1
|
Evans-Molina C, Oram RA. Type 1 diabetes presenting in adults: Trends, diagnostic challenges and unique features. Diabetes Obes Metab 2025. [PMID: 40230204 DOI: 10.1111/dom.16402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/16/2025]
Abstract
Type 1 diabetes (T1D) has been historically regarded as a childhood-onset disease; however, recent epidemiological data indicate that adult-onset T1D accounts for a substantial proportion of cases worldwide. There is evidence that adult-onset T1D is associated with the classic T1D triad of elevated genetic risk, the presence of islet-specific autoantibodies and progression to severe insulin deficiency. In this article, we review our understanding of the commonalities and differences between childhood and adult-onset T1D, and we highlight significant knowledge gaps in our understanding of the diagnosis, incidence, trajectory and treatment of adult-onset T1D. Compared to children, adults presenting with T1D exhibit differences in genetic risk, immunologic profiles and metabolic outcomes, including differences in the type and number of autoantibodies present, genetic associations and total genetic burden, rates of C-peptide decline, the persistence of C-peptide in long-duration disease and glycaemic control. In addition, obesity and metabolic syndrome are increasingly common in adults, which not only blurs the clinical distinction of adult-onset T1D from type 2 diabetes (T2D) but also likely contributes to differences in metabolic outcomes and rates of progression. Because T2D is so prevalent in the adult population, adult-onset T1D is misclassified as T2D in at least one in three cases, leading to delays in appropriate treatment. Current diagnostic tools, including autoantibody testing and C-peptide measurement, are underutilised or lack specificity in distinguishing adult-onset T1D from atypical T2D. Additionally, the impact of different responses to disease-modifying therapy between adults and children is unclear. Addressing these knowledge gaps requires expanded epidemiological studies, diverse patient registries and refined classification criteria to improve early detection and treatment strategies. A deeper understanding of adult-onset T1D will be critical to reduce the burden of misdiagnosis, lead to earlier diagnosis and treatment and optimise population-based screening approaches in this under-recognised population. PLAIN LANGUAGE SUMMARY: Type 1 diabetes (T1D) is an autoimmune disease that causes metabolic and nutritional complications due to the destruction of insulin-producing pancreatic β cells. T1D was formerly known as "juvenile diabetes" because it was assumed that most cases occurred in childhood; however, recent epidemiological data show that nearly half of all T1D cases are diagnosed in adulthood. Despite the high prevalence of adult-onset T1D, there are challenges with correctly diagnosing T1D in adulthood, and significant knowledge gaps remain regarding the incidence, trajectory, and treatment of adult-onset T1D. In this article, we summarize the current understanding of commonalities and differences between childhood and adult-onset T1D. Particularly, we highlight age-related differences in genetic risk, immunologic profiles, and metabolic outcomes and complications. Finally, we highlight key gaps in our understanding of adult-onset T1D that need to be addressed to reduce the burden of misdiagnosis and allow for better screening and treatment of T1D in adulthood.
Collapse
Affiliation(s)
- Carmella Evans-Molina
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Richard A Oram
- Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
- The Academic Renal Unit, Royal Devon University Hospitals NHS Foundation Trust, Exeter, UK
| |
Collapse
|
2
|
Tomic D, Harding JL, Jenkins AJ, Shaw JE, Magliano DJ. The epidemiology of type 1 diabetes mellitus in older adults. Nat Rev Endocrinol 2025; 21:92-104. [PMID: 39448829 DOI: 10.1038/s41574-024-01046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Although type 1 diabetes mellitus (T1DM) is traditionally viewed as a youth-onset disorder, the number of older adults being diagnosed with this disease is growing. Improvements in the average life expectancy of people with T1DM have also contributed to the growing number of older people living with this disease. We summarize the evidence regarding the epidemiology (incidence, prevalence and excess mortality) of T1DM in older adults (ages ≥60 years) as well as the genetics, immunology and diagnostic challenges. Several studies report an incidence peak of T1DM in older adults of a similar size to or exceeding that in children, and population prevalence generally increases with increasing age. Glutamic acid decarboxylase antibody positivity is frequently observed in adult-onset T1DM. Guidelines for differentiating T1DM from type 2 diabetes mellitus in older adults recommend measuring levels of C-peptide and autoantibodies, including glutamic acid decarboxylase antibodies. However, there is no gold standard for differentiating T1DM from type 2 diabetes mellitus in people aged 60 years and over. As such, the global variation observed in T1DM epidemiology might be in part explained by misclassification, which increases with increasing age of diabetes mellitus onset. With a growing global population of older adults with T1DM, improved genetic and immunological evidence is needed to differentiate diabetes mellitus type at older ages so that a clear epidemiological picture can emerge.
Collapse
Affiliation(s)
- Dunya Tomic
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Jessica L Harding
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alicia J Jenkins
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan E Shaw
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Dianna J Magliano
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Staels W, Berthault C, Bourgeois S, Laville V, Lourenço C, De Leu N, Scharfmann R. Comprehensive alpha, beta, and delta cell transcriptomics reveal an association of cellular aging with MHC class I upregulation. Mol Metab 2024; 87:101990. [PMID: 39009220 PMCID: PMC11327396 DOI: 10.1016/j.molmet.2024.101990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate the efficacy of a purification method developed for isolating alpha, beta, and delta cells from pancreatic islets of adult mice, extending its application to islets from newborn and aged mice. Furthermore, it sought to examine transcriptome dynamics in mouse pancreatic endocrine islet cells throughout postnatal development and to validate age-related alterations within these cell populations. METHODS We leveraged the high surface expression of CD71 on beta cells and CD24 on delta cells to FACS-purify alpha, beta, and delta cells from newborn (1-week-old), adult (12-week-old), and old (18-month-old) mice. Bulk RNA sequencing was conducted on these purified cell populations, and subsequent bioinformatic analyses included differential gene expression, overrepresentation, and intersection analysis. RESULTS Alpha, beta, and delta cells from newborn and aged mice were successfully FACS-purified using the same method employed for adult mice. Our analysis of the age-related transcriptional changes in alpha, beta, and delta cell populations revealed a decrease in cell cycling and an increase in neuron-like features processes during the transition from newborn to adult mice. Progressing from adult to old mice, we identified an inflammatory gene signature related to aging (inflammaging) encompassing an increase in β-2 microglobulin and major histocompatibility complex (MHC) Class I expression. CONCLUSIONS Our study demonstrates the effectiveness of our cell sorting technique in purifying endocrine subsets from mouse islets at different ages. We provide a valuable resource for better understanding endocrine pancreas aging and identified an inflammaging gene signature with increased β-2 microglobulin and MHC Class I expression as a common hallmark of old alpha, beta, and delta cells, with potential implications for immune response regulation and age-related diabetes.
