1
|
Rotllan N, Julve J, Escolà-Gil JC. Type 2 Diabetes and HDL Dysfunction: A Key Contributor to Glycemic Control. Curr Med Chem 2024; 31:280-285. [PMID: 36722477 DOI: 10.2174/0929867330666230201124125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 02/02/2023]
Abstract
High-density lipoproteins (HDL) have been shown to exert multiple cardioprotective and antidiabetic functions, such as their ability to promote cellular cholesterol efflux and their antioxidant, anti-inflammatory, and antiapoptotic properties. Type 2 diabetes (T2D) is usually associated with low high-density lipoprotein cholesterol (HDL-C) levels as well as with significant alterations in the HDL composition, thereby impairing its main functions. HDL dysfunction also negatively impacts both pancreatic β-cell function and skeletal muscle insulin sensitivity, perpetuating this adverse self-feeding cycle. The impairment of these pathways is partly dependent on cellular ATP-binding cassette transporter (ABC) A1-mediated efflux to lipid-poor apolipoprotein (apo) A-I in the extracellular space. In line with these findings, experimental interventions aimed at improving HDL functions, such as infusions of synthetic HDL or lipid-poor apoA-I, significantly improved glycemic control in T2D patients and experimental models of the disease. Cholesteryl ester transfer protein (CETP) inhibitors are specific drugs designed to increase HDLC and HDL functions. Posthoc analyses of large clinical trials with CETP inhibitors have demonstrated their potential anti-diabetic properties. Research on HDL functionality and HDL-based therapies could be a crucial step toward improved glycemic control in T2D subjects.
Collapse
Affiliation(s)
- Noemi Rotllan
- Institut de recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Julve
- Institut de recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Carles Escolà-Gil
- Institut de recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Agoons DD, Musani SK, Correa A, Golden SH, Bertoni AG, Echouffo‐Tcheugui JB. High-density lipoprotein-cholesterol and incident type 2 diabetes mellitus among African Americans: The Jackson Heart Study. Diabet Med 2022; 39:e14895. [PMID: 35639386 PMCID: PMC9308726 DOI: 10.1111/dme.14895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 11/28/2022]
Abstract
AIMS Accruing evidence suggests an association between high-density lipoprotein cholesterol (HDL-C) and incident diabetes. However, there is a paucity of data on the link between HDL-C and diabetes, especially among African Americans (AAs). We aimed to assess the association of HDL-C and its fractions with incident type 2 diabetes among AAs. METHODS We included Jackson Heart Study participants who attended visit 1 (2001-2004), were free from diabetes and were not treated with lipid-modifying medications. Incident diabetes was assessed at two subsequent-yearly visits (2 and 3). We cross-sectionally assessed the association of HDL-C and insulin resistance (IR) using multivariable linear models. We prospectively assessed the association of HDL-C and its fractions with incident diabetes using multivariable Cox regression models. RESULTS Among 2829 participants (mean age: 51.9 ± 12.4 years, 63.9% female), 487 participants (17%) developed new-onset diabetes, over a median follow-up of 8 years. In adjusted models, a higher HDL-C concentration was associated with a lower odds of IR (odds ratio [OR] per standard deviation [SD] increment: OR 0.56 [95% confidence interval, CI 0.50-0.63], p < 0.001). In adjusted models, a higher HDL-C concentration was associated with a lower risk of diabetes (HR per SD increment: 0.78 [95% CI 0.71, 0.87], p < 0.001; HR for highest vs. the lowest tertile of HDL-C was 0.56 [95% CI: 0.44, 0.71], p < 0.001). CONCLUSION In a sample of African-American adults not on any lipid-modifying therapy, high HDL-C concentrations were inversely associated with the risk of new-onset diabetes. These findings suggest a strong link between HDL-C metabolism and glucose regulation.
Collapse
Affiliation(s)
- Dayawa D. Agoons
- Department of MedicineUniversity of Pittsburg Medical Center PinnacleHarrisburgPennsylvaniaUSA
| | - Solomon K. Musani
- Department of MedicineUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Adolfo Correa
- Department of MedicineUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Sherita H. Golden
- Department of Medicine, Division of Endocrinology, Diabetes & MetabolismJohns Hopkins School of MedicineBaltimoreMarylandUSA
- Welch Prevention Center for Prevention, Epidemiology and Clinical ResearchJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Alain G. Bertoni
- Department of Epidemiology and PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Justin B. Echouffo‐Tcheugui
- Department of Medicine, Division of Endocrinology, Diabetes & MetabolismJohns Hopkins School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
3
|
Behl T, Sehgal A, Grover M, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Aleya L, Bungau S. Uncurtaining the pivotal role of ABC transporters in diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41533-41551. [PMID: 34085197 DOI: 10.1007/s11356-021-14675-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The metabolic disorders are the edge points for the initiation of various diseases. These disorders comprised of several diseases including diabetes, obesity, and cardiovascular complications. Worldwide, the prevalence of these disorders is increasing day by day. The world's population is at higher threat of developing metabolic disease, especially diabetes. Therefore, there is an impregnable necessity of searching for a newer therapeutic target to reduce the burden of these disorders. Diabetes mellitus (DM) is marked with the dysregulated insulin secretion and resistance. The lipid and glucose transporters portray a pivotal role in the metabolism and transport of both of these. The excess production of lipid and glucose and decreased clearance of these leads to the emergence of DM. The ATP-binding cassette transporters (ABCT) are important for the metabolism of glucose and lipid. Various studies suggest the key involvement of ABCT in the pathologic process of different diseases. In addition, the involvement of other pathways, including IGF signaling, P13-Akt/PKC/MAPK signaling, and GLP-1 via regulation of ABCT, may help develop new treatment strategies to cope with insulin resistance dysregulated glucose metabolism, key features in DM.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Madhuri Grover
- BS Anangpuria Institute of Pharmacy, Faridabad, Haryana, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Simona Bungau
- Department of Pharmacy, Faculty of Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
4
|
HDL Cholesterol and Non-Cardiovascular Disease: A Narrative Review. Int J Mol Sci 2021; 22:ijms22094547. [PMID: 33925284 PMCID: PMC8123633 DOI: 10.3390/ijms22094547] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
High density lipoprotein (HDL) cholesterol has traditionally been considered the “good cholesterol”, and most of the research regarding HDL cholesterol has for decades revolved around the possible role of HDL in atherosclerosis and its therapeutic potential within atherosclerotic cardiovascular disease. Randomized trials aiming at increasing HDL cholesterol have, however, failed and left questions to what role HDL cholesterol plays in human health and disease. Recent observational studies involving non-cardiovascular diseases have shown that high levels of HDL cholesterol are not necessarily associated with beneficial outcomes as observed for age-related macular degeneration, type II diabetes, dementia, infection, and mortality. In this narrative review, we discuss these interesting associations between HDL cholesterol and non-cardiovascular diseases, covering observational studies, human genetics, and plausible mechanisms.
