1
|
Sobolev V, Tchepourina E, Soboleva A, Denisova E, Korsunskaya I, Mezentsev A. PPAR-γ in Melanoma and Immune Cells: Insights into Disease Pathogenesis and Therapeutic Implications. Cells 2025; 14:534. [PMID: 40214488 PMCID: PMC11989151 DOI: 10.3390/cells14070534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Changes in skin pigmentation, like hyperpigmentation or moles, can affect appearance and social life. Unlike locally containable moles, malignant melanomas are aggressive and can spread rapidly, disproportionately affecting younger individuals with a high potential for metastasis. Research has shown that the peroxisome proliferator-activated receptor gamma (PPAR-γ) and its ligands exhibit protective effects against melanoma. As a transcription factor, PPAR-γ is crucial in functions like fatty acid storage and glucose metabolism. Activation of PPAR-γ promotes lipid uptake and enhances sensitivity to insulin. In many cases, it also inhibits the growth of cancer cell lines, like breast, gastric, lung, and prostate cancer. In melanoma, PPAR-γ regulates cell proliferation, differentiation, apoptosis, and survival. During tumorigenesis, it controls metabolic changes and the immunogenicity of stromal cells. PPAR-γ agonists can target hypoxia-induced angiogenesis in tumor therapy, but their effects on tumors can be suppressive or promotional, depending on the tumor environment. Published data show that PPAR-γ-targeting agents can be effective in specific groups of patients, but further studies are needed to understand lesser-known biological effects of PPAR-γ and address the existing safety concerns. This review provides a summary of the current understanding of PPAR-γ and its involvement in melanoma.
Collapse
Affiliation(s)
- Vladimir Sobolev
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Ekaterina Tchepourina
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Anna Soboleva
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Elena Denisova
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
- Moscow Center of Dermatovenerology and Cosmetology, Moscow 119071, Russia
| | - Irina Korsunskaya
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| | - Alexandre Mezentsev
- Laboratory of Physicochemical and Genetic Problems in Dermatology, Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 109029, Russia; (V.S.); (E.T.); (A.S.); (E.D.); (I.K.)
| |
Collapse
|
2
|
Negm AE, Abo-Raya MH, Gabr AM, Baloza SH, El-Nokrashy A, Prince A, Arana D, Wang Y, Abdelazeem S, Albadrani GM, Al-Ghadi MQ, Abdeen A, Shukry M, El-Sayed Khalafallah MM. Effects of phytase enzyme supplementation on growth performance, intestinal morphology and metabolism in Nile tilapia (Oreochromis niloticus). J Anim Physiol Anim Nutr (Berl) 2024; 108:891-908. [PMID: 38356017 DOI: 10.1111/jpn.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Phytase is crucial in enhancing the bioavailability and release of phosphorus and other nutrients bound to phytic acid, making them more bioavailable for animal absorption. This study was carried out to inspect the effect of supplementing low phosphorus (P) diet with di-calcium phosphate (DCP) and liquid phytase enzyme (LP), which contains 1500 FTU/kg, on growth performance, intestinal morphometry, proximate body chemical composition, blood profile, immunity status, liver mitochondrial enzyme activities, the expression response and economic returns of Nile tilapia (Oreochromis niloticus). Three triplicate groups of fish (initial weight 5.405 ± 0.045 g, N = 90) were fed on three different diets for 90 days. The first was a control diet with zero DCP; the second was a control diet supplemented with 0.71% DCP; the third was a control diet supplemented with 0.03% LP. The groups were designated as CG, DCP and LP, respectively. Results showed that LP induced considerable improvements (p < 0.05) in FBW, body weight gain, weight gain rate, specific growth rate, HIS, viscero-somatic index, spleen-somatic index, feed conversion ratio, blood parameters and the histomorphometry assessment of intestinal villi absorptive capacity, compared with the other groups. Also, whole-body protein and lipid contents pointedly (p < 0.05) increased by LP, compared with the DCP group. A positive response (p < 0.05) to the phytase enzyme was noted in complexes I, III and IV of the mitochondrial liver complex enzyme activity. Likewise, the relative gene expression levels of (GHr-1, IGF-1, FAS and LPL) were notably (p < 0.05) upregulated by phytase enzyme, associated with DCP and control groups. Further, phytase recorded the highest total return and profit percentage. It can be concluded that Nile tilapia benefits from using phytase enzyme 1500 FTU/kg at 0.03% without adding DCP in terms of good performance and profits.
Collapse
Affiliation(s)
- Ahmed E Negm
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed H Abo-Raya
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Asmaa M Gabr
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samar H Baloza
- Genetic and Genetic Engineering, Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Asmaa El-Nokrashy
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abdelbary Prince
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Shimaa Abdelazeem
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Muath Q Al-Ghadi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Malik M El-Sayed Khalafallah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
3
|
Oh S, Mai XL, Kim J, de Guzman ACV, Lee JY, Park S. Glycerol 3-phosphate dehydrogenases (1 and 2) in cancer and other diseases. Exp Mol Med 2024; 56:1066-1079. [PMID: 38689091 PMCID: PMC11148179 DOI: 10.1038/s12276-024-01222-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 05/02/2024] Open
Abstract
The glycerol 3-phosphate shuttle (GPS) is composed of two different enzymes: cytosolic NAD+-linked glycerol 3-phosphate dehydrogenase 1 (GPD1) and mitochondrial FAD-linked glycerol 3-phosphate dehydrogenase 2 (GPD2). These two enzymes work together to act as an NADH shuttle for mitochondrial bioenergetics and function as an important bridge between glucose and lipid metabolism. Since these genes were discovered in the 1960s, their abnormal expression has been described in various metabolic diseases and tumors. Nevertheless, it took a long time until scientists could investigate the causal relationship of these enzymes in those pathophysiological conditions. To date, numerous studies have explored the involvement and mechanisms of GPD1 and GPD2 in cancer and other diseases, encompassing reports of controversial and non-conventional mechanisms. In this review, we summarize and update current knowledge regarding the functions and effects of GPS to provide an overview of how the enzymes influence disease conditions. The potential and challenges of developing therapeutic strategies targeting these enzymes are also discussed.
Collapse
Affiliation(s)
- Sehyun Oh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Xuan Linh Mai
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Jiwoo Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Arvie Camille V de Guzman
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea
| | - Ji Yun Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea.
| | - Sunghyouk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea.
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
4
|
Zamanian MY, Sadeghi Ivraghi M, Khachatryan LG, Vadiyan DE, Bali HY, Golmohammadi M. A review of experimental and clinical studies on the therapeutic effects of pomegranate ( Punica granatum) on non-alcoholic fatty liver disease: Focus on oxidative stress and inflammation. Food Sci Nutr 2023; 11:7485-7503. [PMID: 38107091 PMCID: PMC10724645 DOI: 10.1002/fsn3.3713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 12/19/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is frequently linked to metabolic disorders and is prevalent in obese and diabetic patients. The pathophysiology of NAFLD involves multiple factors, including insulin resistance (IR), oxidative stress (OS), inflammation, and genetic predisposition. Recently, there has been an emphasis on the use of herbal remedies with many people around the world resorting to phytonutrients or nutraceuticals for treatment of numerous health challenges in various national healthcare settings. Pomegranate (Punica granatum) parts, such as juice, peel, seed and flower, have high polyphenol content and is well known for its antioxidant capabilities. Pomegranate polyphenols, such as hydrolyzable tannins, anthocyanins, and flavonoids, have high antioxidant capabilities that can help lower the OS and inflammation associated with NAFLD. The study aimed to investigate whether pomegranate parts could attenuate OS, inflammation, and other risk factors associated with NAFLD, and ultimately prevent the development of the disease. The findings of this study revealed that: 1. pomegranate juice contains hypoglycemic qualities that can assist manage blood sugar levels, which is vital for avoiding and treating NAFLD. 2. Polyphenols from pomegranate flowers increase paraoxonase 1 (PON1) mRNA and protein levels in the liver, which can help protect liver enzymes and prevent NAFLD. 3. Punicalagin (PU) is one of the major ellagitannins found in pomegranate, and PU-enriched pomegranate extract (PE) has been shown to inhibit HFD-induced hyperlipidemia and hepatic lipid deposition in rats. 4. Pomegranate fruit consumption, which is high in antioxidants, can decrease the activity of AST and ALT (markers of liver damage), lower TNF-α (a marker of inflammation), and improve overall antioxidant capacity in NAFLD patients. Overall, the polyphenols in pomegranate extracts have antioxidant, anti-inflammatory, hypoglycemic, and protective effects on liver enzymes, which can help prevent and manage NAFLD effects on liver enzymes, which can help prevent and manage NAFLD.
Collapse
Affiliation(s)
- Mohammad Yassin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | | | - Lusine G. Khachatryan
- Department of Pediatric Diseases, N.F. Filatov Clinical Institute of Children's HealthI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Diana E. Vadiyan
- Institute of Dentistry, Department of Pediatric, Preventive Dentistry and OrthodonticsI.M. Sechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | | | | |
Collapse
|
5
|
Yao W, Yang H, Yang J. Small-molecule drugs development for Alzheimer's disease. Front Aging Neurosci 2022; 14:1019412. [PMID: 36389082 PMCID: PMC9664938 DOI: 10.3389/fnagi.2022.1019412] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder with no effective therapeutic drugs currently. The complicated pathophysiology of AD is not well understood, although beta-amyloid (Aβ) cascade and hyperphosphorylated tau protein were regarded as the two main causes of AD. Other mechanisms, such as oxidative stress, deficiency of central cholinergic neurotransmitters, mitochondrial dysfunction, and inflammation, were also proposed and studied as targets in AD. This review aims to summarize the small-molecule drugs that were developed based on the pathogenesis and gives a deeper understanding of the AD. We hope that it could help scientists find new and better treatments to gradually conquer the problems related to AD in future.
Collapse
|
6
|
Ballav S, Biswas B, Sahu VK, Ranjan A, Basu S. PPAR-γ Partial Agonists in Disease-Fate Decision with Special Reference to Cancer. Cells 2022; 11:3215. [PMID: 36291082 PMCID: PMC9601205 DOI: 10.3390/cells11203215] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) has emerged as one of the most extensively studied transcription factors since its discovery in 1990, highlighting its importance in the etiology and treatment of numerous diseases involving various types of cancer, type 2 diabetes mellitus, autoimmune, dermatological and cardiovascular disorders. Ligands are regarded as the key determinant for the tissue-specific activation of PPAR-γ. However, the mechanism governing this process is merely a contradictory debate which is yet to be systematically researched. Either these receptors get weakly activated by endogenous or natural ligands or leads to a direct over-activation process by synthetic ligands, serving as complete full agonists. Therefore, fine-tuning on the action of PPAR-γ and more subtle modulation can be a rewarding approach which might open new avenues for the treatment of several diseases. In the recent era, researchers have sought to develop safer partial PPAR-γ agonists in order to dodge the toxicity induced by full agonists, akin to a balanced activation. With a particular reference to cancer, this review concentrates on the therapeutic role of partial agonists, especially in cancer treatment. Additionally, a timely examination of their efficacy on various other disease-fate decisions has been also discussed.
