results from the poorly understood process of islet autoimmunity, which ultimately leads to the loss of functional pancreatic beta cells. Mounting evidence supports the notion that the activation and evolution of islet autoimmunity in genetically susceptible people is contingent upon early life exposures affecting the islets, especially beta cells. Here, we review some of the recent advances and studies that highlight the roles of these changes as well as antigen presentation and stress response pathways in beta cells in the onset and propagation of the autoimmune process in type 1 diabetes. Future progress in this area holds promise for advancing islet- and beta cell-directed therapies that could be implemented in the early stages of the disease and could be combined with immunotherapies.
Collapse
Affiliation(s)
- Peter J Thompson
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
| | - Jasmine Pipella
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Guy A Rutter
- CRCHUM and Department of Medicine, Université de Montréal, Montréal, QC, Canada.
- Department of Diabetes, Endocrinology and Medicine, Faculty of Medicine, Imperial College, London, UK.
- LKC School of Medicine, Nanyang Technological College, Singapore, Republic of Singapore.
| | - Herbert Y Gaisano
- Departments of Medicine and Physiology, University of Toronto, Toronto, ON, Canada
| | - Pere Santamaria
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
8
|
Krishnamurthy B, Lacorcia M, Kay TWH, Thomas HE, Mannering SI. Monitoring immunomodulation strategies in type 1 diabetes. Front Immunol 2023; 14:1206874. [PMID: 37346035 PMCID: PMC10279879 DOI: 10.3389/fimmu.2023.1206874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease. Short-term treatment with agents targeting T cells, B cells and inflammatory cytokines to modify the disease course resulted in a short-term pause in disease activity. Lessons learnt from these trials will be discussed in this review. It is expected that effective disease-modifying agents will become available for use in earlier stages of T1D. Progress has been made to analyze antigen-specific T cells with standardization of T cell assay and discovery of antigen epitopes but there are many challenges. High-dimensional profiling of gene, protein and TCR expression at single cell level with innovative computational tools should lead to novel biomarker discovery. With this, assays to detect, quantify and characterize the phenotype and function of antigen-specific T cells will continuously evolve. An improved understanding of T cell responses will help researchers and clinicians to better predict disease onset, and progression, and the therapeutic efficacy of interventions to prevent or arrest T1D.
Collapse
Affiliation(s)
- Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Matthew Lacorcia
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
| | - Thomas W. H. Kay
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E. Thomas
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Stuart I. Mannering
- Immunology and Diabetes Unit, St Vincent’s Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
9
|
Rampanelli E, Nieuwdorp M. Gut microbiome in type 1 diabetes: the immunological perspective. Expert Rev Clin Immunol 2023; 19:93-109. [PMID: 36401835 DOI: 10.1080/1744666x.2023.2150612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Type 1 diabetes (T1D) is a prevalent, and yet uncurable, autoimmune disease targeting insulin-producing pancreatic β-cells. Despite a known genetic component in T1D onset, genetics alone cannot explain the alarming worldwide rise in T1D incidence, which is attributed to a growing impact of environmental factors, including perturbations of the gut microbiome. AREAS COVERED Intestinal commensal bacteria plays a crucial role in host physiology in health and disease by regulating endocrine and immune functions. An aberrant gut microbiome structure and metabolic function have been documented prior and during T1D onset. In this review, we summarize and discuss the current studies depicting the taxonomic profile and role of the gut microbial communities in murine models of T1D, diabetic patients and human interventional trials. EXPERT OPINION Compelling evidence have shown that the intestinal microbiota is instrumental in driving differentiation and functions of immune cells. Therefore, any alterations in the intestinal microbiome composition or microbial metabolite production, particularly early in life, may impact disease susceptibility and amplify inflammatory responses and hence accelerate the course of T1D pathogenesis.
