1
|
Zhuang C, Yan H, Lu J, Zhou Y, Liu Y, Shi G, Li Y. Compensatory enhancement of orexinergic system functionality induced by amyloid-β protein: a neuroprotective response in Alzheimer's disease. Front Physiol 2025; 16:1529981. [PMID: 40196718 PMCID: PMC11973307 DOI: 10.3389/fphys.2025.1529981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Background Amyloid-β protein (Aβ) accumulation is a defining characteristic of Alzheimer's disease (AD), resulting in neurodegeneration and a decline in cognitive function. Given orexin's well-documented role in enhancing memory and cognition, this study investigates its potential to regulate Aβ-induced neurotoxicity, offering new perspectives into AD management. Methods This paper simulated Aβ accumulation in the hippocampus of AD patients by administering Aβ1-42 oligomers into the bilateral hippocampal dentate gyrus of ICR mice. Inflammatory cytokines (IL-6, TNF-α) and orexin-A levels were measured by ELISA. Additionally, the excitability of orexinergic neurons was assessed by IHC targeting c-Fos expression. These methodologies evaluated the Aβ-induced neuroinflammation, orexinergic system functionality, and dexamethasone's (Dex) effects on these processes. Results Injection of Aβ1-42 oligomer resulted in elevated levels of IL-6, TNF-α, and orexin-A in the hippocampus, as well as increased excitability of orexinergic neurons in the lateral hypothalamus (LH). Dex treatment reduced neuroinflammation, causing a reduction in orexin-A levels and the excitability of orexinergic neurons. Conclusion Aβ-induced neuroinflammation is accompanied by enhanced levels of orexin-A and orexinergic neuron excitability. These findings suggest that the enhanced functionality of the orexinergic system may become a compensatory neuroprotective mechanism to counteract neuroinflammation and enhance cognitive function.
Collapse
Affiliation(s)
- Chenyu Zhuang
- Medical College, Yangzhou University, Yangzhou, China
| | - Hengyu Yan
- Medical College, Yangzhou University, Yangzhou, China
| | - Jiayu Lu
- Medical College, Yangzhou University, Yangzhou, China
| | - Yifan Zhou
- Medical College, Yangzhou University, Yangzhou, China
| | - Yanqing Liu
- Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Guoshan Shi
- Department of Basic Medical Sciences, Guizhou University of Chinese Medicine, Guiyang, China
| | - Yan Li
- Medical College, Yangzhou University, Yangzhou, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, China
- Department of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Ramerth A, Chapple B, Winter J, Moore W. The Other Side of the Perfect Cup: Coffee-Derived Non-Polyphenols and Their Roles in Mitigating Factors Affecting the Pathogenesis of Type 2 Diabetes. Int J Mol Sci 2024; 25:8966. [PMID: 39201652 PMCID: PMC11354961 DOI: 10.3390/ijms25168966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
The global prevalence of type 2 diabetes (T2D) is 10.5% among adults in the age range of 20-79 years. The primary marker of T2D is persistent fasting hyperglycemia, resulting from insulin resistance and β-cell dysfunction. Multiple factors can promote the development of T2D, including obesity, inflammation, and oxidative stress. In contrast, dietary choices have been shown to prevent the onset of T2D. Oatmeal, lean proteins, fruits, and non-starchy vegetables have all been reported to decrease the likelihood of T2D onset. One of the most widely consumed beverages in the world, coffee, has also demonstrated an impressive ability to reduce T2D risk. Coffee contains a diverse array of bioactive molecules. The antidiabetic effects of coffee-derived polyphenols have been thoroughly described and recently reviewed; however, several non-polyphenolic molecules are less prominent but still elicit potent physiological actions. This review summarizes the effects of select coffee-derived non-polyphenols on various aspects of T2D pathogenesis.
Collapse
Affiliation(s)
| | | | | | - William Moore
- School of Health Sciences, Department of Biology and Chemistry, Liberty University, Lynchburg, VA 24515, USA; (A.R.); (B.C.); (J.W.)
| |
Collapse
|
3
|
Alkan AA, Arslan B, Özcan D, Tekin K. Serum neopterin and orexin-A levels in different stages of diabetic retinopathy. Clin Exp Optom 2024:1-7. [PMID: 39009974 DOI: 10.1080/08164622.2024.2374875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
CLINICAL RELEVANCE Retinopathy is one of the most common microvascular complications of diabetes mellitus and is the leading cause of vision loss in the working middle-aged population. BACKGROUND This study aimed to investigate the value of neopterin and orexin-A levels in patients with diabetes mellitus with different stages of diabetic retinopathy and without diabetic retinopathy and to compare those findings with results from healthy individuals without diabetes mellitus. METHODS In total, 65 patients with type 2 diabetes mellitus and 22 healthy individuals without diabetes mellitus were enrolled in this prospective study. The participants were separated into four subgroups. The first subgroup included 25 patients without diabetic retinopathy, the second subgroup included 20 patients non-proliferative diabetic retinopathy, the third subgroup included 20 patients with proliferative diabetic retinopathy, and the fourth subgroup included 22 healthy individuals without diabetes mellitus as controls. Serum neopterin and orexin-A levels were analysed and compared among the groups. RESULTS The age and gender of the participants between the four subgroups were not statistically significantly different (p > 0.05). The mean neopterin levels were significantly higher in patients included in the diabetes mellitus subgroups compared with the controls (p < 0.001). Neopterin levels significantly increased as diabetic retinopathy progressed within the diabetes mellitus subgroups. Mean orexin-A levels were significantly lower in the diabetes mellitus subgroups compared with the controls (p < 0.001); however, orexin-A levels were not significantly different within the diabetes mellitus subgroups (p > 0.05). CONCLUSION Patients with diabetes mellitus have higher serum neopterin and lower serum orexin-A levels compared with healthy individuals without diabetes mellitus. Moreover, serum neopterin levels increase with progression of diabetic retinopathy.
Collapse
Affiliation(s)
| | - Burak Arslan
- Department of Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Delil Özcan
- Ophthalmology Department, Seyrantepe Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Kemal Tekin
- Ophthalmology Department, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
4
|
Devère M, Takhlidjt S, Prévost G, Chartrel N, Leprince J, Picot M. The 26RFa (QRFP)/GPR103 Neuropeptidergic System: A Key Regulator of Energy and Glucose Metabolism. Neuroendocrinology 2024; 115:111-127. [PMID: 38599200 DOI: 10.1159/000538629] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Obesity and type 2 diabetes are strongly associated pathologies, currently considered as a worldwide epidemic problem. Understanding the mechanisms that drive the development of these diseases would enable to develop new therapeutic strategies for their prevention and treatment. Particularly, the role of the brain in energy and glucose homeostasis has been studied for 2 decades. In specific, the hypothalamus contains well-identified neural networks that regulate appetite and potentially also glucose homeostasis. A new concept has thus emerged, suggesting that obesity and diabetes could be due to a dysfunction of the same, still poorly understood, neural networks. SUMMARY The neuropeptide 26RFa (also termed QRFP) belongs to the family of RFamide regulatory peptides and has been identified as the endogenous ligand of the human G protein-coupled receptor GPR103 (QRFPR). The primary structure of 26RFa is strongly conserved during vertebrate evolution, suggesting its crucial roles in the control of vital functions. Indeed, the 26RFa/GPR103 peptidergic system is reported to be involved in the control of various neuroendocrine functions, notably the control of energy metabolism in which it plays an important role, both centrally and peripherally, since 26RFa regulates feeding behavior, thermogenesis and lipogenesis. Moreover, 26RFa is reported to control glucose homeostasis both peripherally, where it acts as an incretin, and centrally, where the 26RFa/GPR103 system relays insulin signaling in the brain to control glucose metabolism. KEY MESSAGES This review gives a comprehensive overview of the role of the 26RFa/GPR103 system as a key player in the control of energy and glucose metabolism. In a pathophysiological context, this neuropeptidergic system represents a prime therapeutic target whose mechanisms are highly relevant to decipher.
Collapse
Affiliation(s)
- Mélodie Devère
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Saloua Takhlidjt
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Gaëtan Prévost
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Rouen Normandie, Inserm, Normandie University, NorDiC UMR 1239, CHU Rouen, Rouen, France
| | - Nicolas Chartrel
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| | - Jérôme Leprince
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
- University Rouen Normandie, Normandie University, INSERM US 51, CNRS UAR 2026, HeRacLeS, Rouen, France
| | - Marie Picot
- University Rouen Normandie, Inserm, NorDiC UMR 1239, Normandie University, Rouen, France
| |
Collapse
|
5
|
Абсатарова ЮС, Евсеева ЮС, Андреева ЕН. [Neuroendocrine features of the pathogenesis of polycystic ovary syndrome (literature review)]. PROBLEMY ENDOKRINOLOGII 2023; 69:107-114. [PMID: 37968958 PMCID: PMC10680539 DOI: 10.14341/probl13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 11/17/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most pressing problems in endocrine gynecology. The main signs of the disease are hyperandrogenism, menstrual and/or ovulatory dysfunction, and polycystic ovarian structure according to ultrasound. Women with PCOS are at risk for developing metabolic syndrome, type 2 diabetes, cardiovascular disease, and endometrial cancer. In this connection, the pathogenetic mechanisms of the occurrence of this syndrome are continuously studied and new methods of treatment are being sought. PCOS is characterized by a wide range of various disorders of the neuroendocrine regulation of the reproductive system. The main focus of the review is aimed at summarizing information about the etiological role of neuropeptides and neurotransmitters, such as phoenixin, galanins, orexins, GABA, in the pathophysiology of PCOS and about the possibility of their use for diagnostic and therapeutic purposes. In recent decades, the interest of scientists has been focused on the study of KNDy neurons, because it is the kisspeptin synthesized by them that is one of the main regulators of the hypothalamic-pituitary-ovarian axis. This article discusses data on the significance of KNDy neurons in the pathogenesis of the syndrome. Information is provided on the effect of elevated levels of androgens and anti-Müllerian hormone on GnRH neurons. Also analyzed are studies on functional and structural disorders in the hypothalamus in PCOS. Literature search was carried out in national (eLibrary, CyberLeninka.ru) and international (PubMed, Cochrane Library) databases in Russian and English. The priority was free access to the full text of articles. The choice of sources was prioritized for the period from 2018 to 2023.However, taking into account the insufficient knowledge of the chosen topic, the choice of sources dates back to 1998.
Collapse
Affiliation(s)
| | - Ю. С. Евсеева
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. Н. Андреева
- Национальный медицинский исследовательский центр эндокринологии; Московский государственный медико-стоматологический университет имени А.И. Евдокимова
| |
Collapse
|
6
|
Ramser A, Dridi S. Avian Orexin: Feed Intake Regulator or Something Else? Vet Sci 2022; 9:vetsci9030112. [PMID: 35324840 PMCID: PMC8950792 DOI: 10.3390/vetsci9030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Originally named for its expression in the posterior hypothalamus in rats and after the Greek word for “appetite”, hypocretin, or orexin, as it is known today, gained notoriety as a neuropeptide regulating feeding behavior, energy homeostasis, and sleep. Orexin has been proven to be involved in both central and peripheral control of neuroendocrine functions, energy balance, and metabolism. Since its discovery, its ability to increase appetite as well as regulate feeding behavior has been widely explored in mammalian food production animals such as cattle, pigs, and sheep. It is also linked to neurological disorders, leading to its intensive investigation in humans regarding narcolepsy, depression, and Alzheimer’s disease. However, in non-mammalian species, research is limited. In the case of avian species, orexin has been shown to have no central effect on feed-intake, however it was found to be involved in muscle energy metabolism and hepatic lipogenesis. This review provides current knowledge and summarizes orexin’s physiological roles in livestock and pinpoints the present lacuna to facilitate further investigations.
