1
|
Zhang L, Kulkarni P, Farshidfar F, Tingley W, Hoey T, Wang W, Priest JR, Figarska SM. Combining genetic proxies of drug targets and time-to-event analyses from longitudinal observational data to identify target patient populations. BMC Cardiovasc Disord 2025; 25:353. [PMID: 40335923 PMCID: PMC12057189 DOI: 10.1186/s12872-025-04753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/10/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Human genetics is an important tool for identifying genes as potential drug targets, and the extensive genetic study of cardiovascular disease provides an opportunity to leverage genetics to match specific patient populations to specific drug targets to improve prioritization of patient selection for clinical studies. METHODS We selected well described genetic variants in the region of PCSK9 (rs11591147 and rs562556), ADRB1 (rs7076938), ACE (rs4968782 and rs4363), GLP1R (rs10305492) and ABCC8 (rs757110) for use as proxies for the effects of drugs. Time-to-event analyses were utilized to evaluate their effects on atrial fibrillation (AF) and heart failure (HF) death and/or re-hospitalization using real-world longitudinal dataset. To mitigate the effect of confounding factors for cardiovascular (CV) outcomes, we employed propensity score matching. RESULTS After matching, a genetic proxy for PCSK9 inhibition (rs11591147) improved survival from CV death/heart transplant in individuals following a diagnosis of ischemic heart disease (Hazard Ratio (HR) 0.78, P = 0.03). A genetic proxy for beta-blockade (rs7076938) improved freedom from rehospitalization or death in individuals with AF (HR 0.92, P = 0.001), and a genetic proxy of ACE inhibition (rs7076938) improved freedom from rehospitalization for HF or death (HR 0.8, P = 0.017) and AF (HR 0.85, P = 0.0014). A protective variant in GLP1R (rs10305492) showed decreased risk of developing HF or CV death after diagnosis of ischemic heart disease (HR = 0.82, P = 0.031) and a protective variant in ABCC8 (rs757110) showed decreased risk of CV mortality since ischemic disease diagnosis (HR = 0.88, P = 0.04) and decreased risk of AF in diabetic patients with ischemic heart disease (HR = 0.68, P = 0.001). Notably, despite smaller cohort sizes after matching, we often observed numerically smaller HRs and reduced P, indicating more pronounced effects and increased statistical association. However, not all genetic proxies replicated known treatment effects. CONCLUSIONS Genetic proxies for well-known drugs corroborate findings from clinical trials in cardiovascular disease. Our results demonstrate a useful analytical approach that leverages genetic evidence from a large cohort with longitudinal outcomes data to effectively select patient populations where specific drug targets may be most effective.
Collapse
Affiliation(s)
- Luke Zhang
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Prachi Kulkarni
- Tenaya Therapeutics, South San Francisco, CA, USA
- University of California San Diego, San Diego, CA, USA
| | | | - Whit Tingley
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Tim Hoey
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Whedy Wang
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - James R Priest
- Tenaya Therapeutics, South San Francisco, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
2
|
Huang X, Yin B, Hu Q, Zheng Q, Chen B, Wang J, Ji X, Su K. Repurposing Antidiabetic Drugs for Cerebrovascular Diseases: Causal Evidence from Drug Target Mendelian Randomization and Colocalization. Mol Neurobiol 2025:10.1007/s12035-025-04987-2. [PMID: 40301247 DOI: 10.1007/s12035-025-04987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/18/2025] [Indexed: 05/01/2025]
Abstract
Cerebrovascular diseases have caused substantial social and economic burdens, and new treatment methods are urgently needed. Evaluating the feasibility of the use of antidiabetic drugs for treating cerebrovascular diseases is meaningful in this field. We designed a comprehensive study process that includes two-sample Mendelian randomization (MR), which uses genetic proxies for antidiabetic drug targets, summary-based MR (SMR) for mRNAs, and colocalization for drug target genes to assess their causal relationships with 10 cerebrovascular disease phenotypes. Seven of the eight main types of clinical antidiabetic drugs were identified, yielding eleven potential drug targets. Our study observed that sulfonylureas (KCNJ11) and metformin (GPD1) reduce the risk of stroke and that TZDs (PPARG) reduce the risk of hippocampal perivascular spaces. In addition, sulfonylureas can reduce the risk of certain cerebral small vessel disease. These results show that antidiabetic drugs have hypoglycemic properties and affect cerebrovascular health. Our study supports repurposing antidiabetic drugs as disease-modifying therapies to improve cerebrovascular health. Future research should focus on studying the role of drugs in different phenotypes of cerebrovascular diseases and explore the potential molecular mechanisms to analyze further the potential effects of antidiabetic drugs on cerebrovascular diseases.
Collapse
Affiliation(s)
| | - Bo Yin
- Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.
| | | | | | | | - Jiale Wang
- Wenzhou Medical University, Zhejiang, China
| | - Xinyu Ji
- Wenzhou Medical University, Zhejiang, China
| | - Kun Su
- Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
3
|
Rout M, Ramu D, Mariana M, Koshy T, Venkatesan V, Lopez-Alvarenga JC, Arya R, Ravichandran U, Sharma SK, Lodha S, Ponnala AR, Sharma KK, Shaik MV, Resendez RG, Venugopal P, R P, S N, Ezeilo JA, Almeida M, Paralta J, Mummidi S, Natesan C, Mehra NK, Singh JR, Wander GS, Ralhan S, Blackett PR, Blangero J, Medicherla KM, Thanikachalam S, Panchatcharam TS, K DK, Gupta R, Paul SFD, Ghosh AK, Aston CE, Duggirala R, Sanghera DK. Excess of rare noncoding variants in several type 2 diabetes candidate genes among Asian Indian families. COMMUNICATIONS MEDICINE 2025; 5:47. [PMID: 39987249 PMCID: PMC11846969 DOI: 10.1038/s43856-025-00750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/23/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) etiology is highly complex due to its multiple roots of origin. Polygenic risk scores (PRS) based on genome-wide association studies (GWAS) can partially explain T2D risk. Asian Indian people have up to six times higher risk of developing T2D than European people, and underlying causes of this disparity are unknown. METHODS We have performed targeted sequencing of ten T2D GWAS/candidate regions using endogamous Punjabi Sikh families and replication studies using unrelated Sikh people and families from three other Indian endogamous ethnic groups (EEGs). RESULTS We detect rare and ultra-rare variants (RVs) in KCNJ11-ABCC8 and HNF4A (MODY genes) cosegregated with late-onset T2D. We also identify RV enrichment in two new genes, SLC38A11 and ANPEP, associated with T2D. Gene-burden analysis reveals the highest RV burden contributed by HNF4A (p = 0.0003), followed by KCNJ11/ABCC8 (p = 0.0061) and SLC38A11 (p = 0.03). Some RVs detected in Sikh people are also found in Agarwals from Jaipur, both from Northern India, but were monomorphic in other two EEGs from South Indian people. Despite carrying a high burden of T2D and RVs, most families have a significantly lower burden of PRS. Functional studies show that an intronic regulatory variant (RV) in ABCC8 affects the binding of Pax4 and NF-kB transcription factors, influencing downstream gene regulation. CONCLUSIONS The high burden of T2D in these families may stem from the enrichment of noncoding RVs in a small number of major known genes (including MODY genes) with oligogenic inheritance alongside RVs from genes associated with polygenic susceptibility. These findings highlight the need to conduct deeper evaluations of families from non-European ancestries to identify potential novel therapeutics and implement preventative strategies.
Collapse
Affiliation(s)
- Madhusmita Rout
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Deepika Ramu
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Mendez Mariana
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Teena Koshy
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Vettriselvi Venkatesan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Juan C Lopez-Alvarenga
- Department of Population Health & Biostatistics, University of Texas Rio Grande Valley (UTRGV), Harlingen, TX, USA
| | - Rector Arya
- Department of Health and Behavioral Sciences, Texas A&M University-San Antonio, San Antonio, TX, US
| | - Umarani Ravichandran
- Department of Medicine, Rajah Muthiah Medical College Hospital, Annamalai University, Chidambaram, India
| | | | - Sailesh Lodha
- Departments of Preventive Cardiology, Internal Medicine and Endocrinology, Eternal Heart Care Centre and Research Institute, Mount Sinai New York Affiliate, Jaipur, India
| | - Amaresh Reddy Ponnala
- Department of Endocrinology, Krishna Institute of Medical Sciences (KIMS) Hospital, Nellore, India
| | - Krishna Kumar Sharma
- Department of Pharmacology, Lal Bahadur Shastri College of Pharmacy, Rajasthan University of Health Sciences, Jaipur, India
| | - Mahaboob Vali Shaik
- Department of Endocrinology, Narayana Medical College and Hospital, Nellore, India
| | - Roy G Resendez
- Department of Health and Behavioral Sciences, Texas A&M University-San Antonio, San Antonio, TX, US
| | - Priyanka Venugopal
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Parthasarathy R
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Noelta S
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Juliet A Ezeilo
- Department of Health and Behavioral Sciences, Texas A&M University-San Antonio, San Antonio, TX, US
| | - Marcio Almeida
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley (UTRGV), Brownsville, TX, USA
| | - Juan Paralta
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley (UTRGV), Brownsville, TX, USA
| | - Srinivas Mummidi
- Department of Health and Behavioral Sciences, Texas A&M University-San Antonio, San Antonio, TX, US
| | - Chidambaram Natesan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Narinder K Mehra
- All India Institute of Medical Sciences and Research, New Delhi, India
| | | | | | - Sarju Ralhan
- Hero Dayanand Medical College and Heart Institute, Ludhiana, India
| | - Piers R Blackett
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley (UTRGV), Brownsville, TX, USA
| | | | - Sadagopan Thanikachalam
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Thyagarajan Sadras Panchatcharam
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Dileep Kumar K
- Department of Endocrinology, Narayana Medical College and Hospital, Nellore, India
| | - Rajeev Gupta
- Departments of Preventive Cardiology, Internal Medicine and Endocrinology, Eternal Heart Care Centre and Research Institute, Mount Sinai New York Affiliate, Jaipur, India
| | - Solomon Franklin D Paul
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Asish K Ghosh
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Christopher E Aston
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ravindranath Duggirala
- Department of Health and Behavioral Sciences, Texas A&M University-San Antonio, San Antonio, TX, US
| | - Dharambir K Sanghera
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
4
|
Tang D, Xu J, Bao W, Xu F, Qi J, Tan Z, Li C, Luo X, You X, Rong M, Liu Z, Tang C. Pore blocking mechanisms of centipede toxin SsTx-4 on the inwardly rectifying potassium channels. Eur J Pharmacol 2025; 988:177213. [PMID: 39706465 DOI: 10.1016/j.ejphar.2024.177213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/13/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The peptide toxin SsTx-4 derived from venom of centipede Scolopendra subspinipes mutilans was characterized as a potent antagonist of the inwardly rectifying potassium (Kir) channel subtypes Kir1.1, Kir4.1, and Kir6.2 in our previous study. Alanine-scanning mutagenesis analysis identified key molecular determinants on the SsTx-4 toxin interacting with these Kir channels, as well as those on the Kir6.2 channel interacting with the toxin. However, the key residues on Kir1.1 and Kir4.1 channels responsible for binding SsTx-4 remain unclear. Here, using a combination of site-directed mutagenesis, patch-clamp analysis, molecular docking with AlphaFold 3, and molecular dynamic simulations, we revealed that SsTx-4 acted on the Kir channels as a pore blocker, with K13 on toxin serving as the functional pore-blocking residue and other residues on it contributing to stabilize the toxin-channel complex by binding to multiple residues on the wall of the channels' outer vestibule, involving E104 on Kir1.1; D100, L115, and F133 on Kir4.1; and E108, S113, H115, and M137 on Kir6.2. Collectively, these findings advanced our understanding on the interaction between Kir channels and this prototype Kir antagonist, providing insights that could inspire the development of more potent and specific Kir subtype blockers in the future.
Collapse
Affiliation(s)
- Dongfang Tang
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China; The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China
| | - Jiahui Xu
- Center for Genetics and Developmental Systems Biology, Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenhu Bao
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Fanping Xu
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Jieqiong Qi
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Zheni Tan
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Chuanli Li
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xiaofang Luo
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xia You
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China
| | - Mingqiang Rong
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China.