Collapse
Affiliation(s)
- Elena Rampanelli
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands.,Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands.,Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM) Institute, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences (ACS) Institute, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM) Institute, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences (ACS) Institute, Amsterdam, The Netherlands.,Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Warncke K, Weiss A, Achenbach P, von dem Berge T, Berner R, Casteels K, Groele L, Hatzikotoulas K, Hommel A, Kordonouri O, Elding Larsson H, Lundgren M, Marcus BA, Snape MD, Szypowska A, Todd JA, Bonifacio E, Ziegler AG. Elevations in blood glucose before and after the appearance of islet autoantibodies in children. J Clin Invest 2022; 132:e162123. [PMID: 36250461 PMCID: PMC9566912 DOI: 10.1172/jci162123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/16/2022] [Indexed: 01/07/2023] Open
Abstract
The etiology of type 1 diabetes has polygenic and environmental determinants that lead to autoimmune responses against pancreatic β cells and promote β cell death. The autoimmunity is considered silent without metabolic consequences until late preclinical stages,and it remains unknown how early in the disease process the pancreatic β cell is compromised. To address this, we investigated preprandial nonfasting and postprandial blood glucose concentrations and islet autoantibody development in 1,050 children with high genetic risk of type 1 diabetes. Pre- and postprandial blood glucose decreased between 4 and 18 months of age and gradually increased until the final measurements at 3.6 years of age. Determinants of blood glucose trajectories in the first year of life included sex, body mass index, glucose-related genetic risk scores, and the type 1 diabetes-susceptible INS gene. Children who developed islet autoantibodies had early elevations in blood glucose concentrations. A sharp and sustained rise in postprandial blood glucose was observed at around 2 months prior to autoantibody seroconversion, with further increases in postprandial and, subsequently, preprandial values after seroconversion. These findings show heterogeneity in blood glucose control in infancy and early childhood and suggest that islet autoimmunity is concurrent or subsequent to insults on the pancreatic islets.
Collapse
Affiliation(s)
- Katharina Warncke
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
- Department of Pediatrics, Kinderklinik München Schwabing, School of Medicine, Technical University Munich, Munich, Germany
| | - Andreas Weiss
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes, School of Medicine, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | | | - Reinhard Berner
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kristina Casteels
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Lidia Groele
- Department of Paediatrics, The Children’s Clinical Hospital Józef Polikarp Brudziński, Warsaw, Poland
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Angela Hommel
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Germany
| | - Olga Kordonouri
- Kinder- und Jugendkrankenhaus auf der Bult, Hannover, Germany
| | - Helena Elding Larsson
- Unit for Pediatric Endocrinology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Paediatrics, Skåne University Hospital, Malmö, Sweden
| | - Markus Lundgren
- Unit for Pediatric Endocrinology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Pediatrics, Kristianstad Hospital, Kristianstad, Sweden
| | - Benjamin A. Marcus
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes, School of Medicine, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Matthew D. Snape
- Oxford Vaccine Group, University of Oxford Department of Paediatrics, and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | | | - John A. Todd
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Ezio Bonifacio
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Germany
| | - Anette-G. Ziegler
- Institute of Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
- Forschergruppe Diabetes, School of Medicine, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | | |
Collapse
|
11
|
Angie T, Sofie I, Åsa M, Oskar S, Olle K. A decisive bridge between innate immunity and the pathognomonic morphological characteristics of type 1 diabetes demonstrated by instillation of heat-inactivated bacteria in the pancreatic duct of rats. Acta Diabetol 2022; 59:1011-1018. [PMID: 35461380 PMCID: PMC9242896 DOI: 10.1007/s00592-022-01881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/09/2022] [Indexed: 11/01/2022]
Abstract
AIMS Periductal inflammation and accumulation of granulocytes and monocytes in the periislet area and in the exocrine pancreas is observed within hours after instillation of heat-inactivated bacteria in the ductal compartment of the pancreas in healthy rats. The present investigation was undertaken to study how the acute inflammation developed over time. METHODS Immunohistochemical evaluation of the immune response triggered by instillation of heat-inactivated bacteria in the ductal compartment in rats. RESULTS After three weeks, the triggered inflammation had vanished and pancreases showed normal morphology. However, a distinct accumulation of both CD4+ and CD8+ T cells within and adjacent to affected islets was found in one-third of the rats instilled with heat-inactivated E. faecalis, mimicking the insulitis seen at onset of human T1D. As in T1D, this insulitis affected a minority of islets and only certain lobes of the pancreases. Notably, a fraction of the T cells expressed the CD103 antigen, mirroring the recently reported presence of tissue resident memory T cells in the insulitis in humans with recent onset T1D. CONCLUSIONS The results presented unravel a previously unknown interplay between innate and acquired immunity in the formation of immunopathological events indistinguishable from those described in humans with recent onset T1D.