Collapse
Affiliation(s)
- Sangeeta Ballav
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Bini Biswas
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Vishal Kumar Sahu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Amit Ranjan
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Soumya Basu
- Cancer and Translational Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| |
Collapse
|
7
|
Kunicka Z, Mierzejewski K, Kurzyńska A, Stryiński R, Mateos J, Carrera M, Golubska M, Bogacka I. Analysis of changes in the proteomic profile of porcine corpus luteum during different stages of the oestrous cycle: effects of PPAR gamma ligands. Reprod Fertil Dev 2022; 34:776-788. [PMID: 35577556 DOI: 10.1071/rd21248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/12/2022] [Indexed: 01/05/2023] Open
Abstract
CONTEXT The corpus luteum (CL) is an endocrine gland in the ovary of mature females during the oestrous cycle and pregnancy. There is evidence of a relationship between the secretory function of the CL and PPARs. AIMS In this study, we investigated the changes in the proteome of the CL in relation to the phase of the oestrous cycle and the impact of PPARγ ligands on the proteomic profile of the CL during the mid- and late-luteal phase of the oestrous cycle. METHODS The porcine CL explants were incubated in vitro for 6h in the presence of PPARγ ligands (agonist pioglitazone, antagonist T0070907) or without ligands. Global proteomic analysis was performed using the TMT-based LC-MS/MS method. KEY RESULTS The obtained results showed the disparity in proteomic profile of the untreated CL - different abundance of 23 and 28 proteins for the mid- and late-luteal phase, respectively. Moreover, seven proteins were differentially regulated in the CL tissue treated with PPARγ ligands. In the mid-luteal phase, one protein, CAND1, was downregulated after treatment with T0070907. In the late-luteal phase, the proteins SPTAN1, GOLGB1, TP53BP1, MATR3, RRBP1 and SRRT were upregulated by pioglitazone. CONCLUSIONS Comparative proteomic analysis revealed that certain proteins constitute a specific proteomic signature for each examined phase. Moreover, the study showed that the effect of PPARγ ligands on the CL proteome was rather limited. IMPLICATIONS The results provide a broader insight into the processes that may be responsible for the structural luteolysis of the porcine CL, in addition to apoptosis and autophagy.
Collapse
Affiliation(s)
- Zuzanna Kunicka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Karol Mierzejewski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Aleksandra Kurzyńska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jesús Mateos
- Galapagos NV, Generaal de Wittelaan L11, 2800 Mechelen, Belgium
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36208 Vigo, Spain
| | - Monika Golubska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
8
|
Jafari M, Juanson Arabit JG, Courville R, Kiani D, Chaston JM, Nguyen CD, Jena N, Liu ZY, Tata P, Van Etten RA. The impact of Rhodiola rosea on biomarkers of diabetes, inflammation, and microbiota in a leptin receptor-knockout mouse model. Sci Rep 2022; 12:10581. [PMID: 35732671 PMCID: PMC9217815 DOI: 10.1038/s41598-022-14241-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Type 2 diabetes is the most prevalent endocrine disease in the world, and recently the gut microbiota have become a potential target for its management. Recent studies have illustrated that this disease may predispose individuals to certain microbiome compositions, and treatments like metformin have been shown to change gut microbiota and their associated metabolic pathways. However, given the limitations and side effects associated with pharmaceuticals currently being used for therapy of diabetes, there is a significant need for alternative treatments. In this study, we investigated the effects of a root extract from Rhodiola rosea in a Leptin receptor knockout (db/db) mouse model of type 2 diabetes. Our previous work showed that Rhodiola rosea had anti-inflammatory and gut microbiome-modulating properties, while extending lifespan in several animal models. In this study, treatment with Rhodiola rosea improved fasting blood glucose levels, altered the response to exogenous insulin, and decreased circulating lipopolysaccharide and hepatic C-reactive protein transcript levels. We hypothesize that these changes may in part reflect the modulation of the microbiota, resulting in improved gut barrier integrity and decreasing the translocation of inflammatory biomolecules into the bloodstream. These findings indicate that Rhodiola rosea is an attractive candidate for further research in the management of type 2 diabetes.
Collapse
Affiliation(s)
- Mahtab Jafari
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
| | | | - Robert Courville
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Dara Kiani
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - John M Chaston
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Cindy Duy Nguyen
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Nilamani Jena
- Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Zhong-Ying Liu
- Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Prasanthi Tata
- Department of Medicine, University of California, Irvine, Irvine, CA, USA
| | | |
Collapse
|
9
|
Cheng H, Wang M, Su J, Li Y, Long J, Chu J, Wan X, Cao Y, Li Q. Lipid Metabolism and Cancer. Life (Basel) 2022; 12:life12060784. [PMID: 35743814 PMCID: PMC9224822 DOI: 10.3390/life12060784] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid metabolism is involved in the regulation of numerous cellular processes, such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, movement, membrane homeostasis, chemotherapy response, and drug resistance. Reprogramming of lipid metabolism is a typical feature of malignant tumors. In a variety of cancers, fat uptake, storage and fat production are up-regulated, which in turn promotes the rapid growth, invasion, and migration of tumors. This paper systematically summarizes the key signal transduction pathways and molecules of lipid metabolism regulating tumors, and the role of lipid metabolism in programmed cell death. In conclusion, understanding the potential molecular mechanism of lipid metabolism and the functions of different lipid molecules may facilitate elucidating the mechanisms underlying the occurrence of cancer in order to discover new potential targets for the development of effective antitumor drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qinglin Li
- Correspondence: ; Tel.: +86-0551-65169051
| |
Collapse
|
10
|
Sisignano M, Gribbon P, Geisslinger G. Drug Repurposing to Target Neuroinflammation and Sensory Neuron-Dependent Pain. Drugs 2022; 82:357-373. [PMID: 35254645 PMCID: PMC8899787 DOI: 10.1007/s40265-022-01689-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
Around 20% of the American population have chronic pain and estimates in other Western countries report similar numbers. This represents a major challenge for global health care systems. Additional problems for the treatment of chronic and persistent pain are the comparably low efficacy of existing therapies, the failure to translate effects observed in preclinical pain models to human patients and related setbacks in clinical trials from previous attempts to develop novel analgesics. Drug repurposing offers an alternative approach to identify novel analgesics as it can bypass various steps of classical drug development. In recent years, several approved drugs were attributed analgesic properties. Here, we review available data and discuss recent findings suggesting that the approved drugs minocycline, fingolimod, pioglitazone, nilotinib, telmisartan, and others, which were originally developed for the treatment of different pathologies, can have analgesic, antihyperalgesic, or neuroprotective effects in preclinical and clinical models of inflammatory or neuropathic pain. For our analysis, we subdivide the drugs into substances that can target neuroinflammation or substances that can act on peripheral sensory neurons, and highlight the proposed mechanisms. Finally, we discuss the merits and challenges of drug repurposing for the development of novel analgesics.
Collapse
Affiliation(s)
- Marco Sisignano
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany. .,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany. .,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, ScreeningPort, Schnackenburgallee 114, 22525, Hamburg, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.,Fraunhofer Cluster of Excellence for Immune-Mediated Diseases (CIMD), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Scheurlen KM, Snook DL, Walter MN, Cook CN, Fiechter CR, Pan J, Beal RJ, Galandiuk S. Itaconate and leptin affecting PPARγ in M2 macrophages: A potential link to early-onset colorectal cancer. Surgery 2022; 171:650-656. [PMID: 34876290 PMCID: PMC8885843 DOI: 10.1016/j.surg.2021.10.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/28/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Along with the rising incidence of obesity, there has been an increase in patients diagnosed with early-onset colorectal cancer (<50 years old). In colorectal cancer, worse patient survival is associated with certain cytokine expression and downregulation of peroxisome proliferator activated receptor gamma expression. The effects of the obesity hormone leptin and macrophage-specific metabolite itaconate on these mechanisms are poorly understood. We investigated their impact on peroxisome proliferator activated receptor gamma and macrophage cytokine expression in vitro. METHODS M2-like macrophages were treated with either leptin, 4-octyl itaconate, or dimethyl itaconate in a dose- and time-dependent manner. Gene expression after treatment with 4 doses (D1-4) of each compound was analyzed at 4 time points (3, 6, 18, and 24 hours). RESULTS Peroxisome proliferator activated receptor gamma was downregulated after 4-octyl itaconate treatment at 18 hours (FC -32.67, P ≤ .001). Interleukin-8 was upregulated after leptin and dimethyl itaconate treatment at 6 hours (FC 26.35 at D4, P ≤ .001, and FC 23.26 at D3, P = .006). Dimethyl itaconate upregulated IL-1β at 24 hours (FC 18.00 at D4, P ≤ .001). Tumor necrosis factor-α showed maximum downregulation after 4-octyl itaconate at 18 hours (FC -103.25 at D4, P ≤ .001). CONCLUSIONS Itaconate downregulates peroxisome proliferator activated receptor gamma as a tumor-suppressing factor and upregulates anti-inflammatory cytokines in M2-like macrophages. Itaconate provides a link between obesity and colorectal cancer and may be a key regulator in early-onset colorectal cancer.
Collapse
Affiliation(s)
- Katharina M Scheurlen
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY
| | - Dylan L Snook
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY
| | - Mary N Walter
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY
| | - Cheyenne N Cook
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY
| | - Casey R Fiechter
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY
| | - Jianmin Pan
- Biostatistics Shared Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY
| | - Robert J Beal
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY
| | - Susan Galandiuk
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY.
| |
Collapse
|
12
|
Costa KA, Lacerda DR, Silveira ALM, Martins LB, Oliveira MC, Rezende BM, Menezes-Garcia Z, Mügge FLB, Silva AM, Teixeira MM, Rouault C, Pinho V, Marcelin G, Clément K, Ferreira AVM. PAF signaling plays a role in obesity-induced adipose tissue remodeling. Int J Obes (Lond) 2022; 46:68-76. [PMID: 34493775 DOI: 10.1038/s41366-021-00961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND/OBJECTIVES Platelet-activating factor receptor (PAFR) activation controls adipose tissue (AT) expansion in animal models. Our objective was twofold: (i) to check whether PAFR signaling is involved in human obesity and (ii) investigate the PAF pathway role in hematopoietic or non-hematopoietic cells to control adipocyte size. MATERIALS/SUBJECTS AND METHODS Clinical parameters and adipose tissue gene expression were evaluated in subjects with obesity. Bone marrow (BM) transplantation from wild-type (WT) or PAFR-/- mice was performed to obtain chimeric PAFR-deficient mice predominantly in hematopoietic or non-hematopoietic-derived cells. A high carbohydrate diet (HC) was used to induce AT remodeling and evaluate in which cell compartment PAFR signaling modulates it. Also, 3T3-L1 cells were treated with PAF to evaluate fat accumulation and the expression of genes related to it. RESULTS PAFR expression in omental AT from humans with obesity was negatively correlated to different corpulence parameters and more expressed in the stromal vascular fraction than adipocytes. Total PAFR-/- increased adiposity compared with WT independent of diet-induced obesity. Differently, WT mice receiving PAFR-/--BM exhibited similar adiposity gain as WT chimeras. PAFR-/- mice receiving WT-BM showed comparable augmentation in adiposity as total PAFR-/- mice, demonstrating that PAFR signaling modulates adipose tissue expansion through non-hematopoietic cells. Indeed, the PAF treatment in 3T3-L1 adipocytes reduced fat accumulation and expression of adipogenic genes. CONCLUSIONS Therefore, decreased PAFR signaling may favor an AT accumulation in humans and animal models. Importantly, PAFR signaling, mainly in non-hematopoietic cells, especially in adipocytes, appears to play a significant role in regulating diet-induced AT expansion.