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China.
| |
Collapse
|
5
|
Blanken CPS, Bayer S, Buchner Carro S, Hauner H, Holzapfel C. Associations Between TCF7L2, PPARγ, and KCNJ11 Genotypes and Insulin Response to an Oral Glucose Tolerance Test: A Systematic Review. Mol Nutr Food Res 2025; 69:e202400561. [PMID: 39828593 PMCID: PMC11791742 DOI: 10.1002/mnfr.202400561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/31/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
SCOPE Insulin responses to standardized meals differ between individuals. This variability may in part be explained by genotype. This systematic review evaluates associations between genotype and insulin response to an oral glucose tolerance test (OGTT) in terms of insulin area under the curve (AUC). METHODS AND RESULTS Three electronic databases (Web of Science, Embase, PubMed) were searched for studies investigating associations between insulin AUC after an OGTT and single nucleotide polymorphisms (SNPs) belonging to the transcription factor 7 like 2 (TCF7L2) gene, the peroxisome proliferator-activated receptor gamma (PPARγ) gene, or the potassium inwardly rectifying channel subfamily J member 11 (KCNJ11) gene in persons without diabetes. A total of 5199 articles were identified, of which 38 were included. Among them were family-based studies (9), twin studies (2), and studies with unrelated participants (27). Seventeen articles investigated TCF7L2 (7 SNPs), 14 investigated PPARγ (1 SNP), and 8 investigated KCNJ11 (5 SNPs). For all investigated SNPs, at least half of the reports indicated no statistically significant association with postprandial insulin AUC. CONCLUSION No evidence was found for associations between TCF7L2, PPARγ, and KCNJ11 genotypes and insulin AUC after an OGTT. Future studies should investigate the effect of genetic risk scores on postprandial insulin.
Collapse
Affiliation(s)
- Carmen P. S. Blanken
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of MunichMunichGermany
| | - Sandra Bayer
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of MunichMunichGermany
| | - Sophie Buchner Carro
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of MunichMunichGermany
| | - Hans Hauner
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of MunichMunichGermany
| | - Christina Holzapfel
- Institute for Nutritional Medicine, School of Medicine and Health, Technical University of MunichMunichGermany
- Department of Nutritional, Food and Consumer SciencesFulda University of Applied SciencesFuldaGermany
| |
Collapse
|
6
|
Bonnefond A, Florez JC, Loos RJF, Froguel P. Dissection of type 2 diabetes: a genetic perspective. Lancet Diabetes Endocrinol 2025; 13:149-164. [PMID: 39818223 DOI: 10.1016/s2213-8587(24)00339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/11/2024] [Accepted: 10/30/2024] [Indexed: 01/18/2025]
Abstract
Diabetes is a leading cause of global mortality and disability, and its economic burden is substantial. This Review focuses on type 2 diabetes, which makes up 90-95% of all diabetes cases. Type 2 diabetes involves a progressive loss of insulin secretion often alongside insulin resistance and metabolic syndrome. Although obesity and a sedentary lifestyle are considerable contributors, research over the last 25 years has shown that type 2 diabetes develops on a predisposing genetic background, with family and twin studies indicating considerable heritability (ie, 31-72%). This Review explores type 2 diabetes from a genetic perspective, highlighting insights into its pathophysiology and the implications for precision medicine. More specifically, the traditional understanding of type 2 diabetes genetics has focused on a dichotomy between monogenic and polygenic forms. However, emerging evidence suggests a continuum that includes monogenic, oligogenic, and polygenic contributions, revealing their complementary roles in type 2 diabetes pathophysiology. Recent genetic studies provide deeper insights into disease mechanisms and pave the way for precision medicine approaches that could transform type 2 diabetes management. Additionally, the effect of environmental factors on type 2 diabetes, particularly from epigenetic modifications, adds another layer of complexity to understanding and addressing this multifaceted disease.
Collapse
Affiliation(s)
- Amélie Bonnefond
- Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Department of Metabolism, Imperial College London, London, UK.
| | - Jose C Florez
- Center for Genomic Medicine and Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Programs in Metabolism and Medical and Population Genetics, Broad Institute, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ruth J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philippe Froguel
- Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Department of Metabolism, Imperial College London, London, UK.
| |
Collapse
|
7
|
Jia W, Chan JC, Wong TY, Fisher EB. Diabetes in China: epidemiology, pathophysiology and multi-omics. Nat Metab 2025; 7:16-34. [PMID: 39809974 DOI: 10.1038/s42255-024-01190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Although diabetes is now a global epidemic, China has the highest number of affected people, presenting profound public health and socioeconomic challenges. In China, rapid ecological and lifestyle shifts have dramatically altered diabetes epidemiology and risk factors. In this Review, we summarize the epidemiological trends and the impact of traditional and emerging risk factors on Chinese diabetes prevalence. We also explore recent genetic, metagenomic and metabolomic studies of diabetes in Chinese, highlighting their role in pathogenesis and clinical management. Although heterogeneity across these multidimensional areas poses major analytic challenges in classifying patterns or features, they have also provided an opportunity to increase the accuracy and specificity of diagnosis for personalized treatment and prevention. National strategies and ongoing research are essential for improving diabetes detection, prevention and control, and for personalizing care to alleviate societal impacts and maintain quality of life.
Collapse
Affiliation(s)
- Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute for Proactive Healthcare, Shanghai Jiao Tong University, Shanghai, China.
| | - Juliana Cn Chan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences and Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Tien Y Wong
- Tsinghua Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Singapore National Eye Center, SingHealth, Singapore, Singapore
| | - Edwin B Fisher
- Peers for Progress, Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Díaz-García JD, Leyva-Leyva M, Sánchez-Aguillón F, de León-Bautista MP, Fuentes-Venegas A, Torres-Viloria A, Tenorio-Aguirre EK, Morales-Lázaro SL, Olivo-Díaz A, González-Ramírez R. Association Study of CACNA1D, KCNJ11, KCNQ1, and CACNA1E Single-Nucleotide Polymorphisms with Type 2 Diabetes Mellitus. Int J Mol Sci 2024; 25:9196. [PMID: 39273144 PMCID: PMC11395491 DOI: 10.3390/ijms25179196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex chronic disease characterized by decreased insulin secretion and the development of insulin resistance. Previous genome-wide association studies demonstrated that single-nucleotide polymorphisms (SNPs) present in genes coding for ion channels involved in insulin secretion increase the risk of developing this disease. We determined the association of 16 SNPs found in CACNA1D, KCNQ1, KCNJ11, and CACNA1E genes and the increased probability of developing T2DM. In this work, we performed a case-control study in 301 Mexican adults, including 201 cases with diabetes and 100 controls without diabetes. Our findings indicate a moderate association between T2DM and the C allele, and the C/C genotype of rs312480 within CACNA1D. The CAG haplotype surprisingly showed a protective effect, whereas the CAC and CGG haplotypes have a strong association with T2DM. The C allele and C/C genotype of rs5219 were significantly associated with diabetes. Also, an association was observed between diabetes and the A allele and the A/A genotype of rs3753737 and rs175338 in CACNA1E. The TGG and CGA haplotypes were also found to be significantly associated. The findings of this study indicate that the SNPs examined could serve as a potential diagnostic tool and contribute to the susceptibility of the Mexican population to this disease.
Collapse
Affiliation(s)
- Juan Daniel Díaz-García
- División de Medicina Interna, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico; (J.D.D.-G.); (A.F.-V.); (A.T.-V.); (E.K.T.-A.)
| | - Margarita Leyva-Leyva
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico; (M.L.-L.); (F.S.-A.); (A.O.-D.)
| | - Fabiola Sánchez-Aguillón
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico; (M.L.-L.); (F.S.-A.); (A.O.-D.)
| | - Mercedes Piedad de León-Bautista
- Escuela de Medicina, Universidad Vasco de Quiroga, Morelia 58090, Mexico;
- Laboratorio de Enfermedades Infecciosas y Genómica (INEX LAB), Morelia 58280, Mexico
| | - Abel Fuentes-Venegas
- División de Medicina Interna, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico; (J.D.D.-G.); (A.F.-V.); (A.T.-V.); (E.K.T.-A.)
| | - Alfredo Torres-Viloria
- División de Medicina Interna, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico; (J.D.D.-G.); (A.F.-V.); (A.T.-V.); (E.K.T.-A.)
| | - Erika Karina Tenorio-Aguirre
- División de Medicina Interna, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico; (J.D.D.-G.); (A.F.-V.); (A.T.-V.); (E.K.T.-A.)
| | - Sara Luz Morales-Lázaro
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
- Centro de Investigación Sobre el Envejecimiento, CINVESTAV, Mexico City 14330, Mexico
| | - Angélica Olivo-Díaz
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico; (M.L.-L.); (F.S.-A.); (A.O.-D.)
| | - Ricardo González-Ramírez
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González”, Mexico City 14080, Mexico; (M.L.-L.); (F.S.-A.); (A.O.-D.)
- Centro de Investigación Sobre el Envejecimiento, CINVESTAV, Mexico City 14330, Mexico
| |
Collapse
|
9
|
An M, Akyuz M, Capik O, Yalcin C, Bertram R, Karatas EA, Karatas OF, Yildirim V. Gain of function mutation in K(ATP) channels and resulting upregulation of coupling conductance are partners in crime in the impairment of Ca 2+ oscillations in pancreatic ß-cells. Math Biosci 2024; 374:109224. [PMID: 38821258 DOI: 10.1016/j.mbs.2024.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Gain of function mutations in the pore forming Kir6 subunits of the ATP sensitive K+ channels (K(ATP) channels) of pancreatic β-cells are the major cause of neonatal diabetes in humans. In this study, we show that in insulin secreting mouse β-cell lines, gain of function mutations in Kir6.1 result in a significant connexin36 (Cx36) overexpression, which form gap junctional connections and mediate electrical coupling between β-cells within pancreatic islets. Using computational modeling, we show that upregulation in Cx36 might play a functional role in the impairment of glucose stimulated Ca2+ oscillations in a cluster of β-cells with Kir6.1 gain of function mutations in their K(ATP) channels (GoF-K(ATP) channels). Our results show that without an increase in Cx36 expression, a gain of function mutation in Kir6.1 might not be sufficient to diminish glucose stimulated Ca2+ oscillations in a β-cell cluster. We also show that a reduced Cx36 expression, which leads to loss of coordination in a wild-type β-cell cluster, restores coordinated Ca2+ oscillations in a β-cell cluster with GoF-K(ATP) channels. Our results indicate that in a heterogenous β-cell cluster with GoF-K(ATP) channels, there is an inverted u-shaped nonmonotonic relation between the cluster activity and Cx36 expression. These results show that in a neonatal diabetic β-cell model, gain of function mutations in the Kir6.1 cause Cx36 overexpression, which aggravates the impairment of glucose stimulated Ca2+ oscillations.
Collapse
Affiliation(s)
- Murat An
- Department of Basic Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Mesut Akyuz
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Ozel Capik
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Cigdem Yalcin
- Department of Mathematics, Erzurum Technical University, Erzurum, Turkey
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| | - Elanur Aydin Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
| | - Vehpi Yildirim
- Department of Mathematics, Erzurum Technical University, Erzurum, Turkey; Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Zhao Y, Ansarullah, Kumar P, Mahoney JM, He H, Baker C, George J, Li S. Causal network perturbation analysis identifies known and novel type-2 diabetes driver genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595431. [PMID: 38826370 PMCID: PMC11142180 DOI: 10.1101/2024.05.22.595431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The molecular pathogenesis of diabetes is multifactorial, involving genetic predisposition and environmental factors that are not yet fully understood. However, pancreatic β-cell failure remains among the primary reasons underlying the progression of type-2 diabetes (T2D) making targeting β-cell dysfunction an attractive pathway for diabetes treatment. To identify genetic contributors to β-cell dysfunction, we investigated single-cell gene expression changes in β-cells from healthy (C57BL/6J) and diabetic (NZO/HlLtJ) mice fed with normal or high-fat, high-sugar diet (HFHS). Our study presents an innovative integration of the causal network perturbation assessment (ssNPA) framework with meta-cell transcriptome analysis to explore the genetic underpinnings of type-2 diabetes (T2D). By generating a reference causal network and in silico perturbation, we identified novel genes implicated in T2D and validated our candidates using the Knockout Mouse Phenotyping (KOMP) Project database.
Collapse
Affiliation(s)
- Yue Zhao
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Ansarullah
- Center for Biometric Analysis, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Parveen Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Hao He
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Candice Baker
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Sheng Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
11
|
Walia GK, Sharma P, Agarwal T, Lal M, Negandhi H, Prabhakaran D, Khadgawat R, Sachdeva MP, Gupta V. Genetic associations of TMEM154, PRC1 and ZFAND6 loci with type 2 diabetes in an endogamous business community of North India. PLoS One 2023; 18:e0291339. [PMID: 37738238 PMCID: PMC10516421 DOI: 10.1371/journal.pone.0291339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/27/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND More than 250 loci have been identified by genome-wide scans for type 2 diabetes in different populations. South Asians have a very different manifestation of the diseases and hence role of these loci need to be investigated among Indians with huge burden of cardio-metabolic disorders. Thus the present study aims to validate the recently identified GWAS loci in an endogamous caste population in North India. METHODS 219 T2D cases and 184 controls were recruited from hospitals and genotyped for 15 GWAS loci of T2D. Regression models adjusted for covariates were run to examine the association for T2D and fasting glucose levels. RESULTS We validated three variants for T2D namely, rs11634397 at ZFAND6 (OR = 3.05, 95%CI = 1.02-9.19, p = 0.047) and rs8042680 at PRC1 (OR = 3.67, 95%CI = 1.13-11.93, p = 0.031) showing higher risk and rs6813195 at TMEM154 (OR = 0.28, 95%CI = 0.09-0.90, p = 0.033) showing protective effect. The combined risk of 9 directionally consistent variants was also found to be significantly associated with T2D (OR = 1.91, 95%CI = 1.18-3.08, p = 0.008). One variant rs10842994 at KLHDC5 was validated for 9.15mg/dl decreased fasting glucose levels (SE = -17.25-1.05, p = 0.027). CONCLUSION We confirm the role of ZFAND6, PRC1 and TMEM154 in the pathophysiology of type 2 diabetes among Indians. More efforts are needed with larger sample sizes to validate the diabetes GWAS loci in South Asian populations for wider applicability.