Collapse
Affiliation(s)
- Tegehall Angie
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden.
| | - Ingvast Sofie
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Melhus Åsa
- Department of Medical Sciences, Section of Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Skog Oskar
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Korsgren Olle
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden.
| |
Collapse
|
12
|
Gootjes C, Zwaginga JJ, Roep BO, Nikolic T. Functional Impact of Risk Gene Variants on the Autoimmune Responses in Type 1 Diabetes. Front Immunol 2022; 13:886736. [PMID: 35603161 PMCID: PMC9114814 DOI: 10.3389/fimmu.2022.886736] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that develops in the interplay between genetic and environmental factors. A majority of individuals who develop T1D have a HLA make up, that accounts for 50% of the genetic risk of disease. Besides these HLA haplotypes and the insulin region that importantly contribute to the heritable component, genome-wide association studies have identified many polymorphisms in over 60 non-HLA gene regions that also contribute to T1D susceptibility. Combining the risk genes in a score (T1D-GRS), significantly improved the prediction of disease progression in autoantibody positive individuals. Many of these minor-risk SNPs are associated with immune genes but how they influence the gene and protein expression and whether they cause functional changes on a cellular level remains a subject of investigation. A positive correlation between the genetic risk and the intensity of the peripheral autoimmune response was demonstrated both for HLA and non-HLA genetic risk variants. We also observed epigenetic and genetic modulation of several of these T1D susceptibility genes in dendritic cells (DCs) treated with vitamin D3 and dexamethasone to acquire tolerogenic properties as compared to immune activating DCs (mDC) illustrating the interaction between genes and environment that collectively determines risk for T1D. A notion that targeting such genes for therapeutic modulation could be compatible with correction of the impaired immune response, inspired us to review the current knowledge on the immune-related minor risk genes, their expression and function in immune cells, and how they may contribute to activation of autoreactive T cells, Treg function or β-cell apoptosis, thus contributing to development of the autoimmune disease.
Collapse
Affiliation(s)
- Chelsea Gootjes
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jaap Jan Zwaginga
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Bart O Roep
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Tatjana Nikolic
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
13
|
How benign autoimmunity becomes detrimental in type 1 diabetes. Proc Natl Acad Sci U S A 2021; 118:2116508118. [PMID: 34697240 DOI: 10.1073/pnas.2116508118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
|
14
|
Luce S, Guinoiseau S, Gadault A, Letourneur F, Nitschke P, Bras M, Vidaud M, Charneau P, Larger E, Colli ML, Eizirik DL, Lemonnier F, Boitard C. A Humanized Mouse Strain That Develops Spontaneously Immune-Mediated Diabetes. Front Immunol 2021; 12:748679. [PMID: 34721418 PMCID: PMC8551915 DOI: 10.3389/fimmu.2021.748679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 12/03/2022] Open
Abstract
To circumvent the limitations of available preclinical models for the study of type 1 diabetes (T1D), we developed a new humanized model, the YES-RIP-hB7.1 mouse. This mouse is deficient of murine major histocompatibility complex class I and class II, the murine insulin genes, and expresses as transgenes the HLA-A*02:01 allele, the diabetes high-susceptibility HLA-DQ8A and B alleles, the human insulin gene, and the human co-stimulatory molecule B7.1 in insulin-secreting cells. It develops spontaneous T1D along with CD4+ and CD8+ T-cell responses to human preproinsulin epitopes. Most of the responses identified in these mice were validated in T1D patients. This model is amenable to characterization of hPPI-specific epitopes involved in T1D and to the identification of factors that may trigger autoimmune response to insulin-secreting cells in human T1D. It will allow evaluating peptide-based immunotherapy that may directly apply to T1D in human and complete preclinical model availability to address the issue of clinical heterogeneity of human disease.