Collapse
Affiliation(s)
- W Staels
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France; Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Division of Pediatric Endocrinology, Department of Pediatrics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
| | - C Berthault
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - S Bourgeois
- Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - V Laville
- Stem Cells and Development Unit, Institut Pasteur, Paris, France; UMR CNRS 3738, Institut Pasteur, Paris, France; Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - C Lourenço
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - N De Leu
- Genetics, Reproduction and Development (GRAD), Vrije Universiteit Brussel (VUB), Brussels, Belgium; Endocrinology, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium; Endocrinology, ASZ Aalst, 9300 Aalst, Belgium
| | - R Scharfmann
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| |
Collapse
|
4
|
Amarajeewa AWP, Özcan A, Mukhtiar A, Ren X, Wang Q, Ozbek P, Garstka MA, Serçinoğlu O. Polymorphism in F pocket affects peptide selection and stability of type 1 diabetes-associated HLA-B39 allotypes. Eur J Immunol 2024; 54:e2350683. [PMID: 38549458 DOI: 10.1002/eji.202350683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 10/30/2024]
Abstract
HLA-B*39:06, HLA-B*39:01, and HLA-B*38:01 are closely related HLA allotypes differentially associated with type 1 diabetes (T1D) risk and progression. B*39:06 is highly predisposing, while B*39:01 and B*38:01 are weakly predisposing and protective allotypes, respectively. Here, we aimed to decipher molecular mechanisms underlying the differential association of these allotypes with T1D pathogenesis. We addressed peptide binding and conformational stability of HLA-B allotypes using computational and experimental approaches. Computationally, we found that B*39:06 and B*39:01 allotypes had more rigid peptide-binding grooves and were more promiscuous in binding peptides than B*38:01. Peptidomes of B*39:06 and B*39:01 contained fewer strong binders and were of lower affinity than that of B*38:01. Experimentally, we demonstrated that B*39:06 and B*39:01 had a higher capacity to bind peptides and exit to the cell surface but lower surface levels and were degraded faster than B*38:01. In summary, we propose that promiscuous B*39:06 and B*39:01 may bind suboptimal peptides and transport them the cell surface, where such unstable complexes may contribute to the pathogenesis of T1D.
Collapse
Affiliation(s)
- A W Peshala Amarajeewa
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Core Research Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aslihan Özcan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Türkiye
| | - Alveena Mukhtiar
- Core Research Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xu Ren
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Core Research Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qianyu Wang
- Core Research Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pemra Ozbek
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Türkiye
| | - Malgorzata A Garstka
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Core Research Laboratory, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Endocrinology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Onur Serçinoğlu
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, Gebze, Türkiye
| |
Collapse
|
5
|
Stone SI, Balasubramanyam A, Posey JE. Atypical Diabetes: What Have We Learned and What Does the Future Hold? Diabetes Care 2024; 47:770-781. [PMID: 38329838 PMCID: PMC11043229 DOI: 10.2337/dci23-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 02/10/2024]
Abstract
As our understanding of the pathophysiology of diabetes evolves, we increasingly recognize that many patients may have a form of diabetes that does not neatly fit with a diagnosis of either type 1 or type 2 diabetes. The discovery and description of these forms of "atypical diabetes" have led to major contributions to our collective understanding of the basic biology that drives insulin secretion, insulin resistance, and islet autoimmunity. These discoveries now pave the way to a better classification of diabetes based on distinct endotypes. In this review, we highlight the key biological and clinical insights that can be gained from studying known forms of atypical diabetes. Additionally, we provide a framework for identification of patients with atypical diabetes based on their clinical, metabolic, and molecular features. Helpful clinical and genetic resources for evaluating patients suspected of having atypical diabetes are provided. Therefore, appreciating the various endotypes associated with atypical diabetes will enhance diagnostic accuracy and facilitate targeted treatment decisions.
Collapse
Affiliation(s)
- Stephen I. Stone
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
6
|
Leslie RD, Ma RCW, Franks PW, Nadeau KJ, Pearson ER, Redondo MJ. Understanding diabetes heterogeneity: key steps towards precision medicine in diabetes. Lancet Diabetes Endocrinol 2023; 11:848-860. [PMID: 37804855 DOI: 10.1016/s2213-8587(23)00159-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/30/2023] [Accepted: 05/27/2023] [Indexed: 10/09/2023]
Abstract
Diabetes is a highly heterogeneous condition; yet, it is diagnosed by measuring a single blood-borne metabolite, glucose, irrespective of aetiology. Although pragmatically helpful, disease classification can become complex and limit advances in research and medical care. Here, we describe diabetes heterogeneity, highlighting recent approaches that could facilitate management by integrating three disease models across all forms of diabetes, namely, the palette model, the threshold model and the gradient model. Once diabetes has developed, further worsening of established diabetes and the subsequent emergence of diabetes complications are kept in check by multiple processes designed to prevent or circumvent metabolic dysfunction. The impact of any given disease risk factor will vary from person-to-person depending on their background, diabetes-related propensity, and environmental exposures. Defining the consequent heterogeneity within diabetes through precision medicine, both in terms of diabetes risk and risk of complications, could improve health outcomes today and shine a light on avenues for novel therapy in the future.
