1
|
Iwata M, Okazawa T, Higuchi K, Tobe K. Association between the type of family history of diabetes and the risk and age at onset of diabetes in the Japanese general population. Diabetol Int 2025; 16:316-325. [PMID: 40166441 PMCID: PMC11954760 DOI: 10.1007/s13340-025-00792-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/08/2025] [Indexed: 04/02/2025]
Abstract
Aim The objective of this cross-sectional study was to clarify the relationship between the type of first-degree family history of diabetes (FHD) and the presence and age at onset of diabetes (AOD) in the Japanese general population. Material and methods Using anonymized processed data collected from community-based health checkups, we classified 10,691 subjects into 5 groups according to the type of FHD as follows: (1) no FHD; (2) diabetes only in a sibling (sFHD); (3) diabetes only in the mother (mFHD); (4) diabetes only in the father (pFHD); and (5) diabetes in ≥ 2 family members, e.g., one parent plus a sibling or both parents (FHD in ≥ 2 family members). Result Results of multivariate logistic regression analysis performed using the no FHD group as reference revealed a significant association between a positive FHD and the presence of diabetes (odds ratio: sFHD, 3.67; mFHD, 3.70; pFHD, 2.88; FHD in ≥ 2 family members, 6.35; P < 0.0001 for all). Moreover, the AOD was significantly younger in all the four groups with FHD than in the group without FHD (P < 0.01), being the youngest in the group of FHD in ≥ 2 family members. Conclusion Our results revealed that the degree of associations between a positive FHD and the presence of diabetes and AOD differ according to the type of FHD. In particular, FHD in ≥ 2 family members appears to be especially strongly associated with a high risk of diabetes and a younger AOD.
Collapse
Affiliation(s)
- Minoru Iwata
- Second Department of Human Science, Faculty of Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194 Japan
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Toyama Japan
| | - Teruyo Okazawa
- Department of Internal Medicine, Sakurai Hospital, Kurobe, Toyama Japan
| | - Kiyohiro Higuchi
- Department of Internal Medicine, JA Niigata Kouseiren Itoigawa General Hospital, Itoigawa, Niigata Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Toyama Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Toyama Japan
| |
Collapse
|
2
|
Morita S, Shimajiri Y, Matsuoka Y, Kadoya Y, Yamada S, Matsuoka TA, Sanke T. Exploring genetic risk factors for β-cell deterioration in type 2 diabetes mellitus: Insights from longitudinal C-peptide analysis. Diabetes Res Clin Pract 2025; 222:112049. [PMID: 39971135 DOI: 10.1016/j.diabres.2025.112049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
AIMS Insulin secretion in type 2 diabetes mellitus deteriorates over time, but the factors influencing the degree of deteriorates remain unclear. This study aims to specifically identify genetic factors associated with this decline. METHODS Fasting serum C-peptide was observed over 10.5 ± 4.7 years in 116 Japanese patients with type 2 diabetes mellitus without significant obesity or renal dysfunction. The individual annual decline of fasting serum C-peptide (IAD) was calculated using regression analysis. We evaluated the IAD in patients with or without susceptible allele of candidate single nucleotide polymorphisms (SNPs) in genes (KCNQ1, TCF7L2, CDKN2A/B, CDKAL1, UBE2E2, HHEX, and KCNJ11), which linked to insulin secretion in previous cross-sectional studies. RESULTS The IAD was -1.513 [-2.635: -0.129] × 10-2 nmol/L/year. Among the candidate SNPs, only KCNJ11 (rs5219) showed a significant difference in IAD between the patients with homozygous susceptibility allele TT (-2.583 [-3.285: -0.893] × 10-2 nmol/L/year, N = 20) and those with TC/CC (-1.367 [-2.273: -0.767] × 10-2 nmol/L/year, N = 96) (P = 0.035). CONCLUSIONS Using IAD calculated by fasting serum C-peptide over 10 years, KCNJ11 (rs5219) was identified as a genetic factor that was associated with the decline in insulin secretion in Japanese patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Shuhei Morita
- First Department of Medicine, Wakayama Medical University, 811-1 Kimi-idera, Wakayama City, Wakayama 641-8509, Japan.
| | - Yoshinori Shimajiri
- Kinsermae Diabetes Care Clinic, 1-29-1 Miyagi, Urasoe City, Okinawa 901-2126, Japan
| | - Yuko Matsuoka
- Clinical Center for Diabetes, Fuchu Hospital, Seichokai Social Medical Corporation, 1-10-17 Hiko-cho, Izumi City, Osaka 594-0076, Japan
| | - Yoshiki Kadoya
- Clinical Center for Diabetes, Fuchu Hospital, Seichokai Social Medical Corporation, 1-10-17 Hiko-cho, Izumi City, Osaka 594-0076, Japan
| | - Shoichi Yamada
- Clinical Center for Diabetes, Fuchu Hospital, Seichokai Social Medical Corporation, 1-10-17 Hiko-cho, Izumi City, Osaka 594-0076, Japan
| | - Taka-Aki Matsuoka
- First Department of Medicine, Wakayama Medical University, 811-1 Kimi-idera, Wakayama City, Wakayama 641-8509, Japan
| | - Tokio Sanke
- Institute for Diabetes, Fuchu Hospital, Seichokai Social Medical Corporation, 1-10-17 Hiko-cho, Izumi City, Osaka 594-0076, Japan
| |
Collapse
|
3
|
Kosovski IB, Ghiga D, Ciurea CN, Cucoranu DC, Demian L, Gliga FI, Bacârea A. Evaluation of Fasting Glucose-Insulin-C-Peptide-Derived Metabolic Indices for Identifying Metabolic Syndrome in Young, Healthy Adults. Nutrients 2024; 16:2135. [PMID: 38999882 PMCID: PMC11243600 DOI: 10.3390/nu16132135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Metabolic syndrome (MetS) is a condition defined by a cluster of symptoms, including excessive adipose tissue, impaired glucose homeostasis, dyslipidemia, and high blood pressure (BP). We aimed to evaluate the correlation between the MetS criteria (IDF) and fasting glucose-insulin-C-peptide-derived indices in a cohort of 128 healthy young adults who were 20-35 years old at the time of this study. We measured fasting serum glucose, insulin, C-peptide (CP), HDL-cholesterol, triglycerides, and hsCRP; HOMA-IR INS, HOMA-IR CP1, HOMA-IR CP2, HOMA-BETA, HOMA-BETA CP, QUICKI, disposition index (DI), CP index (CPI), and 20/C-peptide*glucose. Significant correlations were found between BMI and all HOMA indices, QUICKI, and CPI; waist circumferences and HOMA-IR INS, HOMA-BETA, and QUICKI (for both sexes); glucose and HOMA-IR INS/CP1/CP2, HOMA-BETA CP, DI, and QUICKI; HDL-cholesterol and HOMA-IR INS, HOMA-BETA, and QUICKI for males and females only with QUICKI; triglycerides and HOMA-IR INS, HOMA-BETA, and QUICKI; systolic BP and HOMA-IR INS, HOMA-BETA; diastolic BP and DI. The cut-off values for HOMA-IR INS, HOMA-BETA, and QUICKI in the combined group (females + males) were 1.855, 82.250, 0.355; 2.115, 106.370, 0.345 for males; 1.805, 71.305, 0.355 for females. A stronger correlation was found between males' indices and hsCRP. In conclusion, CP-derived indices do not add significant information, and the male sex is more predisposed to MetS.
Collapse
Affiliation(s)
- Irina Bianca Kosovski
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Dana Ghiga
- Department of Research Methodology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Cristina Nicoleta Ciurea
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | | | - Liliana Demian
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Florina Ioana Gliga
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Anca Bacârea
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| |
Collapse
|
4
|
Wang SH, Huang YC, Cheng CW, Chang YW, Liao WL. Impact of the trans-ancestry polygenic risk score on type 2 diabetes risk, onset age and progression among population in Taiwan. Am J Physiol Endocrinol Metab 2024; 326:E547-E554. [PMID: 38363735 PMCID: PMC11376485 DOI: 10.1152/ajpendo.00252.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/18/2024]
Abstract
Type 2 diabetes (T2D) prevalence in adults at a younger age has increased but the disease status may go unnoticed. This study aimed to determine whether the onset age and subsequent diabetic complications can be attributed to the polygenic architecture of T2D in the Taiwan Han population. A total of 9,627 cases with T2D and 85,606 controls from the Taiwan Biobank were enrolled. Three diabetic polygenic risk scores (PRSs), PRS_EAS and PRS_EUR, and a trans-ancestry PRS (PRS_META), calculated using summary statistic from East Asian and European populations. The onset age was identified by linking to the National Taiwan Insurance Research Database, and the incidence of different diabetic complications during follow-up was recorded. PRS_META (7.4%) explained a higher variation for T2D status. And the higher percentile of PRS is also correlated with higher percentage of T2D family history and prediabetes status. More, the PRS was negatively associated with onset age (β = -0.91 yr), and this was more evident among males (β = -1.11 vs. -0.76 for males and females, respectively). The hazard ratio of diabetic retinopathy (DR) and diabetic foot were significantly associated with PRS_EAS and PRS_META, respectively. However, the PRS was not associated with other diabetic complications, including diabetic nephropathy, cardiovascular disease, and hypertension. Our findings indicated that diabetic PRS which combined susceptibility variants from cross-population could be used as a tool for early screening of T2D, especially for high-risk populations, such as individuals with high genetic risk, and may be associated with the risk of complications in subjects with T2D. NEW & NOTEWORTHY Our findings indicated that diabetic polygenic risk score (PRS) which combined susceptibility variants from Asian and European population affect the onset age of type 2 diabetes (T2D) and could be used as a tool for early screening of T2D, especially for individuals with high genetic risk, and may be associated with the risk of diabetic complications among people in Taiwan.
Collapse
Affiliation(s)
- Shi-Heng Wang
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Zhunan, Taiwan
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Yu-Chuen Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Wen Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ya-Wen Chang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Center for Personalized Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Center for Personalized Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
5
|
Linares-Pineda TM, Fragoso-Bargas N, Picón MJ, Molina-Vega M, Jenum AK, Sletner L, Lee-Ødegård S, Opsahl JO, Moen GH, Qvigstad E, Prasad RB, Birkeland KI, Morcillo S, Sommer C. DNA methylation risk score for type 2 diabetes is associated with gestational diabetes. Cardiovasc Diabetol 2024; 23:68. [PMID: 38350951 PMCID: PMC10865541 DOI: 10.1186/s12933-024-02151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) and type 2 diabetes mellitus (T2DM) share many pathophysiological factors including genetics, but whether epigenetic marks are shared is unknown. We aimed to test whether a DNA methylation risk score (MRS) for T2DM was associated with GDM across ancestry and GDM criteria. METHODS In two independent pregnancy cohorts, EPIPREG (n = 480) and EPIDG (n = 32), DNA methylation in peripheral blood leukocytes was measured at a gestational age of 28 ± 2. We constructed an MRS in EPIPREG and EPIDG based on CpG hits from a published epigenome-wide association study (EWAS) of T2DM. RESULTS With mixed models logistic regression of EPIPREG and EPIDG, MRS for T2DM was associated with GDM: odd ratio (OR)[95% CI]: 1.3 [1.1-1.8], P = 0.002 for the unadjusted model, and 1.4 [1.1-1.7], P = 0.00014 for a model adjusted by age, pre-pregnant BMI, family history of diabetes and smoking status. Also, we found 6 CpGs through a meta-analysis (cg14020176, cg22650271, cg14870271, cg27243685, cg06378491, cg25130381) associated with GDM, and some of their methylation quantitative loci (mQTLs) were related to T2DM and GDM. CONCLUSION For the first time, we show that DNA methylation marks for T2DM are also associated with GDM, suggesting shared epigenetic mechanisms between GDM and T2DM.
Collapse
Affiliation(s)
- Teresa M Linares-Pineda
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica Málaga (IBIMA)- Plataforma Bionand, University Hospital Virgen de la Victoria, Málaga, Spain
- Department of Biochemistry and Molecular Biology 2, University of Granada, Granada, Spain
- Centre for Biomedical Research Network on Obesity Physiopathology and Nutrition (CIBEROBN), Madrid, Spain
| | - Nicolas Fragoso-Bargas
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, 0424, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - María José Picón
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica Málaga (IBIMA)- Plataforma Bionand, University Hospital Virgen de la Victoria, Málaga, Spain
| | - Maria Molina-Vega
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica Málaga (IBIMA)- Plataforma Bionand, University Hospital Virgen de la Victoria, Málaga, Spain
| | - Anne Karen Jenum
- General Practice Research Unit (AFE), Department of General Practice, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Line Sletner
- Department of Pediatric and Adolescents Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Sindre Lee-Ødegård
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Julia O Opsahl
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Haukeland University Hospital, Bergen, Norway
| | - Gunn-Helen Moen
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, 0424, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Institute of Molecular Bioscience, The University of Queensland, Brisbane, Australia
- K. G Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
- Frazer Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Elisabeth Qvigstad
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, 0424, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rashmi B Prasad
- Lund University Diabetes Centre, Malmo, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Kåre I Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, 0424, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sonsoles Morcillo
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica Málaga (IBIMA)- Plataforma Bionand, University Hospital Virgen de la Victoria, Málaga, Spain
- Centre for Biomedical Research Network on Obesity Physiopathology and Nutrition (CIBEROBN), Madrid, Spain
| | - Christine Sommer
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, 0424, Norway.
| |
Collapse
|
6
|
Ke C, Shah BR, Thiruchelvam D, Echouffo‐Tcheugui JB. Association Between Age at Diagnosis of Type 2 Diabetes and Hospitalization for Heart Failure: A Population-Based Study. J Am Heart Assoc 2024; 13:e030683. [PMID: 38258656 PMCID: PMC11056183 DOI: 10.1161/jaha.123.030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/03/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND The relation between age at diagnosis of type 2 diabetes (T2D) and hospitalization for heart failure (HHF) is unclear. We assessed the association between age at diagnosis of T2D and HHF. METHODS AND RESULTS We conducted a population-based cohort study using administrative health databases from the Canadian province of Ontario, including participants without prior heart failure. We identified people with new-onset T2D between April 1, 2005 and March 31, 2015, and matched each person with 3 diabetes-free adults, according to birth year and sex. We estimated adjusted hazard ratios (HRs) and rate ratios (RRs) for the association between age at T2D diagnosis and incident HHF, which was assessed until March 31, 2020. Among 743 053 individuals with T2D and 2 199 539 matched individuals without T2D, 126 241 incident HHF events occurred over 8.9 years. T2D was associated with a greater adjusted hazard of HHF at younger ages (eg, HR at age 30 years: 6.94 [95% CI, 6.54-7.36]) than at older ages (eg, HR at age 60 years: 2.50 [95% CI, 2.45-2.56]) relative to matched individuals. Additional adjustment for mediators (hypertension, coronary artery disease, and chronic kidney disease) marginally attenuated this relationship. Age at T2D diagnosis was associated with a greater number of HHF events relative to matched individuals at younger ages (eg, RR at age 30 years: 6.39 [95% CI, 5.76-7.08]) than at older ages (eg, RR at age 60 years: 2.65 [95% CI, 2.54-2.76]). CONCLUSIONS Younger age at T2D diagnosis is associated with a disproportionately elevated HHF risk relative to age-matched individuals without T2D.
