1
|
Li R, Ma L, Geng Y, Chen X, Zhu J, Zhu H, Wang D. Uteroplacental microvascular remodeling in health and disease. Acta Physiol (Oxf) 2025; 241:e70035. [PMID: 40156319 DOI: 10.1111/apha.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/10/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
The microvascular system is essential for delivering oxygen and nutrients to tissues while removing metabolic waste. During pregnancy, the uteroplacental microvascular system undergoes extensive remodeling to meet the increased demands of the fetus. Key adaptations include vessel dilation and increases in vascular volume, density, and permeability, all of which ensure adequate placental perfusion while maintaining stable maternal blood pressure. Structural and functional abnormalities in the uteroplacental microvasculature are associated with various gestational complications, posing both immediate and long-term risks to the health of both mother and infant. In this review, we describe the changes in uteroplacental microvessels during pregnancy, discuss the pathogenic mechanisms underlying diseases such as preeclampsia, fetal growth restriction, and gestational diabetes, and summarize current clinical and research approaches for monitoring microvascular health. We also provide an update on research models for gestational microvascular complications and explore solutions to several unresolved challenges. With advancements in research techniques, we anticipate significant progress in understanding and managing these diseases, ultimately leading to new therapeutic strategies to improve maternal and fetal health.
Collapse
Affiliation(s)
- Ruizhi Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Ma
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yingchun Geng
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaoxue Chen
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiaxi Zhu
- Life Sciences, Faculty of Arts & Science, University of Toronto - St. George Campus, Toronto, Ontario, Canada
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Dong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Qingdao University, Jinan, China
- Institute of Chronic Diseases, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Kulseng CPS, Sommerfelt S, Flo K, Gjesdal K, Peterson HF, Hillestad V, Sagberg K, Eskild A. The association of placental to fetal ratio with pregnancy duration. Acta Obstet Gynecol Scand 2025; 104:913-921. [PMID: 40042092 PMCID: PMC11981096 DOI: 10.1111/aogs.15082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/05/2025] [Accepted: 02/09/2025] [Indexed: 04/11/2025]
Abstract
INTRODUCTION Our objective was to study the association of placental size, fetal size, and placental size relative to fetal size (placental to fetal ratio) at gestational week 27 with time to spontaneous delivery. MATERIAL AND METHODS We included 100 pregnancies in a follow-up study from gestational week 27 until spontaneous delivery. Placental and fetal volume (in cm3) were measured at gestational week 27 by magnetic resonance imaging (MRI), and the association of placental to fetal ratio (placental volume/fetal volume) with delivery after spontaneous onset of labor was estimated as hazard ratios (HR) by applying Cox regression models. Pregnancies with deliveries after planned cesarean section or induction of labor provided follow-up time until these events. An HR lower than 1.0 indicates decreased risk of spontaneous delivery. RESULTS Mean placental volume was 532 cm3 (SD 136 cm3) at gestational week 27, and fetal volume was 961 cm3 (SD 112 cm3). This yielded a mean placental to fetal ratio of 0.55 (SD 0.12). The HR of spontaneous delivery decreased with increasing placental to fetal ratio (HR 0.013 (95% CI: 0.001-0.121), Wald statistic 14.704 (p < 0.001)), indicating a longer duration of pregnancy with a higher placental to fetal ratio at gestational week 27. The HR of spontaneous delivery also decreased with increasing placental size, but the association was less prominent than the HR associated with placental to fetal ratio (HR 0.997 [95% CI: 0.995-0.999], Wald statistic 7.638 [p = 0.006]). We estimated no association with fetal size (HR 1.001 [95% CI 0.999-1.003], Wald statistic 1.728 [p = 0.189]). CONCLUSIONS Our findings suggest that the placental to fetal ratio at gestational week 27 may be an indicator of the remaining duration of pregnancy until the onset of spontaneous labor.
Collapse
Affiliation(s)
- Carl P. S. Kulseng
- Department of Obstetrics and GynecologyAkershus University HospitalLorenskogNorway
- Sunnmøre MR‐KlinikkÅlesundNorway
| | - Silje Sommerfelt
- Department of Obstetrics and GynecologyAkershus University HospitalLorenskogNorway
| | - Kari Flo
- Department of Obstetrics and GynecologyAkershus University HospitalLorenskogNorway
| | - Kjell‐Inge Gjesdal
- Sunnmøre MR‐KlinikkÅlesundNorway
- Department of Diagnostic ImagingAkershus University HospitalLorenskogNorway
| | - Helene F. Peterson
- Department of Obstetrics and GynecologyAkershus University HospitalLorenskogNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Vigdis Hillestad
- Department of Obstetrics and GynecologyAkershus University HospitalLorenskogNorway
- Department of Diagnostic ImagingAkershus University HospitalLorenskogNorway
| | - Karianne Sagberg
- Department of Obstetrics and GynecologyAkershus University HospitalLorenskogNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Anne Eskild
- Department of Obstetrics and GynecologyAkershus University HospitalLorenskogNorway
- Institute of Clinical MedicineUniversity of OsloOsloNorway
| |
Collapse
|
3
|
Beunen K, Van den Abbeele F, Van Crombrugge P, Verhaeghe J, Vandeginste S, Verlaenen H, Maes T, Dufraimont E, Roggen N, De Block C, Jacquemyn Y, Mekahli F, De Clippel K, Van den Bruel A, Loccufier A, Laenen A, Devlieger R, Mathieu C, Benhalima K. Fetal size monitoring in women with gestational diabetes and normal glucose tolerance. Acta Diabetol 2025; 62:35-48. [PMID: 39031189 DOI: 10.1007/s00592-024-02330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 07/22/2024]
Abstract
AIMS To monitor fetal size and identify predictors for birthweight in women with gestational diabetes (GDM) and normal glucose tolerance (NGT). METHODS Cohort study of 1843 women universally screened for GDM, with routine ultrasounds each trimester. Women with GDM and NGT were categorized in subgroups by birthweight centile. RESULTS Of the total cohort, 231 (12.5%) women were diagnosed with GDM. Fetal size, incidence of large-for-gestational age (LGA: 12.3% of GDM vs. 12.9% of NGT, p = 0.822) and small-for-gestational age (SGA) neonates (4.8% of GDM vs. 5.1% of NGT, p = 0.886) were similar between GDM and NGT. GDM women with LGA neonates were more insulin resistant at baseline and had more often estimated fetal weight (EFW) ≥ P90 on the 28-33 weeks ultrasound (p = 0.033) than those with AGA (appropriate-for-gestational age) neonates. Compared to NGT women with AGA neonates, those with LGA neonates were more often obese and multiparous, had higher fasting glycemia, a worse lipid profile, and higher insulin resistance between 24 -28 weeks, with more often excessive gestational weight gain. On the 28-33 weeks ultrasound, abdominal circumference ≥ P95 had a high positive predictive value for LGA neonates in GDM (100%), whereas, in both GDM and NGT, EFW ≥ P90 and ≤ P10 had a high negative predictive value for LGA and SGA neonates (> 88%), respectively. CONCLUSIONS There were no differences in fetal size throughout pregnancy nor in LGA incidence between GDM and NGT women. EFW centile at 28-33 weeks correlated well with birthweight. This indicates that GDM treatment is effective and targeted ultrasound follow-up is useful. TRIAL REGISTRATION CLINICALTRIALS.GOV: NCT02036619. Registration date: January 15, 2014. https://clinicaltrials.gov/ct2/show/NCT02036619 .
Collapse
Affiliation(s)
- Kaat Beunen
- Department of Endocrinology, UZ Leuven, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
| | | | - Paul Van Crombrugge
- Department of Endocrinology, Onze Lieve Vrouw (OLV) Hospital Aalst-Asse-Ninove, Moorselbaan 164, Aalst, 9300, Belgium
| | - Johan Verhaeghe
- Department of Obstetrics and Gynecology, UZ Leuven, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Sofie Vandeginste
- Department of Obstetrics and Gynecology, Onze Lieve Vrouw (OLV) Hospital Aalst-Asse-Ninove, Moorselbaan, Aalst, 164, 9300, Belgium
| | - Hilde Verlaenen
- Department of Obstetrics and Gynecology, Onze Lieve Vrouw (OLV) Hospital Aalst-Asse-Ninove, Moorselbaan, Aalst, 164, 9300, Belgium
| | - Toon Maes
- Department of Endocrinology, Imelda Hospital Bonheiden, Imeldalaan 9, Bonheiden, 2820, Belgium
| | - Els Dufraimont
- Department of Obstetrics and Gynecology, Imelda Hospital Bonheiden, Imeldalaan 9, Bonheiden, 2820, Belgium
| | - Nele Roggen
- Department of Obstetrics and Gynecology, Imelda Hospital Bonheiden, Imeldalaan 9, Bonheiden, 2820, Belgium
| | - Christophe De Block
- Department of Endocrinology-Diabetology-Metabolism, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, 2650, Belgium
| | - Yves Jacquemyn
- Department of Obstetrics and Gynecology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, 2650, Belgium
- Global Health Institute (GHI), Antwerp University, Antwerp, Belgium
| | - Farah Mekahli
- Department of Endocrinology, Hospital St Jan Brussel, Kruidtuinlaan 32, Brussel, 1000, Belgium
| | - Katrien De Clippel
- Department of Obstetrics and Gynecology, Hospital St Jan Brussel, Kruidtuinlaan 32, Brussel, 1000, Belgium
| | - Annick Van den Bruel
- Department of Endocrinology, General Hospital St Jan Brugge, Ruddershove 10, Brugge, 8000, Belgium
| | - Anne Loccufier
- Department of Obstetrics and Gynecology, General Hospital St Jan Brugge, Ruddershove 10, Brugge, 8000, Belgium
| | - Annouschka Laenen
- Center of Biostatics and Statistical bioinformatics, KU Leuven, Kapucijnenvoer 35 bloc d - box 7001, Leuven, 3000, Belgium
| | - Roland Devlieger
- Department of Obstetrics and Gynecology, UZ Leuven, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
- Department of Obstetrics and Gynecology, GZA Hospitals Sint-Augustinus, Oosterveldlaan 24, Antwerp, 2610, Belgium
| | - Chantal Mathieu
- Department of Endocrinology, UZ Leuven, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Katrien Benhalima
- Department of Endocrinology, UZ Leuven, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
| |
Collapse
|
4
|
Masalin S, Klåvus A, Rönö K, Koistinen HA, Koistinen V, Kärkkäinen O, Jääskeläinen TJ, Klemetti MM. Analysis of early-pregnancy metabolome in early- and late-onset gestational diabetes reveals distinct associations with maternal overweight. Diabetologia 2024; 67:2539-2554. [PMID: 39083240 PMCID: PMC11519293 DOI: 10.1007/s00125-024-06237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 10/29/2024]
Abstract
AIMS/HYPOTHESIS It is not known whether the early-pregnancy metabolome differs in patients with early- vs late-onset gestational diabetes mellitus (GDM) stratified by maternal overweight. The aims of this study were to analyse correlations between early-pregnancy metabolites and maternal glycaemic and anthropometric characteristics, and to identify early-pregnancy metabolomic alterations that characterise lean women (BMI <25 kg/m2) and women with overweight (BMI ≥25 kg/m2) with early-onset GDM (E-GDM) or late-onset GDM (L-GDM). METHODS We performed a nested case-control study within the population-based prospective Early Diagnosis of Diabetes in Pregnancy cohort, comprising 210 participants with GDM (126 early-onset, 84 late-onset) and 209 normoglycaemic control participants matched according to maternal age, BMI class and primiparity. Maternal weight, height and waist circumference were measured at 8-14 weeks' gestation. A 2 h 75 g OGTT was performed at 12-16 weeks' gestation (OGTT1), and women with normal results underwent repeat testing at 24-28 weeks' gestation (OGTT2). Comprehensive metabolomic profiling of fasting serum samples, collected at OGTT1, was performed by untargeted ultra-HPLC-MS. Linear models were applied to study correlations between early-pregnancy metabolites and maternal glucose concentrations during OGTT1, fasting insulin, HOMA-IR, BMI and waist circumference. Early-pregnancy metabolomic features for GDM subtypes (participants stratified by maternal overweight and gestational timepoint at GDM onset) were studied using linear and multivariate models. The false discovery rate was controlled using the Benjamini-Hochberg method. RESULTS In the total cohort (n=419), the clearest correlation patterns were observed between (1) maternal glucose concentrations and long-chain fatty acids and medium- and long-chain acylcarnitines; (2) maternal BMI and/or waist circumference and long-chain fatty acids, medium- and long-chain acylcarnitines, phospholipids, and aromatic and branched-chain amino acids; and (3) HOMA-IR and/or fasting insulin and L-tyrosine, certain long-chain fatty acids and phospholipids (q<0.001). Univariate analyses of GDM subtypes revealed significant differences (q<0.05) for seven non-glucose metabolites only in overweight women with E-GDM compared with control participants: linolenic acid, oleic acid, docosapentaenoic acid, docosatetraenoic acid and lysophosphatidylcholine 20:4/0:0 abundances were higher, whereas levels of specific phosphatidylcholines (P-16:0/18:2 and 15:0/18:2) were lower. However, multivariate analyses exploring the early-pregnancy metabolome of GDM subtypes showed differential clustering of acylcarnitines and long-chain fatty acids between normal-weight and overweight women with E- and L-GDM. CONCLUSIONS/INTERPRETATION GDM subtypes show distinct early-pregnancy metabolomic features that correlate with maternal glycaemic and anthropometric characteristics. The patterns identified suggest early-pregnancy disturbances of maternal lipid metabolism, with most alterations observed in overweight women with E-GDM. Our findings highlight the importance of maternal adiposity as the primary target for prevention and treatment.
Collapse
Affiliation(s)
- Senja Masalin
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Obstetrics and Gynecology, South Karelia Central Hospital, Lappeenranta, Finland.