Collapse
Affiliation(s)
| | - Ronald Ching Wan Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China; Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul W Franks
- Novo Nordisk Foundation, Hellerup, Denmark; Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmo, Sweden; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Kristen J Nadeau
- Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Ewan R Pearson
- Population Health & Genomics, School of Medicine, University of Dundee, Dundee, UK
| | | |
Collapse
|
7
|
Siddiqui K, Nawaz SS. Exploration of Immune Targets for Type 1 Diabetes and Latent Autoimmune Disease Immunotherapy. Immunotargets Ther 2023; 12:91-103. [PMID: 37795196 PMCID: PMC10546931 DOI: 10.2147/itt.s417917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/09/2023] [Indexed: 10/06/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that destroys pancreatic beta cells, which produce insulin in the islets of Langerhans. The risk of developing T1D is influenced by environmental factors, genetics, and autoantibodies. Latent autoimmune diabetes in adults (LADA) is a type of T1D that is genetically and phenotypically distinct from classic T1D. This review summarizes the accumulated information on the risk factors for T1D and LADA, and immunotherapy trials that offer insights into potential future combined therapeutic interventions for both T1D and LADA to slow the rate of islet cell loss and preserve beta cell function. Future research should also focus on improving intervention doses, conducting more thorough examinations of intervention responders, and/or combining minimally effective single-target immunotherapies to slow the rate of islet cell loss and preserve beta cell function.
Collapse
Affiliation(s)
- Khalid Siddiqui
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Shaik Sarfaraz Nawaz
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Luckett AM, Weedon MN, Hawkes G, Leslie RD, Oram RA, Grant SFA. Utility of genetic risk scores in type 1 diabetes. Diabetologia 2023; 66:1589-1600. [PMID: 37439792 PMCID: PMC10390619 DOI: 10.1007/s00125-023-05955-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/23/2023] [Indexed: 07/14/2023]
Abstract
Iterative advances in understanding of the genetics of type 1 diabetes have identified >70 genetic regions associated with risk of the disease, including strong associations across the HLA class II region that account for >50% of heritability. The increased availability of genetic data combined with the decreased costs of generating these data, have facilitated the development of polygenic scores that aggregate risk variants from associated loci into a single number: either a genetic risk score (GRS) or a polygenic risk score (PRS). PRSs incorporate the risk of many possibly correlated variants from across the genome, even if they do not reach genome-wide significance, whereas GRSs estimate the cumulative contribution of a smaller subset of genetic variants that reach genome-wide significance. Type 1 diabetes GRSs have utility in diabetes classification, aiding discrimination between type 1 diabetes, type 2 diabetes and MODY. Type 1 diabetes GRSs are also being used in newborn screening studies to identify infants at risk of future presentation of the disease. Most early studies of type 1 diabetes genetics have been conducted in European ancestry populations, but, to develop accurate GRSs across diverse ancestries, large case-control cohorts from non-European populations are still needed. The current barriers to GRS implementation within healthcare are mainly related to a lack of guidance and knowledge on integration with other biomarkers and clinical variables. Once these limitations are addressed, there is huge potential for 'test and treat' approaches to be used to tailor care for individuals with type 1 diabetes.
Collapse
Affiliation(s)
- Amber M Luckett
- University of Exeter College of Medicine and Health, Exeter, UK
| | | | - Gareth Hawkes
- University of Exeter College of Medicine and Health, Exeter, UK
| | - R David Leslie
- Blizard Institute, Queen Mary University of London, London, UK.
| | - Richard A Oram
- University of Exeter College of Medicine and Health, Exeter, UK.
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK.
| | - Struan F A Grant
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Division of Diabetes and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Xia Y, Chen Y, Li X, Luo S, Lin J, Huang G, Xiao Y, Chen Z, Xie Z, Zhou Z. HLA Class I Association With Autoimmune Diabetes in Chinese People: Distinct Implications in Classic Type 1 Diabetes and LADA. J Clin Endocrinol Metab 2023; 108:e404-e414. [PMID: 36652403 DOI: 10.1210/clinem/dgad006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023]
Abstract
CONTEXT We aimed to investigate whether human leukocyte antigen (HLA) Class I loci differentially modulated the risk for and clinical features of Chinese people with classic type 1 diabetes (T1D) and latent autoimmune diabetes in adults (LADA). METHODS In this case-control study, genotypes of HLA-A, -B, -C, -DRB1, -DQA1, and -DQB1 loci were obtained from 1067 cases with classic T1D, 1062 cases with LADA, and 1107 normal controls using next-generation sequencing. RESULTS Despite 4 alleles shared between classic T1D and LADA (protective: A*02:07 and B*46:01; susceptible: B*54:01 and C*08:01), 7 Class I alleles conferred risk exclusively for classic T1D (A*24:02, B*15:02, B*15:18, B*39:01, B*40:06, B*48:01, and C*07:02) whereas only A*02:01 was an additional risk factor for LADA. Class I alleles affected a wide spectrum of T1D clinical features, including positive rate of protein tyrosine phosphatase autoantibody and zinc transporter 8 autoantibody (A*24:02), C-peptide levels (A*24:02), and age at diagnosis (B*46:01, C*01:02, B*15:02, C*07:02, and C*08:01). By contrast, except for the detrimental effect of C*08:01 on C-peptide concentrations in LADA, no other Class I associations with clinical characteristics of LADA could be reported. The addition of Class I alleles refined the risk model consisting only of DR-DQ data in classic T1D while the overall predictive value of the LADA risk model comprising both Class I and II information was relatively low. CONCLUSION The attenuated HLA Class I susceptibility to LADA was indicative of a less deleterious immunogenetic nature compared with classic T1D. These autoimmune diabetes-related Class I variants might serve as additional markers in future screening among Chinese people.