Collapse
Affiliation(s)
- Kátia A Costa
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora R Lacerda
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana L M Silveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laís B Martins
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina C Oliveira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Barbara M Rezende
- Department of Basic Nursing, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Zélia Menezes-Garcia
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda L B Mügge
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aristóbolo M Silva
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro M Teixeira
- Immunopharmacology, Department of Immunology and Biochemistry, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Christine Rouault
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches (Nutriomics), Paris, France.,Assistance Publique Hôpitaux de Paris, Nutrition Departments, CRNH Ile de France, Pitié-Salpêtrière Hospital, Paris, France
| | - Vanessa Pinho
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Geneviève Marcelin
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches (Nutriomics), Paris, France.,Assistance Publique Hôpitaux de Paris, Nutrition Departments, CRNH Ile de France, Pitié-Salpêtrière Hospital, Paris, France
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and obesities: systemic approaches (Nutriomics), Paris, France.,Assistance Publique Hôpitaux de Paris, Nutrition Departments, CRNH Ile de France, Pitié-Salpêtrière Hospital, Paris, France
| | - Adaliene V M Ferreira
- Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Abyadeh M, Gupta V, Gupta V, Chitranshi N, Wu Y, Amirkhani A, Meyfour A, Sheriff S, Shen T, Dhiman K, Ghasem HS, Paul AH, Stuart LG, Mirzaei M. Comparative Analysis of Aducanumab, Zagotenemab and Pioglitazone as Targeted Treatment Strategies for Alzheimer's Disease. Aging Dis 2021; 12:1964-1976. [PMID: 34881080 PMCID: PMC8612603 DOI: 10.14336/ad.2021.0719] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia that has remained a major medical, sociocultural and economical challenge globally. Previously developed treatments like anticholinesterase inhibitors (AChEIs) and N-methyl-D-aspartate receptor (NMDAR) antagonists only provide short-term symptomatic improvement and do not prevent progression. Repeated setbacks and failures over the past 25 years in AD clinical trials have hindered efforts to develop effective AD treatments. Fortunately, Aducanumab, a specific anti-amyloid β antibody, has shown promising clinical results and was recently approved by the Food and Drug Administration (FDA) through an accelerated approval pathway. This has raised hopes for AD patients; however post-approval trials are necessary to estimate the true scope of its clinical benefits. We have reviewed several AD clinical studies and summarized the experience to date with Aducanumab and two other potential AD drugs including Zagotenemab (an anti-tau antibody) and Pioglitazone (nuclear Peroxisome-Proliferator Activated Receptor γ (PPARγ) agonist). These have shown mixed results so far and the next few years will be critical to elucidate and interpret their broad long-term protective effects. A concerted effort is required to understand and strengthen the translation of pre-clinical findings from these drugs to routine clinical practice.
Collapse
Affiliation(s)
- Morteza Abyadeh
- 1Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vivek Gupta
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Veer Gupta
- 3School of Medicine, Deakin University, VIC, Australia
| | - Nitin Chitranshi
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Yunqi Wu
- 4Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Ardeshir Amirkhani
- 4Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Anna Meyfour
- 5Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samran Sheriff
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Ting Shen
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Kunal Dhiman
- 3School of Medicine, Deakin University, VIC, Australia
| | - H Salekdeh Ghasem
- 6Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - A Haynes Paul
- 6Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - L Graham Stuart
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Mehdi Mirzaei
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
14
|
Yu S, Meng S, Xiang M, Ma H. Phosphoenolpyruvate carboxykinase in cell metabolism: Roles and mechanisms beyond gluconeogenesis. Mol Metab 2021; 53:101257. [PMID: 34020084 PMCID: PMC8190478 DOI: 10.1016/j.molmet.2021.101257] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Phosphoenolpyruvate carboxykinase (PCK) has been almost exclusively recognized as a critical enzyme in gluconeogenesis, especially in the liver and kidney. Accumulating evidence has shown that the enhanced activity of PCK leads to increased glucose output and exacerbation of diabetes, whereas the defects of PCK result in lethal hypoglycemia. Genetic mutations or polymorphisms are reported to be related to the onset and progression of diabetes in humans. SCOPE OF REVIEW Recent studies revealed that the PCK pathway is more complex than just gluconeogenesis, depending on the health or disease condition. Dysregulation of PCK may contribute to the development of obesity, cardiac hypertrophy, stroke, and cancer. Moreover, a regulatory network with multiple layers, from epigenetic regulation, transcription regulation, to posttranscription regulation, precisely tunes the expression of PCK. Deciphering the molecular basis that regulates PCK may pave the way for developing practical strategies to treat metabolic dysfunction. MAJOR CONCLUSIONS In this review, we summarize the metabolic and non-metabolic roles of the PCK enzyme in cells, especially beyond gluconeogenesis. We highlight the distinct functions of PCK isoforms (PCK1 and PCK2), depict a detailed network regulating PCK's expression, and discuss its clinical relevance. We also discuss the therapeutic potential targeting PCK and the future direction that is highly in need to better understand PCK-mediated signaling under diverse conditions.
Collapse
Affiliation(s)
- Shuo Yu
- Anesthesiology Department, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Simin Meng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
15
|
Nesti L, Tricò D, Mengozzi A, Natali A. Rethinking pioglitazone as a cardioprotective agent: a new perspective on an overlooked drug. Cardiovasc Diabetol 2021; 20:109. [PMID: 34006325 PMCID: PMC8130304 DOI: 10.1186/s12933-021-01294-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Since 1985, the thiazolidinedione pioglitazone has been widely used as an insulin sensitizer drug for type 2 diabetes mellitus (T2DM). Although fluid retention was early recognized as a safety concern, data from clinical trials have not provided conclusive evidence for a benefit or a harm on cardiac function, leaving the question unanswered. We reviewed the available evidence encompassing both in vitro and in vivo studies in tissues, isolated organs, animals and humans, including the evidence generated by major clinical trials. Despite the increased risk of hospitalization for heart failure due to fluid retention, pioglitazone is consistently associated with reduced risk of myocardial infarction and ischemic stroke both in primary and secondary prevention, without any proven direct harm on the myocardium. Moreover, it reduces atherosclerosis progression, in-stent restenosis after coronary stent implantation, progression rate from persistent to permanent atrial fibrillation, and reablation rate in diabetic patients with paroxysmal atrial fibrillation after catheter ablation. In fact, human and animal studies consistently report direct beneficial effects on cardiomyocytes electrophysiology, energetic metabolism, ischemia–reperfusion injury, cardiac remodeling, neurohormonal activation, pulmonary circulation and biventricular systo-diastolic functions. The mechanisms involved may rely either on anti-remodeling properties (endothelium protective, inflammation-modulating, anti-proliferative and anti-fibrotic properties) and/or on metabolic (adipose tissue metabolism, increased HDL cholesterol) and neurohormonal (renin–angiotensin–aldosterone system, sympathetic nervous system, and adiponectin) modulation of the cardiovascular system. With appropriate prescription and titration, pioglitazone remains a useful tool in the arsenal of the clinical diabetologist.
Collapse
Affiliation(s)
- Lorenzo Nesti
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy. .,Cardiopulmonary Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Domenico Tricò
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy.,Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, Pisa, Italy
| | - Alessandro Mengozzi
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Andrea Natali
- Metabolism, Nutrition, and Atherosclerosis Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy.,Cardiopulmonary Laboratory, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
White U, Fitch MD, Beyl RA, Hellerstein MK, Ravussin E. Adipose depot-specific effects of 16 weeks of pioglitazone on in vivo adipogenesis in women with obesity: a randomised controlled trial. Diabetologia 2021; 64:159-167. [PMID: 33001232 PMCID: PMC7718382 DOI: 10.1007/s00125-020-05281-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS In vitro and rodent studies suggest that pioglitazone, a thiazolidinedione, can promote adipogenesis in adipose tissue (AT); however, there is a lack of in vivo studies in humans to support these findings. The objectives of this randomised, placebo-controlled, parallel-arm trial were to test if pioglitazone stimulates in vivo adipogenesis in the subcutaneous adipose tissue depots and if these measures were related to metabolic health outcomes in women with obesity. METHODS Forty-one healthy women with obesity (20 black; 21 white; 29 ± 6 years; BMI 32.0 ± 1.7 kg/m2; 44.0 ± 3.6% body fat) were randomised to consume 30 mg/day of pioglitazone (n = 21) or placebo (n = 20) for 16 weeks. SAS v9.4 was used to generate the block randomisation code sequence (stored in password-protected files) with a 1:1 allocation ratio. The participants and study staff involved in assessing and analysing data outcomes were blinded to the group assignments. The trial was conducted at Pennington Biomedical Research Center and ended in 2016. At baseline and post-intervention, subcutaneous abdominal (scABD) and femoral (scFEM) AT biopsies were collected, and in vivo cellular kinetics (primary endpoint of the trial) were assessed by an 8 week labelling protocol of deuterium (2H) into the DNA of adipose cells. Body composition was measured by dual-energy x-ray absorptiometry (DXA), scABD and visceral AT (VAT) by MRI, ectopic fat by 1H-MRS, and insulin sensitivity by an OGTT. RESULTS After the 16 week intervention, there was a significant decrease in visceral fat (VAT:total abdominal AT [as a %]; p = 0.002) and an increase in the Matsuda index (i.e. improved insulin sensitivity; p = 0.04) in the pioglitazone group relative to the placebo group. A significant increase in the formation of new adipocytes was observed in the scFEM (Δ = 3.3 ± 1.6%; p = 0.04) but not the scABD depot (Δ = 2.0 ± 2.1%; p = 0.32) in the pioglitazone group relative to the placebo group. No serious adverse events were reported. CONCLUSIONS/INTERPRETATION Pioglitazone may elicit distinct differences in in vivo adipogenesis in subcutaneous adipose depots in women with obesity, with increased rates in the protective scFEM. Trial registration ClinicalTrials.gov NCT01748994 Funding This study was funded by R01DK090607, P30DK072476, and R03DK112006 from the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health. U54 GM104940 from the National Institute of General Medical Sciences of the National Institutes of Health. The Robert C. and Veronica Atkins Foundation. Graphical abstract.
Collapse
Affiliation(s)
- Ursula White
- Physiology of Human Adipose Tissue, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | - Mark D Fitch
- Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Robbie A Beyl
- Biostatistics, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Marc K Hellerstein
- Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Eric Ravussin
- Human Translational Physiology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
17
|
Sabry MM, Dawood AF, Rashed LA, Sayed SM, Hassan S, Younes SF. Relation between resistin, PPAR-γ, obesity and atherosclerosis in male albino rats. Arch Physiol Biochem 2020; 126:389-398. [PMID: 30612469 DOI: 10.1080/13813455.2018.1550094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Obesity and atherosclerosis are inflammatory states involving variable metabolic signals. The adipokine resistin is implicated in adipose tissue dysfunction and is modulated by PPARγ. In this study, resistin and PPARγ role is investigated in the development of CVS disease. Forty-eight Adult male albino rats were divided into control, obesity and atherosclerotic groups; each group is divided into two subgroups; with and without PPARγ agonist administration for 8 weeks. To assess pathological changes; lipid profile, inflammatory mediator, serum resistin level and resistin expression in adipose tissue were measured. Aorta is histopathologically evaluated. It was found that resistin expression is significantly correlated with lipid profile and inflammatory status in obesity and atherosclerotic groups, and PPARγ agonist administration significantly improves inflammatory status and dyslipidemic profile across studied groups (p < .05). Aortic wall shows histopathological evidence of atherosclerosis in obesity group which is more evident in atherosclerotic group, and milder changes upon receiving PPARγ agonist.
