1
|
Chen KY, Liu Z, Yi J, Hui YP, Song YN, Lu JH, Chen HJ, Yang SY, Hu XY, Zhang DS, Liang GY. PDHA1 Alleviates Myocardial Ischemia-Reperfusion Injury by Improving Myocardial Insulin Resistance During Cardiopulmonary Bypass Surgery in Rats. Cardiovasc Drugs Ther 2025; 39:17-31. [PMID: 37610688 DOI: 10.1007/s10557-023-07501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE Cardiopulmonary bypass (CPB) is a requisite technique for thoracotomy in advanced cardiovascular surgery. However, the consequent myocardial ischemia-reperfusion injury (MIRI) is the primary culprit behind cardiac dysfunction and fatal consequences post-operation. Prior research has posited that myocardial insulin resistance (IR) plays a vital role in exacerbating the progression of MIRI. Nonetheless, the exact mechanisms underlying this phenomenon remain obscure. METHODS We constructed pyruvate dehydrogenase E1 α subunit (PDHA1) interference and overexpression rats and used ascending aorta occlusion in an in vivo model of CPB-MIRI. We devised an in vivo model of CPB-MIRI by constructing rat models with both pyruvate dehydrogenase E1α subunit (PDHA1) interference and overexpression through ascending aorta occlusion. We analyzed myocardial glucose metabolism and the degree of myocardial injury using functional monitoring, biochemical assays, and histological analysis. RESULTS We discovered a clear downregulation of glucose transporter 4 (GLUT4) protein content expression in the CPB I/R model. In particular, cardiac-specific PDHA1 interference resulted in exacerbated cardiac dysfunction, significantly increased myocardial infarction area, more pronounced myocardial edema, and markedly increased cardiomyocyte apoptosis. Notably, the opposite effect was observed with PDHA1 overexpression, leading to a mitigated cardiac dysfunction and decreased incidence of myocardial infarction post-global ischemia. Mechanistically, PDHA1 plays a crucial role in regulating the protein content expression of GLUT4 on cardiomyocytes, thereby controlling the uptake and utilization of myocardial glucose, influencing the development of myocardial insulin resistance, and ultimately modulating MIRI. CONCLUSION Overall, our study sheds new light on the pivotal role of PDHA1 in glucose metabolism and the development of myocardial insulin resistance. Our findings hold promising therapeutic potential for addressing the deleterious effects of MIRI in patients.
Collapse
Affiliation(s)
- Kai-Yuan Chen
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Zhou Liu
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Jing Yi
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, Guizhou Province, China
| | - Yong-Peng Hui
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Ying-Nan Song
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Jun-Hou Lu
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Hong-Jin Chen
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Si-Yuan Yang
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Xuan-Yi Hu
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Deng-Shen Zhang
- Department of Cardiovascular Surgery, the Affiliated Hospital of Zunyi Medical University, Zunyi, 563009, Guizhou Province, China
| | - Gui-You Liang
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Beijing Road, Yunyan District, Guiyang, 550001, Guizhou Province, China.
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
2
|
Gera J, Kumar D, Chauhan G, Choudhary A, Rani L, Mandal L, Mandal S. High sugar diet-induced fatty acid oxidation potentiates cytokine-dependent cardiac ECM remodeling. J Cell Biol 2024; 223:e202306087. [PMID: 38916917 PMCID: PMC11199913 DOI: 10.1083/jcb.202306087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/09/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
Context-dependent physiological remodeling of the extracellular matrix (ECM) is essential for development and organ homeostasis. On the other hand, consumption of high-caloric diet leverages ECM remodeling to create pathological conditions that impede the functionality of different organs, including the heart. However, the mechanistic basis of high caloric diet-induced ECM remodeling has yet to be elucidated. Employing in vivo molecular genetic analyses in Drosophila, we demonstrate that high dietary sugar triggers ROS-independent activation of JNK signaling to promote fatty acid oxidation (FAO) in the pericardial cells (nephrocytes). An elevated level of FAO, in turn, induces histone acetylation-dependent transcriptional upregulation of the cytokine Unpaired 3 (Upd3). Release of pericardial Upd3 augments fat body-specific expression of the cardiac ECM protein Pericardin, leading to progressive cardiac fibrosis. Importantly, this pathway is quite distinct from the ROS-Ask1-JNK/p38 axis that regulates Upd3 expression under normal physiological conditions. Our results unravel an unknown physiological role of FAO in cytokine-dependent ECM remodeling, bearing implications in diabetic fibrosis.
Collapse
Affiliation(s)
- Jayati Gera
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Dheeraj Kumar
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Gunjan Chauhan
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Adarsh Choudhary
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Lavi Rani
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Lolitika Mandal
- Department of Biological Sciences, Developmental Genetics Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| | - Sudip Mandal
- Department of Biological Sciences, Molecular Cell and Developmental Biology Laboratory, Indian Institute of Science Education and Research Mohali, Punjab, India
| |
Collapse
|
3
|
Weber BY, Brenner GB, Kiss B, Gergely TG, Sayour NV, Tian H, Makkos A, Görbe A, Ferdinandy P, Giricz Z. Rosiglitazone Does Not Show Major Hidden Cardiotoxicity in Models of Ischemia/Reperfusion but Abolishes Ischemic Preconditioning-Induced Antiarrhythmic Effects in Rats In Vivo. Pharmaceuticals (Basel) 2022; 15:ph15091055. [PMID: 36145276 PMCID: PMC9503202 DOI: 10.3390/ph15091055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical observations are highly inconsistent with the use of the antidiabetic rosiglitazone regarding its associated increased risk of myocardial infarction. This may be due to its hidden cardiotoxic properties that have only become evident during post-marketing studies. Therefore, we aimed to investigate the hidden cardiotoxicity of rosiglitazone in ischemia/reperfusion (I/R) injury models. Rats were treated orally with either 0.8 mg/kg/day rosiglitazone or vehicle for 28 days and subjected to I/R with or without cardioprotective ischemic preconditioning (IPC). Rosiglitazone did not affect mortality, arrhythmia score, or infarct size during I/R. However, rosiglitazone abolished the antiarrhythmic effects of IPC. To investigate the direct effect of rosiglitazone on cardiomyocytes, we utilized adult rat cardiomyocytes (ARCMs), AC16, and differentiated AC16 (diffAC16) human cardiac cell lines. These were subjected to simulated I/R in the presence of rosiglitazone. Rosiglitazone improved cell survival of ARCMs at 0.3 μM. At 0.1 and 0.3 μM, rosiglitazone improved cell survival of AC16s but not that of diffAC16s. This is the first demonstration that chronic administration of rosiglitazone does not result in major hidden cardiotoxic effects in myocardial I/R injury models. However, the inhibition of the antiarrhythmic effects of IPC may have some clinical relevance that needs to be further explored.
Collapse
Affiliation(s)
- Bennet Y. Weber
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Gábor B. Brenner
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Bernadett Kiss
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Tamás G. Gergely
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Nabil V. Sayour
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Huimin Tian
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - András Makkos
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Anikó Görbe
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Pharmahungary Group, H-6722 Szeged, Hungary
| | - Péter Ferdinandy
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Pharmahungary Group, H-6722 Szeged, Hungary
| | - Zoltán Giricz
- MTA-SE System Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Pharmahungary Group, H-6722 Szeged, Hungary
- Correspondence:
| |
Collapse
|
4
|
Perret P, Slimani L, Barone-Rochette G, Vollaire J, Briat A, Ahmadi M, Henri M, Desruet MD, Clerc R, Broisat A, Riou L, Boucher F, Frouin F, Djaileb L, Calizzano A, Vanzetto G, Fagret D, Ghezzi C. Preclinical and clinical evaluation of a new method to assess cardiac insulin resistance using nuclear imaging. J Nucl Cardiol 2022; 29:1419-1429. [PMID: 33502690 DOI: 10.1007/s12350-020-02520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Myocardial insulin resistance (IR) could be a predictive factor of cardiovascular events. This study aimed to introduce a new method using 123I-6-deoxy-6-iodo-D-glucose (6DIG), a pure tracer of glucose transport, for the assessment of IR using cardiac dynamic nuclear imaging. METHODS The protocol evaluated first in rat-models consisted in two 6DIG injections and one of insulin associated with planar imaging and blood sampling. Compartmental modeling was used to analyze 6DIG kinetics in basal and insulin conditions and to obtain an index of IR. As a part of a translational approach, a clinical study was then performed in 5 healthy and 6 diabetic volunteers. RESULTS In rodent models, the method revealed reproducible when performed twice at 7 days apart in the same animal. Rosiglitazone, an insulin-sensitizing drug, induced a significant increase of myocardial IR index in obese Zucker rats from 0.96 ± 0.18 to 2.26 ± 0.44 (P<.05) after 7 days of an oral treatment, and 6DIG IR indexes correlated with the gold standard IR index obtained through the hyperinsulinemic-euglycemic clamp (r=.68, P<.02). In human, a factorial analysis was applied on images to obtain vascular and myocardial kinetics before compartmental modeling. 1.5-fold to 2.2-fold decreases in mean cardiac IR indexes from healthy to diabetic volunteers were observed without reaching statistical significance. CONCLUSIONS These preclinical results demonstrate the reproducibility and sensibility of this novel imaging methodology. Although this first in-human study showed that this new method could be rapidly performed, larger studies need to be planned in order to confirm its performance.
Collapse
Affiliation(s)
- Pascale Perret
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France.
| | - Lotfi Slimani
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | | | - Julien Vollaire
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - Arnaud Briat
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - Mitra Ahmadi
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - Marion Henri
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | | | - Romain Clerc
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - Alexis Broisat
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - Laurent Riou
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - François Boucher
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, TIMC-IMAG, 38000, Grenoble, France
| | | | - Loïc Djaileb
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - Alex Calizzano
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - Gérald Vanzetto
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - Daniel Fagret
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| | - Catherine Ghezzi
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, LRB U1039, 38000, Grenoble, France
| |
Collapse
|
5
|
Mustafa AM, Rabie MA, Zaki HF, Shaheen AM. Inhibition of Brain GTP Cyclohydrolase I Attenuates 3-Nitropropionic Acid-Induced Striatal Toxicity: Involvement of Mas Receptor/PI3k/Akt/CREB/ BDNF Axis. Front Pharmacol 2022; 12:740966. [PMID: 35002694 PMCID: PMC8727546 DOI: 10.3389/fphar.2021.740966] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
GTP cyclohydrolase I (GTPCH I) is the rate-limiting enzyme for tetrahydrobiopterin (BH4) biosynthesis; the latter is an essential factor for iNOS activation that contributes neuronal loss in Huntington’s disease (HD). The aim of the study was to investigate the neuroprotective effect of 2,4-diamino-6-hydroxypyrimidine (DAHP), GTPCH I enzyme inhibitor, against neuronal loss in 3-nitropropinic acid (3-NP)-induced HD in rats and to reveal the possible involved mechanisms mediated through PI3K/Akt axis and its correlation to Mas receptor (MasR). Rats received 3-NP (10 mg/kg/day; i.p.) with or without administration of DAHP (0.5 g/kg/day; i.p.) or wortmannin (WM), a PI3K inhibitor, (15 μg/kg/day; i.v.) for 14 days. DAHP improved cognitive, memory, and motor abnormalities induced by 3-NP, as confirmed by striatal histopathological specimens and immunohistochemical examination of GFAP. Moreover, DAHP treatment inhibited GTPCH I activity, resulting in decreased BH4 levels and iNOS activation. Also, DAHP upregulated the protein expression of survival protein; p85/p55 (pY458/199)-PI3K and pS473-Akt that, in turn, boosted the activation of striatal neurotrophic factors and receptor, pS133-CREB, BDNF and pY515-TrKB, which positively affect MasR protein expression and improve mitochondrial dysfunction, as indicated by enhancing both SDH and PGC-1α levels. Indeed, DAHP attenuates oxidative stress by increasing SOD activity and Nrf2 expression in addition to reducing neuro-inflammatory status by inhibiting NF-κB p65 and TNF-α expression. Interestingly, all the previous effects were blocked by co-administration of WM with DAHP. In conclusion, DAHP exerts neuroprotective effect against neuronal loss induced by 3-NP administration via inhibition of GTPCH I and iNOS activity and activation of MasR/PI3K/Akt/CREB/BDNF/TrKB axis besides its antioxidant and anti-inflammatory effect.