Collapse
Affiliation(s)
- Gagandeep Kaur Walia
- Public Health Foundation of India, Gurugram, India
- Centre for Chronic Disease Control, Safdarjung Development Area, New Delhi, India
| | - Pratiksha Sharma
- Indian Institute of Public Health-Delhi, Public Health Foundation of India, Gurugram, India
| | - Tripti Agarwal
- Indian Institute of Public Health-Delhi, Public Health Foundation of India, Gurugram, India
| | - Moti Lal
- Department of Anthropology, University of Delhi, Delhi, India
| | | | - Dorairaj Prabhakaran
- Public Health Foundation of India, Gurugram, India
- Centre for Chronic Disease Control, Safdarjung Development Area, New Delhi, India
| | - Rajesh Khadgawat
- Department of Endocrinology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | - Vipin Gupta
- Department of Anthropology, University of Delhi, Delhi, India
| |
Collapse
|
12
|
Lu Z, Zhang H, Yang Y, Zhao H. Sex differences of the shared genetic landscapes between type 2 diabetes and peripheral artery disease in East Asians and Europeans. Hum Genet 2023:10.1007/s00439-023-02573-x. [PMID: 37341850 DOI: 10.1007/s00439-023-02573-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/12/2023] [Indexed: 06/22/2023]
Abstract
Type 2 diabetes (T2D) is a critical risk factor for peripheral artery disease (PAD). However, the sex differences in genetic basis, causality, and underlying mechanisms of the two diseases are still unclear. Using sex-stratified and ethnic-based GWAS summary, we explored the genetic correlation and causal relationship between T2D and PAD in both ethnicities and sexes by linkage disequilibrium score regression, LAVA and six Mendelian Randomization approaches. We observed stronger genetic correlations between T2D and PAD in females than males in East Asians and Europeans. East Asian females exhibit higher causal effects of T2D on PAD than males. The gene-level analysis found KCNJ11 and ANK1 genes associated with the cross-trait of T2D and PAD in both sexes. Our study provides genetic evidence for the sex difference of genetic correlations and causal relationships between PAD and T2D, indicating the importance of using sex-specific strategies for monitoring PAD in T2D patients.
Collapse
Affiliation(s)
- Zhiya Lu
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China
| | - Haoyang Zhang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Yuanhao Yang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou, China.
| |
Collapse
|
13
|
Fletcher PA, Thompson B, Liu C, Bertram R, Satin LS, Sherman AS. Ca 2+ release or Ca 2+ entry, that is the question: what governs Ca 2+ oscillations in pancreatic β cells? Am J Physiol Endocrinol Metab 2023; 324:E477-E487. [PMID: 37074988 PMCID: PMC10228667 DOI: 10.1152/ajpendo.00030.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/20/2023]
Abstract
The standard model for Ca2+ oscillations in insulin-secreting pancreatic β cells centers on Ca2+ entry through voltage-activated Ca2+ channels. These work in combination with ATP-dependent K+ channels, which are the bridge between the metabolic state of the cells and plasma membrane potential. This partnership underlies the ability of the β cells to secrete insulin appropriately on a minute-to-minute time scale to control whole body plasma glucose. Though this model, developed over more than 40 years through many cycles of experimentation and mathematical modeling, has been very successful, it has been challenged by a hypothesis that calcium-induced calcium release from the endoplasmic reticulum through ryanodine or inositol trisphosphate (IP3) receptors is instead the key driver of islet oscillations. We show here that the alternative model is in fact incompatible with a large body of established experimental data and that the new observations offered in support of it can be better explained by the standard model.
Collapse
Affiliation(s)
- Patrick A Fletcher
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland, United States
| | - Ben Thompson
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Chanté Liu
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| | - Leslie S Satin
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Arthur S Sherman
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
14
|
Ashcroft FM. KATP Channels and the Metabolic Regulation of Insulin Secretion in Health and Disease: The 2022 Banting Medal for Scientific Achievement Award Lecture. Diabetes 2023; 72:693-702. [PMID: 37815796 PMCID: PMC10202764 DOI: 10.2337/dbi22-0030] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/28/2023] [Indexed: 10/11/2023]
Abstract
Diabetes is characterized by elevation of plasma glucose due to an insufficiency of the hormone insulin and is associated with both inadequate insulin secretion and impaired insulin action. The Banting Medal for Scientific Achievement Commemorates the work of Sir Frederick Banting, a member of the team that first used insulin to treat a patient with diabetes almost exactly one hundred years ago on 11 January 1922. This article is based on my Banting lecture of 2022 and concerns the mechanism of glucose-stimulated insulin secretion from pancreatic β-cells, with an emphasis on the metabolic regulation of the KATP channel. This channel plays a central role in insulin release. Its closure in response to metabolically generated changes in the intracellular concentrations of ATP and MgADP stimulates β-cell electrical activity and insulin granule exocytosis. Activating mutations in KATP channel genes that impair the ability of the channel to respond to ATP give rise to neonatal diabetes. Impaired KATP channel regulation may also play a role in type 2 diabetes. I conjecture that KATP channel closure in response to glucose is reduced because of impaired glucose metabolism, which fails to generate a sufficient increase in ATP. Consequently, glucose-stimulated β-cell electrical activity is less. As ATP is also required for insulin granule exocytosis, both reduced exocytosis and less β-cell electrical activity may contribute to the reduction in insulin secretion. I emphasize that what follows is not a definitive review of the topic but a personal account of the contribution of my team to the field that is based on my Banting lecture.
Collapse
Affiliation(s)
- Frances M. Ashcroft
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, U.K
| |
Collapse
|
15
|
Serbis A, Giapros V, Tsamis K, Balomenou F, Galli-Tsinopoulou A, Siomou E. Beta Cell Dysfunction in Youth- and Adult-Onset Type 2 Diabetes: An Extensive Narrative Review with a Special Focus on the Role of Nutrients. Nutrients 2023; 15:2217. [PMID: 37432389 PMCID: PMC10180650 DOI: 10.3390/nu15092217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/12/2023] Open
Abstract
Traditionally a disease of adults, type 2 diabetes (T2D) has been increasingly diagnosed in youth, particularly among adolescents and young adults of minority ethnic groups. Especially, during the recent COVID-19 pandemic, obesity and prediabetes have surged not only in minority ethnic groups but also in the general population, further raising T2D risk. Regarding its pathogenesis, a gradually increasing insulin resistance due to central adiposity combined with a progressively defective β-cell function are the main culprits. Especially in youth-onset T2D, a rapid β-cell activity decline has been observed, leading to higher treatment failure rates, and early complications. In addition, it is well established that both the quantity and quality of food ingested by individuals play a key role in T2D pathogenesis. A chronic imbalance between caloric intake and expenditure together with impaired micronutrient intake can lead to obesity and insulin resistance on one hand, and β-cell failure and defective insulin production on the other. This review summarizes our evolving understanding of the pathophysiological mechanisms involved in defective insulin secretion by the pancreatic islets in youth- and adult-onset T2D and, further, of the role various micronutrients play in these pathomechanisms. This knowledge is essential if we are to curtail the serious long-term complications of T2D both in pediatric and adult populations.
Collapse
Affiliation(s)
- Anastasios Serbis
- Department of Pediatrics, School of Medicine, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece;
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, St. Νiarhcos Avenue, 45500 Ioannina, Greece (F.B.)
| | - Konstantinos Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece
| | - Foteini Balomenou
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, St. Νiarhcos Avenue, 45500 Ioannina, Greece (F.B.)
| | - Assimina Galli-Tsinopoulou
- Second Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA University Hospital, Stilponos Kyriakidi 1, 54636 Thessaloniki, Greece;
| | - Ekaterini Siomou
- Department of Pediatrics, School of Medicine, University of Ioannina, St. Niarhcos Avenue, 45500 Ioannina, Greece;
| |
Collapse
|
16
|
Alur V, Raju V, Vastrad B, Vastrad C, Kavatagimath S, Kotturshetti S. Bioinformatics Analysis of Next Generation Sequencing Data Identifies Molecular Biomarkers Associated With Type 2 Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231155635. [PMID: 36844983 PMCID: PMC9944228 DOI: 10.1177/11795514231155635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is the most common metabolic disorder. The aim of the present investigation was to identify gene signature specific to T2DM. Methods The next generation sequencing (NGS) dataset GSE81608 was retrieved from the gene expression omnibus (GEO) database and analyzed to identify the differentially expressed genes (DEGs) between T2DM and normal controls. Then, Gene Ontology (GO) and pathway enrichment analysis, protein-protein interaction (PPI) network, modules, miRNA (micro RNA)-hub gene regulatory network construction and TF (transcription factor)-hub gene regulatory network construction, and topological analysis were performed. Receiver operating characteristic curve (ROC) analysis was also performed to verify the prognostic value of hub genes. Results A total of 927 DEGs (461 were up regulated and 466 down regulated genes) were identified in T2DM. GO and REACTOME results showed that DEGs mainly enriched in protein metabolic process, establishment of localization, metabolism of proteins, and metabolism. The top centrality hub genes APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1 were screened out as the critical genes. ROC analysis provides prognostic value of hub genes. Conclusion The potential crucial genes, especially APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5, and SQSTM1, might be linked with risk of T2DM. Our study provided novel insights of T2DM into genetics, molecular pathogenesis, and novel therapeutic targets.
Collapse
Affiliation(s)
- Varun Alur
- Department of Endocrinology, J.J.M
Medical College, Davanagere, Karnataka, India
| | - Varshita Raju
- Department of Obstetrics and
Gynecology, J.J.M Medical College, Davanagere, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry,
K.L.E. College of Pharmacy, Gadag, Karnataka, India
| | | | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E.
College of Pharmacy, Belagavi, Karnataka, India
| | | |
Collapse
|
17
|
Moazzam-Jazi M, Najd-Hassan-Bonab L, Masjoudi S, Tohidi M, Hedayati M, Azizi F, Daneshpour MS. Risk of type 2 diabetes and KCNJ11 gene polymorphisms: a nested case-control study and meta-analysis. Sci Rep 2022; 12:20709. [PMID: 36456687 PMCID: PMC9715540 DOI: 10.1038/s41598-022-24931-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Due to the central role in insulin secretion, the potassium inwardly-rectifying channel subfamily J member 11 (KCNJ11) gene is one of the essential genes for type 2 diabetes (T2D) predisposition. However, the relevance of this gene to T2D development is not consistent among diverse populations. In the current study, we aim to capture the possible association of common KCNJ11 variants across Iranian adults, followed by a meta-analysis. We found that the tested variants of KCNJ11 have not contributed to T2D incidence in Iranian adults, consistent with similar insulin secretion levels among individuals with different genotypes. The integration of our results with 72 eligible published case-control studies (41,372 cases and 47,570 controls) as a meta-analysis demonstrated rs5219 and rs5215 are significantly associated with the increased T2D susceptibility under different genetic models. Nevertheless, the stratified analysis according to ethnicity showed rs5219 is involved in the T2D risk among disparate populations, including American, East Asian, European, and Greater Middle Eastern, but not South Asian. Additionally, the meta-regression analysis demonstrated that the sample size of both case and control groups was significantly associated with the magnitude of pooled genetic effect size. The present study can expand our knowledge about the KCNJ11 common variant's contributions to T2D incidence, which is valuable for designing SNP-based panels for potential clinical applications in precision medicine. It also highlights the importance of similar sample sizes for avoiding high heterogeneity and conducting a more precise meta-analysis.