Collapse
Affiliation(s)
- Maha M Sabry
- Physiology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amal F Dawood
- Physiology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, KSA
| | - Laila A Rashed
- Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Seham M Sayed
- Physiology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sherif Hassan
- Department of Medical Education, California University of Sciences and Medicine, School of Medicine (CalMed-SOM), Irvine, USA
- Anatomy Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sheren F Younes
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, KSA
- Pathology Department, Faculty of Medicine, Menoufia University, Cairo, Egypt
| |
Collapse
|
18
|
Divoux A, Sandor K, Bojcsuk D, Yi F, Hopf ME, Smith JS, Balint BL, Osborne TF, Smith SR. Fat Distribution in Women Is Associated With Depot-Specific Transcriptomic Signatures and Chromatin Structure. J Endocr Soc 2020; 4:bvaa042. [PMID: 32500109 PMCID: PMC7261146 DOI: 10.1210/jendso/bvaa042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Preferential accumulation of fat in the upper body (apple shape) is associated with higher risk of developing metabolic syndrome relative to lower body fat (pear shape). We previously discovered that chromatin openness partially defined the transcriptome of preadipocytes isolated from abdominal and gluteofemoral fat. However, the molecular mechanisms underlying interindividual variation in body shape are unknown. METHODS Adipocyte fraction was isolated from abdominal and gluteofemoral fat biopsies of premenopausal women (age and body mass index matched) segregated initially only by their waist-to-hip ratio. We evaluated transcriptomic and chromatin accessibility using RNA sequencing and assay for transposase-accessible chromatin using sequencing (ATAC-seq) along with key clinical parameters. RESULTS Our data showed that higher lower body fat mass was associated with better lipid profile and free fatty acid decrease after glucose administration. Lipid and glucose metabolic pathways genes were expressed at higher levels in gluteofemoral adipocyte fraction in pears, whereas genes associated with inflammation were higher both in abdominal and gluteofemoral apple adipocyte fraction. Gluteofemoral adipocyte chromatin from pear-shaped women contained a significantly higher number of differentially open ATAC-seq peaks relative to chromatin from the apple-shaped gluteofemoral adipocytes. In contrast, abdominal adipocyte chromatin openness showed few differences between apple- and pear-shaped women. We revealed a correlation between gene transcription and open chromatin at the proximity of the transcriptional start site of some of the differentially expressed genes. CONCLUSIONS Integration of data from all 3 approaches suggests that chromatin openness partially governs the transcriptome of gluteofemoral adipocytes and may be involved in the early metabolic syndrome predisposition associated with body shape.
Collapse
Affiliation(s)
- Adeline Divoux
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, USA
| | - Katalin Sandor
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Dora Bojcsuk
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Fanchao Yi
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, USA
| | - Meghan E Hopf
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, USA
| | - Joshua S Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, USA
| | - Balint L Balint
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Timothy F Osborne
- Department of Medicine, Johns Hopkins University School of Medicine, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, USA
| |
Collapse
|
19
|
Shehata AHF, Ahmed ASF, Abdelrehim AB, Heeba GH. The impact of single and combined PPAR-α and PPAR-γ activation on the neurological outcomes following cerebral ischemia reperfusion. Life Sci 2020; 252:117679. [PMID: 32325134 DOI: 10.1016/j.lfs.2020.117679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 12/20/2022]
Abstract
AIM The neuronal damage and accompanied functional deficits induced by cerebral ischemia are among the most common causes of disabilities in adults. Activation of subtypes of peroxisome proliferator-activated receptors (PPARs); PPAR-α and PPAR-γ have shown neuroprotective effects in different neurodegenerative diseases including stroke. Thus, this study aimed to compare the effects of two different agonists: PPAR-α (fenofibrate) and PPAR-γ (pioglitazone) as well as the effect of their combination in ameliorating post-ischemia behavioral deficits. METHODS Male Wistar rats were either pretreated with vehicle, fenofibrate (100 mg/kg/day p.o), pioglitazone (10 mg/kg/day p.o) or their combination for 14 days prior to bilateral common carotid artery occlusion followed by reperfusion for 24 hoursh. The sensory motor functions of rats were assessed, then rats were sacrificed to determine infarct volume and histopathological changes as well as oxidative stress, inflammatory and apoptotic markers in the brain tissue. KEY FINDINGS Pre-treatment with fenofibrate and pioglitazone in addition to their combination improved neurobehavioral dysfunction, reduced cerebral infarct volume, attenuated inflammatory and apoptotic markers and ameliorated histopathological changes in I/R injured rats. The effect of pioglitazone in cerebral cortex was higher than its corresponding effect in fenofibrate while the combined administration of both drugs had additive neuroprotective effect and normalized inflammatory and apoptotic mediators in ischemic rats. SIGNIFICANCE The study compared the neuroprotective effects of PPAR-α and PPAR-γ agonists, and tested the impact of their combination. We concluded that no additional benefits on the functional outcomes might be gained upon their combination.
Collapse
Affiliation(s)
- Alaa H F Shehata
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| | - Al-Shaimaa F Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt.
| | - Amany B Abdelrehim
- Department of Biochemistry and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| | - Gehan H Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Egypt
| |
Collapse
|
20
|
Assaf N, El-Shamarka ME, Salem NA, Khadrawy YA, El Sayed NS. Neuroprotective effect of PPAR alpha and gamma agonists in a mouse model of amyloidogenesis through modulation of the Wnt/beta catenin pathway via targeting alpha- and beta-secretases. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109793. [PMID: 31669201 DOI: 10.1016/j.pnpbp.2019.109793] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Abstract
The present study was conducted to evaluate the efficacy of fenofibrate and pioglitazone in a mouse model of amyloidogenesis induced by amyloidβ (βA) peptide. Mice were injected intracerebroventricularly with βA1-40 (400 pmol/mouse) once, followed by treatment with fenofibrate (300 mg/kg), pioglitazone (30 mg/kg),or both. After 21 days of daily treatment, memory impairment and cognitive function were evaluated by Morris water maze (MWM), Y-maze and object recognition tests. On the 22nd day, mice were sacrificed, and their hippocampi were dissected to determine the levels of α- and β-secretase, peroxisome proliferator-activated receptor (PPARα and β), Wnt and β-catenin. Significant memory impairment and cognitive dysfunction were observed in the mouse model group. This finding was associated with a significant increase in α- and β-secretase levels and a significant decrease in Wnt, β-catenin, and PPARα and β levels. Neuronal damage was also evident after histopathological examination. Treatment with fenofibrate, pioglitazone and their combination resulted in a significant improvement in the behavioural and neurochemical changes induced by βA injection. The present findings indicate that the combined administration of fenofibrate and pioglitazone was more effective than monotherapy in ameliorating the behavioural, neurochemical and histopathological changes in amyloidogenesis model mice and provide a promising therapeutic approach in the management of Alzheimer's disease complicated by diabetes and hypercholesterolemia.
Collapse
Affiliation(s)
- Naglaa Assaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Cairo, Egypt
| | - Marwa E El-Shamarka
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research Division, National Research Centre, Giza, Egypt
| | - Neveen A Salem
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research Division, National Research Centre, Giza, Egypt; Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Yasser A Khadrawy
- Department of Medical Physiology, Medical Research Division, National Research Centre, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
21
|
Tiwari P, Katyal A, Khan MF, Ashraf GM, Ahmad K. Lead Optimization Resources in Drug Discovery for Diabetes. Endocr Metab Immune Disord Drug Targets 2020; 19:754-774. [PMID: 30834844 DOI: 10.2174/1871530319666190304121826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/27/2018] [Accepted: 01/05/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Diabetes, defined as a chronic metabolic syndrome, exhibits global prevalence and phenomenal rise worldwide. The rising incidence accounts for a global health crisis, demonstrating a profound effect on low and middle-income countries, particularly people with limited healthcare facilities. METHODS Highlighting the prevalence of diabetes and its socio-economic implications on the population across the globe, the article aimed to address the emerging significance of computational biology in drug designing and development, pertaining to identification and validation of lead molecules for diabetes treatment. RESULTS The drug discovery programs have shifted the focus on in silico prediction strategies minimizing prolonged clinical trials and expenses. Despite technological advances and effective drug therapies, the fight against life-threatening, disabling disease has witnessed multiple challenges. The lead optimization resources in computational biology have transformed the research on the identification and optimization of anti-diabetic lead molecules in drug discovery studies. The QSAR approaches and ADMET/Toxicity parameters provide significant evaluation of prospective "drug-like" molecules from natural sources. CONCLUSION The science of computational biology has facilitated the drug discovery and development studies and the available data may be utilized in a rational construction of a drug 'blueprint' for a particular individual based on the genetic organization. The identification of natural products possessing bioactive properties as well as their scientific validation is an emerging prospective approach in antidiabetic drug discovery.
Collapse
Affiliation(s)
- Pragya Tiwari
- Department of Biotechnology, MG Institute of Management and Technology, Lucknow-Kanpur Road, Lucknow, India
| | - Ashish Katyal
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut, India
| | - Mohd F Khan
- Department of Biotechnology, Utkarsh School of Management and Technology, Bareilly, India.,Department of Plant Science, MJP Rohilkhand University, Bareilly, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Korea
| |
Collapse
|
22
|
Reddy MR, Hemaiswarya S, Kommidi H, Aidhen IS, Doble M. Acyl and Benzyl-C-
β-D-
Glucosides: Synthesis and Biostudies for Glucose-Uptake-Promoting Activity in C2C12 Mytotubes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Shanmugam Hemaiswarya
- Department of Biotechnology; Indian Institute of Technology Madras; 600036 Chennai India
| | - Harikrishna Kommidi
- Department of Chemistry; Indian Institute of Technology Madras; 600036 Chennai India
| | - Indrapal Singh Aidhen
- Department of Chemistry; Indian Institute of Technology Madras; 600036 Chennai India
| | - Mukesh Doble
- Department of Biotechnology; Indian Institute of Technology Madras; 600036 Chennai India
| |
Collapse
|
23
|
Jeong SG, Lee SE, Kim WJ, Park YG, Yoon JW, Park CO, Park HJ, Kim EY, Park SP. Pioglitazone improves porcine oocyte maturation and subsequent parthenogenetic embryo development in vitro by increasing lipid metabolism. Mol Reprod Dev 2019; 86:1245-1254. [PMID: 31429176 DOI: 10.1002/mrd.23252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 06/30/2019] [Indexed: 12/17/2022]
Abstract
Optimization of culture conditions is important to improve oocyte maturation and subsequent embryo development. In particular, this study analyzed the effects of increasing concentrations of PIO in the maturation medium on spindle formation and chromosome alignment, glutathione, and intracellular ROS levels and expression of selected genes related to maternal markers, apoptosis, and lipid metabolism. The percentage of oocytes displaying normal spindle formation and chromosome alignment was higher in the 1 µM PIO (1 PIO)-treated group than in the control group. The glutathione level was significantly higher in the 1 PIO-treated group than in the control group, while the reactive oxygen species level did not differ. Expression of maternal marker (MOS and GDF9), antiapoptotic (BIRC5), and lipid metabolism-related (ACADS, CPT2, SREBF1, and PPARG) genes was higher in the 1 PIO-treated group than in the control group, while expression of a proapoptotic gene (CASP3) was lower. The blastocyst formation rate and the percentage of blastocysts that reached at least the hatching stage on Days 6 and 7, and the percentage of blastocysts containing more than 128 cells were significantly higher in the 1 PIO-treated group than in the control group. These results indicate that PIO treatment during in vitro maturation improves porcine oocyte maturation and subsequent parthenogenetic embryo development mainly by enhancing lipid metabolism and antioxidant defense in oocytes.