Collapse
Affiliation(s)
- Aya M Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aya M Shaheen
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
6
|
Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol 2021; 18:809-823. [PMID: 34127848 DOI: 10.1038/s41569-021-00569-6] [Citation(s) in RCA: 480] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
Peroxisome proliferator-activated receptor-α (PPARα), PPARδ and PPARγ are transcription factors that regulate gene expression following ligand activation. PPARα increases cellular fatty acid uptake, esterification and trafficking, and regulates lipoprotein metabolism genes. PPARδ stimulates lipid and glucose utilization by increasing mitochondrial function and fatty acid desaturation pathways. By contrast, PPARγ promotes fatty acid uptake, triglyceride formation and storage in lipid droplets, thereby increasing insulin sensitivity and glucose metabolism. PPARs also exert antiatherogenic and anti-inflammatory effects on the vascular wall and immune cells. Clinically, PPARγ activation by glitazones and PPARα activation by fibrates reduce insulin resistance and dyslipidaemia, respectively. PPARs are also physiological master switches in the heart, steering cardiac energy metabolism in cardiomyocytes, thereby affecting pathological heart failure and diabetic cardiomyopathy. Novel PPAR agonists in clinical development are providing new opportunities in the management of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- David Montaigne
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Laura Butruille
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France.
| |
Collapse
|
7
|
Karwi QG, Sun Q, Lopaschuk GD. The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity. Cells 2021; 10:cells10113259. [PMID: 34831481 PMCID: PMC8621814 DOI: 10.3390/cells10113259] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes is a major risk factor for the development of cardiovascular disease via contributing and/or triggering significant cellular signaling and metabolic and structural alterations at the level of the heart and the whole body. The main cause of mortality and morbidity in diabetic patients is cardiovascular disease including diabetic cardiomyopathy. Therefore, understanding how diabetes increases the incidence of diabetic cardiomyopathy and how it mediates the major perturbations in cell signaling and energy metabolism should help in the development of therapeutics to prevent these perturbations. One of the significant metabolic alterations in diabetes is a marked increase in cardiac fatty acid oxidation rates and the domination of fatty acids as the major energy source in the heart. This increased reliance of the heart on fatty acids in the diabetic has a negative impact on cardiac function and structure through a number of mechanisms. It also has a detrimental effect on cardiac efficiency and worsens the energy status in diabetes, mainly through inhibiting cardiac glucose oxidation. Furthermore, accelerated cardiac fatty acid oxidation rates in diabetes also make the heart more vulnerable to ischemic injury. In this review, we discuss how cardiac energy metabolism is altered in diabetic cardiomyopathy and the impact of cardiac insulin resistance on the contribution of glucose and fatty acid to overall cardiac ATP production and cardiac efficiency. Furthermore, how diabetes influences the susceptibility of the myocardium to ischemia/reperfusion injury and the role of the changes in glucose and fatty acid oxidation in mediating these effects are also discussed.
Collapse
Affiliation(s)
- Qutuba G. Karwi
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Q.G.K.); (Q.S.)
| | - Qiuyu Sun
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Q.G.K.); (Q.S.)
| | - Gary D. Lopaschuk
- 423 Heritage Medical Research Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Correspondence: ; Tel.: +1-780-492-2170; Fax: +1-780-492-9753
| |
Collapse
|
8
|
Pasqua T, Rocca C, Giglio A, Angelone T. Cardiometabolism as an Interlocking Puzzle between the Healthy and Diseased Heart: New Frontiers in Therapeutic Applications. J Clin Med 2021; 10:721. [PMID: 33673114 PMCID: PMC7918460 DOI: 10.3390/jcm10040721] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiac metabolism represents a crucial and essential connecting bridge between the healthy and diseased heart. The cardiac muscle, which may be considered an omnivore organ with regard to the energy substrate utilization, under physiological conditions mainly draws energy by fatty acids oxidation. Within cardiomyocytes and their mitochondria, through well-concerted enzymatic reactions, substrates converge on the production of ATP, the basic chemical energy that cardiac muscle converts into mechanical energy, i.e., contraction. When a perturbation of homeostasis occurs, such as an ischemic event, the heart is forced to switch its fatty acid-based metabolism to the carbohydrate utilization as a protective mechanism that allows the maintenance of its key role within the whole organism. Consequently, the flexibility of the cardiac metabolic networks deeply influences the ability of the heart to respond, by adapting to pathophysiological changes. The aim of the present review is to summarize the main metabolic changes detectable in the heart under acute and chronic cardiac pathologies, analyzing possible therapeutic targets to be used. On this basis, cardiometabolism can be described as a crucial mechanism in keeping the physiological structure and function of the heart; furthermore, it can be considered a promising goal for future pharmacological agents able to appropriately modulate the rate-limiting steps of heart metabolic pathways.
Collapse
Affiliation(s)
- Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
| | - Anita Giglio
- Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy;
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
- National Institute of Cardiovascular Research (I.N.R.C.), 40126 Bologna, Italy
| |
Collapse
|
9
|
Xin C, Zhang Z, Gao G, Ding L, Yang C, Wang C, Liu Y, Guo Y, Yang X, Zhang L, Zhang L, Liu Y, Jin Z, Tao L. Irisin Attenuates Myocardial Ischemia/Reperfusion Injury and Improves Mitochondrial Function Through AMPK Pathway in Diabetic Mice. Front Pharmacol 2020; 11:565160. [PMID: 33013403 PMCID: PMC7516196 DOI: 10.3389/fphar.2020.565160] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/14/2020] [Indexed: 01/10/2023] Open
Abstract
Aims Several recent reports have shown irisin protects the heart against ischemia/reperfusion injury. However, the effect of irisin on I/R injury in diabetic mice has not been described. The present study was designed to investigate the role of irisin in myocardial ischemia-reperfusion (MI/R) injury in diabetic mice. Methods A mouse model of diabetes was established by feeding wild type or gene-manipulated adult male mice with a high-fat diet. All the mice received intraperitoneal injection of irisin or PBS. Thirty minutes after injection, mice were subjected to 30 min of myocardial ischemia followed by 3h (for cell apoptosis and protein determination), 24 h (for infarct size and cardiac function). Results Knock-out of gene FNDC5 augmented MI/R injury in diabetic mice, while irisin treatment attenuated MI/R injury, improved cardiac function, cellular ATP biogenetics, mitochondria potential, and impaired mitochondrion-related cell death. More severely impaired AMPK pathway was observed in diabetic FNDC5-/- mice received MI/R. Knock-out of gene AMPK blocks the beneficial effects of irisin on MI/R injury, cardiac function, cellular ATP biogenetics, mitochondria potential, and mitochondrion-related cell death. Conclusions Our present study demonstrated that irisin improves the mitochondria function and attenuates MI/R injury in diabetic mice through AMPK pathway.
Collapse
Affiliation(s)
- Chao Xin
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Zheng Zhang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Guojie Gao
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Liping Ding
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chao Yang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chengzhu Wang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yanjun Liu
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yufei Guo
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xueqing Yang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Lijuan Zhang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Lina Zhang
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yi Liu
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhitao Jin
- Department of Cardiology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
10
|
The effect of nutraceuticals on multiple signaling pathways in cardiac fibrosis injury and repair. Heart Fail Rev 2020; 27:321-336. [PMID: 32495263 DOI: 10.1007/s10741-020-09980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cardiac fibrosis is one of the most common pathological conditions caused by different heart diseases, including myocardial infarction and diabetic cardiomyopathy. Cardiovascular disease is one of the major causes of mortality worldwide. Cardiac fibrosis is caused by different processes, including inflammatory reactions and oxidative stress. The process of fibrosis begins by changing the balance between production and destruction of extracellular matrix components and stimulating the proliferation and differentiation of cardiac fibroblasts. Many studies have focused on finding drugs with less adverse effects for the treatment of cardiovascular disease. Some studies show that nutraceuticals are effective in preventing and treating diseases, including cardiovascular disease, and that they can reduce the risk. However, big clinical studies to prove the therapeutic properties of all these substances and their adverse effects are lacking so far. Therefore, in this review, we tried to summarize the knowledge on pathways and mechanisms of several nutraceuticals which have shown their usefulness in the prevention of cardiac fibrosis.
Collapse
|
11
|
Zuurbier CJ, Bertrand L, Beauloye CR, Andreadou I, Ruiz‐Meana M, Jespersen NR, Kula‐Alwar D, Prag HA, Eric Botker H, Dambrova M, Montessuit C, Kaambre T, Liepinsh E, Brookes PS, Krieg T. Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J Cell Mol Med 2020; 24:5937-5954. [PMID: 32384583 PMCID: PMC7294140 DOI: 10.1111/jcmm.15180] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/13/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Reducing infarct size during a cardiac ischaemic-reperfusion episode is still of paramount importance, because the extension of myocardial necrosis is an important risk factor for developing heart failure. Cardiac ischaemia-reperfusion injury (IRI) is in principle a metabolic pathology as it is caused by abruptly halted metabolism during the ischaemic episode and exacerbated by sudden restart of specific metabolic pathways at reperfusion. It should therefore not come as a surprise that therapy directed at metabolic pathways can modulate IRI. Here, we summarize the current knowledge of important metabolic pathways as therapeutic targets to combat cardiac IRI. Activating metabolic pathways such as glycolysis (eg AMPK activators), glucose oxidation (activating pyruvate dehydrogenase complex), ketone oxidation (increasing ketone plasma levels), hexosamine biosynthesis pathway (O-GlcNAcylation; administration of glucosamine/glutamine) and deacetylation (activating sirtuins 1 or 3; administration of NAD+ -boosting compounds) all seem to hold promise to reduce acute IRI. In contrast, some metabolic pathways may offer protection through diminished activity. These pathways comprise the malate-aspartate shuttle (in need of novel specific reversible inhibitors), mitochondrial oxygen consumption, fatty acid oxidation (CD36 inhibitors, malonyl-CoA decarboxylase inhibitors) and mitochondrial succinate metabolism (malonate). Additionally, protecting the cristae structure of the mitochondria during IR, by maintaining the association of hexokinase II or creatine kinase with mitochondria, or inhibiting destabilization of FO F1 -ATPase dimers, prevents mitochondrial damage and thereby reduces cardiac IRI. Currently, the most promising and druggable metabolic therapy against cardiac IRI seems to be the singular or combined targeting of glycolysis, O-GlcNAcylation and metabolism of ketones, fatty acids and succinate.