Collapse
Affiliation(s)
- Calvin Ke
- Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Department of Medicine, Toronto General HospitalUniversity Health NetworkTorontoOntarioCanada
- ICESTorontoOntarioCanada
| | - Baiju R. Shah
- Department of MedicineUniversity of TorontoTorontoOntarioCanada
- ICESTorontoOntarioCanada
- Department of MedicineSunnybrook HospitalTorontoOntarioCanada
| | | | - Justin B. Echouffo‐Tcheugui
- Division of Endocrinology, Diabetes and Metabolism, Department of MedicineJohns Hopkins UniversityBaltimoreMD
- Welch Center for Prevention, Epidemiology, and Clinical ResearchBaltimoreMD
| |
Collapse
|
7
|
The genetic side of diabetic kidney disease: a review. Int Urol Nephrol 2023; 55:335-343. [PMID: 35974289 DOI: 10.1007/s11255-022-03319-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/24/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is one of the most common complications of diabetes, with approximately 30-40% of patients with type 1 diabetes mellitus and 20% of patients with type 2 diabetes mellitus eventually developing DKD. If DKD is not controlled in the early clinical stage and proteinuria develops, the disease will progress to end-stage renal disease. The pathogenesis of DKD remains largely unknown and is multifactorial, likely due to interactions between genetic and environmental factors. Familial clustering also supports a critical role of hereditary factors in DKD. The development of gene detection technology has promoted the exploration of DKD susceptibility genes in different cohorts of patients with diabetes. Identifying susceptibility genes can provide insights into the pathogenesis of DKD, as well as a basis for its clinical diagnosis and therapy. RESULTS Numerous candidate gene loci have been found to be associated with DKD, many of which play critical regulatory roles in the pathogenesis of this disease, including genes involved in glycol-metabolism, lipid metabolism, the renin-angiotensin-aldosterone system, inflammation and oxidative stress. In this review, we summarize the functions of several susceptibility genes involved in the development of DKD. CONCLUSION Based on our findings, we recommend that studying susceptibility gene polymorphisms can lead to a better understanding of the pathogenesis of DKD and could help prevent this disease or improve its outcomes.
Collapse
|
8
|
Moazzam-Jazi M, Najd-Hassan-Bonab L, Masjoudi S, Tohidi M, Hedayati M, Azizi F, Daneshpour MS. Risk of type 2 diabetes and KCNJ11 gene polymorphisms: a nested case-control study and meta-analysis. Sci Rep 2022; 12:20709. [PMID: 36456687 PMCID: PMC9715540 DOI: 10.1038/s41598-022-24931-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Due to the central role in insulin secretion, the potassium inwardly-rectifying channel subfamily J member 11 (KCNJ11) gene is one of the essential genes for type 2 diabetes (T2D) predisposition. However, the relevance of this gene to T2D development is not consistent among diverse populations. In the current study, we aim to capture the possible association of common KCNJ11 variants across Iranian adults, followed by a meta-analysis. We found that the tested variants of KCNJ11 have not contributed to T2D incidence in Iranian adults, consistent with similar insulin secretion levels among individuals with different genotypes. The integration of our results with 72 eligible published case-control studies (41,372 cases and 47,570 controls) as a meta-analysis demonstrated rs5219 and rs5215 are significantly associated with the increased T2D susceptibility under different genetic models. Nevertheless, the stratified analysis according to ethnicity showed rs5219 is involved in the T2D risk among disparate populations, including American, East Asian, European, and Greater Middle Eastern, but not South Asian. Additionally, the meta-regression analysis demonstrated that the sample size of both case and control groups was significantly associated with the magnitude of pooled genetic effect size. The present study can expand our knowledge about the KCNJ11 common variant's contributions to T2D incidence, which is valuable for designing SNP-based panels for potential clinical applications in precision medicine. It also highlights the importance of similar sample sizes for avoiding high heterogeneity and conducting a more precise meta-analysis.
Collapse
Affiliation(s)
- Maryam Moazzam-Jazi
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Najd-Hassan-Bonab
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajedeh Masjoudi
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tohidi
- Prevention of Metabolic Disorder Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ji N, Zhang M, Ren L, Wang Y, Hu B, Xiang J, Gong Y, Wu C, Qu G, Ding W, Yin Z, Li S, Wang Z, Zhou L, Chen X, Ma Y, Tang J, Liu Y, Liu L, Huang M. SARS-CoV-2 in the pancreas and the impaired islet function in COVID-19 patients. Emerg Microbes Infect 2022; 11:1115-1125. [PMID: 35343389 PMCID: PMC9037197 DOI: 10.1080/22221751.2022.2059400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/24/2022] [Indexed: 01/08/2023]
Abstract
Diabetes mellitus (DM) is one of the most common underlying diseases that may aggravates COVID-19. In the present study, we explored islet function, the presence of SARS-CoV-2 and pathological changes in the pancreas of patients with COVID-19. Oral glucose tolerance tests (OGTTs) and the C-peptide release test demonstrated a decrease in glucose-stimulated C-peptide secretory capacity and an increase in HbA1c levels in patients with COVID-19. The prediabetic conditions appeared to be more significant in the severe group than in the moderate group. SARS-CoV-2 receptors (ACE2, CD147, TMPRSS2 and neuropilin-1) were expressed in pancreatic tissue. In addition to SARS-CoV-2 virus spike protein and virus RNA, coronavirus-like particles were present in the autophagolysosomes of pancreatic acinar cells of a patient with COVID-19. Furthermore, the expression and distribution of various proteins in pancreatic islets of patients with COVID-19 were altered. These data suggest that SARS-CoV-2 in the pancreas may directly or indirectly impair islet function.
Collapse
Affiliation(s)
- Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Mingshun Zhang
- Key Laboratory of Antibody Techniques, National Health Commission, Department of Immunology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Liang Ren
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yunyun Wang
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Bicheng Hu
- Department of Laboratory, Wuhan No. 1 Hospital, Wuhan, People’s Republic of China
| | - Jie Xiang
- Department of Laboratory, Wuhan Jinyintan Hospital, Wuhan, People’s Republic of China
- Diagnosis and Treatment Research Center of Wuhan Infectious Disease of Chinese Academy of Medical Sciences, Wuhan, People’s Republic of China
| | - Yingyun Gong
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chaojie Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Guoqiang Qu
- Hubei Chongxin Judicial Expertise Center, Wuhan, People’s Republic of China
| | - Wenqiu Ding
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zhiqiang Yin
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shan Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Lianzheng Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xueqin Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yuan Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yun Liu
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Liang Liu
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
10
|
Joseph A, Thirupathamma M, Mathews E, Alagu M. Genetics of type 2 diabetes mellitus in Indian and Global Population: A Review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022; 23:135. [PMID: 37192883 PMCID: PMC9438889 DOI: 10.1186/s43042-022-00346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Non-communicable diseases such as cardiovascular diseases, respiratory diseases and diabetes contribute to the majority of deaths in India. Public health programmes on non-communicable diseases (NCD) prevention primarily target the behavioural risk factors of the population. Hereditary is known as a risk factor for most NCDs, specifically, type 2 diabetes mellitus (T2DM), and hence, understanding of the genetic markers of T2DM may facilitate prevention, early case detection and management. Main body We reviewed the studies that explored marker-trait association with type 2 diabetes mellitus globally, with emphasis on India. Globally, single nucleotide polymorphisms (SNPs) rs7903146 of Transcription Factor 7-like 2 (TCF7L2) gene was common, though there were alleles that were unique to specific populations. Within India, the state-wise data were also taken to foresee the distribution of risk/susceptible alleles. The findings from India showcased the common and unique alleles for each region. Conclusion Exploring the known and unknown genetic determinants might assist in risk prediction before the onset of behavioural risk factors and deploy prevention measures. Most studies were conducted in non-representative groups with inherent limitations such as smaller sample size or looking into only specific marker-trait associations. Genome-wide association studies using data from extensive prospective studies are required in highly prevalent regions worldwide. Further research is required to understand the singular effect and the interaction of genes in predicting diabetes mellitus and other comorbidities.
Collapse
Affiliation(s)
- Anjaly Joseph
- Department of Public Health and Community Medicine, Central University of Kerala, Kasaragod, Kerala 671320 India
| | - Maradana Thirupathamma
- Department of Genomic Science, Central University of Kerala, Kasaragod, Kerala 671320 India
| | - Elezebeth Mathews
- Department of Public Health and Community Medicine, Central University of Kerala, Kasaragod, Kerala 671320 India
| | - Manickavelu Alagu
- Department of Genomic Science, Central University of Kerala, Kasaragod, Kerala 671320 India
| |
Collapse
|
11
|
Park S, Jang M, Park MY, Kim J, Shin S. Interactive effects of the low-carbohydrate diet score and genetic risk score on Hypo-HDL-cholesterolemia among Korean adults: A cross-sectional analysis from the Ansan and Ansung Study of the Korean Genome and Epidemiology Study. Food Sci Nutr 2022; 10:3106-3116. [PMID: 36171780 PMCID: PMC9469851 DOI: 10.1002/fsn3.2909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This cross-sectional study investigated the interaction between the genetic risk score (GRS) and abnormal high-density lipoprotein (HDL) cholesterol lipid levels, which are modified by low-carbohydrate diets (LCDs) and their effects on the prevalence of hypo-HDL-cholesterolemia (hypo-HDL-C) in Korean adults. Baseline data were obtained from the Ansan and Ansung study of the Korean Genome and Epidemiology Study (KoGES), conducted from 2001 to 2002, that targeted 8,314 Korean adults aged 40-69 years, including old men (47.6%) and women (52.4%), and whole genomic single nucleotide polymorphism (SNP) genotyping was performed. We identified 18 SNPs significantly associated with hypo-HDL-C in the proximity of several genes, including LPL, APOA5, LIPC, and CETP, and calculated the GRS. The low-carbohydrate diet score (LCDS) was calculated on the basis of energy intake information from food frequency questionnaires. Furthermore, we performed multivariable-adjusted logistic modeling to examine the odds ratio (OR) for hypo-HDL-C across tertiles of LCDS and GRS, adjusted for several covariates. Among participants in the highest GRS tertile, those in the highest tertile of the LCDS had a significantly lower risk of hypo-HDL-C (OR: 0.759, 95% CI (confidence interval): 0.625-0.923) than those in the lowest tertile of the LCDS. In the joint effect model, the group with the lowest GRS and highest LCDS was found to have the lowest risk of hypo-HDL-C prevalence. This study suggests that individuals with a high genetic risk for low HDL concentrations may have a beneficial effect on a lower intake of carbohydrates.
Collapse
Affiliation(s)
- SoHyun Park
- Department of Food and NutritionChung‐Ang UniversityGyeonggi‐doKorea
| | - Min‐Jae Jang
- Department of Animal Science and TechnologyChung‐Ang UniversityGyeonggi‐doKorea
| | - Min Young Park
- Department of Molecular PathobiologyNYU College of DentistryNew YorkNew YorkUSA
| | - Jun‐Mo Kim
- Department of Animal Science and TechnologyChung‐Ang UniversityGyeonggi‐doKorea
| | - Sangah Shin
- Department of Food and NutritionChung‐Ang UniversityGyeonggi‐doKorea
| |
Collapse
|
12
|
Vasishta S, Ganesh K, Umakanth S, Joshi MB. Ethnic disparities attributed to the manifestation in and response to type 2 diabetes: insights from metabolomics. Metabolomics 2022; 18:45. [PMID: 35763080 PMCID: PMC9239976 DOI: 10.1007/s11306-022-01905-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
Abstract
Type 2 diabetes (T2D) associated health disparities among different ethnicities have long been known. Ethnic variations also exist in T2D related comorbidities including insulin resistance, vascular complications and drug response. Genetic heterogeneity, dietary patterns, nutrient metabolism and gut microbiome composition attribute to ethnic disparities in both manifestation and progression of T2D. These factors differentially regulate the rate of metabolism and metabolic health. Metabolomics studies have indicated significant differences in carbohydrate, lipid and amino acid metabolism among ethnicities. Interestingly, genetic variations regulating lipid and amino acid metabolism might also contribute to inter-ethnic differences in T2D. Comprehensive and comparative metabolomics analysis between ethnicities might help to design personalized dietary regimen and newer therapeutic strategies. In the present review, we explore population based metabolomics data to identify inter-ethnic differences in metabolites and discuss how (a) genetic variations, (b) dietary patterns and (c) microbiome composition may attribute for such differences in T2D.
Collapse
Affiliation(s)
- Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, 576104, Manipal, India
| | - Kailash Ganesh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, 576104, Manipal, India
| | | | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, 576104, Manipal, India.
- Manipal School of Life Sciences, Planetarium Complex Manipal Academy of Higher Education Manipal, 576104, Manipal, India.
| |
Collapse
|
13
|
Xu K, Lv H, Zhang J, Chen H, He Y, Shen M, Qian Y, Jiang H, Dai H, Zheng S, Yang T, Fu Q. The common rs13266634 C > T variant in SLC30A8 contributes to the heterogeneity of phenotype and clinical features of both type 1 and type 2 diabetic subtypes. Acta Diabetol 2022; 59:545-552. [PMID: 35034185 DOI: 10.1007/s00592-021-01831-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/23/2021] [Indexed: 11/01/2022]
Abstract
AIMS T2D and T1D are phenotypically heterogeneous. This study aims to reveal the relationship between the common SLC30A8 rs13266634 variant and subgroups of T2D and T1D and their clinical characteristics. METHODS We included 3158 OGTT-based healthy controls, unrelated 1754 T2D, and 1675 autoantibody-positive T1D individuals. The associations between rs13266634 and subtypes of T2D, T1D, autoantibody status and glycemic-related quantitative traits were performed by binary logistic regression analysis under the additive model and multiple linear regression with appropriate adjustment. RESULTS We found that the T allele of rs13266634 was protectively associated with lean (OR = 0.810, P = 6.91E-04) but not obese T2D with considerable heterogeneity (P = 0.018). This allele also conferred significant protection with T1D of single (OR = 0.847, P = 9.76E-03), but not multi autoantibodies with substantial heterogeneity (P = 0.005). This variant significantly affected OGTT-related insulin release in lean (P = 2.66E-03, 3.88E-03 for CIR and DI, respectively) but not obese healthy individuals. Furthermore, rs13266634 T allele correlated with the risk of ZnT8A (OR = 1.440, P = 3.31E-05) and IA-2A (OR = 1.219, P = 1.32E-03) positivity, with more effect size in children/adolescents compared with adult-onset T1D subtypes. CONCLUSIONS These suggested that the SLC30A8 rs13266634 variant might be put into genetic risk scores to assess the risk of the subtypes of T1D and T2D and their related clinical features.