Collapse
Affiliation(s)
- Sang-Gi Jeong
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Seung-Eun Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Won-Jae Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Yun-Gwi Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Jae-Wook Yoon
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Chan-Oh Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Hyo-Jin Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea
| | - Eun-Young Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea.,Mirae Cell Bio, Seoul, Korea
| | - Se-Pill Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju-si, Korea.,Stem Cell Research Center, Jeju National University, Jeju-si, Korea.,Mirae Cell Bio, Seoul, Korea
| |
Collapse
|
24
|
Jiang N, Li Y, Shu T, Wang J. Cytokines and inflammation in adipogenesis: an updated review. Front Med 2019; 13:314-329. [PMID: 30066061 DOI: 10.1007/s11684-018-0625-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
The biological relevance of cytokines is known for more than 20 years. Evidence suggests that adipogenesis is one of the biological events involved in the regulation of cytokines, and pro-inflammatory cytokines (e.g., TNFα and IL-1β) inhibit adipogenesis through various pathways. This inhibitory effect can constrain the hyperplastic expandability of adipose tissues. Meanwhile, chronic low-grade inflammation is commonly observed in obese populations. In some individuals, the impaired ability of adipose tissues to recruit new adipocytes to adipose depots during overnutrition results in adipocyte hypertrophy, ectopic lipid accumulation, and insulin resistance. Intervention studies showed that pro-inflammatory cytokine antagonists improve metabolism in patients with metabolic syndrome. This review focuses on the cytokines currently known to regulate adipogenesis under physiological and pathophysiological circumstances. Recent studies on how inhibited adipogenesis leads to metabolic disorders were summarized. Although the interplay of cytokines and lipid metabolism is yet incompletely understood, cytokines represent a class of potential therapeutic targets in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Ning Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Yao Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Ting Shu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
25
|
Lee MJ, Jash S, Jones JEC, Puri V, Fried SK. Rosiglitazone remodels the lipid droplet and britens human visceral and subcutaneous adipocytes ex vivo. J Lipid Res 2019; 60:856-868. [PMID: 30782959 PMCID: PMC6446708 DOI: 10.1194/jlr.m091173] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/15/2019] [Indexed: 12/28/2022] Open
Abstract
Treatment with PPARγ agonists in vivo improves human adipocyte metabolism, but the cellular mechanisms and possible depot differences in responsiveness to their effects are poorly understood. To examine the ex vivo metabolic effects of rosiglitazone (Rosi), we cultured explants of human visceral (omental) and abdominal subcutaneous adipose tissues for 7 days. Rosi increased mRNA levels of transcriptional regulators of brite/beige adipocytes (PGC1α, PRDM16), triglyceride synthesis (GPAT3, DGAT1), and lipolysis (ATGL) similarly in adipose tissues from both depots. In parallel, Rosi increased key modulators of FA oxidation (UCP1, FABP3, PLIN5 protein), rates of FA oxidation, and protein levels of electron transport complexes, suggesting an enhanced respiratory capacity as confirmed in newly differentiated adipocytes. Rosi led to the formation of small lipid droplets (SLDs) around the adipocyte central lipid droplet; each SLD was decorated with redistributed mitochondria that colocalized with PLIN5. SLD maintenance required lipolysis and FA reesterification. Rosi thus coordinated a structural and metabolic remodeling in adipocytes from both visceral and subcutaneous depots that enhanced oxidative capacity. Selective targeting of these cellular mechanisms to improve adipocyte FA handling may provide a new approach to treat metabolic complications of obesity and diabetes.
Collapse
Affiliation(s)
- Mi-Jeong Lee
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Obesity Center, Boston University School of Medicine, Boston, MA.
| | - Sukanta Jash
- Obesity Center, Boston University School of Medicine, Boston, MA; Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Jessica E C Jones
- Department of Medicine, and Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Vishwajeet Puri
- Obesity Center, Boston University School of Medicine, Boston, MA; Department of Biomedical Sciences and Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Susan K Fried
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Obesity Center, Boston University School of Medicine, Boston, MA
| |
Collapse
|
26
|
Song Y, Li X, Liu Y, Hu Y, Yang R. Arctigenin improves lipid metabolism by regulating AMP-activated protein kinase and downstream signaling pathways. J Cell Biochem 2019; 120:13275-13288. [PMID: 30891825 DOI: 10.1002/jcb.28602] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/16/2022]
Abstract
Although it has been reported that arctigenin (ARG) can reduce the body weight and inhibit adipogenic differentiation by activating AMP-activated protein kinase (AMPK), the exact signals responsible for the ARG-mediated antiobesity mechanism through AMPK are not well understood. In this study, we investigated the potential improvement of AGR on lipid metabolism using a high-fat diet (HFD)-induced hyperlipidemia rats and 3T3-L1 mature adipocytes. The levels of AMPK and its downstream factors were examined by Western blot analysis and real-time fluorescent quantitative polymerase chain reaction. We observed that ARG lowered the HFD-induced body weight and the levels of serum lipid. Moreover, ARG clearly alleviated fat deposition in the liver and reduced epididymal fat accumulation. ARG also suppressed lipogenesis and lipolysis but promoted fatty acid β-oxidation in adipocytes. Most importantly, ARG increased the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) and upregulated the messenger RNA levels of downstream genes related to fatty acid β-oxidation, such as carnitine palmitoyltransferase 1 and acyl-CoA oxidase 1 but downregulated the expression of peroxisome proliferator-activated receptor γ (PPARγ), sterol regulatory element-binding transcription factor 1 (SREBP1c) and their targets, including lipogenesis-related genes such as CCAAT/enhancer-binding protein α, lipoprotein lipase, adipocyte protein 2, and fatty acid synthase (FAS), as well as lipolysis-related genes such as adipose triglyceride lipase and hormone-sensitive lipase. The activity of FAS was also decreased by ARG. We conclude that AMPK activation is important for the pharmacological effects of ARG. ARG may improve lipid metabolism by regulating the AMPK-ACC and AMPK-PPARγ/SREBP1c signaling pathways.
Collapse
Affiliation(s)
- Yuzhou Song
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiao Li
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yunyun Liu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yingjie Hu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ruiyi Yang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
Aranaz P, Navarro-Herrera D, Zabala M, Miguéliz I, Romo-Hualde A, López-Yoldi M, Martínez JA, Vizmanos JL, Milagro FI, González-Navarro CJ. Phenolic Compounds Inhibit 3T3-L1 Adipogenesis Depending on the Stage of Differentiation and Their Binding Affinity to PPARγ. Molecules 2019; 24:molecules24061045. [PMID: 30884812 PMCID: PMC6470710 DOI: 10.3390/molecules24061045] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Phenolic compounds might modulate adiposity. Here, we report our observation that polyphenols and phenolic acids inhibit adipogenesis in 3T3-L1 with different intensity depending on the family and the stage of differentiation. While quercetin and resveratrol inhibited lipid accumulation along the whole process of differentiation, apigenin and myricetin were active during the early and latest stages, but not intermediate, contrary to hesperidin. The activity of phenolic acids was limited to the early stages of the differentiation process, except p-coumaric and ellagic acids. This anti-adipogenic effect was accompanied by down-regulation of Scd1 and Lpl. Molecular docking analysis revealed that the inhibitory activity of these phenolic compounds over the early stages of adipogenesis exhibits a significant correlation (r = 0.7034; p = 0.005) with their binding affinity to the ligand-binding domain of PPARγ. Results show that polyphenols and phenolic acids would interact with specific residues of the receptor, which could determine their potential anti-adipogenic activity during the early stages of the differentiation. Residues Phe264, His266, Ile281, Cys285 and Met348 are the most frequently involved in these interactions, which might suggest a crucial role for these amino acids modulating the activity of the receptor. These data contribute to elucidate the possible mechanisms of phenolic compounds in the control of adipogenesis.
Collapse
Affiliation(s)
- Paula Aranaz
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - David Navarro-Herrera
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Department of Biochemistry and Genetics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - María Zabala
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Itziar Miguéliz
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Ana Romo-Hualde
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Miguel López-Yoldi
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - J Alfredo Martínez
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Department of Nutrition, Food Science and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn); Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
| | - Fermín I Milagro
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain.
- Navarra Institute of Health Research (IdiSNA), 31008 Pamplona, Spain.
- Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn); Instituto de Salud Carlos III, Monforte de Lemos 3-5, 28029 Madrid, Spain.
| | | |
Collapse
|
28
|
Chaturvedi RN, Pendem K, Patel VP, Sharma M, Malhotra S. Design, synthesis, molecular docking, and in vitro antidiabetic activity of novel PPARγ agonist. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2207-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Connolly A, Leblanc S, Baillargeon JP. Role of Lipotoxicity and Contribution of the Renin-Angiotensin System in the Development of Polycystic Ovary Syndrome. Int J Endocrinol 2018; 2018:4315413. [PMID: 29971102 PMCID: PMC6008888 DOI: 10.1155/2018/4315413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common and significant condition associated with hyperandrogenism, infertility, low quality of life, and metabolic comorbidities. One possible explanation of PCOS development is cellular dysfunction induced by nonesterified fatty acids (NEFAs), that is, lipotoxicity, which could explain both the hyperandrogenemia and insulin resistance that characterize women with PCOS. The literature suggests that androgen biosynthesis may be induced by overexposure of androgen-secreting tissues to NEFA and/or defective NEFA metabolism, leading to lipotoxic effects. Indeed, lipotoxicity could trigger androgenic hyperresponsiveness to insulin, LH, and ACTH. In most PCOS women, lipotoxicity also causes insulin resistance, inducing compensatory hyperinsulinemia, and may thus further increase hyperandrogenemia. Many approaches aimed at insulin sensitization also reduce lipotoxicity and have been shown to treat PCOS hyperandrogenemia. Furthermore, our group and others found that angiotensin II type 2 receptor (AT2R) activation is able to improve lipotoxicity. We provided evidence, using C21/M24, that AT2R activation improves adipocytes' size and insulin sensitivity in an insulin-resistant rat model, as well as androgen levels in a PCOS obese rat model. Taken together, these findings point toward the important role of lipotoxicity in PCOS development and of the RAS system as a new target for the treatment of PCOS.
Collapse
Affiliation(s)
- Alexandre Connolly
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, 3001 12e Avenue Nord, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, 3001 12e Avenue Nord, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | - Samuel Leblanc
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, 3001 12e Avenue Nord, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | - Jean-Patrice Baillargeon
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, 3001 12e Avenue Nord, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| |
Collapse
|
30
|
Elaidy SM, Hussain MA, El-Kherbetawy MK. Time-dependent therapeutic roles of nitazoxanide on high-fat diet/streptozotocin-induced diabetes in rats: effects on hepatic peroxisome proliferator-activated receptor-gamma receptors. Can J Physiol Pharmacol 2017; 96:485-497. [PMID: 29244961 DOI: 10.1139/cjpp-2017-0533] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Targeting peroxisome proliferator-activated receptor-gamma (PPAR-γ) is an approved strategy in facing insulin resistance (IR) for diabetes mellitus (DM) type 2. The PPAR-γ modulators display improvements in the insulin-sensitizing and adverse effects of the traditional thiazolidinediones. Nitazoxanide (NTZ) is proposed as a PPAR-γ receptor ligand with agonistic post-transcriptional effects. Currently, NTZ antidiabetic activities versus pioglitazone (PIO) in a high-fat diet/streptozotocin rat model of type 2 diabetes was explored. Diabetic adult male Wistar rats were treated orally with either PIO (2.7 mg·kg-1·day-1) or NTZ (200 mg·kg-1·day-1) for 14, 21, and 28 days. Body masses, fasting blood glucose, IR, lipid profiles, and liver and kidney functions of rats were assayed. Hepatic glucose metabolism and PPAR-γ protein expression levels as well as hepatic, pancreatic, muscular, and renal histopathology were evaluated. Significant time-dependent euglycemic and insulin-sensitizing effects with preservation of liver and kidney functions were offered by NTZ. Higher hepatic levels of glucose-6-phosphatase and glucose-6-phosphate dehydrogenase enzymes and PPAR-γ protein expressions were acquired by NTZ and PIO, respectively. NTZ could be considered an oral therapeutic strategy for DM type 2. Further systematic NTZ/PPAR-γ receptor subtype molecular activations are recommended. Simultaneous use of NTZ with other approved antidiabetics should be explored.
