1
|
Gong J, Chan KS, Rajesh A, Droho S, Lavine JA. Adrb2 Expression in Ocular-Infiltrating Macrophages Is Necessary for Interleukin-6 Expression and Choroidal Neovascularization. Invest Ophthalmol Vis Sci 2025; 66:43. [PMID: 40434345 DOI: 10.1167/iovs.66.5.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025] Open
Abstract
Purpose Effective therapies for treatment resistant neovascular age-related macular degeneration (nAMD) remain an unmet need. Beta-adrenergic receptor (AR) blockers can decrease laser-induced choroidal neovascularization (CNV) size in mice. We have shown that monocyte-derived macrophages (MDMs) and interleukin-6 (IL-6) are necessary for beta-AR blockers to inhibit CNV. However, the specific beta-AR and the mechanism of this pathway are not fully elucidated. We hypothesized that beta2-AR (Adrb2) signaling on MDMs increases IL-6 production and stimulates CNV. Methods Previously published single-cell RNA-sequencing data was reanalyzed to determine which mononuclear phagocytes express beta-ARs. Adrb2flox/flox: Cx3cr1CreER/+ mice (Adrb2ΔMacs) or Adrb2flox/flox (Adrb2flox) controls were given tamoxifen injections at either four weeks before or at the time of laser-induced CNV to knockout Adrb2 in tissue resident or all macrophages, respectively. Mice underwent laser induced-CNV, and eyes were collected for choroidal wholemount immunofluorescence imaging to measure CNV area, multiparameter flow cytometry to analyze macrophage heterogeneity, and ELISAs to quantitate IL-6 levels. Results Adrb2 was the predominantly expressed beta-AR and was found on microglia, macrophages, and monocytes. Adrb2 deletion in tissue resident macrophages had no effect upon CNV area. Adrb2 deletion in all macrophages decreased CNV area by 1.4-fold. Adrb2ΔMacs posterior eye cups demonstrated similar levels of pro-angiogenic CD11c+ macrophages compared to Adrb2flox controls, but Ly6CnegCD11cneg macrophages were significantly increased. IL-6 levels increased with laser in Adrb2flox controls, but IL-6 levels in Adrb2ΔMacs posterior eye cups were unchanged. Conclusions Beta2-AR deletion in ocular-infiltrating macrophages decreases laser-induced CNV area. Beta2-AR expression regulates IL-6 expression in monocyte-derived macrophages.
Collapse
Affiliation(s)
- Joyce Gong
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Kyle S Chan
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Amrita Rajesh
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Steve Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Jeremy A Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
2
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Rostami Nejad M, Razzaghi Z, Robati RM, Arjmand B, Rezaei-Tavirani M, Hamzeloo-Moghadam M, Keramatinia A. Molecular Mechanism Analysis of Intensive Light-Induced Retinal Damages. J Lasers Med Sci 2024; 15:e47. [PMID: 39450005 PMCID: PMC11499960 DOI: 10.34172/jlms.2024.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/07/2024] [Indexed: 10/26/2024]
Abstract
Introduction: The retina is a light-sensitive tissue, and intensive light exposure leads to light-induced retinal damage. It is pointed out that photoreceptor damage is responsible for the decrease in retina function. The aim of this study was to detect the main genes and biological terms which are involved in retinal response to intensive light exposure. Methods: The effect of intensive light on the mouse retina function was searched in the Gene Expression Omnibus (GEO) database. The data of GSE22818 were assessed by the GEO2R program. The significant differentially expressed genes (DEGs) were determined and evaluated via directed protein-protein interaction (PPI) network analysis. The critical significant DEGs were enriched via gene ontology analysis to find the related biological processes, molecular function, and biochemical pathways. Results: Data analysis indicates that the high intensity of light induces gene expression alteration in the retina. 105 significant DEGs were identified as the main responsive genes to light damage in the retina. STAT3, JUN, IL6ST, SOCS3, ATF3, JUNB, FOSL1, CCL2, ICAM1, FGF2, AGT, MYC, LIF, CISH, and EGR1 were introduced as the critical affected genes. STAT3, JUN, IL6ST, SOCS3, and ATF3 and "Positive regulation of the receptor signaling pathway via JAK-STAT" were highlighted as the key elements of molecular events. Conclusion: It can be concluded that regulation of the key DEGs and the dependent biological terms can effectively provide tools to prevent the development of light-induced retinal damage.