Collapse
Affiliation(s)
- Maryam Moazzam-Jazi
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Najd-Hassan-Bonab
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajedeh Masjoudi
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tohidi
- Prevention of Metabolic Disorder Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular, and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Joseph A, Thirupathamma M, Mathews E, Alagu M. Genetics of type 2 diabetes mellitus in Indian and Global Population: A Review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022; 23:135. [PMID: 37192883 PMCID: PMC9438889 DOI: 10.1186/s43042-022-00346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Non-communicable diseases such as cardiovascular diseases, respiratory diseases and diabetes contribute to the majority of deaths in India. Public health programmes on non-communicable diseases (NCD) prevention primarily target the behavioural risk factors of the population. Hereditary is known as a risk factor for most NCDs, specifically, type 2 diabetes mellitus (T2DM), and hence, understanding of the genetic markers of T2DM may facilitate prevention, early case detection and management. Main body We reviewed the studies that explored marker-trait association with type 2 diabetes mellitus globally, with emphasis on India. Globally, single nucleotide polymorphisms (SNPs) rs7903146 of Transcription Factor 7-like 2 (TCF7L2) gene was common, though there were alleles that were unique to specific populations. Within India, the state-wise data were also taken to foresee the distribution of risk/susceptible alleles. The findings from India showcased the common and unique alleles for each region. Conclusion Exploring the known and unknown genetic determinants might assist in risk prediction before the onset of behavioural risk factors and deploy prevention measures. Most studies were conducted in non-representative groups with inherent limitations such as smaller sample size or looking into only specific marker-trait associations. Genome-wide association studies using data from extensive prospective studies are required in highly prevalent regions worldwide. Further research is required to understand the singular effect and the interaction of genes in predicting diabetes mellitus and other comorbidities.
Collapse
Affiliation(s)
- Anjaly Joseph
- Department of Public Health and Community Medicine, Central University of Kerala, Kasaragod, Kerala 671320 India
| | - Maradana Thirupathamma
- Department of Genomic Science, Central University of Kerala, Kasaragod, Kerala 671320 India
| | - Elezebeth Mathews
- Department of Public Health and Community Medicine, Central University of Kerala, Kasaragod, Kerala 671320 India
| | - Manickavelu Alagu
- Department of Genomic Science, Central University of Kerala, Kasaragod, Kerala 671320 India
| |
Collapse
|
19
|
Abstract
Diabetes is a chronic metabolic disease affecting an increasing number of people. Although diabetes has negative health outcomes for diagnosed individuals, a population at particular risk are pregnant women, as diabetes impacts not only a pregnant woman's health but that of her child. In this review, we cover the current knowledge and unanswered questions on diabetes affecting an expectant mother, focusing on maternal and fetal outcomes.
Collapse
Affiliation(s)
- Cecilia González Corona
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, One Baylor Plaza, Houston, TX 77030, USA
| | - Ronald J. Parchem
- Center for Cell and Gene Therapy, Stem Cells and Regenerative Medicine Center, One Baylor Plaza, Houston, TX 77030, USA,Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Li JH, Florez JC. On the Verge of Precision Medicine in Diabetes. Drugs 2022; 82:1389-1401. [PMID: 36123514 PMCID: PMC9531144 DOI: 10.1007/s40265-022-01774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
The epidemic of type 2 diabetes (T2D) is a significant global public health challenge and a major cause of morbidity and mortality. Despite the recent proliferation of pharmacological agents for the treatment of T2D, current therapies simply treat the symptom, i.e. hyperglycemia, and do not directly address the underlying disease process or modify the disease course. This article summarizes how genomic discovery has contributed to unraveling the heterogeneity in T2D, reviews relevant discoveries in the pharmacogenetics of five commonly prescribed glucose-lowering agents, presents evidence supporting how pharmacogenetics can be leveraged to advance precision medicine, and calls attention to important research gaps to its implementation to guide treatment choices.
Collapse
Affiliation(s)
- Josephine H Li
- Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Simches Research Building, CPZN 5.250, 185 Cambridge St, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jose C Florez
- Center for Genomic Medicine and Diabetes Unit, Massachusetts General Hospital, Simches Research Building, CPZN 5.250, 185 Cambridge St, Boston, MA, 02114, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
21
|
Laakso M, Fernandes Silva L. Genetics of Type 2 Diabetes: Past, Present, and Future. Nutrients 2022; 14:nu14153201. [PMID: 35956377 PMCID: PMC9370092 DOI: 10.3390/nu14153201] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes has reached epidemic proportions worldwide. Currently, approximately 537 million adults (20–79 years) have diabetes, and the total number of people with diabetes is continuously increasing. Diabetes includes several subtypes. About 80% of all cases of diabetes are type 2 diabetes (T2D). T2D is a polygenic disease with an inheritance ranging from 30 to 70%. Genetic and environment/lifestyle factors, especially obesity and sedentary lifestyle, increase the risk of T2D. In this review, we discuss how studies on the genetics of diabetes started, how they expanded when genome-wide association studies and exome and whole-genome sequencing became available, and the current challenges in genetic studies of diabetes. T2D is heterogeneous with respect to clinical presentation, disease course, and response to treatment, and has several subgroups which differ in pathophysiology and risk of micro- and macrovascular complications. Currently, genetic studies of T2D focus on these subgroups to find the best diagnoses and treatments for these patients according to the principles of precision medicine.
Collapse
Affiliation(s)
- Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, 70210 Kuopio, Finland
- Correspondence: ; Tel.: +358-40-672-3338
| | - Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
22
|
Diniz IG, Noce RRD, Pereira AP, Silva ANLMD, Sacuena ERP, Lemes RB, Cardoso-Costa GDL, Araújo GS, Machado JLP, Figueiredo FADPL, Hümemeier T, Guerreiro JF. Common BMI and diabetes-related genetic variants: A pilot study among indigenous people in the Brazilian Amazon. Genet Mol Biol 2022; 45:e20210153. [PMID: 35560161 PMCID: PMC9104643 DOI: 10.1590/1678-4685-gmb-2021-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/27/2021] [Indexed: 11/23/2022] Open
Abstract
This study was carried out to investigate the frequency of genetic variants related to body mass index (BMI) and type 2 diabetes (T2D) and evaluating the potential impact of risk alleles on susceptibility to these disorders in six indigenous peoples from Brazilian Amazon region. The majority of Fst values for pairwise population comparisons among the indigenous groups are low or moderate. The indigenous people show high values of differentiation with Africans, Europeans and Southeast Asians and moderate values with East Asian and American populations, as expected. The allelic frequencies among indigenous indicate that the majority of associations observed with T2D in continental populations can be replicated in native Amazonians. The genetic risk scores calculated for T2D in indigenous are high and similar to those calculated for Americans and East Asians, while the estimates obtained for obesity are low, probably due to the low frequencies of the risk allele of the FTO gene found in our samples. ADRB3-rs4994 and ABCC8-rs1799854 genes showed a significant association with BMI and waist circumference, and the KCNJ11-rs5219 gene with hyperglycemia. These results emphasize the importance of knowing the genetic variability underlying complex genetic diseases in indigenous peoples and the search for particular or rare variants.
Collapse
Affiliation(s)
- Isabela Guerreiro Diniz
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Genética Humana e Médica, Belém, PA, Brazil
| | - Rosilene Reis Della Noce
- Universidade Federal do Pará, Instituto de Ciências da Saúde, Faculdade de Nutrição, Belém, PA, Brazil
| | - Ana Paula Pereira
- Universidade Federal do Pará, Instituto de Ciências da Saúde, Faculdade de Nutrição, Belém, PA, Brazil
| | | | | | - Renan Barbosa Lemes
- Universidade de São Paulo, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - Greice de Lemos Cardoso-Costa
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Genética Humana e Médica, Belém, PA, Brazil
| | - Gilderlânio Santana Araújo
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Genética Humana e Médica, Belém, PA, Brazil
| | - Jéssica Lígia Picanço Machado
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Genética Humana e Médica, Belém, PA, Brazil
| | | | - Tábita Hümemeier
- Universidade de São Paulo, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - João Farias Guerreiro
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Genética Humana e Médica, Belém, PA, Brazil
| |
Collapse
|
23
|
Sánchez-Maldonado JM, Collado R, Cabrera-Serrano AJ, Ter Horst R, Gálvez-Montosa F, Robles-Fernández I, Arenas-Rodríguez V, Cano-Gutiérrez B, Bakker O, Bravo-Fernández MI, García-Verdejo FJ, López JAL, Olivares-Ruiz J, López-Nevot MÁ, Fernández-Puerta L, Cózar-Olmo JM, Li Y, Netea MG, Jurado M, Lorente JA, Sánchez-Rovira P, Álvarez-Cubero MJ, Sainz J. Type 2 Diabetes-Related Variants Influence the Risk of Developing Prostate Cancer: A Population-Based Case-Control Study and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14102376. [PMID: 35625981 PMCID: PMC9139180 DOI: 10.3390/cancers14102376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
In this study, we have evaluated whether 57 genome-wide association studies (GWAS)-identified common variants for type 2 diabetes (T2D) influence the risk of developing prostate cancer (PCa) in a population of 304 Caucasian PCa patients and 686 controls. The association of selected single nucleotide polymorphisms (SNPs) with the risk of PCa was validated through meta-analysis of our data with those from the UKBiobank and FinnGen cohorts, but also previously published genetic studies. We also evaluated whether T2D SNPs associated with PCa risk could influence host immune responses by analysing their correlation with absolute numbers of 91 blood-derived cell populations and circulating levels of 103 immunological proteins and 7 steroid hormones. We also investigated the correlation of the most interesting SNPs with cytokine levels after in vitro stimulation of whole blood, peripheral mononuclear cells (PBMCs), and monocyte-derived macrophages with LPS, PHA, Pam3Cys, and Staphylococcus Aureus. The meta-analysis of our data with those from six large cohorts confirmed that each copy of the FTOrs9939609A, HNF1Brs7501939T, HNF1Brs757210T, HNF1Brs4430796G, and JAZF1rs10486567A alleles significantly decreased risk of developing PCa (p = 3.70 × 10-5, p = 9.39 × 10-54, p = 5.04 × 10-54, p = 1.19 × 10-71, and p = 1.66 × 10-18, respectively). Although it was not statistically significant after correction for multiple testing, we also found that the NOTCH2rs10923931T and RBMS1rs7593730 SNPs associated with the risk of developing PCa (p = 8.49 × 10-4 and 0.004). Interestingly, we found that the protective effect attributed to the HFN1B locus could be mediated by the SULT1A1 protein (p = 0.00030), an arylsulfotransferase that catalyzes the sulfate conjugation of many hormones, neurotransmitters, drugs, and xenobiotic compounds. In addition to these results, eQTL analysis revealed that the HNF1Brs7501939, HNF1Brs757210, HNF1Brs4430796, NOTCH2rs10923931, and RBMS1rs7593730 SNPs influence the risk of PCa through the modulation of mRNA levels of their respective genes in whole blood and/or liver. These results confirm that functional TD2-related variants influence the risk of developing PCa, but also highlight the need of additional experiments to validate our functional results in a tumoral tissue context.
Collapse
Affiliation(s)
- José Manuel Sánchez-Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain;
- Instituto de Investigación Biosanataria IBs. Granada, 18012 Granada, Spain
| | - Ricardo Collado
- Medical Oncology Department, Hospital de San Pedro Alcántara, 10003 Cáceres, Spain; (R.C.); (M.I.B.-F.); (J.O.-R.)
| | - Antonio José Cabrera-Serrano
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain;
- Instituto de Investigación Biosanataria IBs. Granada, 18012 Granada, Spain
| | - Rob Ter Horst
- Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
| | - Fernando Gálvez-Montosa
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.-M.); (F.J.G.-V.); (J.A.L.L.); (P.S.-R.)
| | - Inmaculada Robles-Fernández
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
| | - Verónica Arenas-Rodríguez
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
| | - Blanca Cano-Gutiérrez
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
| | - Olivier Bakker
- Department of Genetics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | | | - Francisco José García-Verdejo
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.-M.); (F.J.G.-V.); (J.A.L.L.); (P.S.-R.)
| | - José Antonio López López
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.-M.); (F.J.G.-V.); (J.A.L.L.); (P.S.-R.)
| | - Jesús Olivares-Ruiz
- Medical Oncology Department, Hospital de San Pedro Alcántara, 10003 Cáceres, Spain; (R.C.); (M.I.B.-F.); (J.O.-R.)
| | | | | | | | - Yang Li
- Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
- Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Manuel Jurado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain;
- Instituto de Investigación Biosanataria IBs. Granada, 18012 Granada, Spain
- Department of Medicine, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Jose Antonio Lorente
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Department of Legal Medicine, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Pedro Sánchez-Rovira
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.-M.); (F.J.G.-V.); (J.A.L.L.); (P.S.-R.)
| | - María Jesús Álvarez-Cubero
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain; (J.M.S.-M.); (A.J.C.-S.); (I.R.-F.); (V.A.-R.); (M.J.); (J.A.L.); (M.J.Á.-C.)
