1
|
Felton JL, Redondo MJ, Oram RA, Speake C, Long SA, Onengut-Gumuscu S, Rich SS, Monaco GSF, Harris-Kawano A, Perez D, Saeed Z, Hoag B, Jain R, Evans-Molina C, DiMeglio LA, Ismail HM, Dabelea D, Johnson RK, Urazbayeva M, Wentworth JM, Griffin KJ, Sims EK. Islet autoantibodies as precision diagnostic tools to characterize heterogeneity in type 1 diabetes: a systematic review. COMMUNICATIONS MEDICINE 2024; 4:66. [PMID: 38582818 PMCID: PMC10998887 DOI: 10.1038/s43856-024-00478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/05/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Islet autoantibodies form the foundation for type 1 diabetes (T1D) diagnosis and staging, but heterogeneity exists in T1D development and presentation. We hypothesized that autoantibodies can identify heterogeneity before, at, and after T1D diagnosis, and in response to disease-modifying therapies. METHODS We systematically reviewed PubMed and EMBASE databases (6/14/2022) assessing 10 years of original research examining relationships between autoantibodies and heterogeneity before, at, after diagnosis, and in response to disease-modifying therapies in individuals at-risk or within 1 year of T1D diagnosis. A critical appraisal checklist tool for cohort studies was modified and used for risk of bias assessment. RESULTS Here we show that 152 studies that met extraction criteria most commonly characterized heterogeneity before diagnosis (91/152). Autoantibody type/target was most frequently examined, followed by autoantibody number. Recurring themes included correlations of autoantibody number, type, and titers with progression, differing phenotypes based on order of autoantibody seroconversion, and interactions with age and genetics. Only 44% specifically described autoantibody assay standardization program participation. CONCLUSIONS Current evidence most strongly supports the application of autoantibody features to more precisely define T1D before diagnosis. Our findings support continued use of pre-clinical staging paradigms based on autoantibody number and suggest that additional autoantibody features, particularly in relation to age and genetic risk, could offer more precise stratification. To improve reproducibility and applicability of autoantibody-based precision medicine in T1D, we propose a methods checklist for islet autoantibody-based manuscripts which includes use of precision medicine MeSH terms and participation in autoantibody standardization workshops.
Collapse
Affiliation(s)
- Jamie L Felton
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maria J Redondo
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Diabetes and Endocrinology, Texas Children's Hospital, Houston, TX, USA
| | - Richard A Oram
- NIHR Exeter Biomedical Research Centre (BRC), Academic Kidney Unit, University of Exeter, Exeter, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Gabriela S F Monaco
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arianna Harris-Kawano
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
| | - Dianna Perez
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
| | - Zeb Saeed
- Department of Endocrinology, Diabetes and Metabolism, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Benjamin Hoag
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Rashmi Jain
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Endocrinology, Diabetes and Metabolism, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VAMC, Indianapolis, IN, USA
| | - Linda A DiMeglio
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heba M Ismail
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA
| | - Randi K Johnson
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | | | - John M Wentworth
- Royal Melbourne Hospital Department of Diabetes and Endocrinology, Parkville, VIC, Australia
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne Department of Medicine, Parkville, VIC, Australia
| | - Kurt J Griffin
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
- Sanford Research, Sioux Falls, SD, USA
| | - Emily K Sims
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA.
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Wenzlau JM, Gu Y, Michels A, Rewers M, Haskins K, Yu L. Identification of Autoantibodies to a Hybrid Insulin Peptide in Type 1 Diabetes. Diagnostics (Basel) 2023; 13:2859. [PMID: 37685398 PMCID: PMC10487141 DOI: 10.3390/diagnostics13172859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that attacks the insulin-producing b cells of the pancreatic islets. Autoantibodies to b cell proteins typically appear in the circulation years before disease onset, and serve as the most accurate biomarkers of T1D risk. Our laboratory has recently discovered novel b cell proteins comprising hybrid proinsulin:islet amyloid polypeptide peptides (IAPP). T cells from a diabetic mouse model and T1D patients are activated by these hybrid peptides. In this study, we asked whether these hybrid molecules could serve as antigens for autoantibodies in T1D and prediabetic patients. We analyzed sera from T1D patients, prediabetics and healthy age-matched donors. Using a highly sensitive electrochemiluminescence assay, sera were screened for binding to recombinant proinsulin:IAPP probes or truncated derivatives. Our results show that sera from T1D patients contain antibodies that bind larger hybrid proinsulin:IAPP probes, but not proinsulin or insulin, at significantly increased frequencies compared to normal donors. Examination of sera from prediabetic patients confirms titers of antibodies to these hybrid probes in more than 80% of individuals, often before seroconversion. These results suggest that hybrid insulin peptides are common autoantigens in T1D and prediabetic patients, and that antibodies to these peptides may serve as valuable early biomarkers of the disease.
Collapse
Affiliation(s)
- Janet M. Wenzlau
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA; (J.M.W.); (K.H.)
| | - Yong Gu
- Barbara Davis Center for Childhood Diabetes, 1775 Aurora Court, Mail Stop B140, Aurora, CO 80045, USA; (Y.G.); (A.M.); (M.R.)
| | - Aaron Michels
- Barbara Davis Center for Childhood Diabetes, 1775 Aurora Court, Mail Stop B140, Aurora, CO 80045, USA; (Y.G.); (A.M.); (M.R.)
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, 1775 Aurora Court, Mail Stop B140, Aurora, CO 80045, USA; (Y.G.); (A.M.); (M.R.)
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8333, Aurora, CO 80045, USA; (J.M.W.); (K.H.)
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, 1775 Aurora Court, Mail Stop B140, Aurora, CO 80045, USA; (Y.G.); (A.M.); (M.R.)
| |
Collapse
|
3
|
Papadimitriou DT, Dermitzaki E, Christopoulos P, Papagianni M, Kleanthous K, Marakaki C, Papadimitriou A, Mastorakos G. Secondary Prevention of Diabetes Type 1 with Oral Calcitriol and Analogs, the PRECAL Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:862. [PMID: 37238410 PMCID: PMC10217040 DOI: 10.3390/children10050862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Screening for Type 1 Diabetes (T1D, incidence 1:300) with T1D autoantibodies (T1Ab) at ages 2 and 6, while sensitive, lacks a preventive strategy. Cholecalciferol 2000 IU daily since birth reduced T1D by 80% at 1 year. T1D-associated T1Ab negativized within 0.6 years with oral calcitriol in 12 children. To further investigate secondary prevention of T1D with calcitriol and its less calcemic analog, paricalcitol, we initiated a prospective interventional non-randomized clinical trial, the PRECAL study (ISRCTN17354692). In total, 50 high-risk children were included: 44 were positive for T1Ab, and 6 had predisposing for T1D HLA genotypes. Nine T1Ab+ patients had variable impaired glucose tolerance (IGT), four had pre-T1D (3 T1Ab+, 1 HLA+), nine had T1Ab+ new-onset T1D not requiring insulin at diagnosis. T1Ab, thyroid/anti-transglutaminase Abs, glucose/calcium metabolism were determined prior and q3-6 months on calcitriol, 0.05 mcg/Kg/day, or paricalcitol 1-4 mcg × 1-3 times/day p.o. while on cholecalciferol repletion. Available data on 42 (7 dropouts, 1 follow-up < 3 months) patients included: all 26 without pre-T1D/T1D followed for 3.06 (0.5-10) years negativized T1Ab (15 +IAA, 3 IA2, 4 ICA, 2 +GAD, 1 +IAA/+GAD, 1 +ICA/+GAD) within 0.57 (0.32-1.3) years or did not develop to T1D (5 +HLA, follow-up 3 (1-4) years). From four pre-T1D cases, one negativized T1Ab (follow-up 1 year), one +HLA did not progress to T1D (follow-up 3.3 years) and two +T1Ab patients developed T1D in 6 months/3 years. Three out of nine T1D cases progressed immediately to overt disease, six underwent complete remission for 1 year (1 month-2 years). Five +T1Ab patients relapsed and negativized again after resuming therapy. Four (aged <3 years) negativized anti-TPO/TG, and two anti-transglutaminase-IgA. Eight presented mild hypercalciuria/hypercalcemia, resolving with dose titration/discontinuation. Secondary prevention of T1D with calcitriol and paricalcitol seems possible and reasonably safe, if started soon enough after seroconversion.
Collapse
Affiliation(s)
- Dimitrios T. Papadimitriou
- Second Department of Obstetrics and Gynecology, Aretaieion University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Pediatric-Adolescent Endocrinology and Diabetes, Athens Medical Center, 15125 Marousi, Greece
| | - Eleni Dermitzaki
- Department of Pediatric-Adolescent Endocrinology and Diabetes, Athens Medical Center, 15125 Marousi, Greece
| | - Panagiotis Christopoulos
- Second Department of Obstetrics and Gynecology, Aretaieion University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Papagianni
- Department of Nutrition and Dietetics, University of Thessaly, 42132 Trikala, Greece
- Unit of Endocrinology, Diabetes and Metabolism, Third Department of Pediatrics, Aristotle University of Thessaloniki, Hippokrateion Hospital of Thessaloniki, 54642 Thessaloniki, Greece
| | - Kleanthis Kleanthous
- Department of Pediatric-Adolescent Endocrinology and Diabetes, Athens Medical Center, 15125 Marousi, Greece
| | - Chrysanthi Marakaki
- Department of Pediatric-Adolescent Endocrinology and Diabetes, Athens Medical Center, 15125 Marousi, Greece
| | - Anastasios Papadimitriou
- Pediatric Endocrinology Unit, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Haidari, Greece
| | - George Mastorakos
- Second Department of Obstetrics and Gynecology, Aretaieion University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
4
|
Marzinotto I, Pittman DL, Williams AJK, Long AE, Achenbach P, Schlosser M, Akolkar B, Winter WE, Lampasona V. Islet Autoantibody Standardization Program: interlaboratory comparison of insulin autoantibody assay performance in 2018 and 2020 workshops. Diabetologia 2023; 66:897-912. [PMID: 36759347 PMCID: PMC10036445 DOI: 10.1007/s00125-023-05877-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/21/2022] [Indexed: 02/11/2023]
Abstract
AIMS/HYPOTHESIS The Islet Autoantibody Standardization Program (IASP) aims to improve the performance of immunoassays measuring autoantibodies in type 1 diabetes and the concordance of results across laboratories. IASP organises international workshops distributing anonymised serum samples to participating laboratories and centralises the collection and analysis of results. In this report, we describe the results of assays measuring IAA submitted to the IASP 2018 and 2020 workshops. METHODS The IASP distributed uniquely coded sera from individuals with new-onset type 1 diabetes, multiple islet autoantibody-positive individuals, and diabetes-free blood donors in both 2018 and 2020. Serial dilutions of the anti-insulin mouse monoclonal antibody HUI-018 were also included. Sensitivity, specificity, area under the receiver operating characteristic curve (ROC-AUC), partial ROC-AUC at 95% specificity (pAUC95) and concordance of qualitative/quantitative results were compared across assays. RESULTS Results from 45 IAA assays of seven different formats and from 37 IAA assays of six different formats were submitted to the IASP in 2018 and 2020, respectively. The median ROC-AUC was 0.736 (IQR 0.617-0.803) and 0.790 (IQR 0.730-0.836), while the median pAUC95 was 0.016 (IQR 0.004-0.021) and 0.023 (IQR 0.014-0.026) in the 2018 and 2020 workshops, respectively. Assays largely differed in AUC (IASP 2018 range 0.232-0.874; IASP 2020 range 0.379-0.924) and pAUC95 (IASP 2018 and IASP 2020 range 0-0.032). CONCLUSIONS/INTERPRETATION Assay formats submitted to this study showed heterogeneous performance. Despite the high variability across laboratories, the in-house radiobinding assay (RBA) remains the gold standard for IAA measurement. However, novel non-radioactive IAA immunoassays showed a good performance and, if further improved, might be considered valid alternatives to RBAs.