Collapse
|
5
|
Yoon HY, Lee MH, Song Y, Yee J, Song G, Gwak HS. ABCA1 69C>T Polymorphism and the Risk of Type 2 Diabetes Mellitus: A Systematic Review and Updated Meta-Analysis. Front Endocrinol (Lausanne) 2021; 12:639524. [PMID: 33967955 PMCID: PMC8104122 DOI: 10.3389/fendo.2021.639524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background The ATP-binding cassette transporter A1 (ABCA1) is likely associated with the risk of type 2 diabetes mellitus (T2DM) via β cell function modification, but the evidence on the association remains unclear. This study aimed to investigate the relationship between the ABCA1 69C>T polymorphism and the risk of T2DM through a systematic review and meta-analysis. Materials and Methods The PubMed, Web of Science, and Embase databases were searched for qualified studies published until August 2020. Studies that included the association between the ABCA1 69C>T polymorphism and the risk of T2DM were reviewed. The odds ratios (ORs) and 95% confidence intervals (CIs) were evaluated. Results We analyzed data from a total of 10 studies involving 17,742 patients. We found that the CC or CT genotype was associated with increased risk of T2DM than the TT genotype (OR, 1.41; 95% CI, 1.02-1.93). In the Asian population, the C allele carriers had a higher risk of T2DM than those with the TT genotype; the ORs of the CC and CT genotypes were 1.80 (95% CI, 1.21-2.68) and 1.61 (95% CI, and 1.29-2.01), respectively. Conclusions This meta-analysis confirmed that the ABCA1 69C>T genotype showed a decrease risk of T2DM compared to the CC or CT genotypes.
Collapse
Affiliation(s)
| | | | | | | | | | - Hye Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
6
|
Juvinao-Quintero DL, Marioni RE, Ochoa-Rosales C, Russ TC, Deary IJ, van Meurs JBJ, Voortman T, Hivert MF, Sharp GC, Relton CL, Elliott HR. DNA methylation of blood cells is associated with prevalent type 2 diabetes in a meta-analysis of four European cohorts. Clin Epigenetics 2021; 13:40. [PMID: 33622391 PMCID: PMC7903628 DOI: 10.1186/s13148-021-01027-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/11/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is a heterogeneous disease with well-known genetic and environmental risk factors contributing to its prevalence. Epigenetic mechanisms related to changes in DNA methylation (DNAm), may also contribute to T2D risk, but larger studies are required to discover novel markers, and to confirm existing ones. RESULTS We performed a large meta-analysis of individual epigenome-wide association studies (EWAS) of prevalent T2D conducted in four European studies using peripheral blood DNAm. Analysis of differentially methylated regions (DMR) was also undertaken, based on the meta-analysis results. We found three novel CpGs associated with prevalent T2D in Europeans at cg00144180 (HDAC4), cg16765088 (near SYNM) and cg24704287 (near MIR23A) and confirmed three CpGs previously identified (mapping to TXNIP, ABCG1 and CPT1A). We also identified 77 T2D associated DMRs, most of them hypomethylated in T2D cases versus controls. In adjusted regressions among diabetic-free participants in ALSPAC, we found that all six CpGs identified in the meta-EWAS were associated with white cell-types. We estimated that these six CpGs captured 11% of the variation in T2D, which was similar to the variation explained by the model including only the common risk factors of BMI, sex, age and smoking (R2 = 10.6%). CONCLUSIONS This study identifies novel loci associated with T2D in Europeans. We also demonstrate associations of the same loci with other traits. Future studies should investigate if our findings are generalizable in non-European populations, and potential roles of these epigenetic markers in T2D etiology or in determining long term consequences of T2D.
Collapse
Affiliation(s)
- Diana L. Juvinao-Quintero
- MRC Integrative Epidemiology, Bristol Medical School, Bristol, BS8 2BN UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN UK
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA 02215 USA
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN UK
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Carolina Ochoa-Rosales
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3000 CA The Netherlands
- Centro de Vida Saludable de La Universidad de Concepción, Victoria 580, Concepción, Chile
| | - Tom C. Russ
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ UK
- Edinburgh Dementia Prevention Research Group, University of Edinburgh, Edinburgh, EH16 4UX UK
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ UK
| | - Ian J. Deary
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ UK
| | - Joyce B. J. van Meurs
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, 3000 CA The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3000 CA The Netherlands
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA 02215 USA
| | - Gemma C. Sharp
- MRC Integrative Epidemiology, Bristol Medical School, Bristol, BS8 2BN UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN UK
| | - Caroline L. Relton
- MRC Integrative Epidemiology, Bristol Medical School, Bristol, BS8 2BN UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN UK
- Bristol NIHR Biomedical Research Centre, Oakfield House, Oakfield Grove, Bristol, BS8 2BN UK
| | - Hannah R. Elliott
- MRC Integrative Epidemiology, Bristol Medical School, Bristol, BS8 2BN UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2BN UK
| |
Collapse
|
7
|
Jacobo-Albavera L, Domínguez-Pérez M, Medina-Leyte DJ, González-Garrido A, Villarreal-Molina T. The Role of the ATP-Binding Cassette A1 (ABCA1) in Human Disease. Int J Mol Sci 2021; 22:ijms22041593. [PMID: 33562440 PMCID: PMC7915494 DOI: 10.3390/ijms22041593] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cholesterol homeostasis is essential in normal physiology of all cells. One of several proteins involved in cholesterol homeostasis is the ATP-binding cassette transporter A1 (ABCA1), a transmembrane protein widely expressed in many tissues. One of its main functions is the efflux of intracellular free cholesterol and phospholipids across the plasma membrane to combine with apolipoproteins, mainly apolipoprotein A-I (Apo A-I), forming nascent high-density lipoprotein-cholesterol (HDL-C) particles, the first step of reverse cholesterol transport (RCT). In addition, ABCA1 regulates cholesterol and phospholipid content in the plasma membrane affecting lipid rafts, microparticle (MP) formation and cell signaling. Thus, it is not surprising that impaired ABCA1 function and altered cholesterol homeostasis may affect many different organs and is involved in the pathophysiology of a broad array of diseases. This review describes evidence obtained from animal models, human studies and genetic variation explaining how ABCA1 is involved in dyslipidemia, coronary heart disease (CHD), type 2 diabetes (T2D), thrombosis, neurological disorders, age-related macular degeneration (AMD), glaucoma, viral infections and in cancer progression.