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain;
- Instituto de Investigación Biosanataria IBs. Granada, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain
- Correspondence: ; Tel.: +34-95871-5500 (ext. 126); Fax: +34-9-5863-7071
| |
Collapse
|
24
|
Ren Y, Zhu W, Shi J, Shao A, Cheng Y, Liu Y. Association between KCNJ11 E23K polymorphism and the risk of type 2 diabetes mellitus: A global meta-analysis. J Diabetes Complications 2022; 36:108170. [PMID: 35305868 DOI: 10.1016/j.jdiacomp.2022.108170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Potassium inwardly rectifying channel, subfamily J member 11(KCNJ11) is considered to be a potential susceptible gene of type 2 diabetes mellitus (T2DM), and the association between KCNJ11 E23K polymorphism and T2DM risk is still controversial worldwide. This meta-analysis was performed to assess the association more accurately between KCNJ11 E23K polymorphism and T2DM risk. METHODS The up-to-data meta-analysis was conducted based on studies selected from eight databases (PubMed, Web of Science, Medline, Scopus, Embase, CNKI, WanFang, and Vip). Five gene models were included in our study: allele model (K-allele vs. E-allele), heterozygous model (EK vs. EE), homozygous model (KK vs. EE), dominant genetic model (EK + KK vs. EE), and recessive genetic model (EK + EE vs. KK). Association strength was evaluated by odds ratio (OR) and 95% confidence interval (CI), publication bias was evaluated by Begg's funnel plot and Egger's test, sensitivity analysis and trial sequential analysis (TSA) were used to evaluate the stability of the results. RESULTS According to the inclusion and exclusion criteria, 31 eligible articles were finally selected in our meta-analysis, including 8754 T2DM cases and 7587 controls. We found that allelic model (OR = 1.25, 95%CI: 1.15-1.35, P < 0.01), heterozygous model (OR = 1.31, 95% CI: 1.18-1.44, P < 0.01), homozygous model (OR = 1.48, 95% CI: 1.24-1.76, P < 0.01), and dominant genetic model (OR = 1.35, 95% CI: 1.22-1.50, P < 0.01) were significantly associated with increased risk of T2DM, but recessive genetic model (OR = 0.78, 95% CI: 0.67-0.91, P < 0.01) was considered as a protective factor for T2DM. No significant evidence of publication bias was found. CONCLUSION Our meta-analysis confirms the association between KCNJ11 E23K polymorphism and the risk of T2DM, highlighting that gene-gene interaction and gene-environment interaction should be investigated in future.
Collapse
Affiliation(s)
- Yaxuan Ren
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Wenfei Zhu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Aiyu Shao
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China
| | - Yi Cheng
- The Cardiovascular Center, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun 130021, China.
| |
Collapse
|
25
|
Liu C, Lai Y, Guan T, Zhan J, Pei J, Wu D, Ying S, Shen Y. Associations of ATP-Sensitive Potassium Channel’s Gene Polymorphisms With Type 2 Diabetes and Related Cardiovascular Phenotypes. Front Cardiovasc Med 2022; 9:816847. [PMID: 35402560 PMCID: PMC8984103 DOI: 10.3389/fcvm.2022.816847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes (T2D) is characterized by increased levels of blood glucose but is increasingly recognized as a heterogeneous disease, especially its multiple discrete cardiovascular phenotypes. Genetic variations play key roles in the heterogeneity of diabetic cardiovascular phenotypes. This study investigates possible associations of ATP-sensitive potassium channel (KATP) variants with cardiovascular phenotypes among the Chinese patients with T2D. Six hundred thirty-six patients with T2D and 634 non-diabetic individuals were analyzed in the study. Nine KATP variants were determined by MassARRAY. The KATP rs2285676 (AA + GA, OR = 1.43, 95% CI: 1.13–1.81, P = 0.003), rs1799858 (CC, OR = 1.42, 95% CI: 1.12–1.78, P = 0.004), and rs141294036 (CC, OR = 1.45, 95% CI: 1.15–1.83, P = 0.002) are associated with increased T2D risk. A follow-up of at least 45.8-months (median) indicates further association between the 3 variants and risks of diabetic-related cardiovascular conditions. The associations are categorized as follows: new-onset/recurrent acute coronary syndrome (ACS) (rs2285676/AA + GA, HR = 1.37, 95% CI: 1.10–1.70, P = 0.005; rs141294036/TT + CT, HR = 1.59, 95% CI: 1.28–1.99, P < 0.001), new-onset stroke (rs1799858/CC, HR = 2.58, 95% CI: 1.22–5.43, P = 0.013; rs141294036/CC, HR = 2.30, 95% CI: 1.16–4.55, P = 0.017), new-onset of heart failure (HF) (rs1799858/TT + CT, HR = 2.78, 95% CI: 2.07–3.74, P < 0.001; rs141294036/TT + CT, HR = 1.45, 95% CI: 1.07–1.96, P = 0.015), and new-onset atrial fibrillation (AF) (rs1799858/TT + CT, HR = 2.05, 95% CI: 1.25–3.37, P = 0.004; rs141294036/CC, HR = 2.31, 95% CI: 1.40–3.82, P = 0.001). In particular, the CC genotype of rs1799858 (OR = 2.38, 95% CI: 1.11–5.10, P = 0.025) and rs141294036 (OR = 1.95, 95% CI: 1.04–3.66, P = 0.037) are only associated with the risk of ischemic stroke while its counterpart genotype (TT + CT) is associated with the risks of HF with preserved ejection fraction (HFpEF) (rs1799858, OR = 3.46, 95% CI: 2.31–5.18, P < 0.001) and HF with mildly reduced ejection fraction (HFmrEF) (rs141294036, OR = 2.74, 95% CI: 1.05–7.15, P = 0.039). Furthermore, the 3 variants are associated with increased risks of abnormal serum levels of triglyceride (TIRG) (≥ 1.70 mmol/L), low-density lipoprotein cholesterol (LDL-C) (≥ 1.40 mmol/L), apolipoprotein B (ApoB) (≥ 80 mg/dL), apolipoprotein A-I (ApoA-I) level (< 120 mg/dL), lipoprotein(a) Lp(a) (≥ 300 mg/dL) and high-sensitivity C-reactive protein (HsCRP) (≥ 3.0 mg/L) but exhibited heterogeneity (all P < 0.05). The KATP rs2285676, rs1799858, and rs141294036 are associated with increased risks of T2D and its related cardiovascular phenotypes (ACS, stroke, HF, and AF), but show heterogeneity. The 3 KATP variants may be promising markers for diabetic cardiovascular events favoring “genotype-phenotype” oriented prevention and treatment strategies.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Cardiology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Cheng Liu,
| | - Yanxian Lai
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tianwang Guan
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Junfang Zhan
- Department of Health Management Center, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Jingxian Pei
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Daihong Wu
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Songsong Ying
- Department of Gastroenterology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Yan Shen
- Department of Cardiology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
26
|
Shah AS, Nadeau KJ, Dabelea D, Redondo MJ. Spectrum of Phenotypes and Causes of Type 2 Diabetes in Children. Annu Rev Med 2022; 73:501-515. [PMID: 35084995 PMCID: PMC9022328 DOI: 10.1146/annurev-med-042120-012033] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Several factors, including genetics, family history, diet, physical activity, obesity, and insulin resistance in puberty, appear to increase the risk of type 2 diabetes in youth. Youth-onset type 2 diabetes is often thought of as a single entity but rather exists as a spectrum of disease with differences in presentation, metabolic characteristics, clinical progression, and complication rates. We review what is currently known regarding the risks associated with developing type 2 diabetes in youth. Additionally, we focus on the spectrum of phenotypes of pediatric type 2 diabetes, discuss the pathogenic underpinnings and potential therapeutic relevance of this heterogeneity, and compare youth-onset type 2 diabetes with type 1 diabetes and adult-onset type 2 diabetes. Finally, we highlight knowledge gaps in prediction and prevention of youth-onset type 2 diabetes.
Collapse
Affiliation(s)
- Amy S. Shah
- Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio 45229, USA
| | - Kristen J. Nadeau
- Children’s Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Department of Epidemiology, and Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Maria J. Redondo
- Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
27
|
Reddy S, Maddhuri S, Nallari P, Ananthapur V, Kalyani S, Krishna M, Cherkuri N, Patibandala S. Association of ABCC8 and KCNJ11 gene variants with type 1 diabetes in south Indians. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Type 1 diabetes mellitus (TIDM) is a polygenic disorder with the involvement of several genetic and environmental risk factors. Mutation in genes namely ABCC8 and KCNJ11 disrupt the potentiality of KATP channel and regulates the secretion of insulin by detecting a change in the blood glucose level and consequently maintains glucose homeostasis. The present study was designed to investigate the association of ABCC8 and KCNJ11gene polymorphisms with type 1 diabetes. A case-control study was conducted enrolling 60 cases suffering from T1DM and 60 healthy controls of comparable age and sex. Gene variations were determined by PCR-RFLP and ARMS-PCR method.
Results
The ABCC8-3C > T (rs1799854) variation was found to be significantly associated with T1DM (p<0.01) and “CT” genotype was found to be predominant in T1DM with a threefold increased risk to diabetes and the association was statistically significant. However, we did not find any significant association of C>T (rs1801261) polymorphism of ABCC8 with T1DM. A significant association was observed for genetic variation at rs5219 C>T polymorphism and the frequency of TT genotype was found to be significantly higher in patients (46.7%) than in controls (21.7%), indicating the significant role of the KCNJ11 rs5219 variant in T1DM susceptibility (p<0.001), but we did not observe any significant association of G>A (rs5215) polymorphism of KCNJ11 with T1DM. In addition, haplotype analysis of the two genes revealed four haplotypes such as T-C-G-T, T-C-A-T, C-C-G-T, and T-T-G-T as risk haplotypes for type 1 diabetes (p<0.02) potentially making individual effects of these variants on the disease susceptibility, thereby indicating the synergistic role of these genes in the regulation of glucose homeostasis.
Conclusions
The present study highlights the importance of personalized medicine based on individual genetic profile.
Collapse
|
28
|
Nurun Nabi A, Ebihara A. Diabetes and Renin-Angiotensin-Aldosterone System: Pathophysiology and Genetics. RENIN-ANGIOTENSIN ALDOSTERONE SYSTEM 2021. [DOI: 10.5772/intechopen.97518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Diabetes mellitus (DM) is a metabolic disorder and characterized by hyperglycemia. Being a concern of both the developed and developing world, diabetes is a global health burden and is a major cause of mortality world-wide. The most common is the type 2 diabetes mellitus (T2DM), which is mainly caused by resistance to insulin. Long-term complications of diabetes cause microvascular related problems (eg. nephropathy, neuropathy and retinopathy) along with macrovascular complications (eg. cardiovascular diseases, ischemic heart disease, peripheral vascular disease). Renin-angiotensin-aldosterone system (RAAS) regulates homeostasis of body fluid that in turn, maintains blood pressure. Thus, RAAS plays pivotal role in the pathogenesis of long-term DM complications like cardiovascular diseases and chronic kidney diseases. T2DM is a polygenic disease, and the roles of RAAS components in insulin signaling pathway and insulin resistance have been well documented. Hyperglycemia has been found to be associated with the increased plasma renin activity, arterial pressure and renal vascular resistance. Several studies have reported involvement of single variants within particular genes in initiation and development of T2D using different approaches. This chapter aims to investigate and discuss potential genetic polymorphisms underlying T2D identified through candidate gene studies, genetic linkage studies, genome wide association studies.
Collapse
|
29
|
Böni-Schnetzler M, Méreau H, Rachid L, Wiedemann SJ, Schulze F, Trimigliozzi K, Meier DT, Donath MY. IL-1beta promotes the age-associated decline of beta cell function. iScience 2021; 24:103250. [PMID: 34746709 PMCID: PMC8554531 DOI: 10.1016/j.isci.2021.103250] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/03/2021] [Accepted: 10/07/2021] [Indexed: 11/08/2022] Open
Abstract
Aging is the prime risk factor for the development of type 2 diabetes. We investigated the role of the interleukin-1 (IL-1) system on insulin secretion in aged mice. During aging, expression of the protective IL-1 receptor antagonist decreased in islets, whereas IL-1beta gene expression increased specifically in the CD45 + islet immune cell fraction. One-year-old mice with a whole-body knockout of IL-1beta had higher insulin secretion in vivo and in isolated islets, along with enhanced proliferation marker Ki67 and elevated size and number of islets. Myeloid cell-specific IL-1beta knockout preserved glucose-stimulated insulin secretion during aging, whereas it declined in control mice. Isolated islets from aged myeloIL-1beta ko mice secreted more insulin along with increased expression of Ins2, Kir6.2, and of the cell-cycle gene E2f1. IL-1beta treatment of isolated islets reduced E2f1, Ins2, and Kir6.2 expression in beta cells. We conclude that IL-1beta contributes the age-associated decline of beta cell function. Islets from aged mice have increased IL-1beta and decreased IL-1Ra expression Islet immune cells are the source of increased IL-1beta expression during aging Myeloid-cell-specific IL-1beta knockout preserves insulin secretion in aged mice IL-1beta targets genes regulating insulin secretion and proliferation during aging
Collapse
Affiliation(s)
- Marianne Böni-Schnetzler
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Hélène Méreau
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Leila Rachid
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Sophia J Wiedemann
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Friederike Schulze
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Kelly Trimigliozzi
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Daniel T Meier
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| | - Marc Y Donath
- Endocrinology, Diabetes, and Metabolism, University Hospital of Basel, 4031 Basel, Switzerland.,Department of Biomedicine, Diabetes Research, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
30
|
DNA Methylation and Type 2 Diabetes: Novel Biomarkers for Risk Assessment? Int J Mol Sci 2021; 22:ijms222111652. [PMID: 34769081 PMCID: PMC8584054 DOI: 10.3390/ijms222111652] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a severe threat to global health. Almost 500 million people live with diabetes worldwide. Most of them have type 2 diabetes (T2D). T2D patients are at risk of developing severe and life-threatening complications, leading to an increased need for medical care and reduced quality of life. Improved care for people with T2D is essential. Actions aiming at identifying undiagnosed diabetes and at preventing diabetes in those at high risk are needed as well. To this end, biomarker discovery and validation of risk assessment for T2D are critical. Alterations of DNA methylation have recently helped to better understand T2D pathophysiology by explaining differences among endophenotypes of diabetic patients in tissues. Recent evidence further suggests that variations of DNA methylation might contribute to the risk of T2D even more significantly than genetic variability and might represent a valuable tool to predict T2D risk. In this review, we focus on recent information on the contribution of DNA methylation to the risk and the pathogenesis of T2D. We discuss the limitations of these studies and provide evidence supporting the potential for clinical application of DNA methylation marks to predict the risk and progression of T2D.