Collapse
Affiliation(s)
- Ilaria Marzinotto
- San Raffaele Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
| | - David L Pittman
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Alistair J K Williams
- Diabetes and Metabolism, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Anna E Long
- Diabetes and Metabolism, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Peter Achenbach
- Institute of Diabetes Research, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Michael Schlosser
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medical Center Greifswald, Greifswald, Germany
- Institute of Pathophysiology, Research Group of Predictive Diagnostics, University Medical Center Greifswald, Karlsburg, Germany
| | - Beena Akolkar
- Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - William E Winter
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Vito Lampasona
- San Raffaele Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
5
|
Guyer P, Arribas-Layton D, Manganaro A, Speake C, Lord S, Eizirik DL, Kent SC, Mallone R, James EA. Recognition of mRNA Splice Variant and Secretory Granule Epitopes by CD4+ T Cells in Type 1 Diabetes. Diabetes 2023; 72:85-96. [PMID: 36201618 PMCID: PMC9797322 DOI: 10.2337/db22-0191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/02/2022] [Indexed: 01/19/2023]
Abstract
A recent discovery effort resulted in identification of novel splice variant and secretory granule antigens within the HLA class I peptidome of human islets and documentation of their recognition by CD8+ T cells from peripheral blood and human islets. In the current study, we applied a systematic discovery process to identify novel CD4+ T cell epitopes derived from these candidate antigens. We predicted 145 potential epitopes spanning unique splice junctions and within conventional secretory granule antigens and measured their in vitro binding to DRB1*04:01. We generated HLA class II tetramers for the 35 peptides with detectable binding and used these to assess immunogenicity and isolate T cell clones. Tetramers corresponding to peptides with verified immunogenicity were then used to label T cells specific for these putative epitopes in peripheral blood. T cells that recognize distinct epitopes derived from a cyclin I splice variant, neuroendocrine convertase 2, and urocortin-3 were detected at frequencies that were similar to those of an immunodominant proinsulin epitope. Cells specific for these novel epitopes predominantly exhibited a Th1-like surface phenotype. Among the three epitopes, responses to the cyclin I peptide exhibited a distinct memory profile. Responses to neuroendocrine convertase 2 were detected among pancreatic infiltrating T cells. These results further establish the contribution of unconventional antigens to the loss of tolerance in autoimmune diabetes.
Collapse
Affiliation(s)
- Perrin Guyer
- Center for Translational Immunology, Benaroya Research Institute, Virginia Mason Medical Center, Seattle, WA
| | - David Arribas-Layton
- Center for Translational Immunology, Benaroya Research Institute, Virginia Mason Medical Center, Seattle, WA
| | - Anthony Manganaro
- Division of Diabetes, Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Cate Speake
- Diabetes Clinical Research Program and Center for Interventional Immunology, Benaroya Research Institute, Virginia Mason Medical Center, Seattle, WA
| | - Sandra Lord
- Diabetes Clinical Research Program and Center for Interventional Immunology, Benaroya Research Institute, Virginia Mason Medical Center, Seattle, WA
| | - Decio L. Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - Sally C. Kent
- Division of Diabetes, Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA
| | - Roberto Mallone
- INSERM, CNRS, Institut Cochin, Université de Paris, Paris, France
- Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Hôpitaux Universitaires Paris Centre, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Eddie A. James
- Center for Translational Immunology, Benaroya Research Institute, Virginia Mason Medical Center, Seattle, WA
| |
Collapse
|
6
|
He L, Jia X, Rasmussen CG, Waugh K, Miao D, Dong F, Frohnert B, Steck AK, Simmons KM, Rewers M, Yu L. High-Throughput Multiplex Electrochemiluminescence Assay Applicable to General Population Screening for Type 1 Diabetes and Celiac Disease. Diabetes Technol Ther 2022; 24:502-509. [PMID: 35238620 PMCID: PMC9464081 DOI: 10.1089/dia.2021.0517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objective: Large-scale screening of the general population for islet autoantibodies (IAbs) to detect type 1 diabetes (T1D) has started worldwide. The standard screening method of separate radio-binding assay (RBA) for each IAb is an inefficient bottleneck. Furthermore, most positive results by RBA in screening of general population individuals without a clinical diagnosis of T1D are low-affinity and not predictive of future diabetes. Research Design and Methods: We have developed and validated a novel 6-Plex assay based on electrochemiluminescence (ECL) technology that combines in a single well high-affinity IAbs (to insulin, GAD, IA-2, and ZnT8), transglutaminase autoantibodies for celiac disease, and severe acute respiratory syndrome coronavirus 2 antibodies. The Autoimmunity Screening for Kids (ASK) provided 880 serum samples, from 828 children aged 1-17 years without diabetes who were previously tested for IAbs using single ECL assays and RBA assays. Results: Levels of all six antibodies in the 6-Plex ECL assay correlated well with respective single ECL assay levels. Similar to single ECL assays, the 6-Plex ECL assay positivity was congruent with the RBA in 95% (35/37) of children who later developed T1D and in 88% (105/119) high-risk children with multiple IAbs. In contrast, only 56% (86/154, P < 0.0001) of children with persistent single IAb by RBA were found to be positive by 6-Plex ECL assay. Of 555 samples negative for all IAbs by RBA, few (0.2%-0.5%) were positive at low levels in the 6-Plex ECL assay. Conclusions: The study demonstrated that the 6-Plex ECL assay compares favorably to the standard RBAs in terms of disease specificity for general population screening in children. The 6-Plex ECL assay was therefore adopted as the primary screening tool in the general population screening ASK program with advantages of high efficiency, low cost, and low serum volume.
Collapse
Affiliation(s)
- Ling He
- Department of Endocrinology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Xiaofan Jia
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Cristy Geno Rasmussen
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kathleen Waugh
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Dongmei Miao
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Fran Dong
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brigitte Frohnert
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Andrea K. Steck
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kimber M. Simmons
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
- Address correspondence to: Marian Rewers, MD, PhD, Barbara Davis Center for Diabetes, University of Colorado School of Medicine, 1775 Aurora Ct, B140, Aurora, CO 80045, USA
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
- Address correspondence to: Liping Yu, MD, Barbara Davis Center for Diabetes, University of Colorado School of Medicine, 1775 Aurora Ct, B140, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Triolo TM, Pyle L, Broncucia H, Armstrong T, Yu L, Gottlieb PA, Steck AK. Association of High-Affinity Autoantibodies With Type 1 Diabetes High-Risk HLA Haplotypes. J Clin Endocrinol Metab 2022; 107:e1510-e1517. [PMID: 34850014 PMCID: PMC8947772 DOI: 10.1210/clinem/dgab853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Electrochemiluminescence (ECL) assays are high-affinity autoantibody (Ab) tests that are more specific than Abs detected by traditional radiobinding assays (RBA) for risk screening and prediction of progression to type 1 diabetes. We sought to characterize the association of high-risk human leukocyte antigen (HLA) haplotypes and genotypes with ECL positivity and levels in relatives of individuals with type 1 diabetes. METHODS We analyzed 602 participants from the TrialNet Pathway to Prevention Study who were positive for at least 1 RBA diabetes-related Ab [glutamic acid decarboxylase autoantibodies (GADA) or insulin autoantibodies (IAA)] and for whom ECL and HLA data were available. ECL and RBA Ab levels were converted to SD units away from mean (z-scores) for analyses. RESULTS Mean age at initial visit was 19.4 ± 13.7 years; 344 (57.1%) were female and 104 (17.3%) carried the high-risk HLA-DR3/4*0302 genotype. At initial visit 424/602 (70.4%) participants were positive for either ECL-GADA or ECL-IAA, and 178/602 (29.6%) were ECL negative. ECL and RBA-GADA positivity were associated with both HLA-DR3 and DR4 haplotypes (all Ps < 0.05), while ECL and RBA-GADA z-score titers were higher in participants with HLA-DR3 haplotypes only (both Ps < 0.001). ECL-IAA (but not RBA-IAA) positivity was associated with the HLA-DR4 haplotype (P < 0.05). CONCLUSIONS ECL-GADA positivity is associated with the HLA-DR3 and HLA-DR4 haplotypes and levels are associated with the HLA-DR3 haplotype. ECL-IAA positivity is associated with HLA-DR4 haplotype. These studies further contribute to the understanding of genetic risk and islet autoimmunity endotypes in type 1 diabetes.
Collapse
Affiliation(s)
- Taylor M Triolo
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
- Correspondence: Taylor M. Triolo, MD, University of Colorado Denver School of Medicine, Barbara Davis Center for Diabetes, 1775 Aurora Ct, MS #A140, Aurora, CO, USA 80045-2581.
| | - Laura Pyle
- Department of Pediatrics, University of Colorado, Aurora, CO, USA
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Hali Broncucia
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Taylor Armstrong
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Andrea K Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| |
Collapse
|
8
|
Automation of a multiplex agglutination-PCR (ADAP) type 1 diabetes (T1D) assay for the rapid analysis of islet autoantibodies. SLAS Technol 2022; 27:26-31. [DOI: 10.1016/j.slast.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Jia X, He L, Miao D, Waugh K, Rasmussen CG, Dong F, Steck AK, Rewers M, Yu L. High-affinity ZnT8 Autoantibodies by Electrochemiluminescence Assay Improve Risk Prediction for Type 1 Diabetes. J Clin Endocrinol Metab 2021; 106:3455-3463. [PMID: 34343303 PMCID: PMC8864749 DOI: 10.1210/clinem/dgab575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 01/13/2023]
Abstract
CONTEXT Single ZnT8 autoantibody (ZnT8A) positivity by standard radiobinding assay (RBA) is commonly seen in nondiabetes population-based screening and the risk of progression to type 1 diabetes (T1D) in subjects with single ZnT8A is unknown. OBJECTIVE Identify the risk of progression to T1D in individuals positive only for ZnT8A. METHODS We developed an electrochemiluminescence (ECL) assay to detect high-affinity ZnT8A and validated it in 3 populations: 302 patients newly diagnosed with T1D, 135 nondiabetic children positive for ZnT8A by RBA among 23 400 children screened by the Autoimmunity Screening for Kids (ASK) study, and 123 nondiabetic children multiple autoantibody positive or single ZnT8A positive by RBA participating in the Diabetes Autoimmunity Study in the Young (DAISY). RESULTS In 302 patients with T1D at diagnosis, the positivity for ZnT8A was 62% both in RBA and ECL. Among ASK 135 participants positive for RBA-ZnT8A, 64 were detected ZnT8A as the only islet autoantibody. Of these 64, only 9 were confirmed by ECL-ZnT8A, found to be of high affinity with increased T1D risk. The overall positive predictive value of ECL-ZnT8A for T1D risk was 87.1%, significantly higher than that of RBA-ZnT8A (53.5%, P < .001). In DAISY, 11 of 2547 children who had no positivity previously detected for other islet autoantibodies were identified as single ZnT8A by RBA; of these, 3 were confirmed positive by ECL-ZnT8A and all 3 progressed to clinical T1D. CONCLUSION A large proportion of ZnT8A by RBA are single ZnT8A with low T1D risk, whereas ZnT8A by ECL was of high affinity and high prediction for T1D development.