Collapse
Affiliation(s)
- Samah M Elaidy
- a Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mona A Hussain
- b Department of Physiology, Faculty of Medicine, Portsaid University, Portsaid, Egypt
| | | |
Collapse
|
31
|
DiNicolantonio JJ, Mehta V, Onkaramurthy N, O'Keefe JH. Fructose-induced inflammation and increased cortisol: A new mechanism for how sugar induces visceral adiposity. Prog Cardiovasc Dis 2017; 61:3-9. [PMID: 29225114 DOI: 10.1016/j.pcad.2017.12.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022]
Abstract
Traditionally, the leading hypothesis regarding the development of obesity involves caloric imbalance, whereby the amount of calories consumed exceeds the amount of calories burned which causes obesity. Another hypothesis for why we get fat has surfaced in the last decade which is the idea that the overconsumption of added sugars and refined carbohydrates induce insulin resistance and high insulin levels causing obesity. While insulin is a fat-storing hormone, this hypothesis does not explain visceral adiposity, or why certain people are found to have fat stored in and around their organs. We propose a new mechanism for body fattening, particular visceral adiposity. This hypothesis involves the overconsumption of fructose, which leads to inflammation in all cells that metabolize it rapidly. When fructose is metabolized in subcutaneous adipocytes, the subsequent inflammation leads to an increase in intracellular cortisol in order to help squelch the inflammation. Unfortunately, the increase in intracellular cortisol leads to an increased flux of fatty acids out of the subcutaneous adipocytes allowing more substrate for fat storage into visceral fat tissue. Moreover fructose-induced inflammation in the liver also leads to increased intracellular cortisol via an upregulation of 11-B hydroxysteroid dehydrogenase type 1 causing increased fat storage in the liver (i.e., fatty liver). In essence, the fructose-induced inflammatory cortisol response causes "thin on the outside, fat on the inside" (TOFI). Furthermore, fructose in the brain, either from fructose uptake via the blood brain barrier or endogenous formation from glucose via the polyol pathway stimulates an increased release of cortisol causing hepatic gluconeogenesis leading to overall insulin resistance and further body fattening. This review paper will discuss in detail the hypothesis that fructose-induced inflammation and cortisol activation causes visceral adiposity.
Collapse
|
32
|
Naim MJ, Alam MJ, Ahmad S, Nawaz F, Shrivastava N, Sahu M, Alam O. Therapeutic journey of 2,4-thiazolidinediones as a versatile scaffold: An insight into structure activity relationship. Eur J Med Chem 2017; 129:218-250. [DOI: 10.1016/j.ejmech.2017.02.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/24/2023]
|
33
|
Shannon CE, Daniele G, Galindo C, Abdul-Ghani MA, DeFronzo RA, Norton L. Pioglitazone inhibits mitochondrial pyruvate metabolism and glucose production in hepatocytes. FEBS J 2017; 284:451-465. [PMID: 27987376 DOI: 10.1111/febs.13992] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 01/03/2023]
Abstract
Pioglitazone is used globally for the treatment of type 2 diabetes mellitus (T2DM) and is one of the most effective therapies for improving glucose homeostasis and insulin resistance in T2DM patients. However, its mechanism of action in the tissues and pathways that regulate glucose metabolism are incompletely defined. Here we investigated the direct effects of pioglitazone on hepatocellular pyruvate metabolism and the dependency of these observations on the purported regulators of mitochondrial pyruvate transport, MPC1 and MPC2. In cultured H4IIE hepatocytes, pioglitazone inhibited [2-14 C]-pyruvate oxidation and pyruvate-driven oxygen consumption and, in mitochondria isolated from both hepatocytes and human skeletal muscle, pioglitazone selectively and dose-dependently inhibited pyruvate-driven ATP synthesis. Pioglitazone also suppressed hepatocellular glucose production (HGP), without influencing the mRNA expression of key HGP regulatory genes. Targeted siRNA silencing of MPC1 and 2 caused a modest inhibition of pyruvate oxidation and pyruvate-driven ATP synthesis, but did not alter pyruvate-driven HGP and, importantly, it did not influence the actions of pioglitazone on either pathway. In summary, these findings outline a novel mode of action of pioglitazone relevant to the pathogenesis of T2DM and suggest that targeting pyruvate metabolism may lead to the development of effective new T2DM therapies.
Collapse
Affiliation(s)
| | - Giuseppe Daniele
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
| | - Cynthia Galindo
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Ralph A DeFronzo
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
| | - Luke Norton
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
34
|
Gonzalez-Franquesa A, Patti ME. Insulin Resistance and Mitochondrial Dysfunction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:465-520. [DOI: 10.1007/978-3-319-55330-6_25] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Galimberti D, Scarpini E. Pioglitazone for the treatment of Alzheimer’s disease. Expert Opin Investig Drugs 2016; 26:97-101. [DOI: 10.1080/13543784.2017.1265504] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Daniela Galimberti
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
36
|
Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, del Cañizo-Gómez FJ. Update on the treatment of type 2 diabetes mellitus. World J Diabetes 2016; 7:354-95. [PMID: 27660695 PMCID: PMC5027002 DOI: 10.4239/wjd.v7.i17.354] [Citation(s) in RCA: 368] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/02/2016] [Accepted: 07/20/2016] [Indexed: 02/05/2023] Open
Abstract
To achieve good metabolic control in diabetes and keep long term, a combination of changes in lifestyle and pharmacological treatment is necessary. Achieving near-normal glycated hemoglobin significantly, decreases risk of macrovascular and microvascular complications. At present there are different treatments, both oral and injectable, available for the treatment of type 2 diabetes mellitus (T2DM). Treatment algorithms designed to reduce the development or progression of the complications of diabetes emphasizes the need for good glycaemic control. The aim of this review is to perform an update on the benefits and limitations of different drugs, both current and future, for the treatment of T2DM. Initial intervention should focus on lifestyle changes. Moreover, changes in lifestyle have proven to be beneficial, but for many patients is a complication keep long term. Physicians should be familiar with the different types of existing drugs for the treatment of diabetes and select the most effective, safe and better tolerated by patients. Metformin remains the first choice of treatment for most patients. Other alternative or second-line treatment options should be individualized depending on the characteristics of each patient. This article reviews the treatments available for patients with T2DM, with an emphasis on agents introduced within the last decade.
Collapse
|
37
|
Pleiotropic Actions of Peroxisome Proliferator-Activated Receptors (PPARs) in Dysregulated Metabolic Homeostasis, Inflammation and Cancer: Current Evidence and Future Perspectives. Int J Mol Sci 2016; 17:ijms17070999. [PMID: 27347932 PMCID: PMC4964375 DOI: 10.3390/ijms17070999] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/13/2016] [Accepted: 06/21/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptors (PPARs) have demonstrated a lot of important effects in the regulation of glucose and lipid metabolism and in the correct functioning of adipose tissue. Recently, many studies have evaluated a possible effect of PPARs on tumor cells. The purpose of this review is to describe the effects of PPARs, their action and their future prospective; METHODS Narrative review aimed to synthesize cutting-edge evidence retrieved from searches of computerized databases; RESULTS PPARs play a key role in metabolic diseases, which include several cardiovascular diseases, insulin resistance, type 2 diabetes, metabolic syndrome, impaired immunity and the increasing risk of cancer; in particular, PPARα and PPARβ/δ mainly enable energy combustion, while PPARγ contributes to energy storage by enhancing adipogenesis; CONCLUSION PPAR agonists could represent interesting types of molecules that can treat not only metabolic diseases, but also inflammation and cancer. Additional research is needed for the identification of high-affinity, high-specificity agonists for the treatment of obesity, type 2 diabetes (T2DM) and other metabolic diseases. Further studies are needed also to elucidate the role of PPARs in cancer.
Collapse
|
38
|
Thangavel S, Yoshitomi T, Sakharkar MK, Nagasaki Y. Redox nanoparticle increases the chemotherapeutic efficiency of pioglitazone and suppresses its toxic side effects. Biomaterials 2016; 99:109-23. [PMID: 27235996 DOI: 10.1016/j.biomaterials.2016.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 02/03/2023]
Abstract
Pioglitazone is a widely used anti-diabetic drug that induces cytotoxicity in cancer cells; however, its clinical use is questioned due to its associated liver toxicity caused by increased oxidative stress. We therefore employed nitroxide-radical containing nanoparticle, termed redox nanoparticle (RNP(N)) which is an effective scavenger of reactive oxygen species (ROS) as a drug carrier. RNP(N) encapsulation increased pioglitazone solubility, thus increasing cellular uptake of encapsulated pioglitazone which reduced the dose required to induce toxicity in prostate cancer cell lines. Investigation of in vitro molecular mechanism of pioglitazone revealed that both apoptosis and cell cycle arrest were involved in tumor cell death. In addition, intravenously administered pioglitazone-loaded RNP(N) produced significant tumor volume reduction in vivo due to enhanced permeation and retention effect. Most importantly, oxidative damage caused by pioglitazone in the liver was significantly suppressed by pioglitazone-loaded RNP(N) due to the presence of nitroxide radicals. It is interesting to note that oral administration of encapsulated pioglitazone, and co-administration of RNP(N) and pioglitazone, i.e., no encapsulation of pioglitazone in RNP(N) also significantly contributed to suppression of the liver injury. Therefore, use of RNP(N) either as an adjuvant or as a carrier for drugs with severe side effects is a promising chemotherapeutic strategy.
Collapse
Affiliation(s)
- Sindhu Thangavel
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Toru Yoshitomi
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Meena Kishore Sakharkar
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Tennodai 1-1-1, Ibaraki 305-8572, Japan
| | - Yukio Nagasaki
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Satellite Laboratory, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
39
|
Faubert J, Battista MC, Baillargeon JP. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Insulin action and lipotoxicity in the development of polycystic ovary syndrome: A review1. J Anim Sci 2016; 94:1803-11. [DOI: 10.2527/jas.2015-0089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
40
|
Kavitha K, Reddy AG, Reddy KK, Kumar CSVS, Boobalan G, Jayakanth K. Hypoglycemic, hypolipidemic and antioxidant effects of pioglitazone, insulin and synbiotic in diabetic rats. Vet World 2016; 9:118-22. [PMID: 27051195 PMCID: PMC4819359 DOI: 10.14202/vetworld.2016.118-122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/10/2015] [Accepted: 12/19/2015] [Indexed: 11/16/2022] Open
Abstract
AIM The objective of the study was to assess the effect of combination treatment of insulin, pioglitazone and synbiotic on streptozotocin (STZ)-induced diabetic rats. MATERIALS AND METHODS Diabetes mellitus was induced chemically by intraperitoneal administration of STZ (40 mg/kg b.wt) to male Sprague-Dawley rats. The rats were divided randomly into six groups of six rats in each. Group 1 was maintained as a normal control. Group 2 was maintained as diabetic control; Group 3 was treated with insulin; Group 4 with insulin + synbiotic; Group 5 with insulin + pioglitazone; and Group 6 with insulin + synbiotic + pioglitazone. All the animals were treated for 60 days. RESULTS Body weights, and concentration of reduced glutathione (GSH), and high-density lipoproteins cholesterol were significantly (p<0.05) reduced, whereas the concentration of blood glucose, total cholesterol, triglycerides, protein carbonyls and thiobarbituric acid reacting substances, and the activity of GSH peroxidase were significantly (p<0.05) elevated in Group 2 at the end of 8(th) week as compared to Group 1. The treatment Groups 3, 4, 5 and 6 revealed improvement in all the parameters, and the highest improvement was observed in combination Group 6. CONCLUSION From this study, it is concluded that combination of insulin, pioglitazone and synbiotic is useful in treating diabetes.