Collapse
Affiliation(s)
- Alison Ramser
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
- Cell and Molecular Biology Program, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
- Cell and Molecular Biology Program, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
- Correspondence: ; Tel.: +1-(479)-575-2583; Fax: +1-(479)-575-7139
| |
Collapse
|
7
|
Beeler JA, Burghardt NS. The Rise and Fall of Dopamine: A Two-Stage Model of the Development and Entrenchment of Anorexia Nervosa. Front Psychiatry 2022; 12:799548. [PMID: 35087433 PMCID: PMC8787068 DOI: 10.3389/fpsyt.2021.799548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Dopamine has long been implicated as a critical neural substrate mediating anorexia nervosa (AN). Despite nearly 50 years of research, the putative direction of change in dopamine function remains unclear and no consensus on the mechanistic role of dopamine in AN has been achieved. We hypothesize two stages in AN- corresponding to initial development and entrenchment- characterized by opposite changes in dopamine. First, caloric restriction, particularly when combined with exercise, triggers an escalating spiral of increasing dopamine that facilitates the behavioral plasticity necessary to establish and reinforce weight-loss behaviors. Second, chronic self-starvation reverses this escalation to reduce or impair dopamine which, in turn, confers behavioral inflexibility and entrenchment of now established AN behaviors. This pattern of enhanced, followed by impaired dopamine might be a common path to many behavioral disorders characterized by reinforcement learning and subsequent behavioral inflexibility. If correct, our hypothesis has significant clinical and research implications for AN and other disorders, such as addiction and obesity.
Collapse
Affiliation(s)
- Jeff A. Beeler
- Department of Psychology, Queens College, City University of New York, Flushing, NY, United States
- Psychology Program, The Graduate Center, CUNY, New York, NY, United States
- Biology Program, The Graduate Center, City University of New York, New York, NY, United States
| | - Nesha S. Burghardt
- Psychology Program, The Graduate Center, CUNY, New York, NY, United States
- Department of Psychology, Hunter College, CUNY, New York, NY, United States
| |
Collapse
|
8
|
Adeghate E, Lotfy M, D'Souza C, Alseiari SM, Alsaadi AA, Qahtan SA. Hypocretin/orexin modulates body weight and the metabolism of glucose and insulin. Diabetes Metab Res Rev 2020; 36:e3229. [PMID: 31655012 DOI: 10.1002/dmrr.3229] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/16/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022]
Abstract
The hypocretin/orexin (Hcrt/orexin) unit affects the functions of the nervous, cardiovascular, gastrointestinal, and reproductive systems. Hcrt/orexin ligands and receptors have been localized to different parts of the central and peripheral nervous systems, cerebrospinal fluid and blood, exocrine (pancreas, salivary, lacrimal) as well as endocrine (pancreatic islets, pituitary, adrenal) glands. Several factors including stress, glucagon-like peptide-1 agonists, glutamate, nicotine, glucose, and hypoglycaemia stimulate the expression of Hcrt/orexin system, but it is inhibited by ageing, bone morphogenetic protein, hypoxia/hypercapnia, melanocortin receptor accessory protein 2, and glucagon. Literature reports show that Hcrt/orexin can significantly increase insulin secretion from normal and diabetic rat pancreata. Hcrt/orexin decreases blood glucose concentration and reduces insulin resistance partly via increased tissue expression of glucose transporter type 4. It reduces obesity by increasing browning of fat cells and energy expenditure. Taken together, Hcrt/orexin modulates obesity and the metabolism of glucose and insulin. The Hcrt/orexin system may thus be a target in the development of new therapies for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Lotfy
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Crystal D'Souza
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saleh Meqbel Alseiari
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdulla Ali Alsaadi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saif Abdo Qahtan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
9
|
El-Mehdi M, Takhlidjt S, Khiar F, Prévost G, do Rego JL, do Rego JC, Benani A, Nedelec E, Godefroy D, Arabo A, Lefranc B, Leprince J, Anouar Y, Chartrel N, Picot M. Glucose homeostasis is impaired in mice deficient in the neuropeptide 26RFa (QRFP). BMJ Open Diabetes Res Care 2020; 8:8/1/e000942. [PMID: 32114486 PMCID: PMC7050347 DOI: 10.1136/bmjdrc-2019-000942] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/09/2020] [Accepted: 01/28/2020] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION 26RFa (pyroglutamyl RFamide peptide (QRFP)) is a biologically active peptide that has been found to control feeding behavior by stimulating food intake, and to regulate glucose homeostasis by acting as an incretin. The aim of the present study was thus to investigate the impact of 26RFa gene knockout on the regulation of energy and glucose metabolism. RESEARCH DESIGN AND METHODS 26RFa mutant mice were generated by homologous recombination, in which the entire coding region of prepro26RFa was replaced by the iCre sequence. Energy and glucose metabolism was evaluated through measurement of complementary parameters. Morphological and physiological alterations of the pancreatic islets were also investigated. RESULTS Our data do not reveal significant alteration of energy metabolism in the 26RFa-deficient mice except the occurrence of an increased basal metabolic rate. By contrast, 26RFa mutant mice exhibited an altered glycemic phenotype with an increased hyperglycemia after a glucose challenge associated with an impaired insulin production, and an elevated hepatic glucose production. Two-dimensional and three-dimensional immunohistochemical experiments indicate that the insulin content of pancreatic β cells is much lower in the 26RFa-/- mice as compared with the wild-type littermates. CONCLUSION Disruption of the 26RFa gene induces substantial alteration in the regulation of glucose homeostasis, with in particular a deficit in insulin production by the pancreatic islets. These findings further support the notion that 26RFa is an important regulator of glucose homeostasis.
Collapse
|
10
|
Increased minimum alveolar concentration-awake of Sevoflurane in women of breast surgery with sleep disorders. BMC Anesthesiol 2020; 20:17. [PMID: 31959101 PMCID: PMC6970294 DOI: 10.1186/s12871-020-0931-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sleep disorders are commonly encountered in clinic. Evidences showed that sleep deprivation may modulate the effectiveness of general anesthetics in rats. However, this phenomenon has not been explored in humans. The study aimed to investigate whether the hypnotic potency of sevoflurane in patients with sleep disorders differ from patients with normal sleep habits. METHODS We recruited 44 patients scheduled for elective breast surgery and eventually analyzed 38 patients, including 19 subjects with normal sleep habits and 19 subjects with sleep disorders. According to the Dixon 'up-and-down' design, patients received sevoflurane at preselected concentrations starting at 1.0 vol%. After a steady-state period, a verbal command for testing awakening was performed. Based on the negative or positive response to the verbal command, we decreased or increased the concentration of sevoflurane by 0.2 vol% in the next patient accordingly. Plasma orexin-A was also measured before observation. RESULTS The MACawake of sevoflurane was 0.80% [95% confidence interval (CI), 0.683-0.926%] in the sleep disordered group vs 0.60% [95% CI, 0.493-0.689%] in the control group. The relative median potency between groups was 0.750 (95% CI, 0.236-0.969). Patients with sleep disorders had significantly higher orexin-A levels than control (72.17 ± 18.24 vs. 36.16 ± 14.18 pg/mL). A significant, positive relationship was detected between orexin-A level and probability of awakening (OR = 1.081, 95% CI is 1.020-1.146, P = 0.008). CONCLUSIONS MACawake of sevoflurane is higher in mild-aged women of breast surgery with sleep disorders compared to those with normal sleep habits. The increased anesthetic requirement may be related to changes of orexin-A levels. These findings suggest that sleep may have a potential impact on clinical anesthesia, including changes of sensitivity to anesthetics or postoperative complications. Further research is needed to confirm this hypothesis. CLINICAL TRIAL REGISTRATION Chinese Clinical Trial Registry (ChiCTR1800016022), date of registration 07 May 2018.
Collapse
|
11
|
Untangling narcolepsy and diabetes: Pathomechanisms with eyes on therapeutic options. Brain Res 2019; 1718:212-222. [DOI: 10.1016/j.brainres.2019.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/23/2019] [Accepted: 04/13/2019] [Indexed: 12/14/2022]
|
12
|
Prévost G, Picot M, Le Solliec MA, Arabo A, Berrahmoune H, El Mehdi M, Cherifi S, Benani A, Nédélec E, Gobet F, Brunel V, Leprince J, Lefebvre H, Anouar Y, Chartrel N. The neuropeptide 26RFa in the human gut and pancreas: potential involvement in glucose homeostasis. Endocr Connect 2019; 8:941-951. [PMID: 31234144 PMCID: PMC6612231 DOI: 10.1530/ec-19-0247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Recent studies performed in mice revealed that the neuropeptide 26RFa regulates glucose homeostasis by acting as an incretin and by increasing insulin sensitivity. However, in humans, an association between 26RFa and the regulation of glucose homeostasis is poorly documented. In this study, we have thus investigated in detail the distribution of 26RFa and its receptor, GPR103, in the gut and the pancreas, and determined the response of this peptidergic system to an oral glucose challenge in obese patients. DESIGN AND METHODS Distribution of 26RFa and GPR103 was examined by immunohistochemistry using gut and pancreas tissue sections. Circulating 26RFa was determined using a specific radioimmunoassay in plasma samples collected during an oral glucose tolerance test. RESULTS 26RFa and GPR103 are present all along the gut but are more abundant in the stomach and duodenum. In the stomach, the peptide and its receptor are highly expressed in the gastric glands, whereas in the duodenum, ileum and colon they are present in the enterocytes and the goblet cells. In the pancreatic islets, the 26RFa/GPR103 system is mostly present in the β cells. During an oral glucose tolerance test, plasma 26RFa profile is different between obese patients and healthy volunteers, and we found strong positive correlations between 26RFa blood levels and the BMI, and with various parameters of insulin secretion and insulin resistance. CONCLUSION The present data suggest an involvement of the 26RFa/GPR103 peptidergic system in the control of human glucose homeostasis.