Collapse
|
31
|
Shah N, Abdalla MA, Deshmukh H, Sathyapalan T. Therapeutics for type-2 diabetes mellitus: a glance at the recent inclusions and novel agents under development for use in clinical practice. Ther Adv Endocrinol Metab 2021; 12:20420188211042145. [PMID: 34589201 PMCID: PMC8474306 DOI: 10.1177/20420188211042145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic, progressive, and multifaceted illness resulting in significant physical and psychological detriment to patients. As of 2019, 463 million people are estimated to be living with DM worldwide, out of which 90% have type-2 diabetes mellitus (T2DM). Over the years, significant progress has been made in identifying the risk factors for developing T2DM, understanding its pathophysiology and uncovering various metabolic pathways implicated in the disease process. This has culminated in the implementation of robust prevention programmes and the development of effective pharmacological agents, which have had a favourable impact on the management of T2DM in recent times. Despite these advances, the incidence and prevalence of T2DM continue to rise. Continuing research in improving efficacy, potency, delivery and reducing the adverse effect profile of currently available formulations is required to keep pace with this growing health challenge. Moreover, new metabolic pathways need to be targeted to produce novel pharmacotherapy to restore glucose homeostasis and address metabolic sequelae in patients with T2DM. We searched PubMed, MEDLINE, and Google Scholar databases for recently included agents and novel medication under development for treatment of T2DM. We discuss the pathophysiology of T2DM and review how the emerging anti-diabetic agents target the metabolic pathways involved. We also look at some of the limiting factors to developing new medication and the introduction of unique methods, including facilitating drug delivery to bypass some of these obstacles. However, despite the advances in the therapeutic options for the treatment of T2DM in recent years, the industry still lacks a curative agent.
Collapse
Affiliation(s)
- Najeeb Shah
- Hull University Teaching Hospitals NHS Trust,
Hull, UK
- Department of Academic Diabetes, Endocrinology
& Metabolism, Hull York Medical School, University of Hull, Brocklehurst
Building, 220-236 Anlaby Road, Hull, HU3 2RW, UK
| | - Mohammed Altigani Abdalla
- Department of Academic Diabetes, Endocrinology
& Metabolism, Hull York Medical School, University of Hull, Hull,
UK
| | - Harshal Deshmukh
- University Teaching Hospitals NHS Trust and
Department of Academic Diabetes, Endocrinology & Metabolism, Hull York
Medical School, University of Hull, Hull, UK
| | - Thozhukat Sathyapalan
- University Teaching Hospitals NHS Trust and
Department of Academic Diabetes, Endocrinology & Metabolism, Hull York
Medical School, University of Hull, Hull, UK
| |
Collapse
|
32
|
Abstract
ATP-sensitive K+ channels (KATP) are inwardly-rectifying potassium channels, broadly expressed throughout the body. KATP is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels thus playing an important physiological role by coupling cellular metabolism with membrane excitability. The hetero-octameric channel complex is formed of 4 pore-forming inward rectifier Kir6.x subunits (Kir6.1 or Kir6.2) and 4 regulatory sulfonylurea receptor subunits (SUR1, SUR2A, or SUR2B). These subunits can associate in various tissue-specific combinations to form functional KATP channels with distinct electrophysiological and pharmacological properties. KATP channels play many important physiological roles and mutations in channel subunits can result in diseases such as disorders of insulin handling, cardiac arrhythmia, cardiomyopathy, and neurological abnormalities. The tissue-specific expression of KATP channel subunits coupled with their rich and diverse pharmacology makes KATP channels attractive therapeutic targets in the treatment of endocrine and cardiovascular diseases.
Collapse
|
33
|
Sachse G, Haythorne E, Hill T, Proks P, Joynson R, Terrón-Expósito R, Bentley L, Tucker SJ, Cox RD, Ashcroft FM. The KCNJ11-E23K Gene Variant Hastens Diabetes Progression by Impairing Glucose-Induced Insulin Secretion. Diabetes 2021; 70:1145-1156. [PMID: 33568422 DOI: 10.2337/db20-0691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022]
Abstract
The ATP-sensitive K+ (KATP) channel controls blood glucose levels by coupling glucose metabolism to insulin secretion in pancreatic β-cells. E23K, a common polymorphism in the pore-forming KATP channel subunit (KCNJ11) gene, has been linked to increased risk of type 2 diabetes. Understanding the risk-allele-specific pathogenesis has the potential to improve personalized diabetes treatment, but the underlying mechanism has remained elusive. Using a genetically engineered mouse model, we now show that the K23 variant impairs glucose-induced insulin secretion and increases diabetes risk when combined with a high-fat diet (HFD) and obesity. KATP-channels in β-cells with two K23 risk alleles (KK) showed decreased ATP inhibition, and the threshold for glucose-stimulated insulin secretion from KK islets was increased. Consequently, the insulin response to glucose and glycemic control was impaired in KK mice fed a standard diet. On an HFD, the effects of the KK genotype were exacerbated, accelerating diet-induced diabetes progression and causing β-cell failure. We conclude that the K23 variant increases diabetes risk by impairing insulin secretion at threshold glucose levels, thus accelerating loss of β-cell function in the early stages of diabetes progression.
Collapse
Affiliation(s)
- Gregor Sachse
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K.
| | - Elizabeth Haythorne
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Thomas Hill
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Peter Proks
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
- Department of Physics, University of Oxford, Oxford, U.K
| | - Russell Joynson
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, U.K
| | - Raul Terrón-Expósito
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| | - Liz Bentley
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, U.K
| | | | - Roger D Cox
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, U.K
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K
| |
Collapse
|
34
|
Hughes AE, Hayes MG, Egan AM, Patel KA, Scholtens DM, Lowe LP, Lowe WL, Dunne FP, Hattersley AT, Freathy RM. All thresholds of maternal hyperglycaemia from the WHO 2013 criteria for gestational diabetes identify women with a higher genetic risk for type 2 diabetes. Wellcome Open Res 2021; 5:175. [PMID: 33869792 PMCID: PMC8030121 DOI: 10.12688/wellcomeopenres.16097.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Using genetic scores for fasting plasma glucose (FPG GS) and type 2 diabetes (T2D GS), we investigated whether the fasting, 1-hour and 2-hour glucose thresholds from the WHO 2013 criteria for gestational diabetes (GDM) have different implications for genetic susceptibility to raised fasting glucose and type 2 diabetes in women from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) and Atlantic Diabetes in Pregnancy (DIP) studies. Methods: Cases were divided into three subgroups: (i) FPG ≥5.1 mmol/L only, n=222; (ii) 1-hour glucose post 75 g oral glucose load ≥10 mmol/L only, n=154 (iii) 2-hour glucose ≥8.5 mmol/L only, n=73; and (iv) both FPG ≥5.1 mmol/L and either of a 1-hour glucose ≥10 mmol/L or 2-hour glucose ≥8.5 mmol/L, n=172. We compared the FPG and T2D GS of these groups with controls (n=3,091) in HAPO and DIP separately. Results: In HAPO and DIP, the mean FPG GS in women with a FPG ≥5.1 mmol/L, either on its own or with 1-hour glucose ≥10 mmol/L or 2-hour glucose ≥8.5 mmol/L, was higher than controls (all P <0.01). Mean T2D GS in women with a raised FPG alone or with either a raised 1-hour or 2-hour glucose was higher than controls (all P <0.05). GDM defined by 1-hour or 2-hour hyperglycaemia only was also associated with a higher T2D GS than controls (all P <0.05). Conclusions: The different diagnostic categories that are part of the WHO 2013 criteria for GDM identify women with a genetic predisposition to type 2 diabetes as well as a risk for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Alice E Hughes
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
- Royal Devon and Exeter Hospitals NHS Foundation Trust, Exeter, UK
| | - M Geoffrey Hayes
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aoife M Egan
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Kashyap A Patel
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
- Royal Devon and Exeter Hospitals NHS Foundation Trust, Exeter, UK
| | | | - Lynn P Lowe
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - William L Lowe
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Fidelma P Dunne
- Galway Diabetes Research Centre and Saolta Hospital Group, National University of Ireland, Galway, Galway, Ireland
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
- Royal Devon and Exeter Hospitals NHS Foundation Trust, Exeter, UK
- National Institute for Health Research Exeter Clinical Research Facility, Exeter, UK
| | - Rachel M Freathy
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
| |
Collapse
|
35
|
Association between KCNJ11 rs5219 variant and alcohol consumption on the effect of insulin secretion in a community-based Korean cohort: a 12-year follow-up study. Sci Rep 2021; 11:4729. [PMID: 33633334 PMCID: PMC7907140 DOI: 10.1038/s41598-021-84179-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023] Open
Abstract
Chronic alcohol consumption is known to be associated with type 2 diabetes (T2D), which is developed by two underlying mechanisms, β-cell dysfunction and insulin resistance. Identification of genetic variants in association with the development of T2D may help explain the genetic risk factors of T2D. In this study, we tried to find out some genetic variations, which interact with alcohol consumption and also are associated with β-cell function through 12 year’s follow-up study in Korean population. We performed a genotype association study using the community-based Ansung-Ansan Cohort data (baseline n = 3120; follow-up n = 433). Genotype association analyses of the baseline data showed that alcohol consumption is associated with the decreases of blood insulin levels and insulin secretion in participants with the KCNJ11 rs5219 risk allele. Moreover, multivariate logistic regression analyses revealed that the risk allele group is vulnerable to impairment of β-cell function in response to alcohol consumption (OR 1.450; 95% CI 1.061–1.982). Furthermore, 12-year’ follow-up results showed that alcohol consumption synergistically decreases insulin secretion in participants with KCNJ11 rs5219 risk alleles. Our findings demonstrate that the KCNJ11 rs5219 risk allele in combination with alcohol consumption could be a potential risk factor of β-cell dysfunction. We hope that this new findings could be helpful to further understand the development of T2D depending on individual genetic background in association with alcohol consumption.
Collapse
|
36
|
Sayed S, Nabi AHMN. Diabetes and Genetics: A Relationship Between Genetic Risk Alleles, Clinical Phenotypes and Therapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1307:457-498. [PMID: 32314317 DOI: 10.1007/5584_2020_518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unveiling human genome through successful completion of Human Genome Project and International HapMap Projects with the advent of state of art technologies has shed light on diseases associated genetic determinants. Identification of mutational landscapes such as copy number variation, single nucleotide polymorphisms or variants in different genes and loci have revealed not only genetic risk factors responsible for diseases but also region(s) playing protective roles. Diabetes is a global health concern with two major types - type 1 diabetes (T1D) and type 2 diabetes (T2D). Great progress in understanding the underlying genetic predisposition to T1D and T2D have been made by candidate gene studies, genetic linkage studies, genome wide association studies with substantial number of samples. Genetic information has importance in predicting clinical outcomes. In this review, we focus on recent advancement regarding candidate gene(s) associated with these two traits along with their clinical parameters as well as therapeutic approaches perceived. Understanding genetic architecture of these disease traits relating clinical phenotypes would certainly facilitate population stratification in diagnosing and treating T1D/T2D considering the doses and toxicity of specific drugs.