Collapse
Affiliation(s)
- Xiaofan Jia
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Ling He
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Endocrinology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P. R. China
| | - Dongmei Miao
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Kathleen Waugh
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Cristy Geno Rasmussen
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Fran Dong
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Andrea K Steck
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Liping Yu
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Correspondence: Liping Yu, MD, Barbara Davis Center for Diabetes, University of Colorado School of Medicine, 1775 Aurora Ct, B-140, Aurora, CO 80045, USA.
| |
Collapse
|
10
|
So M, Speake C, Steck AK, Lundgren M, Colman PG, Palmer JP, Herold KC, Greenbaum CJ. Advances in Type 1 Diabetes Prediction Using Islet Autoantibodies: Beyond a Simple Count. Endocr Rev 2021; 42:584-604. [PMID: 33881515 DOI: 10.1210/endrev/bnab013] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Islet autoantibodies are key markers for the diagnosis of type 1 diabetes. Since their discovery, they have also been recognized for their potential to identify at-risk individuals prior to symptoms. To date, risk prediction using autoantibodies has been based on autoantibody number; it has been robustly shown that nearly all multiple-autoantibody-positive individuals will progress to clinical disease. However, longitudinal studies have demonstrated that the rate of progression among multiple-autoantibody-positive individuals is highly heterogenous. Accurate prediction of the most rapidly progressing individuals is crucial for efficient and informative clinical trials and for identification of candidates most likely to benefit from disease modification. This is increasingly relevant with the recent success in delaying clinical disease in presymptomatic subjects using immunotherapy, and as the field moves toward population-based screening. There have been many studies investigating islet autoantibody characteristics for their predictive potential, beyond a simple categorical count. Predictive features that have emerged include molecular specifics, such as epitope targets and affinity; longitudinal patterns, such as changes in titer and autoantibody reversion; and sequence-dependent risk profiles specific to the autoantibody and the subject's age. These insights are the outworking of decades of prospective cohort studies and international assay standardization efforts and will contribute to the granularity needed for more sensitive and specific preclinical staging. The aim of this review is to identify the dynamic and nuanced manifestations of autoantibodies in type 1 diabetes, and to highlight how these autoantibody features have the potential to improve study design of trials aiming to predict and prevent disease.
Collapse
Affiliation(s)
- Michelle So
- Diabetes Clinical Research Program, and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Cate Speake
- Diabetes Clinical Research Program, and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | - Andrea K Steck
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Markus Lundgren
- Department of Clinical Sciences Malmö, Lund University, Malmö 22200, Sweden
| | - Peter G Colman
- Department of Diabetes and Endocrinology, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | - Jerry P Palmer
- VA Puget Sound Health Care System, Department of Medicine, University of Washington, Seattle, WA 98108, USA
| | - Kevan C Herold
- Department of Immunobiology, and Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Carla J Greenbaum
- Diabetes Clinical Research Program, and Center for Interventional Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| |
Collapse
|
11
|
Gu Y, Merriman C, Guo Z, Jia X, Wenzlau J, Li H, Li H, Rewers M, Yu L, Fu D. Novel autoantibodies to the β-cell surface epitopes of ZnT8 in patients progressing to type-1 diabetes. J Autoimmun 2021; 122:102677. [PMID: 34130115 PMCID: PMC9029399 DOI: 10.1016/j.jaut.2021.102677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 11/22/2022]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by autoimmune destruction of insulin-producing β-cells in pancreatic islets. Seroconversions to islet autoantibodies (IAbs) precede the disease onset by many years, but the role of humoral autoimmunity in the disease initiation and progression are unclear. In the present study, we identified a new IAb directed to the extracellular epitopes of ZnT8 (ZnT8ec) in newly diagnosed patients with T1D, and demonstrated immunofluorescence staining of the surface of human β-cells by autoantibodies to ZnT8ec (ZnT8ecA). With the assay specificity set on 99th percentile of 336 healthy controls, the ZnT8ecA positivity rate was 23.6% (74/313) in patients with T1D. Moreover, 30 children in a longitudinal follow up of clinical T1D development were selected for sequential expression of four major IAbs (IAA, GADA, IA-2A and ZnT8icA). Among them, 10 children were ZnT8ecA positive. Remarkably, ZnT8ecA was the earliest IAb to appear in all 10 children. The identification of ZnT8ec as a cell surface target of humoral autoimmunity in the earliest phase of IAb responses opens a new avenue of investigation into the role of IAbs in the development of β-cell autoimmunity.
Collapse
Affiliation(s)
- Yong Gu
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, CO, USA
| | - Chengfeng Merriman
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zheng Guo
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Xiaofan Jia
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, CO, USA
| | - Janet Wenzlau
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, CO, USA
| | - Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, CO, USA
| | - Liping Yu
- Barbara Davis Center for Diabetes University of Colorado School of Medicine, Aurora, CO, USA.
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Ramzy A, Kieffer TJ. Altered islet prohormone processing: A cause or consequence of diabetes? Physiol Rev 2021; 102:155-208. [PMID: 34280055 DOI: 10.1152/physrev.00008.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peptide hormones are first produced as larger precursor prohormones that require endoproteolytic cleavage to liberate the mature hormones. A structurally conserved but functionally distinct family of nine prohormone convertase enzymes (PCs) are responsible for cleavage of protein precursors of which PC1/3 and PC2 are known to be exclusive to neuroendocrine cells and responsible for prohormone cleavage. Differential expression of PCs within tissues define prohormone processing; whereas glucagon is the major product liberated from proglucagon via PC2 in pancreatic α-cells, proglucagon is preferentially processed by PC1/3 in intestinal L cells to produce glucagon-like peptides 1 and 2 (GLP-1, GLP-2). Beyond our understanding of processing of islet prohormones in healthy islets, there is convincing evidence that proinsulin, proIAPP, and proglucagon processing is altered during prediabetes and diabetes. There is predictive value of elevated circulating proinsulin or proinsulin : C-peptide ratio for progression to type 2 diabetes and elevated proinsulin or proinsulin : C-peptide is predictive for development of type 1 diabetes in at risk groups. After onset of diabetes, patients have elevated circulating proinsulin and proIAPP and proinsulin may be an autoantigen in type 1 diabetes. Further, preclinical studies reveal that α-cells have altered proglucagon processing during diabetes leading to increased GLP-1 production. We conclude that despite strong associative data, current evidence is inconclusive on the potential causal role of impaired prohormone processing in diabetes, and suggest that future work should focus on resolving the question of whether altered prohormone processing is a causal driver or merely a consequence of diabetes pathology.
Collapse
Affiliation(s)
- Adam Ramzy
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Timothy J Kieffer
- Laboratory of Molecular and Cellular Medicine, Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Non-Genetically Encoded Epitopes Are Relevant Targets in Autoimmune Diabetes. Biomedicines 2021; 9:biomedicines9020202. [PMID: 33671312 PMCID: PMC7922826 DOI: 10.3390/biomedicines9020202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Islet antigen reactive T cells play a key role in promoting beta cell destruction in type 1 diabetes (T1D). Self-reactive T cells are typically deleted through negative selection in the thymus or deviated to a regulatory phenotype. Nevertheless, those processes are imperfect such that even healthy individuals have a reservoir of potentially autoreactive T cells. What remains less clear is how tolerance is lost to insulin and other beta cell specific antigens. Islet autoantibodies, the best predictor of disease risk, are known to recognize classical antigens such as proinsulin, GAD65, IA-2, and ZnT8. These antibodies are thought to be supported by the expansion of autoreactive CD4+ T cells that recognize these same antigenic targets. However, recent studies have identified new classes of non-genetically encoded epitopes that may reflect crucial gaps in central and peripheral tolerance. Notably, some of these specificities, including epitopes from enzymatically post-translationally modified antigens and hybrid insulin peptides, are present at relatively high frequencies in the peripheral blood of patients with T1D. We conclude that CD4+ T cells that recognize non-genetically encoded epitopes are likely to make an important contribution to the progression of islet autoimmunity in T1D. We further propose that these classes of neo-epitopes should be considered as possible targets for strategies to induce antigen specific tolerance.
Collapse
|
14
|
Large-Scale Screening in General Population Children for Celiac Disease with a Multiplex Electrochemiluminescence (ECL) Assay. J Immunol Res 2021; 2020:8897656. [PMID: 33426098 PMCID: PMC7775136 DOI: 10.1155/2020/8897656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
Background Autoimmunity Screening for Kids (ASK) study was launched to screen general population children for type 1 diabetes (T1D) and celiac disease (CD). Methods A total of 23,319 children from general population were screened. A high throughput multiplex electrochemiluminescence (ECL) assay to screen multiautoantibodies in a single well was applied, parallel with a standard radiobinding assay (RBA). All children with any positive autoantibodies in screening were revisited within one month for confirmation and followed every 6 months. Results Among 23,319 children, 2.6% (606/23,319) of children were tested positive for TGA. Multiplex ECL assay detected more TGA (584/23,319) in the initial screening than RBA (490/23,319, p = 0.004) and was able to detect TGA earlier than RBA in a subset of children by 0.8 to 34.8 months. Prevalence of TGA by either ECL or RBA in children with islet autoantibodies was found significantly higher than overall prevalence in general population screened. Conclusions A multiplex ECL assay was more sensitive than standard RBA by identifying more TGA positivity and detecting TGA earlier in general population screening. It also provides a high efficient tool with its unique advantage of multiplexing measurements to screen for multiple autoimmune diseases simultaneously in general population.
Collapse
|
15
|
Triolo TM, Pyle L, Seligova S, Yu L, Simmons K, Gottlieb P, Evans-Molina C, Steck AK. Proinsulin:C-peptide ratio trajectories over time in relatives at increased risk of progression to type 1 diabetes. J Transl Autoimmun 2021; 4:100089. [PMID: 33748733 PMCID: PMC7972972 DOI: 10.1016/j.jtauto.2021.100089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Biomarkers are needed to characterize heterogeneity within populations at risk for type 1 diabetes. The ratio of proinsulin to C-peptide (PI:C ratio), has been proposed as a biomarker of beta cell dysfunction and is associated with progression to type 1 diabetes. However, relationships between PI:C ratios and autoantibody type and number have not been examined. We sought to characterize PI:C ratios in multiple islet autoantibody positive, single autoantibody positive and autoantibody negative relatives of individuals with type 1 diabetes. METHODS We measured PI:C ratios and autoantibodies with both electrochemiluminescence (ECL) assays (ECL-IAA, ECL-GADA and ECL-IA2A) and radiobinding (RBA) assays (mIAA, GADA, IA2A and ZnT8A) in 98 relatives of individuals with type 1 diabetes followed in the TrialNet Pathway to Prevention Study at the Barbara Davis Center for a mean of 7.4 ± 4.1 years. Of these subjects, eight progressed to T1D, 31 were multiple autoantibody (Ab) positive, 37 were single Ab positive and 22 were Ab negative (by RBA). RESULTS In cross-sectional analyses, there were no significant differences in PI:C ratios between type 1 diabetes and/or multiple Ab positive subjects (4.16 ± 4.06) compared to single Ab positive subjects (4.08 ± 4.34) and negative Ab subjects (3.72 ± 3.78) (p = 0.92) overall or after adjusting for age, sex and BMI. Higher PI:C ratios were associated with mIAA titers (p = 0.03) and showed an association with ECL-IA2A titers (p = 0.09), but not with ECL-IAA, GADA, ECL-GADA, IA2A nor ZnT8A titers. In mixed-effects longitudinal models, the trajectories of PI:C ratio over time were significantly different between the Ab negative and multiple Ab positive/type 1 diabetes groups, after adjusting for sex, age, and BMI (p = 0.04). CONCLUSIONS PI:C ratio trajectories increase over time in subjects who have multiple Ab or develop type 1 diabetes and may be a helpful biomarker to further characterize and stratify risk of progression to type 1 diabetes over time.