Collapse
Affiliation(s)
- Kuanfeng Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Hui Lv
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Heng Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yunqiang He
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Min Shen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yu Qian
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hemin Jiang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Dai
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shuai Zheng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Qi Fu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
14
|
Okura T, Fujioka Y, Nakamura R, Kitao S, Ito Y, Anno M, Matsumoto K, Shoji K, Matsuzawa K, Izawa S, Okura H, Ueta E, Kato M, Imamura T, Taniguchi SI, Yamamoto K. The sodium-glucose cotransporter 2 inhibitor ipragliflozin improves liver function and insulin resistance in Japanese patients with type 2 diabetes. Sci Rep 2022; 12:1896. [PMID: 35115614 PMCID: PMC8814145 DOI: 10.1038/s41598-022-05704-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitor (SGLT2i) treatment is a therapeutic approach for type 2 diabetes mellitus (T2DM). Some reports have shown that SGLT2i treatment improves insulin resistance; however, few studies have evaluated insulin resistance by the glucose clamp method. Hepatic insulin clearance (HIC) is a new pathophysiological mechanism of T2DM. The effect of SGLT2i treatment on hepatic insulin clearance and insulin resistance is not well known. We investigated the effect of SGLT2i treatment on insulin resistance, insulin secretion, incretin levels, body composition, and hepatic insulin clearance. We conducted a meal tolerance test (MTT) and a hyperinsulinemic-euglycemic clamp test in 9 T2DM patients. Ipragliflozin (50 mg/day) was administered, and the MTT and clamp test were performed after 4 months. We calculated HIC as the postprandial C-peptide AUC-to-insulin AUC ratio. We also measured GLP-1, GIP, and glucagon levels during the MTT. Body weight and HbA1c were decreased, although not significantly, after 4 months of treatment. Postprandial glucose, fasting insulin and postprandial insulin were significantly decreased. Insulin resistance with the glucose clamp was not changed, but the HOMA-IR and insulin sensitivity indices were significantly improved. Incretin and glucagon levels were not changed. Hepatic insulin clearance was significantly increased, but whole-body insulin clearance was not changed. The FIB-4 index and fatty liver index were significantly reduced. The HOMA-beta and insulinogenic indices were not changed, but the C-peptide index was significantly increased. Although the number of patients was small, these results suggested that SGLT2i treatment improved liver function, decreased hepatic insulin resistance, and increased hepatic insulin clearance, despite the small weight reduction.
Collapse
Affiliation(s)
- Tsuyoshi Okura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan.
| | - Yohei Fujioka
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Risa Nakamura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Sonoko Kitao
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Yuichi Ito
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Mari Anno
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Kazuhisa Matsumoto
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Kyoko Shoji
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Kazuhiko Matsuzawa
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Shoichiro Izawa
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Hiroko Okura
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| | - Etsuko Ueta
- School of Health Science, Tottori University Faculty of Medicine, Yonago, Japan
| | - Masahiko Kato
- School of Health Science, Tottori University Faculty of Medicine, Yonago, Japan
| | - Takeshi Imamura
- Division of Molecular Pharmacology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Shin-Ichi Taniguchi
- Department of Regional Medicine, Tottori University Faculty of Medicine, Yonago, Japan
| | - Kazuhiro Yamamoto
- Division of Cardiovascular Medicine, Endocrinology and Metabolism, Tottori University Faculty of Medicine, 36-1 Nishi-Cho, Yonago, Tottori, 683-8504, Japan
| |
Collapse
|
15
|
Shen F, Weng S, Tsai M, Su Y, Li S, Chang S, Chen J, Chang Y, Liou C, Lin T, Chuang J, Lin C, Wang P. Mitochondrial haplogroups have a better correlation to insulin requirement than nuclear genetic variants for type 2 diabetes mellitus in Taiwanese individuals. J Diabetes Investig 2022; 13:201-208. [PMID: 34255930 PMCID: PMC8756312 DOI: 10.1111/jdi.13629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/03/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS/INTRODUCTION Identifying diabetes-susceptible genetic variants will help to provide personalized therapy for the management of type 2 diabetes. Previous studies have reported a genetic risk score (GRS), computed by the sum of nuclear DNA (nDNA) risk alleles, that may predict the future requirement for insulin therapy. Although mitochondrial dysfunction has a close association with insulin resistance (IR), there are few studies investigating whether genetic variants of mitochondrial DNA (mtDNA) will affect the clinical characteristics of type 2 diabetes. MATERIALS AND METHODS Mitochondrial haplogroups were determined using mtDNA whole genome next generation sequencing and 13 single nucleotide polymorphisms (SNPs) in nDNA susceptibility loci of 13 genes in 604 Taiwanese subjects with type 2 diabetes. A GRS of nDNA was computed by summation of the number of risk alleles. The correlation between the mtDNA haplogroup and the clinical characteristics of type 2 diabetes was assessed by logistic regression analysis. The results were compared with the GRS subgroups for the risk of insulin requirement. RESULTS Mitochondrial haplogroups modulate the clinical characteristics of type 2 diabetes, in which patients harboring haplogroup D4, compared with those harboring non-D4 haplotypes, were less prone to require insulin treatment, after adjusting for age, gender, and diabetes duration. However, there was no association between insulin requirement and GRS calculated from nuclear genetic variants. CONCLUSIONS Mitochondrial haplogroups, but not nuclear genetic variants, have a better association with the insulin requirement. The results highlight the role of mitochondria in the management of common metabolic diseases.
Collapse
Affiliation(s)
- Feng‐Chih Shen
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - Shao‐Wen Weng
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Meng‐Han Tsai
- Department of NeurologyKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Yu‐Jih Su
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Division of Rheumatology, Allergy, and ImmunologyDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Sung‐Chou Li
- Genomics & Proteomics Core LaboratoryDepartment of Medical ResearchKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - Shun‐Jen Chang
- Department of Kinesiology, Health and Leisure StudiesNational University of KaohsiungTaiwan
| | - Jung‐Fu Chen
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Yen‐Hsiang Chang
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Department of Nuclear MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Chia‐Wei Liou
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Department of NeurologyKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Tsu‐Kung Lin
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Department of NeurologyKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Jiin‐Haur Chuang
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Department of SurgeryKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| | - Ching‐Yi Lin
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - Pei‐Wen Wang
- Division of Endocrinology and MetabolismDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
- Center for Mitochondrial Research and MedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
- Department of Nuclear MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiungTaiwan
| |
Collapse
|
16
|
The association between FTO polymorphisms and type 2 diabetes in Asian populations: A meta-analysis. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
17
|
Jiang HL, Du H, Deng YJ, Liang X. Effect of KCNQ1 rs2237892 polymorphism on the predisposition to type 2 diabetes mellitus: An updated meta-analysis. Diabetol Metab Syndr 2021; 13:75. [PMID: 34238370 PMCID: PMC8264960 DOI: 10.1186/s13098-021-00683-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Previous studies have analyzed the potential effect of KCNQ1 rs2237892 polymorphism on the predisposition to type 2 diabetes mellitus, but the findings are inconclusive and the subject of debate. The purpose of our study was to provide further insight into the potential association between KCNQ1 rs2237892 polymorphism and the risk of type 2 diabetes mellitus. METHODS In total, 50 articles (60 studies) with 77,276 cases and 76,054 controls were utilized in our analysis. The pooled odds ratio (OR), 95% confidence interval (95% CI), and p value were used to evaluate the significance of our findings. Funnel plots and Beggar's regression tests were utilized to determine the presence of publication bias. RESULTS Our meta-analysis results indicated that KCNQ1 rs2237892 polymorphism could be correlated with the risk of type 2 diabetes mellitus under the C allelic, recessive, and dominant genetic models (OR = 1.25, 95% 1.19-1.32, p < 0.001; OR = 1.50, 95% CI 1.34-1.68, p < 0.001; OR = 1.26, 95% CI 1.14-1.40, p < 0.001, respectively). Additionally, ethnicity analysis revealed that the source of control, case size, and Hardy-Weinberg Equilibrium status were correlated to the polymorphism in the three genetic models. CONCLUSIONS Our meta-analysis demonstrated significant evidence to support the association between KCNQ1 rs2237892 polymorphism and predisposition to type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hong-Liang Jiang
- Department of Anorectal Medicine, Gaozhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Gaozhou, 525025, Guangdong, China
| | - Han Du
- Dermatology Department of Gaozhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, No. 32 Maoming Avenue, Gaozhou, 525025, Guangdong, China.
| | - Ying-Jun Deng
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xue Liang
- Department of Science and Education, Gaozhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Gaozhou, 525025, Guangdong, China
| |
Collapse
|
18
|
Zhang Z, Xu L, Xu X. The role of transcription factor 7-like 2 in metabolic disorders. Obes Rev 2021; 22:e13166. [PMID: 33615650 DOI: 10.1111/obr.13166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
Transcription factor 7-like 2 (TCF7L2), a member of the T cell factor/lymphoid enhancer factor family, generally forms a complex with β-catenin to regulate the downstream target genes as an effector of the canonical Wnt signalling pathway. TCF7L2 plays a vital role in various biological processes and functions in many organs and tissues, including the liver, islet and adipose tissues. Further, TCF7L2 down-regulates hepatic gluconeogenesis and promotes lipid accumulation. In islets, TCF7L2 not only affects the insulin secretion of the β-cells but also has an impact on other cells. In addition, TCF7L2 influences adipogenesis in adipose tissues. Thus, an out-of-control TCF7L2 expression can result in metabolic disorders. The TCF7L2 gene is composed of 17 exons, generating 13 different transcripts, and has many single-nucleotide polymorphisms (SNPs). The discovery that these SNPs have an impact on the risk of type 2 diabetes (T2D) has attracted thorough investigations in the study of TCF7L2. Apart from T2D, TCF7L2 SNPs are also associated with type 1, posttransplant and other types of diabetes. Furthermore, TCF7L2 variants affect the progression of other disorders, such as obesity, cancers, metabolic syndrome and heart diseases. Finally, the interaction between TCF7L2 variants and diet also needs to be investigated.
Collapse
Affiliation(s)
- Zhensheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Zhejiang University School of Medicine, Hangzhou, China
| | - Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China.,Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| |
Collapse
|
19
|
Liu JJ, Gurung RL, Liu S, Yiamunaa M, Lee J, Ang K, Tavintharan S, Tang WE, Sum CF, Lim SC. Associations of young onset age and genetic risk of beta cell dysfunction with glycaemic progression in individuals with type 2 diabetes. DIABETES & METABOLISM 2021; 47:101238. [PMID: 33636360 DOI: 10.1016/j.diabet.2021.101238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022]
Abstract
AIM To study the relationship between genetic risk of beta cell dysfunction, young onset age and glycaemic progression in individuals with type 2 diabetes (T2D). MATERIALS AND METHODS 1385 T2D outpatients were included in cross-sectional sub-study and 730 insulin-naïve outpatients were followed for 3 years in prospective sub-study. Genetic risk score (GRS) was derived from 24 beta cell dysfunction-related single nucleotide polymorphisms, with lower and upper 25 percentiles defined as low and high genetic risk. Glycaemic progression was defined as requirement for sustained insulin therapy. RESULTS 388 participants in cross-sectional and 128 in prospective sub-study experienced glycaemic progression. Young onset age (T2D diagnosis below 40 year-old) was associated with high risk of glycaemic progression as compared to usual-onset counterparts (adjusted OR 1.64 [95% CI 1.14-2.36], and 2.92 [95% CI 1.76-4.87] in cross-sectional and prospective sub-study, respectively). As compared to those with intermediate risk, a low GRS was associated with lower risk for glycaemic progression (adjusted OR 0.72 [95% CI 0.49-1.06], and 0.51 [95% CI 0.29-0.90]) whereas a high GRS was not significantly associated with glycaemic progression. Notably, the association of young-onset T2D with high risk of glycaemic progression was independent of known clinical risk factors and beta cell dysfunction GRS (P interaction > 0.10). CONCLUSION Young onset age and low genetic risk of beta cell dysfunction are independently associated with risk of glycaemic progression. Our data do not support that genetic risk modulates the risk of glycaemic progression in individuals with young-onset T2D.
Collapse
Affiliation(s)
- J-J Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, 768828 Singapore
| | - R L Gurung
- Clinical Research Unit, Khoo Teck Puat Hospital, 768828 Singapore
| | - S Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, 768828 Singapore
| | - M Yiamunaa
- Clinical Research Unit, Khoo Teck Puat Hospital, 768828 Singapore
| | - J Lee
- Clinical Research Unit, Khoo Teck Puat Hospital, 768828 Singapore
| | - K Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, 768828 Singapore
| | - S Tavintharan
- Diabetes Centre, Admiralty Medical Centre, 730676 Singapore
| | - W E Tang
- National Healthcare Group Polyclinic, 138543 Singapore
| | - C F Sum
- Diabetes Centre, Admiralty Medical Centre, 730676 Singapore
| | - S-C Lim
- Diabetes Centre, Admiralty Medical Centre, 730676 Singapore; Saw Swee Hock School of Public Heath, 117549 Singapore.
| |
Collapse
|
20
|
Piko P, Werissa NA, Fiatal S, Sandor J, Adany R. Impact of Genetic Factors on the Age of Onset for Type 2 Diabetes Mellitus in Addition to the Conventional Risk Factors. J Pers Med 2020; 11:jpm11010006. [PMID: 33375163 PMCID: PMC7822179 DOI: 10.3390/jpm11010006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that the early detection of type 2 diabetes mellitus (T2DM) is important to prevent the development of complications and comorbidities, as well as premature death. The onset of type 2 diabetes mellitus results from a complex interplay between genetic, environmental, and lifestyle risk factors. Our study aims to evaluate the joint effect of T2DM associated single nucleotide polymorphisms (SNPs) on the age of onset for T2DM in combination with conventional risk factors (such as sex, body mass index (BMI), and TG/HDL-C ratio) in the Hungarian population. This study includes 881 T2DM patients (Case population) and 1415 samples from the Hungarian general population (HG). Twenty-three SNPs were tested on how they are associated with the age of onset for T2DM in the Case population and 12 of them with a certified effect on the age of T2DM onset were chosen for an optimized genetic risk score (GRS) analysis. Testing the validity of the GRS model developed was carried out on the HG population. The GRS showed a significant association with the age of onset for T2DM (β = -0.454, p = 0.001) in the Case population, as well as among T2DM patients in the HG one (β = -0.999, p = 0.003) in the replication study. The higher the GRS, the earlier was the T2DM onset. Individuals with more than eight risk alleles will presumably be diabetic six and a half years earlier than those with less than four risk alleles. Our results suggest that there is a considerable genetic predisposition for the early onset of T2DM; therefore, in addition to conventional risk factors, GRS can be used as a tool for estimating the risk of the earlier onset of T2DM and stratifying populations at risk in order to define preventive interventions.
Collapse
Affiliation(s)
- Peter Piko
- MTA-DE Public Health Research Group, University of Debrecen, 4028 Debrecen, Hungary; (P.P.); (N.A.W.)
| | - Nardos Abebe Werissa
- MTA-DE Public Health Research Group, University of Debrecen, 4028 Debrecen, Hungary; (P.P.); (N.A.W.)
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Szilvia Fiatal
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (S.F.); (J.S.)
| | - Janos Sandor
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (S.F.); (J.S.)
| | - Roza Adany
- MTA-DE Public Health Research Group, University of Debrecen, 4028 Debrecen, Hungary; (P.P.); (N.A.W.)
- Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (S.F.); (J.S.)