Collapse
Affiliation(s)
- Ying Xia
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Chen
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jian Lin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhiying Chen
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| |
Collapse
|
10
|
Burahmah J, Zheng D, Leslie RD. Adult-onset type 1 diabetes: A changing perspective. Eur J Intern Med 2022; 104:7-12. [PMID: 35718648 DOI: 10.1016/j.ejim.2022.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/27/2022] [Accepted: 06/03/2022] [Indexed: 11/19/2022]
Abstract
Type 1 diabetes most commonly presents in adulthood, contrary to the widely held view that it is a disease of childhood. Furthermore, a substantial proportion of cases of adult-onset type 1 diabetes does not require insulin therapy at clinical onset. Recent studies have emphasised the evidence that adult-onset type 1 diabetes is prevalent but often misclassified initially as type 2 diabetes (1, 2). In this review, we discuss that recent literature, highlighting the similarities and differences between adult-onset and childhood-onset type 1 diabetes, exploring recent debates surrounding its epidemiology and genetics, as well as expanding on important issues of diagnostic criteria for individuals presenting with adult-onset diabetes and the subsequent management once identified as having an autoimmune basis. In addition, this review looks at the psychosocial challenges faced by T1D patients and their possible management.
Collapse
Affiliation(s)
- J Burahmah
- Blizard Institute, Queen Mary, London, UK
| | - D Zheng
- Blizard Institute, Queen Mary, London, UK
| | - R D Leslie
- Blizard Institute, Queen Mary, London, UK.
| |
Collapse
|
11
|
Abstract
Adult-onset autoimmune (AOA) diabetes pathophysiology starts with immune changes, followed by dysglycaemia and overt disease. AOA diabetes can occur as classic type 1 diabetes when associated with severe loss of insulin secretion. More frequently, it is diagnosed as latent autoimmune diabetes in adults, a slowly progressing form with late onset, a long period not requiring insulin, and it is often misdiagnosed as type 2 diabetes. As its clinical presentation varies remarkably and immune markers often lack specificity, it is challenging to classify each case ad hoc, especially when insulin treatment is not required at diagnosis. Proper care of AOA diabetes aims to prevent complications and to improve quality of life and life expectancy. To achieve these goals, attention should be paid to lifestyle factors, with the aid of pharmacological therapies properly tailored to each individual clinical setting. Given the heterogeneity of the disease, choosing the right therapy for AOA diabetes is challenging. Most of the trials testing disease-modifying therapies for autoimmune diabetes are conducted in people with childhood onset, whereas non-insulin diabetes therapies have mostly been studied in the larger population with type 2 diabetes. More randomized controlled trials of therapeutic agents in AOA diabetes are needed.
Collapse
|
12
|
Wei Y, Zhan Y, Löfvenborg JE, Tuomi T, Carlsson S. Birthweight, BMI in adulthood and latent autoimmune diabetes in adults: a Mendelian randomisation study. Diabetologia 2022; 65:1510-1518. [PMID: 35606578 PMCID: PMC9345833 DOI: 10.1007/s00125-022-05725-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/01/2022] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS Observational studies have found an increased risk of latent autoimmune diabetes in adults (LADA) associated with low birthweight and adult overweight/obese status. We aimed to investigate whether these associations are causal, using a two-sample Mendelian randomisation (MR) design. In addition, we compared results for LADA and type 2 diabetes. METHODS We identified 43 SNPs acting through the fetal genome as instrumental variables (IVs) for own birthweight from a genome-wide association study (GWAS) of the Early Growth Genetics Consortium (EGG) and the UK Biobank. We identified 820 SNPs as IVs for adult BMI from a GWAS of the UK Biobank and the Genetic Investigation of ANthropometric Traits consortium (GIANT). Summary statistics for the associations between IVs and LADA were extracted from the only GWAS involving 2634 cases and 5947 population controls. We used the inverse-variance weighted (IVW) estimator as our primary analysis, supplemented by a series of sensitivity analyses. RESULTS Genetically determined own birthweight was inversely associated with LADA (OR per SD [~500 g] decrease in birthweight 1.68 [95% CI 1.01, 2.82]). In contrast, genetically predicted BMI in adulthood was positively associated with LADA (OR per SD [~4.8 kg/m2] increase in BMI 1.40 [95% CI 1.14, 1.71]). Robust results were obtained in a range of sensitivity analyses using other MR estimators or excluding some IVs. With respect to type 2 diabetes, the association with birthweight was not stronger than in LADA while the association with adult BMI was stronger than in LADA. CONCLUSIONS/ INTERPRETATION This study provides genetic support for a causal link between low birthweight, adult overweight/obese status and LADA.
Collapse
Affiliation(s)
- Yuxia Wei
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Yiqiang Zhan
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China.
| | | | - Tiinamaija Tuomi
- Department of Endocrinology, Helsinki University Hospital, Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM and Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Folkhalsan Research Center, Helsinki, Finland
- Lund University, Malmö, Sweden
| | - Sofia Carlsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Qiu J, Xiao Z, Zhang Z, Luo S, Zhou Z. Latent autoimmune diabetes in adults in China. Front Immunol 2022; 13:977413. [PMID: 36090989 PMCID: PMC9454334 DOI: 10.3389/fimmu.2022.977413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Latent autoimmune diabetes in adults (LADA) is a type of diabetes caused by slow progression of autoimmune damage to pancreatic beta cells. According to the etiological classification, LADA should belong to the autoimmune subtype of type 1 diabetes (T1D). Previous studies have found general immune genetic effects associated with LADA, but there are also some racial differences. Multicenter studies have been conducted in different countries worldwide, but it is still unclear how the Chinese and Caucasian populations differ. The epidemiology and phenotypic characteristics of LADA may vary between Caucasian and Chinese diabetic patients as lifestyle, food habits, and body mass index differ between these two populations. The prevalence of LADA in China has reached a high level compared to other countries. The prevalence of LADA in China has reached a high level compared to other countries, and the number of patients with LADA ranks first in the world. Previous studies have found general immune genetic effects associated with LADA, but some racial differences also exist. The prevalence of LADA among newly diagnosed type 2 diabetes patients over the age of 30 years in China is 5.9%, and LADA patients account for 65% of the newly diagnosed T1D patients in the country. As a country with a large population, China has many people with LADA. A summary and analysis of these studies will enhance further understanding of LADA in China. In addition, comparing the similarities and differences between the Chinese and the Caucasian population from the perspectives of epidemiology, clinical, immunology and genetics will help to improve the understanding of LADA, and then promote LADA studies in individual populations.