Collapse
Affiliation(s)
- Taylor M Triolo
- University of Colorado Denver School of Medicine - the Barbara Davis Center for Diabetes, Aurora, CO, USA
| | - Laura Pyle
- University of Colorado Denver School of Medicine - the Barbara Davis Center for Diabetes, Aurora, CO, USA.,University of Colorado Anschutz Medical Campus, Pediatrics, Aurora, CO, USA
| | - Sona Seligova
- University of Colorado Denver School of Medicine - the Barbara Davis Center for Diabetes, Aurora, CO, USA
| | - Liping Yu
- University of Colorado Denver School of Medicine - the Barbara Davis Center for Diabetes, Aurora, CO, USA
| | - Kimber Simmons
- University of Colorado Denver School of Medicine - the Barbara Davis Center for Diabetes, Aurora, CO, USA
| | - Peter Gottlieb
- University of Colorado Denver School of Medicine - the Barbara Davis Center for Diabetes, Aurora, CO, USA
| | - Carmella Evans-Molina
- Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana University Center for Diabetes and Metabolic Diseases. Indianapolis, IN, USA
| | - Andrea K Steck
- University of Colorado Denver School of Medicine - the Barbara Davis Center for Diabetes, Aurora, CO, USA
| |
Collapse
|
16
|
Cortez FDJ, Gebhart D, Robinson PV, Seftel D, Pourmandi N, Owyoung J, Bertozzi CR, Wilson DM, Maahs DM, Buckingham BA, Mills JR, Roforth MM, Pittock SJ, McKeon A, Page K, Wolf WA, Sanda S, Speake C, Greenbaum CJ, Tsai CT. Sensitive detection of multiple islet autoantibodies in type 1 diabetes using small sample volumes by agglutination-PCR. PLoS One 2020; 15:e0242049. [PMID: 33186361 PMCID: PMC7665791 DOI: 10.1371/journal.pone.0242049] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Islet autoantibodies are predominantly measured by radioassay to facilitate risk assessment and diagnosis of type 1 diabetes. However, the reliance on radioactive components, large sample volumes and limited throughput renders radioassay testing costly and challenging. We developed a multiplex analysis platform based on antibody detection by agglutination-PCR (ADAP) for the sample-sparing measurement of GAD, IA-2 and insulin autoantibodies/antibodies in 1 μL serum. The assay was developed and validated in 7 distinct cohorts (n = 858) with the majority of the cohorts blinded prior to analysis. Measurements from the ADAP assay were compared to radioassay to determine correlation, concordance, agreement, clinical sensitivity and specificity. The average overall agreement between ADAP and radioassay was above 91%. The average clinical sensitivity and specificity were 96% and 97%. In the IASP 2018 workshop, ADAP achieved the highest sensitivity of all assays tested at 95% specificity (AS95) rating for GAD and IA-2 autoantibodies and top-tier performance for insulin autoantibodies. Furthermore, ADAP correctly identified 95% high-risk individuals with two or more autoantibodies by radioassay amongst 39 relatives of T1D patients tested. In conclusion, the new ADAP assay can reliably detect the three cardinal islet autoantibodies/antibodies in 1μL serum with high sensitivity. This novel assay may improve pediatric testing compliance and facilitate easier community-wide screening for islet autoantibodies.
Collapse
Affiliation(s)
| | - David Gebhart
- Enable Biosciences Inc., South San Francisco, CA, United States of America
| | - Peter V. Robinson
- Enable Biosciences Inc., South San Francisco, CA, United States of America
| | - David Seftel
- Enable Biosciences Inc., South San Francisco, CA, United States of America
| | - Narges Pourmandi
- Enable Biosciences Inc., South San Francisco, CA, United States of America
| | - Jordan Owyoung
- Enable Biosciences Inc., South San Francisco, CA, United States of America
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, United States of America
- Stanford Diabetes Research Center, Stanford, CA, United States of America
| | - Darrell M. Wilson
- Stanford Diabetes Research Center, Stanford, CA, United States of America
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - David M. Maahs
- Stanford Diabetes Research Center, Stanford, CA, United States of America
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Bruce A. Buckingham
- Stanford Diabetes Research Center, Stanford, CA, United States of America
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - John R. Mills
- Department of Laboratory Medicine/Pathology, Mayo Clinic, College of Medicine, Rochester, MN, United States of America
- Department of Neurology, Mayo Clinic, College of Medicine, Rochester, MN, United States of America
| | - Matthew M. Roforth
- Department of Laboratory Medicine/Pathology, Mayo Clinic, College of Medicine, Rochester, MN, United States of America
- Department of Neurology, Mayo Clinic, College of Medicine, Rochester, MN, United States of America
| | - Sean J. Pittock
- Department of Laboratory Medicine/Pathology, Mayo Clinic, College of Medicine, Rochester, MN, United States of America
- Department of Neurology, Mayo Clinic, College of Medicine, Rochester, MN, United States of America
| | - Andrew McKeon
- Department of Laboratory Medicine/Pathology, Mayo Clinic, College of Medicine, Rochester, MN, United States of America
- Department of Neurology, Mayo Clinic, College of Medicine, Rochester, MN, United States of America
| | - Kara Page
- T1D Exchange, Boston, MA, United States of America
| | | | - Srinath Sanda
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States of America
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA, United States of America
| | - Carla J. Greenbaum
- Diabetes Clinical Research Program, Benaroya Research Institute, Seattle, WA, United States of America
| | - Cheng-ting Tsai
- Enable Biosciences Inc., South San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Balakrishnan S, Kumar P, Prabhakar BS. Post-translational modifications contribute to neoepitopes in Type-1 diabetes: Challenges for inducing antigen-specific tolerance. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140478. [PMID: 32599298 DOI: 10.1016/j.bbapap.2020.140478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/20/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
Type-1 Diabetes (T1D) is the major autoimmune disease affecting the juvenile population in which insulin-producing pancreatic β-cells are destroyed by self-reactive T-cells and B-cells. Emerging studies have identified the presence of autoantibodies and altered T-cell reactivity against several autoantigens in individuals who are at risk of developing T1D even before the clinical onset of diabetes. Whilst these findings could lead to the development of predictive biomarkers for early diagnosis, growing evidence on the generation of neoepitopes, epitope spreading and diverse antigen repertoire in T1D poses a major challenge for developing approaches to induce antigen-specific tolerance. Mechanisms of neoepitope generation include post-translational modifications of existing epitopes, aberrant translational products, peptide fusion, and differences in MHC binding registers. Here, we focus our discussion on how post-translational modifications can give rise to immunogenic neoepitopes in T1D and present our perspective on how it could affect the development of therapeutic approaches to induce antigen-specific tolerance.
Collapse
Affiliation(s)
- Sivasangari Balakrishnan
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, United States of America.
| | - Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, United States of America.
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois-College of Medicine, Chicago, IL, United States of America.
| |
Collapse
|
18
|
Harmonization of immunoassays for biomarkers in diabetes mellitus. Biotechnol Adv 2020; 39:107359. [DOI: 10.1016/j.biotechadv.2019.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/07/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022]
|
19
|
Gu Y, Zhao Z, Waugh K, Miao D, Jia X, Cheng J, Michels A, Rewers M, Yang T, Yu L. High-throughput multiplexed autoantibody detection to screen type 1 diabetes and multiple autoimmune diseases simultaneously. EBioMedicine 2019; 47:365-372. [PMID: 31447394 PMCID: PMC6796526 DOI: 10.1016/j.ebiom.2019.08.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Islet autoantibodies (IAbs) are the most reliable biomarkers to assess risk of progression to clinical type 1 diabetes (T1D). There are four major biochemically defined IAbs currently used in clinical trials that are equally important for disease prediction. The current screening methods use a radio-binding assay (RBA) for single IAb measurement, which are laborious and inefficient for large-scale screening. More importantly, up to 40% of patients with T1D have other autoimmune conditions that can be identified through relevant autoantibody testing. Thus, there is a need to screen for T1D and other autoimmune diseases simultaneously. METHODS Based on our well-established electrochemiluminescence (ECL) assay platform, we developed a multiplexed ECL assay that combines 7 individual autoantibody assays together in one single well to simultaneously screen T1D, and three other autoimmune diseases including celiac disease, autoimmune thyroid disease and autoimmune poly-glandular syndrome-1 (APS-1). The 7-Plex ECL assay was extensively validated against single antibody measurements including a standard RBA and single ECL assay. FINDINGS The 7-Plex ECL assay was well correlated to each single ECL autoantibody assay and each RBA. INTERPRETATION The multiplexed ECL assay provides high sensitivity and disease specificity, along with high throughput and a low cost for large-scale screenings of T1D and other relevant autoimmune diseases in the general population. FUND: JDRF grants 2-SRA-2015-51-Q-R, 2-SRA-2018-533-S-B, NIH grants DK32083 and DK32493. NSFC grants 81770777.
Collapse
Affiliation(s)
- Yong Gu
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, United States of America,Department of Endocrinology, First Affiliated Hospital of Nanjing Medical University, China
| | - Zhiyuan Zhao
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Kathleen Waugh
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Dongmei Miao
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Xiaofan Jia
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Jeremy Cheng
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Aaron Michels
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Tao Yang
- Department of Endocrinology, First Affiliated Hospital of Nanjing Medical University, China
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, United States of America,Corresponding author at: Barbara Davis Center for Diabetes, University of Colorado School of Medicine, 1775 Aurora Ct, B140, Aurora, CO 80045, United States of America.
| |
Collapse
|
20
|
Simmons KM, Fouts A, Pyle L, Clark P, Dong F, Yu L, Usmani-Brown S, Gottlieb P, Herold KC, Steck AK. Unmethylated Insulin as an Adjunctive Marker of Beta Cell Death and Progression to Type 1 Diabetes in Participants at Risk for Diabetes. Int J Mol Sci 2019; 20:ijms20163857. [PMID: 31398795 PMCID: PMC6719233 DOI: 10.3390/ijms20163857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Islet autoantibody (iAb)-positive individuals have a high risk of progression to type 1 diabetes (T1D), although the rate of progression is highly variable and factors involved in the rate of progression are largely unknown. The ratio of unmethylated/methylated insulin DNA levels (unmethylated INS ratio) has been shown to be higher in participants at high risk of T1D compared to healthy controls. We aimed to evaluate whether an unmethylated INS ratio may be a useful biomarker of beta cell death and rate of progression to T1D. In TrialNet participants who were followed in the Pathway to Prevention Study and progressed to diabetes (n = 57, median age of onset 15.3 years), we measured unmethylated INS ratio and autoantibodies by electrochemiluminescence (ECL) assays (ECL-IAA, ECL-GADA, and ECL-IA2) and radioimmunoassays (RIA) (mIAA, GADA, IA2A, and ZnT8A) longitudinally for 24 months prior to diagnosis. Linear models were used to test the association between unmethylated INS ratio and the age at T1D diagnosis and unmethylated INS ratio and iAb over time. Close to diabetes onset, the unmethylated INS ratio was associated with mIAA (p = 0.003), ECL-IAA (p = 0.002), and IA2A (p = 0.01) levels, but not with GADA, ECL-GADA, ECL-IA2, or ZnT8A levels. No significant associations were found at baseline (24 months prior to T1D diagnosis). Only mIAA levels were significantly associated with an unmethylated INS ratio over time, with a 0.24 change in the ratio for each 0.1 change in mIAA z-score (p = 0.02). Adjusting for a baseline unmethylated INS ratio, an increased rate of change in unmethylated INS ratio from baseline to diabetes onset was associated with a five-year decrease in age at T1D diagnosis (p = 0.04).