Collapse
Affiliation(s)
- Coert J. Zuurbier
- Department of AnesthesiologyLaboratory of Experimental Intensive Care and AnesthesiologyAmsterdam Infection & ImmunityAmsterdam Cardiovascular SciencesAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Luc Bertrand
- Institut de Recherche Expérimentale et CliniquePole of Cardiovascular ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Christoph R. Beauloye
- Institut de Recherche Expérimentale et CliniquePole of Cardiovascular ResearchUniversité catholique de LouvainBrusselsBelgium
- Cliniques Universitaires Saint‐LucBrusselsBelgium
| | - Ioanna Andreadou
- Laboratory of PharmacologyFaculty of PharmacyNational and Kapodistrian University of AthensAthensGreece
| | - Marisol Ruiz‐Meana
- Department of CardiologyHospital Universitari Vall d’HebronVall d’Hebron Institut de Recerca (VHIR)CIBER‐CVUniversitat Autonoma de Barcelona and Centro de Investigación Biomédica en Red‐CVMadridSpain
| | | | | | - Hiran A. Prag
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Hans Eric Botker
- Department of CardiologyAarhus University HospitalAarhus NDenmark
| | - Maija Dambrova
- Pharmaceutical PharmacologyLatvian Institute of Organic SynthesisRigaLatvia
| | - Christophe Montessuit
- Department of Pathology and ImmunologyUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Tuuli Kaambre
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| | - Edgars Liepinsh
- Pharmaceutical PharmacologyLatvian Institute of Organic SynthesisRigaLatvia
| | - Paul S. Brookes
- Department of AnesthesiologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Thomas Krieg
- Department of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
12
|
Alawi LF, Emberesh SE, Owuor BA, Chodavarapu H, Fadnavis R, El‐Amouri SS, Elased KM. Effect of hyperglycemia and rosiglitazone on renal and urinary neprilysin in db/db diabetic mice. Physiol Rep 2020; 8:e14364. [PMID: 32026607 PMCID: PMC7002536 DOI: 10.14814/phy2.14364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Alteration in renin-angiotensin system (RAS) has been implicated in the pathophysiology of diabetic kidney disease (DKD). The deleterious actions of angiotensin II (Ang II) could be antagonized by the formation of Ang-(1-7), generated by the actions of angiotensin-converting enzyme 2 (ACE2) and neprilysin (NEP). NEP degrades several peptides, including natriuretic peptides, bradykinin, amyloid beta, and Ang I. Although combination of Ang II receptor and NEP inhibitor treatment benefits patients with heart failure, the role of NEP in renal pathophysiology is a matter of active research. NEP pathway is a potent enzyme in Ang I to Ang-(1-7) conversion in the kidney of ACE2-deficient mice, suggesting a renoprotective role of NEP. The aim of the study is to test the hypothesis that chronic hyperglycemia downregulates renal NEP protein expression and activity in db/db diabetic mice and treatment with rosiglitazone normalizes hyperglycemia, renal NEP expression, and attenuates albuminuria. Mice received rosiglitazone (20 mg kg-1 day-1 ) for 10 weeks. Western blot analysis, immunohistochemistry, and enzyme activity revealed a significant decrease in renal and urinary NEP expression and activity in 16-wk db/db mice compared with lean control (p < .0001). Rosiglitazone also attenuated albuminuria and increased renal and urinary NEP expressions (p < .0001). In conclusion, data support the hypothesis that diabetes decreases intrarenal NEP, which could have a pivotal role in the pathogenesis of DKD. Urinary NEP may be used as an index of intrarenal NEP status. The renoprotective effects of rosiglitazone could be mediated by upregulation of renal NEP expression and activity in db/db diabetic mice.
Collapse
Affiliation(s)
- Laale F. Alawi
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOHUSA
| | - Sana E. Emberesh
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOHUSA
| | - Brenda A. Owuor
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOHUSA
| | - Harshita Chodavarapu
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOHUSA
| | - Rucha Fadnavis
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOHUSA
| | - Salim S. El‐Amouri
- Boonshoft School of MedicineDepartment of NeuroscienceCell Biology and PhysiologyWright State UniversityDaytonOHUSA
| | - Khalid M. Elased
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOHUSA
| |
Collapse
|
13
|
Sayed NH, Fathy N, Kortam MA, Rabie MA, Mohamed AF, Kamel AS. Vildagliptin Attenuates Huntington's Disease through Activation of GLP-1 Receptor/PI3K/Akt/BDNF Pathway in 3-Nitropropionic Acid Rat Model. Neurotherapeutics 2020; 17:252-268. [PMID: 31728850 PMCID: PMC7007456 DOI: 10.1007/s13311-019-00805-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vildagliptin (Vilda), a dipeptidyl peptidase-4 (DPP-4) inhibitor, has been highlighted as a promising therapeutic agent for neurodegenerative diseases as Alzheimer's and Parkinson's diseases. Vilda's effect is mostly linked to PI3K/Akt signaling in CNS. Moreover, PI3K/Akt activation reportedly enhanced survival and dampened progression of Huntington's disease (HD). However, Vilda's role in HD is yet to be elucidated. Thus, the aim of the study is to uncover the potentiality of Vilda in HD and unfold its link with PI3K/Akt pathway in 3-nitropropionic acid (3NP) rat model. Rats were randomly assigned into 4 groups; group 1 received saline, whereas, groups 2, 3 and 4 received 3NP (10 mg/kg/day; i.p.) for 14 days, concomitantly with Vilda (5 mg/kg/day; p.o.) in groups 3 and 4, and wortmannin (WM), a PI3K inhibitor, (15 μg/kg/day; i.v.) in group 4. Vilda improved cognitive and motor perturbations induced by 3NP, as confirmed by striatal histopathological specimens and immunohistochemical examination of GFAP. The molecular signaling of Vilda was estimated by elevation of GLP-1 level and protein expressions of survival proteins; p85/p55 (pY458/199)-PI3K, pS473-Akt. Together, it boosted striatal neurotrophic factors and receptor; pS133-CREB, BDNF, pY515-TrKB, which subsequently maintained mitochondrial integrity, as indicated by enhancing both SDH and COX activities, and the redox modulators; Sirt1, Nrf2. Such neuroprotection restored imbalance of neurotransmitters through increasing GABA and suppressing glutamate as well PDE10A. These effects were reversed by WM pre-administration. In conclusion, Vilda purveyed significant anti-Huntington effect which may be mediated, at least in part, via activation of GLP-1/PI3K/Akt pathway in 3NP rat model.
Collapse
Affiliation(s)
- Noha H Sayed
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Governorate, Giza, Egypt
| | - Nevine Fathy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Governorate, Giza, Egypt.
| | - Mona A Kortam
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Governorate, Giza, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Governorate, Giza, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Governorate, Giza, Egypt
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Governorate, Giza, Egypt
| |
Collapse
|
14
|
Yue LJ, Zhu XY, Li RS, Chang HJ, Gong B, Tian CC, Liu C, Xue YX, Zhou Q, Xu TS, Wang DJ. S‑allyl‑cysteine sulfoxide (alliin) alleviates myocardial infarction by modulating cardiomyocyte necroptosis and autophagy. Int J Mol Med 2019; 44:1943-1951. [PMID: 31573046 PMCID: PMC6777694 DOI: 10.3892/ijmm.2019.4351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022] Open
Abstract
S-allyl-cysteine sulfoxide (alliin) is the main organosulfur component of garlic and its preparations. The present study aimed to examine the protective effect of alliin on cardiac function and the underlying mechanism in a mouse model of myocardial infarction (MI). Notably, alliin treatment preserved heart function, attenuated the area of infarction in the myocardium of mice and reduced lesions in the myocardium, including cardiomyocyte fibrosis and death. Further mechanistic experiments revealed that alliin inhibited necroptosis but promoted autophagy in vitro and in vivo. Cell viability assays showed that alliin dose-dependently reduced the necroptotic index and inhibited the expression of necroptosis-related receptor-interacting protein 1, receptor-interacting protein 3 and tumor necrosis factor receptor-associated factor 2, whereas the levels of Beclin 1 and microtubule-associated protein 1 light chain 3, which are associated with autophagy, exhibited an opposite trend upon treatment with alliin. In addition, the level of peroxisome proliferator-activated receptor γ was increased by alliin. Collectively, these findings demonstrate that alliin has the potential to protect cardiomyocytes from necroptosis following MI and that this protective effect occurs via the enhancement of autophagy.
Collapse
Affiliation(s)
- Li-Jun Yue
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xi-Yu Zhu
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Rui-Sha Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Hui-Jing Chang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Bing Gong
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Chong-Chong Tian
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Chang Liu
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yun-Xing Xue
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Qing Zhou
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Tian-Shu Xu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Dong-Jin Wang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
15
|
Bonezzi F, Piccoli M, Dei Cas M, Paroni R, Mingione A, Monasky MM, Caretti A, Riganti C, Ghidoni R, Pappone C, Anastasia L, Signorelli P. Sphingolipid Synthesis Inhibition by Myriocin Administration Enhances Lipid Consumption and Ameliorates Lipid Response to Myocardial Ischemia Reperfusion Injury. Front Physiol 2019; 10:986. [PMID: 31447688 PMCID: PMC6696899 DOI: 10.3389/fphys.2019.00986] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Myocardial infarct requires prompt thrombolytic therapy or primary percutaneous coronary intervention to limit the extent of necrosis, but reperfusion creates additional damage. Along with reperfusion, a maladaptive remodeling phase might occur and it is often associated with inflammation, oxidative stress, as well as a reduced ability to recover metabolism homeostasis. Infarcted individuals can exhibit reduced lipid turnover and their accumulation in cardiomyocytes, which is linked to a deregulation of peroxisome proliferator activated receptors (PPARs), controlling fatty acids metabolism, energy production, and the anti-inflammatory response. We previously demonstrated that Myriocin can be effectively used as post-conditioning therapeutic to limit ischemia/reperfusion-induced inflammation, oxidative stress, and infarct size, in a murine model. In this follow-up study, we demonstrate that Myriocin has a critical regulatory role in cardiac remodeling and energy production, by up-regulating the transcriptional factor EB, PPARs nuclear receptors and genes involved in fatty acids metabolism, such as VLDL receptor, Fatp1, CD36, Fabp3, Cpts, and mitochondrial FA dehydrogenases. The overall effects are represented by an increased β–oxidation, together with an improved electron transport chain and energy production. The potent immunomodulatory and metabolism regulatory effects of Myriocin elicit the molecule as a promising pharmacological tool for post-conditioning therapy of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Fabiola Bonezzi
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Marco Piccoli
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, Milan, Italy
| | - Michele Dei Cas
- Clinical Biochemistry and Mass Spectrometry Laboratory, Health Sciences Department, University of Milan, Milan, Italy
| | - Rita Paroni
- Clinical Biochemistry and Mass Spectrometry Laboratory, Health Sciences Department, University of Milan, Milan, Italy
| | - Alessandra Mingione
- Biochemistry and Molecular Biology Laboratory, Health Sciences Department, University of Milan, Milan, Italy
| | | | - Anna Caretti
- Biochemistry and Molecular Biology Laboratory, Health Sciences Department, University of Milan, Milan, Italy
| | - Chiara Riganti
- Cell Biochemistry Laboratory, Oncology Department, and Interdepartmental Research Center for Molecular Biotechnology, University of Turin, Turin, Italy
| | - Riccardo Ghidoni
- Biochemistry and Molecular Biology Laboratory, Health Sciences Department, University of Milan, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, Milan, Italy
| | - Luigi Anastasia
- Stem Cells for Tissue Engineering Laboratory, IRCCS Policlinico San Donato, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Paola Signorelli
- Biochemistry and Molecular Biology Laboratory, Health Sciences Department, University of Milan, Milan, Italy
| |
Collapse
|
16
|
Efentakis P, Rizakou A, Christodoulou E, Chatzianastasiou A, López MG, León R, Balafas E, Kadoglou NPE, Tseti I, Skaltsa H, Kostomitsopoulos N, Iliodromitis EK, Valsami G, Andreadou I. Saffron (Crocus sativus) intake provides nutritional preconditioning against myocardial ischemia-reperfusion injury in Wild Type and ApoE (-/-) mice: Involvement of Nrf2 activation. Nutr Metab Cardiovasc Dis 2017; 27:919-929. [PMID: 28964663 DOI: 10.1016/j.numecd.2017.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/20/2017] [Accepted: 08/14/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Saffron is an antioxidant herbal derivative; however, its efficacy as a nutritional cardioprotective agent has not been fully elucidated. We investigated the cardioprotective properties of a standardized saffron aqueous extract (SFE) against ischemia/reperfusion (I/R) injury in Wild-Type (WT) and ApoE(-/-) mice and the underlying molecular mechanisms. METHODS AND RESULTS WT and ApoE(-/-) mice were subjected to 30 min I and 2 h R, with the following per os interventions for 4 weeks: 1) WT Control Group, receiving Water for Injection (WFI); 2) WT Crocus Group, receiving SFE at a dose of 60 mg/kg/day; 3) WT Crocus + Wort group, receiving SFE as described above and wortmannin at a dose of 60 μg/kg bolus 15 min before R; 4) ApoE(-/-) Control Group, receiving WFI; 5) ApoE(-/-) Crocus Group, receiving SFE at a dose of 60 mg/kg/day and 6) ApoE(-/-) Crocus + Wort: receiving SFE as described above and wortmannin at a dose of 60 μg/kg bolus, 15 min before R. Ischemic area/area at risk (I/R%) ratio was measured. Blood samples and ischemic myocardial tissue were collected at the 10th min of reperfusion for assessment of troponin I, malondialdehyde (MDA), nitrotyrosine (NT), p-eNOS, eNOS, p-Akt, Akt, p-p42/p-p44, p-GSK3β, GSK3β, IL-6, Nrf2, HO-1 and MnSOD expression. The effect of SFE on Nrf2 expression was also evaluated in vitro. SFE reduced infarct size in WT (16.15 ± 3.7% vs 41.57 ± 2.48%, ***p < 0.001) and in ApoE(-/-) mice (16.14 ± 1.47% vs 45.57 ± 1.73%, ***p < 0.001). The administration of wortmannin resulted in partial inhibition of the infarct size limitation efficacy of SFE (in both WT and Apo-E(-/-) mice). Mice receiving SFE showed increased levels of eNOS, p-Akt, p-ERK1/2, p-44/p-42 and p-GSK3β-Ser9 and reduced expression of IL-6 and iNOS; furthermore, SFE reduced the levels of MDA and NT. SFE induced Nrf2 expression and its downstream targets, HO-1 and MnSOD in the myocardium of the treated animals, and induced Nrf2 expression in vitro in a dose-dependent manner. CONCLUSIONS SFE limits myocardial infarction in Wild-Type and ApoE(-/-) mice in a multifaceted manner including activation of Akt/eNOS/ERK1/2/GSK3-β and through Nrf2 pathway, bestowing antioxidant protection against I/R.