- Correspondence: ; Tel.: +36-5251-2764
| |
Collapse
|
21
|
Yamazaki H, Tauchi S, Wang J, Dohke M, Hanawa N, Kodama Y, Katanuma A, Saisho Y, Kamitani T, Fukuhara S, Yamamoto Y. Longitudinal association of fatty pancreas with the incidence of type-2 diabetes in lean individuals: a 6-year computed tomography-based cohort study. J Gastroenterol 2020; 55:712-721. [PMID: 32246380 DOI: 10.1007/s00535-020-01683-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Only a few studies have longitudinally evaluated whether fatty pancreas increases the risk of type-2 diabetes (T2D), and their results were inconsistent. Fatty pancreas is closely linked to overweight and obesity, but previous studies did not exclude overweight or obese individuals. Therefore, in this cohort study, we investigated the association between fatty pancreas and T2D incidence in lean individuals. METHODS Between 2008 and 2013, 1478 nondiabetic lean individuals (i.e. body-mass index < 25 kg/m2) underwent health examinations including computed tomography (CT) and were followed for a median of 6.19 years. Fatty pancreas was evaluated by a histologically-validated method using pancreas attenuation (Hounsfield units [HU]) on CT at baseline; lower pancreas attenuation indicates more pancreatic fat. To detect incident T2D, we used fasting plasma glucose, HbA1c, and self-reports of prescribed anti-diabetes medications. Odds ratios (OR) for the association between pancreas attenuation and incident T2D were estimated using logistic regression models adjusted for likely confounders. RESULTS T2D occurred in 61 participants (4.13%) during the follow-up period. Lower pancreas attenuation (i.e. more pancreatic fat) at baseline was associated with incident T2D (unadjusted OR per 10 HU lower attenuation: 1.56 [95% CI 1.28-1.91], p < 0.001). The multivariable-adjusted analysis revealed a similar association (adjusted OR per 10 HU lower attenuation: 1.32 [95% CI 1.06-1.63], p = 0.012). CONCLUSIONS T2D was likely to develop in lean individuals with the fatty pancreas. Among people who are neither obese nor overweight, the fatty pancreas can be used to define a group at high risk for T2D.
Collapse
Affiliation(s)
- Hajime Yamazaki
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan. .,Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Syogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Shinichi Tauchi
- Department of Radiology, Keijinkai Maruyama Clinic, 3-16, Odori Nishi 26-chome, Chuo-ku, Sapporo, 064-0820, Japan
| | - Jui Wang
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Room 517, No. 17, Xu-Zhou Road, Taipei, 100, Taiwan
| | - Mitsuru Dohke
- Department of Health Checkup and Promotion, Keijinkai Maruyama Clinic, 3-16, Odori Nishi 26-chome, Chuo-ku, Sapporo, 064-0820, Japan
| | - Nagisa Hanawa
- Department of Health Checkup and Promotion, Keijinkai Maruyama Clinic, 3-16, Odori Nishi 26-chome, Chuo-ku, Sapporo, 064-0820, Japan
| | - Yoshihisa Kodama
- Department of Radiology, Teine Keijinkai Hospital, 1-40, 1-jo 12-chome, Maeda, Teine-ku, Sapporo, 006-8555, Japan
| | - Akio Katanuma
- Center for Gastroenterology, Teine Keijinkai Hospital, 1-40, 1-jo 12-chome, Maeda, Teine-ku, Sapporo, 006-8555, Japan
| | - Yoshifumi Saisho
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tsukasa Kamitani
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shunichi Fukuhara
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yosuke Yamamoto
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
22
|
Iwata M, Kamura Y, Honoki H, Kobayashi K, Ishiki M, Yagi K, Fukushima Y, Takano A, Kato H, Murakami S, Higuchi K, Kobashi C, Fukuda K, Koshimizu Y, Tobe K. Family history of diabetes in both parents is strongly associated with impaired residual β-cell function in Japanese type 2 diabetes patients. J Diabetes Investig 2020; 11:564-572. [PMID: 31705736 PMCID: PMC7232274 DOI: 10.1111/jdi.13176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
AIMS/INTRODUCTION The objective of the present study was to clarify the association of the type and number of first-degree family history of diabetes (FHD) with the clinical characteristics, especially with residual β-cell function, in type 2 diabetes patients. MATERIALS AND METHODS A total of 1,131 type 2 diabetes patients were recruited and divided into four groups according to FHD information as follows: (i) patients without FHD (FHD-); (ii) those with at least one sibling who had diabetes without parental diabetes (FHD+); (iii) those with one parent (FHD++); or (iv) those with both parents (FHD+++) who had diabetes with or without a sibling with diabetes. RESULTS The percentages of the FHD-, FHD+, FHD++ and FHD+++ groups were 49.4%, 13.4%, 34.0% and 3.2%, respectively. Patients in the FHD++ and FHD+++ groups were significantly younger at the time of diabetes diagnosis (P < 0.001) than those in the FHD- and FHD+ groups, even after adjusting for confounding factors. In addition, the levels of insulin secretion were significantly lower in the patients in the FHD+, FHD++ and FHD+++ groups than those in the FHD- group (P < 0.05) after adjusting for confounding factors, and the patients in the FHD+++ group presented with the lowest levels of insulin secretion among the four groups. CONCLUSIONS Our results showed that in type 2 diabetes patients, the degree of the associations between FHD and clinical characteristics differs according to the number and the type of FHD. In particular, FHD in both parents is most strongly associated with impaired residual β-cell function.
Collapse
Affiliation(s)
- Minoru Iwata
- First Department of Internal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
- Itoigawa Community Medical UnitToyama University HospitalToyamaJapan
| | - Yutaka Kamura
- First Department of Internal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| | - Hisae Honoki
- First Department of Internal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| | - Kaori Kobayashi
- First Department of Internal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| | - Manabu Ishiki
- First Department of Internal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
- Center for Medical Education and Career DevelopmentUniversity of ToyamaToyamaJapan
| | - Kunimasa Yagi
- First Department of Internal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| | - Yasuo Fukushima
- Department of Internal MedicineAsahi General HospitalAsahi‐machiJapan
| | - Atsuko Takano
- Division of Endocrinology and MetabolismDepartment of Internal MedicineSaiseikai Takaoka HospitalTakaokaJapan
| | - Hiromi Kato
- Department of Internal MedicineJapan Community Health care Organization Takaoka Fushiki HospitalTakaokaJapan
| | - Shihou Murakami
- Division of Endocrinology and MetabolismDepartment of Internal MedicineToyama Rosai HospitalUozuJapan
| | - Kiyohiro Higuchi
- Department of Internal MedicineJA Niigata Kouseiren Itoigawa General HospitalItoigawaJapan
| | - Chikaaki Kobashi
- Department of Internal MedicineKamiichi General HospitalKamiichi‐machiJapan
| | | | | | - Kazuyuki Tobe
- First Department of Internal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| |
Collapse
|
23
|
Li J, Wu W, Stener-Victorin E, Ng EHY, Li RHW, Li M, Liu H, Lai M, Meng Y, Zheng Y, Xia Y, Ma H. A prospective pilot study of the effect of acupuncture on insulin sensitivity in women with polycystic ovary syndrome and insulin resistance. Acupunct Med 2020; 38:310-318. [PMID: 32249617 DOI: 10.1177/0964528420902144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To test the hypothesis that acupuncture improves insulin sensitivity in women with polycystic ovary syndrome (PCOS) and insulin resistance (IR). DESIGN Prospective pilot study. SETTING Guangzhou, China, 2014-2016. PARTICIPANTS Eighty women with PCOS aged 18-40 years with body mass index (BMI) above 18.5 kg/m2 and with homeostatic model assessment for insulin resistance (HOMA-IR) index ⩾2.14. INTERVENTIONS Subjects received acupuncture with combined manual and low-frequency electrical stimulation of the needles three times per week for 6 months. PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome was the change in HOMA-IR after 6 months of acupuncture relative to baseline. Secondary outcomes included changes after 6 months of acupuncture and at 3 months of follow-up (both relative to baseline) in oral glucose tolerance test (OGTT) parameters (glucose and insulin levels), anthropometric measurements, and circulating metabolic and endocrine variables. RESULTS HOMA-IR and fasting plasma glucose and insulin levels were significantly decreased after 6 months of acupuncture, and both HOMA-IR and fasting insulin remained significantly decreased at 3 months of follow-up. In a subgroup analysis of normal-weight and overweight/obese women, HOMA-IR was reduced after 6 months of acupuncture in both subgroups, but there was no significant difference between the two groups. CONCLUSIONS Acupuncture treatment in Chinese women with PCOS and IR was associated with an encouraging improvement in insulin sensitivity. Further randomized controlled studies are required to confirm the efficacy of acupuncture for this indication.
Collapse
Affiliation(s)
- Juan Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanting Wu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Elisabet Stener-Victorin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ernest Hung Yu Ng
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynaecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Raymond Hang Wun Li
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong Special Administrative Region, China.,Key Laboratory of Fertility Regulation, Department of Obstetrics and Gynaecology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Meifang Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hua Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Maohua Lai
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanbing Meng
- Department of Traditional Chinese Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanhua Zheng
- Department of Traditional Chinese Medicine, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yang Xia
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongxia Ma
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
24
|
Thakarakkattil Narayanan Nair A, Donnelly LA, Dawed AY, Gan S, Anjana RM, Viswanathan M, Palmer CNA, Pearson ER. The impact of phenotype, ethnicity and genotype on progression of type 2 diabetes mellitus. Endocrinol Diabetes Metab 2020; 3:e00108. [PMID: 32318630 PMCID: PMC7170456 DOI: 10.1002/edm2.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022] Open
Abstract
AIM To conduct a comprehensive review of studies of glycaemic deterioration in type 2 diabetes and identify the major factors influencing progression. METHODS We conducted a systematic literature search with terms linked to type 2 diabetes progression. All the included studies were summarized based upon the factors associated with diabetes progression and how the diabetes progression was defined. RESULTS Our search yielded 2785 articles; based on title, abstract and full-text review, we included 61 studies in the review. We identified seven criteria for diabetes progression: 'Initiation of insulin', 'Initiation of oral antidiabetic drug', 'treatment intensification', 'antidiabetic therapy failure', 'glycaemic deterioration', 'decline in beta-cell function' and 'change in insulin dose'. The determinants of diabetes progression were grouped into phenotypic, ethnicity and genotypic factors. Younger age, poorer glycaemia and higher body mass index at diabetes diagnosis were the main phenotypic factors associated with rapid progression. The effect of genotypic factors on progression was assessed using polygenic risk scores (PRS); a PRS constructed from the genetic variants linked to insulin resistance was associated with rapid glycaemic deterioration. The evidence of impact of ethnicity on progression was inconclusive due to the small number of multi-ethnic studies. CONCLUSION We have identified the major determinants of diabetes progression-younger age, higher BMI, higher HbA1c and genetic insulin resistance. The impact of ethnicity is uncertain; there is a clear need for more large-scale studies of diabetes progression in different ethnic groups.
Collapse
Affiliation(s)
| | - Louise A. Donnelly
- Population Health & GenomicsSchool of MedicineUniversity of DundeeDundeeUK
| | - Adem Y. Dawed
- Population Health & GenomicsSchool of MedicineUniversity of DundeeDundeeUK
| | - Sushrima Gan
- Population Health & GenomicsSchool of MedicineUniversity of DundeeDundeeUK
| | | | | | - Colin N. A. Palmer
- Population Health & GenomicsSchool of MedicineUniversity of DundeeDundeeUK
| | - Ewan R. Pearson
- Population Health & GenomicsSchool of MedicineUniversity of DundeeDundeeUK
| |
Collapse
|
25
|
Li H, Khor CC, Fan J, Lv J, Yu C, Guo Y, Bian Z, Yang L, Millwood IY, Walters RG, Chen Y, Yuan JM, Yang Y, Hu C, Chen J, Chen Z, Koh WP, Huang T, Li L. Genetic risk, adherence to a healthy lifestyle, and type 2 diabetes risk among 550,000 Chinese adults: results from 2 independent Asian cohorts. Am J Clin Nutr 2020; 111:698-707. [PMID: 31974579 PMCID: PMC7049535 DOI: 10.1093/ajcn/nqz310] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Whether genetic susceptibility to type 2 diabetes is modified by a healthy lifestyle among Chinese remains unknown. OBJECTIVES The aim of the study was to determine whether genetic risk and adherence to a healthy lifestyle contribute independently to the risk of developing type 2 diabetes. METHODS We defined a lifestyle score using BMI, alcohol intake, smoking, physical activities, and diets in 461,030 participants from the China Kadoorie Biobank and 38,434 participants from the Singapore Chinese Health Study. A genetic risk score was constructed based on type 2 diabetes loci among 100,175 and 16,172 participants in each cohort, respectively. A Cox proportional-hazards model was used to estimate the interaction between genetic and lifestyle factors on the risk of type 2 diabetes. RESULTS In 2 independent Asian cohorts, we consistently found a healthy lifestyle (the bottom quintile of lifestyle score) was associated with a substantially lower risk of type 2 diabetes than an unhealthy lifestyle (the top quintile of lifestyle score) regardless of genetic risk. In those at a high genetic risk, the risk of type 2 diabetes was 57% lower among participants with a healthy lifestyle than among those with an unhealthy lifestyle in the pooled cohorts. Among participants at high genetic risk, the standardized 10-y incidence of type 2 diabetes was 7.11% in those with an unhealthy lifestyle vs. 2.45% in those with a healthy lifestyle. CONCLUSIONS In 2 independent cohorts involving 558,302 Chinese participants, we did not observe an interaction between genetics and lifestyle with type 2 diabetes risk, but our findings provide replicable evidence to show lifestyle factors and genetic factors were independently associated with the risk of type 2 diabetes. Within any genetic risk category, a healthy lifestyle was associated with a significantly lower risk of type 2 diabetes among the Chinese population.
Collapse
Affiliation(s)
- Haoxin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Chiea-Chuen Khor
- Genome Institute of Singapore, Singapore
- Singapore Eye Research Institute, Singapore
| | - Junning Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China
- Peking University Institute of Environmental Medicine, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Bian
- Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Yang
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Iona Y Millwood
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Robin G Walters
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Yiping Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Yan Yang
- Huixian People's Hospital, Huixian, Henan, China
| | - Chen Hu
- NCDs Prevention and Control Department, Huixian CDC, Huixian, Henan, China
| | - Junshi Chen
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Woon-Puay Koh
- Health Services and Systems Research, Duke-NUS Medical School, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Kong X, Xing X, Zhang X, Hong J, Yang W. Early-onset type 2 diabetes is associated with genetic variants of β-cell function in the Chinese Han population. Diabetes Metab Res Rev 2020; 36:e3214. [PMID: 31465628 DOI: 10.1002/dmrr.3214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/24/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
Abstract
AIMS To investigate the genetic factors contributing to early-onset type 2 diabetes (EOD) in the Chinese Hans populations. MATERIALS AND METHODS For 2734 newly diagnosed type 2 diabetes patients and 4041 normal glycemic controls, 25 single nucleotide polymorphisms from 24 genomic loci linked to diabetes were successfully genotyped. Three genetic risk scores (GRSs) were constructed, including the weighted type 2 diabetes-related GRS (wT-GRS), the weighted β-cell function-related GRS (wB-GRS), and the weighted GRS constructed by risk alleles not related to β-cell function (wNB-GRS). For patients with diabetes, EOD, middle-age-onset type 2 diabetes (MOD), and late-onset type 2 diabetes (LOD) were defined by onset ages ≤40, 40 to 60, and ≥60 years, respectively. RESULTS From single marker analysis, different gene profiles were identified between EOD and LOD patients. EOD patients had greater wT-GRS and wB-GRS values than LOD patients. After adjustment for sex, elevated wT-GRS and wB-GRS values were significantly associated with an increased risk for EOD by 1.11- and 1.21-fold per allele (P = 1.69 × 10-7 ; 6.07 × 10-8 ). The wT-GRS and wNB-GRS were nominally related to an increased risk of LOD by 1.03-fold per allele (P = 1.03 × 10-2 , 1.78 × 10-2 ). In patients with diabetes, higher wT-GRS and wB-GRS were associated with younger onset age [wT-GRS: β (SE) = -0.0033(0.0016), P = 3.74 × 10-2 ; wB-GRS: -0.0076(0.0028), 7.45 × 10-3 ] and decreased insulinogenic index [wT-GRS: -0.0384(0.0098), 9.39 × 10-5 ; wB-GRS: -0.0722(0.0176), 4.21 × 10-5 ]. CONCLUSION Our findings indicate a strong genetic predisposition for EOD, which can be mainly attributed to genetic variants linked to β-cell function, suggesting the β-cell dysfunction plays a key role in the pathogenesis of EOD in Chinese Han individuals.