Collapse
Grants
- 5RA-2017 Juvenile Diabetes Research Foundation United States of America
- U01 DK061010 NIDDK NIH HHS
- U01 DK103153 NIDDK NIH HHS
- P30 DK045735 NIDDK NIH HHS
- K12 DK094712 NIDDK NIH HHS
- UL1 TR001863 NCATS NIH HHS
- 1-14-CD-17 American Diabetes Association
- U01 DK061010, U01 DK061034, U01 DK061042, U01 DK061058, U01 DK085465, U01 DK085453, U01 DK085461, U01 DK085463, U01 DK085466, U01 DK085499, U01 DK085504, U01 DK085505, U01 DK085509, U01 DK103180, U01-DK103153, U01-DK085476, U01-DK103266 NIH HHS
- DK094712-08 NIDDK NIH HHS
Collapse
Affiliation(s)
- Kimber M Simmons
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, 1775 Aurora Ct, MSA140, Bldg 20, Aurora, CO 80045, USA.
| | - Alexandra Fouts
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, 1775 Aurora Ct, MSA140, Bldg 20, Aurora, CO 80045, USA
| | - Laura Pyle
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Fran Dong
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, 1775 Aurora Ct, MSA140, Bldg 20, Aurora, CO 80045, USA
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, 1775 Aurora Ct, MSA140, Bldg 20, Aurora, CO 80045, USA
| | | | - Peter Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, 1775 Aurora Ct, MSA140, Bldg 20, Aurora, CO 80045, USA
| | | | - Andrea K Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, 1775 Aurora Ct, MSA140, Bldg 20, Aurora, CO 80045, USA
| |
Collapse
|
21
|
Rewers M, Hyöty H, Lernmark Å, Hagopian W, She JX, Schatz D, Ziegler AG, Toppari J, Akolkar B, Krischer J. The Environmental Determinants of Diabetes in the Young (TEDDY) Study: 2018 Update. Curr Diab Rep 2018; 18:136. [PMID: 30353256 PMCID: PMC6415767 DOI: 10.1007/s11892-018-1113-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW The environmental triggers of islet autoimmunity leading to type 1 diabetes (T1D) need to be elucidated to inform primary prevention. The Environmental Determinants of Diabetes in the Young (TEDDY) Study follows from birth 8676 children with T1D risk HLA-DR-DQ genotypes in the USA, Finland, Germany, and Sweden. Most study participants (89%) have no first-degree relative with T1D. The primary outcomes include the appearance of one or more persistent islet autoantibodies (islet autoimmunity, IA) and clinical T1D. RECENT FINDINGS As of February 28, 2018, 769 children had developed IA and 310 have progressed to T1D. Secondary outcomes include celiac disease and autoimmune thyroid disease. While the follow-up continues, TEDDY has already evaluated a number of candidate environmental triggers, including infections, probiotics, micronutrient, and microbiome. TEDDY results suggest that there are multiple pathways leading to the destruction of pancreatic beta-cells. Ongoing measurements of further specific exposures, gene variants, and gene-environment interactions and detailed "omics" studies will provide novel information on the pathogenesis of T1D.
Collapse
Affiliation(s)
- Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, 1775 Aurora Ct, Aurora, CO, 80045, USA.
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University, Malmö, Sweden
| | | | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | | | - Anette-G Ziegler
- Forschergruppe Diabetes e.V. and Institute of Diabetes Research, Helmholtz Zentrum, Munich, Germany
| | - Jorma Toppari
- Institute of Biomedicine, Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Beena Akolkar
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- National Institutes of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jeffrey Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
22
|
Gu Y, Zhao Z, Miao D, High H, Yang T, Yu L. Electrochemiluminescence Assays for Human Islet Autoantibodies. J Vis Exp 2018. [PMID: 29630056 PMCID: PMC5933252 DOI: 10.3791/57227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pinpointing islet autoantibodies associated with type 1 diabetes (T1D) leads the way to project and deter this disease in the general population. A novel ECL assay is a nonradioactive fluid phase assay for islet autoantibodies with higher sensitivity and specificity than the current 'gold' standard radio-binding assay (RBA). ECL assays can more precisely define the onset of presymptomatic T1D by distinguishing the high-risk, high-affinity autoantibodies from the low-risk, low-affinity autoantibodies generated in RBAs, and conventional enzyme-linked immunosorbent assays (ELISA). The antigen protein used in this ECL assay is labeled with Sulfo-tag and Biotin, respectively. Each ECL autoantibody assay that uses a particular antigen protein needs an optimization step before it can be used for laboratory application. This step is especially vital in determining the requirements for serum acid treatments, concentrations, and ratios of the two different antigens labeled with Sulfo-tag and Biotin. To perform the assay, serum samples are mixed with Sulfo-tag-conjugated and biotinylated capture antigen protein in phosphate buffered solution (PBS), containing 5% Bovine Serum Albumin (BSA). Afterwards, the samples are incubated overnight at 4 °C. The same day, a streptavidin-coated plate is prepared with blocker buffer and incubated overnight at 4 °C. On the second day, wash the streptavidin plate and transfer the serum-antigen mixture onto the plate. Place the plate on the plate shaker, set it at low speed, and incubate at room temperature for 1 h. Subsequently, the plate is washed again, and reader buffer is added. The plate is then counted on the plate reader machine. The results are conveyed through an index, which is generated from internal standard positive and negative control serum samples.
Collapse
Affiliation(s)
- Yong Gu
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver; Department of Endocrinology, First Affiliated Hospital of Nanjing Medical University
| | - Zhiyuan Zhao
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver
| | - Dongmei Miao
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver
| | - Hilary High
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver
| | - Tao Yang
- Department of Endocrinology, First Affiliated Hospital of Nanjing Medical University
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver;
| |
Collapse
|
23
|
Gu Y, Zhao Z, High H, Yang T, Yu L. Islet Autoantibody Detection by Electrochemiluminescence (ECL) Assay. ACTA ACUST UNITED AC 2017; 8. [PMID: 29487479 PMCID: PMC5796772 DOI: 10.4172/2155-9899.1000531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yong Gu
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, USA.,Department of Endocrinology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiyuan Zhao
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, USA
| | - Hilary High
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, USA
| | - Tao Yang
- Department of Endocrinology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
24
|
Affiliation(s)
- Eddie A James
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| |
Collapse
|
25
|
Duan K, Ghosh G, Lo JF. Optimizing Multiplexed Detections of Diabetes Antibodies via Quantitative Microfluidic Droplet Array. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201702323. [PMID: 28990274 PMCID: PMC5755373 DOI: 10.1002/smll.201702323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/11/2017] [Indexed: 05/02/2023]
Abstract
Sensitive, single volume detections of multiple diabetes antibodies can provide immunoprofiling and early screening of at-risk patients. To advance the state-of-the-art suspension assays for diabetes antibodies, porous hydrogel droplets are leveraged in microfluidic serpentine arrays to enhance reagent transport. This spatially multiplexed assay is applied to the detection of antibodies against insulin, glutamic acid decarboxylase, and insulinoma-associated protein 2. Optimization of assay protocol results in a shortened assay time of 2 h, with better than 20 pg mL Supporting Information detection limits across all three antibodies. Specificity and cross-reactivity tests show negligible background, nonspecific antibody-antigen, and nonspecific antibody-antibody bindings. Multiplexed detections are able to measure within 15% of target concentrations from low to high ranges. The technique enables quantifications of as little as 8000 molecules in each 500 µm droplet in a single volume, multiplexed assay format, a breakthrough necessary for the adoption of diabetes panels for clinical screening and monitoring in the future.
Collapse
Affiliation(s)
- Kai Duan
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan at Dearborn, Dearborn, MI, 48128, USA
| | - Gargi Ghosh
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan at Dearborn, Dearborn, MI, 48128, USA
| | - Joe Fujiou Lo
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan at Dearborn, Dearborn, MI, 48128, USA
| |
Collapse
|
26
|
Abstract
Type 1 diabetes, resulting from the autoimmune destruction of insulin producing islet beta cells is caused by genetic and environmental determinants. Recent studies agree that counterintuitively, the major genetic susceptibility factors are decreasing in frequency as the incidence of the condition increases. This suggests a growing role for environmental determinants but these have been difficult to identify and our understanding of gene/environment effects are limited. Individuals "at risk" can be identified accurately through the presence of multiple islet autoantibodies and current efforts in type 1 diabetes research focus on improved biomarkers and strategies to prevent or reverse the condition through immunotherapy.
Collapse
Affiliation(s)
- Aizhan Kozhakhmetova
- Diabetes and Metabolism Unit, School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, UK
| | - Kathleen M Gillespie
- Diabetes and Metabolism Unit, School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, UK.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) is now predictable by measuring major islet autoantibodies (IAbs) against insulin and other pancreatic β cells proteins including GAD65 (GADA), islet antigen 2 (IA-2A), and zinc transporter 8 (ZnT8A). The assay technology for IAbs has made great progress; however, several important aspects still need to be addressed and improved. RECENT FINDINGS Currently a radio-binding assay has been well established as the 'gold' standard assay for all four IAbs. New generation of nonradioactive IAb assay with electrochemiluminescence technology has been shown to further improve sensitivity and disease specificity. Recently, multiplexed assays have opened the possibility of more efficient screening in large populations. Identification of potential new autoantibodies to neo-antigens or neo-epitopes posttranslational modification is a new important field to be explored. SUMMARY Individuals having a single positive autoantibody are at low risk for progression to T1D, whereas individuals expressing two or more positive autoantibodies, especially on multiple tests over time, have nearly 100% risk of developing clinical T1D when followed for over two decades. More efficient and cost effective IAb assays will hopefully lead to point-of-care screening in the general population.
Collapse
Affiliation(s)
- Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | |
Collapse
|
28
|
Higher Sensitivity and Earlier Identification of Celiac Disease Autoimmunity by a Nonradioactive Assay for Transglutaminase Autoantibodies. J Immunol Res 2017; 2016:2904563. [PMID: 28127566 PMCID: PMC5239972 DOI: 10.1155/2016/2904563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/06/2016] [Indexed: 12/03/2022] Open
Abstract
Higher sensitive transglutaminase autoantibody (TGA) assay will detect the onset of celiac disease (CD) autoimmunity earlier. In developing a nonradioactive assay for TGA, we utilized electrochemiluminescence (ECL) technology and compared it to a high-performance radioimmunoassay (RIA) currently being used to screen patients with type 1 diabetes (T1D) and genetically at-risk individuals for CD. We selected 183 T1D patients with 60 patients having received biopsy and analyzed 396 sequential samples from 73 young children longitudinally followed up with TGA seroconversion, with 27 undergoing biopsy. In addition, 112 age-matched healthy control subjects were included in the study. With the 99th percentile of specificity, the ECL assay detected significantly more TGA positivity among patients with T1D (133/183) than RIA (114/183) and more of the sequential samples (34%) from 73 children than RIA (18%). The TGA assay performed by ECL was positive in all 59 subjects with villous atrophy. Among 73 longitudinally followed up children, ECL assay had earlier detection of TGA on 34 children by a mean of 2.5 years. In conclusion, the new TGA assay by ECL has a higher sensitivity than the current RIA assay and may better predict the onset of CD.