Collapse
Affiliation(s)
- Gaëtan Prévost
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, Normandie Univ, UNIROUEN, Rouen University Hospital, Rouen, France
- Centre d’Investigation Clinique (CIC-CRB)-INSERM 1404, Rouen University Hospital, Rouen, France
- Correspondence should be addressed to G Prévost:
| | - Marie Picot
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Marie-Anne Le Solliec
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Arnaud Arabo
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Hind Berrahmoune
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, Normandie Univ, UNIROUEN, Rouen University Hospital, Rouen, France
- Centre d’Investigation Clinique (CIC-CRB)-INSERM 1404, Rouen University Hospital, Rouen, France
| | - Mouna El Mehdi
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Saloua Cherifi
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Alexandre Benani
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon , France
| | - Emmanuelle Nédélec
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté, Dijon , France
| | - Françoise Gobet
- Department of Anatomopathophysiology, Normandie Univ, UNIROUEN, Rouen University Hospital, Rouen, France
| | - Valéry Brunel
- Department of Biochemistry, Normandie Univ, UNIROUEN, Rouen University Hospital, Rouen, France
| | - Jérôme Leprince
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Hervé Lefebvre
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
- Department of Endocrinology, Diabetes and Metabolic Diseases, Normandie Univ, UNIROUEN, Rouen University Hospital, Rouen, France
- Centre d’Investigation Clinique (CIC-CRB)-INSERM 1404, Rouen University Hospital, Rouen, France
| | - Youssef Anouar
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| | - Nicolas Chartrel
- Normandie Univ, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N), Rouen, France
| |
Collapse
|
13
|
Prévost G, Arabo A, Le Solliec MA, Bons J, Picot M, Maucotel J, Berrahmoune H, El Mehdi M, Cherifi S, Benani A, Nédélec E, Coëffier M, Leprince J, Nordqvist A, Brunel V, Déchelotte P, Lefebvre H, Anouar Y, Chartrel N. Neuropeptide 26RFa (QRFP) is a key regulator of glucose homeostasis and its activity is markedly altered in obese/hyperglycemic mice. Am J Physiol Endocrinol Metab 2019; 317:E147-E157. [PMID: 31084498 DOI: 10.1152/ajpendo.00540.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent studies have shown that the hypothalamic neuropeptide 26RFa regulates glucose homeostasis by acting as an incretin and increasing insulin sensitivity. In this study, we further characterized the role of the 26RFa/GPR103 peptidergic system in the global regulation of glucose homeostasis using a 26RFa receptor antagonist and also assessed whether a dysfunction of the 26RFa/GPR103 system occurs in obese hyperglycemic mice. First, we demonstrate that administration of the GPR103 antagonist reduces the global glucose-induced incretin effect and insulin sensitivity whereas, conversely, administration of exogenous 26RFa attenuates glucose-induced hyperglycemia. Using a mouse model of high-fat diet-induced obesity and hyperglycemia, we found a loss of the antihyperglcemic effect and insulinotropic activity of 26RFa, accompanied with a marked reduction of its insulin-sensitive effect. Interestingly, this resistance to 26RFa is associated with a downregulation of the 26RFa receptor in the pancreatic islets, and insulin target tissues. Finally, we observed that the production and release kinetics of 26RFa after an oral glucose challenge is profoundly altered in the high-fat mice. Altogether, the present findings support the view that 26RFa is a key regulator of glucose homeostasis whose activity is markedly altered under obese/hyperglycemic conditions.
Collapse
Affiliation(s)
- Gaëtan Prévost
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
- Normandie University, UNIROUEN, Rouen University Hospital, Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen , France
| | - Arnaud Arabo
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
| | - Marie-Anne Le Solliec
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
| | - Justine Bons
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
- Normandie University, UNIROUEN, Rouen University Hospital, Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen , France
| | - Marie Picot
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
| | - Julie Maucotel
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
| | - Hind Berrahmoune
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
- Normandie University, UNIROUEN, Rouen University Hospital, Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen , France
| | - Mouna El Mehdi
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
| | - Saloua Cherifi
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
| | - Alexandre Benani
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté , Dijon , France
| | - Emmanuelle Nédélec
- Center for Taste and Feeding Behaviour, CNRS (UMR6265), INRA (UMR1324), Université de Bourgogne-Franche Comté , Dijon , France
| | - Moïse Coëffier
- Normandie University, UNIROUEN, INSERM U1073 Nutrition, Inflammation and dysfunction of gut-brain axis, Rouen , France
- Normandie University, UNIROUEN, Rouen University Hospital, Department of Nutrition , Rouen , France
| | - Jérôme Leprince
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
| | - Anneli Nordqvist
- Cardiovascular Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Mölndal , Sweden
| | - Valéry Brunel
- Normandie University, UNIROUEN, Rouen University Hospital, Department of Biochemistry , Rouen , France
| | - Pierre Déchelotte
- Normandie University, UNIROUEN, INSERM U1073 Nutrition, Inflammation and dysfunction of gut-brain axis, Rouen , France
- Normandie University, UNIROUEN, Rouen University Hospital, Department of Nutrition , Rouen , France
| | - Hervé Lefebvre
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
- Normandie University, UNIROUEN, Rouen University Hospital, Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen , France
| | - Youssef Anouar
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
| | - Nicolas Chartrel
- Normandie University, UNIROUEN, INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication (DC2N) , Rouen , France
| |
Collapse
|
14
|
Orexin-A Stimulates Insulin Secretion Through the Activation of the OX1 Receptor and Mammalian Target of Rapamycin in Rat Insulinoma Cells. Pancreas 2019; 48:568-573. [PMID: 30946236 DOI: 10.1097/mpa.0000000000001280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The study aimed to investigate the involvement of the mammalian target of rapamycin (mTOR) signaling pathway in orexin-A/OX1 receptor-induced insulin secretion in rat insulinoma INS-1 cells. METHODS Rat insulinoma INS-1 cells were grown and treated with various concentrations of orexin-A, with or without OX1 receptor-selective antagonist SB674042 or the phosphatidylinositol 3-kinase/mTOR antagonist PF-04691502. Insulin release experiments, Western blot analysis, and statistical analysis were conducted using INS-1 cells. RESULTS Our results showed that treating cells with orexin-A increased the expression of the OX1 receptor and the phosphorylation of mTOR in a concentration-dependent manner. An increase in insulin secretion was also observed for cells treated with orexin-A. We further demonstrated that the increase in insulin secretion was dependent on the activation of the OX1 receptor and mTOR signaling pathway by using the OX1 receptor-selective antagonist SB674042 or the phosphatidylinositol 3-kinase/mTOR antagonist PF-04691502, which abolished the effects of orexin-A treatment. CONCLUSIONS Our results concluded that orexin-A/OX1 receptor stimulates insulin secretion by activating AKT and its downstream target, mTOR. Therefore, orexins may regulate the energy balance for cell survival with the involvement of mTOR in this process.
Collapse
|
15
|
Ickin Gulen M, Guven Bagla A, Yavuz O, Hismiogullari AA. Orexin and adiponectin in high fat diet–induced insulin resistance. J Histotechnol 2018. [DOI: 10.1080/01478885.2018.1520952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Meltem Ickin Gulen
- School of Medicine, Department of Histology and Embryology, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Aysel Guven Bagla
- School of Medicine, Department of Histology and Embryology, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Ozlem Yavuz
- Gulhane School of Medicine, Department of Medical Biochemistry, Saglik Bilimleri University, Ankara, Turkey
| | | |
Collapse
|
16
|
Skrzypski M, Billert M, Nowak KW, Strowski MZ. The role of orexin in controlling the activity of the adipo-pancreatic axis. J Endocrinol 2018; 238:R95-R108. [PMID: 29848609 DOI: 10.1530/joe-18-0122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/30/2018] [Indexed: 12/29/2022]
Abstract
Orexin A and B are two neuropeptides, which regulate a variety of physiological functions by interacting with central nervous system and peripheral tissues. Biological effects of orexins are mediated through two G-protein-coupled receptors (OXR1 and OXR2). In addition to their strong influence on the sleep-wake cycle, there is growing evidence that orexins regulate body weight, glucose homeostasis and insulin sensitivity. Furthermore, orexins promote energy expenditure and protect against obesity by interacting with brown adipocytes. Fat tissue and the endocrine pancreas play pivotal roles in maintaining energy homeostasis. Since both organs are crucially important in the context of pathophysiology of obesity and diabetes, we summarize the current knowledge regarding the role of orexins and their receptors in controlling adipocytes as well as the endocrine pancreatic functions. Particularly, we discuss studies evaluating the effects of orexins in controlling brown and white adipocytes as well as pancreatic alpha and beta cell functions.
Collapse
Affiliation(s)
- M Skrzypski
- Department of Animal Physiology and BiochemistryPoznań University of Life Sciences, Poznań, Poland
| | - M Billert
- Department of Animal Physiology and BiochemistryPoznań University of Life Sciences, Poznań, Poland
| | - K W Nowak
- Department of Animal Physiology and BiochemistryPoznań University of Life Sciences, Poznań, Poland
| | - M Z Strowski
- Department of Hepatology and Gastroenterology & The Interdisciplinary Centre of Metabolism: EndocrinologyDiabetes and Metabolism, Charité-University Medicine Berlin, Berlin, Germany
- Park-Klinik WeissenseeInternal Medicine - Gastroenterology, Berlin, Germany
| |
Collapse
|
17
|
Joshi D, Sarkar D, Singh SK. The hypothalamic neuropeptide orexin A- a possible regulator in glucose homeostasis and germ cell kinetics in adult mice testes. Biochimie 2018; 152:94-109. [PMID: 29964087 DOI: 10.1016/j.biochi.2018.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
Abstract
Orexin A (OXA), a hypothalamic neuropeptide, regulates food intake, sleep-wake cycle and energy balance by binding to its receptor (OX1R). Apart from brain, OXA and OX1R are also present in peripheral organs including reproductive tissues. Mammalian reproduction depends on uptake and proper utilization of glucose in the testes. This study, therefore, examined role of OXA/OX1R system in regulation of glucose homeostasis in adult mouse testis under in vivo and ex vivo conditions. Binding of OXA to OX1R was blocked using an OX1R antagonist, SB-334867. Mice were given a single bilateral intratesticular injection of the antagonist at doses of 4 and 12μg/mouse and sacrificed 24 h post-injection. In order to understand the direct role of OXA in testes of adult mice, an ex vivo experiment was performed where binding of OXA to OX1R in the testis was blocked by using the same OX1R antagonist. The antagonist treatment affected testicular glucose and lactate concentration with concomitant down-regulation in the expression of glucose transporters 3 and 8. A decreased activity in lactate dehydrogenase enzyme and imbalance between germ cell survival and proliferation were also noted in testes in treated mice. The results of ex vivo study supported the results obtained from in vivo study. The findings thus suggest involvement of OXA/OX1R system in regulation of testicular glucose homeostasis and germ cell kinetics in adult mice.
Collapse
Affiliation(s)
- Deepanshu Joshi
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Debarshi Sarkar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
18
|
Rani M, Kumar R, Krishan P. Role of orexins in the central and peripheral regulation of glucose homeostasis: Evidences & mechanisms. Neuropeptides 2018; 68:1-6. [PMID: 29472002 DOI: 10.1016/j.npep.2018.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 12/23/2022]
Abstract
Orexins (A & B), neuropeptides of hypothalamic origin, act through G-protein coupled receptors, orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R). The wide projection of orexin neurons in the hypothalamic region allows them to interact with the other neurons and regulate food intake, emotional status, sleep wake cycle and energy metabolism. The autonomic nervous system plays an important regulatory role in the energy metabolism as well as glucose homeostasis. Orexin neurons are also under the control of GABAergic neurons. Emerging preclinical as well as clinical research has reported the role of orexins in the glucose homeostasis since orexins are involved in hypothalamic metabolism circuitry and also rely on sensing peripheral metabolic signals such as gut, adipose derived and pancreatic peptides. Apart from the hypothalamic origin, integration and control in various physiological functions, peripheral origin in wide organs, raises the possibility of use of orexins as a therapeutic biomarker in the management of metabolic disorders. The present review focuses the central as well as peripheral roles of orexins in the glucose homeostasis.