Collapse
Affiliation(s)
- Xiaomu Kong
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoyan Xing
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Xuelian Zhang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Jing Hong
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Wenying Yang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
27
|
Yu XX, Liao MQ, Zeng YF, Gao XP, Liu YH, Sun W, Zhu S, Zeng FF, Ye YB. Associations of KCNQ1 Polymorphisms with the Risk of Type 2 Diabetes Mellitus: An Updated Meta-Analysis with Trial Sequential Analysis. J Diabetes Res 2020; 2020:7145139. [PMID: 32695830 PMCID: PMC7362295 DOI: 10.1155/2020/7145139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/10/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Previous studies have examined the role of the KQT-like subfamily Q member1 (KCNQ1) gene polymorphisms on the risk of type 2 diabetes mellitus (T2DM), but the findings are inconclusive. OBJECTIVE To examine the association between the KCNQ1 gene polymorphisms and the risk of T2DM using an updated meta-analysis with an almost tripled number of studies. METHODS Five electronic databases, such as PubMed and Embase, were searched thoroughly for relevant studies on the associations between seven most studied KCNQ1 gene polymorphisms, including rs2237892, rs2237897, rs2237895, rs2283228, rs231362, rs151290, and rs2074196, and T2DM risk up to September 14, 2019. The summary odds ratios (ORs) with their 95% confidence intervals (CIs) were applied to assess the strength of associations in the random-effects models. We used the trial sequential analysis (TSA) to measure the robustness of the evidence. RESULTS 49 publications including 55 case-control studies (68,378 cases and 66,673 controls) were finally enrolled. In overall analyses, generally, increased T2DM risk was detected for rs2237892, rs2237895, rs2283228, rs151290, and rs2074196, but not for rs231362 under all genetic models. The ORs and 95% CIs for allelic comparison were 1.23 (1.14-1.33) for rs2237892, 1.21 (1.16-1.27) for rs2237895, 1.27 (1.11-1.46) for rs2237897, 1.25 (1.09-1.42) for rs2283228, 1.14 (1.03-1.27) for rs151290, 1.31 (1.23-1.39) for rs2074196, and 1.16 (0.83, 1.61) for rs231362. Stratified analyses showed that associations for rs2237892, rs2237895, rs2283228, and rs151290 were more evident among Asians than Caucasians. TSA demonstrated that the evidence was sufficient for all polymorphisms in this study. The genotypes of the three SNPs (rs2237892, rs2283228, and rs231362) were significantly correlated with altered KCNQ1 gene expression. CONCLUSION This meta-analysis suggested that KCNQ1 gene polymorphisms (rs2237892, rs2283228, rs2237895, rs151290, and rs2074196) might be the susceptible factors for T2DM, especially among Asian population.
Collapse
Affiliation(s)
- Xiao-xuan Yu
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou, 510632 Guangdong, China
| | - Min-qi Liao
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou, 510632 Guangdong, China
| | - Yu-fei Zeng
- Department of Obstetrics and Gynecology, Shangrao Fifth People's Hospital, Shangrao, Jiangxi 334000, China
| | - Xu-ping Gao
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou, 510632 Guangdong, China
| | - Yan-hua Liu
- The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052 Henan, China
| | - Wei Sun
- Customs Comprehensive Laboratory, Baiyun International Airport Customs, Hengyi Road, Guangzhou, 510080 Guangdong, China
| | - Sui Zhu
- Department of Medical Statistics, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou, 510632 Guangdong, China
| | - Fang-fang Zeng
- Department of Epidemiology, School of Medicine, Jinan University, No. 601 Huangpu Road West, Guangzhou, 510632 Guangdong, China
| | - Yan-bin Ye
- Department of Nutrition, The First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Road 2, Guangzhou, 510080 Guangdong, China
| |
Collapse
|
28
|
Li J, Sun S, Wang X, Li Y, Zhu H, Zhang H, Deng A. A Missense Mutation in IRS1 is Associated with the Development of Early-Onset Type 2 Diabetes. Int J Endocrinol 2020; 2020:9569126. [PMID: 32411229 PMCID: PMC7204210 DOI: 10.1155/2020/9569126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/14/2019] [Accepted: 11/23/2019] [Indexed: 12/18/2022] Open
Abstract
There could be an overlap of monogenic diabetes and early-onset type 2 diabetes mellitus. Precise diagnosis of early-onset diabetes has proven valuable for understanding the mechanism of diabetes and selecting optimal therapy. The majority of maturity onset diabetes of the young (MODY) pathogenic genes in China is still unknown. In this study, a family with suspected MODY was enrolled. Whole-exome sequencing (WES) was used to analyze the variants of the proband. Variants were filtered according to their frequency, location, functional consequences, and bioinformatics software. Candidate pathogenic variants were validated by Sanger sequencing and tested for cosegregation in other members of the family and nonrelated healthy controls. KEGG (Kyoto Encyclopedia of Genes and Genomes) and PPI (protein-protein interaction) analysis were conducted using the DAVID (Database for Annotation, Visualization, and Integrated Discovery) and the STRING online analysis tools for the candidate pathogenic gene. A total of 123291 variants including 105344 SNPs and 17947 InDels were found in WES. A likely pathogenic rare missense heterozygous mutation in diabetes genes (c.2137C > T, p.His713Tyr in IRS1) was identified, which was a cosegregate in this family and not in nonrelated healthy controls. The position of the mutation in the aminoacid sequence of the gene is highly conserved among the species. 2 significantly enriched KEGG pathways were identified including bta04930, type II diabetes mellitus (GCK, INS, PDX1, ABCC8, and IRS1), and bta04910, insulin signaling pathway (GCK, INS, and IRS1). PPI analysis displayed that IRS1 interacts with 3 known pathogenic proteins including INS, KCNJ11, and GCK. We conclude that WES could be an initial option for genetic testing in patients with early-onset diabetes. IRS1 p.His713Tyr is implicated as a possible pathogenic mutation in monogenic diabetes, which might require further validation, and the precise molecular mechanism underlying the influence of IRS1 p.His713Tyr on the development of diabetes remains to be determined in the further prospective studies.
Collapse
Affiliation(s)
- Juyi Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 21 Shengli Road, 430021 Wuhan, Hubei, China
| | - Shan Sun
- Department of General Practice, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 21 Shengli Road, 430021 Wuhan, Hubei, China
| | - Xiufang Wang
- Department of Pain, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 21 Shengli Road, 430021 Wuhan, Hubei, China
| | - Yarong Li
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 21 Shengli Road, 430021 Wuhan, Hubei, China
| | - Hong Zhu
- Department of General Practice, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 21 Shengli Road, 430021 Wuhan, Hubei, China
| | - Hongmei Zhang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 21 Shengli Road, 430021 Wuhan, Hubei, China
| | - Aiping Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 21 Shengli Road, 430021 Wuhan, Hubei, China
| |
Collapse
|
29
|
Systematic analysis of genes and diseases using PheWAS-Associated networks. Comput Biol Med 2019; 109:311-321. [PMID: 31128465 DOI: 10.1016/j.compbiomed.2019.04.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 02/08/2023]
|
30
|
Stener-Victorin E, Zhang H, Li R, Friden C, Li D, Wang W, Wang H, Chang C, Li S, Huo Z, Zhang H, Ji X, Linden-Hirschberg A, Qiao J. Acupuncture or metformin to improve insulin resistance in women with polycystic ovary syndrome: study protocol of a combined multinational cross sectional case-control study and a randomised controlled trial. BMJ Open 2019; 9:e024733. [PMID: 30612112 PMCID: PMC6326273 DOI: 10.1136/bmjopen-2018-024733] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is linked to hyperinsulinemia and insulin resistance with dysfunctional glucose metabolism. Pilot studies suggests that acupuncture treatment with combined manual and low-frequency electrical stimulation (electroacupuncture (EA)) of the needles decrease circulating glycated haemoglobulin (HbA1c) and homeostatic model assessment-insulin resistance. Therefore, we here aim to investigate if acupuncture treatment or metformin together with lifestyle or lifestyle management alone improves insulin sensitivity and related symptoms in overweight/obese women with PCOS. METHODS AND ANALYSIS This is a two-centre multinational (Sweden and China), cross-sectional case-control study combined with an open-labelled randomised controlled trial (RCT). Participants are randomised to one of three groups: (1) EA 2-3 times/week during 4 months+lifestyle management; (2) metformin, 500 mg, three/day during 4 months+lifestyle management; or (3) lifestyle management alone. The primary outcome measure in the RCT is changes in HbA1C. A total of 123 obese overweight women with PCOS will be enrolled and randomised into one of the three groups with a target power of at least 80% and 5% significance level based on two-sided tests. ETHICS AND DISSEMINATION The study has been approved by the Regional Ethical Review Board of Stockholm and of Peking University Third Hospital, China. Primary outcome data of the RCT will be published in a relevant journal together with supporting secondary outcome measurements. Further, outcome measurements will be published in separate papers as well as case-control data. EXPECTED RESULTS We anticipate that EA and metformin, both with lifestyle management, are equally effective and superior to lifestyle management alone for improvement of glycaemic control. TRIAL REGISTRATION NUMBERS NCT02647827 and EudraCT2015-004250-18.
Collapse
Affiliation(s)
| | - Haolin Zhang
- Department of Traditional Chinese Medicine (TCM), Peking University Third Hospital, Beijing, China
| | - Rong Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Cecilia Friden
- Department of Neurobiology, Care Sciences and Society, Division of Physiotherapy, Karolinska Institutet, Huddinge, Sweden
| | - Dong Li
- Department of Traditional Chinese Medicine (TCM), Peking University Third Hospital, Beijing, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Haining Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Cuiqing Chang
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Shi Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - ZeJun Huo
- Department of Traditional Chinese Medicine (TCM), Peking University Third Hospital, Beijing, China
| | - Hua Zhang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, Beijing, China
| | - Xiaolan Ji
- Department of Traditional Chinese Medicine (TCM), Peking University Third Hospital, Beijing, China
| | | | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
31
|
Wei L, Xiao Y, Li L, Xiong X, Han Y, Zhu X, Sun L. The Susceptibility Genes in Diabetic Nephropathy. KIDNEY DISEASES 2018; 4:226-237. [PMID: 30574499 DOI: 10.1159/000492633] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022]
Abstract
Background Diabetes mellitus (DM) poses a severe threat to global public health. Diabetic nephropathy (DN) is one of the most common complications of diabetes and the leading cause of end-stage renal disease (ESRD). Approximately 30-40% of DM patients in the world progress to ESRD, which emphasizes the effect of genetic factors on DN. Family clustering also supports the important role of hereditary factors in DN and ESRD. Therefore, a large number of genetic studies have been carried out to identify susceptibility genes in different diabetic cohorts. Extensive susceptibility genes of DN and ESRD have not been identified until recently. Summary and Key Messages Some of these associated genes function as pivotal regulators in the pathogenesis of DN, such as those related to glycometabolism and lipid metabolism. However, the functions of most of these genes remain unclear. In this article, we review several susceptibility genes according to their genetic functions to make it easier to determine their exact effect on DN and to provide a better understanding of the advancements from genetic studies. However, several challenges associated with investigating the genetic factors of DN still exist. For instance, it is difficult to determine whether these variants affect the expression of the protein they encode or other cytokines. More efforts should be made to determine how these genes influence the progression of DN. In addition, many results could not be replicated among races, suggesting that the association between genetic polymorphisms and DN is race-specific. Therefore, large, well-designed studies involving more relevant variables and ethnic groups and more relevant functional studies are urgently needed. These studies may be beneficial and retard the progression of DN by early intervention, especially for patients who carry certain risk alleles or genotypes.