Collapse
|
29
|
The progress of luminescent assay in clinical diagnosis and treatment of diabetes mellitus. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Affiliation(s)
- Zhiyuan Zhao
- 1 Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine , Aurora, Colorado
- 2 Department of Endocrinology, Second Hospital of Jilin University , Changchun, Jilin, China
| | - Liping Yu
- 1 Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine , Aurora, Colorado
| |
Collapse
|
31
|
Fouts A, Pyle L, Yu L, Miao D, Michels A, Krischer J, Sosenko J, Gottlieb P, Steck AK. Do Electrochemiluminescence Assays Improve Prediction of Time to Type 1 Diabetes in Autoantibody-Positive TrialNet Subjects? Diabetes Care 2016; 39:1738-44. [PMID: 27456836 PMCID: PMC5033080 DOI: 10.2337/dc16-0302] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/28/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To explore whether electrochemiluminescence (ECL) assays can help improve prediction of time to type 1 diabetes in the TrialNet autoantibody-positive population. RESEARCH DESIGN AND METHODS TrialNet subjects who were positive for one or more autoantibodies (microinsulin autoantibody, GAD65 autoantibody [GADA], IA-2A, and ZnT8A) with available ECL-insulin autoantibody (IAA) and ECL-GADA data at their initial visit were analyzed; after a median follow-up of 24 months, 177 of these 1,287 subjects developed diabetes. RESULTS Univariate analyses showed that autoantibodies by radioimmunoassays (RIAs), ECL-IAA, ECL-GADA, age, sex, number of positive autoantibodies, presence of HLA DR3/4-DQ8 genotype, HbA1c, and oral glucose tolerance test (OGTT) measurements were all significantly associated with progression to diabetes. Subjects who were ECL positive had a risk of progression to diabetes within 6 years of 58% compared with 5% for the ECL-negative subjects (P < 0.0001). Multivariate Cox proportional hazards models were compared, with the base model including age, sex, OGTT measurements, and number of positive autoantibodies by RIAs. The model with positivity for ECL-GADA and/or ECL-IAA was the best, and factors that remained significantly associated with time to diabetes were area under the curve (AUC) C-peptide, fasting C-peptide, AUC glucose, number of positive autoantibodies by RIAs, and ECL positivity. Adding ECL to the Diabetes Prevention Trial risk score (DPTRS) improved the receiver operating characteristic curves with AUC of 0.83 (P < 0.0001). CONCLUSIONS ECL assays improved the ability to predict time to diabetes in these autoantibody-positive relatives at risk for developing diabetes. These findings might be helpful in the design and eligibility criteria for prevention trials in the future.
Collapse
Affiliation(s)
- Alexandra Fouts
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Laura Pyle
- Department of Pediatrics, University of Colorado Denver, Aurora, CO Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Dongmei Miao
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Aaron Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Jeffrey Krischer
- Pediatrics Epidemiology Center, University of South Florida, Tampa, FL
| | - Jay Sosenko
- University of Miami School of Medicine, Miami, FL
| | - Peter Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | - Andrea K Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO
| | | |
Collapse
|
32
|
Steck AK, Dong F, Waugh K, Frohnert BI, Yu L, Norris JM, Rewers MJ. Predictors of slow progression to diabetes in children with multiple islet autoantibodies. J Autoimmun 2016; 72:113-7. [PMID: 27255734 DOI: 10.1016/j.jaut.2016.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 01/04/2023]
Abstract
Although most children with multiple islet autoantibodies develop type 1 diabetes, rate of progression is highly variable. The goal of this study was to explore potential factors involved in rate of progression to diabetes in children with multiple islet autoantibodies. The Diabetes Autoimmunity Study in the Young (DAISY) has followed 118 children with multiple islet autoantibodies for progression to diabetes. After excluding 27 children currently diabetes-free but followed for <10 years, the study population was grouped into: rapid progressors (N = 39) who developed diabetes in <5 years; moderate progressors (N = 25), diagnosed with diabetes within 5-10 years; and slow progressors (N = 27), diabetes-free for >10 years. Islet autoimmunity appeared at 4.0 ± 3.5, 3.2 ± 1.8 and 5.8 ± 3.1 years of age in rapid, moderate and slow progressors, respectively (p = 0.006). Insulin autoantibody levels were lower in slow progressors compared to moderate and rapid progressors. The groups did not differ by gender, ethnicity, family history, susceptibility HLA and non-HLA genes. The rate of development of individual islet autoantibodies including mIAA, GADA, IA-2A and ZnT8A were all slower in the slow versus moderate/rapid progressors. In multivariate analyses, older age at seroconversion and lower initial mIAA levels independently predicted slower progression to diabetes. Later onset of islet autoimmunity and lower autoantibody levels predicted slower progression to diabetes among children with multiple islet autoantibodies. These factors may need to be considered in the design of trials to prevent type 1 diabetes.
Collapse
Affiliation(s)
- Andrea K Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Fran Dong
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kathleen Waugh
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brigitte I Frohnert
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jill M Norris
- Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
33
|
Doran TM, Sarkar M, Kodadek T. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses. J Am Chem Soc 2016; 138:6076-94. [PMID: 27115249 PMCID: PMC5332222 DOI: 10.1021/jacs.6b02954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field.
Collapse
Affiliation(s)
- Todd M. Doran
- Departments of Chemistry & Cancer Biology, The Scripps Research
Institute, 130 Scripps Way, Jupiter, FL 33458
| | - Mohosin Sarkar
- Departments of Chemistry & Cancer Biology, The Scripps Research
Institute, 130 Scripps Way, Jupiter, FL 33458
| | - Thomas Kodadek
- Departments of Chemistry & Cancer Biology, The Scripps Research
Institute, 130 Scripps Way, Jupiter, FL 33458
| |
Collapse
|
34
|
Kodama K, Zhao Z, Toda K, Yip L, Fuhlbrigge R, Miao D, Fathman CG, Yamada S, Butte AJ, Yu L. Expression-Based Genome-Wide Association Study Links Vitamin D-Binding Protein With Autoantigenicity in Type 1 Diabetes. Diabetes 2016; 65:1341-9. [PMID: 26983959 PMCID: PMC4839207 DOI: 10.2337/db15-1308] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/22/2016] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) is caused by autoreactive T cells that recognize pancreatic islet antigens and destroy insulin-producing β-cells. This attack results from a breakdown in tolerance for self-antigens, which is controlled by ectopic antigen expression in the thymus and pancreatic lymph nodes (PLNs). The autoantigens known to be involved include a set of islet proteins, such as insulin, GAD65, IA-2, and ZnT8. In an attempt to identify additional antigenic proteins, we performed an expression-based genome-wide association study using microarray data from 118 arrays of the thymus and PLNs of T1D mice. We ranked all 16,089 protein-coding genes by the likelihood of finding repeated differential expression and the degree of tissue specificity for pancreatic islets. The top autoantigen candidate was vitamin D-binding protein (VDBP). T-cell proliferation assays showed stronger T-cell reactivity to VDBP compared with control stimulations. Higher levels and frequencies of serum anti-VDBP autoantibodies (VDBP-Abs) were identified in patients with T1D (n = 331) than in healthy control subjects (n = 77). Serum vitamin D levels were negatively correlated with VDBP-Ab levels in patients in whom T1D developed during the winter. Immunohistochemical localization revealed that VDBP was specifically expressed in α-cells of pancreatic islets. We propose that VDBP could be an autoantigen in T1D.
Collapse
Affiliation(s)
- Keiichi Kodama
- Institute for Computational Health Sciences, Department of Pediatrics, University of California, San Francisco, San Francisco, CA
| | - Zhiyuan Zhao
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - Kyoko Toda
- Biomedical Research Center, Kitasato Institute Hospital, Kitasato University, Tokyo, Japan
| | - Linda Yip
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Rebecca Fuhlbrigge
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Dongmei Miao
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| | - C Garrison Fathman
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Satoru Yamada
- Diabetes Center, Kitasato Institute Hospital, Kitasato University, Tokyo, Japan
| | - Atul J Butte
- Institute for Computational Health Sciences, Department of Pediatrics, University of California, San Francisco, San Francisco, CA
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO
| |
Collapse
|
35
|
Pugliese A, Boulware D, Yu L, Babu S, Steck AK, Becker D, Rodriguez H, DiMeglio L, Evans-Molina C, Harrison LC, Schatz D, Palmer JP, Greenbaum C, Eisenbarth GS, Sosenko JM. HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 Haplotype Protects Autoantibody-Positive Relatives From Type 1 Diabetes Throughout the Stages of Disease Progression. Diabetes 2016; 65:1109-19. [PMID: 26822082 PMCID: PMC4806662 DOI: 10.2337/db15-1105] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/15/2016] [Indexed: 12/18/2022]
Abstract
The HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 haplotype is linked to protection from the development of type 1 diabetes (T1D). However, it is not known at which stages in the natural history of T1D development this haplotype affords protection. We examined a cohort of 3,358 autoantibody-positive relatives of T1D patients in the Pathway to Prevention (PTP) Study of the Type 1 Diabetes TrialNet. The PTP study examines risk factors for T1D and disease progression in relatives. HLA typing revealed that 155 relatives carried this protective haplotype. A comparison with 60 autoantibody-negative relatives suggested protection from autoantibody development. Moreover, the relatives with DRB1*15:01-DQA1*01:02-DQB1*06:02 less frequently expressed autoantibodies associated with higher T1D risk, were less likely to have multiple autoantibodies at baseline, and rarely converted from single to multiple autoantibody positivity on follow-up. These relatives also had lower frequencies of metabolic abnormalities at baseline and exhibited no overall metabolic worsening on follow-up. Ultimately, they had a very low 5-year cumulative incidence of T1D. In conclusion, the protective influence of DRB1*15:01-DQA1*01:02-DQB1*06:02 spans from autoantibody development through all stages of progression, and relatives with this allele only rarely develop T1D.
Collapse
Affiliation(s)
- Alberto Pugliese
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL
| | - David Boulware
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL
| | - Liping Yu
- Division of Bioinformatics and Biostatistics, University of South Florida, Tampa, FL
| | - Sunanda Babu
- Division of Bioinformatics and Biostatistics, University of South Florida, Tampa, FL
| | - Andrea K Steck
- Division of Bioinformatics and Biostatistics, University of South Florida, Tampa, FL
| | - Dorothy Becker
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Henry Rodriguez
- Department of Pediatrics at the Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Linda DiMeglio
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Carmella Evans-Molina
- Department of Pediatric Endocrinology, Riley Hospital for Children at Indiana University Health, Indianapolis, IN
| | - Leonard C Harrison
- Department of Medicine, Indiana University School of Medicine and the Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Desmond Schatz
- Department of Medical Biology, The Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Parkville, Victoria, Australia
| | - Jerry P Palmer
- Department of Pediatrics, University of Florida, Gainesville, FL
| | - Carla Greenbaum
- VA Puget Sound Health Care System and University of Washington, Seattle, WA
| | - George S Eisenbarth
- Division of Bioinformatics and Biostatistics, University of South Florida, Tampa, FL
| | - Jay M Sosenko
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL Benaroya Research Institute, Seattle, WA
| | | |
Collapse
|
36
|
Zhao Z, Miao D, Michels A, Steck A, Dong F, Rewers M, Yu L. A multiplex assay combining insulin, GAD, IA-2 and transglutaminase autoantibodies to facilitate screening for pre-type 1 diabetes and celiac disease. J Immunol Methods 2016; 430:28-32. [PMID: 26809048 DOI: 10.1016/j.jim.2016.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/02/2023]
Abstract
At the current time, multiple candidate interventions are being proposed to abrogate or slow progression to type 1 diabetes (T1D) among islet autoantibody (iAb) positive subjects, but mass screening for eligible subjects and the general population remains a laborious and inefficient process. We have recently developed and extensively validated nonradioactive iAb assays using electrochemiluminescense (ECL) detection with an excellent sensitivity and specificity compared to the gold-standard radioassays. Using ECL detection on a platform from MesoScale Discovery (MSD) allows the measurement of four antibodies in a single well using a small blood volume (6 μl). In the present study using a MSD QuickPlex 4-Spot plate, we successfully combined three iAb to insulin (IAA), GAD65 (GADA), and IA-2 (IA-2A) with tissue transglutaminase autoantibodies (TGA) in a single well of a 96 well plate. We tested 40 new onset T1D patients, all positive for at least one iAb and a half of them positive for TGA by radioassay, as well as 50 healthy controls. The multiplex assay retained 100% sensitivity and 100% specificity for all four autoantibodies in terms of positivity identified in patients versus normal controls compared to the corresponding standard radioassays and our single ECL assays. The multiplex ECL assay was able to identify more positivity than current radioassays for IAA and TGA. The development of this multiplex assay will facilitate high-throughput screening for T1D and celiac disease risk in the general population.