Collapse
Affiliation(s)
- Leonor Jacobo-Albavera
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Mayra Domínguez-Pérez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Diana Jhoseline Medina-Leyte
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City CP04510, Mexico
| | - Antonia González-Garrido
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
| | - Teresa Villarreal-Molina
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Dirección de Investigación, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City CP14610, Mexico; (L.J.-A.); (M.D.-P.); (D.J.M.-L.); (A.G.-G.)
- Correspondence:
| |
Collapse
|
8
|
Hajny S, Christoffersen M, Dalila N, Nielsen LB, Tybjærg-Hansen A, Christoffersen C. Apolipoprotein M and Risk of Type 2 Diabetes. J Clin Endocrinol Metab 2020; 105:5867499. [PMID: 32621749 DOI: 10.1210/clinem/dgaa433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/03/2020] [Indexed: 12/22/2022]
Abstract
CONTEXT Recent studies have discovered a role of apolipoprotein M (apoM) in energy metabolism, and observational analyses in humans suggest an association with type 2 diabetes. The causal relationship remains however elusive. OBJECTIVE To investigate whether reduced plasma apoM concentrations are causally linked to increased risk of type 2 diabetes. DESIGN Prospective study design analyzed by Mendelian randomization. SETTING AND PARTICIPANTS Two cohorts reflecting the Danish general population: the Copenhagen City Heart Study (CCHS, n = 8589) and the Copenhagen General Population Study (CGPS; n = 93 857). Observational analyses included a subset of participants from the CCHS with available plasma apoM (n = 725). Genetic analyses included the complete cohorts (n = 102 446). During a median follow-up of 16 years (CCHS) and 8 years (CGPS), 563 and 2132 participants developed type 2 diabetes. MAIN OUTCOME MEASURES Plasma apoM concentration, genetic variants in APOM, and type 2 diabetes. RESULTS First, we identified an inverse correlation between plasma apoM and risk of type 2 diabetes in a subset of participants from the CCHS (hazard ratio between highest vs lowest quartile (reference) = 0.32; 95% confidence interval = 0.1-1.01; P for trend = .02). Second, genotyping of specific single nucleotide polymorphisms in APOM further revealed a 10.8% (P = 6.2 × 10-5) reduced plasma apoM concentration in participants with variant rs1266078. Third, a meta-analysis including data from 599 451 individuals showed no association between rs1266078 and risk of type 2 diabetes. CONCLUSIONS The present study does not appear to support a causal association between plasma apoM and risk of type 2 diabetes.
Collapse
Affiliation(s)
- Stefan Hajny
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Science, University of Copenhagen, Copenhagen, Denmark
| | - Mette Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nawar Dalila
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lars B Nielsen
- Faculty of Health, University of Aarhus, Aarhus, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- The Copenhagen City Heart Study, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Science, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
9
|
Liu Y, Shen Y, Guo T, Parnell LD, Westerman KE, Smith CE, Ordovas JM, Lai CQ. Statin Use Associates With Risk of Type 2 Diabetes via Epigenetic Patterns at ABCG1. Front Genet 2020; 11:622. [PMID: 32612641 PMCID: PMC7308584 DOI: 10.3389/fgene.2020.00622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
Statin is the medication most widely prescribed to reduce plasma cholesterol levels. Yet, how the medication contributes to diabetes risk and impaired glucose metabolism is not clear. This study aims to examine the epigenetic mechanisms of ABCG1 through which statin use associates with risk of type 2 diabetes. We determined the association between the statin use, DNA methylation at ABCG1 and type 2 diabetes/glycemic traits in the Framingham Heart Study Offspring (FHS, n = 2741), with validation in the Women’s Health Initiative Study (WHI, n = 2020). The causal effect of statin use on the risk of type 2 diabetes was examined using a two-step Mendelian randomization approach. Next, based on transcriptome analysis, we determined the links between the medication-associated epigenetic status of ABCG1 and biological pathways on the pathogenesis of type 2 diabetes. Our results showed that DNA methylation levels at cg06500161 of ABCG1 were positively associated with the use of statin, type 2 diabetes and related traits (fasting glucose and insulin) in FHS and WHI. Two-step Mendelian randomization suggested a causal effect of statin use on type 2 diabetes and related traits through epigenetic mechanisms, specifically, DNA methylation at cg06500161. Our results highlighted that gene expression of ABCG1, ABCA1 and ACSL3, involved in both cholesterol metabolism and glycemic pathways, was inversely associated with statin use, CpG methylation, and diabetic signatures. We concluded that DNA methylation site cg06500161 at ABCG1 is a mediator of the association between statins and risk of type 2 diabetes.