Collapse
Affiliation(s)
- Monika Rani
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, 147002, India
| | - Raghuvansh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, 147002, India
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, 147002, India.
| |
Collapse
|
19
|
Zarifkar M, Noshad S, Shahriari M, Afarideh M, Khajeh E, Karimi Z, Ghajar A, Esteghamati A. Inverse Association of Peripheral Orexin-A with Insulin Resistance in Type 2 Diabetes Mellitus: A Randomized Clinical Trial. Rev Diabet Stud 2017; 14:301-310. [PMID: 29145540 DOI: 10.1900/rds.2017.14.301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIMS To investigate the association between serum orexin concentrations and insulin resistance/sensitivity in a sample of patients with type 2 diabetes mellitus, and to study the effects of anti-hyperglycemic treatment on orexin concentrations over three months. METHODS This study was designed as a randomized, open-label, clinical trial. Before allocation, sixty medication-naïve, newly-diagnosed, type 2 diabetes patients underwent a 75 g oral glucose tolerance test (OGTT). Afterwards, using a randomized trial design (IRCT201102275917N1) patients were allocated to either the metformin (1000 mg daily) or pioglitazone (30 mg daily) arm, and were reexamined after three months. Serum insulin, plasma glucose, and orexin concentrations were measured at baseline, during OGTT, and after three months. RESULTS Orexin concentrations significantly decreased after OGTT (0 vs. 120 min: 0.63 ± 0.07 vs. 0.31 ± 0.03 ng/ml, p < 0.001). Insulin resistance determined by homeostasis model assessment of insulin resistance (HOMA-IR) was significantly and negatively correlated with orexin (r = -0.301, p = 0.024). Furthermore, orexin concentrations were significantly and positively correlated with the insulin sensitivity index derived from OGTT (r = 0.326, p = 0.014). Three-month treatment with metformin and pioglitazone significantly improved insulin sensitivity and increased orexin concentrations by 26% (p = 0.025) and 14% (p = 0.076), respectively. Between-group analysis showed that changes in orexin concentrations with metformin and pioglitazone were not significantly different (p = 0.742). CONCLUSIONS There was a negative association between peripheral orexin concentrations and insulin resistance in type 2 diabetes patients. Three-month anti-hyperglycemic treatment with proportionate doses of metformin or pioglitazone increased orexin concentrations via amelioration of insulin resistance and improvement of glycemic control.
Collapse
Affiliation(s)
- Mitra Zarifkar
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Noshad
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Shahriari
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Afarideh
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elias Khajeh
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Karimi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghajar
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Decreased expression of orexin 1 receptor in adult mice testes during alloxan-induced diabetes mellitus perturbs testicular steroidogenesis and glucose homeostasis. Biochem Biophys Res Commun 2017; 490:1346-1354. [DOI: 10.1016/j.bbrc.2017.07.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 01/02/2023]
|
21
|
Pace M, Adamantidis A, Facchin L, Bassetti C. Role of REM Sleep, Melanin Concentrating Hormone and Orexin/Hypocretin Systems in the Sleep Deprivation Pre-Ischemia. PLoS One 2017; 12:e0168430. [PMID: 28061506 PMCID: PMC5218733 DOI: 10.1371/journal.pone.0168430] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022] Open
Abstract
STUDY OBJECTIVES Sleep reduction after stroke is linked to poor recovery in patients. Conversely, a neuroprotective effect is observed in animals subjected to acute sleep deprivation (SD) before ischemia. This neuroprotection is associated with an increase of the sleep, melanin concentrating hormone (MCH) and orexin/hypocretin (OX) systems. This study aims to 1) assess the relationship between sleep and recovery; 2) test the association between MCH and OX systems with the pathological mechanisms of stroke. METHODS Sprague-Dawley rats were assigned to four experimental groups: (i) SD_IS: SD performed before ischemia; (ii) IS: ischemia; (iii) SD_Sham: SD performed before sham surgery; (iv) Sham: sham surgery. EEG and EMG were recorded. The time-course of the MCH and OX gene expression was measured at 4, 12, 24 hours and 3, 4, 7 days following ischemic surgery by qRT-PCR. RESULTS A reduction of infarct volume was observed in the SD_IS group, which correlated with an increase of REM sleep observed during the acute phase of stroke. Conversely, the IS group showed a reduction of REM sleep. Furthermore, ischemia induces an increase of MCH and OX systems during the acute phase of stroke, although, both systems were still increased for a long period of time only in the SD_IS group. CONCLUSIONS Our data indicates that REM sleep may be involved in the neuroprotective effect of SD pre-ischemia, and that both MCH and OX systems were increased during the acute phase of stroke. Future studies should assess the role of REM sleep as a prognostic marker, and test MCH and OXA agonists as new treatment options in the acute phase of stroke.
Collapse
Affiliation(s)
- Marta Pace
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), Genova, Italy
- * E-mail:
| | - Antoine Adamantidis
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Laura Facchin
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
| | - Claudio Bassetti
- Center for Experimental Neurology (ZEN), Department of Neurology, Bern University Hospital, Bern, Switzerland
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Bern University Hospital, Bern, Switzerland
- Division of Cognitive and Restorative Neurology, Department of Neurology, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
22
|
Taleb N, Haidar A, Messier V, Gingras V, Legault L, Rabasa-Lhoret R. Glucagon in artificial pancreas systems: Potential benefits and safety profile of future chronic use. Diabetes Obes Metab 2017; 19:13-23. [PMID: 27629286 DOI: 10.1111/dom.12789] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/09/2016] [Accepted: 09/11/2016] [Indexed: 12/17/2022]
Abstract
The role of glucagon in the pathophysiology of diabetes has long been recognized, although its approved clinical use has so far been limited to the emergency treatment of severe hypoglycaemia. A novel use of glucagon as intermittent mini-boluses is proposed in the dual-hormone version (insulin and glucagon) of the external artificial pancreas. Short-term studies suggest that the incorporation of glucagon into artificial pancreas systems has the potential to further decrease hypoglycaemic risk and improve overall glucose control; however, the potential long-term safety and benefits also need to be investigated given the recognized systemic effects of glucagon. In the present report, we review the available animal and human data on the physiological functions of glucagon, as well as its pharmacological use, according to dosing and duration (acute and chronic). Along with its main role in hepatic glucose metabolism, glucagon affects the cardiovascular, renal, pulmonary and gastrointestinal systems. It has a potential role in weight reduction through its central satiety function and its role in increasing energy expenditure. Most of the pharmacological studies investigating the effects of glucagon have used doses exceeding 1 mg, in contrast to the mini-boluses used in the artificial pancreas. The available data are reassuring but comprehensive human studies using small but chronic glucagon doses that are close to the physiological ranges are lacking. We propose a list of variables that could be monitored during long-term trials of the artificial pancreas. Such trials should address the questions about the risk-benefit ratio of chronic glucagon use.
Collapse
Affiliation(s)
- Nadine Taleb
- Metabolic diseases unit, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Department of Biomedical Sciences, Faculty of Medicine, Édouard-Montpetit, Université de Montréal, Montréal, Québec, Canada
| | - Ahmad Haidar
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montréal, Québec, Canada
- Division of Endocrinology, Department of Medicine, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Virginie Messier
- Metabolic diseases unit, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - Véronique Gingras
- Metabolic diseases unit, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Laurent Legault
- Montreal Children's Hospital, Department of Pediatrics, McGill University Health Centre, Montréal, Québec, Canada
| | - Rémi Rabasa-Lhoret
- Metabolic diseases unit, Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
- Montreal Diabetes Research Center, Montréal, Québec, Canada
- Nutrition Department, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
23
|
Sauchelli S, Jiménez-Murcia S, Fernández-García JC, Garrido-Sánchez L, Tinahones FJ, Casanueva FF, Baños RM, Botella C, Crujeiras AB, de la Torre R, Fernández-Real JM, Frühbeck G, Granero R, Ortega FJ, Rodríguez A, Zipfel S, Giel KE, Menchón JM, Fernández-Aranda F. Interaction Between Orexin-A and Sleep Quality in Females in Extreme Weight Conditions. EUROPEAN EATING DISORDERS REVIEW 2016; 24:510-517. [DOI: 10.1002/erv.2484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Sarah Sauchelli
- Department of Psychiatry; University Hospital of Bellvitge-IDIBELL; Barcelona Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry; University Hospital of Bellvitge-IDIBELL; Barcelona Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Department of Clinical Sciences, School of Medicine; University of Barcelona; Barcelona Spain
| | - Jose C. Fernández-García
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Clínico Virgen de la Victoria; Malaga Spain
| | - Lourdes Garrido-Sánchez
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Clínico Virgen de la Victoria; Malaga Spain
| | - Francisco J. Tinahones
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA); Hospital Clínico Virgen de la Victoria; Malaga Spain
| | - Felipe F. Casanueva
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Department of Medicine, Endocrinology Division, Santiago de Compostela University; Complejo Hospitalario Universitario; Santiago de Compostela Spain
| | - Rosa M. Baños
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Department of Psychological, Personality, Evaluation and Treatment; University of Valencia; Valencia Spain
| | - Cristina Botella
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Department of Basic Psychology, Clinic and Psychobiology; University Jaume I; Castelló Spain
| | - Ana B. Crujeiras
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Department of Medicine, Endocrinology Division, Santiago de Compostela University; Complejo Hospitalario Universitario; Santiago de Compostela Spain
| | - Rafael de la Torre
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Integrated Pharmacology and Systems Neurosciences Research Group, Neuroscience Research Program Organization IMIM; Hospital del Mar Medical Research Institute; Barcelona Spain
- Department of Health and Experimental Sciences; Universitat Pompeu Fabra; Barcelona Spain
| | - Jose M. Fernández-Real
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Department of Diabetes, Endocrinology and Nutrition, Institu d'Investigació, Biomèdica de Girona (IdIBGi); Hospital Dr Josep Trueta; Girona Spain
| | - Gema Frühbeck
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Metabolic Research Laboratory, Clínica Universidad de Navarra; University of Navarra-IdiSNA; Pamplona Spain
| | - Roser Granero
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Department of Psychobiology and Methodology; Autonomous University of Barcelona; Barcelona Spain
| | - Francisco J. Ortega
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Department of Diabetes, Endocrinology and Nutrition, Institu d'Investigació, Biomèdica de Girona (IdIBGi); Hospital Dr Josep Trueta; Girona Spain
| | - Amaia Rodríguez
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Metabolic Research Laboratory, Clínica Universidad de Navarra; University of Navarra-IdiSNA; Pamplona Spain
| | - Stephan Zipfel
- Department of Psychosomatic Medicine; University of Tübingen; Tübingen Germany
| | - Katrin E. Giel
- Department of Psychosomatic Medicine; University of Tübingen; Tübingen Germany
| | - Jose M. Menchón
- Department of Psychiatry; University Hospital of Bellvitge-IDIBELL; Barcelona Spain
- Department of Clinical Sciences, School of Medicine; University of Barcelona; Barcelona Spain
- CIBER Salud Mental (CIBERSAM); ISCIII; Barcelona Spain
| | - Fernando Fernández-Aranda
- Department of Psychiatry; University Hospital of Bellvitge-IDIBELL; Barcelona Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN); Instituto de Salud Carlos III; Madrid Spain
- Department of Clinical Sciences, School of Medicine; University of Barcelona; Barcelona Spain
| |
Collapse
|
24
|
Mohammed M, Yanagisawa M, Blessing W, Ootsuka Y. Attenuated cold defense responses in orexin neuron-ablated rats. Temperature (Austin) 2016; 3:465-475. [PMID: 28349086 PMCID: PMC5079225 DOI: 10.1080/23328940.2016.1184366] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/13/2022] Open
Abstract
Recent reports of the use of transgenic mice targeting orexin neurons show that the ablation of orexin neurons in the hypothalamus causes hypothermia during cold exposure. This suggests the importance of orexin neurons for cold-induced autonomic and physiological defense responses, including brown adipose tissue (BAT) thermogenesis and vasoconstriction in thermoregulatory cutaneous vascular bed. The present study investigated whether the ablation of orexin neurons attenuated cold-elicited BAT thermogenesis and cutaneous vasoconstriction. The study took advantage of our established conscious rat experimental model of direct measurement of BAT and body temperature and tail cutaneous blood flow. The study used transgenic orexin neurons-ablated (ORX-AB) rats and wild type (WT) rats. BAT temperature and tail artery blood flow with pre-implanted probes were measured, as well as behavioral locomotor activity under conscious free-moving condition. Gradually, the ambient temperature was decreased to below 5°C. ORX-AB rats showed an attenuated cold-induced BAT thermogenesis and behavioral activity, and delayed tail vasoconstriction. An ambient temperature that initiated BAT thermogenesis and established full cutaneous vasoconstriction was 14.1 ± 1.9 °C, which was significantly lower than 20.5 ± 1.9 °C, the corresponding value in WT rats (n = 10, P < 0.01). The results from this study suggest that the integrity of orexin-synthesising neurons in thermoregulatory networks is important for full expression of the cold defense responses.