Collapse
|
14
|
Asahara SI, Inoue H, Kido Y. Regulation of Pancreatic β-Cell Mass by Gene-Environment Interaction. Diabetes Metab J 2022; 46:38-48. [PMID: 35135077 PMCID: PMC8831821 DOI: 10.4093/dmj.2021.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/28/2021] [Indexed: 11/15/2022] Open
Abstract
The main pathogenic mechanism of diabetes consists of an increase in insulin resistance and a decrease in insulin secretion from pancreatic β-cells. The number of diabetic patients has been increasing dramatically worldwide, especially in Asian people whose capacity for insulin secretion is inherently lower than that of other ethnic populations. Causally, changes of environmental factors in addition to intrinsic genetic factors have been considered to have an influence on the increased prevalence of diabetes. Particular focus has been placed on "gene-environment interactions" in the development of a reduced pancreatic β-cell mass, as well as type 1 and type 2 diabetes mellitus. Changes in the intrauterine environment, such as intrauterine growth restriction, contribute to alterations of gene expression in pancreatic β-cells, ultimately resulting in the development of pancreatic β-cell failure and diabetes. As a molecular mechanism underlying the effect of the intrauterine environment, epigenetic modifications have been widely investigated. The association of diabetes susceptibility genes or dietary habits with gene-environment interactions has been reported. In this review, we provide an overview of the role of gene-environment interactions in pancreatic β-cell failure as revealed by previous reports and data from experiments.
Collapse
Affiliation(s)
- Shun-ichiro Asahara
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Inoue
- Division of Medical Chemistry, Department of Metabolism and Diseases, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yoshiaki Kido
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Medical Chemistry, Department of Metabolism and Diseases, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Corresponding author: Yoshiaki Kido https://orcid.org/0000-0003-2433-5799 Department of Metabolism and Diseases, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan E-mail:
| |
Collapse
|
15
|
Huang J, Pearson JA, Wong FS, Wen L, Zhou Z. Innate immunity in latent autoimmune diabetes in adults. Diabetes Metab Res Rev 2022; 38:e3480. [PMID: 34156143 PMCID: PMC8813511 DOI: 10.1002/dmrr.3480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/06/2022]
Abstract
Latent autoimmune diabetes in adults (LADA) is an autoimmune disease that shares some genetic, immunological and clinical features with both type 1 diabetes and type 2 diabetes. Immune cells including CD4+ T cells, CD8+ T cells, B cells, macrophages and dendritic cells (DCs) have been detected in the pancreas of patients with LADA and a rat model of LADA. Therefore, similar to type 1 diabetes, the pathogenesis of LADA may be caused by interactions between islet β-cells and innate and adaptive immune cells. However, the role of the immunity in the initiation and progression of LADA remains largely unknown. In this review, we have summarized the potential roles of innate immunity and immune-modulators in LADA development. Furthermore, we have examined the evidence and discussed potential innate immunological reasons for the slower development of LADA compared with type 1 diabetes. More in-depth mechanistic studies are needed to fully elucidate the roles of innate immune-associated genes, molecules and cells in their contributions to LADA pathogenesis. Undertaking these studies will greatly enhance the development of new strategies and optimization of current strategies for the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Internal Medicine, Section of Endocrinology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | | | - F. Susan Wong
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Li Wen
- Department of Internal Medicine, Section of Endocrinology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Leslie RD, Evans-Molina C, Freund-Brown J, Buzzetti R, Dabelea D, Gillespie KM, Goland R, Jones AG, Kacher M, Phillips LS, Rolandsson O, Wardian JL, Dunne JL. Adult-Onset Type 1 Diabetes: Current Understanding and Challenges. Diabetes Care 2021; 44:2449-2456. [PMID: 34670785 PMCID: PMC8546280 DOI: 10.2337/dc21-0770] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023]
Abstract
Recent epidemiological data have shown that more than half of all new cases of type 1 diabetes occur in adults. Key genetic, immune, and metabolic differences exist between adult- and childhood-onset type 1 diabetes, many of which are not well understood. A substantial risk of misclassification of diabetes type can result. Notably, some adults with type 1 diabetes may not require insulin at diagnosis, their clinical disease can masquerade as type 2 diabetes, and the consequent misclassification may result in inappropriate treatment. In response to this important issue, JDRF convened a workshop of international experts in November 2019. Here, we summarize the current understanding and unanswered questions in the field based on those discussions, highlighting epidemiology and immunogenetic and metabolic characteristics of adult-onset type 1 diabetes as well as disease-associated comorbidities and psychosocial challenges. In adult-onset, as compared with childhood-onset, type 1 diabetes, HLA-associated risk is lower, with more protective genotypes and lower genetic risk scores; multiple diabetes-associated autoantibodies are decreased, though GADA remains dominant. Before diagnosis, those with autoantibodies progress more slowly, and at diagnosis, serum C-peptide is higher in adults than children, with ketoacidosis being less frequent. Tools to distinguish types of diabetes are discussed, including body phenotype, clinical course, family history, autoantibodies, comorbidities, and C-peptide. By providing this perspective, we aim to improve the management of adults presenting with type 1 diabetes.