Collapse
Affiliation(s)
- P Efentakis
- National and Kapodistrian University of Athens, Laboratory of Pharmacology, Faculty of Pharmacy, Athens, Greece
| | - A Rizakou
- National and Kapodistrian University of Athens, Laboratory of Pharmacology, Faculty of Pharmacy, Athens, Greece
| | - E Christodoulou
- National and Kapodistrian University of Athens, Laboratory of Biopharmaceutics, Faculty of Pharmacy, Athens, Greece
| | - A Chatzianastasiou
- National and Kapodistrian University of Athens, Laboratory of Pharmacology, Faculty of Pharmacy, Athens, Greece
| | - M G López
- Departamento de Farmacología y Terapéutica, Instituto Téofilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - R León
- Departamento de Farmacología y Terapéutica, Instituto Téofilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario la Princesa, Madrid, Spain
| | - E Balafas
- Academy of Athens Biomedical Research Foundation, Centre of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation, Athens, Greece
| | - N P E Kadoglou
- National and Kapodistrian University of Athens, Laboratory of Biopharmaceutics, Faculty of Pharmacy, Athens, Greece
| | - I Tseti
- Uni-Pharma S.A., Athens, Greece
| | - H Skaltsa
- National and Kapodistrian University of Athens, Department of Pharmacognocy and Chemistry of Natural Products, Faculty of Pharmacy, Athens, Greece
| | - N Kostomitsopoulos
- Academy of Athens Biomedical Research Foundation, Centre of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation, Athens, Greece
| | - E K Iliodromitis
- National and Kapodistrian University of Athens, Medical School, Second University Department of Cardiology, Athens, Greece
| | - G Valsami
- National and Kapodistrian University of Athens, Laboratory of Biopharmaceutics, Faculty of Pharmacy, Athens, Greece
| | - I Andreadou
- National and Kapodistrian University of Athens, Laboratory of Pharmacology, Faculty of Pharmacy, Athens, Greece.
| |
Collapse
|
17
|
Abstract
Obesity is a major global epidemic that sets the stage for diverse multiple pathologies, including cardiovascular disease. The obesity-related low-grade chronic inflamed milieu is more pronounced in aging and responsive to cardiac dysfunction in heart failure pathology. Metabolic dysregulation of obesity integrates with immune reservoir in spleen and kidney network. Therefore, an integrative systems biology approach is necessary to delay progressive cardiac alternations. The purpose of this comprehensive review is to largely discuss the impact of obesity on the cardiovascular pathobiology in the context of problems and challenges, with major emphasis on the diversified models, and to study cardiac remodeling in obesity. The information in this article is immensely helpful in teaching advanced undergraduate, graduate, and medical students about the advancement and impact of obesity on cardiovascular health. © 2017 American Physiological Society. Compr Physiol 7:1463-1477, 2017.
Collapse
Affiliation(s)
- Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama, USA
| | - Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
18
|
Zhong CB, Chen X, Zhou XY, Wang XB. The Role of Peroxisome Proliferator-Activated Receptor γ in Mediating Cardioprotection Against Ischemia/Reperfusion Injury. J Cardiovasc Pharmacol Ther 2017; 23:46-56. [PMID: 28466688 DOI: 10.1177/1074248417707049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Myocardial infarction (MI) is a serious cardiovascular disease resulting in high rates of morbidity and mortality. Although advances have been made in restoring myocardial perfusion in ischemic areas, decreases in cardiomyocyte death and infarct size are still limited, attributing to myocardial ischemia/reperfusion (I/R) injury. It is necessary to develop therapies to restrict myocardial I/R injury and protect cardiomyocytes against further damage after MI. Many studies have suggested that peroxisome proliferator-activated receptor γ (PPARγ), a ligand-inducible nuclear receptor that predominantly regulates glucose and lipid metabolism, is a promising therapeutic target for ameliorating myocardial I/R injury. Thus, this review focuses on the role of PPARγ in cardioprotection during myocardial I/R. The cardioprotective effects of PPARγ, including attenuating oxidative stress, inhibiting inflammatory responses, improving glucose and lipid metabolism, and antagonizing apoptosis, are described. Additionally, the underlying mechanisms of cardioprotective effects of PPARγ, such as regulating the expression of target genes, influencing other transcription factors, and modulating kinase signaling pathways, are further discussed.
Collapse
Affiliation(s)
- Chong-Bin Zhong
- 1 The Second Clinical Institute of Southern Medical University, Guangzhou, China
| | - Xi Chen
- 1 The Second Clinical Institute of Southern Medical University, Guangzhou, China
| | - Xu-Yue Zhou
- 1 The Second Clinical Institute of Southern Medical University, Guangzhou, China
| | - Xian-Bao Wang
- 2 Department of Cardiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Goltsman I, Khoury EE, Winaver J, Abassi Z. Does Thiazolidinedione therapy exacerbate fluid retention in congestive heart failure? Pharmacol Ther 2016; 168:75-97. [PMID: 27598860 DOI: 10.1016/j.pharmthera.2016.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ever-growing global burden of congestive heart failure (CHF) and type 2 diabetes mellitus (T2DM) as well as their co-existence necessitate that anti-diabetic pharmacotherapy will modulate the cardiovascular risk inherent to T2DM while complying with the accompanying restrictions imposed by CHF. The thiazolidinedione (TZD) family of peroxisome proliferator-activated receptor γ (PPARγ) agonists initially provided a promising therapeutic option in T2DM owing to anti-diabetic efficacy combined with pleiotropic beneficial cardiovascular effects. However, the utility of TZDs in T2DM has declined in the past decade, largely due to concomitant adverse effects of fluid retention and edema formation attributed to salt-retaining effects of PPARγ activation on the nephron. Presumably, the latter effects are potentially deleterious in the context of pre-existing fluid retention in CHF. However, despite a considerable body of evidence on mechanisms responsible for TZD-induced fluid retention suggesting that this class of drugs is rightfully prohibited from use in CHF patients, there is a paucity of experimental and clinical studies that investigate the effects of TZDs on salt and water homeostasis in the CHF setting. In an attempt to elucidate whether TZDs actually exacerbate the pre-existing fluid retention in CHF, our review summarizes the pathophysiology of fluid retention in CHF. Moreover, we thoroughly review the available data on TZD-induced fluid retention and proposed mechanisms in animals and patients. Finally, we will present recent studies challenging the common notion that TZDs worsen renal salt and water retention in CHF.
Collapse
Affiliation(s)
- Ilia Goltsman
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Emad E Khoury
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Joseph Winaver
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Zaid Abassi
- Department of Physiology, Biophysics and Systems Biology, The Bruce Rappaport, Rappaport Faculty of Medicine, Technion, Haifa, Israel; Department of Laboratory Medicine, Rambam Human Health Care Campus, Haifa, Israel.
| |
Collapse
|
20
|
Li G, Qian W, Zhao C. Analyzing the anti-ischemia–reperfusion injury effects of ginsenoside Rb1 mediated through the inhibition of p38α MAPK. Can J Physiol Pharmacol 2016; 94:97-103. [PMID: 26550918 DOI: 10.1139/cjpp-2014-0164] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies have demonstrated that ginsenoside Rb1 protects the myocardium from ischemia–reperfusion (I/R) injury. However, the precise mechanisms for this protection have not been determined. This study aimed to determine whether the attenuation of I/R-induced myocardial injury by ginsenoside Rb1 (GS Rb1) is due to inhibition of p38α mitogen-activated protein kinase (MAPK). Sprague–Dawley rats were distributed among 6 treatment groups: sham group; I/R group; p38 MAPK inhibitor SB203580 group (SB + I/R); GS Rb1 group (GS + I/R); p38 MAPK agonist anisomycin group (Ani + I/R); and the GS Rb1 + Ani group (GS + Ani + I/R). All of the anaesthetized rats, except those in the sham group, underwent an open-chest procedure that involved 30 min of myocardial ischemia followed by 2 h of reperfusion. Myocardial infarction size (MIS), caspase-3 activity, and levels of the cytokine tumor necrosis factor alpha (TNF-α) in the myocardium were monitored. The expressions of p38α MAPK, caspase-3, and TNF-α in the myocardium were assayed. GS Rb1 reduced MIS and attenuated caspase-3 activity and the levels of TNF-α in the myocardium. Protein expression of total p38α MAPK was not significantly altered. In the Ani + I/R and I/R groups, the levels of phospho-p38α MAPK were significantly increased compared with the sham group, and these increased levels were reduced with GS Rb1. Hemodynamic parameters were not significantly different between the GS + I/R and SB + I/R groups. GS Rb1 exerts an anti-apoptotic effect that protects against I/R injury by inhibiting p38α MAPK phosphorylation, suggesting that GS Rb1-mediated protection requires the inhibition of p38α MAPK.
Collapse
Affiliation(s)
- Gonghao Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Wenhao Qian
- Department of Cardiology, Research Institute of Cardiovascular Disease, the Affiliated Hospital of Xuzhou Medical College, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, China
| | - Changyun Zhao
- Institute of Cardiovascular Disease Research, Xuzhou Medical College, Xuzhou, Jiangsu, China
| |
Collapse
|
21
|
Abstract
In addition to oxidative phosphorylation (OXPHOS), mitochondria perform other functions such as heme biosynthesis and oxygen sensing and mediate calcium homeostasis, cell growth, and cell death. They participate in cell communication and regulation of inflammation and are important considerations in aging, drug toxicity, and pathogenesis. The cell's capacity to maintain its mitochondria involves intramitochondrial processes, such as heme and protein turnover, and those involving entire organelles, such as fusion, fission, selective mitochondrial macroautophagy (mitophagy), and mitochondrial biogenesis. The integration of these processes exemplifies mitochondrial quality control (QC), which is also important in cellular disorders ranging from primary mitochondrial genetic diseases to those that involve mitochondria secondarily, such as neurodegenerative, cardiovascular, inflammatory, and metabolic syndromes. Consequently, mitochondrial biology represents a potentially useful, but relatively unexploited area of therapeutic innovation. In patients with genetic OXPHOS disorders, the largest group of inborn errors of metabolism, effective therapies, apart from symptomatic and nutritional measures, are largely lacking. Moreover, the genetic and biochemical heterogeneity of these states is remarkably similar to those of certain acquired diseases characterized by metabolic and oxidative stress and displaying wide variability. This biologic variability reflects cell-specific and repair processes that complicate rational pharmacological approaches to both primary and secondary mitochondrial disorders. However, emerging concepts of mitochondrial turnover and dynamics along with new mitochondrial disease models are providing opportunities to develop and evaluate mitochondrial QC-based therapies. The goals of such therapies extend beyond amelioration of energy insufficiency and tissue loss and entail cell repair, cell replacement, and the prevention of fibrosis. This review summarizes current concepts of mitochondria as disease elements and outlines novel strategies to address mitochondrial dysfunction through the stimulation of mitochondrial biogenesis and quality control.