Collapse
Affiliation(s)
- Mohammad Rostami Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of medical sciences, Tehran, Iran
| | - Reza M Robati
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Iranian Cancer Control Center (MACSA), Tehran, Iran
| | | | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center, School of Traditional Medicine Shahid, Beheshti University of Medical Sciences, Tehran, Iran
| | - Aliasghar Keramatinia
- Department of Community Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Obasanmi G, Uppal M, Cui JZ, Xi J, Ju MJ, Song J, To E, Li S, Khan W, Cheng D, Zhu J, Irani L, Samad I, Zhu J, Yoo HS, Aubert A, Stoddard J, Neuringer M, Granville DJ, Matsubara JA. Granzyme B degrades extracellular matrix and promotes inflammation and choroidal neovascularization. Angiogenesis 2024; 27:351-373. [PMID: 38498232 PMCID: PMC11303490 DOI: 10.1007/s10456-024-09909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/11/2024] [Indexed: 03/20/2024]
Abstract
Age-related macular degeneration (AMD) is a common retinal neurodegenerative disease among the elderly. Neovascular AMD (nAMD), a leading cause of AMD-related blindness, involves choroidal neovascularization (CNV), which can be suppressed by anti-angiogenic treatments. However, current CNV treatments do not work in all nAMD patients. Here we investigate a novel target for AMD. Granzyme B (GzmB) is a serine protease that promotes aging, chronic inflammation and vascular permeability through the degradation of the extracellular matrix (ECM) and tight junctions. Extracellular GzmB is increased in retina pigment epithelium (RPE) and mast cells in the choroid of the healthy aging outer retina. It is further increased in donor eyes exhibiting features of nAMD and CNV. Here, we show in RPE-choroidal explant cultures that exogenous GzmB degrades the RPE-choroid ECM, promotes retinal/choroidal inflammation and angiogenesis while diminishing anti-angiogenic factor, thrombospondin-1 (TSP-1). The pharmacological inhibition of either GzmB or mast-cell degranulation significantly reduces choroidal angiogenesis. In line with our in vitro data, GzmB-deficiency reduces the extent of laser-induced CNV lesions and the age-related deterioration of electroretinogram (ERG) responses in mice. These findings suggest that targeting GzmB, a serine protease with no known endogenous inhibitors, may be a potential novel therapeutic approach to suppress CNV in nAMD.
Collapse
Affiliation(s)
- Gideon Obasanmi
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Manjosh Uppal
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Jing Z Cui
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Jeanne Xi
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Myeong Jin Ju
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
- School of Biomedical Engineering, UBC, Vancouver, BC, Canada
| | - Jun Song
- School of Biomedical Engineering, UBC, Vancouver, BC, Canada
| | - Eleanor To
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Siqi Li
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Wania Khan
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Darian Cheng
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - John Zhu
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Lyden Irani
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Isa Samad
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Julie Zhu
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Hyung-Suk Yoo
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada
| | - Alexandre Aubert
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada
| | | | | | - David J Granville
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, UBC, Vancouver, BC, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, UBC, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Qi S, Zhang Y, Kong L, Bi D, Kong H, Zhang S, Zhao C. SPI1-mediated macrophage polarization aggravates age-related macular degeneration. Front Immunol 2024; 15:1421012. [PMID: 38979414 PMCID: PMC11228255 DOI: 10.3389/fimmu.2024.1421012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Objective This study revealed a core regulator and common upstream mechanisms for the multifaceted pathological processes of age-related macular degeneration (AMD) and provided proof-of-concept for this new therapeutic target. Methods Comprehensive gene expression analysis was performed using RNA sequencing of eye cup from old mice as well as laser-induced choroidal neovascularization (CNV) mouse model. Through integrative analysis and protein-protein interaction (PPI) analysis, common pathways and key transcription factor was identified simultaneously engaged in age-related retinal degeneration and CNV, the two typical pathological process of AMD. Subsequently, the expression changes of Spi1, the key regulator, as well as the alternation of the downstream mechanisms were validated in both models through qRT-PCR, Elisa, flow cytometry and immunofluorescence. Further, we assessed the impact of Spi1 knockdown in vitro and in vivo using gene intervention vectors carried by adeno-associated virus or lentivirus to test its potential as a therapeutic target. Results Compared to corresponding controls, we found 1,939 and 1,319 genes differentially expressed in eye cups of old and CNV mice respectively. The integrative analysis identified a total of 275 overlapping DEGs, of which 150 genes were co-upregulated. PPI analysis verified a central transcription factor, SPI1. The significant upregulation of Spi1 expression was then validated in both models, accompanied by macrophage polarization towards the M1 phenotype. Finally, SPI1 suppression significantly inhibited M1 polarization of BMDMs and attenuated neovascularization in CNV mice. Conclusion This study demonstrates that SPI1 exerts a pivotal role in AMD by regulation of macrophage polarization and innate immune response, offering promise as an innovative target for treating AMD.