- Department of General Practice and Primary Healthcare, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | | | - Kristiina Rönö
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Obstetrics and Gynecology, South Karelia Central Hospital, Lappeenranta, Finland
| | - Heikki A Koistinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | - Olli Kärkkäinen
- Afekta Technologies Ltd, Kuopio, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Tiina J Jääskeläinen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Miira M Klemetti
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Obstetrics and Gynecology, South Karelia Central Hospital, Lappeenranta, Finland.
| |
Collapse
|
5
|
Bandres-Meriz J, Sanz-Cuadrado M, Hurtado de Mendoza I, Majali-Martinez A, Honeder S, Cindrova-Davies T, Birner-Gruenberger R, Dalgaard L, Desoye G. MCM proteins are up-regulated in placentas of women with reduced insulin sensitivity. Biosci Rep 2024; 44:BSR20240430. [PMID: 39268985 PMCID: PMC11461181 DOI: 10.1042/bsr20240430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
In the first trimester of pregnancy the human placenta grows rapidly, making it sensitive to changes in the intrauterine environment. To test whether exposure to an environment in utero often associated with obesity modifies placental proteome and function, we performed untargeted proteomics (LC-MS/MS) in placentas from 19 women (gestational age 35-48 days, i.e. 5+0-6+6 weeks). Maternal clinical traits (body mass index, leptin, glucose, C-peptide and insulin sensitivity) and gestational age were recorded. DNA replication and cell cycle pathways were enriched in the proteome of placentas of women with low maternal insulin sensitivity. Driving these pathways were the minichromosome maintenance (MCM) proteins MCM2, MCM3, MCM4, MCM5, MCM6 and MCM7 (MCM-complex). These proteins are part of the pre-replicative complex and participate in DNA damage repair. Indeed, MCM6 and γH2AX (DNA-damage marker) protein levels correlated in first trimester placental tissue (r = 0.514, P<0.01). MCM6 and γH2AX co-localized to nuclei of villous cytotrophoblast cells, the proliferative cell type of the placenta, suggesting increased DNA damage in this cell type. To mimic key features of the intrauterine obesogenic environment, a first trimester trophoblast cell line, i.e., ACH-3P, was exposed to high insulin (10 nM) or low oxygen tension (2.5% O2). There was a significant correlation between MCM6 and γH2AX protein levels, but these were independent of insulin or oxygen exposure. These findings show that chronic exposure in utero to reduced maternal insulin sensitivity during early pregnancy induces changes in the early first trimester placental proteome. Pathways related to DNA replication, cell cycle and DNA damage repair appear especially sensitive to such an in utero environment.
Collapse
Affiliation(s)
- Julia Bandres-Meriz
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | | | | | - Alejandro Majali-Martinez
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud. Universidad Europea de Madrid, Madrid, Spain
| | - Sophie Elisabeth Honeder
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria
| | - Tereza Cindrova-Davies
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| | - Ruth Birner-Gruenberger
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria
| | | | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Hoch D, Majali-Martinez A, Bandres-Meriz J, Bachbauer M, Pöchlauer C, Kaudela T, Bankoglu EE, Stopper H, Glasner A, Hauguel-De Mouzon S, Gauster M, Tokic S, Desoye G. Obesity-associated non-oxidative genotoxic stress alters trophoblast turnover in human first-trimester placentas. Mol Hum Reprod 2024; 30:gaae027. [PMID: 39092995 PMCID: PMC11347397 DOI: 10.1093/molehr/gaae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Indexed: 08/04/2024] Open
Abstract
Placental growth is most rapid during the first trimester (FT) of pregnancy, making it vulnerable to metabolic and endocrine influences. Obesity, with its inflammatory and oxidative stress, can cause cellular damage. We hypothesized that maternal obesity increases DNA damage in the FT placenta, affecting DNA damage response and trophoblast turnover. Examining placental tissue from lean and obese non-smoking women (4-12 gestational weeks), we observed higher overall DNA damage in obesity (COMET assay). Specifically, DNA double-strand breaks were found in villous cytotrophoblasts (vCTB; semi-quantitative γH2AX immunostaining), while oxidative DNA modifications (8-hydroxydeoxyguanosine; FPG-COMET assay) were absent. Increased DNA damage in obese FT placentas did not correlate with enhanced DNA damage sensing and repair. Indeed, obesity led to reduced expression of multiple DNA repair genes (mRNA array), which were further shown to be influenced by inflammation through in vitro experiments using tumor necrosis factor-α treatment on FT chorionic villous explants. Tissue changes included elevated vCTB apoptosis (TUNEL assay; caspase-cleaved cytokeratin 18), but unchanged senescence (p16) and reduced proliferation (Ki67) of vCTB, the main driver of FT placental growth. Overall, obesity is linked to heightened non-oxidative DNA damage in FT placentas, negatively affecting trophoblast growth and potentially leading to temporary reduction in early fetal growth.
Collapse
Affiliation(s)
- Denise Hoch
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Alejandro Majali-Martinez
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, Madrid, Spain
| | - Julia Bandres-Meriz
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Martina Bachbauer
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Caroline Pöchlauer
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Theresa Kaudela
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | | | | | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Silvija Tokic
- Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Medical University of Graz, Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Hivert MF, Backman H, Benhalima K, Catalano P, Desoye G, Immanuel J, McKinlay CJD, Meek CL, Nolan CJ, Ram U, Sweeting A, Simmons D, Jawerbaum A. Pathophysiology from preconception, during pregnancy, and beyond. Lancet 2024; 404:158-174. [PMID: 38909619 DOI: 10.1016/s0140-6736(24)00827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 06/25/2024]
Abstract
Gestational diabetes is the most common medical complication in pregnancy. Historically, gestational diabetes was considered a pregnancy complication involving treatment of rising glycaemia late in the second trimester. However, recent evidence challenges this view. Pre-pregnancy and pregnancy-specific factors influence gestational glycaemia, with open questions regarding roles of non-glycaemic factors in the aetiology and consequences of gestational diabetes. Varying patterns of insulin secretion and resistance in early and late pregnancy underlie a heterogeneity of gestational diabetes in the timing and pathophysiological subtypes with clinical implications: early gestational diabetes and insulin resistant gestational diabetes subtypes are associated with a higher risk of pregnancy complications. Metabolic perturbations of early gestational diabetes can affect early placental development, affecting maternal metabolism and fetal development. Fetal hyperinsulinaemia can affect the development of multiple fetal tissues, with short-term and long-term consequences. Pregnancy complications are prevented by managing glycaemia in early and late pregnancy in some, but not all women with gestational diabetes. A better understanding of the pathophysiology and heterogeneity of gestational diabetes will help to develop novel management approaches with focus on improved prevention of maternal and offspring short-term and long-term complications, from pre-conception, throughout pregnancy, and beyond.
Collapse
Affiliation(s)
- Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA; Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Helena Backman
- Faculty of Medicine and Health, Department of Obstetrics and Gynecology, Örebro University, Örebro, Sweden
| | - Katrien Benhalima
- Endocrinology, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Patrick Catalano
- Maternal Infant Research Institute, Obstetrics and Gynecology Research, Tufts Medical Center, Boston, MA, USA; School of Medicine, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Jincy Immanuel
- School of Medicine, Western Sydney University, Sydney, NSW, Australia; Institute for Women's Health, College of Nursing, Texas Woman's University, Denton, TX, USA
| | - Christopher J D McKinlay
- Department of Paediatrics Child and Youth Health, University of Auckland, Auckland, New Zealand; Kidz First Neonatal Care, Te Whatu Ora Counties Manukau, Auckland, New Zealand
| | - Claire L Meek
- Leicester Diabetes Centre, Leicester General Hospital, University of Leicester, Leicester, UK
| | - Christopher J Nolan
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia; Department of Endocrinology, Canberra Health Services, Woden, ACT, Australia
| | - Uma Ram
- Department of Obstetrics and Gynecology, Seethapathy Clinic and Hospital, Chennai, Tamilnadu, India
| | - Arianne Sweeting
- Department of Endocrinology, Royal Prince Alfred Hospital and University of Sydney, Sydney, NSW, Australia
| | - David Simmons
- School of Medicine, Western Sydney University, Sydney, NSW, Australia.
| | - Alicia Jawerbaum
- Facultad de Medicina, Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina; Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, Buenos Aires, Argentina
| |
Collapse
|
8
|
Faienza MF, Urbano F, Anaclerio F, Moscogiuri LA, Konstantinidou F, Stuppia L, Gatta V. Exploring Maternal Diet-Epigenetic-Gut Microbiome Crosstalk as an Intervention Strategy to Counter Early Obesity Programming. Curr Issues Mol Biol 2024; 46:4358-4378. [PMID: 38785533 PMCID: PMC11119222 DOI: 10.3390/cimb46050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Alterations in a mother's metabolism and endocrine system, due to unbalanced nutrition, may increase the risk of both metabolic and non-metabolic disorders in the offspring's childhood and adulthood. The risk of obesity in the offspring can be determined by the interplay between maternal nutrition and lifestyle, intrauterine environment, epigenetic modifications, and early postnatal factors. Several studies have indicated that the fetal bowel begins to colonize before birth and that, during birth and nursing, the gut microbiota continues to change. The mother's gut microbiota is primarily transferred to the fetus through maternal nutrition and the environment. In this way, it is able to impact the establishment of the early fetal and neonatal microbiome, resulting in epigenetic signatures that can possibly predispose the offspring to the development of obesity in later life. However, antioxidants and exercise in the mother have been shown to improve the offspring's metabolism, with improvements in leptin, triglycerides, adiponectin, and insulin resistance, as well as in the fetal birth weight through epigenetic mechanisms. Therefore, in this extensive literature review, we aimed to investigate the relationship between maternal diet, epigenetics, and gut microbiota in order to expand on current knowledge and identify novel potential preventative strategies for lowering the risk of obesity in children and adults.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy
| | - Flavia Urbano
- Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy; (F.U.); (L.A.M.)
| | - Federico Anaclerio
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | | | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
9
|
Jokelainen M, Kautiainen H, Nenonen A, Stach-Lempinen B, Klemetti MM. First-trimester HbA 1c in relation to plasma glucose concentrations in an oral glucose tolerance test at 12 to 16 weeks' gestation-a population-based study. Diabetol Metab Syndr 2024; 16:53. [PMID: 38414049 PMCID: PMC10898079 DOI: 10.1186/s13098-024-01290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Early-onset GDM often requires pharmacological treatment and is associated with adverse perinatal outcomes, but data is insufficient regarding the best methods to identify high-risk women requiring early GDM screening. The aim of this study was to analyze the diagnostic accuracy of HbA1c in the prediction of (1) plasma glucose concentrations > 90th percentile in an oral glucose tolerance test (OGTT) at 12-16 weeks' gestation; and (2) pharmacologically treated early- or late-onset GDM. METHODS HbA1c was measured at 8-14 weeks' gestation in a population-based cohort of 1394 Finnish women recruited for the Early Diagnosis of Diabetes in Pregnancy (EDDIE) study between 3/2013 and 12/2016. Information on maternal risk factors were collected at recruitment. Subsequently, a 2-hour 75 g OGTT was performed at 12-16 weeks' gestation (OGTT1), and if normal, repeated at 24-28 weeks' gestation (OGTT2). Early- and late-onset GDM were diagnosed using the same nationally endorsed cut-offs for fasting, 1 h- and 2 h-plasma glucose: ≥5.3, ≥ 10.0mmol/l, and/or ≥ 8.6mmol/l, respectively. In total, 52/1394 (3.7%) women required metformin or insulin treatment for GDM, including 39 women with early-onset GDM diagnosed at OGTT1 and 13 women with late-onset GDM diagnosed at OGTT2. RESULTS Maternal early-pregnancy HbA1c ≥ 35mmol/mol (≥ 5.4%) was the best cut-off to predict fasting or post-load plasma glucose > 90th percentile in OGTT1, but its diagnostic accuracy was low [AUC (95% CI) 0.65 (0.62 to 0.69), sensitivity 0.55 (0.49 to 0.60) and specificity 0.67 (0.64 to 0.70)] both alone and in combination with other maternal risk factors. However, HbA1c ≥ 35mmol/mol correlated positively with plasma glucose concentrations at all time points of OGTT1 and predicted pharmacologically treated GDM diagnosed at OGTT1 or OGTT2; AUC (95% CI) 0.75 (0.68 to 0.81), sensitivity 0.75 (0.61 to 0.86), specificity 0.64 (0.61 to 0.66). CONCLUSIONS In our population-based cohort, early-pregnancy HbA1c ≥ 35mmol/mol was positively associated with fasting and post-load plasma glucose concentrations in an OGTT at 12-16 weeks' gestation and predicted pharmacologically-treated early- and late-onset GDM, suggesting potential utility in first-trimester identification of women at high risk of severe GDM subtypes.
Collapse
Affiliation(s)
- Mervi Jokelainen
- Obstetrics and Gynecology, South Karelia Central Hospital, Valto Käkelän katu 1, Lappeenranta, 53130, Finland
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, Helsinki, 00029 HUS, Finland
| | - Hannu Kautiainen
- Folkhälsan Research Centre, Haartmaninkatu 8, Helsinki, 000290, Finland
- Primary Health Care Unit, Kuopio University Hospital, P.O. Box 100, Kuopio, FI, 70029 KYS, Finland
| | - Arja Nenonen
- Laboratory Center, South Karelia Central Hospital, Valto Käkelän katu 1, Lappeenranta, 53130, Finland
| | - Beata Stach-Lempinen
- Obstetrics and Gynecology, South Karelia Central Hospital, Valto Käkelän katu 1, Lappeenranta, 53130, Finland
| | - Miira M Klemetti
- Obstetrics and Gynecology, South Karelia Central Hospital, Valto Käkelän katu 1, Lappeenranta, 53130, Finland.
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 2, Helsinki, 00029 HUS, Finland.
| |
Collapse
|
10
|
Tu Y, Li Y, Fan X, Gui Z, Dai J, Fang Q, Qiu T, Bai J, Liu Y. Combined impact of Hepatitis B virus and gestational diabetes mellitus on ultrasound-measured fetal growth and adverse perinatal outcomes: A seven-year retrospective study. Diabetes Res Clin Pract 2024; 207:111092. [PMID: 38219600 DOI: 10.1016/j.diabres.2024.111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
AIMS To investigate the impact of pregnancy with combined hepatitis B virus (HBV) infection and Gestational diabetes mellitus (GDM) on fetal growth and adverse perinatal outcomes. METHODS All the pregnant women with HBV infection and/or GDM who delivered at Women's Hospital, Zhejiang University between January 2015, and September 2022 were included. A total of 1633 pregnant women were recruited in the final analysis, including 409 women with HBV infection and GDM, 396 with HBV infection only, 430 with GDM only, and 398 without HBV infection and GDM. Linear and logistic regression models were used to study the impact of pregnancy with combined HBV infection and GDM on fetal growth and adverse perinatal outcomes. RESULTS Pregnancy with combined HBV infection and GDM was associated with increased Z-scores on primary fetal ultrasound parameters and significantly increased the risk of fetal femur length overgrowth (OR: 2.88, 95 % CI: 1.13 ∼ 7.35), placental abruption (OR: 3.64, 95 % CI: 1.18 ∼ 11.22), and macrosomia (OR: 4.19, 95 % CI: 1.66 ∼ 10.56) compared to pregnancy without HBV infection and GDM. CONCLUSIONS Both maternal HBV infection and GDM are independently associated with adverse perinatal outcomes. Their combination further increases the risk of adverse perinatal outcomes.