Collapse
Affiliation(s)
- Mazher Mohammed
- Centre for Neuroscience, Department of Human Physiology, Flinders University , Adelaide, SA, Australia
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William Blessing
- Centre for Neuroscience, Department of Human Physiology, Flinders University , Adelaide, SA, Australia
| | - Youichirou Ootsuka
- Centre for Neuroscience, Department of Human Physiology, Flinders University , Adelaide, SA, Australia
| |
Collapse
|
25
|
Prévost G, Jeandel L, Arabo A, Coëffier M, El Ouahli M, Picot M, Alexandre D, Gobet F, Leprince J, Berrahmoune H, Déchelotte P, Malagon M, Bonner C, Kerr-Conte J, Chigr F, Lefebvre H, Anouar Y, Chartrel N. Hypothalamic Neuropeptide 26RFa Acts as an Incretin to Regulate Glucose Homeostasis. Diabetes 2015; 64:2805-16. [PMID: 25858563 DOI: 10.2337/db14-1864] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/02/2015] [Indexed: 11/13/2022]
Abstract
26RFa is a hypothalamic neuropeptide that promotes food intake. 26RFa is upregulated in obese animal models, and its orexigenic activity is accentuated in rodents fed a high-fat diet, suggesting that this neuropeptide might play a role in the development and maintenance of the obese status. As obesity is frequently associated with type 2 diabetes, we investigated whether 26RFa may be involved in the regulation of glucose homeostasis. In the current study, we show a moderate positive correlation between plasma 26RFa levels and plasma insulin in patients with diabetes. Plasma 26RFa concentration also increases in response to an oral glucose tolerance test. In addition, we found that 26RFa and its receptor GPR103 are present in human pancreatic β-cells as well as in the gut. In mice, 26RFa attenuates the hyperglycemia induced by a glucose load, potentiates insulin sensitivity, and increases plasma insulin concentrations. Consistent with these data, 26RFa stimulates insulin production by MIN6 insulinoma cells. Finally, we show, using in vivo and in vitro approaches, that a glucose load induces a massive secretion of 26RFa by the small intestine. Altogether, the present data indicate that 26RFa acts as an incretin to regulate glucose homeostasis.
Collapse
Affiliation(s)
- Gaëtan Prévost
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Rouen, France Department of Endocrinology, Diabetes and Metabolic Diseases, Institute for Research and Innovation in Biomedicine, University Hospital of Rouen, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France
| | - Lydie Jeandel
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France
| | - Arnaud Arabo
- Normandy University, Caen, France University of Rouen, Rouen, France
| | - Moïse Coëffier
- Normandy University, Caen, France University of Rouen, Rouen, France INSERM U1073, Institute for Research and Innovation in Biomedicine, Rouen, France Department of Nutrition, University Hospital of Rouen, Rouen, France
| | - Mariama El Ouahli
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France Biological Engineering Laboratory, Life Sciences, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Marie Picot
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France
| | - David Alexandre
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France
| | - Françoise Gobet
- Normandy University, Caen, France University of Rouen, Rouen, France Department of Pathology, University Hospital of Rouen, Rouen, France
| | - Jérôme Leprince
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France
| | - Hind Berrahmoune
- Department of Endocrinology, Diabetes and Metabolic Diseases, Institute for Research and Innovation in Biomedicine, University Hospital of Rouen, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France
| | - Pierre Déchelotte
- Normandy University, Caen, France University of Rouen, Rouen, France INSERM U1073, Institute for Research and Innovation in Biomedicine, Rouen, France Department of Nutrition, University Hospital of Rouen, Rouen, France
| | - Maria Malagon
- Department of Cell Biology, Physiology, and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba/Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
| | - Caroline Bonner
- INSERM U859, Biotherapies of Diabetes, Faculty of Medicine, University of Lille, Lille, France
| | - Julie Kerr-Conte
- INSERM U859, Biotherapies of Diabetes, Faculty of Medicine, University of Lille, Lille, France
| | - Fatiha Chigr
- Biological Engineering Laboratory, Life Sciences, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Hervé Lefebvre
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Rouen, France Department of Endocrinology, Diabetes and Metabolic Diseases, Institute for Research and Innovation in Biomedicine, University Hospital of Rouen, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France
| | - Youssef Anouar
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France
| | - Nicolas Chartrel
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine, Rouen, France Normandy University, Caen, France University of Rouen, Rouen, France
| |
Collapse
|
26
|
Cho GJ, Hong HR, Kim SW, Hong SC, Oh MJ, Kim HJ. Decreased umbilical orexin-A level is associated with idiopathic polyhydramnios. Acta Obstet Gynecol Scand 2015; 94:295-300. [DOI: 10.1111/aogs.12559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/08/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Geum Joon Cho
- Department of Obstetrics and Gynecology; College of Medicine; Korea University; Seoul Korea
| | - Hye-Ri Hong
- Department of Obstetrics and Gynecology; School of Medicine; Kyung Hee University; Seoul Korea
| | - Suhng Wook Kim
- Department of Biomedical Science; College of Health Sciences; Korea University; Seoul Korea
| | - Soon Cheol Hong
- Department of Obstetrics and Gynecology; College of Medicine; Korea University; Seoul Korea
| | - Min-Jeong Oh
- Department of Obstetrics and Gynecology; College of Medicine; Korea University; Seoul Korea
| | - Hai Joon Kim
- Department of Obstetrics and Gynecology; College of Medicine; Korea University; Seoul Korea
| |
Collapse
|
27
|
Arafat AM, Kaczmarek P, Skrzypski M, Pruszyńska-Oszmałek E, Kołodziejski P, Adamidou A, Ruhla S, Szczepankiewicz D, Sassek M, Billert M, Wiedenmann B, Pfeiffer AFH, Nowak KW, Strowski MZ. Glucagon regulates orexin A secretion in humans and rodents. Diabetologia 2014; 57:2108-16. [PMID: 25063274 DOI: 10.1007/s00125-014-3335-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/30/2014] [Indexed: 01/05/2023]
Abstract
AIMS/HYPOTHESIS Orexin A (OXA) modulates food intake, energy expenditure, and lipid and glucose metabolism. OXA regulates the secretion of insulin and glucagon, while glucose regulates OXA release. Here, we evaluate the role of glucagon in regulating OXA release both in vivo and in vitro. METHODS In a double-blind crossover study, healthy volunteers and type 1 diabetic patients received either intramuscular glucagon or placebo. Patients newly diagnosed with type 2 diabetes underwent hyperinsulinaemic-euglycaemic clamp experiments, and insulin-hypoglycaemia tests were performed on healthy volunteers. The primary endpoint was a change in OXA levels after intramuscular glucagon or placebo administration in healthy participants and patients with type 1 diabetes. Secondary endpoints included changes in OXA in healthy participants during insulin tolerance tests and in patients with type 2 diabetes under hyperinsulinaemic-euglycaemic conditions. Participants and staff conducting examinations and taking measurements were blinded to group assignment. OXA secretion in response to glucagon treatment was assessed in healthy and obese mice, the streptozotocin-induced mouse model of type 1 diabetes, and isolated rat pancreatic islets. RESULTS Plasma OXA levels declined in lean volunteers and in type 1 diabetic patients injected with glucagon. OXA levels increased during hyperinsulinaemic hypoglycaemia testing in healthy volunteers and during hyperinsulinaemic euglycaemic conditions in type 2 diabetic patients. Plasma OXA concentrations in healthy lean and obese mice and in a mouse model of type 1 diabetes were lower after glucagon treatment, compared with vehicle control. Glucagon decreased OXA secretion from isolated rat pancreatic islets at both low and high glucose levels. OXA secretion declined in pancreatic islets exposed to diazoxide at high and low glucose levels, and after exposure to an anti-insulin antibody. Glucagon further reduced OXA secretion in islets pretreated with diazoxide or an anti-insulin antibody. CONCLUSIONS/INTERPRETATION Glucagon inhibits OXA secretion in humans and animals, irrespective of changes in glucose or insulin levels. Through modifying OXA secretion, glucagon may influence energy expenditure, body weight, food intake and glucose metabolism.
Collapse
Affiliation(s)
- Ayman M Arafat
- Department of Endocrinology, Diabetes and Nutrition, Charité-University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gatta C, Russo F, Russolillo MG, Varricchio E, Paolucci M, Castaldo L, Lucini C, de Girolamo P, Cozzi B, Maruccio L. The orexin system in the enteric nervous system of the bottlenose dolphin (Tursiops truncatus). PLoS One 2014; 9:e105009. [PMID: 25144456 PMCID: PMC4140726 DOI: 10.1371/journal.pone.0105009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/17/2014] [Indexed: 11/19/2022] Open
Abstract
This study provides a general approach to the presence and possible role of orexins and their receptors in the gut (three gastric chambers and intestine) of confined environment bottlenose dolphin. The expression of prepro-orexin, orexin A and B and orexin 1 and 2 receptors were investigated by single immunostaining and western blot analysis. The co-localization of vasoactive intestinal peptide and orexin 1 receptor in the enteric nervous system was examined by double immunostaining. Also, orexin A concentration were measured in plasma samples to assess the possible diurnal variation of the plasma level of peptide in this species. Our results showed that the orexin system is widely distributed in bottlenose dolphin enteric nervous system of the all gastrointestinal tract examined. They are very peculiar and partially differs from that of terrestrial mammals. Orexin peptides and prepro-orexin were expressed in the main stomach, pyloric stomach and proximal intestine; while orexin receptors were expressed in the all examined tracts, with the exception of main stomach where found no evidence of orexin 2 receptor. Co-localization of vasoactive intestinal peptide and orexin 1 receptor were more evident in the pyloric stomach and proximal intestine. These data could suggest a possible role of orexin system on the contractility of bottlenose dolphin gastrointestinal districts. Finally, in agreement with several reports, bottlenose dolphin orexin A plasma level was higher in the morning during fasting. Our results emphasize some common features between bottlenose dolphin and terrestrial mammals. Certainly, further functional investigations may help to better explain the role of the orexin system in the energy balance of bottlenose dolphin and the complex interaction between feeding and digestive physiology.