Collapse
Affiliation(s)
- Yuwei Liu
- School of Public Health, Fudan University, Shanghai, China.,Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Yu Shen
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Tao Guo
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States.,Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Laurence D Parnell
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Kenneth E Westerman
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Caren E Smith
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States.,IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Chao-Qiang Lai
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| |
Collapse
|
10
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
11
|
Barter PJ, Cochran BJ, Rye KA. CETP inhibition, statins and diabetes. Atherosclerosis 2018; 278:143-146. [PMID: 30278356 DOI: 10.1016/j.atherosclerosis.2018.09.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/07/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023]
Abstract
Type 2 diabetes is a causal risk factor for the development of atherosclerotic cardiovascular disease (ASCVD). While treatment with a statin reduces the risk of having an ASCVD event in all people, including those with type-2 diabetes, statin treatment also increases the likelihood of new onset diabetes when given to those with risk factors for developing diabetes. Treatment with the cholesteryl ester transfer protein (CETP) inhibitor, anacetrapib, reduces the risk of having a coronary event over and above that achieved with a statin. However, unlike statins, anacetrapib decreases the risk of developing diabetes. If the reduced risk of new-onset diabetes is confirmed in another CETP inhibitor outcome trial, there will be a case for considering the use of the combination of a statin plus a CETP inhibitor in high ASCVD-risk people who are also at increased risk of developing diabetes.
Collapse
Affiliation(s)
- Philip J Barter
- Lipid Research Group, School of Medical Sciences, The University of New South Wales, Australia.
| | - Blake J Cochran
- Lipid Research Group, School of Medical Sciences, The University of New South Wales, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, The University of New South Wales, Australia
| |
Collapse
|
12
|
Zanoni P, Velagapudi S, Yalcinkaya M, Rohrer L, von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis 2018; 275:273-295. [PMID: 29980055 DOI: 10.1016/j.atherosclerosis.2018.06.881] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
During their metabolism, all lipoproteins undergo endocytosis, either to be degraded intracellularly, for example in hepatocytes or macrophages, or to be re-secreted, for example in the course of transcytosis by endothelial cells. Moreover, there are several examples of internalized lipoproteins sequestered intracellularly, possibly to exert intracellular functions, for example the cytolysis of trypanosoma. Endocytosis and the subsequent intracellular itinerary of lipoproteins hence are key areas for understanding the regulation of plasma lipid levels as well as the biological functions of lipoproteins. Indeed, the identification of the low-density lipoprotein (LDL)-receptor and the unraveling of its transcriptional regulation led to the elucidation of familial hypercholesterolemia as well as to the development of statins, the most successful therapeutics for lowering of cholesterol levels and risk of atherosclerotic cardiovascular diseases. Novel limiting factors of intracellular trafficking of LDL and the LDL receptor continue to be discovered and to provide drug targets such as PCSK9. Surprisingly, the receptors mediating endocytosis of high-density lipoproteins or lipoprotein(a) are still a matter of controversy or even new discovery. Finally, the receptors and mechanisms, which mediate the uptake of lipoproteins into non-degrading intracellular itineraries for re-secretion (transcytosis, retroendocytosis), storage, or execution of intracellular functions, are largely unknown.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Srividya Velagapudi
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Mustafa Yalcinkaya
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Femlak M, Gluba-Brzózka A, Ciałkowska-Rysz A, Rysz J. The role and function of HDL in patients with diabetes mellitus and the related cardiovascular risk. Lipids Health Dis 2017; 16:207. [PMID: 29084567 PMCID: PMC5663054 DOI: 10.1186/s12944-017-0594-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/16/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a major public health problem which prevalence is constantly raising, particularly in low- and middle-income countries. Both diabetes mellitus types (DMT1 and DMT2) are associated with high risk of developing chronic complications, such as retinopathy, nephropathy, neuropathy, endothelial dysfunction, and atherosclerosis. METHODS This is a review of available articles concerning HDL subfractions profile in diabetes mellitus and the related cardiovascular risk. In this review, HDL dysfunction in diabetes, the impact of HDL alterations on the risk diabetes development as well as the association between disturbed HDL particle in DM and cardiovascular risk is discussed. RESULTS Changes in the amount of circulation lipids, including triglycerides and LDL cholesterol as well as the HDL are frequent also in the course of DMT1 and DMT2. In normal state HDL exerts various antiatherogenic properties, including reverse cholesterol transport, antioxidative and anti-inflammatory capacities. However, it has been suggested that in pathological state HDL becomes "dysfunctional" which means that relative composition of lipids and proteins in HDL, as well as enzymatic activities associated to HDL, such as paraoxonase 1 (PON1) and lipoprotein-associated phospholipase 11 (Lp-PLA2) are altered. HDL properties are compromised in patients with diabetes mellitus (DM), due to oxidative modification and glycation of the HDL protein as well as the transformation of the HDL proteome into a proinflammatory protein. Numerous studies confirm that the ability of HDL to suppress inflammatory signals is significantly reduced in this group of patients. However, the exact underlying mechanisms remains to be unravelled in vivo. CONCLUSIONS The understanding of pathological mechanisms underlying HDL dysfunction may enable the development of therapies targeted at specific subpopulations and focusing at the diminishing of cardiovascular risk.
Collapse
Affiliation(s)
- Marek Femlak
- 105 Military Hospital with Outpatient Clinic in Żary, Domańskiego 2, 68-200, Żary, Poland
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, WAM Teaching Hospital of Lodz, Żeromskiego 113, Łódź, 90-549, Poland.
| | | | - Jacek Rysz
- Department of Nephrology Hypertension and Family Medicine, Medical University of Lodz, Żeromskiego 113, Łódź, 90-549, Poland
| |
Collapse
|
14
|
Critical Role of the Human ATP-Binding Cassette G1 Transporter in Cardiometabolic Diseases. Int J Mol Sci 2017; 18:ijms18091892. [PMID: 28869506 PMCID: PMC5618541 DOI: 10.3390/ijms18091892] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
ATP-binding cassette G1 (ABCG1) is a member of the large family of ABC transporters which are involved in the active transport of many amphiphilic and lipophilic molecules including lipids, drugs or endogenous metabolites. It is now well established that ABCG1 promotes the export of lipids, including cholesterol, phospholipids, sphingomyelin and oxysterols, and plays a key role in the maintenance of tissue lipid homeostasis. Although ABCG1 was initially proposed to mediate cholesterol efflux from macrophages and then to protect against atherosclerosis and cardiovascular diseases (CVD), it becomes now clear that ABCG1 exerts a larger spectrum of actions which are of major importance in cardiometabolic diseases (CMD). Beyond a role in cellular lipid homeostasis, ABCG1 equally participates to glucose and lipid metabolism by controlling the secretion and activity of insulin and lipoprotein lipase. Moreover, there is now a growing body of evidence suggesting that modulation of ABCG1 expression might contribute to the development of diabetes and obesity, which are major risk factors of CVD. In order to provide the current understanding of the action of ABCG1 in CMD, we here reviewed major findings obtained from studies in mice together with data from the genetic and epigenetic analysis of ABCG1 in the context of CMD.