Collapse
Affiliation(s)
- Yiming Tu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| | - Yanting Li
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| | - Xiaoxiao Fan
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| | - Zaidi Gui
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China; Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Jiamiao Dai
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| | - Qingbo Fang
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| | - Tianlai Qiu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA 30322, USA.
| | - Yanqun Liu
- Center for Women's and Children's Health, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| |
Collapse
|
11
|
Nair S, Ormazabal V, Carrion F, Handberg A, McIntyre H, Salomon C. Extracellular vesicle-mediated targeting strategies for long-term health benefits in gestational diabetes. Clin Sci (Lond) 2023; 137:1311-1332. [PMID: 37650554 PMCID: PMC10472199 DOI: 10.1042/cs20220150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
Extracellular vesicles (EVs) are critical mediators of cell communication, playing important roles in regulating molecular cross-talk between different metabolic tissues and influencing insulin sensitivity in both healthy and gestational diabetes mellitus (GDM) pregnancies. The ability of EVs to transfer molecular cargo between cells imbues them with potential as therapeutic agents. During pregnancy, the placenta assumes a vital role in metabolic regulation, with multiple mechanisms of placenta-mediated EV cross-talk serving as central components in GDM pathophysiology. This review focuses on the role of the placenta in the pathophysiology of GDM and explores the possibilities and prospects of targeting the placenta to address insulin resistance and placental dysfunction in GDM. Additionally, we propose the use of EVs as a novel method for targeted therapeutics in treating the dysfunctional placenta. The primary aim of this review is to comprehend the current status of EV targeting approaches and assess the potential application of these strategies in placental therapeutics, thereby delivering molecular cargo and improving maternal and fetal outcomes in GDM. We propose that EVs have the potential to revolutionize GDM management, offering hope for enhanced maternal-fetal health outcomes and more effective treatments.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Translational Extracellular Vesicle in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Australia
| | - Valeska Ormazabal
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile
| | - Flavio Carrion
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - H David McIntyre
- Mater Research, Faculty of Medicine, University of Queensland, Mater Health, South Brisbane, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicle in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Australia
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| |
Collapse
|
12
|
Perić M, Horvatiček M, Tandl V, Bečeheli I, Majali-Martinez A, Desoye G, Štefulj J. Glucose, Insulin and Oxygen Modulate Expression of Serotonin-Regulating Genes in Human First-Trimester Trophoblast Cell Line ACH-3P. Biomedicines 2023; 11:1619. [PMID: 37371714 DOI: 10.3390/biomedicines11061619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Serotonin signaling plays an important role in regulating development and functions of the placenta. We hypothesized that metabolic disturbances associated with maternal obesity and/or gestational diabetes mellitus (GDM) affect placental serotonin homeostasis. Therefore, we examined the effects of high glucose (25 mM) and insulin (10 nM)-two hallmarks of maternal obesity and GDM-on mRNA expression of key regulators of serotonin homeostasis, including serotonin transporter (SERT), tryptophan hydroxylase 1 (TPH1), and monoamine oxidase A (MAOA), in the first-trimester trophoblast cell line ACH-3P, focusing on oxygen levels characteristic of early human placental development. Glucose downregulated expression of SERT and MAOA independently of oxygen level and upregulated expression of TPH1 at 6.5% oxygen but not at 2.5% oxygen. Compared to 6.5% oxygen, 2.5% oxygen upregulated SERT and downregulated TPH1 expression, with no effect on MAOA expression. Insulin upregulated SERT only at 2.5% oxygen but had no effect on TPH1 and MAOA expression. These results suggest that maternal metabolic alterations in early pregnancy may be a driving force for changes in placental serotonin homeostasis.
Collapse
Affiliation(s)
- Maja Perić
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Marina Horvatiček
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Veronika Tandl
- Department of Obstetrics and Gynecology, Medical University of Graz, A-8036 Graz, Austria
| | - Ivona Bečeheli
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Alejandro Majali-Martinez
- Department of Obstetrics and Gynecology, Medical University of Graz, A-8036 Graz, Austria
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, A-8036 Graz, Austria
| | - Jasminka Štefulj
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| |
Collapse
|
13
|
van Poppel MNM, Damm P, Mathiesen ER, Ringholm L, Zhang C, Desoye G. Is the Biphasic Effect of Diabetes and Obesity on Fetal Growth a Risk Factor for Childhood Obesity? Diabetes Care 2023; 46:1124-1131. [PMID: 37220261 DOI: 10.2337/dc22-2409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/03/2023] [Indexed: 05/25/2023]
Abstract
In pregnancies of women with obesity or diabetes, neonates are often overgrown. Thus, the pregnancy period in these women offers a window of opportunity to reduce childhood obesity by preventing neonatal overgrowth. However, the focus has been almost exclusively on growth in late pregnancy. This perspective article addresses possible growth deviations earlier in pregnancy and their potential contribution to neonatal overgrowth. This narrative review focuses on six large-scale, longitudinal studies that included ∼14,400 pregnant women with at least three measurements of fetal growth. A biphasic pattern in growth deviation, including growth reduction in early pregnancy followed by overgrowth in late pregnancy, was found in fetuses of women with obesity, gestational diabetes mellitus (GDM), or type 1 diabetes compared with lean women and those with normal glucose tolerance. Fetuses of women with these conditions have reduced abdominal circumference (AC) and head circumference (HC) in early pregnancy (observed between 14 and 16 gestational weeks), while later in pregnancy they present the overgrown phenotype with larger AC and HC (from approximately 30 gestational weeks onwards). Fetuses with early-pregnancy growth reduction who end up overgrown presumably have undergone in utero catch-up growth. Similar to postnatal catch-up growth, this may confer a higher risk of obesity in later life. Potential long-term health consequences of early fetal growth reduction followed by in utero catch-up growth need to be explored.
Collapse
Affiliation(s)
| | - Peter Damm
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark
- Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth R Mathiesen
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology and Metabolism, Rigshospitalet, Copenhagen, Denmark
| | - Lene Ringholm
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark
- Department of Endocrinology and Metabolism, Rigshospitalet, Copenhagen, Denmark
| | - Cuilin Zhang
- Global Center for Asian Women's Health and Asia Center for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gernot Desoye
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark
- Department of Obstetrics and Gynaecology, Medical University Graz, Graz, Austria
| |
Collapse
|
14
|
Automatic placental and fetal volume estimation by a convolutional neural network. Placenta 2023; 134:23-29. [PMID: 36863128 DOI: 10.1016/j.placenta.2023.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
INTRODUCTION We aimed to develop an artificial intelligence (AI) deep learning algorithm to efficiently estimate placental and fetal volumes from magnetic resonance (MR) scans. METHODS Manually annotated images from an MRI sequence was used as input to the neural network DenseVNet. We included data from 193 normal pregnancies at gestational week 27 and 37. The data were split into 163 scans for training, 10 scans for validation and 20 scans for testing. The neural network segmentations were compared to the manual annotation (ground truth) using the Dice Score Coefficient (DSC). RESULTS The mean ground truth placental volume at gestational week 27 and 37 was 571 cm3 (Standard Deviation (SD) 293 cm3) and 853 cm3 (SD 186 cm3), respectively. Mean fetal volume was 979 cm3 (SD 117 cm3) and 2715 cm3 (SD 360 cm3). The best fitting neural network model was attained at 22,000 training iterations with mean DSC 0.925 (SD 0.041). The neural network estimated mean placental volumes at gestational week 27-870 cm3 (SD 202 cm3) (DSC 0.887 (SD 0.034), and to 950 cm3 (SD 316 cm3) at gestational week 37 (DSC 0.896 (SD 0.030)). Mean fetal volumes were 1292 cm3 (SD 191 cm3) and 2712 cm3 (SD 540 cm3), with mean DSC of 0.952 (SD 0.008) and 0.970 (SD 0.040). The time spent for volume estimation was reduced from 60 to 90 min by manual annotation, to less than 10 s by the neural network. CONCLUSION The correctness of neural network volume estimation is comparable to human performance; the efficiency is substantially improved.
Collapse
|
15
|
Klemetti MM, Alahari S, Post M, Caniggia I. Distinct Changes in Placental Ceramide Metabolism Characterize Type 1 and 2 Diabetic Pregnancies with Fetal Macrosomia or Preeclampsia. Biomedicines 2023; 11:932. [PMID: 36979912 PMCID: PMC10046505 DOI: 10.3390/biomedicines11030932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Disturbances of lipid metabolism are typical in diabetes. Our objective was to characterize and compare placental sphingolipid metabolism in type 1 (T1D) and 2 (T2D) diabetic pregnancies and in non-diabetic controls. Placental samples from T1D, T2D, and control pregnancies were processed for sphingolipid analysis using tandem mass spectrometry. Western blotting, enzyme activity, and immunofluorescence analyses were used to study sphingolipid regulatory enzymes. Placental ceramide levels were lower in T1D and T2D compared to controls, which was associated with an upregulation of the ceramide degrading enzyme acid ceramidase (ASAH1). Increased placental ceramide content was found in T1D complicated by preeclampsia. Similarly, elevated ceramides were observed in T1D and T2D pregnancies with poor glycemic control. The protein levels and activity of sphingosine kinases (SPHK) that produce sphingoid-1-phosphates (S1P) were highest in T2D. Furthermore, SPHK levels were upregulated in T1D and T2D pregnancies with fetal macrosomia. In vitro experiments using trophoblastic JEG3 cells demonstrated increased SPHK expression and activity following glucose and insulin treatments. Specific changes in the placental sphingolipidome characterize T1D and T2D placentae depending on the type of diabetes and feto-maternal complications. Increased exposure to insulin and glucose is a plausible contributor to the upregulation of the SPHK-S1P-axis in diabetic placentae.
Collapse
Affiliation(s)
- Miira M. Klemetti
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland
| | - Sruthi Alahari
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
| | - Martin Post
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Isabella Caniggia
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5T 3H7, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Department of Obstetrics & Gynecology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
16
|
Delker E, Ramos GA, Bandoli G, LaCoursiere DY, Ferran K, Gallo LC, Oren E, Gahagan S, Allison M. Associations Between Preconception Glycemia and Preterm Birth: The Potential Role of Health Care Access and Utilization. J Womens Health (Larchmt) 2023; 32:274-282. [PMID: 36796052 PMCID: PMC9993162 DOI: 10.1089/jwh.2022.0256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Background: Preconception diabetes is strongly associated with adverse birth outcomes. Less is known about the effects of elevated glycemia at levels below clinical cutoffs for diabetes. In this study, we estimated associations between preconception diabetes, prediabetes, and hemoglobin A1c (HbA1c) on the risk of preterm birth, and evaluated whether associations were modified by access to or utilization of health care services. Materials and Methods: We used data from Add Health, a US prospective cohort study with five study waves to date. At Wave IV (ages 24-32), glucose and HbA1c were measured. At Wave V (ages 32-42), women with a live birth reported whether the baby was born preterm. The analytic sample size was 1989. Results: The prevalence of preterm birth was 13%. Before pregnancy, 6.9% of women had diabetes, 23.7% had prediabetes, and 69.4% were normoglycemic. Compared to the normoglycemic group, women with diabetes had 2.1 (confidence interval [95% CI]: 1.5-2.9) times the risk of preterm birth, while women with prediabetes had 1.3 (95% CI: 1.0, 1.7) times the risk of preterm birth. There was a nonlinear relationship between HbA1c and preterm birth such that risk of preterm birth emerged after HbA1c = 5.7%, a standard cutoff for prediabetes. The excess risks of preterm birth associated with elevated HbA1c were four to five times larger among women who reported unstable health care coverage and among women who used the emergency room as usual source of care. Conclusion: Our findings replicate prior research showing strong associations between preconception diabetes and preterm birth, adding that prediabetes is also associated with higher risk. Policies and interventions to enhance access and utilization of health care among women before pregnancy should be examined.
Collapse
Affiliation(s)
- Erin Delker
- Department of Public Health, San Diego State University, Joint Doctoral Program in Public Health, San Diego, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Gladys A. Ramos
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, California, USA
| | - Gretchen Bandoli
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - D. Yvette LaCoursiere
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, California, USA
| | - Karen Ferran
- School of Public Health, San Diego State University, San Diego, California, USA
| | - Linda C. Gallo
- Department of Psychology, San Diego State University, San Diego, California, USA
| | - Eyal Oren
- Division of Preventive Medicine, University of California San Diego, La Jolla, California, USA
| | - Sheila Gahagan
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Matthew Allison
- Division of Preventive Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
17
|
Bommarito PA, Cantonwine DE, Stevens DR, Welch BM, Davalos AD, Zhao S, McElrath TF, Ferguson KK. Fetal growth trajectories of babies born large-for-gestational age in the LIFECODES Fetal Growth Study. Am J Obstet Gynecol 2023; 228:340.e1-340.e20. [PMID: 36241081 PMCID: PMC9974610 DOI: 10.1016/j.ajog.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Babies born large-for-gestational age have an increased risk of adverse health outcomes, including birth injuries, childhood obesity, and cardiometabolic disorders. However, little work has been done to characterize patterns of fetal growth among large-for-gestational age births, which may further elucidate high- and low-risk subgroups. OBJECTIVE This study aimed to identify subgroups of large-for-gestational age births based on trajectories of fetal growth derived from prenatal ultrasound measurements and explore differences in sociodemographic, pregnancy, and birth outcome characteristics across subgroups. STUDY DESIGN This study identified and described trajectories of fetal growth among large-for-gestational age births (n=235) in the LIFECODES Fetal Growth Study. Ultrasound measurements of fetal growth in middle to late pregnancy were abstracted from health records. Group-based multi-trajectory modeling was applied to measurements of head circumference, abdominal circumference, and femur length z-scores to identify multivariate trajectories of fetal growth. Moreover, sociodemographic variables, pregnancy characteristics, and birth outcomes based on trajectory membership were summarized. RESULTS This study identified 4 multivariate trajectories of fetal growth among large-for-gestational age births: catch-up growth (n=28), proportional abdominal circumference-to-femur length growth (n=67), disproportional abdominal circumference-to-femur length growth (n=96), and consistently large (n=44). Fetuses in the "catch-up growth" group exhibited small relative sizes in midpregnancy (ie, below average head circumference, abdominal circumference, and femur length z-scores) and large relative sizes in late pregnancy. Growth among these births was driven by increases in relative abdominal circumference and head circumference sizes. Participants who delivered births assigned to this group were less likely to have normal glucose control (40% vs 65%-75%) and more likely to have pregestational diabetes mellitus (36% vs 10%-17%) than other large-for-gestational age subgroups. In addition, the babies in this trajectory group were more likely to have macrosomia (86% vs 67%-73%) and to be admitted to the neonatal intensive care unit (32% vs 14%-21%) than other large-for-gestational age subgroups. In contrast, babies in the "consistently large" group had the largest relative size for all growth parameters throughout gestation and experienced a lower risk of adverse birth outcomes than other large-for-gestational age subgroups. CONCLUSION This study characterized several trajectories of fetal growth among large-for-gestational age births, which were related to different pregnancy characteristics and the distribution of adverse birth outcomes. Although the number of individuals within some trajectories was small, a subgroup that exhibited a catch-up growth phenotype during gestation was identified, which may be uniquely associated with exposure to pregestational diabetes mellitus and a higher risk of admission to the neonatal intensive care unit. These results have highlighted that the risk of adverse outcomes may not be evenly distributed across all large-for-gestational age births.