Collapse
Affiliation(s)
- Claudia Gatta
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| | - Finizia Russo
- Department of Sciences and Technologies, University of Sannio, Benevento (BN), Italy
- * E-mail:
| | | | - Ettore Varricchio
- Department of Sciences and Technologies, University of Sannio, Benevento (BN), Italy
| | - Marina Paolucci
- Department of Sciences and Technologies, University of Sannio, Benevento (BN), Italy
| | - Luciana Castaldo
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
| | - Lucianna Maruccio
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| |
Collapse
|
29
|
Subhedar NK, Nakhate KT, Upadhya MA, Kokare DM. CART in the brain of vertebrates: circuits, functions and evolution. Peptides 2014; 54:108-30. [PMID: 24468550 DOI: 10.1016/j.peptides.2014.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 12/12/2022]
Abstract
Cocaine- and amphetamine-regulated transcript peptide (CART) with its wide distribution in the brain of mammals has been the focus of considerable research in recent years. Last two decades have witnessed a steady rise in the information on the genes that encode this neuropeptide and regulation of its transcription and translation. CART is highly enriched in the hypothalamic nuclei and its relevance to energy homeostasis and neuroendocrine control has been understood in great details. However, the occurrence of this peptide in a range of diverse circuitries for sensory, motor, vegetative, limbic and higher cortical areas has been confounding. Evidence that CART peptide may have role in addiction, pain, reward, learning and memory, cognition, sleep, reproduction and development, modulation of behavior and regulation of autonomic nervous system are accumulating, but an integration has been missing. A steady stream of papers has been pointing at the therapeutic potentials of CART. The current review is an attempt at piecing together the fragments of available information, and seeks meaning out of the CART elements in their anatomical niche. We try to put together the CART containing neuronal circuitries that have been conclusively demonstrated as well as those which have been proposed, but need confirmation. With a view to finding out the evolutionary antecedents, we visit the CART systems in sub-mammalian vertebrates and seek the answer why the system is shaped the way it is. We enquire into the conservation of the CART system and appreciate its functional diversity across the phyla.
Collapse
Affiliation(s)
- Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Sai Trinity Building, Sutarwadi, Pashan, Pune 411 021, Maharashtra, India.
| | - Kartik T Nakhate
- Rungta College of Pharmaceutical Sciences and Research, Rungta Educational Campus, Kohka-Kurud Road, Bhilai 490 024, Chhattisgarh, India
| | - Manoj A Upadhya
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India
| |
Collapse
|
30
|
Abstract
In this review we focus on the role of orexin in cardio-respiratory functions and its potential link to hypertension. (1) Orexin, cardiovascular function, and hypertension. In normal rats, central administration of orexin can induce significant increases in arterial blood pressure (ABP) and sympathetic nerve activity (SNA), which can be blocked by orexin receptor antagonists. In spontaneously hypertensive rats (SHRs), antagonizing orexin receptors can significantly lower blood pressure under anesthetized or conscious conditions. (2) Orexin, respiratory function, and central chemoreception. The prepro-orexin knockout mouse has a significantly attenuated ventilatory CO2 chemoreflex, and in normal rats, central application of orexin stimulates breathing while blocking orexin receptors decreases the ventilatory CO2 chemoreflex. Interestingly, SHRs have a significantly increased ventilatory CO2 chemoreflex relative to normotensive WKY rats and blocking both orexin receptors can normalize this exaggerated response. (3) Orexin, central chemoreception, and hypertension. SHRs have higher ABP and SNA along with an enhanced ventilatory CO2 chemoreflex. Treating SHRs by blocking both orexin receptors with oral administration of an antagonist, almorexant (Almxt), can normalize the CO2 chemoreflex and significantly lower ABP and SNA. We interpret these results to suggest that the orexin system participates in the pathogenesis and maintenance of high blood pressure in SHRs, and the central chemoreflex may be a causal link to the increased SNA and ABP in SHRs. Modulation of the orexin system could be a potential target in treating some forms of hypertension.
Collapse
Affiliation(s)
- Aihua Li
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA
| | - Eugene Nattie
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA
| |
Collapse
|
31
|
Abstract
The aim of this paper is to explore the effect of intestinal ischemia/reperfusion (I/R) injury on leptin and orexin-A levels in peripheral blood and central secretory tissues, and to examine the roles of leptin and orexin-A in acute inflammatory responses. An intestinal I/R injury model of rats was made; the rats were grouped according to the time of after 60 min ischemia. Radioimmunoassay was employed to detect the levels of leptin in serum and adipose tissue and orexin-A levels in plasma and hypothalamus. Reverse transcriptase-polymerase chain reaction was used to detect mRNA expressions of adipose leptin and hypothalamus orexin-A. Compared with the levels before the injury, serum leptin in 60 min ischemia/30 min reperfusion (I60'R30') group decreased and that of I60'R360' group increased. Compared with sham-operation group (sham group) after injury, serum leptin level of I60'R360' group increased, adipose leptin levels of I60'R30' and I60'R90' decreased, and adipose leptin in I60'R360' group increased. After the injury, adipose leptin mRNA expressions of I60'R30', I60'R240' and I60'R360' increased, whereas that of I60'R150' group decreased as compared with the sham group. There was no significant difference in the protein levels of orexin-A, either between plasma and hypothalamus or between pre-and post-I/R injury. Compared with sham group, hypothalamus orexin-A mRNA expressions of I60'R30' and I60'R90' decreased gradually after the injury, with that of I60'R150' group reaching the lowest, and those of I60'R240' and I60'R360' recovering gradually, although they were still significantly lower than that of sham group. Leptin and orexin-A respond to intestinal I/R injury in a time-dependent manner, with leptin responding more quickly than orexin-A does, and both of them may contribute to the metabolic disorders in acute inflammation.
Collapse
|
32
|
Li A, Nattie E. Orexin, cardio-respiratory function, and hypertension. Front Neurosci 2014; 8:22. [PMID: 24574958 PMCID: PMC3921571 DOI: 10.3389/fnins.2014.00022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/25/2014] [Indexed: 01/30/2023] Open
Abstract
In this review we focus on the role of orexin in cardio-respiratory functions and its potential link to hypertension. (1) Orexin, cardiovascular function, and hypertension. In normal rats, central administration of orexin can induce significant increases in arterial blood pressure (ABP) and sympathetic nerve activity (SNA), which can be blocked by orexin receptor antagonists. In spontaneously hypertensive rats (SHRs), antagonizing orexin receptors can significantly lower blood pressure under anesthetized or conscious conditions. (2) Orexin, respiratory function, and central chemoreception. The prepro-orexin knockout mouse has a significantly attenuated ventilatory CO2 chemoreflex, and in normal rats, central application of orexin stimulates breathing while blocking orexin receptors decreases the ventilatory CO2 chemoreflex. Interestingly, SHRs have a significantly increased ventilatory CO2 chemoreflex relative to normotensive WKY rats and blocking both orexin receptors can normalize this exaggerated response. (3) Orexin, central chemoreception, and hypertension. SHRs have higher ABP and SNA along with an enhanced ventilatory CO2 chemoreflex. Treating SHRs by blocking both orexin receptors with oral administration of an antagonist, almorexant (Almxt), can normalize the CO2 chemoreflex and significantly lower ABP and SNA. We interpret these results to suggest that the orexin system participates in the pathogenesis and maintenance of high blood pressure in SHRs, and the central chemoreflex may be a causal link to the increased SNA and ABP in SHRs. Modulation of the orexin system could be a potential target in treating some forms of hypertension.
Collapse
Affiliation(s)
- Aihua Li
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA
| | - Eugene Nattie
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth Lebanon, NH, USA
| |
Collapse
|
33
|
Patel AX, Miller SR, Nathan PJ, Kanakaraj P, Napolitano A, Lawrence P, Koch A, Bullmore ET. Neuroendocrine and sympathetic responses to an orexin receptor antagonist, SB-649868, and alprazolam following insulin-induced hypoglycemia in humans. Psychopharmacology (Berl) 2014; 231:3817-28. [PMID: 24770625 PMCID: PMC4159598 DOI: 10.1007/s00213-014-3520-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/24/2014] [Indexed: 02/02/2023]
Abstract
RATIONALE The orexin-hypocretin system is important for translating peripheral metabolic signals and central neuronal inputs to a diverse range of behaviors, from feeding, motivation and arousal, to sleep and wakefulness. Orexin signaling is thus an exciting potential therapeutic target for disorders of sleep, feeding, addiction, and stress. OBJECTIVES/METHODS Here, we investigated the low dose pharmacology of orexin receptor antagonist, SB-649868, on neuroendocrine, sympathetic nervous system, and behavioral responses to insulin-induced hypoglycemic stress, in 24 healthy male subjects (aged 18-45 years; BMI 19.0-25.9 kg/m(2)), using a randomized, double-blind, placebo-controlled, within-subject crossover design. Alprazolam, a licensed benzodiazepine anxiolytic, was used as a positive comparator, as it has previously been validated using the insulin tolerance test (ITT) model in humans. RESULTS Of the primary endpoints, ITT induced defined increases in pulse rate, plasma cortisol, and adrenocorticotropic hormone in the placebo condition, but these responses were not significantly impacted by alprazolam or SB-649868 pre-treatment. Of the secondary endpoints, ITT induced a defined increase in plasma concentrations of adrenaline, noradrenaline, growth hormone (GH), and prolactin in the placebo condition. Alprazolam pre-treatment significantly reduced the GH response to ITT (p < 0.003), the peak electromyography (p < 0.0001) and galvanic skin response (GSR, p = 0.04) to acoustic startle, the resting GSR (p = 0.01), and increased appetite following ITT (p < 0.0005). SB-649868 pre-treatment produced no significant results. CONCLUSION We concluded that the ITT model may be informative for assessing the effects of drugs directly acting on the neuroendocrine or sympathetic nervous systems, but could not be validated for studying low dose orexin antagonist activity.