Collapse
Affiliation(s)
- Zhiyuan Zhao
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States
| | - Dongmei Miao
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States
| | - Aaron Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States
| | - Andrea Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States
| | - Fran Dong
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States.
| |
Collapse
|
37
|
Abstract
Two fundamental aspects for precisely predicting the risk of developing type 1 diabetes by islet autoantibodies are assay sensitivity and disease specificity. We have recently developed electrochemiluminescent (ECL) insulin autoantibody (IAA) and GAD65 autoantibody (GADA) assays. ECL assays are sensitive, able to identify the initiation of islet autoimmunity earlier in life among high-risk young children before clinical onset of diabetes and are more disease specific because they are able to discriminate high-affinity, high-risk diabetes specific islet autoantibodies from low-affinity, low-risk autoantibodies.
Collapse
Affiliation(s)
- Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Building 500-13001 E. 17th Place, Campus Box C290, Room E1354, Aurora, CO, 80045, USA.
| |
Collapse
|
38
|
Abstract
Type 1 diabetes (T1D) is a chronic inflammatory disease, caused by the immune mediated destruction of insulin-producing β-cells in the islets of the pancreas (Ziegler and Nepom, Immunity 32(4):468-478, 2010). Semiquantitative assays with high specificity and sensitivity for T1D are now available to detect antibodies to the four major islet autoantigens: glutamate decarboxylase (GADA) (Baekkeskov et al., Nature 347(6289):151-156, 1990), the protein tyrosine phosphatase-like proteins IA-2 (IA-2A) and IA-2β (Notkins et al., Diabetes Metab Rev 14(1):85-93, 1998), zinc transporter 8 (ZnT8A) (Wenzlau et al., Proc Natl Acad Sci U S A 104(43):17040-17045, 2007), and insulin (IAA) (Palmer, Diabetes Metab Rev 3(4):1005-1015, 1987). More than 85 % of cases of newly diagnosed or future T1D can be identified by testing for antibodies to GADA and/or IA-2A/IAA, with 98 % specificity (Bingley et al., Diabet Care 24(2):398, 2001). Overall, radioimmunoassay (RIA) is considered the de facto gold standard format for the measurement of T1D autoantibodies (Bottazzo et al., Lancet 2(7892):1279-1283, 1974; Schlosser et al., Diabetologia 53(12):2611-2620, 2010). Here we describe current methods for autoantibody measurement using RIA. These fluid phase assays use radiolabeled ligands and immunoprecipitation to quantify autoantibodies to GAD, IA-2, ZnT8, and insulin (Bonifacio et al., J Clin Endocrinol Metab 95(7):3360-3367, 2010; Long et al., Clin Endocrinol Metab 97(2):632-637, 2012; Williams et al., J Autoimmun 10(5):473-478, 1997).
Collapse
Affiliation(s)
- Rebecca Wyatt
- Diabetes and Metabolism Unit, School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, UK
| | - Alistair J K Williams
- Diabetes and Metabolism Unit, School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, UK.
| |
Collapse
|
39
|
Simmons KM, Michels AW. Alternate Ways to Quantify Antibodies. Diabetes Technol Ther 2015; 17:854-6. [PMID: 26544921 PMCID: PMC4677111 DOI: 10.1089/dia.2015.0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kimber M Simmons
- Barbara Davis Center for Childhood Diabetes, University of Colorado , Aurora, Colorado
| | - Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado , Aurora, Colorado
| |
Collapse
|
40
|
McGinty JW, Marré ML, Bajzik V, Piganelli JD, James EA. T cell epitopes and post-translationally modified epitopes in type 1 diabetes. Curr Diab Rep 2015; 15:90. [PMID: 26370701 PMCID: PMC4902156 DOI: 10.1007/s11892-015-0657-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which progressive loss of self-tolerance, evidenced by accumulation of auto-antibodies and auto-reactive T cells that recognize diverse self-proteins, leads to immune-mediated destruction of pancreatic beta cells and loss of insulin secretion. In this review, we discuss antigens and epitopes in T1D and the role that post-translational modifications play in circumventing tolerance mechanisms and increasing antigenic diversity. Emerging data suggest that, analogous to other autoimmune diseases such as rheumatoid arthritis and celiac disease, enzymatically modified epitopes are preferentially recognized in T1D. Modifying enzymes such as peptidyl deiminases and tissue transglutaminase are activated in response to beta cell stress, providing a mechanistic link between post-translational modification and interactions with the environment. Although studies of such responses in the at-risk population have been limited, current data suggests that breakdown in tolerance through post-translational modification represents an important checkpoint in the development of T1D.
Collapse
Affiliation(s)
- John W McGinty
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave, Seattle, WA, USA.
| | - Meghan L Marré
- Children's Hospital of Pittsburgh, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, USA.
| | - Veronique Bajzik
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave, Seattle, WA, USA.
| | - Jon D Piganelli
- Children's Hospital of Pittsburgh, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, USA.
| | - Eddie A James
- Benaroya Research Institute at Virginia Mason, 1201 9th Ave, Seattle, WA, USA.
| |
Collapse
|
41
|
Michels A, Zhang L, Khadra A, Kushner JA, Redondo MJ, Pietropaolo M. Prediction and prevention of type 1 diabetes: update on success of prediction and struggles at prevention. Pediatr Diabetes 2015; 16. [PMID: 26202050 PMCID: PMC4592445 DOI: 10.1111/pedi.12299] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is the archetypal example of a T cell-mediated autoimmune disease characterized by selective destruction of pancreatic β cells. The pathogenic equation for T1DM presents a complex interrelation of genetic and environmental factors, most of which have yet to be identified. On the basis of observed familial aggregation of T1DM, it is certain that there is a decided heritable genetic susceptibility for developing T1DM. The well-known association of T1DM with certain human histocompatibility leukocyte antigen (HLA) alleles of the major histocompatibility complex (MHC) was a major step toward understanding the role of inheritance in T1DM. Type 1 diabetes is a polygenic disease with a small number of genes having large effects (e.g., HLA) and a large number of genes having small effects. Risk of T1DM progression is conferred by specific HLA DR/DQ alleles [e.g., DRB1*03-DQB1*0201 (DR3/DQ2) or DRB1*04-DQB1*0302 (DR4/DQ8)]. In addition, the HLA allele DQB1*0602 is associated with dominant protection from T1DM in multiple populations. A concordance rate lower than 100% between monozygotic twins indicates a potential involvement of environmental factors on disease development. The detection of at least two islet autoantibodies in the blood is virtually pre-diagnostic for T1DM. The majority of children who carry these biomarkers, regardless of whether they have an a priori family history of the disease, will develop insulin-requiring diabetes. Facilitating pre-diagnosis is the timing of seroconversion which is most pronounced in the first 2 yr of life. Unfortunately the significant progress in improving prediction of T1DM has not yet been paralleled by safe and efficacious intervention strategies aimed at preventing the disease. Herein we summarize the chequered history of prediction and prevention of T1DM, describing successes and failures alike, and thereafter examine future trends in the exciting, partially explored field of T1DM prevention.
Collapse
Affiliation(s)
- Aaron Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Li Zhang
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, QC Canada
| | - Jake A. Kushner
- Division of Diabetes Pediatric Endocrinology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas
| | - Maria J. Redondo
- Division of Diabetes Pediatric Endocrinology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas
| | - Massimo Pietropaolo
- Division of Diabetes, Endocrinology and Metabolism, McNair Medical Institute, Baylor College of Medicine, Houston, Texas,To Whom Correspondence May be Addressed: Massimo Pietropaolo, M.D., Division of Diabetes, Endocrinology and Metabolism, Alkek Building for Biomedical Research, R 609, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
| |
Collapse
|
42
|
Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, Gottlieb PA, Greenbaum CJ, Herold KC, Krischer JP, Lernmark Å, Ratner RE, Rewers MJ, Schatz DA, Skyler JS, Sosenko JM, Ziegler AG. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 2015; 38:1964-74. [PMID: 26404926 PMCID: PMC5321245 DOI: 10.2337/dc15-1419] [Citation(s) in RCA: 691] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Insights from prospective, longitudinal studies of individuals at risk for developing type 1 diabetes have demonstrated that the disease is a continuum that progresses sequentially at variable but predictable rates through distinct identifiable stages prior to the onset of symptoms. Stage 1 is defined as the presence of β-cell autoimmunity as evidenced by the presence of two or more islet autoantibodies with normoglycemia and is presymptomatic, stage 2 as the presence of β-cell autoimmunity with dysglycemia and is presymptomatic, and stage 3 as onset of symptomatic disease. Adoption of this staging classification provides a standardized taxonomy for type 1 diabetes and will aid the development of therapies and the design of clinical trials to prevent symptomatic disease, promote precision medicine, and provide a framework for an optimized benefit/risk ratio that will impact regulatory approval, reimbursement, and adoption of interventions in the early stages of type 1 diabetes to prevent symptomatic disease.
Collapse
Affiliation(s)
| | | | - Mark A Atkinson
- UF Diabetes Institute, University of Florida, Gainesville, FL
| | | | - Dana Dabelea
- Colorado School of Public Health, University of Colorado, Denver, CO
| | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO
| | | | - Kevan C Herold
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Jeffrey P Krischer
- Department of Pediatrics, Pediatric Epidemiology Center, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Åke Lernmark
- Lund University/Clinical Research Centre, Skåne University Hospital, Malmö, Sweden
| | | | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO
| | | | - Jay S Skyler
- Diabetes Research Institute, University of Miami, Miami, FL
| | - Jay M Sosenko
- Diabetes Research Institute, University of Miami, Miami, FL
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Neuherberg, Germany
| |
Collapse
|
43
|
Abstract
Clinical type 1 diabetes is preceded by an asymptomatic phase that can be identified by serum islet autoantibodies. This perspective proposes that there is now sufficient evidence to allow a broader use of islet autoantibodies as biomarkers to diagnose type 1 diabetes that is already at an asymptomatic stage, so that attempts to prevent clinical hyperglycemia become a feature of disease management. Prediction would first, therefore, shift toward the use of genetic and other biomarkers to determine the likelihood that islet autoimmunity will develop in an infant, and second, toward metabolic assessment to stage and biomarkers to determine the rate of progression to hyperglycemia in children in whom islet autoimmunity is diagnosed. A case is presented for future comprehensive risk assessment that commences at birth and includes attempts to predict, stage, and prevent initiation and progression of the disease process at multiple stages. The biomarkers required achieving this level of sophistication and dissemination are discussed.