Collapse
|
15
|
Haerian BS, Haerian MS, Roohi A, Mehrad-Majd H. ABCA1 genetic polymorphisms and type 2 diabetes mellitus and its complications. Meta Gene 2017. [DOI: 10.1016/j.mgene.2017.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
16
|
Dayeh T, Tuomi T, Almgren P, Perfilyev A, Jansson PA, de Mello VD, Pihlajamäki J, Vaag A, Groop L, Nilsson E, Ling C. DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk. Epigenetics 2016; 11:482-8. [PMID: 27148772 PMCID: PMC4939923 DOI: 10.1080/15592294.2016.1178418] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Identification of subjects with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention of the disease. Consequently, it is essential to search for new biomarkers that can improve the prediction of T2D. The aim of this study was to examine whether 5 DNA methylation loci in blood DNA (ABCG1, PHOSPHO1, SOCS3, SREBF1, and TXNIP), recently reported to be associated with T2D, might predict future T2D in subjects from the Botnia prospective study. We also tested if these CpG sites exhibit altered DNA methylation in human pancreatic islets, liver, adipose tissue, and skeletal muscle from diabetic vs. non-diabetic subjects. DNA methylation at the ABCG1 locus cg06500161 in blood DNA was associated with an increased risk for future T2D (OR = 1.09, 95% CI = 1.02–1.16, P-value = 0.007, Q-value = 0.018), while DNA methylation at the PHOSPHO1 locus cg02650017 in blood DNA was associated with a decreased risk for future T2D (OR = 0.85, 95% CI = 0.75–0.95, P-value = 0.006, Q-value = 0.018) after adjustment for age, gender, fasting glucose, and family relation. Furthermore, the level of DNA methylation at the ABCG1 locus cg06500161 in blood DNA correlated positively with BMI, HbA1c, fasting insulin, and triglyceride levels, and was increased in adipose tissue and blood from the diabetic twin among monozygotic twin pairs discordant for T2D. DNA methylation at the PHOSPHO1 locus cg02650017 in blood correlated positively with HDL levels, and was decreased in skeletal muscle from diabetic vs. non-diabetic monozygotic twins. DNA methylation of cg18181703 (SOCS3), cg11024682 (SREBF1), and cg19693031 (TXNIP) was not associated with future T2D risk in subjects from the Botnia prospective study.
Collapse
Affiliation(s)
- Tasnim Dayeh
- a Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Center , Malmö , Sweden
| | - Tiinamaija Tuomi
- b Endocrinology, Abdominal Center, Helsinki University Hospital , Helsinki , Finland.,c Folkhälsan Research Center , Helsinki , Finland.,d Diabetes and Obesity Research Program, Research Programs Unit, University of Helsinki , Finland.,e Finnish Institute for Molecular Medicine, University of Helsinki , Helsinki , Finland
| | - Peter Almgren
- f Diabetes and Endocrinology, Department of Clinical Sciences, Lund University Diabetes Center , Malmö , Sweden
| | - Alexander Perfilyev
- a Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Center , Malmö , Sweden
| | - Per-Anders Jansson
- g Wallenberg Laboratory, Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Vanessa D de Mello
- h Department of Clinical Nutrition , Institute of Public Health and Clinical Nutrition, University of Eastern Finland , Kuopio , Finland
| | - Jussi Pihlajamäki
- h Department of Clinical Nutrition , Institute of Public Health and Clinical Nutrition, University of Eastern Finland , Kuopio , Finland.,i Clinical Nutrition and Obesity Center, Kuopio University Hospital , Kuopio , Finland
| | - Allan Vaag
- j Department of Endocrinology , Diabetes and Metabolism , Rigshospitalet , Copenhagen , Denmark
| | - Leif Groop
- f Diabetes and Endocrinology, Department of Clinical Sciences, Lund University Diabetes Center , Malmö , Sweden
| | - Emma Nilsson
- a Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Center , Malmö , Sweden
| | - Charlotte Ling
- a Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Center , Malmö , Sweden
| |
Collapse
|
17
|
Constantinou C, Karavia EA, Xepapadaki E, Petropoulou PI, Papakosta E, Karavyraki M, Zvintzou E, Theodoropoulos V, Filou S, Hatziri A, Kalogeropoulou C, Panayiotakopoulos G, Kypreos KE. Advances in high-density lipoprotein physiology: surprises, overturns, and promises. Am J Physiol Endocrinol Metab 2016; 310:E1-E14. [PMID: 26530157 DOI: 10.1152/ajpendo.00429.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/30/2015] [Indexed: 12/21/2022]
Abstract
Emerging evidence strongly supports that changes in the HDL metabolic pathway, which result in changes in HDL proteome and function, appear to have a causative impact on a number of metabolic disorders. Here, we provide a critical review of the most recent and novel findings correlating HDL properties and functionality with various pathophysiological processes and disease states, such as obesity, type 2 diabetes mellitus, nonalcoholic fatty liver disease, inflammation and sepsis, bone and obstructive pulmonary diseases, and brain disorders.