Collapse
Affiliation(s)
- Ameera X. Patel
- Brain Mapping Unit, Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK
| | - Sam R. Miller
- Clinical Unit Cambridge, GlaxoSmithKline, Addenbrooke’s Centre for Clinical Investigation, Cambridge, UK
| | - Pradeep J. Nathan
- Brain Mapping Unit, Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK ,Clinical Unit Cambridge, GlaxoSmithKline, Addenbrooke’s Centre for Clinical Investigation, Cambridge, UK ,School of Psychology and Psychiatry, Monash University, Melbourne, Australia
| | - Ponmani Kanakaraj
- Quantitative Sciences India, GlaxoSmithKline Pharmaceuticals Ltd, Bangalore, India
| | - Antonella Napolitano
- Clinical Unit Cambridge, GlaxoSmithKline, Addenbrooke’s Centre for Clinical Investigation, Cambridge, UK
| | - Philip Lawrence
- Clinical Unit Cambridge, GlaxoSmithKline, Addenbrooke’s Centre for Clinical Investigation, Cambridge, UK
| | - Annelize Koch
- Clinical Unit Cambridge, GlaxoSmithKline, Addenbrooke’s Centre for Clinical Investigation, Cambridge, UK
| | - Edward T. Bullmore
- Brain Mapping Unit, Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK ,Clinical Unit Cambridge, GlaxoSmithKline, Addenbrooke’s Centre for Clinical Investigation, Cambridge, UK
| |
Collapse
|
34
|
Amisten S, Salehi A, Rorsman P, Jones PM, Persaud SJ. An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. Pharmacol Ther 2013; 139:359-91. [PMID: 23694765 DOI: 10.1016/j.pharmthera.2013.05.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/17/2022]
Abstract
G-protein coupled receptors (GPCRs) regulate hormone secretion from islets of Langerhans, and recently developed therapies for type-2 diabetes target islet GLP-1 receptors. However, the total number of GPCRs expressed by human islets, as well as their function and interactions with drugs, is poorly understood. In this review we have constructed an atlas of all GPCRs expressed by human islets: the 'islet GPCRome'. We have used this atlas to describe how islet GPCRs interact with their endogenous ligands, regulate islet hormone secretion, and interact with drugs known to target GPCRs, with a focus on drug/receptor interactions that may affect insulin secretion. The islet GPCRome consists of 293 GPCRs, a majority of which have unknown effects on insulin, glucagon and somatostatin secretion. The islet GPCRs are activated by 271 different endogenous ligands, at least 131 of which are present in islet cells. A large signalling redundancy was also found, with 119 ligands activating more than one islet receptor. Islet GPCRs are also the targets of a large number of clinically used drugs, and based on their coupling characteristics and effects on receptor signalling we identified 107 drugs predicted to stimulate and 184 drugs predicted to inhibit insulin secretion. The islet GPCRome highlights knowledge gaps in the current understanding of islet GPCR function, and identifies GPCR/ligand/drug interactions that might affect insulin secretion, which are important for understanding the metabolic side effects of drugs. This approach may aid in the design of new safer therapeutic agents with fewer detrimental effects on islet hormone secretion.
Collapse
Affiliation(s)
- Stefan Amisten
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London School of Medicine, London, UK.
| | | | | | | | | |
Collapse
|
35
|
Yilmaz E, Celik O, Celik N, Simsek Y, Celik E, Yildirim E. Serum orexin-A (OXA) level decreases in polycystic ovarian syndrome. Gynecol Endocrinol 2013; 29:388-90. [PMID: 23350701 DOI: 10.3109/09513590.2012.754874] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIM In the current study, we aimed to investigate whether serum orexin-A (OXA) levels are different in polycystic ovary syndrome (PCOS) subjects. MATERIALS AND METHODS Thirty-six women with PCOS and 40 healthy, age and body mass index-matched controls were included in the prospective cross-sectional study. All subjects underwent venous blood draws during the early follicular phase after overnight fasting. Serum OXA levels were measured with an enzyme immunoassay (EIA). The relationships between the serum OXA levels and the anthropometric and metabolic parameters were also assessed. RESULTS The serum OXA levels were lower in the women with PCOS compared to the control group. The serum OXA levels were correlated negatively with systolic blood pressure, the Ferriman-Gallway score and LH and free testosterone levels. CONCLUSION Our results indicate that serum OXA levels decrease in the serum of women with PCOS.
Collapse
Affiliation(s)
- Ercan Yilmaz
- Obstetrics and Gynecology Department, Faculty of Medicine, Turgut Ozal Medical Centre, Inonu University, Malatya, Turkey.
| | | | | | | | | | | |
Collapse
|
36
|
Steiner MA, Sciarretta C, Brisbare-Roch C, Strasser DS, Studer R, Jenck F. Examining the role of endogenous orexins in hypothalamus-pituitary-adrenal axis endocrine function using transient dual orexin receptor antagonism in the rat. Psychoneuroendocrinology 2013; 38:560-71. [PMID: 22917622 DOI: 10.1016/j.psyneuen.2012.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 11/25/2022]
Abstract
The orexin neuropeptide system regulates wakefulness and contributes to physiological and behavioral stress responses. Moreover, a role for orexins in modulating hypothalamus-pituitary-adrenal (HPA) axis activity has been proposed. Brain penetrating dual orexin receptor (OXR) antagonists such as almorexant decrease vigilance and have emerged as a novel therapeutic class for the treatment of insomnia. Almorexant was used here as a pharmacological tool to examine the role of endogenous orexin signaling in HPA axis endocrine function under natural conditions. After confirming the expression of prepro-orexin and OXR-1 and OXR-2 mRNA in hypothalamus, pituitary and adrenal glands, the effects of systemic almorexant were investigated on peripheral HPA axis hormone release in the rat under baseline, stress and pharmacological challenge conditions. Almorexant did not alter basal or stress-induced corticosterone release despite affecting wake and sleep stages (detected by radiotelemetric electroencephalography/electromyography) during the stress exposure. Moreover, almorexant did not affect the release of adrenocorticotropin (ACTH) and corticosterone at different time points along the diurnal rhythm, nor corticotrophin-releasing hormone (CRH)- and ACTH-stimulated neuroendocrine responses, measured in vivo under stress-free conditions. These results illustrate that dual OXR antagonists, despite modulating stress-induced wakefulness, do not interfere with endocrine HPA axis function in the rat. They converge to suggest that endogenous orexin signaling plays a minor role in stress hormone release under basal conditions and under challenge.
Collapse
Affiliation(s)
- Michel A Steiner
- Actelion Pharmaceuticals Ltd., Gewerbestrasse 16, 4123 Allschwil, Switzerland.
| | | | | | | | | | | |
Collapse
|
37
|
Chen L, Zhao Y, Zheng D, Ju S, Shen Y, Guo L. Orexin A Affects INS-1 Rat Insulinoma Cell Proliferation via Orexin Receptor 1 and the AKT Signaling Pathway. Int J Endocrinol 2013; 2013:854623. [PMID: 24382962 PMCID: PMC3871501 DOI: 10.1155/2013/854623] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/10/2013] [Accepted: 11/10/2013] [Indexed: 01/15/2023] Open
Abstract
Our aim is to investigate the role of the AKT/PKB (protein kinase B) signaling pathway acting via orexin receptor 1 (OX1R) and the effects of orexin A (OXA) on cell proliferation in the insulin-secreting beta-cell line (INS-1 cells). Rat INS-1 cells were exposed to different concentrations of OXA in vitro and treated with OX1R antagonist (SB334867), PI3K antagonist (wortmannin), AKT antagonist (PF-04691502), or negative control. INS-1 amount of cell proliferation, viability and apoptosis, insulin secretion, OX1R protein expression, caspase-3 activity, and AKT protein levels were determined. We report that OXA (10(-10) to 10(-6) M) stimulates INS-1 cell proliferation and viability, reduces the proapoptotic activity of caspase-3 to protect against apoptotic cell death, and increases insulin secretion. Additionally, AKT phosphorylation was stimulated by OXA (10(-10) to 10(-6) M). However, the OX1R antagonist SB334867 (10(-6) M), the PI3K antagonist wortmannin (10(-8) M), the AKT antagonist PF-04691502 (10(-6) M), or the combination of both abolished the effects of OXA to a certain extent. These results suggest that the upregulation of OXA-OX1R mediated by AKT activation may inhibit cell apoptosis and promote cell proliferation in INS-1 cells. This finding provides functional evidence of the biological actions of OXA in rat insulinoma cells.
Collapse
Affiliation(s)
- Li Chen
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Yuyan Zhao
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
- *Yuyan Zhao:
| | - Delu Zheng
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Shujing Ju
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Yang Shen
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Guo
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China
| |
Collapse
|
38
|
Yilmaz E, Celik O, Celik N, Celik E, Turkcuoglu I, Simsek Y, Minareci Y, Boz M, Aydin S. Maternal and fetal serum orexin-A levels in gestational diabetes mellitus. J Obstet Gynaecol Res 2012; 39:139-45. [PMID: 22889404 DOI: 10.1111/j.1447-0756.2012.01955.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Adeghate E. Orexins: tissue localization, functions, and its relation to insulin secretion and diabetes mellitus. VITAMINS AND HORMONES 2012; 89:111-33. [PMID: 22640611 DOI: 10.1016/b978-0-12-394623-2.00007-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Orexins play a role in many biological functions include sleep, feeding, and energy balance. They also regulate circadian rhythms and the way that we feel pain. Orexins have been identified in a variety of tissues including the cerebrospinal fluid, blood, hypothalamus, spinal cord, sensory ganglion, enteric nervous system, pituitary, adrenal, salivary and lacrimal glands, testis, vestibular gland, and skin. Orexins play a role in a variety of biological functions including arousal, sleeping, food and fluid intake, pain, memory, perception of odor, and sexual activity. Orexins have also been implicated in the regulation of glucose metabolism. The expression of orexin is induced by hypoglycemia, low food, pregnancy, and hemodialysis. In contrast, factors that inhibit the expression of orexins include obstructive sleep apnea, aging, depression, obesity, traumatic brain injury, and inflammatory molecules such as liposaccharide. In conclusion, orexins are widely distributed and involved in a large variety of biological activities.
Collapse
Affiliation(s)
- Ernest Adeghate
- Department of Anatomy, Faculty of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
40
|
Mourad FH, Saadé NE. Neural regulation of intestinal nutrient absorption. Prog Neurobiol 2011; 95:149-62. [PMID: 21854830 DOI: 10.1016/j.pneurobio.2011.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 04/28/2011] [Accepted: 07/20/2011] [Indexed: 12/17/2022]
Abstract
The nervous system and the gastrointestinal (GI) tract share several common features including reciprocal interconnections and several neurotransmitters and peptides known as gut peptides, neuropeptides or hormones. The processes of digestion, secretion of digestive enzymes and then absorption are regulated by the neuro-endocrine system. Luminal glucose enhances its own absorption through a neuronal reflex that involves capsaicin sensitive primary afferent (CSPA) fibres. Absorbed glucose stimulates insulin release that activates hepatoenteric neural pathways leading to an increase in the expression of glucose transporters. Adrenergic innervation increases glucose absorption through α1 and β receptors and decreases absorption through activation of α2 receptors. The vagus nerve plays an important role in the regulation of diurnal variation in transporter expression and in anticipation to food intake. Vagal CSPAs exert tonic inhibitory effects on amino acid absorption. It also plays an important role in the mediation of the inhibitory effect of intestinal amino acids on their own absorption at the level of proximal or distal segment. However, chronic extrinsic denervation leads to a decrease in intestinal amino acid absorption. Conversely, adrenergic agonists as well as activation of CSPA fibres enhance peptides uptake through the peptide transporter PEPT1. Finally, intestinal innervation plays a minimal role in the absorption of fat digestion products. Intestinal absorption of nutrients is a basic vital mechanism that depends essentially on the function of intestinal mucosa. However, intrinsic and extrinsic neural mechanisms that rely on several redundant loops are involved in immediate and long-term control of the outcome of intestinal function.