Collapse
Affiliation(s)
- Shomoita Sayed
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - A H M Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
| |
Collapse
|
37
|
He B, Li X, Zhou Z. Continuous spectrum of glucose dysmetabolism due to the KCNJ11 gene mutation-Case reports and review of the literature. J Diabetes 2021; 13:19-32. [PMID: 32935446 DOI: 10.1111/1753-0407.13114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/20/2020] [Accepted: 09/03/2020] [Indexed: 12/01/2022] Open
Abstract
The KCNJ11 gene encodes the Kir6.2 subunit of the adenosine triphosphate-sensitive potassium (KATP ) channel, which plays a key role in insulin secretion. Monogenic diseases caused by KCNJ11 gene mutation are rare and easily misdiagnosed. It has been shown that mutations in the KCNJ11 gene are associated with neonatal diabetes mellitus (NDM), maturity-onset diabetes of the young 13 (MODY13), type 2 diabetes mellitus (T2DM), and hyperinsulinemic hypoglycemia. We report four patients with KCNJ11 gene mutations and provide a systematic review of the literature. A boy with diabetes onset at the age of 1 month was misdiagnosed as type 1 diabetes mellitus (T1DM) for 12 years and received insulin therapy continuously, resulting in poor glycemic control. He was diagnosed as NDM with KCNJ11 E322K gene mutation, and glibenclamide was given to replace exogenous insulin. The successful transfer time was 4 months, much longer than the previous unsuccessful standard of 4 weeks. The other three patients were two sisters and their mother; the younger sister was misdiagnosed with T1DM at 13 years old, while the elder sister was diagnosed with diabetes (type undefined) at 16 years old. They were treated with insulin for 3 years, with poor glycemic control. Their mother was diagnosed with T2DM and achieved good glycemia control with glimepiride. They were diagnosed as MODY13 because of the autosomal dominant inheritance of two generations, early onset of diabetes before 25 years of age in the two sisters, and the presence of the KCNJ11 N48D gene mutation. All patients successfully transferred to sulfonylureas with excellent glycemic control. Therefore, the wide spectrum of clinical phenotypes of glucose dysmetabolism caused by KCNJ11 should be recognized to reduce misdiagnosis and implement appropriate treatment.
Collapse
Affiliation(s)
- Binbin He
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| |
Collapse
|
38
|
Balboa D, Iworima DG, Kieffer TJ. Human Pluripotent Stem Cells to Model Islet Defects in Diabetes. Front Endocrinol (Lausanne) 2021; 12:642152. [PMID: 33828531 PMCID: PMC8020750 DOI: 10.3389/fendo.2021.642152] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus is characterized by elevated levels of blood glucose and is ultimately caused by insufficient insulin production from pancreatic beta cells. Different research models have been utilized to unravel the molecular mechanisms leading to the onset of diabetes. The generation of pancreatic endocrine cells from human pluripotent stem cells constitutes an approach to study genetic defects leading to impaired beta cell development and function. Here, we review the recent progress in generating and characterizing functional stem cell-derived beta cells. We summarize the diabetes disease modeling possibilities that stem cells offer and the challenges that lie ahead to further improve these models.
Collapse
Affiliation(s)
- Diego Balboa
- Regulatory Genomics and Diabetes, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- *Correspondence: Diego Balboa,
| | - Diepiriye G. Iworima
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
39
|
Hughes AE, Hayes MG, Egan AM, Patel KA, Scholtens DM, Lowe LP, Lowe WL, Dunne FP, Hattersley AT, Freathy RM. All thresholds of maternal hyperglycaemia from the WHO 2013 criteria for gestational diabetes identify women with a higher genetic risk for type 2 diabetes. Wellcome Open Res 2020; 5:175. [PMID: 33869792 PMCID: PMC8030121.2 DOI: 10.12688/wellcomeopenres.16097.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 04/02/2024] Open
Abstract
Background: Using genetic scores for fasting plasma glucose (FPG GS) and type 2 diabetes (T2D GS), we investigated whether the fasting, 1-hour and 2-hour glucose thresholds from the WHO 2013 criteria for gestational diabetes (GDM) have different implications for genetic susceptibility to raised fasting glucose and type 2 diabetes in women from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) and Atlantic Diabetes in Pregnancy (DIP) studies. Methods: Cases were divided into three subgroups: (i) FPG ≥5.1 mmol/L only, n=222; (ii) 1-hour glucose post 75 g oral glucose load ≥10 mmol/L only, n=154 (iii) 2-hour glucose ≥8.5 mmol/L only, n=73; and (iv) both FPG ≥5.1 mmol/L and either of a 1-hour glucose ≥10 mmol/L or 2-hour glucose ≥8.5 mmol/L, n=172. We compared the FPG and T2D GS of these groups with controls (n=3,091) in HAPO and DIP separately. Results: In HAPO and DIP, the mean FPG GS in women with a FPG ≥5.1 mmol/L, either on its own or with 1-hour glucose ≥10 mmol/L or 2-hour glucose ≥8.5 mmol/L, was higher than controls (all P <0.01). Mean T2D GS in women with a raised FPG alone or with either a raised 1-hour or 2-hour glucose was higher than controls (all P <0.05). GDM defined by 1-hour or 2-hour hyperglycaemia only was also associated with a higher T2D GS than controls (all P <0.05). Conclusions: The different diagnostic categories that are part of the WHO 2013 criteria for GDM identify women with a genetic predisposition to type 2 diabetes as well as a risk for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Alice E Hughes
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
- Royal Devon and Exeter Hospitals NHS Foundation Trust, Exeter, UK
| | - M Geoffrey Hayes
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aoife M Egan
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Kashyap A Patel
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
- Royal Devon and Exeter Hospitals NHS Foundation Trust, Exeter, UK
| | | | - Lynn P Lowe
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - William L Lowe
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Fidelma P Dunne
- Galway Diabetes Research Centre and Saolta Hospital Group, National University of Ireland, Galway, Galway, Ireland
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
- Royal Devon and Exeter Hospitals NHS Foundation Trust, Exeter, UK
- National Institute for Health Research Exeter Clinical Research Facility, Exeter, UK
| | - Rachel M Freathy
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
| |
Collapse
|
40
|
Prevention of Diabetes and Cardiovascular Disease in Obesity. Int J Mol Sci 2020; 21:ijms21218178. [PMID: 33142938 PMCID: PMC7663329 DOI: 10.3390/ijms21218178] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity is one of the major risk factors for the development of both impaired glucose tolerance (IGT, or prediabetes) and type 2 diabetes (T2D), and its prevalence worldwide drives toward an increased rate of cardiovascular morbidity and mortality. Given the estimations of the World Health Organization (WHO) and the recommendation of the Diabetes Prevention Program (DPP), where IGT and diabetes are considered as risk factors for the development of cardiovascular complications and obesity, the development of diabetes should be treated because of its potential reversibility. In this view, several interventions such as diet, lifestyle changes, and pharmacological treatment are effective, including bariatric metabolic surgery (BMS), which is the most incisive way to efficiently lower body weight. In this review, we sought to summarize some of the major aspects linked to diabetes prevention in overweight/obesity, focusing on the use of surgery; we also attempted to elucidate molecular pathways involved in a variety of obesity-induced processes able to favor the progression of chronic diseases, such as diabetes and its complications.
Collapse
|
41
|
Abstract
Diabetes is a chronic, progressive disease that calls for longitudinal data and analysis. We introduce a longitudinal mathematical model that is capable of representing the metabolic state of an individual at any point in time during their progression from normal glucose tolerance to type 2 diabetes (T2D) over a period of years. As an application of the model, we account for the diversity of pathways typically followed, focusing on two extreme alternatives, one that goes through impaired fasting glucose (IFG) first and one that goes through impaired glucose tolerance (IGT) first. These two pathways are widely recognized to stem from distinct metabolic abnormalities in hepatic glucose production and peripheral glucose uptake, respectively. We confirm this but go beyond to show that IFG and IGT lie on a continuum ranging from high hepatic insulin resistance and low peripheral insulin resistance to low hepatic resistance and high peripheral resistance. We show that IFG generally incurs IGT and IGT generally incurs IFG on the way to T2D, highlighting the difference between innate and acquired defects and the need to assess patients early to determine their underlying primary impairment and appropriately target therapy. We also consider other mechanisms, showing that IFG can result from impaired insulin secretion, that non-insulin-dependent glucose uptake can also mediate or interact with these pathways, and that impaired incretin signaling can accelerate T2D progression. We consider whether hyperinsulinemia can cause insulin resistance in addition to being a response to it and suggest that this is a minor effect.
Collapse
Affiliation(s)
- Joon Ha
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
42
|
Hughes AE, Hayes MG, Egan AM, Patel KA, Scholtens DM, Lowe LP, Lowe Jr WL, Dunne FP, Hattersley AT, Freathy RM. All thresholds of maternal hyperglycaemia from the WHO 2013 criteria for gestational diabetes identify women with a higher genetic risk for type 2 diabetes. Wellcome Open Res 2020; 5:175. [PMID: 33869792 PMCID: PMC8030121 DOI: 10.12688/wellcomeopenres.16097.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2020] [Indexed: 04/02/2024] Open
Abstract
Background: Using genetic scores for fasting plasma glucose (FPG GS) and type 2 diabetes (T2D GS), we investigated whether the fasting, 1-hour and 2-hour glucose thresholds from the WHO 2013 criteria for gestational diabetes (GDM) have different implications for genetic susceptibility to raised fasting glucose and type 2 diabetes in women from the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) and Atlantic Diabetes in Pregnancy (DIP) studies. Methods: Cases were divided into three subgroups: (i) FPG ≥5.1 mmol/L only, n=222; (ii) 1-hour glucose post 75 g oral glucose load ≥10 mmol/L only, n=154 (iii) 2-hour glucose ≥8.5 mmol/L only, n=73; and (iv) both FPG ≥5.1 mmol/L and either of a 1-hour glucose ≥10 mmol/L or 2-hour glucose ≥8.5 mmol/L, n=172. We compared the FPG and T2D GS of these groups with controls (n=3,091) in HAPO and DIP separately. Results: In HAPO and DIP, the mean FPG GS in women with a FPG ≥5.1 mmol/L, either on its own or with 1-hour glucose ≥10 mmol/L or 2-hour glucose ≥8.5 mmol/L, was higher than controls (all P <0.01). Mean T2D GS in women with a raised FPG alone or with either a raised 1-hour or 2-hour glucose was higher than controls (all P <0.05). GDM defined by 1-hour or 2-hour hyperglycaemia only was also associated with a higher T2D GS than controls (all P <0.05). Conclusions: The different diagnostic categories that are part of the WHO 2013 criteria for GDM identify women with a genetic predisposition to type 2 diabetes as well as a risk for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Alice E. Hughes
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
- Royal Devon and Exeter Hospitals NHS Foundation Trust, Exeter, UK
| | - M. Geoffrey Hayes
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aoife M. Egan
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic School of Medicine, Rochester, MN, USA
| | - Kashyap A. Patel
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
- Royal Devon and Exeter Hospitals NHS Foundation Trust, Exeter, UK
| | | | - Lynn P. Lowe
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Fidelma P. Dunne
- Galway Diabetes Research Centre and Saolta Hospital Group, National University of Ireland, Galway, Galway, Ireland
| | - Andrew T. Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
- Royal Devon and Exeter Hospitals NHS Foundation Trust, Exeter, UK
- National Institute for Health Research Exeter Clinical Research Facility, Exeter, UK
| | - Rachel M. Freathy
- Institute of Biomedical and Clinical Science, University of Exeter, Exeter, UK
| |
Collapse
|
43
|
Bakhtiyari A, Haghani K, Bakhtiyari S, Zaimy MA, Noori-Zadeh A, Gheysarzadeh A, Darabi S, Seidkhani-Nahal A, Amraei M, Alipourfard I. Association between ABCC8 Ala1369Ser Polymorphism (rs757110 T/G) and Type 2 Diabetes Risk in an Iranian Population: A Case-Control Study. Endocr Metab Immune Disord Drug Targets 2020; 21:441-447. [PMID: 32660410 DOI: 10.2174/1871530320666200713091827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Glucose metabolism increases ATP/ADP ratio within the β-cells and causes ATP-sensitive K+ (KATP) channel closure and consequently insulin secretion. The enhanced activity of the channel may be a mechanism contributing to the reduced first-phase of insulin secretion observed in T2DM. There is no study to date in the Kurdish ethnic group regarding the relationship between SNP Ala1369Ser (rs757110 T/G) of SUR1 gene and T2DM, and additionally, the results of this association in other populations are inconsistent. Therefore, our aim in this study was to explore the possible association between SNP Ala1369Ser and type 2 diabetes in an Iranian Kurdish ethnic group. METHODS In this study, we checked out the frequency of alleles and genotypes of SNP Ala1369Ser in T2DM individuals (207 patients; men/women: 106/101) and non-T2DM subjects (201 controls; men/women: 97/104), and their effects on anthropometric, clinical, and biochemical parameters. Genomic DNA was extracted from the leukocytes of blood specimens using a standard method. We amplified the ABCC8 rs757110 polymorphic site (T/G) using a polymerase chain reaction (PCR) method and a designed primer pair. To perform the PCR-RFLP method, the amplicons were subjected to restriction enzymes and the resulting fragments separated by gel electrophoresis. RESULTS The frequency of the G-allele of Ala1369Ser polymorphism was significantly (0.01) higher in the case group than the control group (19% vs. 9%, respectively). In the dominant model (TT vs. TG+GG), there was a significant relationship between this SNP and an increased risk of T2DM (P = 0.00). T2DM patients with TG+GG genotypes had significantly higher fasting plasma insulin and HOMA-IR than those who had the TT genotype (P = 0.02 and 0.01, respectively). CONCLUSION Our study is the first study to investigate the association between Ala1369Ser ABCC8 genetic variation and T2DM in the Kurdish population of western Iran. The obtained results clearly show that Ala1369Ser polymorphism of ABCC8 is associated with an increased risk of T2DM in this population.