Collapse
Affiliation(s)
- Paige A Bommarito
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - David E Cantonwine
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Danielle R Stevens
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Barrett M Welch
- School of Public Health, University of Nevada, Reno, Reno, NV
| | - Angel D Davalos
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Shanshan Zhao
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Thomas F McElrath
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kelly K Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC.
| |
Collapse
|
18
|
Desoye G, Ringholm L, Damm P, Mathiesen ER, van Poppel MNM. Secular trend for increasing birthweight in offspring of pregnant women with type 1 diabetes: is improved placentation the reason? Diabetologia 2023; 66:33-43. [PMID: 36287249 PMCID: PMC9607824 DOI: 10.1007/s00125-022-05820-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
Despite enormous progress in managing blood glucose levels, pregnancy in women with type 1 diabetes still carries risks for the growing fetus. While, previously, fetal undergrowth was not uncommon in these women, with improved maternal glycaemic control we now see an increased prevalence of fetal overgrowth. Besides short-term implications, offspring of women with type 1 diabetes are more likely to become obese and to develop diabetes and features of the metabolic syndrome. Here, we argue that the increase in birthweight is paradoxically related to improved glycaemic control in the pre- and periconceptional periods. Good glycaemic control reduces the prevalence of microangiopathy and improves placentation in early pregnancy, which may lead to unimpeded fetal nutrition. Even mild maternal hyperglycaemia may then later result in fetal overnutrition. This notion is supported by circumstantial evidence that lower HbA1c levels as well as increases in markers of placental size and function in early pregnancy are associated with large-for-gestational age neonates. We also emphasise that neonates with normal birthweight can have excessive fat deposition. This may occur when poor placentation leads to initial fetal undergrowth, followed by fetal overnutrition due to maternal hyperglycaemia. Thus, the complex interaction of glucose levels during different periods of pregnancy ultimately determines the risk of adiposity, which can occur in fetuses with both normal and elevated birthweight. Prevention of fetal adiposity calls for revised goal setting to enable pregnant women to maintain blood glucose levels that are closer to normal. This could be supported by continuous glucose monitoring throughout pregnancy and appropriate maternal gestational weight gain. Future research should consider the measurement of adiposity in neonates.
Collapse
Affiliation(s)
- Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.
| | - Lene Ringholm
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark
- Department of Endocrinology and Metabolism, Rigshospitalet, Copenhagen, Denmark
| | - Peter Damm
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark
- Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elisabeth R Mathiesen
- Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark
- Department of Endocrinology and Metabolism, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
19
|
Rajagopalan V, Schmithorst V, El-Ali A, Reynolds W, Lee V, Wallace J, Weinberg J, Johnson J, Votava-Smith J, Adibi J, Panigrahy A. Associations between Maternal Risk Factors and Intrinsic Placental and Fetal Brain Functional Properties in Congenital Heart Disease. Int J Mol Sci 2022; 23:15178. [PMID: 36499505 PMCID: PMC9738149 DOI: 10.3390/ijms232315178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
The relationship between maternal risk factors (MRFs) (particularly pre-gravid obesity, diabetes, and hypertension) and congenital heart disease (CHD) to placental and fetal brain outcomes is poorly understood. Here, we tested the hypothesis that MRF and CHD would be associated with reduced intrinsic placental and fetal brain function using a novel non-invasive technique. Pregnant participants with and without MRF and fetal CHD were prospectively recruited and underwent feto-placental MRI. Using intrinsic properties of blood oxygen level dependent imaging (BOLD) we quantified spatiotemporal variance of placenta and fetal brain. MRFs and CHD were correlated with functional characteristics of the placenta and fetal brain. Co-morbid MRF (hypertension, diabetes, and obesity) reduced spatiotemporal functional variance of placenta and fetal brain (p < 0.05). CHD predicted reduced fetal brain temporal variance compared to non-CHD (p < 0.05). The presence of both MRF and CHD was associated with reduced intrinsic pBOLD temporal variance (p = 0.047). There were no significant interactions of MRFs and CHD status on either temporal or spatial variance of intrinsic brain BOLD. MRF and CHD reduced functional characteristic of placenta and brain in fetuses. MRF modification and management during pregnancy may have the potential to not only provide additional risk stratification but may also improve neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Vidya Rajagopalan
- Department of Radiology, Children’s Hospital Los Angeles, 4650 Sunset Blvd., MS #32, Los Angeles, CA 90027, USA
- Keck School of Medicine of University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
| | - Vanessa Schmithorst
- Pediatric Imaging Research Center, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
- Department of Radiology, University of Pittsburgh School of Medicine, PUH Suite E204, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Alexander El-Ali
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
| | - William Reynolds
- Department of Biomedical Informatics, University of Pittsburgh, 5607 Baum Blvd., Pittsburgh, PA 15206, USA
| | - Vincent Lee
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
| | - Julia Wallace
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
| | - Jacqueline Weinberg
- Department of Cardiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 3, Pittsburgh, PA 15224, USA
| | - Jennifer Johnson
- Department of Cardiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 3, Pittsburgh, PA 15224, USA
| | - Jodie Votava-Smith
- Keck School of Medicine of University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
- Department of Pediatrics, Childrens Hospital Los Angeles, 4650 Sunset Blvd., MS #71, Los Angeles, CA 90027, USA
| | - Jennifer Adibi
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, 300 Halket Street, Pittsburgh, PA 15213, USA
| | - Ashok Panigrahy
- Pediatric Imaging Research Center, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
- Department of Radiology, University of Pittsburgh School of Medicine, PUH Suite E204, 200 Lothrop Street, Pittsburgh, PA 15213, USA
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh, 4401 Penn Ave Floor 2, Pittsburgh, PA 15224, USA
| |
Collapse
|
20
|
Jääskeläinen T, Klemetti MM. Genetic Risk Factors and Gene-Lifestyle Interactions in Gestational Diabetes. Nutrients 2022; 14:nu14224799. [PMID: 36432486 PMCID: PMC9694797 DOI: 10.3390/nu14224799] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Paralleling the increasing trends of maternal obesity, gestational diabetes (GDM) has become a global health challenge with significant public health repercussions. In addition to short-term adverse outcomes, such as hypertensive pregnancy disorders and fetal macrosomia, in the long term, GDM results in excess cardiometabolic morbidity in both the mother and child. Recent data suggest that women with GDM are characterized by notable phenotypic and genotypic heterogeneity and that frequencies of adverse obstetric and perinatal outcomes are different between physiologic GDM subtypes. However, as of yet, GDM treatment protocols do not differentiate between these subtypes. Mapping the genetic architecture of GDM, as well as accurate phenotypic and genotypic definitions of GDM, could potentially help in the individualization of GDM treatment and assessment of long-term prognoses. In this narrative review, we outline recent studies exploring genetic risk factors of GDM and later type 2 diabetes (T2D) in women with prior GDM. Further, we discuss the current evidence on gene-lifestyle interactions in the development of these diseases. In addition, we point out specific research gaps that still need to be addressed to better understand the complex genetic and metabolic crosstalk within the mother-placenta-fetus triad that contributes to hyperglycemia in pregnancy.
Collapse
Affiliation(s)
- Tiina Jääskeläinen
- Department of Food and Nutrition, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
- Department of Medical and Clinical Genetics, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
- Correspondence:
| | - Miira M. Klemetti
- Department of Medical and Clinical Genetics, University of Helsinki, P.O. Box 63, 00014 Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, P.O. Box 140, 00029 Helsinki, Finland
| |
Collapse
|
21
|
Hufnagel A, Grant ID, Aiken CEM. Glucose and oxygen in the early intrauterine environment and their role in developmental abnormalities. Semin Cell Dev Biol 2022; 131:25-34. [PMID: 35410716 DOI: 10.1016/j.semcdb.2022.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022]
Abstract
The early life environment can have profound impacts on the developing conceptus in terms of both growth and morphogenesis. These impacts can manifest in a variety of ways, including congenital fetal anomalies, placental dysfunction with subsequent effects on fetal growth, and adverse perinatal outcomes, or via effects on long-term health outcomes that may not be detected until later childhood or adulthood. Two key examples of environmental influences on early development are explored: maternal hyperglycaemia and gestational hypoxia. These are increasingly common pregnancy exposures worldwide, with potentially profound impacts on population health. We explore what is known regarding the mechanisms by which these environmental exposures can impact early intrauterine development and thus result in adverse outcomes in the immediate, short, and long term.
Collapse
Affiliation(s)
- Antonia Hufnagel
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Imogen D Grant
- Department of Obstetrics and Gynaecology, University of Cambridge, Box 223, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge CB2 0SW, UK
| | - Catherine E M Aiken
- Department of Obstetrics and Gynaecology, University of Cambridge, Box 223, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge CB2 0SW, UK; University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
22
|
Kristiansen O, Roland MC, Zucknick M, Reine TM, Kolset SO, Henriksen T, Lekva T, Michelsen T. Maternal body mass index and placental weight: a role for fetal insulin, maternal insulin and leptin. J Endocrinol Invest 2022; 45:2105-2121. [PMID: 35781790 PMCID: PMC9525437 DOI: 10.1007/s40618-022-01842-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/11/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Placental weight (PW) has been found to mediate the main effect of maternal BMI on fetal size. Still, the BMI-PW association is poorly understood. Therefore, we aimed to explore potential explanatory variables, including gestational weight gain (GWG), early- and late-pregnancy circulating levels of maternal glucose, insulin, leptin, adiponectin, triglycerides, LDL-C, and HDL-C, and fetal insulin. METHODS We included two studies of pregnant women from Oslo University Hospital, Norway: the prospective STORK (n = 263) and the cross-sectional 4-vessel method study (4-vessel; n = 165). We used multiple linear regression for data analyses. A non-linear BMI-PW association was observed, which leveled off from BMI25. Therefore, BMI <25 and ≥25 were analyzed separately (n = 170/122 and 93/43 for STORK/4-vessel). Confounding variables included maternal age, parity, and gestational age. RESULTS PW increased significantly per kg m-2 only among BMI <25 (univariate model's std.β[p] = 0.233 [0.002] vs. 0.074[0.48]/0.296[0.001] vs. -0.030[0.85] for BMI <25 vs. ≥25 in STORK/4-vessel). Maternal early- but not late-pregnancy insulin and term fetal insulin were associated with PW. The estimated effect of early pregnancy insulin was similar between the BMI groups but statistically significant only among BMI <25 (std.β[p] = 0.182[0.016] vs. 0.203[0.07] for BMI <25 vs. ≥25). Late pregnancy leptin was inversely associated with PW with a 1.3/1.7-fold greater effect among BMI ≥25 than BMI <25 in the STORK/4-vessel. CONCLUSIONS The BMI-PW association was non-linear: an association was observed for BMI <25 but not for BMI ≥25. Leptin may be involved in the non-linear association through a placental-adipose tissue interplay. Maternal early pregnancy insulin and fetal insulin at term were associated with PW.
Collapse
Affiliation(s)
- O Kristiansen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Rikshospitalet, Oslo University Hospital, 0424, Oslo, Norway.
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway.
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317, Oslo, Norway.
| | - M C Roland
- Department of Obstetrics, Division of Obstetrics and Gynecology, Rikshospitalet, Oslo University Hospital, 0424, Oslo, Norway
- Norwegian Research Centre for Women's Health, Rikshospitalet, Oslo University Hospital, 0424, Oslo, Norway
| | - M Zucknick
- Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| | - T M Reine
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317, Oslo, Norway
- Institute of Cancer Genetics and Informatics, Radiumhospitalet, Oslo University Hospital, 0424, Oslo, Norway
| | - S O Kolset
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317, Oslo, Norway
| | - T Henriksen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Rikshospitalet, Oslo University Hospital, 0424, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
| | - T Lekva
- Research Institute of Internal Medicine, Rikshospitalet, Oslo University Hospital, 0424, Oslo, Norway
| | - T Michelsen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Rikshospitalet, Oslo University Hospital, 0424, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318, Oslo, Norway
| |
Collapse
|
23
|
Desoye G, Carter AM. Fetoplacental oxygen homeostasis in pregnancies with maternal diabetes mellitus and obesity. Nat Rev Endocrinol 2022; 18:593-607. [PMID: 35902735 DOI: 10.1038/s41574-022-00717-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
Despite improvements in clinical management, pregnancies complicated by pre-existing diabetes mellitus, gestational diabetes mellitus or obesity carry substantial risks for parent and offspring. Some of the endocrine and metabolic changes in parent and fetus in diabetes mellitus and obesity lead to fetal oxygen deficit, mostly due to insulin-induced accelerated fetal metabolism. The human fetus deals with reduced oxygenation through a wide range of adaptive responses that act at various levels in the placenta as well as the fetus. These responses ensure adequate oxygen delivery to the fetus, increase the oxygen transport capacity of fetal blood and redistribute oxygen-rich blood to vital organs such as the brain and heart. The liver has a central role in adapting to reduced oxygenation by increasing its oxygen extraction and stimulating erythropoietin synthesis to increase haematocrit. The type of adaptive response depends on the onset and duration of hypoxia and the severity of the metabolic disturbance. In pregnancies characterized by diabetes mellitus or obesity, these adaptive systems come under additional strain owing to the increased maternal supply of glucose and resultant fetal hyperinsulinaemia, both of which stimulate oxidative metabolism. In the rare situation that the adaptive responses are overwhelmed, stillbirth can ensue.
Collapse
Affiliation(s)
- Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria.
- Center for Pregnant Women with Diabetes, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Anthony M Carter
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
24
|
Hjort L, Novakovic B, Cvitic S, Saffery R, Damm P, Desoye G. Placental DNA Methylation in pregnancies complicated by maternal diabetes and/or obesity: State of the Art and research gaps. Epigenetics 2022; 17:2188-2208. [PMID: 35950598 DOI: 10.1080/15592294.2022.2111755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
SUMMARYMaternal diabetes and/or obesity in pregnancy are undoubtedly associated with later disease-risk in the offspring. The placenta, interposed between the mother and the fetus, is a potential mediator of this risk through epigenetic mechanisms, including DNA methylation. In recent years, multiple studies have identified differentially methylated CpG sites in the placental tissue DNA in pregnancies complicated by diabetes and obesity. We reviewed all published original research relevant to this topic and analyzed our findings with the focus of identifying overlaps, contradictions and gaps. Most studies focused on the association of gestational diabetes and/or hyperglycemia in pregnancy and DNA methylation in placental tissue at term. We identified overlaps in results related to specific candidate genes, but also observed a large research gap of pregnancies affected by type 1 diabetes. Other unanswered questions relate to analysis of specific placental cell types and the timing of DNA methylation change in response to diabetes and obesity during pregnancy. Maternal metabolism is altered already in the first trimester involving structural and functional changes in the placenta, but studies into its effects on placental DNA methylation during this period are lacking and urgently needed. Fetal sex is also an important determinant of pregnancy outcome, but only few studies have taken this into account. Collectively, we provide a reference work for researchers working in this large and evolving field. Based on the results of the literature review, we formulate suggestions for future focus of placental DNA methylation studies in pregnancies complicated by diabetes and obesity.