Collapse
Affiliation(s)
- Hagir B Suliman
- Departments of Medicine (C.A.P.), Anesthesiology (H.B.S.), Duke Cancer Institute (H.B.S.), and Pathology (C.A.P.), Duke University Medical Center, Durham North Carolina
| | - Claude A Piantadosi
- Departments of Medicine (C.A.P.), Anesthesiology (H.B.S.), Duke Cancer Institute (H.B.S.), and Pathology (C.A.P.), Duke University Medical Center, Durham North Carolina
| |
Collapse
|
22
|
Li SS, Cui N, Yang Y, Trower TC, Wei YM, Wu Y, Zhang S, Jin X, Jiang C. Impairment of the Vascular KATP Channel Imposes Fatal Susceptibility to Experimental Diabetes Due to Multi-Organ Injuries. J Cell Physiol 2015; 230:2915-26. [PMID: 25825210 DOI: 10.1002/jcp.25003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/25/2015] [Indexed: 12/19/2022]
Abstract
The vascular isoform of ATP-sensitive K(+) (KATP ) channels regulates blood flow to all organs. The KATP channel is strongly inhibited by reactive oxygen and carbonyl species produced in diabetic tissue inflammation. To address how such channel inhibition impacts vascular regulation as well as tissue viability, we performed studies in experimental diabetic mice. Strikingly, we found that knockout of the Kcnj8 encoding Kir6.1 subunit (Kcnj8-KO) caused mice to be fatally susceptible to diabetes. Organ perfusion studies suggested that the lack of this vascular K(+) channel handicapped activity-dependent vasodilation, leading to hypoperfusion, tissue hypoxia, and multi-organ failure. Morphologically, Kcnj8-KO mice showed greater inflammatory cell infiltration, higher levels of expression of inflammation indicator proteins, more severe cell apoptosis, and worse tissue disruptions. These were observed in the kidney, liver, and heart under diabetic condition in parallel comparison to tissues from WT mice. Patch clamping and molecular studies showed that the KATP channel was S-glutathionylated in experimental diabetes contributing to the inhibition of channel activity as well as the reduced arterial responses to vasodilators. These results suggest that the vascular KATP channel is organ protective in diabetic condition, and since the channel is suppressed by diabetic oxidative stress, therapeutical interventions to the maintenance of functional KATP channels may help to lower or prevent diabetic organ dysfunction.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, Georgia.,Harbin Medical University School of Pharmacy, Harbin, Heilongjiang, China
| | - Ningren Cui
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, Georgia
| | - Yang Yang
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, Georgia
| | - Timothy C Trower
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, Georgia
| | - Yu-Min Wei
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, Georgia
| | - Yang Wu
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, Georgia
| | - Shuang Zhang
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, Georgia
| | - Xin Jin
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, Georgia
| | - Chun Jiang
- Department of Biology, Georgia State University, 50 Decatur Street, Atlanta, Georgia
| |
Collapse
|
23
|
Rongen GA, Wever KE. Cardiovascular pharmacotherapy: Innovation stuck in translation. Eur J Pharmacol 2015; 759:200-4. [PMID: 25814253 DOI: 10.1016/j.ejphar.2015.03.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/07/2015] [Accepted: 03/12/2015] [Indexed: 12/25/2022]
Abstract
Systematic reviews of animal studies have revealed serious limitations in internal and external validity strongly affecting the reliability of this research. In addition inter-species differences are likely to further limit the predictive value of animal research for the efficacy and tolerability of new drugs in humans. Important changes in the research process are needed to allow efficient translation of preclinical discoveries to the clinic, including improvements in the laboratory and publication practices involving animal research and early incorporation of human proof-of-concept studies to optimize the interpretation of animal data for its predictive value for humans and the design of clinical trials.
Collapse
Affiliation(s)
- Gerard A Rongen
- Department of Pharmacology-Toxicology and Internal Medicine, Radboud university medical center, P.O. box 9101, Internal post address: 137, 6500 HB Nijmegen, The Netherlands.
| | - Kimberley E Wever
- SYstematic Review Centre for Laboratory animal Experimentation, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Narasimhan A, Chinnaiyan M, Karundevi B. Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat. Appl Physiol Nutr Metab 2015. [PMID: 26201855 DOI: 10.1139/apnm-2015-0002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ferulic acid (FA) is a phenolic phytochemical known for its antidiabetic property The present study is designed to evaluate the mechanism behind its antidiabetic property in high-fat and fructose-induced type 2 diabetic adult male rats. Animals were divided into 5 groups: (i) control, (ii) diabetic control, (iii) diabetic animals treated with FA (50 mg/(kg body weight · day)(-1), orally) for 30 days, (iv) diabetic animals treated with metformin (50 mg/(kg body weight · day)(-1), orally) for 30 days, and (v) control rats treated with FA. FA treatment to diabetic animals restored blood glucose, serum insulin, glucose tolerance, and insulin tolerance to normal range. Hepatic glycogen concentration, activity of glycogen synthase, and glucokinase were significantly decreased, whereas activity of glycogen phosphorylase and enzymes of gluconeogenesis (phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase)) were increased in diabetic animals and FA restored these to normal levels similar to that of metformin. FA improved the insulin signalling molecules and reduced the negative regulators of insulin signalling. The messenger RNA of gluconeogenic enzyme genes (PEPCK and G6Pase) and the interaction between forkhead transcription factor-O1 and promoters of gluconeogenic enzyme genes (PEPCK and G6Pase) was reduced significantly by ferulic acid. It is concluded from the present study that FA treatment to type 2 diabetic rats improves insulin sensitivity and hepatic glycogenesis but inhibits gluconeogenesis and negative regulators of insulin signalling to maintain normal glucose homeostasis.
Collapse
Affiliation(s)
- Akilavalli Narasimhan
- Department of Endocrinology, Dr.ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, India.,Department of Endocrinology, Dr.ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, India
| | - Mayilvanan Chinnaiyan
- Department of Endocrinology, Dr.ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, India.,Department of Endocrinology, Dr.ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, India
| | - Balasubramanian Karundevi
- Department of Endocrinology, Dr.ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, India.,Department of Endocrinology, Dr.ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600113, India
| |
Collapse
|
25
|
Abou Daya K, Abu Daya H, Nasser Eddine M, Nahhas G, Nuwayri-Salti N. Effects of rosiglitazone (PPAR γ agonist) on the myocardium in non-hypertensive diabetic rats (PPAR γ). J Diabetes 2015; 7:85-94. [PMID: 24548695 DOI: 10.1111/1753-0407.12140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 12/06/2013] [Accepted: 02/13/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND There is ongoing controversy regarding the safety of rosiglitazone and its effects on the myocardium, in some cases causing severe cardiac pathology and even in some instances mortality. In this study we aimed at examining the effects of pharmacologic doses of rosiglitazone on cardiomyocytes in diabetic non-cardiac rats receiving sub-optimal doses of insulin. METHODS Animals were distributed into six groups: normal, diabetic, and diabetic receiving insulin, each subdivided into a control group and an experimental group receiving pharmacologic doses of rosiglitazone. Cardiomyocyte hypertrophy was assessed using heart to body weight index and microscopic examination using the number of cardiomyocytes per quadrant of high power field and intercalated disks in a sector of 100 × field. Fibrosis was assessed using Masson Trichrome staining. A number of sections of each group were stained with periodic acid Shiff and others with Sudan III for glycogen and fat accumulation, respectively. One way ANOVA was used for statistical analysis as appropriate. RESULTS Diffuse cardiomyopathic changes in diabetic control animals were observed consisting of cardiomyocyte hypertrophy, loss of striations and widespread vacuolation. These changes were reduced and even prevented by treatment with insulin and rosiglitazone. Masson staining showed that all rat groups had no more than +1 fibrosis that is equal to what was present in the normal controls. CONCLUSION Rosiglitazone, in combination with even sub-optimal doses of insulin therapy, has protective effects on cardiac muscle in diabetic animals especially those expressed as muscle hypertrophy, muscle cell death, and fibrosis.
Collapse
Affiliation(s)
- Khodor Abou Daya
- School of Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | | | | | | |
Collapse
|
26
|
Fillmore N, Mori J, Lopaschuk GD. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 2014; 171:2080-90. [PMID: 24147975 DOI: 10.1111/bph.12475] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/20/2013] [Accepted: 09/26/2013] [Indexed: 01/09/2023] Open
Abstract
Heart disease is a leading cause of death worldwide. In many forms of heart disease, including heart failure, ischaemic heart disease and diabetic cardiomyopathies, changes in cardiac mitochondrial energy metabolism contribute to contractile dysfunction and to a decrease in cardiac efficiency. Specific metabolic changes include a relative increase in cardiac fatty acid oxidation rates and an uncoupling of glycolysis from glucose oxidation. In heart failure, overall mitochondrial oxidative metabolism can be impaired while, in ischaemic heart disease, energy production is impaired due to a limitation of oxygen supply. In both of these conditions, residual mitochondrial fatty acid oxidation dominates over mitochondrial glucose oxidation. In diabetes, the ratio of cardiac fatty acid oxidation to glucose oxidation also increases, although primarily due to an increase in fatty acid oxidation and an inhibition of glucose oxidation. Recent evidence suggests that therapeutically regulating cardiac energy metabolism by reducing fatty acid oxidation and/or increasing glucose oxidation can improve cardiac function of the ischaemic heart, the failing heart and in diabetic cardiomyopathies. In this article, we review the cardiac mitochondrial energy metabolic changes that occur in these forms of heart disease, what role alterations in mitochondrial fatty acid oxidation have in contributing to cardiac dysfunction and the potential for targeting fatty acid oxidation to treat these forms of heart disease.
Collapse
Affiliation(s)
- N Fillmore
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
27
|
Abstract
Heart failure is a leading cause of morbidity and mortality worldwide, currently affecting 5 million Americans. A syndrome defined on clinical terms, heart failure is the end result of events occurring in multiple heart diseases, including hypertension, myocardial infarction, genetic mutations and diabetes, and metabolic dysregulation, is a hallmark feature. Mounting evidence from clinical and preclinical studies suggests strongly that fatty acid uptake and oxidation are adversely affected, especially in end-stage heart failure. Moreover, metabolic flexibility, the heart's ability to move freely among diverse energy substrates, is impaired in heart failure. Indeed, impairment of the heart's ability to adapt to its metabolic milieu and associated metabolic derangement are important contributing factors in the heart failure pathogenesis. Elucidation of molecular mechanisms governing metabolic control in heart failure will provide critical insights into disease initiation and progression, raising the prospect of advances with clinical relevance.