Collapse
Affiliation(s)
- Sandrine Luce
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France
| | - Sophie Guinoiseau
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France
| | - Alexis Gadault
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France
| | - Franck Letourneur
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France
| | | | - Marc Bras
- Medical Faculty, Paris University, Paris, France
| | - Michel Vidaud
- Biochemistry and Molecular Genetics Department, Cochin Hospital, Paris, France
| | - Pierre Charneau
- Molecular Virology and Vaccinology, Pasteur Institute, Paris, France
| | - Etienne Larger
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Diabetology Department, Cochin Hospital, Paris, France
| | - Maikel L Colli
- Université Libre de Bruxelles (ULB) Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Decio L Eizirik
- Université Libre de Bruxelles (ULB) Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium.,Diabetes Center, Indiana Biosciences Research Institute (IBRI), Indianapolis, IN, United States
| | - François Lemonnier
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France
| | - Christian Boitard
- Laboratory Immunology of Diabetes, INSERMU1016, Department EMD, Cochin Institute, Paris, France.,Medical Faculty, Paris University, Paris, France.,Diabetology Department, Cochin Hospital, Paris, France
| |
Collapse
|
15
|
Budd MA, Monajemi M, Colpitts SJ, Crome SQ, Verchere CB, Levings MK. Interactions between islets and regulatory immune cells in health and type 1 diabetes. Diabetologia 2021; 64:2378-2388. [PMID: 34550422 DOI: 10.1007/s00125-021-05565-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Type 1 diabetes results from defects in immune self-tolerance that lead to inflammatory infiltrate in pancreatic islets, beta cell dysfunction and T cell-mediated killing of beta cells. Although therapies that broadly inhibit immunity show promise to mitigate autoinflammatory damage caused by effector T cells, these are unlikely to permanently reset tolerance or promote regeneration of the already diminished pool of beta cells. An emerging concept is that certain populations of immune cells may have the capacity to both promote tolerance and support the restoration of beta cells by supporting proliferation, differentiation and/or regeneration. Here we will highlight three immune cell types-macrophages, regulatory T cells and innate lymphoid cells-for which there is evidence of dual roles of immune regulation and tissue regeneration. We explore how findings in this area from other fields might be extrapolated to type 1 diabetes and highlight recent discoveries in the context of type 1 diabetes. We also discuss technological advances that are supporting this area of research and contextualise new therapeutic avenues to consider for type 1 diabetes.
Collapse
Affiliation(s)
- Matthew A Budd
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Mahdis Monajemi
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sarah J Colpitts
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Sarah Q Crome
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - C Bruce Verchere
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
16
|
Anderson AM, Landry LG, Alkanani AA, Pyle L, Powers AC, Atkinson MA, Mathews CE, Roep BO, Michels AW, Nakayama M. Human islet T cells are highly reactive to preproinsulin in type 1 diabetes. Proc Natl Acad Sci U S A 2021; 118:e2107208118. [PMID: 34611019 PMCID: PMC8521679 DOI: 10.1073/pnas.2107208118] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2021] [Indexed: 01/29/2023] Open
Abstract
Cytotoxic CD8 T lymphocytes play a central role in the tissue destruction of many autoimmune disorders. In type 1 diabetes (T1D), insulin and its precursor preproinsulin are major self-antigens targeted by T cells. We comprehensively examined preproinsulin specificity of CD8 T cells obtained from pancreatic islets of organ donors with and without T1D and identified epitopes throughout the entire preproinsulin protein and defective ribosomal products derived from preproinsulin messenger RNA. The frequency of preproinsulin-reactive T cells was significantly higher in T1D donors than nondiabetic donors and also differed by individual T1D donor, ranging from 3 to over 40%, with higher frequencies in T1D organ donors with HLA-A*02:01. Only T cells reactive to preproinsulin-related peptides isolated from T1D donors demonstrated potent autoreactivity. Reactivity to similar regions of preproinsulin was also observed in peripheral blood of a separate cohort of new-onset T1D patients. These findings have important implications for designing antigen-specific immunotherapies and identifying individuals that may benefit from such interventions.
Collapse
Affiliation(s)
- Amanda M Anderson
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045
| | - Laurie G Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045
| | - Aimon A Alkanani
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045
| | - Laura Pyle
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Aurora, CO 80045
| | - Alvin C Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Medical Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Bart O Roep
- Department of Diabetes Immunology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010
- Department of Internal Medicine, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO 80045;
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
17
|
Ziegler AG, Danne T, Daniel C, Bonifacio E. 100 Years of Insulin: Lifesaver, immune target, and potential remedy for prevention. MED 2021; 2:1120-1137. [PMID: 34993499 PMCID: PMC8730368 DOI: 10.1016/j.medj.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In this review, we bring our personal experiences to showcase insulin from its breakthrough discovery as a life-saving drug 100 years ago to its uncovering as the autoantigen and potential cause of type 1 diabetes and eventually as an opportunity to prevent autoimmune diabetes. The work covers the birth of insulin to treat patients, which is now 100 years ago, the development of human insulin, insulin analogues, devices, and the way into automated insulin delivery, the realization that insulin is the primary autoimmune target of type 1 diabetes in children, novel approaches of immunotherapy using insulin for immune tolerance induction, the possible limitations of insulin immunotherapy, and an outlook how modern vaccines could remove the need for another 100 years of insulin therapy.