Collapse
Affiliation(s)
| | - Eleni A Karavia
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Eva Xepapadaki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Eugenia Papakosta
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Marilena Karavyraki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Evangelia Zvintzou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Serafoula Filou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Aikaterini Hatziri
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | | | - Kyriakos E Kypreos
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| |
Collapse
|
18
|
Jacobo-Albavera L, Posadas-Romero C, Vargas-Alarcón G, Romero-Hidalgo S, Posadas-Sánchez R, González-Salazar MDC, Carnevale A, Canizales-Quinteros S, Medina-Urrutia A, Antúnez-Argüelles E, Villarreal-Molina T. Dietary fat and carbohydrate modulate the effect of the ATP-binding cassette A1 (ABCA1) R230C variant on metabolic risk parameters in premenopausal women from the Genetics of Atherosclerotic Disease (GEA) Study. Nutr Metab (Lond) 2015; 12:45. [PMID: 26579206 PMCID: PMC4647664 DOI: 10.1186/s12986-015-0040-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/09/2015] [Indexed: 12/16/2022] Open
Abstract
Background Although the R230C-ATP-binding cassette A1 (ABCA1) variant has been consistently associated with HDL-C levels, its association with diabetes and other metabolic parameters is unclear. Estrogen and dietary factors are known to regulate ABCA1 expression in different tissues. Thus, we aimed to explore whether gender, menopausal status and macronutrient proportions of diet modulate the effect of this variant on various metabolic parameters. Methods One thousand five hundred ninety-eight controls from the GEA study were included (787 men, 363 premenopausal women and 448 menopausal women), previously assessed for anthropometric and biochemical measurements and visceral to subcutaneous abdominal fat (VAT/SAT) ratio on computed tomography. Taqman assays were performed for genotyping. Diet macronutrient proportions were assessed using a food frequency questionnaire validated for the Mexican population. Multivariate regression models were constructed to assess the interaction between the proportion of dietary macronutrients and the R230C polymorphism on metabolic parameters. Results All significant interactions were observed in premenopausal women. Those carrying the risk allele and consuming higher carbohydrate/lower fat diets showed an unfavorable metabolic pattern [lower HDL-C and adiponectin levels, higher VAT/SAT ratio, homeostasis model assessment for insulin resistance (HOMA-IR) and higher gamma-glutamyl transpeptidase (GGT) and alkaline phosphatase (ALP) levels]. Conversely, premenopausal women carrying the risk allele and consuming lower carbohydrate/higher fat diets showed a more favorable metabolic pattern (higher HDL-C and adiponectin levels, and lower VAT/SAT ratio, HOMA-IR, GGT and ALP levels). Conclusion This is the first study reporting a gender-specific interaction between ABCA1/R230C variant and dietary carbohydrate and fat percentages affecting VAT/SAT ratio, GGT, ALP, adiponectin levels and HOMA index. Our study confirmed the previously reported gender-specific ABCA1-diet interaction affecting HDL-C levels observed in an independent study. Our results show how gene-environment interactions may help further understand how certain gene variants confer metabolic risk, and may provide information useful to design diet intervention studies. Electronic supplementary material The online version of this article (doi:10.1186/s12986-015-0040-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leonor Jacobo-Albavera
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Carlos Posadas-Romero
- Departamento de Endocrinología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Gilberto Vargas-Alarcón
- Departamento de Biología Molecular, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Sandra Romero-Hidalgo
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Rosalinda Posadas-Sánchez
- Departamento de Endocrinología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | | | - Alessandra Carnevale
- Laboratorio de Enfermedades Mendelianas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química UNAM-INMEGEN, Mexico City, Mexico
| | - Aida Medina-Urrutia
- Departamento de Endocrinología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Erika Antúnez-Argüelles
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Periférico Sur 4809 Colonia Arenal Tepepan, CP 14610 México, D.F. Mexico
| | - Teresa Villarreal-Molina
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Periférico Sur 4809 Colonia Arenal Tepepan, CP 14610 México, D.F. Mexico
| |
Collapse
|
19
|
Frisdal E, Le Goff W. Adipose ABCG1: A potential therapeutic target in obesity? Adipocyte 2015; 4:315-8. [PMID: 26451289 DOI: 10.1080/21623945.2015.1023491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 10/23/2022] Open
Abstract
The importance of ATP-Binding Cassette G1 (ABCG1) transporter in obesity was recently brought to light by recent findings uncovering its key role in adipogenesis with physiopathological consequences in human obesity. Thus, silencing of ABCG1 expression using an RNAi approach allows inhibition of adipocyte differentiation and maturation leading to reduction of fat mass growth in vivo in mice. Studies of ABCG1 in obese subjects validated its deleterious role in the context of obesity, suggesting that adipose tissue ABCG1 could be a potential therapeutic target in obese patients. Here, we discuss the potential feasibility of such strategy and provide a brief overview of critical issues to be considered.
Collapse
|
20
|
Haase CL, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. HDL Cholesterol and Risk of Type 2 Diabetes: A Mendelian Randomization Study. Diabetes 2015; 64:3328-33. [PMID: 25972569 DOI: 10.2337/db14-1603] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/07/2015] [Indexed: 11/13/2022]
Abstract
Observationally, low levels of HDL cholesterol are consistently associated with increased risk of type 2 diabetes. Therefore, plasma HDL cholesterol increasing has been suggested as a novel therapeutic option to reduce the risk of type 2 diabetes. Whether levels of HDL cholesterol are causally associated with type 2 diabetes is unknown. In a prospective study of the general population (n = 47,627), we tested whether HDL cholesterol-related genetic variants were associated with low HDL cholesterol levels and, in turn, with an increased risk of type 2 diabetes. HDL cholesterol-decreasing gene scores and allele numbers associated with up to -13 and -20% reductions in HDL cholesterol levels. The corresponding theoretically predicted hazard ratios for type 2 diabetes were 1.44 (95% CI 1.38-1.52) and 1.77 (1.61-1.95), whereas the genetic estimates were nonsignificant. Genetic risk ratios for type 2 diabetes for a 0.2 mmol/L reduction in HDL cholesterol were 0.91 (0.75-1.09) and 0.93 (0.78-1.11) for HDL cholesterol-decreasing gene scores and allele numbers, respectively, compared with the corresponding observational hazard ratio of 1.37 (1.32-1.42). In conclusion, genetically reduced HDL cholesterol does not associate with increased risk of type 2 diabetes, suggesting that the corresponding observational association is due to confounding and/or reverse causation.