Collapse
Affiliation(s)
- R David Leslie
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, U.K.
| | - Carmella Evans-Molina
- Departments of Pediatrics and Medicine and Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | | | - Raffaella Buzzetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity & Diabetes Center, Colorado School of Public Health, and Departments of Epidemiology and Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kathleen M Gillespie
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Robin Goland
- Naomi Berrie Diabetes Center, Columbia University, New York, NY
| | - Angus G Jones
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, U.K
| | | | - Lawrence S Phillips
- Atlanta VA Medical Center and Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Jana L Wardian
- College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | | |
Collapse
|
17
|
Charles MA, Leslie RD. Diabetes: Concepts of β-Cell Organ Dysfunction and Failure Would Lead to Earlier Diagnoses and Prevention. Diabetes 2021; 70:2444-2456. [PMID: 34711669 PMCID: PMC8564410 DOI: 10.2337/dbi21-0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022]
Abstract
As the world endures a viral pandemic superimposed on a diabetes pandemic, the latter incorporates most of the comorbidities associated with the former, thereby exacerbating risk of death in both. An essential approach to both pandemics is prevention and unrealized earlier treatment. Thus, in this Perspective relating to diabetes, we emphasize a paradigm of, first, reversible β-cell organ dysfunction and then irreversible β-cell organ failure, which directly indicate the potential for earlier prevention, also unrealized in current guidelines. Four pillars support this paradigm: epidemiology, pathophysiology, molecular pathology, and genetics. A substantial worldwide knowledge base defines each pillar and informs a more aggressive preventive approach to most forms of the disorder. This analysis seeks to clarify the temporal and therapeutic relationships between lost β-cell function and content, illuminating the potential for earlier diagnoses and, thus, prevention. We also propose that myriad pathways leading to most forms of diabetes converge at the endoplasmic reticulum, where stress can result in β-cell death and content loss. Finally, genetic and nongenetic origins common to major types of diabetes can inform earlier diagnosis and, potentially, prevention, with the aim of preserving β-cell mass.
Collapse
|
18
|
Jiang Z, Ren W, Liang H, Yan J, Yang D, Luo S, Zheng X, Lin GW, Xian Y, Xu W, Yao B, Noble JA, Bei JX, Groop L, Weng J. HLA class I genes modulate disease risk and age at onset together with DR-DQ in Chinese patients with insulin-requiring type 1 diabetes. Diabetologia 2021; 64:2026-2036. [PMID: 34023962 PMCID: PMC8382651 DOI: 10.1007/s00125-021-05476-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/01/2021] [Indexed: 02/08/2023]
Abstract
AIMS/HYPOTHESIS The study aimed to investigate the effects of HLA class I genes on susceptibility to type 1 diabetes with different onset ages, in addition to the well-established effects of HLA class II genes. METHODS A total of 361 patients with type 1 diabetes (192 patients with onset <18 years and 169 patients with onset ≥18 years) and 500 healthy control participants from China were enrolled and genotyped for the HLA-A, -B, -C, -DQA1, -DQB1 and -DRB1 genes using next-generation sequencing. RESULTS The susceptible DR3 (β = -0.09, p = 0.0009) and DR4-DQ8 (β = -0.13, p = 0.0059) haplotypes were negatively associated with onset age, while the protective DR11 (β = 0.21, p = 0.0314) and DR12 (β = 0.27, p < 0.0001) haplotypes were positively associated with onset age. After adjustment for linkage disequilibrium with DR-DQ haplotypes, A*11:01:01 was positively associated with onset age (β = 0.06, p = 0.0370), while the susceptible C*15:02:01 was negatively associated with onset age (β = -0.21, p = 0.0050). The unit for β was double square-root (fourth root) transformed years of change in onset age associated with per copy of the HLA haplotype/allele. In addition, B*46:01:01 was protective (OR 0.41, 0.46; pc [corrected for multiple comparisons] = 0.0044, 0.0040), whereas A*24:02:01 (OR 2.71, 2.25; pc = 0.0003, 0.0002) and B*54:01:01 (OR 3.96, 3.79; pc = 0.0018, 0.0004) were predisposing in both the <18 group and the ≥18 group compared with healthy control participants. In the context of DR4-DQ4, A*11:01:01 (61.29% vs 28.26%, pc = 0.0144) was increased while the predisposing A*24:02:01 (19.35% vs 47.83%, pc = 0.0403) was decreased in patients with onset ≥18 years when compared with patients with onset <18 years. CONCLUSIONS/INTERPRETATION In addition to DR-DQ haplotypes, novel HLA class I alleles were detected to play a role in susceptibility to type 1 diabetes with different onset ages, which could improve the understanding of disease heterogeneity and has implications for the design of future studies.
Collapse
Affiliation(s)
- Ziyu Jiang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenqian Ren
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hua Liang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinhua Yan
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Daizhi Yang
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sihui Luo
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Endocrinology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Endocrinology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guo-Wang Lin
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yingxin Xian
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Yao
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Janelle A Noble
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Leif Groop
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Jianping Weng
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Department of Endocrinology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
19
|
Critical Amino Acid Variants in HLA-DRB1 and -DQB1 Allotypes in the Development of Classical Type 1 Diabetes and Latent Autoimmune Diabetes in Adults in the Japanese Population. Curr Issues Mol Biol 2021; 43:107-115. [PMID: 34065159 PMCID: PMC8928954 DOI: 10.3390/cimb43010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
The effects of amino acid variants encoded by the human leukocyte antigen (HLA) class II on the development of classical type 1 diabetes (T1D) and latent autoimmune diabetes in adults (LADA) have not been fully elucidated. We retrospectively investigated the HLA-DRB1 and -DQB1 genes of 72 patients with classical T1D and 102 patients with LADA in the Japanese population and compared the frequencies of HLA-DRB1 and -DQB1 alleles between these patients and the Japanese populations previously reported by another institution. We also performed a blind association analysis with all amino acid positions in classical T1D and LADA, and compared the associations of HLA-DRB1 and -DQB1 amino acid positions in classical T1D and LADA. The frequency of DRß-Phe-13 was significantly higher and those of DRß-Arg-13 and DQß-Gly-70 were significantly lower in patients with classical T1D and LADA than in controls. The frequencies of DRß-His-13 and DQß-Glu-70 were significantly higher in classical T1D patients than in controls. The frequency of DRß-Ser-13 was significantly lower and that of DQß-Arg-70 was significantly higher in LADA patients than in controls. HLA-DRß1 position 13 and HLA-DQß1 position 70 could be critical amino acid positions in the development of classical T1D and LADA.