Collapse
Affiliation(s)
- Line Hjort
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Environmental Epigenetics Group, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Boris Novakovic
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Silvija Cvitic
- Department of Pediatrics and Adolescent Medicine, Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Medical University of Graz, Austria
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.,Dept. of Pediatrics, Melbourne University, Melbourne, VIC, Australia
| | - Peter Damm
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gernot Desoye
- Dept. of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, Copenhagen, Denmark.,Dept. of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
25
|
Hufnagel A, Dearden L, Fernandez-Twinn DS, Ozanne SE. Programming of cardiometabolic health: the role of maternal and fetal hyperinsulinaemia. J Endocrinol 2022; 253:R47-R63. [PMID: 35258482 PMCID: PMC9066586 DOI: 10.1530/joe-21-0332] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022]
Abstract
Obesity and gestational diabetes during pregnancy have multiple short- and long-term consequences for both mother and child. One common feature of pregnancies complicated by maternal obesity and gestational diabetes is maternal hyperinsulinaemia, which has effects on the mother and her adaptation to pregnancy. Even though insulin does not cross the placenta insulin can act on the placenta as well affecting placental growth, angiogenesis and lipid metabolism. Obese and gestational diabetic pregnancies are often characterised by maternal hyperglycaemia resulting in exposure of the fetus to high levels of glucose, which freely crosses the placenta. This leads to stimulation of fetal ß-cells and insulin secretion in the fetus. Fetal hyperglycaemia/hyperinsulinaemia has been shown to cause multiple complications in fetal development, such as altered growth trajectories, impaired neuronal and cardiac development and early exhaustion of the pancreas. These changes could increase the susceptibility of the offspring to develop cardiometabolic diseases later in life. In this review, we aim to summarize and review the mechanisms by which maternal and fetal hyperinsulinaemia impact on (i) maternal health during pregnancy; (ii) placental and fetal development; (iii) offspring energy homeostasis and long-term cardiometabolic health; (iv) how interventions can alleviate these effects.
Collapse
Affiliation(s)
- Antonia Hufnagel
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Laura Dearden
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| |
Collapse
|
26
|
Acosta-Manzano P, Leopold-Posch B, Simmons D, Devlieger R, Galjaard S, Corcoy R, Adelantado JM, Dunne F, Harreiter J, Kautzky-Willer A, Damm P, Mathiesen ER, Jensen DM, Andersen LL, Tanvig M, Lapolla A, Dalfra MG, Bertolotto A, Wender-Ozegowska E, Zawiejska A, Hill DJ, Snoek FJ, Jelsma J, Desoye G, van Poppel M. The unexplored role of sedentary time and physical activity in glucose and lipid metabolism-related placental mRNAs in pregnant women who are obese: the DALI lifestyle randomised controlled trial. BJOG 2022; 129:708-721. [PMID: 34559946 DOI: 10.1111/1471-0528.16945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVE We aimed to explore: (i) the association of sedentary time (ST) and physical activity (PA) during pregnancy with the placental expression of genes related to glucose and lipid metabolism in pregnant women who are obese; (ii) maternal metabolic factors mediating changes in these placental transcripts; and (iii) cord blood markers related to the mRNAs mediating neonatal adiposity. DESIGN Multicentre randomised controlled trial. SETTING Hospitals in nine European countries. POPULATION A cohort of 112 pregnant women with placental tissue. METHODS Both ST and moderate-to-vigorous PA (MVPA) levels were measured objectively using accelerometry at three time periods during pregnancy. MAIN OUTCOME MEASURES Placental mRNAs (FATP2, FATP3, FABP4, GLUT1 and PPAR-γ) were measured with NanoString technology. Maternal and fetal metabolic markers and neonatal adiposity were assessed. RESULTS Longer periods of ST, especially in early to middle pregnancy, was associated with lower placental FATP2 and FATP3 expression (P < 0.05), whereas MVPA at baseline was inversely associated with GLUT1 mRNA (P = 0.02). Although placental FATP2 and FATP3 expression were regulated by the insulin-glucose axis (P < 0.05), no maternal metabolic marker mediated the association of ST/MVPA with placental mRNAs (P > 0.05). Additionally, placental FATP2 expression was inversely associated with cord blood triglycerides and free fatty acids (FFAs; P < 0.01). No cord blood marker mediated neonatal adiposity except for cord blood leptin, which mediated the effects of PPAR-γ on neonatal sum of skinfolds (P < 0.05). CONCLUSIONS In early to middle pregnancy, ST is associated with the expression of placental genes linked to lipid transport. PA is hardly related to transporter mRNAs. Strategies aimed at reducing sedentary behaviour during pregnancy could modulate placental gene expression, which may help to prevent unfavourable fetal and maternal pregnancy outcomes. TWEETABLE ABSTRACT Reducing sedentary behaviour in pregnancy might modulate placental expression of genes related to lipid metabolism in women who are obese.
Collapse
Affiliation(s)
- P Acosta-Manzano
- PA-HELP 'Physical Activity for Health Promotion, CTS-1018' Research Group, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Department of Physical Education and Sports, Faculty of Sports Science, University of Granada, Granada, Spain
| | - B Leopold-Posch
- Department of Obstetrics and Gynaecology, Medical University Graz, Graz, Austria
| | - D Simmons
- Western Sydney University, Campbelltown, New South Wales, Australia
| | - R Devlieger
- Department of Development and Regeneration: Pregnancy, Fetus and Neonate, Gynaecology and Obstetrics, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | - S Galjaard
- Department of Development and Regeneration: Pregnancy, Fetus and Neonate, Gynaecology and Obstetrics, KU Leuven, University Hospitals Leuven, Leuven, Belgium
- Department of Obstetrics and Gynaecology, Division of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - R Corcoy
- CIBER Bioengineering, Biomaterials and Nanomedicine, Instituto de Salud Carlos III, Zaragoza, Spain
| | - J M Adelantado
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - F Dunne
- Galway Diabetes Research Centre (GDRC) and National University of Ireland, Galway, Ireland
| | - J Harreiter
- Gender Medicine Unit, Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - A Kautzky-Willer
- Gender Medicine Unit, Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - P Damm
- Departments of Endocrinology and Obstetrics, Rigshospitalet and Department of Clinical Medicine, Centre for Pregnant Women with Diabetes, University of Copenhagen, Copenhagen, Denmark
| | - E R Mathiesen
- Departments of Endocrinology and Obstetrics, Rigshospitalet and Department of Clinical Medicine, Centre for Pregnant Women with Diabetes, University of Copenhagen, Copenhagen, Denmark
| | - D M Jensen
- Steno Diabetes Centre Odense, Odense University Hospital, Odense, Denmark
- Department of Gynaecology and Obstetrics, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - L L Andersen
- Department of Gynaecology and Obstetrics, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - M Tanvig
- Department of Gynaecology and Obstetrics, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - A Lapolla
- Department of Medical and Surgical Sciences, Università degli Studi di Padova, Padua, Italy
| | - M G Dalfra
- Department of Medical and Surgical Sciences, Università degli Studi di Padova, Padua, Italy
| | - A Bertolotto
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - E Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, Poznan, Poland
| | - A Zawiejska
- Chair of Medical Education, Department of Medical Simulation, Poznan University of Medical Sciences, Poznan, Poland
| | - D J Hill
- Lawson Health Research Institute, London, Ontario, Canada
| | - F J Snoek
- Department of Medical Psychology, Amsterdam Public Health Research Institute, Amsterdam University Medical Centres, VU University, Amsterdam, the Netherlands
| | - Jgm Jelsma
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - G Desoye
- Department of Obstetrics and Gynaecology, Medical University Graz, Graz, Austria
| | - Mnm van Poppel
- Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| |
Collapse
|
27
|
Edwards C, Cavanagh E, Kumar S, Clifton VL, Borg DJ, Priddle J, Marie-Luise W, Drovandi C, Fontanarosa D. Relationship between placental elastography, maternal pre-pregnancy body mass index and gestational weight gain. Placenta 2022; 121:1-6. [DOI: 10.1016/j.placenta.2022.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/07/2022] [Accepted: 02/20/2022] [Indexed: 11/24/2022]
|
28
|
Gantenbein KV, Kanaka-Gantenbein C. Highlighting the trajectory from intrauterine growth restriction to future obesity. Front Endocrinol (Lausanne) 2022; 13:1041718. [PMID: 36440208 PMCID: PMC9691665 DOI: 10.3389/fendo.2022.1041718] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
During the last decades several lines of evidence reported the association of an adverse intrauterine environment, leading to intrauterine restriction, with future disease, such as obesity and metabolic syndrome, both leading to increased cardiovascular and cancer risk. The underlying explanation for this association has firstly been expressed by the Barker's hypothesis, the "thrifty phenotype hypothesis". According to this hypothesis, a fetus facing an adverse intrauterine environment adapts to this environment through a reprogramming of its endocrine-metabolic status, during the crucial window of developmental plasticity to save energy for survival, providing less energy and nutrients to the organs that are not essential for survival. This theory evolved to the concept of the developmental origin of health and disease (DOHaD). Thus, in the setting of an adverse, f. ex. protein restricted intrauterine environment, while the energy is mainly directed to the brain, the peripheral organs, f.ex. the muscles and the liver undergo an adaptation that is expressed through insulin resistance. The adaptation at the hepatic level predisposes to future dyslipidemia, the modifications at the vascular level to endothelial damage and future hypertension and, overall, through the insulin resistance to the development of metabolic syndrome. All these adaptations are suggested to take place through epigenetic modifications of the expression of genes without change of their amino-acid sequence. The epigenetic modifications leading to future obesity and cardiovascular risk are thought to induce appetite dysregulation, promoting food intake and adipogenesis, facilitating obesity development. The epigenetic modifications may even persist into the next generation even though the subsequent generation has not been exposed to an adverse intrauterine environment, a notion defined as the "transgenerational transfer of environmental information". As a consequence, if the increased public health burden and costs of non-communicable chronic diseases such as obesity, hypertension, metabolic syndrome and type 2 diabetes have to be minimized, special attention should be laid to the healthy lifestyle habits of women of reproductive age, including healthy diet and physical activity to be established long before any pregnancy takes place in order to provide the best conditions for both somatic and mental health of future generations.
Collapse
Affiliation(s)
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, Athens, Greece
- *Correspondence: Christina Kanaka-Gantenbein, ,
| |
Collapse
|
29
|
Elamin AA, Mohammed Ahmed MN, El Elhaj A, Ahmed Hussien TM, Abdelrahman Mohamed AA, Mohamed H, Idris SA. Vicissitudes in the Placental Cotyledon Number in a Singleton Pregnancy with Gestational Diabetes. Int J Appl Basic Med Res 2022; 12:24-29. [PMID: 35265477 PMCID: PMC8848564 DOI: 10.4103/ijabmr.ijabmr_230_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/29/2021] [Accepted: 12/15/2021] [Indexed: 11/06/2022] Open
Abstract
Background Placenta is a transient organ during pregnancy, connects the fetus to the uterine wall. Pregnancy is frequently complicated by gestational diabetes, which might cause morphological changes in the placenta (weight, diameter, and cotyledons number); consequently, it may affect both fetus and mother. Aim The aim of this study was to determine the difference in placental cotyledons number between pregnant with gestational diabetes versus without gestational diabetes, then correlate it with the weight and diameter between groups. Materials and Methods A comparative study (gestational diabetes Group A and nongestational diabetes Group B) included mothers with a singleton baby delivered at term (37-40 weeks) after acceptance of the informed consent. Women with pregestational diabetes and other chronic diseases and those with intrauterine fetal death were excluded. Postdelivery placentae were accurately prepared and examined in detail. The placental weight, diameter, and cotyledons number were recorded and analyzed by SPSS version 21. The correlation was measured between the two groups in terms of cotyledons count, placental diameter, and weight. Results The study included 385 participants (128 Group A and 257 Group B). Placental number of cotyledons, weight, and diameter in Group A were higher than in Group B, and the difference was significant (P = 0.000, P = 0.021, and P = 0.000, respectively). In Group A, there was a significant correlation between the placental weight, diameter, and number of its cotyledons (r = 0.23, P = 0.011). Cotyledon count was significantly affected by diabetic control (P = 0.021). Conclusions Gestational diabetes increases placental cotyledons number, weight, and diameter.
Collapse
Affiliation(s)
- Abdalla Ahmed Elamin
- Department of Anatomy, College of Medicine, University of Hai'l, Hail, Saudi Arabia
| | | | - Abubaker El Elhaj
- Department of Anatomy, College of Medicine, University of Hai'l, Hail, Saudi Arabia
| | | | | | - Hamza Mohamed
- Department of Obstetrics and Gynecology, College of Medicine, University of Hai'l, Hail, Saudi Arabia
| | - Saadeldin Ahmed Idris
- Department of Surgery, College of Medicine, University of Hai'l, Hail, Saudi Arabia
- Department of Surgery, Faculty of Medicine, Alzaiem Alazhari University, Khartoum North, Sudan
| |
Collapse
|
30
|
Maternal Dietary Quality and Dietary Inflammation Associations with Offspring Growth, Placental Development, and DNA Methylation. Nutrients 2021; 13:nu13093130. [PMID: 34579008 PMCID: PMC8468062 DOI: 10.3390/nu13093130] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
The ‘Developmental Origins of Health and Diseases’ hypothesis posits that prenatal maternal diet influences offspring growth and later life health outcomes. Dietary assessment has focused on selected nutrients. However, this approach does not consider the complex interactions between foods and nutrients. To provide a more comprehensive approach to public health, dietary indices have been developed to assess dietary quality, dietary inflammation and risk factors for non-communicable diseases. Thus far, their use in the context of placental development is limited and associations with offspring outcomes have been inconsistent. Although epidemiological studies have focused on the role of maternal diet on foetal programming, the underlying mechanisms are still poorly understood. Some evidence suggests these associations may be driven by placental and epigenetic changes. In this narrative review, we examine the current literature regarding relationships between key validated diet quality scores (Dietary Inflammatory Index [DII], Mediterranean diet [MD], Healthy Eating Index [HEI], Alternative Healthy Eating Index [AHEI], Dietary Approaches to Stop Hypertension [DASH], Glycaemic Index [GI] and Glycaemic Load [GL]) in pregnancy and birth and long-term offspring outcomes. We summarise findings, discuss potential underlying placental and epigenetic mechanisms, in particular DNA methylation, and highlight the need for further research and public health strategies that incorporate diet quality and epigenetics.
Collapse
|
31
|
In Utero Programming of Testicular Cancer. J Dev Biol 2021; 9:jdb9030035. [PMID: 34564084 PMCID: PMC8482261 DOI: 10.3390/jdb9030035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
It is well established that the intrauterine biological environment plays important roles in fetal development. In this review, we re-visit the hypothesis that testicular germ cell cancer (TGCC), especially in adolescents and young adults, has been programmed in utero. The origin for extreme in utero environments is mostly maternal driven and may be due to nutritional, physical and psychological stressful conditions that alter the optimal molecular and biophysical in utero environments. Moreover, precursors for TGCC may originate as early as during fertilization or implantation of the blastocyst. Further investigations of human developmental biology, both in vivo and in vitro, are needed in order to establish better understanding of in utero programming of future wellbeing or diseases.