Collapse
Affiliation(s)
- Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
- Forschergruppe Diabetes, Technical University Munich, at Klinikum rechts der Isar, Munich, Germany
- Lead Contact
| | - Thomas Danne
- Diabetes Centre for Children and Adolescents, Kinder- und Jugendkrankenhaus AUF DER BULT, 30173 Hannover, Germany
| | - Carolin Daniel
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ezio Bonifacio
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Germany
| |
Collapse
|
18
|
Bluestone JA, Buckner JH, Herold KC. Immunotherapy: Building a bridge to a cure for type 1 diabetes. Science 2021; 373:510-516. [PMID: 34326232 DOI: 10.1126/science.abh1654] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which T cells attack and destroy the insulin-producing β cells in the pancreatic islets. Genetic and environmental factors increase T1D risk by compromising immune homeostasis. Although the discovery and use of insulin have transformed T1D treatment, insulin therapy does not change the underlying disease or fully prevent complications. Over the past two decades, research has identified multiple immune cell types and soluble factors that destroy insulin-producing β cells. These insights into disease pathogenesis have enabled the development of therapies to prevent and modify T1D. In this review, we highlight the key events that initiate and sustain pancreatic islet inflammation in T1D, the current state of the immunological therapies, and their advantages for the treatment of T1D.
Collapse
Affiliation(s)
- Jeffrey A Bluestone
- UCSF Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute (BRI) at Virginia Mason, Seattle, WA, USA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Kevan C Herold
- Department of Immunobiology and Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
19
|
Rodriguez-Calvo T, Christoffersson G, Bender C, von Herrath MG, Mallone R, Kent SC, James EA. Means, Motive, and Opportunity: Do Non-Islet-Reactive Infiltrating T Cells Contribute to Autoimmunity in Type 1 Diabetes? Front Immunol 2021; 12:683091. [PMID: 34220832 PMCID: PMC8242234 DOI: 10.3389/fimmu.2021.683091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/28/2021] [Indexed: 12/02/2022] Open
Abstract
In human type 1 diabetes and animal models of the disease, a diverse assortment of immune cells infiltrates the pancreatic islets. CD8+ T cells are well represented within infiltrates and HLA multimer staining of pancreas sections provides clear evidence that islet epitope reactive T cells are present within autoimmune lesions. These bona fide effectors have been a key research focus because these cells represent an intellectually attractive culprit for β cell destruction. However, T cell receptors are highly diverse in human insulitis. This suggests correspondingly broad antigen specificity, which includes a majority of T cells for which there is no evidence of islet-specific reactivity. The presence of “non-cognate” T cells in insulitis raises suspicion that their role could be beyond that of an innocent bystander. In this perspective, we consider the potential pathogenic contribution of non-islet-reactive T cells. Our intellectual framework will be that of a criminal investigation. Having arraigned islet-specific CD8+ T cells for the murder of pancreatic β cells, we then turn our attention to the non-target immune cells present in human insulitis and consider the possible regulatory, benign, or effector roles that they may play in disease. Considering available evidence, we overview the case that can be made that non-islet-reactive infiltrating T cells should be suspected as co-conspirators or accessories to the crime and suggest some possible routes forward for reaching a better understanding of their role in disease.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gustaf Christoffersson
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Christine Bender
- Center for Autoimmunity and Inflammation, Type 1 Diabetes Center at La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Matthias G von Herrath
- Center for Autoimmunity and Inflammation, Type 1 Diabetes Center at La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Roberto Mallone
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France.,Assistance Publique Hôpitaux de Paris, Cochin Hospital, Service de Diabétologie et Immunologie Clinique, Paris, France
| | - Sally C Kent
- Department of Medicine, Division of Diabetes, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, United States
| | - Eddie A James
- Translatonal Research Program, Benaroya Research Institute, Seattle WA, United States
| |
Collapse
|
20
|