Collapse
|
20
|
Xia Y, Li X, Huang G, Lin J, Luo S, Xie Z, Zhou Z. The association of HLA-DP loci with autoimmune diabetes in Chinese. Diabetes Res Clin Pract 2021; 173:108582. [PMID: 33307130 DOI: 10.1016/j.diabres.2020.108582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
AIMS To determine if HLA-DP loci independently contribute to classic type 1 diabetes (T1D) of all ages, childhood-onset T1D and latent autoimmune diabetes in adults (LADA) among Chinese Han population. METHODS A total of 518 patients with classic T1D (Among them 180 participants manifested T1D between 1 and 14 years), 519 patients with LADA and 527 normal controls were genotyped for both HLA-DPA1 and -DPB1 loci. The frequencies of DP alleles and haplotypes in patients were directly compared to those in controls, followed by adjustment for linkage disequilibrium (LD) with DR-DQ haplotypes. RESULTS In the direct comparison, DPA1*01:03, DPB1*04:01 and DPA1*01:03-DPB1*04:01 showed disease-predisposing effects in both the overall T1D group and the childhood-onset T1D group mainly due to their conjunction with the known susceptible DR3 haplotype. Conditioning on DR-DQ haplotypes, only DPA1*02:02-DPB1*02:02 significantly increased T1D risk among those diagnosed during childhood (OR = 2.02, 95% CI = 1.35-3.01). Whether or not adjusted for LD, no statistically significant HLA-DP association could be observed for LADA. CONCLUSION HLA-DP is implicated in the pathogenesis of childhood-onset T1D in Chinese, independent of the predominant DR-DQ loci and might serve as additional markers in genetic models for the recognition of those genetically at-risk individuals.
Collapse
Affiliation(s)
- Ying Xia
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jian Lin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Shuoming Luo
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
21
|
Cousminer DL, Grant SFA. Insights into the Genetic Underpinnings of Endocrine Traits from Large-Scale Genome-Wide Association Studies. Endocrinol Metab Clin North Am 2020; 49:725-739. [PMID: 33153676 DOI: 10.1016/j.ecl.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Great strides have been made in genetic association studies of endocrine traits and diseases, with hundreds or thousands of variants associated with height, body mass index, bone density, pubertal timing, and diabetes in recent years. The common variants associated with these traits explain up to half of the trait variation owing to genetic factors, and when aggregated into polygenic risk scores, can also impact clinically relevant phenotypes at the tail ends of the trait distributions. However, pediatric studies tend to lag behind, and it is often unclear how adult-associated variants behave across life.
Collapse
Affiliation(s)
- Diana L Cousminer
- Center for Spatial and Functional Genomics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building 500, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building 500, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Buzzetti R, Tuomi T, Mauricio D, Pietropaolo M, Zhou Z, Pozzilli P, Leslie RD. Management of Latent Autoimmune Diabetes in Adults: A Consensus Statement From an International Expert Panel. Diabetes 2020; 69:2037-2047. [PMID: 32847960 PMCID: PMC7809717 DOI: 10.2337/dbi20-0017] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
A substantial proportion of patients with adult-onset diabetes share features of both type 1 diabetes (T1D) and type 2 diabetes (T2D). These individuals, at diagnosis, clinically resemble T2D patients by not requiring insulin treatment, yet they have immunogenetic markers associated with T1D. Such a slowly evolving form of autoimmune diabetes, described as latent autoimmune diabetes of adults (LADA), accounts for 2-12% of all patients with adult-onset diabetes, though they show considerable variability according to their demographics and mode of ascertainment. While therapeutic strategies aim for metabolic control and preservation of residual insulin secretory capacity, endotype heterogeneity within LADA implies a personalized approach to treatment. Faced with a paucity of large-scale clinical trials in LADA, an expert panel reviewed data and delineated one therapeutic approach. Building on the 2020 American Diabetes Association (ADA)/European Association for the Study of Diabetes (EASD) consensus for T2D and heterogeneity within autoimmune diabetes, we propose "deviations" for LADA from those guidelines. Within LADA, C-peptide values, proxy for β-cell function, drive therapeutic decisions. Three broad categories of random C-peptide levels were introduced by the panel: 1) C-peptide levels <0.3 nmol/L: a multiple-insulin regimen recommended as for T1D; 2) C-peptide values ≥0.3 and ≤0.7 nmol/L: defined by the panel as a "gray area" in which a modified ADA/EASD algorithm for T2D is recommended; consider insulin in combination with other therapies to modulate β-cell failure and limit diabetic complications; 3) C-peptide values >0.7 nmol/L: suggests a modified ADA/EASD algorithm as for T2D but allowing for the potentially progressive nature of LADA by monitoring C-peptide to adjust treatment. The panel concluded by advising general screening for LADA in newly diagnosed non-insulin-requiring diabetes and, importantly, that large randomized clinical trials are warranted.
Collapse
Affiliation(s)
- Raffaella Buzzetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Tiinamaija Tuomi
- Division of Endocrinology, Abdominal Center, Helsinki University Hospital, Institute for Molecular Medicine Finland FIMM and Research Program for Clinical and Molecular Metabolism, University of Helsinki, and Folkhälsan Research Center, Helsinki, Finland
- Lund University Diabetes Center, University of Lund, Malmo, Sweden
| | - Didac Mauricio
- Department of Endocrinology & Nutrition, CIBERDEM, Hospital de la Santa Creu i Sant Pau & Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), Autonomous University of Barcelona, Barcelona, Spain
| | - Massimo Pietropaolo
- Division of Endocrinology, Diabetes and Metabolism, Diabetes Research Center, Baylor College of Medicine, Houston, TX
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University and Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Paolo Pozzilli
- Unit of Endocrinology and Diabetes, Department of Medicine, Campus Bio-Medico University, Rome, Italy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, University of London, London, U.K
| | - Richard David Leslie
- Blizard Institute, Barts and The London School of Medicine and Dentistry, University of London, London, U.K.