Collapse
|
28
|
Zhang WL, Yan WJ, Sun B, Zou ZP. Synergistic effects of atorvastatin and rosiglitazone on endothelium protection in rats with dyslipidemia. Lipids Health Dis 2014; 13:168. [PMID: 25361814 PMCID: PMC4232672 DOI: 10.1186/1476-511x-13-168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/16/2014] [Indexed: 01/13/2023] Open
Abstract
Background Endothelial dysfunction is implicated in the initiation and progression of atherosclerosis. Whether atorvastatin combined with rosiglitazone has synergistic effects on endothelial function improvement in the setting of dyslipidemia is unknown. Methods Dyslipidemia rat model was produced with high-fat and high-cholesterol diet administration. Thereafter, atorvastatin, rosiglitazone or atorvastatin combined with rosiglitazone were prescribed for 2 weeks. At baseline, 6 weeks of dyslipidemia model production, and 2 weeks of medical intervention, fasting blood was drawn for parameters of interest evaluation. At the end, myocardium was used for 15-deoxy-delta-12,14-PGJ2 (15-d-PGJ2) assessment. Results Initially, there was no significant difference of parameters between sham and dyslipidemia groups. With 6 weeks’ high-fat and high-cholesterol diet administration, as compared to sham group, serum levels of triglyceride (TG), total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C) were significantly increased. Additionally, nitric oxide (NO) production was reduced and serum levels of malondialdehyde (MDA), C-reactive protein (CRP) and asymmetric dimethylarginine (ADMA) were profoundly elevated in dyslipidemia group. After 2 weeks’ medical intervention, lipid profile was slightly improved in atorvastatin and combined groups as compared to control group. Nevertheless, in comparison to control group, NO production was profoundly increased and serum levels of MDA, CRP and ADMA were significantly decreased with atorvastatin or rosiglitazone therapy. 15-d-PGJ2 expression of myocardium was also significantly elevated with atorvastatin or rosiglitazone treatment. Notably, these effects were further enhanced with combined therapy, suggesting that atorvastatin and rosiglitazone had synergistic effects on endothelial protection, and inflammation and oxidation amelioration. Conclusion Atorvastatin and rosiglitazone therapy had synergistic effects on endothelium protection as well as amelioration of oxidative stress and inflammatory reaction in rats with dyslipidemia.
Collapse
Affiliation(s)
| | | | | | - Zhi-Peng Zou
- Department of Cardiology, Hospital of Economic and Technological Development Zone, Yantai, Shandong Province 264001, China.
| |
Collapse
|
29
|
QKI deficiency promotes FoxO1 mediated nitrosative stress and endoplasmic reticulum stress contributing to increased vulnerability to ischemic injury in diabetic heart. J Mol Cell Cardiol 2014; 75:131-40. [DOI: 10.1016/j.yjmcc.2014.07.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/08/2014] [Accepted: 07/15/2014] [Indexed: 11/19/2022]
|
30
|
Fu F, Tian F, Zhou H, Lv W, Tie R, Ji L, Li R, Shi Z, Yu L, Liang X, Xing W, Xing J, Yu J, Sun L, Zhu H, Zhang H. Semen cassiae attenuates myocardial ischemia and reperfusion injury in high-fat diet streptozotocin-induced type 2 diabetic rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:95-108. [PMID: 24467537 DOI: 10.1142/s0192415x14500062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Obese patients with type 2 diabetes mellitus (T2DM), which is characterized by hyperglycemia, are liable to more severe myocardial infarction. Semen Cassiae is proven to reduce serum lipid levels. This study investigated whether the Semen Cassiae extract (SCE) reduces myocardial ischemia and reperfusion (MI/R) injury with or without diabetes and the underlying mechanisms. The high-fat diet-fed streptozotocin (HFD-STZ) rat model was created as a T2DM model. Normal and DM rats received SCE treatment orally (10 mg/kg/day) for one week. Subsequently these animals were subjected to MI/R. Compared with the normal animals, DM rats showed increased plasma total cholesterol (TC) and triacylglycerol (TG), and more severe MI/R injury and cardiac functional impairment. SCE treatment significantly reduced the plasma TC and TG, improved the instantaneous first derivation of left ventricle pressure and reduced infarct size, decreased plasma creatine kinase and lactate dehydrogenase levels, and apoptosis index at the end of reperfusion in diabetic rats. Moreover, SCE treatment increased the antiapoptotic protein Akt and ERK1/2 phosphorylation levels. Pretreatment with a PI3K inhibitor wortmannin or an ERK1/2 inhibitor PD98059 not only blocked Akt and ERK1/2 phosphorylation respectively, but also inhibited the cardioprotective effects of SCE. However, SCE treatment did not show any effects on the MI/R injury in the normal rats. Our data suggest that SCE effectively improves myocardial function and reduces MI/R-induced injury in diabetic but not normal animals, which is possibly attributed to the reduced TC/TG levels and the triggered cell survival signaling Akt and ERK1/2.
Collapse
Affiliation(s)
- Feng Fu
- Department of Physiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China , Experiment Teaching Center, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bendale DS, Karpe PA, Chhabra R, Shete SP, Shah H, Tikoo K. 17-β Oestradiol prevents cardiovascular dysfunction in post-menopausal metabolic syndrome by affecting SIRT1/AMPK/H3 acetylation. Br J Pharmacol 2014; 170:779-95. [PMID: 23826814 DOI: 10.1111/bph.12290] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/19/2013] [Accepted: 06/30/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Oestrogen therapy is known to induce cardioprotection in post-menopausal metabolic syndrome (PMS). Hence, we investigated the effect of 17-β oestradiol (E2) on functional responses to angiotensin II and cardiovascular dysfunction in a rat model of PMS. EXPERIMENTAL APPROACH PMS was induced in ovariectomized rats by feeding a high-fat diet for 10 weeks. Isometric tension responses of aortic rings to angiotensin II were recorded using an isometric force transducer. TUNEL assay and immunoblotting was performed to assess apoptosis and protein expression respectively in PMS. KEY RESULTS Endothelial dysfunction in PMS was characterized by enhanced angiotensin II-induced contractile responses and impaired endothelial dependent vasodilatation. This was associated with an increased protein expression of AT1 receptors in the aorta and heart in PMS. PMS induced cardiac apoptosis by activating Bax and PARP protein expression. These changes were associated with a down-regulation in the expression of silent information regulation 2 homologue (SIRT1)/P-AMP-activated PK (AMPK) and increased H3 acetylation in aorta and heart. E2 partially suppressed angiotensin II-induced contractions, restored the protein expression of SIRT1/P-AMPK and suppressed H3 acetylation. The role of SIRT1/AMPK was further highlighted by administration of sirtinol and compound C (ex vivo), which enhanced angiotensin II contractile responses and ablated the protective effect of E2 on PMS. CONCLUSION AND IMPLICATIONS Our results provide novel mechanisms for PMS-induced cardiovascular dysfunction involving SIRT1/AMPK/ histone H3 acetylation, which was prevented by E2. The study suggests that therapies targeting SIRT1/AMPK/epigenetic modifications may be beneficial in reducing the risk of cardiovascular disorders.
Collapse
Affiliation(s)
- Dhaval Sharad Bendale
- Laboratory of Chromatin Biology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | | | | | | | | | | |
Collapse
|
32
|
Thackeray JT, deKemp RA, Beanlands RS, DaSilva JN. Early diabetes treatment does not prevent sympathetic dysinnervation in the streptozotocin diabetic rat heart. J Nucl Cardiol 2014; 21:829-41. [PMID: 24890379 DOI: 10.1007/s12350-014-9900-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/03/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Positron emission tomography (PET) studies have demonstrated reduced sympathetic neuronal integrity in high-fat diet fed streptozotocin insulin-resistant diabetic rats in parallel with abnormal early-to-atrial transmitral velocity. We hypothesized that administration of anti-glycemic drugs early after diabetes induction would prevent sympathetic neuronal dysfunction. METHODS AND RESULTS Male Sprague-Dawley rats fed high-fat diet were administered streptozotocin (45 mg·kg(-1), ip, n = 23) to induce diabetes or vehicle alone (n = 6). Diabetic rats were randomized to receive insulin (4 U·day(-1)), metformin (650 mg·kg(-1)·day(-1)), rosiglitazone (4 mg·kg(-1)·day(-1)), or no treatment 1 week after streptozotocin. Small animal PET imaging using the norepinephrine analog [(11)C]meta-hydroxyephedrine (HED) at baseline and 8 weeks of diabetes determined sympathetic neuronal integrity. Echocardiography assessed cardiac function. Plasma norepinephrine levels were determined in parallel. Ex vivo immunoblotting was performed at the end of the experiment to compare the relative expression of various proteins involved in metabolic and noradrenergic signaling. Insulin restored blood glucose and lipid levels to normal. Despite improved plasma lipid levels, neither metformin nor rosiglitazone reduced blood glucose. At 8 weeks, untreated and treated diabetics displayed a 39%-42% reduction in myocardial HED standardized uptake values (P < .05). In all diabetic groups, plasma norepinephrine was elevated (2.3- to 3.3-fold, P < .05) and norepinephrine reuptake transporter expression reduced (28%-35%, P < .05) compared to non-diabetics. Doppler echocardiography revealed delayed development of prolonged mitral valve deceleration and elevated early-to-atrial filling velocity ratio among treated diabetic rats. CONCLUSION Early glycemic treatment of insulin-resistant diabetic rats did not prevent deterioration of sympathetic neuronal integrity though ventricular filling abnormalities were delayed.
Collapse
Affiliation(s)
- James T Thackeray
- Molecular Function & Imaging Program, National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y4W7, Canada
| | | | | | | |
Collapse
|
33
|
Xu T, Wu X, Chen Q, Zhu S, Liu Y, Pan D, Chen X, Li D. The anti-apoptotic and cardioprotective effects of salvianolic acid a on rat cardiomyocytes following ischemia/reperfusion by DUSP-mediated regulation of the ERK1/2/JNK pathway. PLoS One 2014; 9:e102292. [PMID: 25019380 PMCID: PMC4096914 DOI: 10.1371/journal.pone.0102292] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 06/17/2014] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to observe the effects of salvianolic acid A (SAA) pretreatment on the myocardium during ischemia/reperfusion (I/R) and to illuminate the interrelationships among dual specificity protein phosphatase (DUSP) 2/4/16, ERK1/2 and JNK pathways during myocardial I/R, with the ultimate goal of elucidating how SAA exerts cardioprotection against I/R injury (IRI). Wistar rats were divided into the following six groups: control group (CON), I/R group, SAA+I/R group, ERK1/2 inhibitor PD098059+I/R group (PD+I/R), PD+SAA+I/R group, and JNK inhibitor SP600125+I/R group (SP+I/R). The cardioprotective effects of SAA on the myocardium during I/R were investigated with a Langendorff device. Heart rate (HR), left ventricular systolic pressure (LVSP), left ventricular end-diastolic pressure (LVEDP), maximum rate of ventricular pressure rise and fall (±dp/dtmax), myocardial infarction areas (MIA), lactate dehydrogenase (LDH), and cardiomyocytes apoptosis were monitored. To determine the crosstalk betwee JNK and ERK1/2 via DUSP2/4/16 with SAA pretreatment, siRNA-DUSP2/4/16 were performed. The expression levels of Bcl-2, Bax, caspase 3, p-JNK, p-ERK1/2 and DUSP2/4/16 in cardiomyocytes were assayed by Western blot. Our results showed that LDH, MIA and cell apoptosis were decreased, and various parameters of heart function were improved by SAA pretreatment and SP application. In the I/R group, the expression levels of p-ERK1/2 and DUSP4/16 were not significantly different compared with the CON group, however, the protein expression levels of p-ERK1/2, Bcl-2 and DUSP4/16 were higher, while p-JNK, Bax, caspase 3 and DUSP2 levels were reduced among the SAA+I/R, PD+SAA+I/R and SP+I/R groups. The above indices were not significantly different between the SAA+I/R and SP+I/R groups. Compared with the SAA+I/R group, p-ERK1/2 was increased and p-JNK was decreased in the SAA+si-DUSP2+I/R, however, p-ERK was downregulated and p-JNK was upregulated in SAA+si-DUSP4+I/R group. SAA exerts an anti-apoptotic role against myocardial IRI by inhibiting DUSP2-mediated JNK dephosphorylation and activating DUSP4/16-mediated ERK1/2 phosphorylation.