Collapse
Affiliation(s)
- K Kavitha
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Hyderabad - 500 030, Telangana, India
| | - A Gopala Reddy
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Hyderabad - 500 030, Telangana, India
| | - K Kondal Reddy
- Department of Livestock Products Technology, College of Veterinary Science, Hyderabad - 500 030, Telangana, India
| | - C S V Satish Kumar
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Hyderabad - 500 030, Telangana, India
| | - G Boobalan
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Hyderabad - 500 030, Telangana, India
| | - K Jayakanth
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Hyderabad - 500 030, Telangana, India
| |
Collapse
|
41
|
Boullu-Ciocca S, Tassistro V, Dutour A, Grino M. Pioglitazone in adult rats reverses immediate postnatal overfeeding-induced metabolic, hormonal, and inflammatory alterations. Endocrine 2015; 50:608-19. [PMID: 26084260 DOI: 10.1007/s12020-015-0657-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
Immediate postnatal overfeeding in rats, obtained by reducing the litter size, results in early-onset obesity. Such experimental paradigm programs overweight, insulin resistance, dyslipidemia, increased adipose glucocorticoid metabolism [up-regulation of glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1)], and overexpression of proinflammatory cytokines in mesenteric adipose tissue (MAT) in adulthood. We studied the effects of pioglitazone, a PPARγ agonist, treatment on the above-mentioned overfeeding-induced alterations. Nine-month-old rats normofed or overfed during the immediate postnatal period were given pioglitazone (3 mg/kg/day) for 6 weeks. Pioglitazone stimulated weight gain and induced a redistribution of adipose tissue toward epididymal location with enhanced plasma adiponectin. Treatment normalized postnatal overfeeding-induced metabolic alterations (increased fasting insulinemia and free fatty acids) and mesenteric overexpression of GR, 11β-HSD11, CD 68, and proinflammatory cytokines mRNAs, including plasminogen-activator inhibitor type 1. Mesenteric GR mRNA levels correlated positively with mesenteric proinflammatory cytokines mRNA concentrations. In vitro incubation of MAT obtained from overfed rats demonstrated that pioglitazone induced a down-regulation of GR gene expression and normalized glucocorticoid-induced stimulation of 11β-HSD1 and plasminogen-activator inhibitor type 1 mRNAs. Our data show for the first time that the metabolic, endocrine, and inflammatory alterations induced by early-onset postnatal obesity can be reversed by pioglitazone at the adulthood. They demonstrate that pioglitazone, in addition to its well-established effect on adipose tissue redistribution and adiponectin secretion, reverses programing-induced adipose GR, 11β-HSD1, and proinflammatory cytokines overexpression, possibly through a GR-dependent mechanism.
Collapse
Affiliation(s)
- S Boullu-Ciocca
- Aix-Marseille Univ, Faculté de Médecine, 13385, Marseille, France
| | - V Tassistro
- Aix-Marseille Univ, Faculté de Médecine, 13385, Marseille, France
- Inserm, UMR1062, "Nutrition, Obesity and Risk of Thrombosis", 13385, Marseille, France
- INRA, UMR1260, 13385, Marseille, France
| | - A Dutour
- Aix-Marseille Univ, Faculté de Médecine, 13385, Marseille, France
- Inserm, UMR1062, "Nutrition, Obesity and Risk of Thrombosis", 13385, Marseille, France
- INRA, UMR1260, 13385, Marseille, France
| | - M Grino
- Aix-Marseille Univ, Faculté de Médecine, 13385, Marseille, France.
- Inserm, UMR1062, "Nutrition, Obesity and Risk of Thrombosis", 13385, Marseille, France.
- INRA, UMR1260, 13385, Marseille, France.
| |
Collapse
|
42
|
Effects of Thiazolidinediones on metabolism and cancer: Relative influence of PPARγ and IGF-1 signaling. Eur J Pharmacol 2015; 768:217-25. [DOI: 10.1016/j.ejphar.2015.10.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 10/13/2015] [Accepted: 10/30/2015] [Indexed: 12/31/2022]
|
43
|
Fish oil prevents excessive accumulation of subcutaneous fat caused by an adverse effect of pioglitazone treatment and positively changes adipocytes in KK mice. Toxicol Rep 2015; 3:4-14. [PMID: 28959521 PMCID: PMC5615378 DOI: 10.1016/j.toxrep.2015.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 12/17/2022] Open
Abstract
Pioglitazone, a thiazolidinedione (TZD), is widely used as an insulin sensitizer in the treatment of type 2 diabetes. However, body weight gain is frequently observed in TZD-treated patients. Fish oil improves lipid metabolism dysfunction and obesity. In this study, we demonstrated suppression of body weight gain in response to pioglitazone administration by combination therapy of pioglitazone and fish oil in type 2 diabetic KK mice. Male KK mice were fed experimental diets for 8 weeks. In safflower oil (SO), safflower oil/low-dose pioglitazone (S/PL), and safflower oil/high-dose pioglitazone (S/PH) diets, 20% of calories were provided by safflower oil containing 0%, 0.006%, or 0.012% (wt/wt) pioglitazone, respectively. In fish oil (FO), fish oil/low-dose pioglitazone (F/PL), and fish oil/high-dose pioglitazone (F/PH) diets, 20% of calories were provided by a mixture of fish oil and safflower oil. Increased body weight and subcutaneous fat mass were observed in the S/PL and S/PH groups; however, diets containing fish oil were found to ameliorate these changes. Hepatic mRNA levels of lipogenic enzymes were significantly decreased in fish oil-fed groups. These findings demonstrate that the combination of pioglitazone and fish oil decreases subcutaneous fat accumulation, ameliorating pioglitazone-induced body weight gain, through fish oil-mediated inhibition of hepatic de novo lipogenesis.
Collapse
Key Words
- ACC, acetyl-CoA carboxylase
- AOX, acyl-CoA oxidase
- ATM, adipose tissue macrophage
- AUC, area under the curve
- Adverse effect
- BAT, brown adipose tissue
- CPT-1, carnitine palmitoyl transferase 1
- CT, computed tomography
- DHA, docosahexaenoic acid
- ELISA, enzyme-linked immunosorbent assay
- EPA, eicosapentaenoic acid
- FAS, fatty acid synthase
- FFA, free fatty acid
- Fish oil
- G6pase, glucose-6-phosphatase
- GPAT, glycerol-3-phosphate acyltransferase
- H&E, hematoxylin and eosin
- HDL-C, high-density lipoprotein cholesterol
- HOMA-IR, homeostasis model assessment of insulin resistance
- IR, insulin resistance
- ITT, insulin tolerance test
- Insig-1, insulin-induced gene 1
- MCAD, medium-chain acyl-CoA dehydrogenase
- MCP-1, monocyte chemoattractant protein-1
- OGTT, oral glucose tolerance test
- PEPCK, phosphoenolpyruvate carboxykinase
- PPARα, peroxisome proliferator-activated receptor alpha
- PPARγ, peroxisome proliferator-activated receptor gamma
- Pioglitazone
- RT-PCR, real-time polymerase chain reaction
- SCD-1, stearoyl-CoA desaturase 1
- SREBP, sterol regulatory element-binding protein
- TLR-4, toll-like receptor-4
- TNF-α, tumor necrosis factor-α
- TZD, thiazolidinedione
- UCP-2, uncoupling protein 2
- VLDL, very low-density lipoprotein
- WAT, white adipose tissue
Collapse
|
44
|
Activation of peroxisome proliferator-activated receptor gamma is crucial for antitumoral effects of 6-iodolactone. Mol Cancer 2015; 14:168. [PMID: 26376791 PMCID: PMC4573306 DOI: 10.1186/s12943-015-0436-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/24/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Molecular iodine (I2) exhibits antiproliferative and apoptotic effects on in vivo and in vitro cancer models. These effects are thought to be mediated by an iodinated arachidonic acid derivative, 6-iodolactone (6IL), and one of the proposed mechanisms is that 6IL activates Peroxisome Proliferator-Activated Receptors type gamma (PPARG). These receptors have been implicated in the inhibition of carcinogenic processes, in addition to their classical role in maintaining lipid and glucose homeostasis. The aim of this study was to determine whether PPARG participates in the 6IL antiproliferative and apoptotic effects on the mammary cancer cell line MCF-7. METHODS The 6IL/PPARG complex was inhibited by the PPARG antagonist GW9662, in both an endogenous and overexpressed (adenoviral vector infection) context, and stable PPARG-knockdown MCF-7 cells (RNA interference, confirmed with hydrolysis probes and Western blot), were used to corroborate the PPARG participation. 6IL effects on proliferation (measured by Trypan Blue exclusion) and apoptosis (phosphatidylserine identification by flow cytometer) were evaluated in conditions of chemical inhibition (GW9662) and silencing (RNA interference). A wound-healing assay was conducted on wild-type and stable PPARG-knockdown MCF-7 cells to evaluate the antimigrational effect of 6IL. Caspase-8 activity was evaluated to determine if the extrinsic pathway is involved in the effects of 6IL and I2 treatment. RESULTS Antiproliferative and pro-apoptotic 6IL effects require the activation of PPARG. In addition, wound-healing assays show that 6IL is able to inhibit MCF-7 cell migration and that PPARG plays a role in this phenomenon. Finally, the data exclude the participation of the extrinsic apoptotic pathway in 6IL- and I2-induced apoptosis. CONCLUSIONS These results support the previously proposed mechanism, in which the I2 effects are mediated by 6IL, and they provide further support for the use of I2 as coadjuvant in breast cancer treatment.
Collapse
|
45
|
Hartig SM, Bader DA, Abadie KV, Motamed M, Hamilton MP, Long W, York B, Mueller M, Wagner M, Trauner M, Chan L, Bajaj M, Moore DD, Mancini MA, McGuire SE. Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes. Mol Endocrinol 2015; 29:1320-33. [PMID: 26192107 DOI: 10.1210/me.2015-1084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis.