Collapse
Affiliation(s)
- Ezio Bonifacio
- DFG-Center for Regenerative Therapies Dresden, and Faculty of Medicine, Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden of the Helmholtz Centre Munich at University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Forschergruppe Diabetes e.V., Neuherberg, Germany; and Institute of Diabetes and Obesity (IDO), Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
44
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by destruction of insulin-producing β cells in the pancreas. The incidence of T1D is increasing dramatically, and the prevalence has doubled in the last 2 decades, further increasing the morbidity and mortality associated with the disease. T1D is now predictable with the measurement of antibodies directed against β cell proteins. Islet autoantibodies (IAs) are detectable from the peripheral blood months to years before clinical diagnosis. With the presence of two or more antibodies, the risk for developing T1D is nearly 100 % given enough time. Targeted screening for T1D risk has been carried out in first-degree relatives and those with a significant genetic risk. However, more than 85 % of individuals who are diagnosed with T1D do not have a family history. In light of the predictability of T1D and recent advances in IA measurement, general population screening is on the horizon. We provide an overview of the history of general population screening and discuss the rationale for and arguments against screening the general population for T1D risk.
Collapse
Affiliation(s)
- Kimber M Simmons
- Pediatric Endocrinology and Diabetes Fellow, Children's Hospital Colorado, Aurora, Colorado, US
| | - Aaron W Michels
- Assistant Professor of Pediatrics & Medicine, Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, US
| |
Collapse
|
45
|
Doran TM, Simanski S, Kodadek T. Discovery of native autoantigens via antigen surrogate technology: application to type 1 diabetes. ACS Chem Biol 2015; 10:401-12. [PMID: 25474415 PMCID: PMC4339956 DOI: 10.1021/cb5007618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/04/2014] [Indexed: 01/23/2023]
Abstract
A fundamental goal in understanding the mechanisms of autoimmune disease is the characterization of autoantigens that are targeted by autoreactive antibodies and T cells. Unfortunately, the identification of autoantigens is a difficult problem. We have begun to explore a novel route to the discovery of autoantibody/autoantigen pairs that involves comparative screening of combinatorial libraries of unnatural, synthetic molecules for compounds that bind antibodies present at much higher levels in the serum of individuals with a given autoimmune disease than in the serum of control individuals. We have shown that this approach can yield "antigen surrogates" capable of capturing disease-specific autoantibodies from serum. In this report, we demonstrate that the synthetic antigen surrogates can be used to affinity purify the autoantibodies from serum and that these antibodies can then be used to identify their cognate autoantigen in an appropriate tissue lysate. Specifically, we report the discovery of a peptoid able to bind autoantibodies present in about one-third of nonobese diabetic (NOD) mice. The peptoid-binding autoantibodies were highly enriched through peptoid affinity chromatography and employed to probe mouse pancreatic and brain lysates. This resulted in identification of murine GAD65 as the native autoantigen. GAD65 is a known humoral autoantigen in human type 1 diabetes mellitus (T1DM), but its existence in mice had been controversial. This study demonstrates the potential of this chemical approach for the unbiased identification of autoantigen/autoantibody complexes.
Collapse
Affiliation(s)
- Todd M. Doran
- Departments
of Chemistry
& Cancer Biology, The Scripps Research
Institute, 130 Scripps
Way, Jupiter, Florida 33458, United States
| | - Scott Simanski
- Departments
of Chemistry
& Cancer Biology, The Scripps Research
Institute, 130 Scripps
Way, Jupiter, Florida 33458, United States
| | - Thomas Kodadek
- Departments
of Chemistry
& Cancer Biology, The Scripps Research
Institute, 130 Scripps
Way, Jupiter, Florida 33458, United States
| |
Collapse
|
46
|
Miao D, Steck AK, Zhang L, Guyer KM, Jiang L, Armstrong T, Muller SM, Krischer J, Rewers M, Yu L. Electrochemiluminescence assays for insulin and glutamic acid decarboxylase autoantibodies improve prediction of type 1 diabetes risk. Diabetes Technol Ther 2015; 17:119-27. [PMID: 25562486 PMCID: PMC4321773 DOI: 10.1089/dia.2014.0186] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We recently developed new electrochemiluminescence (ECL) insulin autoantibody (IAA) and glutamic acid decarboxylase 65 autoantibody (GADA) assays that discriminate high-affinity, high-risk diabetes-specific autoantibodies from low-affinity, low-risk islet autoantibodies (iAbs) detected by radioassay (RAD). Here, we report a further validation of the ECL-IAA and -GADA assays in 3,484 TrialNet study participants. The ECL assay and RAD were congruent in those with prediabetes and in subjects with multiple autoantibodies, but only 24% (P<0.0001) of single RAD-IAA-positive and 46% (P<0.0001) of single RAD-GADA-positive were confirmed by the ECL-IAA and -GADA assays, respectively. During a follow-up (mean, 2.4 years), 51% of RAD-IAA-positive and 63% of RAD-GADA-positive subjects not confirmed by ECL became iAb negative, compared with only 17% of RAD-IAA-positive (P<0.0001) and 15% of RAD-GADA-positive (P<0.0001) subjects confirmed by ECL assays. Among subjects with multiple iAbs, diabetes-free survival was significantly shorter if IAA or GADA was positive by ECL and negative by RAD than if IAA or GADA was negative by ECL and positive by RAD (P<0.019 and P<0.0001, respectively). Both positive and negative predictive values in terms of progression to type 1 diabetes mellitus were superior for ECL-IAA and ECL-GADA, compared with RADs. The prevalence of the high-risk human leukocyte antigen-DR3/4, DQB1*0302 genotype was significantly higher in subjects with RAD-IAA or RAD-GADA confirmed by ECL. In conclusion, both ECL-IAA and -GADA are more disease-specific and better able to predict the risk of progression to type 1 diabetes mellitus than the current standard RADs.
Collapse
Affiliation(s)
- Dongmei Miao
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Andrea K. Steck
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Li Zhang
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - K. Michelle Guyer
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Ling Jiang
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Taylor Armstrong
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | | | | | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Liping Yu
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
47
|
Grönholm J, Lenardo MJ. Novel diagnostic and therapeutic approaches for autoimmune diabetes--a prime time to treat insulitis as a disease. Clin Immunol 2014; 156:109-18. [PMID: 25486604 DOI: 10.1016/j.clim.2014.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/22/2014] [Indexed: 02/09/2023]
Abstract
Type 1 diabetes is a progressive autoimmune disease with no curative treatment, making prevention critical. At the time of diagnosis, a majority of the insulin secreting β-cells have already been destroyed. Insulitis, lymphocytic infiltration to the pancreatic islets, is believed to begin months to years before the clinical symptoms of insulin deficiency appear. Insulitis should be treated as its own disease, for it is a known precursor to autoimmune diabetes. Because it is difficult to detect insulitic cellular infiltrates noninvasively, considerable interest has been focused on the levels of islet autoantibodies in blood as measurable diagnostic markers for islet autoimmunity. The traditional islet autoantibody detection assays have many limitations. New electrochemiluminescence-based autoantibody detection assays have the potential to overcome these challenges and they offer promising, cost-effective screening tools in identifying high-risk individuals for trials of preventive interventions. Here, we outline diagnostic and therapeutic strategies to overcome pancreatic β-cell destroying insulitis.
Collapse
Affiliation(s)
- Juha Grönholm
- Molecular Development of the Immune System Section, Laboratory of Immunology, NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immunology, NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
|
49
|
Miao D, Guyer KM, Dong F, Jiang L, Steck AK, Rewers M, Eisenbarth GS, Yu L. GAD65 autoantibodies detected by electrochemiluminescence assay identify high risk for type 1 diabetes. Diabetes 2013; 62:4174-8. [PMID: 23974918 PMCID: PMC3837058 DOI: 10.2337/db13-0534] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The identification of diabetes-relevant islet autoantibodies is essential for predicting and preventing type 1 diabetes (T1D). The aim of the current study was to evaluate a newly developed electrochemiluminescence (ECL)-GAD antibody (GADA) assay and compare its sensitivity and disease relevance with standard radioassay. The assay was validated with serum samples from 227 newly diagnosed diabetic children; 68 prediabetic children who were prospectively followed to T1D; 130 nondiabetic children with confirmed islet autoantibodies to insulin, GAD65, IA-2, and/or ZnT8 longitudinally followed for 12 ± 3.7 years; and 181 age-matched, healthy, antibody-negative children. The ECL-GADA assay had a sensitivity similar to that of the standard GADA radioassay in children newly diagnosed with T1D, prediabetic children, and high-risk children with multiple positive islet autoantibodies. On the other hand, only 9 of 39 nondiabetic children with only a single islet autoantibody (GADA only) by radioassay were positive for ECL-GADA. GADA not detectable by ECL assay is shown to be of low affinity and likely not predictive of future diabetes. In conclusion, the new ECL assay identifies disease-relevant GADA by radioassay. It may help to improve the prediction and correct diagnosis of T1D among subjects positive only for GADA and no other islet autoantibodies.
Collapse
|
50
|
Ilonen J, Hammais A, Laine AP, Lempainen J, Vaarala O, Veijola R, Simell O, Knip M. Patterns of β-cell autoantibody appearance and genetic associations during the first years of life. Diabetes 2013; 62:3636-40. [PMID: 23835325 PMCID: PMC3781470 DOI: 10.2337/db13-0300] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We analyzed demographic and genetic differences between children with various diabetes-associated autoantibodies reflecting the autoimmune process. In a prospective birth cohort comprising children with HLA-conferred susceptibility to type 1 diabetes (T1D), the pattern of autoantibody appearance was analyzed in 520 children with advanced β-cell autoimmunity associated with high risk for disease. In 315 cases, a single biochemical autoantibody could be identified in the first positive sample as insulin (insulin autoantibody [IAA]) in 180, as GAD (GAD antibody [GADA]) in 107, and as IA-2 antigen (IA-2 antibody [IA-2A]) in 28. The age at seroconversion differed significantly between the three groups (P = 0.003). IAA as the first autoantibody showed a peak time of appearance during the second year of life, whereas GADA as the first autoantibody peaked later, between 3 and 5 years of age. The risk-associated insulin gene rs689 A/A genotypes were more frequent in children with IAA as the first autoantibody compared with the other children (P = 0.002). The primary autoantigen in the development of β-cell autoimmunity and T1D seems to strongly correlate with age and genetic factors, indicating heterogeneity in the initiation of the disease process.
Collapse
Affiliation(s)
- Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, Turku, Finland
- Department of Clinical Microbiology, University of Eastern Finland, Kuopio, Finland
- Corresponding author: Jorma Ilonen,
| | - Anna Hammais
- Immunogenetics Laboratory, University of Turku, Turku, Finland
| | | | - Johanna Lempainen
- Immunogenetics Laboratory, University of Turku, Turku, Finland
- Department of Pediatrics, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Outi Vaarala
- Immune Response Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Riitta Veijola
- Department of Pediatrics, Institute of Clinical Medicine, University of Oulu, Oulu, Finland
- Oulu University Hospital, Oulu, Finland
| | - Olli Simell
- Department of Pediatrics, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Mikael Knip
- Children’s Hospital, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Helsinki, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|