Collapse
Affiliation(s)
- Fadi H Mourad
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | | |
Collapse
|
41
|
Skrzypski M, T Le T, Kaczmarek P, Pruszynska-Oszmalek E, Pietrzak P, Szczepankiewicz D, Kolodziejski PA, Sassek M, Arafat A, Wiedenmann B, Nowak KW, Strowski MZ. Orexin A stimulates glucose uptake, lipid accumulation and adiponectin secretion from 3T3-L1 adipocytes and isolated primary rat adipocytes. Diabetologia 2011; 54:1841-52. [PMID: 21505958 DOI: 10.1007/s00125-011-2152-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
Abstract
AIMS/HYPOTHESIS Orexin A (OXA) modulates body weight, food intake and energy expenditure. In vitro, OXA increases PPARγ (also known as PPARG) expression and inhibits lipolysis, suggesting direct regulation of lipid metabolism. Here, we characterise the metabolic effects and mechanisms of OXA action in adipocytes. METHODS Isolated rat adipocytes and differentiated murine 3T3-L1 adipocytes were exposed to OXA in the presence or absence of phosphoinositide 3-kinase (PI3K) inhibitors. Pparγ expression was silenced using small interfering RNA. Glucose uptake, GLUT4 translocation, phosphatidylinositol (3,4,5)-trisphosphate production, lipogenesis, lipolysis, and adiponectin secretion were measured. Adiponectin plasma levels were determined in rats treated with OXA for 4 weeks. RESULTS OXA PI3K-dependently stimulated active glucose uptake by translocating the glucose transporter GLUT4 from cytoplasm into the plasma membrane. OXA increased cellular triacylglycerol content via PI3K. Cellular triacylglycerol accumulation resulted from increased lipogenesis as well as from a decrease of lipolysis. Adiponectin levels in chow- and high-fat diet-fed rats treated chronically with OXA were increased. OXA stimulated adiponectin expression and secretion in adipocytes. Both pharmacological blockade of peroxisome proliferator-activated receptor γ (PPARγ) activity or silencing Pparγ expression prevented OXA from stimulating triacylglycerol accumulation and adiponectin production. CONCLUSIONS/INTERPRETATION Our study demonstrates that OXA stimulates glucose uptake in adipocytes and that the evolved energy is stored as lipids. OXA increases lipogenesis, inhibits lipolysis and stimulates the secretion of adiponectin. These effects are conferred via PI3K and PPARγ2. Overall, OXA's effects on lipids and adiponectin secretion resemble that of insulin sensitisers, suggesting a potential relevance of this peptide in metabolic disorders.
Collapse
Affiliation(s)
- M Skrzypski
- Department of Hepatology and Gastroenterology and Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kagerer SM, Eichholz C, Jöhren O. Orexins/hypocretins increase the promoter activity of selective steroidogenic enzymes. Peptides 2011; 32:839-43. [PMID: 21256172 DOI: 10.1016/j.peptides.2011.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
Orexins (hypocretins) regulate multiple physiological functions, including central regulation of energy homeostasis and sleep-wake behavior but also peripheral hormonal actions. Recent data suggest specific effects of orexins at adrenal glands. To further assess the mechanism by which orexins regulate steroidogenesis we analyzed the effect of orexin A and B on the transcriptional activity of the luciferase reporter gene driven by the human steroid 21-hydroxylase (CYP21), 3β-hydroxysteroid dehydrogenase (HSD3B2), 11β-hydroxylase (CYP11B1), and aldosterone synthase (CYP11B2) gene promoter regions. After transient transfection of the reporter gene constructs into human NCI H295R cells, treatment with orexin A and B for 6 and 12h increased the promoter activity of the CYP11B2, HSD3B2 and, to a lesser extend, CYP21 genes. The activity of the CYP11B1 was increased by both orexins after 3h of treatment. Compared to the effects of forskolin or angiotensin II, however, the effect of orexins on the transcriptional activity of the steroidogenic enzyme genes was moderate. Our results suggest that orexins increase the expression of steroidogenic enzymes at the transcriptional level and that orexins play a role in the long term regulation of adrenal steroid production.
Collapse
Affiliation(s)
- Sonja M Kagerer
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | |
Collapse
|
43
|
İzgüt-Uysal VN, Gemici B, Tan R. Effect of orexin-A on phagocytic activity of peritoneal macrophage in starved rats. Cell Immunol 2011; 271:85-8. [DOI: 10.1016/j.cellimm.2011.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 04/25/2011] [Accepted: 06/08/2011] [Indexed: 11/29/2022]
|
44
|
Abstract
OBJECTIVES To examine the pattern of distribution and effect of orexin B in the islets of normal and diabetic rats. METHODS Pancreatic tissue fragments collected from normal and diabetic (4 weeks after the onset of diabetes) rats were either processed for immunohistochemistry or treated with different concentrations (10 to 10 mol/L) of orexin B. RESULTS Orexin B-positive nerves were observed in the wall of blood vessels of both normal and diabetic rat pancreas. Orexin B is abundant in the islets of normal rats and colocalized with insulin in β cells. The number of orexin B-positive cells decreased after the onset of diabetes. Orexin B evoked significant (P<0.05) increases in insulin release from the pancreas of normal and diabetic rats. Propranolol, a β-adrenergic receptor antagonist, significantly (P<0.04) reduced the stimulatory effect of orexin B on insulin secretion. Orexin B also induced significant (P<0.05) increases in glucagon release from the pancreas of normal rats but failed to stimulate glucagon secretion from the pancreas of diabetic rats. CONCLUSIONS Orexin B stimulated insulin secretion in normal and diabetic rat pancreas through the β-adrenergic pathway. Orexin B may have an important role in the regulation of islet function.
Collapse
|
45
|
Matsuo E, Mochizuki A, Nakayama K, Nakamura S, Yamamoto T, Shioda S, Sakurai T, Yanagisawa M, Shiuchi T, Minokoshi Y, Inoue T. Decreased Intake of Sucrose Solutions in Orexin Knockout Mice. J Mol Neurosci 2010; 43:217-24. [DOI: 10.1007/s12031-010-9475-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
|
46
|
Gatfield J, Brisbare-Roch C, Jenck F, Boss C. Orexin receptor antagonists: a new concept in CNS disorders? ChemMedChem 2010; 5:1197-214. [PMID: 20544785 DOI: 10.1002/cmdc.201000132] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- John Gatfield
- Drug Discovery Biology, Actelion Pharmaceuticals Ltd, Allschwil/BL, Switzerland
| | | | | | | |
Collapse
|
47
|
Dall’Aglio C, Pedini V, Scocco P, Boiti C, Ceccarelli P. Immunohistochemical evidence of Orexin-A in the pancreatic beta cells of domestic animals. Res Vet Sci 2010; 89:147-9. [DOI: 10.1016/j.rvsc.2010.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 03/02/2010] [Accepted: 03/07/2010] [Indexed: 10/19/2022]
|
48
|
Kushikata T, Yoshida H, Kudo M, Kudo T, Hirota K. Plasma orexin A increases at emergence from sevoflurane-fentanyl anesthesia in patients undergoing ophthalmologic surgery. Neurosci Lett 2010; 482:212-5. [PMID: 20655366 DOI: 10.1016/j.neulet.2010.07.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 07/13/2010] [Accepted: 07/16/2010] [Indexed: 11/19/2022]
Abstract
Central orexinergic and noradrenergic neurons are involved in the control of sleep and wakefulness. In addition, previous reports suggest that both neurons may have an important role to play in general anesthesia. In the present study, we have determined whether general anesthesia would affect plasma orexin A (OXA) and norepinephrine concentrations. Twelve patients scheduled for elective ophthalmic surgery under general anesthesia with sevoflurane, fentanyl and vecuronium were studied. Arterial blood was collected before and 1 and 2h after induction of anesthesia and at emergence to measure plasma OXA, cortisol, norepinephrine and epinephrine concentrations. During anesthesia the inhalational concentration of sevoflurane was changed to maintain the bispectral index between 40 and 50. Plasma OXA, cortisol, norepinephrine and epinephrine did not change during anesthesia but significantly increased after emergence compared to pre-anesthesia (from 14.8+/-1.7 to 21.4+/-1.7 pM, p<0.01, from 26.5+/-5.2 to 52.8+/-6.0 pM, p<0.01, from 263+/-46 to 513+/-89 pM, p<0.01, and from 1239+/-120 to 1631+/-203 pM, p<0.01, respectively). There were significant correlations of plasma OXA with cortisol (r=0.334, p<0.05) and epinephrine (r=0.292, p<0.05) but not with norepinephrine. In conclusion we found that plasma OXA significantly increased at emergence from sevoflurane-fentanyl anesthesia and this was probably via activation of the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Tetsuya Kushikata
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | | | | | | | | |
Collapse
|
49
|
Kushikata T, Yoshida H, Kudo M, Kudo T, Hirota K. Changes in plasma orexin A during propofol–fentanyl anaesthesia in patients undergoing eye surgery. Br J Anaesth 2010; 104:723-7. [DOI: 10.1093/bja/aeq098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Bülbül M, Tan R, Gemici B, Ozdem S, Ustünel I, Acar N, Izgüt-Uysal VN. Endogenous orexin-A modulates gastric motility by peripheral mechanisms in rats. Peptides 2010; 31:1099-108. [PMID: 20307611 DOI: 10.1016/j.peptides.2010.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/05/2010] [Accepted: 03/05/2010] [Indexed: 12/28/2022]
Abstract
Orexin-A (OXA) and orexin receptor type 1 (OX1R) are found in enteric nervous system and smooth muscle cells in the digestive tract. Fasting is a stimulant for OXA synthesis. The aim of the present study was to investigate central and peripheral effects of endogenous OXA on gastric motility. Endogenous OXA synthesis was induced by 36h fasting. Vagotomy was used to evaluate N.vagus-mediated effects of OXA. Gastric emptying and interdigestive gastric motility were measured by spectrophotometric and manometric methods, respectively. Rats were pretreated with OX1R antagonist SB-334867 prior to measurements. Plasma OXA concentration was assayed with radioimmunoassay while preproorexin (PPO) expression was determined with Western blotting in gastric and hypothalamic tissues. OXA immunoreactivity in antrum was determined with immunohistochemistry. Plasma OXA level, PPO protein expression and OXA immunoreactivity were significantly increased in response to 36h fasting. Endogenous OXA facilitated gastric emptying and inhibited gastric interdigestive motility. As these effects were abolished with SB-334867, it is likely that gastrokinetic effects of OXA are mediated via OX1R. Vagotomy did not alter OXA-mediated effects. According to current data, OXA is up-regulated both centrally and peripherally upon fasting. Endogenous OXA accelerates gastric emptying while it inhibits interdigestive motility.
Collapse
Affiliation(s)
- Mehmet Bülbül
- Akdeniz University, Faculty of Medicine, Department of Physiology, 07070 Antalya, Turkey.
| | | | | | | | | | | | | |
Collapse
|