Collapse
Affiliation(s)
- Amin Bakhtiyari
- Department of Genetics, Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran.,Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Karimeh Haghani
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Salar Bakhtiyari
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad A Zaimy
- Department of Medical Genetics, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Noori-Zadeh
- Department of Clinical Biochemistry, Faculty of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Gheysarzadeh
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.,Department of Biology, Faculty of Science, Ilam University, Ilam, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Seidkhani-Nahal
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mansour Amraei
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Iraj Alipourfard
- School of Pharmacy, Faculty of Sciences, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
44
|
Pipatpolkai T, Usher S, Stansfeld PJ, Ashcroft FM. New insights into K ATP channel gene mutations and neonatal diabetes mellitus. Nat Rev Endocrinol 2020; 16:378-393. [PMID: 32376986 DOI: 10.1038/s41574-020-0351-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
The ATP-sensitive potassium channel (KATP channel) couples blood levels of glucose to insulin secretion from pancreatic β-cells. KATP channel closure triggers a cascade of events that results in insulin release. Metabolically generated changes in the intracellular concentrations of adenosine nucleotides are integral to this regulation, with ATP and ADP closing the channel and MgATP and MgADP increasing channel activity. Activating mutations in the genes encoding either of the two types of KATP channel subunit (Kir6.2 and SUR1) result in neonatal diabetes mellitus, whereas loss-of-function mutations cause hyperinsulinaemic hypoglycaemia of infancy. Sulfonylurea and glinide drugs, which bind to SUR1, close the channel through a pathway independent of ATP and are now the primary therapy for neonatal diabetes mellitus caused by mutations in the genes encoding KATP channel subunits. Insight into the molecular details of drug and nucleotide regulation of channel activity has been illuminated by cryo-electron microscopy structures that reveal the atomic-level organization of the KATP channel complex. Here we review how these structures aid our understanding of how the various mutations in the genes encoding Kir6.2 (KCNJ11) and SUR1 (ABCC8) lead to a reduction in ATP inhibition and thereby neonatal diabetes mellitus. We also provide an update on known mutations and sulfonylurea therapy in neonatal diabetes mellitus.
Collapse
Affiliation(s)
- Tanadet Pipatpolkai
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Samuel Usher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
45
|
Vimaleswaran KS. A nutrigenetics approach to study the impact of genetic and lifestyle factors on cardiometabolic traits in various ethnic groups: findings from the GeNuIne Collaboration. Proc Nutr Soc 2020; 79:194-204. [PMID: 32000867 DOI: 10.1017/s0029665119001186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Several studies on gene-diet interactions (nutrigenetics) have been performed in western populations; however, there are only a few studies to date in lower middle-income countries (LMIC). A large-scale collaborative project called gene-nutrient interactions (GeNuIne) Collaboration, the main objective of which is to investigate the effect of GeNuIne on cardiometabolic traits using population-based studies from various ethnic groups, has been initiated at the University of Reading, UK. While South Asians with higher genetic risk score (GRS) showed a higher risk of obesity in response to a high-carbohydrate diet, South East and Western Asian populations with higher GRS showed an increased risk of central obesity in response to a high-protein diet. The paper also provides a summary of other gene-diet interaction analyses that were performed in LMIC as part of this collaborative project and gives an overview of how these nutrigenetic findings can be translated to personalised and public health approaches for the prevention of cardiometabolic diseases such as obesity, type 2 diabetes and CVD.
Collapse
Affiliation(s)
- Karani S Vimaleswaran
- Department of Food and Nutritional Sciences, Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| |
Collapse
|
46
|
Mattis KK, Gloyn AL. From Genetic Association to Molecular Mechanisms for Islet-cell Dysfunction in Type 2 Diabetes. J Mol Biol 2020; 432:1551-1578. [PMID: 31945378 DOI: 10.1016/j.jmb.2019.12.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/30/2022]
Abstract
Genome-wide association studies (GWAS) have identified over 400 signals robustly associated with risk for type 2 diabetes (T2D). At the vast majority of these loci, the lead single nucleotide polymorphisms (SNPs) reside in noncoding regions of the genome, which hampers biological inference and translation of genetic discoveries into disease mechanisms. The study of these T2D risk variants in normoglycemic individuals has revealed that a significant proportion are exerting their disease risk through islet-cell dysfunction. The central role of the islet is also demonstrated by numerous studies, which have shown an enrichment of these signals in islet-specific epigenomic annotations. In recent years the emergence of authentic human beta-cell lines, and advances in genome-editing technologies coupled with improved protocols differentiating human pluripotent stem cells into beta-like cells has opened up new opportunities for T2D disease modeling. Here we review the current understanding on the genetic basis of T2D focusing on approaches, which have facilitated the identification of causal variants and their effector transcripts in human islets. We will present examples of functional studies based on animal and conventional cellular systems and highlight the potential of novel stem cell-based T2D disease models.
Collapse
Affiliation(s)
- Katia K Mattis
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, UK
| | - Anna L Gloyn
- Oxford Centre for Diabetes Endocrinology & Metabolism, University of Oxford, UK; Wellcome Trust Centre for Human Genetics, University of Oxford, UK; National Institute of Health Research, Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK.
| |
Collapse
|
47
|
Padilla-Martínez F, Collin F, Kwasniewski M, Kretowski A. Systematic Review of Polygenic Risk Scores for Type 1 and Type 2 Diabetes. Int J Mol Sci 2020; 21:E1703. [PMID: 32131491 PMCID: PMC7084489 DOI: 10.3390/ijms21051703] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Recent studies have led to considerable advances in the identification of genetic variants associated with type 1 and type 2 diabetes. An approach for converting genetic data into a predictive measure of disease susceptibility is to add the risk effects of loci into a polygenic risk score. In order to summarize the recent findings, we conducted a systematic review of studies comparing the accuracy of polygenic risk scores developed during the last two decades. We selected 15 risk scores from three databases (Scopus, Web of Science and PubMed) enrolled in this systematic review. We identified three polygenic risk scores that discriminate between type 1 diabetes patients and healthy people, one that discriminate between type 1 and type 2 diabetes, two that discriminate between type 1 and monogenic diabetes and nine polygenic risk scores that discriminate between type 2 diabetes patients and healthy people. Prediction accuracy of polygenic risk scores was assessed by comparing the area under the curve. The actual benefits, potential obstacles and possible solutions for the implementation of polygenic risk scores in clinical practice were also discussed. Develop strategies to establish the clinical validity of polygenic risk scores by creating a framework for the interpretation of findings and their translation into actual evidence, are the way to demonstrate their utility in medical practice.
Collapse
Affiliation(s)
- Felipe Padilla-Martínez
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-276 Bialystok, Poland; (F.C.); (M.K.)
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Francois Collin
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-276 Bialystok, Poland; (F.C.); (M.K.)
| | - Miroslaw Kwasniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-276 Bialystok, Poland; (F.C.); (M.K.)
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland;
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland
| |
Collapse
|
48
|
De Franco E, Saint-Martin C, Brusgaard K, Knight Johnson AE, Aguilar-Bryan L, Bowman P, Arnoux JB, Larsen AR, Sanyoura M, Greeley SAW, Calzada-León R, Harman B, Houghton JAL, Nishimura-Meguro E, Laver TW, Ellard S, Del Gaudio D, Christesen HT, Bellanné-Chantelot C, Flanagan SE. Update of variants identified in the pancreatic β-cell K ATP channel genes KCNJ11 and ABCC8 in individuals with congenital hyperinsulinism and diabetes. Hum Mutat 2020; 41:884-905. [PMID: 32027066 PMCID: PMC7187370 DOI: 10.1002/humu.23995] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/08/2020] [Accepted: 02/04/2020] [Indexed: 01/03/2023]
Abstract
The most common genetic cause of neonatal diabetes and hyperinsulinism is pathogenic variants in ABCC8 and KCNJ11. These genes encode the subunits of the β-cell ATP-sensitive potassium channel, a key component of the glucose-stimulated insulin secretion pathway. Mutations in the two genes cause dysregulated insulin secretion; inactivating mutations cause an oversecretion of insulin, leading to congenital hyperinsulinism, whereas activating mutations cause the opposing phenotype, diabetes. This review focuses on variants identified in ABCC8 and KCNJ11, the phenotypic spectrum and the treatment implications for individuals with pathogenic variants.
Collapse
Affiliation(s)
- Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Cécile Saint-Martin
- Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Klaus Brusgaard
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Amy E Knight Johnson
- Department of Human Genetics, University of Chicago Genetic Services Laboratory, The University of Chicago, Chicago, Illinois
| | | | - Pamela Bowman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jean-Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants Malades Hospital, Paris, France
| | - Annette Rønholt Larsen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - May Sanyoura
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Siri Atma W Greeley
- Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Raúl Calzada-León
- Pediatric Endocrinology, Endocrine Service, National Institute for Pediatrics, Mexico City, Mexico
| | - Bradley Harman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Elisa Nishimura-Meguro
- Department of Pediatric Endocrinology, Children's Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Thomas W Laver
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.,Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Daniela Del Gaudio
- Department of Human Genetics, University of Chicago Genetic Services Laboratory, The University of Chicago, Chicago, Illinois
| | - Henrik Thybo Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center, Odense University Hospital, Odense, Denmark
| | | | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
49
|
Lv W, Wang X, Xu Q, Lu W. Mechanisms and Characteristics of Sulfonylureas and Glinides. Curr Top Med Chem 2020; 20:37-56. [PMID: 31884929 DOI: 10.2174/1568026620666191224141617] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 09/22/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus is a complex progressive endocrine disease characterized by hyperglycemia and life-threatening complications. It is the most common disorder of pancreatic cell function that causes insulin deficiency. Sulfonylurea is a class of oral hypoglycemic drugs. Over the past half century, these drugs, together with the subsequent non-sulfonylureas (glinides), have been the main oral drugs for insulin secretion. OBJECTIVE Through in-depth study, the medical profession considers it as an important drug for improving blood sugar control. METHODS The mechanism, characteristics, efficacy and side effects of sulfonylureas and glinides were reviewed in detail. RESULTS Sulfonylureas and glinides not only stimulated the release of insulin from pancreatic cells, but also had many extrapanular hypoglycemic effect, such as reducing the clearance rate of insulin in liver, reducing the secretion of glucagon, and enhancing the sensitivity of peripheral tissues to insulin in type 2 diabetes mellitus. CONCLUSION Sulfonylureas and glinides are effective first-line drugs for the treatment of diabetes mellitus. Although they have the risk of hypoglycemia, weight gain and cardiovascular disease, their clinical practicability and safety can be guaranteed as long as they are reasonably used.
Collapse
Affiliation(s)
- Wei Lv
- School of Materials Science and Engineering, Shanghai University, Shanghai, China.,Shanghai Huayi Resins Co., Ltd., Shanghai, China
| | - Xianqing Wang
- Charles Institute of Dermatology, University College Dublin, Dublin D04 V1W8, Ireland
| | - Qian Xu
- Charles Institute of Dermatology, University College Dublin, Dublin D04 V1W8, Ireland
| | - Wencong Lu
- School of Materials Science and Engineering, Shanghai University, Shanghai, China
| |
Collapse
|
50
|
Khatami F, Mohajeri-Tehrani MR, Tavangar SM. The Importance of Precision Medicine in Type 2 Diabetes Mellitus (T2DM): From Pharmacogenetic and Pharmacoepigenetic Aspects. Endocr Metab Immune Disord Drug Targets 2020; 19:719-731. [PMID: 31122183 DOI: 10.2174/1871530319666190228102212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/18/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) is a worldwide disorder as the most important challenges of health-care systems. Controlling the normal glycaemia greatly profit long-term prognosis and gives explanation for early, effective, constant, and safe intervention. MATERIAL AND METHODS Finding the main genetic and epigenetic profile of T2DM and the exact molecular targets of T2DM medications can shed light on its personalized management. The comprehensive information of T2DM was earned through the genome-wide association study (GWAS) studies. In the current review, we represent the most important candidate genes of T2DM like CAPN10, TCF7L2, PPAR-γ, IRSs, KCNJ11, WFS1, and HNF homeoboxes. Different genetic variations of a candidate gene can predict the efficacy of T2DM personalized strategy medication. RESULTS SLCs and AMPK variations are considered for metformin, CYP2C9, KATP channel, CDKAL1, CDKN2A/2B and KCNQ1 for sulphonylureas, OATP1B, and KCNQ1 for repaglinide and the last but not the least ADIPOQ, PPAR-γ, SLC, CYP2C8, and SLCO1B1 for thiazolidinediones response prediction. CONCLUSION Taken everything into consideration, there is an extreme need to determine the genetic status of T2DM patients in some known genetic region before planning the medication strategies.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad R Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed M Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|