Collapse
Affiliation(s)
- Tongda Xu
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
- The First Clinical College, Nanjing Traditional Chinese Medicine University, Nanjing, Jiangsu, China
| | - Xin Wu
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Qiuping Chen
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Shasha Zhu
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yang Liu
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Defeng Pan
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Xiaohu Chen
- The First Clinical College, Nanjing Traditional Chinese Medicine University, Nanjing, Jiangsu, China
- * E-mail: (DL); (XC)
| | - Dongye Li
- Research Institute of Cardiovascular Diseases, Xuzhou Medical College, Xuzhou, Jiangsu, China
- The First Clinical College, Nanjing Traditional Chinese Medicine University, Nanjing, Jiangsu, China
- * E-mail: (DL); (XC)
| |
Collapse
|
34
|
Consoli A, Formoso G. Do thiazolidinediones still have a role in treatment of type 2 diabetes mellitus? Diabetes Obes Metab 2013; 15:967-77. [PMID: 23522285 DOI: 10.1111/dom.12101] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/23/2012] [Accepted: 03/15/2013] [Indexed: 12/17/2022]
Abstract
Thiazolidinediones have been introduced in the treatment of type 2 diabetes mellitus (T2DM) since the late 1990s. Although troglitazone was withdrawn from the market a few years later due to liver toxicity, both rosiglitazone and pioglitazone gained widespread use for T2DM treatment. In 2010, however, due to increased risk of cardiovascular events associated with its use, the European Medicines Agency recommended suspension of rosiglitazone use and the Food and Drug Administration severely restricted its use. Thus pioglitazone is the only thiazolidinedione still significantly employed for treating T2DM and it is the only molecule of this class still listed in the American Diabetes Association-European Association for the Study of Diabetes 2012 Position Statement. However, as for the other thiazolidinediones, use of pioglitazone is itself limited by several side effects, some of them potentially dangerous. This, together with the development of novel therapeutic strategies approved in the last couple of years, has made it questionable whether or not thiazolidinediones (namely pioglitazone) should still be used in the treatment of T2DM. This article will attempt to formulate an answer to this question by critically reviewing the available data on the numerous advantages and the potentially worrying shortcomings of pioglitazone treatment in T2DM.
Collapse
Affiliation(s)
- A Consoli
- Department of Medicine and Aging Sciences, G. d'Annunzio University, Chieti-Pescara, Italy; Aging Research Center (CeSI), G. d'Annunzio University Foundation, Chieti, Italy
| | | |
Collapse
|
35
|
McCarthy FP, Delany AC, Kenny LC, Walsh SK. PPAR-γ -- a possible drug target for complicated pregnancies. Br J Pharmacol 2013. [PMID: 23186152 DOI: 10.1111/bph.12069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Peroxisome proliferator activated receptors (PPARs) are ligand-activated transcription factors expressed in trophoblasts, which regulate both cell differentiation and proliferation. In recent years, evidence has linked PPARs to playing an integral role in pregnancy; specifically, PPAR-β and PPAR-γ have been shown to play an integral role in placentation, with PPAR-γ additionally serving to regulate trophoblast differentiation. Recent evidence has shown that PPAR-γ expression is altered in many complications of pregnancy such as intrauterine growth restriction (IUGR), preterm birth, pre-clampsia and gestational diabetes. Thus, at present, accumulating evidence from the literature suggests both a pivotal role for PPAR-γ in the progression of a healthy pregnancy and the possibility that PPAR-γ may act as a therapeutic target in complicated pregnancies. This review aims to provide a succinct and comprehensive assessment of the role of PPAR-γ in normal pregnancy and pregnancy complications, and finally its potential as a therapeutic target in the treatment and/or prevention of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Fergus P McCarthy
- Department of Obstetrics & Gynaecology, Anu Research Centre, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
36
|
Ussher JR, Sutendra G, Jaswal JS. The impact of current and novel anti-diabetic therapies on cardiovascular risk. Future Cardiol 2013. [PMID: 23176691 DOI: 10.2217/fca.12.68] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) has become an overwhelming health condition that is no longer just a threat to developed nations, but to undeveloped nations as well. Current therapies for T2DM are relatively effective in controlling hyperglycemia; examples include metformin, thiazolidinediones, sulfonylurea derivatives, α-glucosidase inhibitors, glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Despite their efficacy in controlling hyperglycemia, due to recent findings of increased cardiovascular risk following treatment with either rosiglitazone or intensive glucose lowering, new guidelines from the US FDA recommend that new therapies for diabetes not only improve glycemia, but exert no adverse cardiovascular effects. Based on cardiovascular risk profiles, metformin appears to be the superior anti-diabetic therapy, although studies in humans with glucagon-like peptide-1 receptor agonists are encouraging. As patients with T2DM also often have cardiovascular disease, the increased rigor in drug development should ultimately reduce the health burden of both of these conditions.
Collapse
Affiliation(s)
- John R Ussher
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Canada.
| | | | | |
Collapse
|
37
|
Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:857-65. [DOI: 10.1016/j.bbamcr.2012.08.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 01/24/2023]
|
38
|
Yan W, Zhang H, Liu P, Wang H, Liu J, Gao C, Liu Y, Lian K, Yang L, Sun L, Guo Y, Zhang L, Dong L, Lau WB, Gao E, Gao F, Xiong L, Wang H, Qu Y, Tao L. Impaired mitochondrial biogenesis due to dysfunctional adiponectin-AMPK-PGC-1α signaling contributing to increased vulnerability in diabetic heart. Basic Res Cardiol 2013; 108:329. [PMID: 23460046 DOI: 10.1007/s00395-013-0329-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 01/03/2013] [Accepted: 01/09/2013] [Indexed: 12/19/2022]
Abstract
Impaired mitochondrial biogenesis causes skeletal muscle damage in diabetes. However, whether and how mitochondrial biogenesis is impaired in the diabetic heart remains largely unknown. Whether adiponectin (APN), a potent cardioprotective molecule, regulates cardiac mitochondrial function has also not been previously investigated. In this study, electron microscopy revealed significant mitochondrial disorders in ob/ob cardiomyocytes, including mitochondrial swelling and cristae disorientation and breakage. Moreover, mitochondrial biogenesis of ob/ob cardiomyocytes is significantly impaired, as evidenced by reduced Ppargc-1a/Nrf-1/Tfam mRNA levels, mitochondrial DNA content, ATP content, citrate synthase activity, complexes I/III/V activity, AMPK phosphorylation, and increased PGC-1α acetylation. Since APN is an upstream activator of AMPK and APN plasma levels are significantly reduced in ob/ob mice, we further tested the hypothesis that reduced APN in ob/ob mice is causatively related to mitochondrial biogenesis impairment. One week of APN treatment of ob/ob mice activated AMPK, reduced PGC-1α acetylation, increased mitochondrial biogenesis, and attenuated mitochondrial disorders. In contrast, knocking out APN inhibited AMPK-PGC-1α signaling and impaired both mitochondrial biogenesis and function. The ob/ob mice exhibited lower survival rates and exacerbated myocardial injury after MI, when compared to controls. APN supplementation improved mitochondrial biogenesis and attenuated MI injury, an effect that was almost completely abrogated by the AMPK inhibitor compound C. In high glucose/high fat treated neonatal rat ventricular myocytes, siRNA-mediated knockdown of PGC-1α blocked gAd-enhanced mitochondrial biogenesis and function and attenuated protection against hypoxia/reoxygenation injury. In conclusion, hypoadiponectinemia impaired AMPK-PGC-1α signaling, resulting in dysfunctional mitochondrial biogenesis that constitutes a novel mechanism for rendering diabetic hearts more vulnerable to enhanced MI injury.
Collapse
Affiliation(s)
- Wenjun Yan
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, 147 West Changle Rd, Xian, 710032, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
van den Brom CE, Bulte CS, Loer SA, Bouwman RA, Boer C. Diabetes, perioperative ischaemia and volatile anaesthetics: consequences of derangements in myocardial substrate metabolism. Cardiovasc Diabetol 2013; 12:42. [PMID: 23452502 PMCID: PMC3599199 DOI: 10.1186/1475-2840-12-42] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/21/2013] [Indexed: 12/18/2022] Open
Abstract
Volatile anaesthetics exert protective effects on the heart against perioperative ischaemic injury. However, there is growing evidence that these cardioprotective properties are reduced in case of type 2 diabetes mellitus. A strong predictor of postoperative cardiac function is myocardial substrate metabolism. In the type 2 diabetic heart, substrate metabolism is shifted from glucose utilisation to fatty acid oxidation, resulting in metabolic inflexibility and cardiac dysfunction. The ischaemic heart also loses its metabolic flexibility and can switch to glucose or fatty acid oxidation as its preferential state, which may deteriorate cardiac function even further in case of type 2 diabetes mellitus.Recent experimental studies suggest that the cardioprotective properties of volatile anaesthetics partly rely on changing myocardial substrate metabolism. Interventions that target at restoration of metabolic derangements, like lifestyle and pharmacological interventions, may therefore be an interesting candidate to reduce perioperative complications. This review will focus on the current knowledge regarding myocardial substrate metabolism during volatile anaesthesia in the obese and type 2 diabetic heart during perioperative ischaemia.
Collapse
Affiliation(s)
- Charissa E van den Brom
- Department of Anesthesiology, Experimental Laboratory for VItal Signs, VU University Medical Center, De Boelelaan 1117, Amsterdam, the Netherlands.
| | | | | | | | | |
Collapse
|
40
|
Palee S, Weerateerangkul P, Chinda K, Chattipakorn SC, Chattipakorn N. Mechanisms responsible for beneficial and adverse effects of rosiglitazone in a rat model of acute cardiac ischaemia-reperfusion. Exp Physiol 2013; 98:1028-37. [DOI: 10.1113/expphysiol.2012.070433] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Ansley DM, Wang B. Oxidative stress and myocardial injury in the diabetic heart. J Pathol 2013; 229:232-41. [PMID: 23011912 DOI: 10.1002/path.4113] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/14/2022]
Abstract
Reactive oxygen or nitrogen species play an integral role in both myocardial injury and repair. This dichotomy is differentiated at the level of species type, amount and duration of free radical generated. Homeostatic mechanisms designed to prevent free radical generation in the first instance, scavenge, or enzymatically convert them to less toxic forms and water, playing crucial roles in the maintenance of cellular structure and function. The outcome between functional recovery and dysfunction is dependent upon the inherent ability of these homeostatic antioxidant defences to withstand acute free radical generation, in the order of seconds to minutes. Alternatively, pre-existent antioxidant capacity (from intracellular and extracellular sources) may regulate the degree of free radical generation. This converts reactive oxygen and nitrogen species to the role of second messenger involved in cell signalling. The adaptive capacity of the cell is altered by the balance between death or survival signal converging at the level of the mitochondria, with distinct pathophysiological consequences that extends the period of injury from hours to days and weeks. Hyperglycaemia, hyperlipidaemia and insulin resistance enhance oxidative stress in the diabetic myocardium that cannot adapt to ischaemia-reperfusion. Altered glucose flux, mitochondrial derangements and nitric oxide synthase uncoupling in the presence of decreased antioxidant defence and impaired prosurvival cell signalling may render the diabetic myocardium more vulnerable to injury, remodelling and heart failure.
Collapse
Affiliation(s)
- David M Ansley
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
42
|
Does rosiglitazone affect adiposity and cardiac function in genetic diabetic mice? Eur J Pharmacol 2013; 700:23-31. [DOI: 10.1016/j.ejphar.2012.11.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 11/09/2012] [Accepted: 11/19/2012] [Indexed: 12/24/2022]
|
43
|
Abstract
Autophagy is a housekeeping process that helps to maintain cellular energy homeostasis and remove damaged organelles. In the heart, autophagy is an adaptive process that is activated in response to stress including acute and chronic ischemia. Given the evidence that autophagy is suppressed in energy-rich conditions, the objective of this review is to examine autophagy and cardioprotection in the setting of the metabolic syndrome. Clinical approaches that involve the induction of cardiac autophagy pharmacologically to enhance the heart's tolerance to ischemia are also discussed.