Collapse
Affiliation(s)
- Ling Wei
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying Xiao
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Li
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaofen Xiong
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yachun Han
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuejing Zhu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Pirola CJ, Flichman D, Dopazo H, Fernández Gianotti T, San Martino J, Rohr C, Garaycoechea M, Gazzi C, Castaño GO, Sookoian S. A Rare Nonsense Mutation in the Glucokinase Regulator Gene Is Associated With a Rapidly Progressive Clinical Form of Nonalcoholic Steatohepatitis. Hepatol Commun 2018; 2:1030-1036. [PMID: 30202818 PMCID: PMC6128235 DOI: 10.1002/hep4.1235] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/20/2018] [Indexed: 12/23/2022] Open
Abstract
We report on the presence of a rare nonsense mutation (rs149847328, p.Arg227Ter) in the glucokinase regulator (GCKR) gene in an adult patient with nonalcoholic fatty liver disease (NAFLD), morbid obesity, and type 2 diabetes; this patient developed a progressive histological form of the disease. Analysis of paired (5 years apart) liver biopsies (at baseline and follow‐up) showed progression of simple steatosis to severe nonalcoholic steatohepatitis and cirrhosis. Study design involved an initial exploration that consisted of deep sequencing of 14 chromosomal regions in 96 individuals (64 of whom were patients with NAFLD who were diagnosed by liver biopsy that showed the full spectrum of histological severity). We further performed a replication study to explore the presence of rs149847328 that included a sample of 517 unrelated individuals in a case‐control study (n = 390), including patients who were morbidly obese (n = 127). Exploration of sequence variation by next‐generation sequencing of exons, exon–intron boundaries, and 5′ and 3′ untranslated regions of 14 genomic loci that encode metabolic enzymes of the tricarboxylic acid cycle revealed the presence of heterozygosity for the p.Arg227Ter mutation, the frequency of which is 0.0003963 (4:10,000; Exome Aggregation Consortium database). GCKR protein expression was markedly decreased in the liver of the affected patient compared with patients with NAFLD who carry the wild‐type allele. Sequencing of the same 14 genomic loci in 95 individuals failed to reveal the rare mutation. The rarity of p.Arg227Ter was confirmed in a more extensive screening. Conclusion: While rare variants/mutations are difficult to detect in even reasonably large samples (frequency of the mutant allele of p.Arg227Ter was ~1:1,000 in our data set), the presence of this mutation should be suspected as potentially associated with NAFLD, particularly in young adults at the extreme of histological phenotypes. Hepatology Communications 2018;0:0‐0)
Collapse
Affiliation(s)
- Carlos J Pirola
- Institute of Medical Research A. Lanari University of Buenos Aires Buenos Aires Argentina.,Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research National Scientific and Technical Research Council-University of Buenos Aires Buenos Aires Argentina
| | - Diego Flichman
- Department of Virology, School of Pharmacy and Biochemistry University of Buenos Aires Buenos Aires Argentina
| | - Hernán Dopazo
- Biomedical Genomics and Evolution Laboratory, Ecology, Genetics, and Evolution Department, Faculty of Science Institute of Ecology, Genetics, and Evolution of Buenos Aires, National Scientific and Technical Research Council-University of Buenos Aires Buenos Aires Argentina
| | - Tomas Fernández Gianotti
- Department of Molecular Genetics and Biology of Complex Diseases, Institute of Medical Research National Scientific and Technical Research Council-University of Buenos Aires Buenos Aires Argentina
| | - Julio San Martino
- Department of Pathology, Hospital Diego Thompson, San Martin Buenos Aires Argentina
| | - Cristian Rohr
- Biomedical Genomics and Evolution Laboratory, Ecology, Genetics, and Evolution Department, Faculty of Science Institute of Ecology, Genetics, and Evolution of Buenos Aires, National Scientific and Technical Research Council-University of Buenos Aires Buenos Aires Argentina
| | - Martin Garaycoechea
- Deparment of Surgery and the Center for Translational Medicine Excellence Hospital de Alta Complejidad en Red "El Cruce," Florencio Varela Buenos Aires Argentina
| | - Carla Gazzi
- Pathology Department, Institute of Medical Research A. Lanari University of Buenos Aires Buenos Aires Argentina
| | - Gustavo O Castaño
- Liver Unit, Medicine and Surgery Department Hospital Abel Zubizarreta Buenos Aires Argentina
| | - Silvia Sookoian
- Institute of Medical Research A. Lanari University of Buenos Aires Buenos Aires Argentina.,Department of Clinical and Molecular Hepatology, Institute of Medical Research National Scientific and Technical Research Council-University of Buenos Aires Buenos Aires Argentina
| |
Collapse
|
33
|
Kuo CC, Su PH, Sun CW, Liu HJ, Chang CL, Wang SL. Early-life arsenic exposure promotes atherogenic lipid metabolism in adolescence: A 15-year birth cohort follow-up study in central Taiwan. ENVIRONMENT INTERNATIONAL 2018; 118:97-105. [PMID: 29859944 DOI: 10.1016/j.envint.2018.05.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Inorganic arsenic (iAs) exposure potentially causes diabetes and cardiovascular diseases in adults. However, its effect on glucose and lipid metabolism in early life remains unknown. OBJECTIVE We evaluated the associations between early-life arsenic exposure and profiles of glucose and lipids in a 15-year birth cohort in central Taiwan. METHODS We studied 237 adolescents through 5 waves of follow-up interviews and examinations at ages of approximately 2, 5, 8, 11, and 14 y. We obtained at least one follow-up urine measurement for arsenic species and blood sample collection up to 14 y of age and identified group-based trajectories of serial iAs by semiparametric mixture modeling. Multiple linear and logistic regressions were performed to assess the effect of the arsenic exposure trajectory on serum fasting glucose, total cholesterol (TCHO), triglycerides (TGs), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL). RESULTS Three trajectories of postnatal arsenic exposure were identified, namely stable-low (31.4%), stable-high (48.2%), and rising-high (20.4%) groups. Compared with the stable-low trajectory group, the percent changes in TCHO and LDL was 14% (95% confidence interval 4-24%) and 23% (9-38%) for the group with "rising-high" trajectory and was 8% (-1-16%) and 16% (4-29%) for the group with "stable-high" trajectory. The rising-high group was also associated with an increase in the TCHO/HDL ratio by 14% (95% CI 3%-25%). The adjusted odds ratios of high developmental trajectories of TCHO, TG, LDL, and non-HDL levels were 4.0 (95% CI 1.2-13.7), 12.2 (2.2-67), 7.3 (1.8-30), and 3.6 (0.9-14.6), respectively, in the rising-high group (reference: stable-low group). CONCLUSION Our findings suggest that conversion to an atherogenic lipid profile in adolescents may be associated with early-life exposure to environmental arsenic, particularly during the pre-adolescent period. An environmental modification approach for preventing As-related cardiovascular disease is recommended to begin early in life.
Collapse
Affiliation(s)
- Chin-Chi Kuo
- Kidney Institute and Division of Nephrology, Department of Internal Medicine, China Medical University Hospital and College of Medicine, China Medical University, Taichung, Taiwan; Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Pen-Hua Su
- Department of Pediatrics, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Wen Sun
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Huei-Ju Liu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chaw-Liang Chang
- Department of Pediatrics, Cathay General Hospital, Hsinchu, Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Shu-Li Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; School of Public Health, National Defense Medical Center, Taipei, Taiwan; Department of Safety, Health, and Environmental Engineering, National United University, Miaoli, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
34
|
Iwata M, Hara K, Kamura Y, Honoki H, Fujisaka S, Ishiki M, Usui I, Yagi K, Fukushima Y, Takano A, Kato H, Murakami S, Higuchi K, Kobashi C, Fukuda K, Koshimizu Y, Tobe K. Ratio of low molecular weight serum adiponectin to the total adiponectin value is associated with type 2 diabetes through its relation to increasing insulin resistance. PLoS One 2018; 13:e0192609. [PMID: 29494595 PMCID: PMC5832218 DOI: 10.1371/journal.pone.0192609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/27/2018] [Indexed: 01/14/2023] Open
Abstract
AIM Among the three adiponectin isoforms, a lower ratio of high molecular weight (HMW) adiponectin to total adiponectin (TA) is well known to cause insulin resistance and type 2 diabetes (T2D). However, how the levels of other adiponectin isoforms, such as the middle molecular weight (MMW) and low molecular weight (LMW) isoforms, and their relative ratio to TA change in T2D subjects has not been determined. Therefore, we investigated the association of these adiponectin-related parameters with T2D. METHODS We examined the associations between adiponectin-related parameters and diabetes in a group of 394 T2D subjects and 374 controls (1st group) randomly selected from among the participants in our previous study. The associations between these parameters and the HOMA-IR in a 2nd group, consisting of the subjects remaining in the 1st group after the exclusion of subjects receiving diabetic medication, were also examined. RESULT In the 1st group, after adjusting for confounding factor, the levels of all the adiponectin isoforms and the HMW/TA ratio were significantly lower among the diabetic subjects than among the controls (all P values < 0.01). On the contrary, the LMW/TA ratio was significantly higher among the diabetic subjects (P < 0.01) and was positively associated with T2D (odds ratio = 8.64, P < 0.01). In the 2nd group, the HMW/TA ratio was inversely associated with the HOMA-IR; however, the LMW/TA ratio was positively associated with the HOMA-IR (β for LMW/TA ratio = 0.89, SE = 0.24, P < 0.001), similar to the association with T2D. The MMW/TA ratio was not associated with T2D or the HOMA-IR. CONCLUSION The current investigation demonstrated that, unlike the reduction in the levels of all the adiponectin isoforms and the HMW/TA ratio, an increased LMW/TA ratio was associated with T2D through its relation to insulin resistance.
Collapse
Affiliation(s)
- Minoru Iwata
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
- Health Administration Center, University of Toyama, Toyama, Toyama, Japan
| | - Kazuo Hara
- Division of Endocrinology and Metabolism, Department of Comprehensive Medicine, Saitama Medical Center, Jichi Medical University, Omiya-ku, Saitama, Japan
- Department of Diabetology, Endocrinology and Metabolism, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Yutaka Kamura
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Hisae Honoki
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Shiho Fujisaka
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Manabu Ishiki
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Isao Usui
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Kunimasa Yagi
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | - Yasuo Fukushima
- Department of Internal Medicine, Asahi General Hospital, Asahi-machi, Toyama, Japan
| | - Atsuko Takano
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Saiseikai Takaoka Hospital, Takaoka, Toyama, Japan
| | - Hiromi Kato
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Japan Community Health care Organization Takaoka Fushiki Hospital, Takaoka, Toyama, Japan
| | - Shihou Murakami
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Toyama Rosai Hospital, Uozu, Toyama, Japan
| | - Kiyohiro Higuchi
- Department of Internal Medicine, JA Niigata Kouseiren Itoigawa General Hospital, Itoigawa, Niigata, Japan
| | - Chikaaki Kobashi
- Department of Internal Medicine, Kamiichi General Hospital, Kamiichi-machi, Toyama, Japan
| | - Kazuhito Fukuda
- Department of Internal Medicine, Fukuda Clinic, Himi, Toyama, Japan
| | - Yukiko Koshimizu
- Department of Internal Medicine, Urata Clinic, Kanazawa, Ishikawa, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| |
Collapse
|
35
|
Kodama S, Fujihara K, Ishiguro H, Horikawa C, Ohara N, Yachi Y, Tanaka S, Shimano H, Kato K, Hanyu O, Sone H. Quantitative Relationship Between Cumulative Risk Alleles Based on Genome-Wide Association Studies and Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. J Epidemiol 2017; 28:3-18. [PMID: 29093303 PMCID: PMC5742374 DOI: 10.2188/jea.je20160151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many epidemiological studies have assessed the genetic risk of having undiagnosed or of developing type 2 diabetes mellitus (T2DM) using several single nucleotide polymorphisms (SNPs) based on findings of genome-wide association studies (GWAS). However, the quantitative association of cumulative risk alleles (RAs) of such SNPs with T2DM risk has been unclear. The aim of this meta-analysis is to review the strength of the association between cumulative RAs and T2DM risk. Systematic literature searches were conducted for cross-sectional or longitudinal studies that examined odds ratios (ORs) for T2DM in relation to genetic profiles. Logarithm of the estimated OR (log OR) of T2DM for 1 increment in RAs carried (1-ΔRA) in each study was pooled using a random-effects model. There were 46 eligible studies that included 74,880 cases among 249,365 participants. In 32 studies with a cross-sectional design, the pooled OR for T2DM morbidity for 1-ΔRA was 1.16 (95% confidence interval [CI], 1.13–1.19). In 15 studies that had a longitudinal design, the OR for incident T2DM was 1.10 (95% CI, 1.08–1.13). There was large heterogeneity in the magnitude of log OR (P < 0.001 for both cross-sectional studies and longitudinal studies). The top 10 commonly used genes significantly explained the variance in the log OR (P = 0.04 for cross-sectional studies; P = 0.006 for longitudinal studies). The current meta-analysis indicated that carrying 1-ΔRA in T2DM-associated SNPs was associated with a modest risk of prevalent or incident T2DM, although the heterogeneity in the used genes among studies requires us to interpret the results with caution.
Collapse
Affiliation(s)
- Satoru Kodama
- Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Niigata University Graduate School of Medical and Dental Sciences
| | - Kazuya Fujihara
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Hajime Ishiguro
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Chika Horikawa
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture
| | - Nobumasa Ohara
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Yoko Yachi
- Department of Administrative Dietetics, Faculty of Health and Nutrition, Yamanashi Gakuin University
| | - Shiro Tanaka
- Department of Clinical Trial, Design & Management, Translational Research Center, Kyoto University Hospital
| | - Hitoshi Shimano
- Department of Internal Medicine, University of Tsukuba Institute of Clinical Medicine
| | - Kiminori Kato
- Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Niigata University Graduate School of Medical and Dental Sciences
| | - Osamu Hanyu
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| |
Collapse
|
36
|
Nikitin AG, Potapov VY, Brovkina OI, Koksharova EO, Khodyrev DS, Philippov YI, Michurova MS, Shamkhalova MS, Vikulova OK, Smetanina SA, Suplotova LA, Kononenko IV, Kalashnikov VY, Smirnova OM, Mayorov AY, Nosikov VV, Averyanov AV, Shestakova MV. Association of polymorphic markers of genes FTO, KCNJ11, CDKAL1, SLC30A8, and CDKN2B with type 2 diabetes mellitus in the Russian population. PeerJ 2017; 5:e3414. [PMID: 28717589 PMCID: PMC5511504 DOI: 10.7717/peerj.3414] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/14/2017] [Indexed: 01/11/2023] Open
Abstract
Background The association of type 2 diabetes mellitus (T2DM) with the KCNJ11, CDKAL1, SLC30A8, CDKN2B, and FTO genes in the Russian population has not been well studied. In this study, we analysed the population frequencies of polymorphic markers of these genes. Methods The study included 862 patients with T2DM and 443 control subjects of Russian origin. All subjects were genotyped for 10 single nucleotide polymorphisms (SNPs) of the genes using real-time PCR (TaqMan assays). HOMA-IR and HOMA-β were used to measure insulin resistance and β-cell secretory function, respectively. Results The analysis of the frequency distribution of polymorphic markers for genes KCNJ11, CDKAL1, SLC30A8 and CDKN2B showed statistically significant associations with T2DM in the Russian population. The association between the FTO gene and T2DM was not statistically significant. The polymorphic markers rs5219 of the KCNJ11 gene, rs13266634 of the SLC30A8 gene, rs10811661 of the CDKN2B gene and rs9465871, rs7756992 and rs10946398 of the CDKAL1 gene showed a significant association with impaired glucose metabolism or impaired β-cell function. Conclusion In the Russian population, genes, which affect insulin synthesis and secretion in the β-cells of the pancreas, play a central role in the development of T2DM.
Collapse
Affiliation(s)
- Aleksey G Nikitin
- Federal Research Clinical Center for Specialized Types of Health Care and Medical Technologies of Federal Medical and Biology Agency, Moscow, Russian Federation
| | - Viktor Y Potapov
- Clinic of New Medical Technologies "Archimedes", Moscow, Russian Federation
| | - Olga I Brovkina
- Federal Research Clinical Center for Specialized Types of Health Care and Medical Technologies of Federal Medical and Biology Agency, Moscow, Russian Federation
| | | | - Dmitry S Khodyrev
- Federal Research Clinical Center for Specialized Types of Health Care and Medical Technologies of Federal Medical and Biology Agency, Moscow, Russian Federation
| | | | | | | | - Olga K Vikulova
- Endocrinology Research Centre, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | | | - Irina V Kononenko
- Endocrinology Research Centre, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Olga M Smirnova
- Endocrinology Research Centre, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Alexander Y Mayorov
- Endocrinology Research Centre, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Valery V Nosikov
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow, Russian Federation
| | - Alexander V Averyanov
- Federal Research Clinical Center for Specialized Types of Health Care and Medical Technologies of Federal Medical and Biology Agency, Moscow, Russian Federation
| | - Marina V Shestakova
- Endocrinology Research Centre, Moscow, Russian Federation.,I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
37
|
Li J, Ng EHY, Stener-Victorin E, Hu Z, Shao X, Wang H, Li M, Lai M, Xie C, Su N, Yu C, Liu J, Wu T, Ma H. Acupuncture treatment for insulin sensitivity of women with polycystic ovary syndrome and insulin resistance: a study protocol for a randomized controlled trial. Trials 2017; 18:115. [PMID: 28274268 PMCID: PMC5343367 DOI: 10.1186/s13063-017-1854-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/17/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our prospective pilot study of acupuncture affecting insulin sensitivity on polycystic ovary syndrome (PCOS) combined with insulin resistance (IR) showed that acupuncture had a significant effect on improving the insulin sensitivity of PCOS. But there is still no randomized controlled trial to determine the effect of acupuncture on the insulin sensitivity in women with PCOS and IR. In this article, we present the protocol of a randomized controlled trial to compare the effect of true acupuncture on the insulin sensitivity of these patients compared with metformin and sham acupuncture. Acupuncture may be an effective therapeutic alternative that is superior to metformin and sham acupuncture in improving the insulin sensitivity of PCOS combined with IR. METHODS This study is a multi-center, controlled, double-blind, and randomized clinical trial aiming to evaluate the effect of acupuncture on the insulin sensitivity in PCOS combined with IR. In total 342 patients diagnosed with PCOS and IR will be enrolled. Participants will be randomized to one of the three groups: (1) true acupuncture + metformin placebo; (2) sham acupuncture + metformin, and (3) sham acupuncture + metformin placebo. Participants and assessors will be blinded. The acupuncture intervention will be given 3 days per week for a total of 48 treatment sessions during 4 months. Metformin (0.5 g per pill) or placebo will be given, three times per day, and for 4 months. Primary outcome measures are changes in homeostasis model assessment of insulin resistance (HOMA-IR) and improvement rate of HOMA-IR by oral glucose tolerance test (OGTT) and insulin releasing test (Ins). Secondary outcome measures are homeostasis model assessment-β (HOMA-β), area under the curve for glucose and insulin, frequency of regular menstrual cycles and ovulation, body composition, metabolic profile, hormonal profile, questionnaires, side effect profile, and expectation and credibility of treatment. Outcome measures are collected at baseline, at the end of treatments, and 3 months after the last acupuncture treatment. On completion of the screening visit, randomization will be conducted using a central randomization system. DISCUSSION This study will investigate the effects of acupuncture on the insulin sensitivity of PCOS and IR women compared with metformin and sham acupuncture. We will test whether true acupuncture with needles placed in skeletal muscles and stimulated manually and by electrical stimulation is more effective than metformin and sham acupuncture with superficial needle placement with no manual or electrical stimulation in improving the insulin sensitivity in PCOS women with IR. TRIAL REGISTRATION ClinicalTrials.gov, NCT02491333 ; Chinese Clinical Trial Registry, ChiCTR-ICR-15006639. Registered on 24 June 2015.