Collapse
Affiliation(s)
- Christiane L Haase
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Kulkarni H, Kos MZ, Neary J, Dyer TD, Kent JW, Göring HHH, Cole SA, Comuzzie AG, Almasy L, Mahaney MC, Curran JE, Blangero J, Carless MA. Novel epigenetic determinants of type 2 diabetes in Mexican-American families. Hum Mol Genet 2015; 24:5330-44. [PMID: 26101197 DOI: 10.1093/hmg/ddv232] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 06/16/2015] [Indexed: 12/25/2022] Open
Abstract
Although DNA methylation is now recognized as an important mediator of complex diseases, the extent to which the genetic basis of such diseases is accounted for by DNA methylation is unknown. In the setting of large, extended families representing a minority, high-risk population of the USA, we aimed to characterize the role of epigenome-wide DNA methylation in type 2 diabetes (T2D). Using Illumina HumanMethylation450 BeadChip arrays, we tested for association of DNA methylation at 446 356 sites with age, sex and phenotypic traits related to T2D in 850 pedigreed Mexican-American individuals. Robust statistical analyses showed that (i) 15% of the methylome is significantly heritable, with a median heritability of 0.14; (ii) DNA methylation at 14% of CpG sites is associated with nearby sequence variants; (iii) 22% and 3% of the autosomal CpG sites are associated with age and sex, respectively; (iv) 53 CpG sites were significantly associated with liability to T2D, fasting blood glucose and insulin resistance; (v) DNA methylation levels at five CpG sites, mapping to three well-characterized genes (TXNIP, ABCG1 and SAMD12) independently explained 7.8% of the heritability of T2D (vi) methylation at these five sites was unlikely to be influenced by neighboring DNA sequence variation. Our study has identified novel epigenetic indicators of T2D risk in Mexican Americans who have increased risk for this disease. These results provide new insights into potential treatment targets of T2D.
Collapse
Affiliation(s)
- Hemant Kulkarni
- South Texas Diabetes and Obesity Institute, University of Texas Health Sciences Center at San Antonio, Regional Academic Health Center, Harlingen, TX 78550, USA and
| | - Mark Z Kos
- South Texas Diabetes and Obesity Institute, University of Texas Health Sciences Center at San Antonio, Regional Academic Health Center, Harlingen, TX 78550, USA and
| | - Jennifer Neary
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Thomas D Dyer
- South Texas Diabetes and Obesity Institute, University of Texas Health Sciences Center at San Antonio, Regional Academic Health Center, Harlingen, TX 78550, USA and
| | - Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Harald H H Göring
- South Texas Diabetes and Obesity Institute, University of Texas Health Sciences Center at San Antonio, Regional Academic Health Center, Harlingen, TX 78550, USA and
| | - Shelley A Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Laura Almasy
- South Texas Diabetes and Obesity Institute, University of Texas Health Sciences Center at San Antonio, Regional Academic Health Center, Harlingen, TX 78550, USA and
| | - Michael C Mahaney
- South Texas Diabetes and Obesity Institute, University of Texas Health Sciences Center at San Antonio, Regional Academic Health Center, Harlingen, TX 78550, USA and
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, University of Texas Health Sciences Center at San Antonio, Regional Academic Health Center, Harlingen, TX 78550, USA and
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Health Sciences Center at San Antonio, Regional Academic Health Center, Harlingen, TX 78550, USA and
| | - Melanie A Carless
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
22
|
Vollenweider P, von Eckardstein A, Widmann C. HDLs, diabetes, and metabolic syndrome. Handb Exp Pharmacol 2015; 224:405-21. [PMID: 25522996 DOI: 10.1007/978-3-319-09665-0_12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prevalence of type 2 diabetes mellitus and of the metabolic syndrome is rising worldwide and reaching epidemic proportions. These pathologies are associated with significant morbidity and mortality, in particular with an excess of cardiovascular deaths. Type 2 diabetes mellitus and the cluster of pathologies including insulin resistance, central obesity, high blood pressure, and hypertriglyceridemia that constitute the metabolic syndrome are associated with low levels of HDL cholesterol and the presence of dysfunctional HDLs. We here review the epidemiological evidence and the potential underlying mechanisms of this association. We first discuss the well-established association of type 2 diabetes mellitus and insulin resistance with alterations of lipid metabolism and how these alterations may lead to low levels of HDL cholesterol and the occurrence of dysfunctional HDLs. We then present and discuss the evidence showing that HDL modulates insulin sensitivity, insulin-independent glucose uptake, insulin secretion, and beta cell survival. A dysfunction in these actions could play a direct role in the pathogenesis of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Peter Vollenweider
- Department of Internal Medicine, University Hospital Center (CHUV) and University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
23
|
Koldamova R, Fitz NF, Lefterov I. ATP-binding cassette transporter A1: from metabolism to neurodegeneration. Neurobiol Dis 2014; 72 Pt A:13-21. [PMID: 24844148 PMCID: PMC4302328 DOI: 10.1016/j.nbd.2014.05.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/01/2014] [Accepted: 05/06/2014] [Indexed: 01/04/2023] Open
Abstract
ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol efflux to lipid-free apolipoprotein A-I (apoA-I) and apolipoprotein E (apoE). ABCA1 is an essential regulator of high density lipoproteins (HDL) and reverse cholesterol transport - a role that determines its importance for atherosclerosis. Over the last 10 years studies have provided convincing evidence that ABCA1, via its control of apoE lipidation, also has a role in Alzheimer's disease (AD). A series of reports have revealed a significant impact of ABCA1 on Aβ deposition and clearance in AD model mice, as well as an association of common and rare ABCA1 gene variants with the risk for AD. Since APOE is the major genetic risk factor for late onset AD, the regulation of apoE level or its functionality by ABCA1 may prove significant for AD pathogenesis. ABCA1 is transcriptionally regulated by Liver X Receptors (LXR) and Retinoic X Receptors (RXR) which provides a starting point for drug discovery and development of synthetic LXR and RXR agonists for treatment of metabolic and neurodegenerative disorders. This review summarizes the recent results of research on ABCA1, particularly relevant to atherosclerosis and AD.