Collapse
|
44
|
Hausenloy DJ, Wynne AM, Mocanu MM, Yellon DM. Glimepiride treatment facilitates ischemic preconditioning in the diabetic heart. J Cardiovasc Pharmacol Ther 2012; 18:263-9. [PMID: 23263382 DOI: 10.1177/1074248412468945] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AIMS The diabetic heart is resistant to the myocardial infarct-limiting effects of ischemic preconditioning (IPC). This may be in part due to the downregulation of the phosphatidylinositol 3'-kinase-Akt pathway, an essential component of IPC protection. We hypothesized that treating the diabetic heart with the sulfonylurea, glimepiride, which has been reported to activate Akt, may lower the threshold required to protect the diabetic heart by IPC. METHODS Goto-Kakizaki rats (a type II lean model of diabetes) received glimepiride (20 mg/kg per d, by oral gavage) or vehicle for (a) 3 months (chronic treatment) or (b) 24 hours (subacute treatment). In the third group, glimepiride (10 μmol/L) was administered only to the isolated hearts on the Langendorff apparatus (acute treatment). All hearts were subjected to 35 minutes ischemia and 120 minutes reperfusion ex vivo, at the end of which infarct size was determined by tetrazolium staining. Preconditioning treatment comprised 1 (IPC-1) or 3 (IPC-3) cycles of 5 minutes global ischemia and 10 minutes reperfusion. RESULTS The diabetic heart was found to be resistant to IPC such that 3-IPC cycles, instead of the usual 1-IPC cycle, were required for cardioprotection. However, pretreatment with glimepiride lowered the threshold for IPC such that both 1 and 3 cycles of IPC elicited cardioprotection: chronic glimepiride treatment (IPC-1 31.9% ± 3.8% and IPC-3 33.5% ± 2.4% vs 43.9% ± 1.4% control, P < .05; N > 6 per group); subacute glimepiride treatment (IPC-1 31.1% ± 3.0% and IPC-3 29.3% ± 3.3% vs 42.2% ± 2.3% control, P < .05 N > 6 per group); and acute glimepiride treatment (IPC-1 28.2% ± 3.7% and IPC-3 24.6% ± 5.4% vs 41.9% ± 5.4% control, P < .05; N > 6 per group). This effect of glimepiride was independent of changes in blood glucose. CONCLUSIONS We report for the first time that glimepiride treatment facilitates the cardioprotective effect elicited by IPC in the diabetic heart.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, London, UK.
| | | | | | | |
Collapse
|
45
|
Donner D, Headrick JP, Peart JN, du Toit EF. Obesity improves myocardial ischaemic tolerance and RISK signalling in insulin-insensitive rats. Dis Model Mech 2012; 6:457-66. [PMID: 23161371 PMCID: PMC3597027 DOI: 10.1242/dmm.010959] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Obesity with associated metabolic disturbances worsens ischaemic heart disease outcomes, and rodent studies confirm that obesity with insulin-resistance impairs myocardial resistance to ischemia-reperfusion (I-R) injury. However, the effects of obesity per se are unclear, with some evidence for paradoxic cardioprotection (particularly in older subjects). We tested the impact of dietary obesity on I-R tolerance and reperfusion injury salvage kinase (RISK) signalling in hearts from middle-aged (10 months old) insulin-insensitive rats. Hearts from Wistar rats on either a 32-week control (CD) or high carbohydrate obesogenic (OB) diet were assessed for I-R resistance in vivo (45 minutes left anterior descending artery occlusion and 120 minutes reperfusion) and ex vivo (25 minutes ischemia and 60 minutes reperfusion). Expression and δ-opioid receptor (δ-OR) phospho-regulation of pro-survival (Akt/PKB, Erk1/2, eNOS) and pro-injury (GSK3β) enzymes were also examined. OB rats were heavier (764±25 versus 657±22 g for CD; P<0.05), hyperleptinaemic (11.1±0.7 versus 5.0±0.7 for CD; P<0.01) and comparably insulin-insensitive (HOMA-IR of 63.2±3.3 versus 63.2±1.6 for CD). In vivo infarction was more than halved in OB (20±3%) versus CD rats (45±6% P<0.05), as was post-ischaemic lactate dehydrogenase efflux (0.4±0.3 mU/ml versus 5.6±0.5 mU/ml; P<0.02) and ex vivo contractile dysfunction (62±2% versus 44±6% recovery of ventricular force; P<0.05). OB hearts exhibited up to 60% higher Akt expression, with increased phosphorylation of eNOS (+100%), GSK3β (+45%) and Erk1/2 (+15%). Pre-ischaemic δ-OR agonism with BW373U86 improved recoveries in CD hearts in association with phosphorylation of Akt (+40%), eNOS (+75%) and GSK3β (+30%), yet failed to further enhance RISK-NOS activation or I-R outcomes in OB hearts. In summary, dietary obesity in the context of age-related insulin-insensitivity paradoxically improves myocardial I-R tolerance, in association with moderate hyperleptinaemic and enhanced RISK expression and phospho-regulation. However, OB hearts are resistant to further RISK modulation and cardioprotection via acute δ-OR agonism.
Collapse
Affiliation(s)
- Daniel Donner
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University Gold Coast, QLD 4217, Australia
| | | | | | | |
Collapse
|
46
|
Semple DJ, Bhandari S, Seymour AML. Uremic cardiomyopathy is characterized by loss of the cardioprotective effects of insulin. Am J Physiol Renal Physiol 2012; 303:F1275-86. [DOI: 10.1152/ajprenal.00048.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic kidney disease is associated with a unique cardiomyopathy, characterized by a combination of structural and cellular remodeling, and an enhanced susceptibility to ischemia-reperfusion injury. This may represent dysfunction of the reperfusion injury salvage kinase pathway due to insulin resistance. The susceptibility of the uremic heart to ischemia-reperfusion injury and the cardioprotective effects of insulin and rosiglitazone were investigated. Uremia was induced in Sprague-Dawley rats by subtotal nephrectomy. Functional recovery from ischemia was investigated in vitro in control and uremic hearts ± insulin ± rosiglitazone. The response of myocardial oxidative metabolism to insulin was determined by13C-NMR spectroscopy. Activation of reperfusion injury salvage kinase pathway intermediates (Akt and GSK3β) were assessed by SDS-PAGE and immunoprecipitation. Insulin improved postischemic rate pressure product in control but not uremic hearts, [recovered rate pressure product (%), control 59.6 ± 10.7 vs. 88.9 ± 8.5, P < 0.05; uremic 19.3 ± 4.6 vs. 28.5 ± 10.4, P = ns]. Rosiglitazone resensitized uremic hearts to insulin-mediated cardioprotection [recovered rate pressure product (%) 12.7 ± 7.0 vs. 61.8 ± 15.9, P < 0.05]. Myocardial carbohydrate metabolism remained responsive to insulin in uremic hearts. Uremia was associated with increased phosphorylation of Akt (1.00 ± 0.08 vs. 1.31 ± 0.11, P < 0.05) in normoxia, but no change in postischemic phosphorylation of Akt or GSK3β. Akt2 isoform expression was decreased postischemia in uremic hearts ( P < 0.05). Uremia is associated with enhanced susceptibility to ischemia-reperfusion injury and a loss of insulin-mediated cardioprotection, which can be restored by administration of rosiglitazone. Altered Akt2 expression in uremic hearts post-ischemia-reperfusion and impaired activation of the reperfusion injury salvage kinase pathway may underlie these findings.
Collapse
Affiliation(s)
- David J. Semple
- Department of Biological Sciences and Hull York Medical School, University of Hull, Kingston-upon-Hull, United Kingdom; and
| | - Sunil Bhandari
- Department of Renal Medicine, Hull and East Yorkshire Hospital NHS Trust, and Hull York Medical School, Kingston-upon-Hull, United Kingdom
| | - Anne-Marie L. Seymour
- Department of Biological Sciences and Hull York Medical School, University of Hull, Kingston-upon-Hull, United Kingdom; and
| |
Collapse
|
47
|
Intervention of rosiglitazone on myocardium Glut-4 mRNA expression during ischemia–reperfusion injury in cardio-pulmonary bypass in dogs. Mol Cell Biochem 2012; 373:279-84. [DOI: 10.1007/s11010-012-1501-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/25/2012] [Indexed: 11/25/2022]
|
48
|
Miki T, Itoh T, Sunaga D, Miura T. Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovasc Diabetol 2012; 11:67. [PMID: 22694800 PMCID: PMC3461466 DOI: 10.1186/1475-2840-11-67] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 01/25/2023] Open
Abstract
In spite of the current optimal therapy, the mortality of patients with ischemic heart disease (IHD) remains high, particularly in cases with diabetes mellitus (DM) as a co-morbidity. Myocardial infarct size is a major determinant of prognosis in IHD patients, and development of a novel strategy to limit infarction is of great clinical importance. Ischemic preconditioning (PC), postconditioning (PostC) and their mimetic agents have been shown to reduce infarct size in experiments using healthy animals. However, a variety of pharmacological agents have failed to demonstrate infarct size limitation in clinical trials. One of the possible reasons for the discrepancy between the results of animal experiments and clinical trials is that co-morbidities, including DM, modified myocardial responses to ischemia/reperfusion and to cardioprotective agents. Here we summarize observations of the effects of DM on myocardial infarct size and ischemic PC and PostC and discuss perspectives for protection of DM hearts.
Collapse
Affiliation(s)
- Takayuki Miki
- Second Department of Internal Medicine, Sapporo Medical University School of Medicine, South-1 West-16, Sapporo 060-8543, Japan.
| | | | | | | |
Collapse
|
49
|
Huang JV, Greyson CR, Schwartz GG. PPAR-γ as a therapeutic target in cardiovascular disease: evidence and uncertainty. J Lipid Res 2012; 53:1738-54. [PMID: 22685322 DOI: 10.1194/jlr.r024505] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPAR-γ) is a key regulator of fatty acid metabolism, promoting its storage in adipose tissue and reducing circulating concentrations of free fatty acids. Activation of PPAR-γ has favorable effects on measures of adipocyte function, insulin sensitivity, lipoprotein metabolism, and vascular structure and function. Despite these effects, clinical trials of thiazolidinedione PPAR-γ activators have not provided conclusive evidence that they reduce cardiovascular morbidity and mortality. The apparent disparity between effects on laboratory measurements and clinical outcomes may be related to limitations of clinical trials, adverse effects of PPAR-γ activation, or off-target effects of thiazolidinedione agents. This review addresses these issues from a clinician's perspective and highlights several ongoing clinical trials that may help to clarify the therapeutic role of PPAR-γ activators in cardiovascular disease.
Collapse
Affiliation(s)
- Janice V Huang
- Cardiology Section, Denver VA Medical Center, US Department of Veterans Affairs, Denver, CO, USA
| | | | | |
Collapse
|
50
|
McGavock J, Szczepaniak LS, Ayers CR, Abdullah SM, See R, Gore MO, Drazner MH, de Lemos JA, McGuire DK. The effects of rosiglitazone on myocardial triglyceride content in patients with type 2 diabetes: a randomised, placebo-controlled trial. Diab Vasc Dis Res 2012; 9:131-7. [PMID: 22067724 DOI: 10.1177/1479164111428628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This was a nested sub-study of a randomised placebo-controlled trial of the effect of 6 months of treatment with rosiglitazone added to existing therapy on myocardial triglyceride (mTG) content in patients with type 2 diabetes (T2D) and prevalent cardiovascular disease (CVD) or at least one additional risk factor. The primary endpoint, mTG content, was measured with cardiac (1)H-magnetic resonance spectroscopy. Of the 99 randomised participants selected for the imaging sub-study, 49 (48%) had complete and interpretable spectroscopy data (age = 58 years, duration of T2D = 9.5 years; 57% women and 69% non-white). There was no significant change in mTG in either group (-0.1 ± 0.6% and -0.05 ± 0.8% respectively) and the changes in mTG were not associated with changes in left ventricular structure or function. Compared with placebo, treatment with rosiglitazone for 6 months had no discernible effect on mTG or left ventricular function in this population with long-standing diabetes and CVD.
Collapse
Affiliation(s)
- Jonathan McGavock
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, TX 75235-9047, USA
| | | | | | | | | | | | | | | | | |
Collapse
|