Collapse
Affiliation(s)
- Juan Li
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ernest Hung Yu Ng
- Department of Obstetrics and Gynecology, the University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | | | - Zhenxing Hu
- Department of Gynecology, Xuzhou Maternity & Child Health Hospital, Xuzhou, China
| | - Xiaoguang Shao
- Reproductive and Genetic Medical Center, Dalian Municipal Women and Children’s Medical Center, Dalian, China
| | - Haiyan Wang
- Reproductive and Genetic Medical Center, Dalian Municipal Women and Children’s Medical Center, Dalian, China
| | - Meifang Li
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Maohua Lai
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changcai Xie
- Department of Acupuncture and Moxibustion, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Nianjun Su
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhouᅟ, China
| | - Chuyi Yu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jia Liu
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Taixiang Wu
- Chinese Clinical Trial Registry, Beijing, China
| | - Hongxia Ma
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
38
|
Yang Y, Liu B, Xia W, Yan J, Liu HY, Hu L, Liu SM. FTO Genotype and Type 2 Diabetes Mellitus: Spatial Analysis and Meta-Analysis of 62 Case-Control Studies from Different Regions. Genes (Basel) 2017; 8:E70. [PMID: 28208657 PMCID: PMC5333059 DOI: 10.3390/genes8020070] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 02/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a global health problem that results from the interaction of environmental factors with genetic variants. Although a number of studies have suggested that genetic polymorphisms in the fat mass and obesity-associated (FTO) gene are associated with T2DM risk, the results have been inconsistent. To investigate whether FTO polymorphisms associate with T2DM risk and whether this association is region-related, we performed this spatial analysis and meta-analysis. More than 60,000 T2DM patients and 90,000 controls from 62 case-control studies were included in this study. Odds ratios (ORs), 95% confidence intervals (CIs) and Moran's I statistic were used to estimate the association between FTO rs9939609, rs8050136, rs1421085, and rs17817499, and T2DM risk in different regions. rs9939609 (OR = 1.15, 95% CI 1.11-1.19) and rs8050136 (OR = 1.14, 95% CI 1.10-1.18) conferred a predisposition to T2DM. After adjustment for body mass index (BMI), the association remained statistically significant for rs9939609 (OR = 1.11, 95% CI 1.05-1.17) and rs8050136 (OR = 1.08, 95% CI 1.03-1.12). In the subgroup analysis of rs9939609 and rs8050136, similar results were observed in East Asia, while no association was found in North America. In South Asia, an association for rs9939609 was revealed but not for rs8050136. In addition, no relationship was found with rs1421085 or rs17817499 regardless of adjustment for BMI. Moran's I statistic showed that significant positive spatial autocorrelations existed in rs9939609 and rs8050136. Studies on rs9939609 and rs8050136 focused on East Asia and South Asia, whereas studies on rs1421085 and rs17817499 were distributed in North America and North Africa. Our data suggest that the associations between FTO rs9939609, rs8050136 and T2DM are region-related, and the two single-nucleotide polymorphisms contribute to an increased risk of T2DM. Future studies should investigate this issue in more regions.
Collapse
Affiliation(s)
- Ying Yang
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.
| | - Boyang Liu
- Department of Geography, Wilkeson Hall, State University of New York at Buffalo, Buffalo, NY 14261, USA.
| | - Wei Xia
- Department of Clinical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China.
| | - Jing Yan
- Hubei Meteorological Information and Technology Support Center, Wuhan 430074, China.
| | - Huan-Yu Liu
- Department of Clinical Medicine, Hubei University of Medicine, Hubei 442000, China.
| | - Ling Hu
- Department of Neurology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China.
| | - Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Donghu Road 169#, Wuhan 430071, China.
| |
Collapse
|
39
|
Ichikawa T, Taura N, Miyaaki H, Miuma S, Shibata H, Honda T, Hidaka M, Soyama A, Takatsuki M, Eguchi S, Nakao K. β-cell function prior to liver transplantation contributes to post-operative diabetes. Biomed Rep 2017; 5:749-757. [PMID: 28101345 DOI: 10.3892/br.2016.788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022] Open
Abstract
Liver cirrhosis and diabetes mellitus (DM) are closely associated. The present study aimed to determine whether liver transplantation (LT) may prevent/cure DM in patients with cirrhosis and whether the degree of glucose tolerance prior to transplantation is associated with the onset of DM after transplantation. Seventy-three patients who received a living donor LT at Nagasaki University Hospital (Nagasaki, Japan) between November 2005 and December 2012 were recruited. Among them, patients were considered diabetic if they had been prescribed diabetes medications or had impaired glucose tolerance, as evidenced by an oral glucose tolerance test (OGTT). Patients were followed up until December 31, 2013 to evaluate glucose tolerance. Patients who had developed DM 2 years after transplantation were found to be older and the incidence of diabetes prior to transplantation (n=73) was higher than in those who did not. Multivariate analysis revealed that DM requiring treatment prior to transplantation was the only independent factor for DM developed at 2 years after transplantation. OGTT results showed that in patients with poor insulin sensitivity indices prior to transplantation (n=45), improvements were seen at 2 years after transplantation, while β-cell function and insulinogenic index had decreased, which may have been the cause of DM after transplantation. In conclusion, the pre-operative β-cell function determined by an OGTT may be a useful predictive tool for the recurrence of DM after LT.
Collapse
Affiliation(s)
- Tatsuki Ichikawa
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; Department of Gastroenterology, Nagasaki Harbor Medical Center, Nagasaki 850-8555, Japan
| | - Naota Taura
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Hisamitsu Miyaaki
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Satoshi Miuma
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Hidetaka Shibata
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Takuya Honda
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Masaaki Hidaka
- Department of Transplantation and Digestive Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Akihiko Soyama
- Department of Transplantation and Digestive Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Mitsuhisa Takatsuki
- Department of Transplantation and Digestive Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Susumu Eguchi
- Department of Transplantation and Digestive Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| |
Collapse
|
40
|
Kamura Y, Iwata M, Maeda S, Shinmura S, Koshimizu Y, Honoki H, Fukuda K, Ishiki M, Usui I, Fukushima Y, Takano A, Kato H, Murakami S, Higuchi K, Kobashi C, Tobe K. FTO Gene Polymorphism Is Associated with Type 2 Diabetes through Its Effect on Increasing the Maximum BMI in Japanese Men. PLoS One 2016; 11:e0165523. [PMID: 27820839 PMCID: PMC5098825 DOI: 10.1371/journal.pone.0165523] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 10/13/2016] [Indexed: 12/29/2022] Open
Abstract
Aim Several studies have demonstrated that polymorphisms within the fat-mass and obesity-associated gene (FTO) are associated with type 2 diabetes (T2D). However, whether the effects of the FTO locus on T2D susceptibility are independent of fat-mass increases remains controversial. To investigate this issue, we examined the association of FTO variants with T2D and various aspects of BMI history during adult life in a Japanese population. Methods We genotyped SNPs within FTO (rs1121980 and rs1558902) in 760 Japanese patients with T2D who had reached a lifetime maximum BMI (BMImax) before or at the time of diagnosis and 693 control individuals with information regarding their BMImax. Results The BMImax showed the strongest association with T2D risk among the BMIs evaluated in this study. In the sex-combined analysis, FTO SNPs were not associated with any of the BMI variables or with T2D, but in sex-stratified analyses, both SNPs were significantly associated with the BMImax and rs1558902 was associated with T2D in men. The association of the SNPs with T2D remained significant after adjustments for the current BMI and age, whereas the T2D association of the SNP was no longer significant after adjustments for BMImax and age. Conclusions These results suggest that the effects of FTO polymorphisms on T2D susceptibility in Japanese men are mediated through their effect on increasing the BMImax before or at the time of diagnosis.
Collapse
Affiliation(s)
- Yutaka Kamura
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Minoru Iwata
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
- Health Administration Center, University of Toyama, Toyama, Japan
- * E-mail:
| | - Shiro Maeda
- Laboratory for Endocrinology and Metabolism, RIKEN Center for Genomic Medicine, Yokohama, Kanagawa, Japan
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Satomi Shinmura
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yukiko Koshimizu
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisae Honoki
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kazuhito Fukuda
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Manabu Ishiki
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Isao Usui
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Yasuo Fukushima
- Department of Internal Medicine, Asahi General Hospital, Asahi-machi, Toyama, Japan
| | - Atsuko Takano
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Saiseikai Takaoka Hospital, Takaoka, Toyama, Japan
| | - Hiromi Kato
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Japan Community Health care Organization Takaoka Fushiki Hospital, Takaoka, Toyama, Japan
| | - Shihou Murakami
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Toyama Rosai Hospital, Uozu, Toyama, Japan
| | - Kiyohiro Higuchi
- Department of Internal Medicine, Kouseiren Itoigawa General Hospital, Itoigawa, Niigata, Japan
| | - Chikaaki Kobashi
- Department of Internal Medicine, Kamiichi General Hospital, Kamiichi-machi, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
41
|
Quantitative assessment of genetic testing for type 2 diabetes mellitus based on findings of genome-wide association studies. Ann Epidemiol 2016; 26:816-818.e6. [PMID: 27751632 DOI: 10.1016/j.annepidem.2016.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/26/2016] [Accepted: 09/16/2016] [Indexed: 12/29/2022]
|
42
|
Kong X, Xing X, Hong J, Zhang X, Yang W. Association of a type 2 diabetes genetic risk score with insulin secretion modulated by insulin sensitivity among Chinese Hans. Clin Genet 2016; 91:832-842. [PMID: 27280334 DOI: 10.1111/cge.12817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 01/03/2023]
Abstract
Type 2 diabetes (T2D) is characterized by insulin resistance and impaired insulin secretion. The present study aimed to identify the influence of insulin sensitivity on the genetic risk of impaired insulin secretion among a Chinese Han population. For 3229 controls and 1994 treatment-naïve T2D, single nucleotide polymorphisms (SNPs) from 24 T2D-related genomic loci were genotyped and a genetic risk score (GRS) was constructed. Results showed that GRS was associated with insulin secretion and disposition indices in both controls and treatment-naïve T2Ds. Upon stratifying the participants into tertiles by the Matsuda index, we observed an inhibitory relationship between the GRS and insulin secretion in low insulin sensitive but not in high insulin sensitive controls and treatment-naïve T2Ds. Moreover, low insulin sensitive individuals exhibited more severe impairment in insulin secretion and beta cell response to insulin sensitivity with an increase in risk alleles. Our findings identified that the association of GRS with insulin secretion was strongly modulated by insulin sensitivity in both controls and T2Ds of Chinese Han. It indicates that insulin sensitization should be emphasized in prevention and treatment of T2D for beta cell protection.
Collapse
Affiliation(s)
- X Kong
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - X Xing
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - J Hong
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - X Zhang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - W Yang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
43
|
Association between IGF2BP2 Polymorphisms and Type 2 Diabetes Mellitus: A Case-Control Study and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060574. [PMID: 27294943 PMCID: PMC4924031 DOI: 10.3390/ijerph13060574] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 12/26/2022]
Abstract
Background: Genome-wide association studies (GWAS) found that IGF2BP2 rs4402960 and rs1470579 polymorphisms were associated with type 2 diabetes mellitus (T2DM) risk. Many studies have replicated this association, but yielded inconsistent results. Materials and Methods: A case-control study consisting of 461 T2DM patients and 434 health controls was conducted to detect the genetic susceptibility of IGF2BP2 in a northern Han Chinese population. A meta-analysis was to evaluate the association more precisely in Asians. Results: In the case-control study, the carriers of TT genotype at rs4402960 had a higher T2DM risk than the G carriers (TG + GG) (adjusted odd ratio (AOR) = 1.962, 95% confidence interval (95% CI) = 1.065–3.612, p = 0.031]; CC carriers at rs1470579 were more susceptible to T2DM than A carriers (CA + AA) (AOR = 2.014, 95% CI = 1.114–3.642, p = 0.021). The meta-analysis containing 36 studies demonstrated that the two polymorphisms were associated with T2DM under the allele comparison, genetic models of dominant and recessive in Asians (p < 0.05). The rs4402960 polymorphisms were significantly associated with the T2DM risk after stratification by diagnostic criterion, size of sample and average age and BMI of cases, while there’re no consistent results for rs1470579. Conclusions: Our data suggests that IGF2BP2 polymorphisms are associated with T2DM in Asian populations.