Collapse
|
32
|
Lund A, Ebbing C, Rasmussen S, Qvigstad E, Kiserud T, Kessler J. Pre-gestational diabetes: Maternal body mass index and gestational weight gain are associated with augmented umbilical venous flow, fetal liver perfusion, and thus birthweight. PLoS One 2021; 16:e0256171. [PMID: 34398922 PMCID: PMC8367003 DOI: 10.1371/journal.pone.0256171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/30/2021] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES To assess how maternal body mass index and gestational weight gain are related to on fetal venous liver flow and birthweight in pregnancies with pre-gestational diabetes mellitus. METHODS In a longitudinal observational study, 49 women with pre-gestational diabetes mellitus were included for monthly assessments (gestational weeks 24-36). According to the Institute Of Medicine criteria, body mass index was categorized to underweight, normal, overweight, and obese, while gestational weight gain was classified as insufficient, appropriate or excessive. Fetal size, portal flow, umbilical venous flow and distribution to the fetal liver or ductus venosus were determined using ultrasound techniques. The impact of fetal venous liver perfusion on birthweight and how body mass index and gestational weight gain modified this effect, was compared with a reference population (n = 160). RESULTS The positive association between umbilical flow to liver and birthweight was more pronounced in pregnancies with pre-gestational diabetes mellitus than in the reference population. Overweight and excessive gestational weight gain were associated with higher birthweights in women with pre-gestational diabetes mellitus, but not in the reference population. Fetuses of overweight women with pre-gestational diabetes mellitus had higher umbilical (p = 0.02) and total venous liver flows (p = 0.02), and a lower portal flow fraction (p = 0.04) than in the reference population. In pre-gestational diabetes mellitus pregnancies with excessive gestational weight gain, the umbilical flow to liver was higher than in those with appropriate weight gain (p = 0.02). CONCLUSIONS The results support the hypothesis that umbilical flow to the fetal liver is a key determinant for fetal growth and birthweight modifiable by maternal factors. Maternal pre-gestational diabetes mellitus seems to augment this influence as shown with body mass index and gestational weight gain.
Collapse
Affiliation(s)
- Agnethe Lund
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Research Group for Pregnancy, Fetal Development and Birth, University of Bergen, Bergen, Norway
| | - Cathrine Ebbing
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Research Group for Pregnancy, Fetal Development and Birth, University of Bergen, Bergen, Norway
- * E-mail:
| | - Svein Rasmussen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Research Group for Pregnancy, Fetal Development and Birth, University of Bergen, Bergen, Norway
| | - Elisabeth Qvigstad
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torvid Kiserud
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Research Group for Pregnancy, Fetal Development and Birth, University of Bergen, Bergen, Norway
| | - Jörg Kessler
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Research Group for Pregnancy, Fetal Development and Birth, University of Bergen, Bergen, Norway
| |
Collapse
|
33
|
Nguyen T, Khaksari K, Khare SM, Park S, Anderson AA, Bieda J, Jung E, Hsu CD, Romero R, Gandjbakhche AH. Non-invasive transabdominal measurement of placental oxygenation: a step toward continuous monitoring. BIOMEDICAL OPTICS EXPRESS 2021; 12:4119-4130. [PMID: 34457403 PMCID: PMC8367252 DOI: 10.1364/boe.424969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to assess transabdominal placental oxygenation levels non-invasively. A wearable device was designed and tested in 12 pregnant women with an anterior placenta, 5 of whom had maternal pregnancy complications. Preliminary results revealed that the placental oxygenation level is closely related to pregnancy complications and placental pathology. Women with maternal pregnancy complications were found to have a lower placental oxygenation level (69.4% ± 6.7%) than those with uncomplicated pregnancy (75.0% ± 5.8%). This device is a step in the development of a point-of-care method designed to continuously monitor placental oxygenation and to assess maternal and fetal health.
Collapse
Affiliation(s)
- Thien Nguyen
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20814, USA
| | - Kosar Khaksari
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20814, USA
| | - Siddharth M. Khare
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20814, USA
| | - Soongho Park
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20814, USA
| | - Afrouz A. Anderson
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20814, USA
| | - Janine Bieda
- Department of Obstetrics and Gynecology, Wayne State University, 3990 John R. Street, Box 158, Detroit, MI 48201, USA
| | - Eunjung Jung
- Department of Obstetrics and Gynecology, Wayne State University, 3990 John R. Street, Box 158, Detroit, MI 48201, USA
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University, 3990 John R. Street, Box 158, Detroit, MI 48201, USA
| | - Roberto Romero
- Department of Obstetrics and Gynecology, Wayne State University, 3990 John R. Street, Box 158, Detroit, MI 48201, USA
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, 20814 and Detroit, Michigan 48201, USA
| | - Amir H. Gandjbakhche
- National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20814, USA
| |
Collapse
|
34
|
Lorenzon AR, Moreli JB, de Macedo Melo R, Namba FY, Staff AC, Yung HW, Burton GJ, Bevilacqua E. Stromal Cell-Derived Factor (SDF) 2 and the Endoplasmic Reticulum Stress Response of Trophoblast Cells in Gestational Diabetes Mellitus and In vitro Hyperglycaemic Condition. Curr Vasc Pharmacol 2021; 19:201-209. [PMID: 32504504 DOI: 10.2174/1570161118666200606222123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIM The endoplasmic reticulum (ER) stress response and the unfolded protein response (UPR) are essential cellular mechanisms to ensure the proper functioning of ER in adverse conditions. However, activation of these pathways has also been associated with insulin resistance and cell death in pathological conditions such as diabetes mellitus. In the present study, we investigated whether stromal cell-derived factor 2 (SDF2)-an ER stress-responsive factor-is related to ER response in placental cells exposed to maternal gestational diabetes mellitus (GDM) or to a hyperglycaemic in vitro condition. OBJECTIVE The study aimed to investigate the role of SDF2 in BeWo cells , a trophoblast cell line originating from choriocarcinoma , and in placental tissue under hyperglycaemic conditions. METHODS Protein levels of SDF2 and UPR factors, glucose-related protein 78 (GRP78) and eukaryotic initiation factor 2 alpha (elF2 alpha) were evaluated in the placentae of pregnant women diagnosed with GDM and treated by diet-control (insulin was added when necessary). The mRNA expression of SDF2 and UPR factors CHOP and sXBP1 were assessed in cultured BeWo cells challenged with glucose and treated with or without insulin. RESULTS SDF2 expression was increased in the placentae of GDM women treated with diet. However, its values were similar to those of normoglycemic controls when the GDM women were treated with insulin and diet. BeWo cells cultured with high glucose and insulin showed decreased SDF2 expression, while high glucose increased CHOP and sXBP1 expression, which was then significantly reverted with insulin treatment. CONCLUSION Our findings extend the understanding of ER stress and SDF2 expression in placentae exposed to hyperglycaemia, highlighting the relevance of insulin in reducing the levels of ER stress factors in placental cells. Understanding the effect of ER stress partners such as SDF2 on signalling pathways involved in gestation, complicated by hyperglycaemia, is pivotal for basic biomedical research and may lead to new therapeutic possibilities.
Collapse
Affiliation(s)
- Aline R Lorenzon
- Institute of Biomedical Sciences, Department of Cell and Developmental Biology, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | | | - Rafaela de Macedo Melo
- Institute of Biomedical Sciences, Department of Cell and Developmental Biology, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Felipe Yukio Namba
- Institute of Biomedical Sciences, Department of Cell and Developmental Biology, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Anne Cathrine Staff
- Faculty of Medicine, University of Oslo, Norway and Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Hong Wa Yung
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Estela Bevilacqua
- Institute of Biomedical Sciences, Department of Cell and Developmental Biology, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| |
Collapse
|
35
|
Fakhr Y, Brindley DN, Hemmings DG. Physiological and pathological functions of sphingolipids in pregnancy. Cell Signal 2021; 85:110041. [PMID: 33991614 DOI: 10.1016/j.cellsig.2021.110041] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/12/2023]
Abstract
Signaling by the bioactive sphingolipid, sphingosine 1-phosphate (S1P), and its precursors are emerging areas in pregnancy research. S1P and ceramide levels increase towards end of gestation, suggesting a physiological role in parturition. However, high levels of circulating S1P and ceramide are correlated with pregnancy disorders such as preeclampsia, gestational diabetes mellitus and intrauterine growth restriction. Expression of placental and decidual enzymes that metabolize S1P and S1P receptors are also dysregulated during pregnancy complications. In this review, we provide an in-depth examination of the signaling mechanism of S1P and ceramide in various reproductive tissues during gestation. These factors determine implantation and early pregnancy success by modulating corpus luteum function from progesterone production to luteolysis through to apoptosis. We also highlight the role of S1P through receptor signaling in inducing decidualization and angiogenesis in the decidua, as well as regulating extravillous trophoblast migration to anchor the placenta into the uterine wall. Recent advances on the role of the S1P:ceramide rheostat in controlling the fate of villous trophoblasts and the role of S1P as a negative regulator of trophoblast syncytialization to a multinucleated placental barrier are discussed. This review also explores the role of S1P in anti-inflammatory and pro-inflammatory signaling, its role as a vasoconstrictor, and the effects of S1P metabolizing enzymes and receptors in pregnancy.
Collapse
Affiliation(s)
- Yuliya Fakhr
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - David N Brindley
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada; Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Denise G Hemmings
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2S2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
36
|
Desoye G, Wells JCK. Pregnancies in Diabetes and Obesity: The Capacity-Load Model of Placental Adaptation. Diabetes 2021; 70:823-830. [PMID: 33741605 PMCID: PMC7980199 DOI: 10.2337/db20-1111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
Excess nutritional supply to the growing fetus, resulting from maternal diabetes and obesity, is associated with increased risks of fetal maldevelopment and adverse metabolic conditions in postnatal life. The placenta, interposed between mother and fetus, serves as the gateway between the two circulations and is usually considered to mediate maternal exposures to the fetus through a direct supply line. In this Perspective, however, we argue that the placenta is not an innocent bystander and mounts responses to fetal "signals of distress" to sustain its own adequate function and protect the fetus. We describe several types of protection that the placenta can offer the fetus against maternal metabolic perturbations and offer a theoretical model of how the placenta responds to the intrauterine environment in maternal diabetes and obesity to stabilize the fetal environment. Our approach supports growing calls for early screening and control of pregnancy metabolism to minimize harmful fetal outcomes.
Collapse
|
37
|
Liu Y, Wang Y, Wang C, Shi R, Zhou X, Li Z, Sun W, Zhao L, Yuan L. Maternal obesity increases the risk of fetal cardiac dysfunction via visceral adipose tissue derived exosomes. Placenta 2021; 105:85-93. [PMID: 33556718 DOI: 10.1016/j.placenta.2021.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 01/02/2023]
Abstract
INTRODUCTION There is a strong association between gestational obesity and fetal cardiac dysfunction, while the exact mechanisms remain largely unknown. The purpose of this study was to investigate the role of exosomes from maternal visceral adipose tissue in abnormal embryonic development in obese pregnancy. METHODS Female C57BL/6J obese mice were induced by a high-fat diet (containing 60% fat). Fetal cardiac function and morphology were examined by echocardiography and histology. The placenta was extracted for histological examination. miRNA expression in exosomes from the visceral adipose tissue was profiled by RNA-seq. Gene expression of inflammatory factors was analyzed by qPCR. RESULTS In the obese pregnant mice, there were obvious inflammation and lipid droplets in the placenta. And the fetal cardiac function in obese pregnancy was also compromised. Moreover, injection of the visceral adipose tissue exosomes from the obese mice significantly decreased the fetal cardiac function in the normal lean pregnant mice. Mechanistically, the decreased expression of miR-19b might be responsible for the enhanced inflammation in the placenta. DISCUSSION Exosomes derived from visceral adipose tissue in obese mice contribute to fetal heart dysfunction, at least partially via affecting the function of the placenta.
Collapse
Affiliation(s)
- Yunnan Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Yixiao Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Chen Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Ruijing Shi
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Xueying Zhou
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Zhelong Li
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Wenqi Sun
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Lianbi Zhao
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, People's Republic of China.
| |
Collapse
|
38
|
Chen Y, Huang D, Liu J, Zeng F, Tang G, Lei W, Wang H, Jiang Y, Shentu W, Wang H. Non-Invasive Detection of Fetal Vascular Endothelial Function in Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2021; 12:763683. [PMID: 34777257 PMCID: PMC8586207 DOI: 10.3389/fendo.2021.763683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES Endothelial dysfunction in the fetuses of women with gestational diabetes mellitus (GDM) is associated with their subsequent cardiovascular events. Prenatal assessment of endothelial function in fetuses exposed to intrauterine hyperglycemic environment remains challenging. The aim of this study was to assess the fetal vascular endothelial function in GDM patients using color M-mode derived aortic propagation velocity (APV) and evaluate the correlation of APV with endothelial function biomarkers. METHODS This observational cross-sectional study included 31 gestational diabetic mothers and 30 healthy pregnant mothers from August 2019 to January 2020. Clinical data were compared between the groups. Fetal APV was measured using color M-mode echocardiography at late gestation. Concentrations of endothelial biomarkers including von Willebrand Factor (vWF), vascular endothelial-cadherin and endothelin-1 in umbilical cord serum were assessed. Measurements between diabetic group and controls were compared. RESULTS vWF was the only endothelial functional marker that differed between the two groups. Fetuses in the GDM group had significantly lower APV levels and higher vWF levels compared with the healthy controls (P < 0.05). There was a moderate but significant correlation between APV and vWF (r =-0.58, P < 0.001). There were no associations between APV and ventricular wall thickness or umbilical artery pulsatility index. CONCLUSIONS Color M-mode propagation velocity of aorta is a non-invasive, practical method that correlates well with GDM and fetal endothelial function. This novel metric could contribute to recognizing early vascular functional alterations and hence represents a potential strategy for early risk factor surveillance and risk modification.
Collapse
Affiliation(s)
- Yunyu Chen
- Department of Medical Ultrasonics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Danping Huang
- Department of Medical Ultrasonics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinrong Liu
- Department of Medical Ultrasonics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fangling Zeng
- Institute of Perinatal Nutrition, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guoyi Tang
- Institute of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenjia Lei
- Department of Medical Ultrasonics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Haiyu Wang
- Department of Medical Ultrasonics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanmin Jiang
- Institute of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Weihui Shentu
- Department of Medical Ultrasonics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Weihui Shentu, ; Hongying Wang,
| | - Hongying Wang
- Department of Medical Ultrasonics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Weihui Shentu, ; Hongying Wang,
| |
Collapse
|
39
|
Parrettini S, Caroli A, Torlone E. Nutrition and Metabolic Adaptations in Physiological and Complicated Pregnancy: Focus on Obesity and Gestational Diabetes. Front Endocrinol (Lausanne) 2020; 11:611929. [PMID: 33424775 PMCID: PMC7793966 DOI: 10.3389/fendo.2020.611929] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Pregnancy offers a window of opportunity to program the future health of both mothers and offspring. During gestation, women experience a series of physical and metabolic modifications and adaptations, which aim to protect the fetus development and are closely related to both pre-gestational nutritional status and gestational weight gain. Moreover, pre-gestational obesity represents a challenge of treatment, and nowadays there are new evidence as regard its management, especially the adequate weight gain. Recent evidence has highlighted the determinant role of nutritional status and maternal diet on both pregnancy outcomes and long-term risk of chronic diseases, through a transgenerational flow, conceptualized by the Development Origin of Health and Diseases (Dohad) theory. In this review we will analyse the physiological and endocrine adaptation in pregnancy, and the metabolic complications, thus the focal points for nutritional and therapeutic strategies that we must early implement, virtually before conception, to safeguard the health of both mother and progeny. We will summarize the current nutritional recommendations and the use of nutraceuticals in pregnancy, with a focus on the management of pregnancy complicated by obesity and hyperglycemia, assessing the most recent evidence about the effects of ante-natal nutrition on the long-term, on either maternal health or metabolic risk of the offspring.