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Diabetes is a spectrum of clinical manifestations, including latent autoimmune diabetes in adults (LADA). However, it has been questioned whether LADA exists or simply is a group of misclassified type 1 diabetes (T1D) and type 2 diabetes (T2D) patients. This review will provide an updated overview of the genetics of LADA, highlight what genetics tell us about LADA as a diabetes subtype, and point to future directions in the study of LADA. RECENT FINDINGS Recent studies have verified the genetic overlap between LADA and both T1D and T2D and have contributed identification of a novel LADA-specific locus, namely, PFKFB3, and subtype-specific signatures in the HLA region. Genetic risk scores comprising T1D-risk variants have been shown to be a promising tool for discriminating diabetes subtypes and identifying patients rapidly progressing to insulin dependence. Genetic data support the existence of LADA, but further studies are needed to fully determine the place of LADA in the diabetes spectrum.
Collapse
Affiliation(s)
- Mette K Andersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
24
|
Buzzetti R, Zampetti S, Pozzilli P. Impact of obesity on the increasing incidence of type 1 diabetes. Diabetes Obes Metab 2020; 22:1009-1013. [PMID: 32157790 DOI: 10.1111/dom.14022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023]
Abstract
Published estimates of the incidence of type 1 diabetes (T1D) in children in the last decade varies between 2% and 4% per annum. If this trend continued, the disease incidence would double in the next 20 years. The risk of developing T1D is determined by a complex interaction between multiple genes (mainly human leukocyte antigens) and environmental factors. Notwithstanding that genetic susceptibility represents a relevant element in T1D risk, genetics alone cannot explain the increase in incidence. Various environmental factors have been suggested as potential triggers for T1D, including several viruses and the hygiene hypothesis; however, none of these seems to explain the large increase in T1D incidence observed over the last decades. Several studies have demonstrated that the prevalence of childhood/adolescence overweight and obesity has risen during the past 30 years in T1D. Currently, at diagnosis, the majority of patients with T1D have normal or elevated body weight and ~50% of patients with longstanding T1D are either overweight or obese. The growing prevalence of obesity in childhood and adolescence offers a plausible explanation for the increase in T1D incidence observed in recent decades. Possible mechanisms of the enhancement of β-cell autoimmunity by obesity include: a) insulin resistance-induced β-cell secretory demand triggering autoimmunity through cytokine release, neo-epitope antigen formation and increase in β-cell apoptosis, and b) obesity-induced low-grade inflammation with pro-inflammatory cytokines secreted by locally infiltrating macrophages, which contribute to the presentation by islet cells of autoantigens generally not accessible to T cells. Further studies are needed to clarify whether the control of body weight can prevent or delay the current and continuing rise in T1D incidence.
Collapse
Affiliation(s)
| | - Simona Zampetti
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Paolo Pozzilli
- Department of Medicine, Unit of Endocrinology and Diabetes, Campus Bio-Medico University of Rome, Rome, Italy
- Centre of Immunobiology, Barts and London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
25
|
Maddaloni E, Moretti C, Mignogna C, Buzzetti R. Adult-onset autoimmune diabetes in 2020: An update. Maturitas 2020; 137:37-44. [DOI: 10.1016/j.maturitas.2020.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
|
26
|
Tong Y, Yang L, Shao F, Yan X, Li X, Huang G, Xiao Y, Zhou Z. Distinct secretion pattern of serum proinsulin in different types of diabetes. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:452. [PMID: 32395496 PMCID: PMC7210169 DOI: 10.21037/atm.2020.03.189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Latent autoimmune diabetes in adults (LADA) is characterized by autoimmunity, late-onset and intermediate beta-cell deprivation rate between type 2 diabetes mellitus (T2DM) and type 1 diabetes mellitus (T1DM). Herein, we investigated proinsulin (PI) secretion patterns and the endoplasmic reticulum (ER) dysfunction biomarker, PI-to-C-peptide (PI:CP) ratio, to elucidate beta-cell intrinsic pathogenesis mechanisms in different types of diabetes. Methods Total serum fasting PI (FPI) were measured in adult-onset and newly-diagnosed diabetes patients, including 60 T1DM, 60 LADA and 60 T2DM. Thirty of each type underwent mixed meal tolerance tests (MMTTs), and hence 120 min postprandial PI (PPI) were detected. PI:CP ratio = PI (pmol/L) ÷ CP (pmol/L) × 100%. PI-related measurements among types of diabetes were compared. Correlation between PI-related measurements and beta-cell autoimmunity were analyzed. The possibility of discriminating LADA from T1DM and T2DM with PI-related measurements were tested. Results FPI and PPI were significantly higher in LADA than T1DM (P<0.001 for both comparisons), but lower than those in T2DM (P<0.001 and P=0.026, respectively). Fasting PI:CP ratio was significantly higher in T1DM than both LADA and T2DM (median 3.25% vs. 2.13% and 2.32%, P=0.011 and P=0.017, respectively). In LADA, positive autoantibody numbers increased by both fasting and postprandial PI:CP ratio (P=0.007 and P=0.034, respectively). Areas under receiver operation characteristic curves (AUCROC) of FPI and PPI for discriminating LADA from adult-onset T1DM were 0.751 (P<0.001) and 0.838 (P<0.001), respectively. Between LADA and T2DM, AUCROC of FPI and PPI were 0.685 (P<0.001) and 0.741 (P=0.001), respectively. Conclusions In the development of autoimmune diabetes, interplays between ER stress and beta-cell autoimmunity are potentially responsible for severer beta-cell destruction. PI-related measurements could help in differentiating LADA from adult-onset T1DM and T2DM.
Collapse
Affiliation(s)
- Yue Tong
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Lin Yang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Feng Shao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Xiang Yan
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Yang Xiao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.,National Clinical Research Center for Metabolic Diseases, Changsha 410011, China.,Key Laboratory of Diabetes Immunology, Central South University, Ministry of Education, Changsha 410011, China
| |
Collapse
|