Collapse
|
44
|
Xu K, Jiang L, Zhang M, Zheng X, Gu Y, Wang Z, Cai Y, Dai H, Shi Y, Zheng S, Chen Y, Ji L, Xu X, Chen H, Sun M, Yang T. Type 2 Diabetes Risk Allele UBE2E2 Is Associated With Decreased Glucose-Stimulated Insulin Release in Elderly Chinese Han Individuals. Medicine (Baltimore) 2016; 95:e3604. [PMID: 27175665 PMCID: PMC4902507 DOI: 10.1097/md.0000000000003604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Recently, rs163182 in KCNQ1, rs7612463 in UBE2E2, rs7119 in HMG20A, and rs6815464 in MAEA were discovered as type 2 diabetes (T2D) loci unique to Asians, and rs13342692 in SLC16A11 were newly reported as T2D loci in multiethnicities by genome-wide association (GWA) studies. The aim of the present study is to ascertain the potential associations between these variants and T2D risk in the Chinese population, and characterize diabetic-related quantitative traits underlying these variants.A total of 4268 Chinese Han individuals (1754 patients with T2D and 2514 glucose-tolerant health subjects, age ≥40 years) were genotyped for these 5 variants. All the health individuals underwent an oral glucose tolerance test (OGTT), and measures of insulin release and sensitivity were estimated from insulinogenic, BIGTT, Matsuda, and disposition indices. The associations were determined by using logistic regression analysis.After adjustment for age, sex, and BMI, rs163182 in KCNQ1 (P = 0.002) and rs7612463 in UBE2E2 (P = 0.024) were found to be associated with T2D risk in Chinese Han population. The risk C allele of rs7612463 in UBE2E2 is associated with decreased IGI (P = 0.001), BIGTT-AIR (P = 0.002), CIR (P = 0.002), and DI (P = 0.006). The other 4 variants did not associate with insulin release or sensitivity.UBE2E2 rs7612463 may mediate its diabetogenic impact on insulin response, which highly depends on the impairment of β-cell function.
Collapse
Affiliation(s)
- Kuanfeng Xu
- From the Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Replication Study in a Japanese Population of Six Susceptibility Loci for Type 2 Diabetes Originally Identified by a Transethnic Meta-Analysis of Genome-Wide Association Studies. PLoS One 2016; 11:e0154093. [PMID: 27115357 PMCID: PMC4845992 DOI: 10.1371/journal.pone.0154093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 04/08/2016] [Indexed: 01/21/2023] Open
Abstract
AIM We performed a replication study in a Japanese population to evaluate the association between type 2 diabetes and six susceptibility loci (TMEM154, SSR1, FAF1, POU5F1, ARL15, and MPHOSPH9) originally identified by a transethnic meta-analysis of genome-wide association studies (GWAS) in 2014. METHODS We genotyped 7,620 Japanese participants (5,817 type 2 diabetes patients and 1,803 controls) for each of the single nucleotide polymorphisms (SNPs) using a multiplex polymerase chain reaction invader assay. The association of each SNP locus with the disease was evaluated using logistic regression analysis. RESULTS Of the six SNPs examined in this study, four (rs6813195 near TMEM154, rs17106184 in FAF1, rs3130501 in POU5F1 and rs4275659 near MPHOSPH9) had the same direction of effect as in the original reports, but two (rs9505118 in SSR1 and rs702634 in ARL15) had the opposite direction of effect. Among these loci, rs3130501 and rs4275659 were nominally associated with type 2 diabetes (rs3130501; p = 0.017, odds ratio [OR] = 1.113, 95% confidence interval [CI] 1.019-1.215, rs4275659; p = 0.012, OR = 1.127, 95% CI 1.026-1.238, adjusted for sex, age and body mass index), but we did not observe a significant association with type 2 diabetes for any of the six evaluated SNP loci in our Japanese population. CONCLUSIONS Our results indicate that effects of the six SNP loci identified in the transethnic GWAS meta-analysis are not major among the Japanese, although SNPs in POU5F1 and MPHOSPH9 loci may have some effect on susceptibility to type 2 diabetes in this population.
Collapse
|
46
|
Matsushima Y, Takeshita Y, Kita Y, Otoda T, Kato KI, Toyama-Wakakuri H, Akahori H, Shimizu A, Hamaguchi E, Nishimura Y, Kanamori T, Kaneko S, Takamura T. Pleiotropic effects of sitagliptin versus voglibose in patients with type 2 diabetes inadequately controlled via diet and/or a single oral antihyperglycemic agent: a multicenter, randomized trial. BMJ Open Diabetes Res Care 2016; 4:e000190. [PMID: 27110370 PMCID: PMC4838664 DOI: 10.1136/bmjdrc-2015-000190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/04/2016] [Accepted: 02/15/2016] [Indexed: 01/26/2023] Open
Abstract
PURPOSE A step-up strategy for diet therapy and/or single oral antihyperglycemic agent (OHA) regimens has not yet been established. The aim of this study was to evaluate hemoglobin A1c (HbA1c) as a primary end point, and the pleiotropic effects on metabolic and cardiovascular parameters as secondary end points, of sitagliptin versus voglibose in patients with type 2 diabetes with inadequate glycemic control while on diet therapy and/or treatment with a single OHA. METHODS In this multicenter, randomized, open-label, parallel-group trial, a total of 260 patients with inadequately controlled type 2 diabetes (HbA1c levels >6.9%) were randomly assigned to receive either sitagliptin (50 mg, once daily) or voglibose (0.6 mg, thrice daily) for 12 weeks. The primary end point was HbA1c levels. RESULTS Patients receiving sitagliptin showed a significantly greater decrease in HbA1c levels (-0.78±0.69%) compared with those receiving voglibose (-0.30±0.78%). Sitagliptin treatment also lowered serum alkaline phosphatase levels and increased serum creatinine, uric acid, cystatin-C and homeostasis model assessment-β values. Voglibose increased low-density lipoprotein-cholesterol levels and altered serum levels of several fatty acids, and increased Δ-5 desaturase activity. Both drugs increased serum adiponectin. The incidence of adverse events (AEs) was significantly lower in the sitagliptin group, due to the decreased incidence of gastrointestinal AEs. CONCLUSIONS Sitagliptin shows superior antihyperglycemic effects compared with voglibose as a first-line or second-line therapy. However, both agents possess unique pleiotropic effects that lead to reduced cardiovascular risk in Japanese people with type 2 diabetes. TRIAL REGISTRATION NUMBER UMIN 000003503.
Collapse
Affiliation(s)
- Yukiko Matsushima
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- ERA-DM Chapter 1 Study Group, Kanazawa, Ishikawa, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- ERA-DM Chapter 1 Study Group, Kanazawa, Ishikawa, Japan
| | - Yuki Kita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- ERA-DM Chapter 1 Study Group, Kanazawa, Ishikawa, Japan
| | - Toshiki Otoda
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- ERA-DM Chapter 1 Study Group, Kanazawa, Ishikawa, Japan
| | - Ken-ichiro Kato
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- ERA-DM Chapter 1 Study Group, Kanazawa, Ishikawa, Japan
| | - Hitomi Toyama-Wakakuri
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- ERA-DM Chapter 1 Study Group, Kanazawa, Ishikawa, Japan
| | | | - Akiko Shimizu
- ERA-DM Chapter 1 Study Group, Kanazawa, Ishikawa, Japan
| | | | | | - Takehiro Kanamori
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- ERA-DM Chapter 1 Study Group, Kanazawa, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
- ERA-DM Chapter 1 Study Group, Kanazawa, Ishikawa, Japan
| |
Collapse
|
47
|
Joint effects of diabetic-related genomic loci on the therapeutic efficacy of oral anti-diabetic drugs in Chinese type 2 diabetes patients. Sci Rep 2016; 6:23266. [PMID: 26983698 PMCID: PMC4794654 DOI: 10.1038/srep23266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/02/2016] [Indexed: 12/11/2022] Open
Abstract
Previous pharmacogenomic studies of oral anti-diabetic drugs have primarily focused on the effect of a single site. This study aimed to examine the joint effects of multiple loci on repaglinide or rosiglitazone efficacy in newly diagnosed type 2 diabetes mellitus (T2DM) patients. A total of 209 newly diagnosed T2DM patients were randomly assigned to treatment with repaglinide or rosiglitazone for 48 weeks. The reductions in fasting glucose (ΔFPG), 2h glucose (Δ2hPG) and glycated hemoglobin (ΔHbA1c) levels were significantly associated with genetic score that was constructed using the sum of the effect alleles both in the repaglinide (P = 0.0011, 0.0002 and 0.0067, respectively) and rosiglitazone cohorts (P = 0.0002, 0.0014 and 0.0164, respectively) after adjusting for age, gender, body mass index and dosage. Survival analyses showed a trend towards a greater attainment rate of target HbA1c level in individuals with a high genetic score in the repaglinide cohort and rosiglitazone cohort (Plog-rank = 0.0815 and 0.0867, respectively) when the attainment of treatment targets were defined as more than 20% decrease of FPG, 2hPG, and HbA1c levels after treatment. In conclusion, we identified the joint effects of several T2DM-related loci on the efficacy of oral anti-diabetic drugs; moreover, we built a model to predict the drug efficacy.
Collapse
|
48
|
Ibrahim AT, Hussain A, Salih MAM, Ibrahim OA, Jamieson SE, Ibrahim ME, Blackwell JM, Mohamed HS. Candidate gene analysis supports a role for polymorphisms at TCF7L2 as risk factors for type 2 diabetes in Sudan. J Diabetes Metab Disord 2016; 15:4. [PMID: 26937418 PMCID: PMC4774008 DOI: 10.1186/s40200-016-0225-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/25/2016] [Indexed: 11/10/2022]
Abstract
Background Genetic susceptibility to type 2 diabetes (T2D) is multifactorial. A growing number of genes have been identified as risk factors for T2D across multiple ethnicities in trans-ancestry meta-analysis of large-scale genome-wide association studies. Few studies have looked at these genes in Sub-Saharan African populations. This study was undertaken to look for associations between T2D and single nucleotide polymorphisms (SNPs) in a number of the top candidate genes in a selected Sudanese population. Methods A total 240 T2D cases and 128 unrelated healthy control subjects were included in this study. Age, sex, weight and height were recorded, blood pressure and biochemical profiles of glucose and lipids were analysed. Single nucleotide polymorphism (SNP) genotyping was performed using the Sequenom MassARRAY® system. Fourteen SNPs were selected across 7 genes: CAPN10 (rs2975760 and rs5030952), PPARG (rs17036314 and rs1801282), IGF2BP2 (rs4402960 and rs1470579), CDKAL1 (rs9465871), HHEX (rs1111875), TCF7L2 (rs7903146, rs11196205 and rs12255372), and KCNJ11 (rs5215, rs1800467 and rs5219). Allelic and haplotype association analyses were performed under additive models in PLINK. P ≤ 0.007 (=0.05/7 genes) was the P-value required to achieve correction for multiple testing. Results A significant genetic association between the SNPs rs7903146 (odds ratio 1.69, 95 % confidence interval 1.21–2.38, P = 0.002) and rs12255372 (odds ratio 1.70, 95 % confidence interval 1.20–2.41, P = 0.003) at TCF7L2 and T2D was found in Sudanese population. These associations were retained after adjusting for age, sex and BMI (e.g. rs7903146: odds ratio 1.70, Padj:age/sex/BMI = 0.005). The strongest haplotype association (odds ratio 2.24; Padj:age/sex/BMI = 0.0003) comprised the two point haplotype T_C across rs7903146 and rs11196205. Stepwise logistic regression demonstrated that SNP rs7903146 added significant main effects to rs11196205 or rs12255372, whereas the reverse was not true, indicating that the main effect for association with T2D in this population is most strongly tagged by SNP rs7903146. Adjusted analyses also provided support for protection from T2D associated with minor alleles at SNPs rs2975760 at CAPN10 (odds ratio 0.44, 95 % confidence interval 0.20-0.97, Padj:age/sex/BMI = 0.042) and rs1111876 at HHEX (odds ratio 0.60, 95 % confidence interval 0.39- 0.93, Padj:age/sex/BMI = 0.022). Conclusions Multiethnic associations between T2D and SNPs at TCF7L2, CAPN10 and HHEX extend to Sub-Saharan Africa, specifically Sudan.
Collapse
Affiliation(s)
- Amir T Ibrahim
- Central Laboratory, Ministry of Science and Technology, Khartoum, Sudan
| | - Ayman Hussain
- Institute of Endemic Disease, University of Khartoum, P. O. Box 102 Khartoum, Sudan
| | - Mohamed A M Salih
- Central Laboratory, Ministry of Science and Technology, Khartoum, Sudan
| | | | - Sarra E Jamieson
- Telethon Kids Institute, University of Western Australia, Subiaco, Australia
| | - Muntaser E Ibrahim
- Institute of Endemic Disease, University of Khartoum, P. O. Box 102 Khartoum, Sudan
| | - Jenefer M Blackwell
- Telethon Kids Institute, University of Western Australia, Subiaco, Australia
| | - Hiba S Mohamed
- Institute of Endemic Disease, University of Khartoum, P. O. Box 102 Khartoum, Sudan
| |
Collapse
|
49
|
Kodama S, Fujihara K, Ishiguro H, Horikawa C, Ohara N, Yachi Y, Tanaka S, Shimano H, Kato K, Hanyu O, Sone H. Meta-analytic research on the relationship between cumulative risk alleles and risk of type 2 diabetes mellitus. Diabetes Metab Res Rev 2016; 32:178-86. [PMID: 26265102 DOI: 10.1002/dmrr.2680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/01/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Our aim is to examine the dose-response association between cumulative genetic risk and actual risk of type 2 diabetes mellitus (T2DM) and the influence of adjustment for covariates on T2DM risk through a comprehensive meta-analysis of observational studies. METHODS Electronic literature search using EMBASE and MEDLINE (from 2003 to 2014) was conducted for cross-sectional or longitudinal studies that presented the odds ratio (OR) for T2DM in each group with categories based on the total number of risk alleles (RAs) carried (RAtotal ) using at least two single-nucleotide polymorphisms. Spline regression model was used to determine the shape of the relationship between the difference from the referent group of each study in RAtotal (ΔRAtotal ) and the natural logarithms of ORs (log OR) for T2DM. RESULTS Sixty-five eligible studies that included 68 267 cases among 182 603 participants were analysed. In both crude and adjusted ORs, defined by adjusting the risk for at least two confounders among age, gender and body mass index, the slope of the log OR for T2DM became less steep as the ΔRAtotal increased. In the analysis limited to 14 cross-sectional and four longitudinal studies presenting both crude and adjusted ORs, regression curves of both ORs in relation to ΔRAtotal were almost identical. CONCLUSION Using only single-nucleotide polymorphisms for T2DM screening was of limited value. However, when genotypic T2DM risk was considered independently from risk in relation to covariates, it was suggested that genetic profiles might have a supplementary role related to conventional T2DM risk factors in identifying individuals at high risk of T2DM. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Satoru Kodama
- Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Diseases, Niigata University Faculty of Medicine, Niigata, Japan
| | - Kazuya Fujihara
- Department of Internal Medicine, University of Tsukuba Institute of Clinical Medicine, Ibaraki, Japan
| | - Hajime Ishiguro
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| | - Chika Horikawa
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture, Niigata, Japan
| | - Nobumasa Ohara
- Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Diseases, Niigata University Faculty of Medicine, Niigata, Japan
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| | - Yoko Yachi
- Department of Administrative Dietetics, Faculty of Health and Nutrition, Yamanashi Gakuin University, Yamanashi, Japan
| | - Shiro Tanaka
- Department of Clinical Trial, Design and Management, Translational Research Center, Kyoto University Hospital, Kyoto, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine, University of Tsukuba Institute of Clinical Medicine, Ibaraki, Japan
| | - Kiminori Kato
- Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Diseases, Niigata University Faculty of Medicine, Niigata, Japan
| | - Osamu Hanyu
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| |
Collapse
|
50
|
Post-Transcriptional Modifications of RNA: Impact on RNA Function and Human Health. MODIFIED NUCLEIC ACIDS IN BIOLOGY AND MEDICINE 2016. [DOI: 10.1007/978-3-319-34175-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|