Collapse
Affiliation(s)
- Radosveta Koldamova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Nicholas F Fitz
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Iliya Lefterov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
24
|
|
25
|
Hidalgo B, Irvin MR, Sha J, Zhi D, Aslibekyan S, Absher D, Tiwari HK, Kabagambe EK, Ordovas JM, Arnett DK. Epigenome-wide association study of fasting measures of glucose, insulin, and HOMA-IR in the Genetics of Lipid Lowering Drugs and Diet Network study. Diabetes 2014; 63:801-7. [PMID: 24170695 PMCID: PMC3968438 DOI: 10.2337/db13-1100] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Known genetic susceptibility loci for type 2 diabetes (T2D) explain only a small proportion of heritable T2D risk. We hypothesize that DNA methylation patterns may contribute to variation in diabetes-related risk factors, and this epigenetic variation across the genome can contribute to the missing heritability in T2D and related metabolic traits. We conducted an epigenome-wide association study for fasting glucose, insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) among 837 nondiabetic participants in the Genetics of Lipid Lowering Drugs and Diet Network study, divided into discovery (N = 544) and replication (N = 293) stages. Cytosine guanine dinucleotide (CpG) methylation at ∼470,000 CpG sites was assayed in CD4(+) T cells using the Illumina Infinium HumanMethylation 450 Beadchip. We fit a mixed model with the methylation status of each CpG as the dependent variable, adjusting for age, sex, study site, and T-cell purity as fixed-effects and family structure as a random-effect. A Bonferroni corrected P value of 1.1 × 10(-7) was considered significant in the discovery stage. Significant associations were tested in the replication stage using identical models. Methylation of a CpG site in ABCG1 on chromosome 21 was significantly associated with insulin (P = 1.83 × 10(-7)) and HOMA-IR (P = 1.60 × 10(-9)). Another site in the same gene was significant for HOMA-IR and of borderline significance for insulin (P = 1.29 × 10(-7) and P = 3.36 × 10(-6), respectively). Associations with the top two signals replicated for insulin and HOMA-IR (P = 5.75 × 10(-3) and P = 3.35 × 10(-2), respectively). Our findings suggest that methylation of a CpG site within ABCG1 is associated with fasting insulin and merits further evaluation as a novel disease risk marker.
Collapse
Affiliation(s)
- Bertha Hidalgo
- Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL
- Corresponding author: Bertha Hidalgo,
| | - M. Ryan Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Jin Sha
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Degui Zhi
- Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Devin Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, AL
| | - Hemant K. Tiwari
- Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL
| | | | - Jose M. Ordovas
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Medford, MA
| | - Donna K. Arnett
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW To offer a comprehensive review on the role of ABCG1 in cellular sterol homeostasis. RECENT FINDINGS Early studies with Abcg1 mice indicated that ABCG1 was crucial for tissue lipid homeostasis, especially in the lung. More recent studies have demonstrated that loss of ABCG1 has wide-ranging consequences and impacts lymphocyte and stem cell proliferation, endothelial cell function, macrophage foam cell formation, as well as insulin secretion from pancreatic β cells. Recent studies have also demonstrated that ABCG1 functions as an intracellular lipid transporter, localizes to intracellular vesicles/endosomes, and that the transmembrane domains are sufficient for localization and transport function. SUMMARY ABCG1 plays a crucial role in maintaining intracellular sterol and lipid homeostasis. Loss of this transporter has significant, cell-type-specific consequences ranging from effects on cellular proliferation, to surfactant production and/or insulin secretion. Elucidation of the mechanisms by which ABCG1 affects intracellular sterol flux/movement should provide important information that may link ABCG1 to diseases of dysregulated tissue lipid homeostasis.
Collapse
Affiliation(s)
- Elizabeth J Tarling
- Departments of Biological Chemistry and Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-1737, USA.
| |
Collapse
|
27
|
Bardini G, Rotella CM, Giannini S. Dyslipidemia and diabetes: reciprocal impact of impaired lipid metabolism and Beta-cell dysfunction on micro- and macrovascular complications. Rev Diabet Stud 2012; 9:82-93. [PMID: 23403704 DOI: 10.1900/rds.2012.9.82] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Patients with diabetes frequently exhibit the combined occurrence of hyperglycemia and dyslipidemia. Published data on their coexistence are often controversial. Some studies provide evidence for suboptimal lifestyle and exogenous hyperinsulinism at "mild insulin resistance" in adult diabetic patients as main pathogenic factors. In contrast, other studies confirm that visceral adiposity and insulin resistance are the basic features of dyslipidemia in type 2 diabetes (T2D). The consequence is an excess of free fatty acids, which causes hepatic gluconeogenesis to increase, metabolism in muscles to shift from glucose to lipid, beta-cell lipotoxicity, and an appearance of the classical "lipid triad", without real hypercholesterolemia. Recently, it has been proposed that cholesterol homeostasis is important for an adequate insulin secretory performance of beta-cells. The accumulation of cholesterol in beta-cells, caused by defective high-density lipoprotein (HDL) cholesterol with reduced cholesterol efflux, induces hyperglycemia, impaired insulin secretion, and beta-cell apoptosis. Data from animal models and humans, including humans with Tangier disease, who are characterized by very low HDL cholesterol levels, are frequently associated with hyperglycemia and T2D. Thus, there is a reciprocal influence of dyslipidemia on beta-cell function and inversely of beta-cell dysfunction on lipid metabolism and micro- and macrovascular complications. It remains to be clarified how these different but mutually influencing adverse effects act in together to define measures for a more effective prevention and treatment of micro- and macrovascular complications in diabetes patients. While the control of circulating low-density lipoprotein (LDL) cholesterol and the level of HDL cholesterol are determinant targets for the reduction of cardiovascular risk, based on recent data, these targets should also be considered for the prevention of beta-cell dysfunction and the development of type 2 diabetes. In this review, we analyze consolidated data and recent advances on the relationship between lipid metabolism and diabetes mellitus, with particular attention to the reciprocal effects of the two features of the disease and the development of vascular complications.
Collapse
Affiliation(s)
- Gianluca Bardini
- Section of Endocrinology, Department of Clinical Pathophysiology, University of Florence, Italy
| | | | | |
Collapse
|