Collapse
Affiliation(s)
- Sean M Hartig
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - David A Bader
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Kathleen V Abadie
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Massoud Motamed
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Mark P Hamilton
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Weiwen Long
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Brian York
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Michaela Mueller
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Martin Wagner
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Michael Trauner
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Lawrence Chan
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Mandeep Bajaj
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - David D Moore
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Michael A Mancini
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Sean E McGuire
- Department of Molecular and Cellular Biology (S.M.H., D.A.B., K.V.A., M.Mo., M.P.H., W.L., B.Y., L.C., D.D.M., M.A.M., S.E.M.), Baylor College of Medicine, Houston, Texas 77030; Department of Biochemistry and Molecular Biology (W.L.), Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435; Hans Popper Laboratory of Molecular Hepatology (M.Mu., M.T.), Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; Laboratory of Experimental Hepatology (M.W.), Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Diabetes and Endocrinology Research Center (L.C., M.B.), Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, and the Baylor St Luke's Medical Center, Houston, Texas 77030; and Division of Radiation Oncology (S.E.M.), The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
46
|
Evaluation of the synuclein-γ (SNCG) gene as a PPARγ target in murine adipocytes, dorsal root ganglia somatosensory neurons, and human adipose tissue. PLoS One 2015; 10:e0115830. [PMID: 25756178 PMCID: PMC4355072 DOI: 10.1371/journal.pone.0115830] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022] Open
Abstract
Recent evidence in adipocytes points to a role for synuclein-γ in metabolism and lipid droplet dynamics, but interestingly this factor is also robustly expressed in peripheral neurons. Specific regulation of the synuclein-γ gene (Sncg) by PPARγ requires further evaluation, especially in peripheral neurons, prompting us to test if Sncg is a bona fide PPARγ target in murine adipocytes and peripheral somatosensory neurons derived from the dorsal root ganglia (DRG). Sncg mRNA was decreased in 3T3-L1 adipocytes (~68%) by rosiglitazone, and this effect was diminished by the PPARγ antagonist T0070907. Chromatin immunoprecipitation experiments confirmed PPARγ protein binding at two promoter sequences of Sncg during 3T3-L1 adipogenesis. Rosiglitazone did not affect Sncg mRNA expression in murine cultured DRG neurons. In subcutaneous human WAT samples from two cohorts treated with pioglitazone (>11 wks), SNCG mRNA expression was reduced, albeit highly variable and most evident in type 2 diabetes. Leptin (Lep) expression, thought to be coordinately-regulated with Sncg based on correlations in human adipose tissue, was also reduced in 3T3-L1 adipocytes by rosiglitazone. However, Lep was unaffected by PPARγ antagonist, and the LXR agonist T0901317 significantly reduced Lep expression (~64%) while not impacting Sncg. The results support the concept that synuclein-γ shares some, but not all, gene regulators with leptin and is a PPARγ target in adipocytes but not DRG neurons. Regulation of synuclein-γ by cues such as PPARγ agonism in adipocytes is logical based on recent evidence for an important role for synuclein-γ in the maintenance and dynamics of adipocyte lipid droplets.
Collapse
|
47
|
Contador D, Ezquer F, Espinosa M, Arango-Rodriguez M, Puebla C, Sobrevia L, Conget P. Dexamethasone and rosiglitazone are sufficient and necessary for producing functional adipocytes from mesenchymal stem cells. Exp Biol Med (Maywood) 2015; 240:1235-46. [PMID: 25595190 DOI: 10.1177/1535370214566565] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/17/2014] [Indexed: 12/13/2022] Open
Abstract
The final product of adipogenesis is a functional adipocyte. This mature cell acquires the necessary machinery for lipid metabolism, loses its proliferation potential, increases its insulin sensitivity, and secretes adipokines. Multipotent mesechymal stromal cells have been recognized as a source of adipocytes both in vivo and in vitro. The in vitro adipogenic differentiation of human MSC (hMSC) has been induced up to now by using a complex stimulus which includes dexamethasone, 3-isobutyl-1-methylxanthine, indomethacin, and insulin (a classical cocktail) and evaluated according to morphological changes. The present work was aimed at demonstrating that the simultaneous activation of dexamethasone's canonical signaling pathways, through the glucocorticoid receptor and CCAAT-enhancer-binding proteins (C/EBPs) and rosiglitazone through peroxisome proliferator-activated receptor gamma (PPAR-gamma) is sufficient yet necessary for inducing hMSC adipogenic differentiation. It was also ascertained that hMSC exposed just to dexamethasone and rosiglitazone (D&R) differentiated into cells which accumulated neutral lipid droplets, expressed C/EBP-alpha, PPAR-gamma, aP2, lipoprotein lipase, acyl-CoA synthetase, phosphoenolpyruvate carboxykinase, adiponectin, and leptin genes but did not proliferate. Glucose uptake was dose dependent on insulin stimulus and high levels of adipokines were secreted (i.e. displaying not only the morphology but also expressing mature adipocytes' specific genes and functional characteristics). This work has demonstrated that (i) the activating C/EBPs and PPAR-gamma signaling pathways were sufficient to induce adipogenic differentiation from hMSC, (ii) D&R producing functional adipocytes from hMSC, (iii) D&R induce adipogenic differentiation from mammalian MSC (including those which are refractory to classical adipogenic differentiation stimuli). D&R would thus seem to be a useful tool for MSC characterization, studying adipogenesis pathways and producing functional adipocytes.
Collapse
Affiliation(s)
- David Contador
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| | - Fernando Ezquer
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| | - Maximiliano Espinosa
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| | - Martha Arango-Rodriguez
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| | - Carlos Puebla
- Cellular and Molecular Physiology Laboratory, Obstetrics and Gynecology Division, Faculty of Medicine, P. Universidad Católica de Chile, Santiago 8330024, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory, Obstetrics and Gynecology Division, Faculty of Medicine, P. Universidad Católica de Chile, Santiago 8330024, Chile
| | - Paulette Conget
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago 7710162, Chile
| |
Collapse
|
48
|
Della-Morte D, Palmirotta R, Rehni AK, Pastore D, Capuani B, Pacifici F, De Marchis ML, Dave KR, Bellia A, Fogliame G, Ferroni P, Donadel G, Cacciatore F, Abete P, Dong C, Pileggi A, Roselli M, Ricordi C, Sbraccia P, Guadagni F, Rundek T, Lauro D. Pharmacogenomics and pharmacogenetics of thiazolidinediones: role in diabetes and cardiovascular risk factors. Pharmacogenomics 2014; 15:2063-2082. [PMID: 25521362 PMCID: PMC4314213 DOI: 10.2217/pgs.14.162] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The most important goal in the treatment of patients with diabetes is to prevent the risk of cardiovascular disease (CVD), the first cause of mortality in these subjects. Thiazolidinediones (TZDs), a class of antidiabetic drugs, act as insulin sensitizers increasing insulin-dependent glucose disposal and reducing hepatic glucose output. TZDs including pioglitazone, rosiglitazone and troglitazone, by activating PPAR-γ have shown pleiotropic effects in reducing vascular risk factors and atherosclerosis. However, troglitazone was removed from the market due to its hepatoxicity, and rosiglitazone and pioglitazone both have particular warnings due to being associated with heart diseases. Specific genetic variations in genes involved in the pathways regulated by TDZs have demonstrated to modify the variability in treatment with these drugs, especially in their side effects. Therefore, pharmacogenomics and pharmacogenetics are an important tool in further understand intersubject variability per se but also to assess the therapeutic potential of such variability in drug individualization and therapeutic optimization.
Collapse
Affiliation(s)
- David Della-Morte
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, Via Montpellier 1,00133 Rome, Italy
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Interinstitutional Multidisciplinary Biobank (BioBIM), Biomarker Discovery & Advanced Technologies (BioDAT), IRCCS San Raffaele Pisana, Rome, Italy
| | - Raffaele Palmirotta
- Interinstitutional Multidisciplinary Biobank (BioBIM), Biomarker Discovery & Advanced Technologies (BioDAT), IRCCS San Raffaele Pisana, Rome, Italy
| | - Ashish K Rehni
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Donatella Pastore
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, Via Montpellier 1,00133 Rome, Italy
| | - Barbara Capuani
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, Via Montpellier 1,00133 Rome, Italy
| | - Francesca Pacifici
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, Via Montpellier 1,00133 Rome, Italy
| | - Maria Laura De Marchis
- Interinstitutional Multidisciplinary Biobank (BioBIM), Biomarker Discovery & Advanced Technologies (BioDAT), IRCCS San Raffaele Pisana, Rome, Italy
| | - Kunjan R Dave
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alfonso Bellia
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, Via Montpellier 1,00133 Rome, Italy
| | - Giuseppe Fogliame
- Division of Internal Medicine, Tor Vergata Foundation Hospital, Rome, Italy
| | - Patrizia Ferroni
- Interinstitutional Multidisciplinary Biobank (BioBIM), Biomarker Discovery & Advanced Technologies (BioDAT), IRCCS San Raffaele Pisana, Rome, Italy
| | - Giulia Donadel
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, Via Montpellier 1,00133 Rome, Italy
| | | | - Pasquale Abete
- Department of Clinical Medicine, Cardiovascular Science & Immunology, Cattedra di Geriatria, University of Naples Federico II, Naples, Italy
| | - Chuanhui Dong
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Antonello Pileggi
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Mario Roselli
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, Via Montpellier 1,00133 Rome, Italy
| | - Camillo Ricordi
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Paolo Sbraccia
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, Via Montpellier 1,00133 Rome, Italy
- Division of Internal Medicine, Tor Vergata Foundation Hospital, Rome, Italy
| | - Fiorella Guadagni
- Interinstitutional Multidisciplinary Biobank (BioBIM), Biomarker Discovery & Advanced Technologies (BioDAT), IRCCS San Raffaele Pisana, Rome, Italy
| | - Tatjana Rundek
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Davide Lauro
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, Via Montpellier 1,00133 Rome, Italy
- Division of Internal Medicine, Tor Vergata Foundation Hospital, Rome, Italy
| |
Collapse
|
49
|
PPARG Modulated Lipid Accumulation in Dairy GMEC via Regulation of ADRP Gene. J Cell Biochem 2014; 116:192-201. [DOI: 10.1002/jcb.24958] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 08/22/2014] [Indexed: 11/07/2022]
|
50
|
Fernando HA, Chandramouli C, Rosli D, Lam YL, Yong ST, Yaw HP, Ton SH, Kadir KA, Sainsbury A. Glycyrrhizic acid can attenuate metabolic deviations caused by a high-sucrose diet without causing water retention in male Sprague-Dawley rats. Nutrients 2014; 6:4856-71. [PMID: 25375630 PMCID: PMC4245567 DOI: 10.3390/nu6114856] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/17/2014] [Accepted: 09/22/2014] [Indexed: 12/27/2022] Open
Abstract
Glycyrrhizic acid (GA) ameliorates many components of the metabolic syndrome, but its potential therapeutic use is marred by edema caused by inhibition of renal 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2). We assessed whether 100 mg/kg per day GA administered orally could promote metabolic benefits without causing edema in rats fed on a high-sucrose diet. Groups of eight male rats were fed on one of three diets for 28 days: normal diet, a high-sucrose diet, or a high-sucrose diet supplemented with GA. Rats were then culled and renal 11β-HSD2 activity, as well as serum sodium, potassium, angiotensin II and leptin levels were determined. Histological analyses were performed to assess changes in adipocyte size in visceral and subcutaneous depots, as well as hepatic and renal tissue morphology. This dosing paradigm of GA attenuated the increases in serum leptin levels and visceral, but not subcutaneous adipocyte size caused by the high-sucrose diet. Although GA decreased renal 11β-HSD2 activity, it did not affect serum electrolyte or angiotensin II levels, indicating no onset of edema. Furthermore, there were no apparent morphological changes in the liver or kidney, indicating no toxicity. In conclusion, it is possible to reap metabolic benefits of GA without edema using the current dosage and treatment time.
Collapse
Affiliation(s)
- Hamish Alexander Fernando
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 46150, Malaysia.
| | - Chanchal Chandramouli
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 46150, Malaysia.
| | - Dayang Rosli
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 46150, Malaysia.
| | - Yi Lyn Lam
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 46150, Malaysia.
| | - Sheau Ting Yong
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 46150, Malaysia.
| | - Hui Ping Yaw
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 46150, Malaysia.
| | - So Ha Ton
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 46150, Malaysia.
| | - Khalid Abdul Kadir
- School of Medicine and Health Sciences, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 46150, Malaysia.
| | - Amanda Sainsbury
- The Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, Sydney Medical School, The University of Sydney, Camperdown, New South Wales 2006, Australia.
| |
Collapse
|