Rodriguez-Calvo T, Johnson JD, Overbergh L, Dunne JL. Neoepitopes in Type 1 Diabetes: Etiological Insights, Biomarkers and Therapeutic Targets. Front Immunol 2021; 12:667989. [PMID: 33953728 PMCID: PMC8089389 DOI: 10.3389/fimmu.2021.667989] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying type 1 diabetes (T1D) pathogenesis remain largely unknown. While autoantibodies to pancreatic beta-cell antigens are often the first biological response and thereby a useful biomarker for identifying individuals in early stages of T1D, their role in T1D pathogenesis is not well understood. Recognition of these antigenic targets by autoreactive T-cells plays a pathological role in T1D development. Recently, several beta-cell neoantigens have been described, indicating that both neoantigens and known T1D antigens escape central or peripheral tolerance. Several questions regarding the mechanisms by which tolerance is broken in T1D remain unanswered. Further delineating the timing and nature of antigenic responses could allow their use as biomarkers to improve staging, as targets for therapeutic intervention, and lead to a better understanding of the mechanisms leading to loss of tolerance. Multiple factors that contribute to cellular stress may result in the generation of beta-cell derived neoepitopes and contribute to autoimmunity. Understanding the cellular mechanisms that induce beta-cells to produce neoantigens has direct implications on development of therapies to intercept T1D disease progression. In this perspective, we will discuss evidence for the role of neoantigens in the pathogenesis of T1D, including antigenic responses and cellular mechanisms. We will additionally discuss the pathways leading to neoepitope formation and the cross talk between the immune system and the beta-cells in this regard. Ultimately, delineating the timing of neoepitope generation in T1D pathogenesis will determine their role as biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Munich, Germany
| | - James D. Johnson
- Diabetes Research Group, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Lut Overbergh
- Laboratory Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Jessica L. Dunne
- Janssen Research and Development, LLC, Raritan, NJ, United States
| |
Collapse
|
21
|
Mishto M, Mansurkhodzhaev A, Rodriguez-Calvo T, Liepe J. Potential Mimicry of Viral and Pancreatic β Cell Antigens Through Non-Spliced and cis-Spliced Zwitter Epitope Candidates in Type 1 Diabetes. Front Immunol 2021; 12:656451. [PMID: 33936085 PMCID: PMC8082463 DOI: 10.3389/fimmu.2021.656451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence suggests that post-translational peptide splicing can play a role in the immune response under pathological conditions. This seems to be particularly relevant in Type 1 Diabetes (T1D) since post-translationally spliced epitopes derived from T1D-associated antigens have been identified among those peptides bound to Human Leucocyte Antigen (HLA) class I and II complexes. Their immunogenicity has been confirmed through CD4+ and CD8+ T cell-mediated responses in T1D patients. Spliced peptides theoretically have a large sequence variability. This might increase the frequency of viral-human zwitter peptides, i.e. peptides that share a complete sequence homology irrespective of whether they originate from human or viral antigens, thereby impinging upon the discrimination between self and non-self antigens by T cells. This might increase the risk of autoimmune responses triggered by viral infections. Since enteroviruses and other viral infections have historically been associated with T1D, we investigated whether cis-spliced peptides derived from selected viruses might be able to trigger CD8+ T cell-mediated autoimmunity. We computed in silico viral-human non-spliced and cis-spliced zwitter epitope candidates, and prioritized peptide candidates based on: (i) their binding affinity to HLA class I complexes, (ii) human pancreatic β cell and medullary thymic epithelial cell (mTEC) antigens' mRNA expression, (iii) antigen association with T1D, and (iv) potential hotspot regions in those antigens. Neglecting potential T cell receptor (TCR) degeneracy, no viral-human zwitter non-spliced peptide was found to be an optimal candidate to trigger a virus-induced CD8+ T cell response against human pancreatic β cells. Conversely, we identified some zwitter peptide candidates, which may be produced by proteasome-catalyzed peptide splicing, and might increase the likelihood of pancreatic β cells recognition by virus-specific CD8+ T cell clones, therefore promoting β cell destruction in the context of viral infections.
Collapse
Affiliation(s)
- Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King’s College London, London, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | | | - Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Juliane Liepe
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|