Collapse
Affiliation(s)
- Sara Parrettini
- S. Maria della Misericordia Hospital, Division of Endocrinology and Metabolism, Perugia, Italy
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Antonella Caroli
- S. Maria della Misericordia Hospital, Division of Endocrinology and Metabolism, Perugia, Italy
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Elisabetta Torlone
- S. Maria della Misericordia Hospital, Division of Endocrinology and Metabolism, Perugia, Italy
| |
Collapse
|
40
|
Bandres-Meriz J, Dieberger AM, Hoch D, Pöchlauer C, Bachbauer M, Glasner A, Niedrist T, van Poppel MNM, Desoye G. Maternal Obesity Affects the Glucose-Insulin Axis During the First Trimester of Human Pregnancy. Front Endocrinol (Lausanne) 2020; 11:566673. [PMID: 33154737 PMCID: PMC7586307 DOI: 10.3389/fendo.2020.566673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022] Open
Abstract
Background and objective: The maternal glucose-insulin axis is central for metabolic adaptations required for a healthy pregnancy. Metabolic changes in obese mothers in early pregnancy have been scantly described. Here we characterized the glucose-insulin axis in the first trimester of human pregnancy and assessed the effect of maternal obesity and fat mass. Methods: In this cross-sectional study, maternal blood samples (N = 323) were collected during voluntary pregnancy termination (gestational age 4+0-11+6 weeks) after overnight fasting. Smokers (N = 198) were identified by self-report and serum cotinine levels (ELISA). Maternal BMI (kg/m2) and serum leptin (ELISA) were used as proxy measures of obesity and maternal fat mass, respectively. BMI was categorized into under-/normal weight (BMI < 25.0 kg/m2), overweight (BMI 25.0-29.9 kg/m2) and obese (BMI ≥ 30.0 kg/m2), and leptin in tertiles (1st tertile: leptin < 6.80 ng/ml, 2nd tertile: leptin 6.80-12.89 ng/ml, 3rd tertile: leptin > 12.89 ng/ml). ISHOMA insulin sensitivity index was calculated from glucose and C-peptide (ELISA) serum concentrations. Analyses of covariance including multiple confounders were performed to test for differences in glucose, C-peptide and ISHOMA between gestational age periods, BMI and leptin groups. C-peptide and ISHOMA were log-transformed before analyses. Results: At weeks 7-9, fasting glucose and C-peptide levels were lower (P < 0.01 and P < 0.001, respectively) and insulin sensitivity higher (P < 0.001) than at weeks 4-6. Glucose levels were not significantly different between BMI or leptin categories. In contrast, C-peptide increased by 19% (P < 0.01) between the normal weight and the overweight group and by 39% (P < 0.001) between the overweight and obese group. In the leptin groups, C-peptide increased by 25% (P < 0.001) between the 1st and 2nd leptin tertile and by 15% (P < 0.05) between the 2nd and 3rd leptin tertile. ISHOMA decreased with higher BMI and fat mass. ISHOMA decreased by 18% (P < 0.01) between the normal weight and the overweight group and by 30% (P < 0.01) between the overweight and the obese group. In the leptin groups, ISHOMA decreased by 22% (P < 0.001) between the 1st and 2nd leptin tertile and by 14% (P < 0.05) between the 2nd and 3rd leptin tertile. Conclusions: At the group level, fasting glucose, C-peptide and insulin sensitivity dynamically change in the first trimester of human pregnancy. Maternal obesity is associated with higher C-peptide and lower insulin sensitivity at all periods in the first trimester of human pregnancy, while glucose is unaltered. These findings have implications for the timing of early gestational diabetes mellitus risk screening.
Collapse
Affiliation(s)
- Julia Bandres-Meriz
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Anna M. Dieberger
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Denise Hoch
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Caroline Pöchlauer
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Martina Bachbauer
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | | | - Tobias Niedrist
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | | | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
41
|
Sun CC, Lai YN, Wang WH, Xu XM, Li XQ, Wang H, Zheng JY, Zheng JQ. Metformin Ameliorates Gestational Diabetes Mellitus-Induced Endothelial Dysfunction via Downregulation of p65 and Upregulation of Nrf2. Front Pharmacol 2020; 11:575390. [PMID: 33162888 PMCID: PMC7581851 DOI: 10.3389/fphar.2020.575390] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 01/14/2023] Open
Abstract
Gestational diabetes mellitus (GDM) causes oxidative stress in mothers and infants and causes vascular endothelial dysfunction, which is a key factor for maternal and fetal cardiovascular diseases in the later stage of GDM, seriously threatening the life and health of mothers and infants. Nowadays, metformin (MET) has been discovered to improve endothelial function, but studies regarding the mechanism of MET improving endothelial cell function and alleviating endothelial function under hyperglycemia are still extremely limited. We aimed to investigate whether MET exerts its protective role against hyperglycemia-induced endothelial dysfunction through p65 and Nrf2. In our studies, applying cell migration assay and tube formation assay, we observed an obvious improvement of endothelial function under MET-treated, as characterized by that MET accelerated GDM-attenuated migration and angiogenesis of HUVECs. And ELISA assay results uncovered that Nrf2 expression level was decreased in GDM placenta, HVUECs and maternal serum comparing with normal group, however activation Nrf2 largely ameliorated tube formation under hyperglycemic condition. Furthermore, MET elevated the Nrf2 expression level and the level of nuclear Nrf2 accumulation in hyperglycemic HUVECs. Besides, preliminary evidence predicted that Nrf2 expression was modulated by transcription factor p65, which was increased in GDM peripheral blood, placenta and HUVECs, and suppression of p65 could recover GDM-induced suppression of angiogenesis. In addition, we also confirmed MET restores the GDM-induced angiogenesis impairment may via downregulation of p65 and upregulation of Nrf2. Taken together, the endothelial protective effect of MET under GDM (HG) conditions could be partly attributed to its role in downregulating p65 and upregulating Nrf2.
Collapse
Affiliation(s)
- Cong Cong Sun
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Ya Nan Lai
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Wen Huan Wang
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Xiao Min Xu
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Xiao Qing Li
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Hai Wang
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Jia Yong Zheng
- Wenzhou Key Laboratory of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| | - Jian Qiong Zheng
- Department of Obstetrics and Gynecology, The Third Affiliated Clinical Institute of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, China
| |
Collapse
|
42
|
Hauffe F, Fauzan R, Schohe AL, Scholle D, Sedlacek L, Scherer KA, Klapp C, Ramsauer B, Henrich W, Schlembach D, Abou-Dakn M, Schaefer-Graf UM. Need for less tight glucose control in early pregnancy after embryogenesis due to high risk of maternal hypoglycaemia in women with pre-existing diabetes can be compensated by good control in late pregnancy. Diabet Med 2020; 37:1490-1498. [PMID: 32583455 DOI: 10.1111/dme.14350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/18/2020] [Accepted: 06/18/2020] [Indexed: 11/29/2022]
Abstract
AIM Poor glucose control is associated with adverse outcomes in pregnancies with pre-existing diabetes. However, strict glucose control increases the risk of severe hypoglycaemia, particularly in the first trimester. Therefore, we aimed to investigate whether less tight glucose control in the first trimester determines adverse outcomes or can be compensated for by good control in late pregnancy. METHODS Retrospective data were collected from 517 singleton pregnancies complicated by pre-existing diabetes delivering between 2010 and 2017. Three hundred and thirty-six pregnancies fulfilled the inclusion criteria of having available HbA1c values either pre-conception or in the first trimester (65% type 1 diabetes, 35% type 2 diabetes). RESULTS Higher HbA1c values in the first trimester were associated with increasing rates of large for gestational age (LGA) neonates, preterm delivery or neonatal intensive care unit admissions. Multiple regression analysis demonstrated third trimester HbA1c , type 1 diabetes, multiparity and excess weight gain, but not first trimester HbA1c , to be independently predictive for LGA. Pre-eclampsia and third trimester HbA1c increased the risk for preterm delivery. If HbA1c was ≤ 42 mmol/mol (6.0%) in the third trimester, rates of adverse outcomes were not significantly higher even if HbA1c targets of ≤ 48 mmol/mol (6.5%) had not been met in the first trimester. Good first trimester glucose control did not modify the rates of adverse outcomes if HbA1c was > 42 mmol/mol (6.0%) in the third trimester. CONCLUSIONS Less tight glycaemic control, for example due to high frequency of severe hypoglycaemia in the first trimester, does not lead to increased adverse neonatal events if followed by tight control in the third trimester. Besides glycaemic control, excess weight gain is a modifiable predictor of adverse outcome.
Collapse
Affiliation(s)
- F Hauffe
- Berlin Center for Diabetes and Pregnancy, Department of Obstetrics and Gynaecology, St. Joseph Hospital, Berlin, Germany
| | - R Fauzan
- Berlin Center for Diabetes and Pregnancy, Department of Obstetrics and Gynaecology, St. Joseph Hospital, Berlin, Germany
| | - A L Schohe
- Berlin Center for Diabetes and Pregnancy, Department of Obstetrics and Gynaecology, St. Joseph Hospital, Berlin, Germany
| | - D Scholle
- Berlin Center for Diabetes and Pregnancy, Department of Obstetrics and Gynaecology, St. Joseph Hospital, Berlin, Germany
| | - L Sedlacek
- Berlin Center for Diabetes and Pregnancy, Department of Obstetrics and Gynaecology, St. Joseph Hospital, Berlin, Germany
| | - K A Scherer
- Department of Obstetrics, Campus Rudolf-Virchow, Charité, Humboldt-University, Berlin, Germany
| | - C Klapp
- Department of Obstetrics, Campus Rudolf-Virchow, Charité, Humboldt-University, Berlin, Germany
| | - B Ramsauer
- Clinic of Obstetrics, Clinicum Vivantes Neukoelln, Berlin, Germany
| | - W Henrich
- Department of Obstetrics, Campus Rudolf-Virchow, Charité, Humboldt-University, Berlin, Germany
| | - D Schlembach
- Clinic of Obstetrics, Clinicum Vivantes Neukoelln, Berlin, Germany
| | - M Abou-Dakn
- Berlin Center for Diabetes and Pregnancy, Department of Obstetrics and Gynaecology, St. Joseph Hospital, Berlin, Germany
| | - U M Schaefer-Graf
- Berlin Center for Diabetes and Pregnancy, Department of Obstetrics and Gynaecology, St. Joseph Hospital, Berlin, Germany
- Department of Obstetrics, Campus Rudolf-Virchow, Charité, Humboldt-University, Berlin, Germany
| |
Collapse
|
43
|
Placental Adaptive Changes to Protect Function and Decrease Oxidative Damage in Metabolically Healthy Maternal Obesity. Antioxidants (Basel) 2020; 9:antiox9090794. [PMID: 32859037 PMCID: PMC7555720 DOI: 10.3390/antiox9090794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnancy-related disorders, including preeclampsia and gestational diabetes, are characterized by the presence of an adverse intrauterine milieu that may ultimately result in oxidative and nitrosative stress. This scenario may trigger uncontrolled production of reactive oxygen species (ROS) such as superoxide anion (O●−) and reactive nitrogen species (RNS) such as nitric oxide (NO), along with an inactivation of antioxidant systems, which are associated with the occurrence of relevant changes in placental function through recognized redox post-translational modifications in key proteins. The general objective of this study was to assess the impact of a maternal obesogenic enviroment on the regulation of the placental nitroso-redox balance at the end of pregnancy. We measured oxidative damage markers—thiobarbituric acid-reacting substances (TBARS) and carbonyl groups (C=O) levels; nitrosative stress markers—inducible nitric oxide synthase, nitrosothiol groups, and nitrotyrosine residues levels; and the antioxidant biomarkers—catalase and superoxide dismutase (SOD) activity and expression, and total antioxidant capacity (TAC), in full-term placental villous from both pre-pregnancy normal weight and obese women, and with absence of metabolic complications throughout gestation. The results showed a decrease in C=O and TBARS levels in obese pregnancies. Although total SOD and catalase concentrations were shown to be increased, both activities were significantly downregulated in obese pregnancies, along with total antioxidant capacity. Inducible nitric oxide sintase levels were increased in the obese group compared to the lean group, accompanied by an increase in nitrotyrosine residues levels and lower levels of nitrosothiol groups in proteins such as ERK1/2. These findings reveal a reduction in oxidative damage, accompanied by a decline in antioxidant response, and an increase via NO-mediated nitrative stress in placental tissue from metabolically healthy pregnancies with obesity. All this plausibly points to a placental adaptation of the affected antioxidant response towards a NO-induced alternative pathway, through changes in the ROS/RNS balance, in order to reduce oxidative damage and preserve placental function in pregnancy.
Collapse
|
44
|
Shrestha D, Ouidir M, Workalemahu T, Zeng X, Tekola-Ayele F. Placental DNA methylation changes associated with maternal prepregnancy BMI and gestational weight gain. Int J Obes (Lond) 2020; 44:1406-1416. [PMID: 32071425 PMCID: PMC7261634 DOI: 10.1038/s41366-020-0546-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Maternal obesity prior to or during pregnancy influences fetal growth, predisposing the offspring to increased risk for obesity across the life course. Placental epigenetic mechanisms may underlie these associations. We conducted an epigenome-wide association study to identify placental DNA methylation changes associated with maternal prepregnancy body mass index (BMI) and rate of gestational weight gain at first (GWG1), second (GWG2), and third trimester (GWG3). METHOD Participants of the NICHD Fetal Growth Studies with genome-wide placental DNA methylation (n = 301) and gene expression (n = 75) data were included. Multivariable-adjusted regression models were used to test the associations of 1 kg/m2 increase in prepregnancy BMI or 1 kg/week increase in GWG with DNA methylation levels. Genes harboring top differentially methylated CpGs (FDR P < 0.05) were evaluated for placental gene expression. We assessed whether DNA methylation sites known to be associated with BMI in child or adult tissues, were also associated with maternal prepregnancy BMI in placenta. RESULTS Prepregnancy BMI was associated with DNA methylation at cg14568196[EGFL7], cg15339142[VETZ], and cg02301019[AC092377.1] (FDR P < 0.05, P ranging from 1.4 × 10-10 to 1.7 × 10-9). GWG1 or GWG2 was associated with DNA methylation at cg17918270[MYT1L], cg20735365[DLX5], and cg17451688[SLC35F3] (FDR P < 0.05, P ranging from 6.4 × 10-10 to 1.2 × 10-8). Both prepregnancy BMI and DNA methylation at cg1456819 [EGFL7] were negatively correlated with EGFL7 expression in placenta (P < 0.05). Several CpGs previously implicated in obesity traits in children and adults were associated with prepregnancy BMI in placenta. Functional annotations revealed that EGFL7 is highly expressed in placenta and the differentially methylated CpG sites near EGFL7 and VEZT were cis-meQTL targets in blood. CONCLUSIONS We identified placental DNA methylation changes at novel loci associated with prepregnancy BMI and GWG. The overlap between CpGs associated with obesity traits in placenta and other tissues in children and adults suggests that epigenetic mechanisms in placenta may give insights to early origins of obesity.
Collapse
Affiliation(s)
- Deepika Shrestha
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Marion Ouidir
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tsegaselassie Workalemahu
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Xuehuo Zeng
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
45
|
Davidson AJF, Park AL, Berger H, Aoyama K, Harel Z, Cook JL, Ray JG. Risk of severe maternal morbidity or death in relation to elevated hemoglobin A1c preconception, and in early pregnancy: A population-based cohort study. PLoS Med 2020; 17:e1003104. [PMID: 32427997 PMCID: PMC7236974 DOI: 10.1371/journal.pmed.1003104] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The relation between prepregnancy average glucose concentration and a woman's risk of severe maternal morbidity (SMM) is unknown. The current study evaluated whether an elevated preconception hemoglobin A1c (A1c) is associated with SMM or maternal death among women with and without known prepregnancy diabetes mellitus (DM). METHODS AND FINDINGS A population-based cohort study was completed in Ontario, Canada, where there is universal healthcare. The main cohort included 31,225 women aged 16-50 years with a hospital live birth or stillbirth from 2007 to 2015, and who had an A1c measured within 90 days before conception, including 28,075 women (90%) without known prepregnancy DM. The main outcome was SMM or maternal mortality from 23 weeks' gestation up to 42 days postpartum. Relative risks (RRs) were generated using modified Poisson regression, adjusting for the main covariates of maternal age, multifetal pregnancy, world region of origin, and tobacco/drug dependence. The mean maternal age was 31.1 years. Overall, SMM or death arose among 682 births (2.2%). The RR of SMM or death was 1.16 (95% CI 1.14-1.19; p < 0.001) per 0.5% increase in A1c and 1.16 (95% CI 1.13-1.18; p < 0.001) after adjusting for the main covariates. The adjusted relative risk (aRR) was increased among those with (1.11, 95% CI 1.07-1.14; p < 0.001) and without (1.15, 95% CI 1.02-1.29; p < 0.001) known prepregnancy diabetes, and upon further adjusting for body mass index (BMI) (1.15, 95% CI 1.11-1.20; p < 0.001), or chronic hypertension and prepregnancy serum creatinine (1.11, 95% CI 1.04-1.18; p = 0.002). The aRR of SMM or death was 1.31 (95% CI 1.06-1.62; p = 0.01) in those with a preconception A1c of 5.8%-6.4%, and 2.84 (95% CI 2.31-3.49; p < 0.001) at an A1c > 6.4%, each relative to an A1c < 5.8%. Among those without previously recognized prepregnancy diabetes and whose A1c was >6.4%, the aRR of SMM or death was 3.25 (95% CI 1.76-6.00; p < 0.001). Study limitations include that selection bias may have incorporated less healthy women tested for A1c, and BMI was unknown for many women. CONCLUSIONS Our findings indicate that women with an elevated A1c preconception may be at higher risk of SMM or death in pregnancy or postpartum, including those without known prepregnancy DM.
Collapse
Affiliation(s)
| | - Alison L. Park
- University of Toronto, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
| | - Howard Berger
- University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Kazuyoshi Aoyama
- University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia and Pain Medicine, the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ziv Harel
- University of Toronto, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- Department of Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Jocelynn L. Cook
- Department of Obstetrics and Gynaecology, University of Ottawa, Ottawa, Ontario, Canada
- The Society of Obstetricians and Gynaecologists of Canada, Ottawa, Ontario, Canada
| | - Joel G. Ray
- University of Toronto, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- Department of Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Li M, Hinkle SN, Grantz KL, Kim S, Grewal J, Grobman WA, Skupski DW, Newman RB, Chien EK, Sciscione A, Zork N, Wing DA, Nageotte M, Tekola-Ayele F, Louis GMB, Albert PS, Zhang C. Glycaemic status during pregnancy and longitudinal measures of fetal growth in a multi-racial US population: a prospective cohort study. Lancet Diabetes Endocrinol 2020; 8:292-300. [PMID: 32135135 PMCID: PMC7676113 DOI: 10.1016/s2213-8587(20)30024-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND The timepoint at which fetal growth begins to differ by maternal glycaemic status is not well understood. To address this lack of data, we examined gestational diabetes, impaired glucose tolerance, and early pregnancy glucose concentrations in relation to fetal growth trajectories. METHODS This cohort study included 2458 pregnant women from the NICHD Fetal Growth Studies-Singletons study, which took place between 2009 and 2013. Women were recruited from 12 clinical centres in the USA. Women aged 18-40 years without major chronic conditions when entering pregnancy were included and those with records of neither glucose screening test or glucose tolerance test were excluded from the study. Women were enrolled at gestational weeks 8-13 and randomly assigned to four ultrasonogram schedules (Group A; weeks 16, 24, 30, 34; Group B: weeks 18, 26, 31, 35, 39; Group C: weeks 20, 28, 32, 36; Group D: weeks 22, 29, 33, 37, 41) to capture weekly fetal growth. Gestational diabetes, impaired glucose tolerance, and normal glucose tolerance were defined by medical record review. Glucose was measured in a subsample of women at weeks 10-14. We modelled fetal growth trajectories using linear mixed models with cubic splines. This study is registered with ClinicalTrials.gov, NCT00912132. FINDINGS Of the 2458 women included in this study, 107 (4·4%) had gestational diabetes, 118 (4·8%) had impaired glucose tolerance, and 2020 (82·2%) had NGT. 213 women were excluded from the main analysis. The cohort with gestational diabetes was associated with a larger estimated fetal weight that started at week 20 and was significant at week 28-40 (at week 37: 3061 g [95% CI 2967-3164] for women with gestational diabetes vs 2943 g [2924-2962] for women with normal glucose tolerance, adjusted p=0·02). In addition, glucose levels at weeks 10-14 were positively associated with estimated fetal weight starting at week 23 and the association became significant at week 27 (at week 37: 3073 g [2983-3167] in the highest tertile vs 2853 g [2755-2955] in the lowest tertile, adjusted p=0·0009. INTERPRETATION Gestational diabetes was associated with a larger fetal size that started at week 20 and became significant at gestational week 28. Efforts to mitigate gestational diabetes-related fetal overgrowth should start before 24-28 gestational weeks, when gestational diabetes is typically screened for in the USA. FUNDING National Institutes of Health.
Collapse
Affiliation(s)
- Mengying Li
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Stefanie N Hinkle
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Katherine L Grantz
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sungduk Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jagteshwar Grewal
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - William A Grobman
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel W Skupski
- Department of Obstetrics and Gynecology, New York-Presbyterian Hospital Queens, Flushing, NY, USA
| | - Roger B Newman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| | - Edward K Chien
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Women and Infants Hospital of Rhode Island, Providence, RI, USA
| | | | - Noelia Zork
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Deborah A Wing
- Division of Maternal-Fetal Medicine, Department of Obstetrics-Gynecology, University of California School of Medicine, Irvine, CA, USA; Fountain Valley Regional Hospital and Medical Center, Fountain Valley, CA, USA
| | | | - Fasil Tekola-Ayele
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Paul S Albert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cuilin Zhang
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
47
|
Morikawa M, Kato-Hirayama E, Mayama M, Saito Y, Nakagawa K, Umazume T, Chiba K, Kawaguchi S, Okuyama K, Watari H. Glycemic control and fetal growth of women with diabetes mellitus and subsequent hypertensive disorders of pregnancy. PLoS One 2020; 15:e0230488. [PMID: 32176740 PMCID: PMC7075561 DOI: 10.1371/journal.pone.0230488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/02/2020] [Indexed: 11/25/2022] Open
Abstract
Pregnant women with diabetes mellitus (DM) are at high risk for hypertensive disorder of pregnancy (HDP). Women with poor control DM sometimes have heavy-for-dates infants. However, women with HDP sometimes have light-for-dates infants. We aim to clarify the relationship between glycemic control and fetal growth in women with DM and/or subsequent HDP. Of 7893 women gave singleton birth at or after 22 gestational weeks, we enrolled 154 women with type 1 DM (T1DM) or type 2 DM (T2DM) whose infants did not have fetal abnormalities. Among women with T1DM or T2DM, characteristics of the three groups (with HDP, without HDP, and with chronic hypertension [CH]) were compared. No women with T1DM had CH, but 19 (17.4%) of 109 with T2DM did. HDP incidence was similar between women with T1DM (22.2%) and T2DM without CH (16.7%). Among women with T1DM, the incidences of fetal growth restriction (FGR) with and without HDP were similar. However, among women with T2DM without CH, this incidence was significantly higher among those with HDP (33.3%) than among those without HDP (5.3%), was significantly more common with HbA1c levels at first trimester ≥ 7.2% (33.3%) than with those < 7.2% (5.6%), and significantly more numerous without pre-pregnancy therapies for DM (23.3%) than with them (3.3%). Among women with T2DM and HDP, those with FGR had smaller placenta SDs and higher insulin dosages at delivery than those without light-for-dates. In multivariate analysis, the presence of diabetic nephropathy was a predictor of T1DM and HDP (P = 0.0105), whereas HbA1c levels ≥ 7.2% before pregnancy was a predictor of T2DM and HDP (P = 0.0009). Insulin dosage ≥ 50U/day at delivery (P = 0.0297) and the presence of HDP (P = 0.0116) independently predicted T2DM, HDP, and FGR development. Insufficient pre-pregnancy treatment of DM increased the risk of HDP.
Collapse
Affiliation(s)
- Mamoru Morikawa
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Emi Kato-Hirayama
- Department of Obstetrics and Gynecology, Sapporo City Hospital, Sapporo, Japan
| | - Michinori Mayama
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoshihiro Saito
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kinuko Nakagawa
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takeshi Umazume
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kentaro Chiba
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoshi Kawaguchi
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kazuhiko Okuyama
- Department of Obstetrics and Gynecology, Sapporo City Hospital, Sapporo, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
48
|
Abstract
The placenta is exposed to metabolic derangements in the maternal and fetal circulation. The effects of the early placental "exposome" determine further trajectories. Overstimulation of the fetal pancreas in early gestation results in fetal hyperinsulinemia, augmenting glucose transfer with adverse effects on the fetus. The manifold placental changes at the end of pregnancy can be regarded as adaptive responses to protect the fetus from diabetes and obesity. The causal role of the placenta, if any, in mediating long-term effects on offspring development is an important area of current and future research.
Collapse
Affiliation(s)
- Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, Graz 8036, Austria.
| | - Mila Cervar-Zivkovic
- Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, Graz 8036, Austria
| |
Collapse
|
49
|
Obesity during pregnancy results in maternal intestinal inflammation, placental hypoxia, and alters fetal glucose metabolism at mid-gestation. Sci Rep 2019; 9:17621. [PMID: 31772245 PMCID: PMC6879619 DOI: 10.1038/s41598-019-54098-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022] Open
Abstract
We investigated whether diet-induced changes in the maternal intestinal microbiota were associated with changes in bacterial metabolites and their receptors, intestinal inflammation, and placental inflammation at mid-gestation (E14.5) in female mice fed a control (17% kcal fat, n = 7) or a high-fat diet (HFD 60% kcal fat, n = 9; ad libitum) before and during pregnancy. Maternal diet-induced obesity (mDIO) resulted in a reduction in maternal fecal short-chain fatty acid producing Lachnospiraceae, lower cecal butyrate, intestinal antimicrobial peptide levels, and intestinal SCFA receptor Ffar3, Ffar2 and Hcar2 transcript levels. mDIO increased maternal intestinal pro-inflammatory NFκB activity, colonic CD3+ T cell number, and placental inflammation. Maternal obesity was associated with placental hypoxia, increased angiogenesis, and increased transcript levels of glucose and amino acid transporters. Maternal and fetal markers of gluconeogenic capacity were decreased in pregnancies complicated by obesity. We show that mDIO impairs bacterial metabolite signaling pathways in the mother at mid-gestation, which was associated with significant structural changes in placental blood vessels, likely as a result of placental hypoxia. It is likely that maternal intestinal changes contribute to adverse maternal and placental adaptations that, via alterations in fetal hepatic glucose handling, may impart increased risk of metabolic dysfunction in offspring.
Collapse
|
50
|
Zhang JK, Miao J, Chen ZQ, Duan SZ, Zhang X, Ji WJ, Niu JM, Yuan F, Zhou X, Li YM, Zhang Z. β3-Adrenergic Activation Improves Maternal and Offspring Perinatal Outcomes in Diet-Induced Prepregnancy Obesity in Mice. Obesity (Silver Spring) 2019; 27:1482-1493. [PMID: 31328894 DOI: 10.1002/oby.22561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/20/2019] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Prepregnancy obesity is an epidemic disorder that seriously threatens both maternal and offspring health. This study investigated the effects of β3-adrenergic receptor (β3-AR) activation on the perinatal outcomes in a diet-induced prepregnancy obese (PPO) murine model. METHODS Four-week-old female C57BL/6 mice were fed high-fat diet or chow diet for 16 weeks to yield PPO mice and chow-fed (CF) lean mice, respectively. After successful mating with CF males, the PPO and CF mice were both randomly divided into vehicle control- or CL316,243 (a highly selective β3-AR agonist)-treated groups. On gestational day 7, subcutaneous infusion of CL316,243 or saline vehicle (1 mg/kg/d) was provided using osmotic pumps. The perinatal outcomes, adipose tissue morphology, and metabolic and inflammatory markers were examined. RESULTS Chronic β3-AR agonist infusion induced brown adipose tissue activation and white adipose tissue browning and countered obesity-induced alterations in lipid profiles, insulin resistance, and systemic and local inflammatory states. Moreover, β3-AR activation was associated with improved placental perfusion and offspring outcomes. CONCLUSIONS Our results provide proof-of-principle evidence that pharmacological β3-AR activation may be of therapeutic potential in preventing prepregnancy-obesity-associated adverse maternal and offspring perinatal outcomes.
Collapse
Affiliation(s)
- Jun-Kai Zhang
- Logistics University of the Chinese People's Armed Police Force, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China
| | - Jun Miao
- Logistics University of the Chinese People's Armed Police Force, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China
| | - Zu-Qin Chen
- Logistics University of the Chinese People's Armed Police Force, Tianjin, China
- Department of MRI, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China
| | - Si-Zhang Duan
- Logistics University of the Chinese People's Armed Police Force, Tianjin, China
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China
| | - Xin Zhang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China
| | - Wen-Jie Ji
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China
| | - Jian-Min Niu
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Fei Yuan
- Department of MRI, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-Ming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Characteristic Medical Center of the Chinese People's Armed Police Forces, Tianjin, China
| | - Zhuoli Zhang
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|