Collapse
Affiliation(s)
- Siyi Qi
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yihan Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Lingjie Kong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Daode Bi
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Hongyu Kong
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Shujie Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Chen Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Key laboratory of Myopia and Related Eye Diseases, NHC, Key laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
6
|
Sepah YJ, Do DV, Mesquida M, Day BM, Blotner S, Afridi R, Halim MS, Hong K, Wakshull E, Fauser S, Stoilov I, Dong Nguyen Q. Aqueous humour interleukin-6 and vision outcomes with anti-vascular endothelial growth factor therapy. Eye (Lond) 2024; 38:1755-1761. [PMID: 38622330 PMCID: PMC11156666 DOI: 10.1038/s41433-024-03015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/13/2024] [Accepted: 03/04/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND This analysis evaluated aqueous humour (AH) interleukin (IL)-6 concentrations and the association between AH IL-6 and visual outcomes in patients with neovascular age-related macular degeneration (nAMD) or diabetic macular oedema (DMO) receiving anti-vascular endothelial growth factor (VEGF) monotherapy. METHODS Post hoc analysis of the multicentre, double-masked, randomised HARBOR (NCT00891735) and READ-3 (NCT01077401) trials. HARBOR enrolled treatment-naïve nAMD patients. READ-3 enrolled treatment-naïve/previously treated DMO patients. HARBOR patients received ranibizumab 0.5 or 2.0 mg monthly or as needed; AH samples were collected at month 2, after two previous intravitreal injections. READ-3 patients received ranibizumab 0.5 or 2.0 mg as needed; AH samples were collected at baseline and months 3, 6, 9, and 12. MAIN OUTCOME MEASURE association between AH IL-6 concentrations and month 24 best-corrected visual acuity (BCVA). RESULTS In both trials (HARBOR, N = 36; READ-3, N = 137), patients with higher AH IL-6 concentrations had worse visual outcomes. HARBOR patients with low AH IL-6 concentrations at month 2 had a mean (95% CI) BCVA change at month 24 of +2.9 (-2.6, 8.3) letters, whereas patients with high AH concentrations had a mean (95% CI) BCVA change of -9.0 (-22.7, 4.7) letters. READ-3 patients with low AH concentrations at baseline had a mean (95% CI) BCVA change at month 12 of +9.3 (7.4, 11.3) letters, whereas patients with high AH concentrations had a mean (95% CI) BCVA change of +5.6 (2.2, 9.1) letters. CONCLUSIONS Higher IL-6 AH concentrations may predict suboptimal visual responses to anti-VEGF monotherapy in patients with nAMD/DMO.
Collapse
Affiliation(s)
- Yasir Jamal Sepah
- Byers Eye Institute, Spencer Center for Vision Research, Stanford University, Palo Alto, CA, USA
| | - Diana V Do
- Byers Eye Institute, Spencer Center for Vision Research, Stanford University, Palo Alto, CA, USA
| | - Marina Mesquida
- Roche Pharma Research and Early Development, Basel, Switzerland
| | - Bann-Mo Day
- Genentech Inc., South San Francisco, CA, USA
| | | | - Rubbia Afridi
- Byers Eye Institute, Spencer Center for Vision Research, Stanford University, Palo Alto, CA, USA
- Ocular Imaging Research and Reading Center, Sunnyvale, CA, USA
| | - Muhammad Sohail Halim
- Byers Eye Institute, Spencer Center for Vision Research, Stanford University, Palo Alto, CA, USA
- Ocular Imaging Research and Reading Center, Sunnyvale, CA, USA
| | - Kyu Hong
- Genentech Inc., South San Francisco, CA, USA
| | | | - Sascha Fauser
- Roche Pharma Research and Early Development, Basel, Switzerland
| | | | - Quan Dong Nguyen
- Byers Eye Institute, Spencer Center for Vision Research, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
7
|
Korszun-Karbowniczak J, Krysiak ZJ, Saluk J, Niemcewicz M, Zdanowski R. The Progress in Molecular Transport and Therapeutic Development in Human Blood-Brain Barrier Models in Neurological Disorders. Cell Mol Neurobiol 2024; 44:34. [PMID: 38627312 PMCID: PMC11021242 DOI: 10.1007/s10571-024-01473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
The blood-brain barrier (BBB) is responsible for maintaining homeostasis within the central nervous system (CNS). Depending on its permeability, certain substances can penetrate the brain, while others are restricted in their passage. Therefore, the knowledge about BBB structure and function is essential for understanding physiological and pathological brain processes. Consequently, the functional models can serve as a key to help reveal this unknown. There are many in vitro models available to study molecular mechanisms that occur in the barrier. Brain endothelial cells grown in culture are commonly used to modeling the BBB. Current BBB platforms include: monolayer platforms, transwell, matrigel, spheroidal, and tissue-on-chip models. In this paper, the BBB structure, molecular characteristic, as well as its dysfunctions as a consequence of aging, neurodegeneration, or under hypoxia and neurotoxic conditions are presented. Furthermore, the current modelling strategies that can be used to study BBB for the purpose of further drugs development that may reach CNS are also described.
Collapse
Affiliation(s)
- Joanna Korszun-Karbowniczak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 21/23 Matejki Street, 90-237, Lodz, Poland
| | - Zuzanna Joanna Krysiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland.
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, Institute of Biochemistry, University of Lodz, 68 Narutowicza Street, 90-136, Lodz, Poland
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 68 Narutowicza Street, 90-136, Lodz, Poland
| | - Robert Zdanowski
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 128 Szaserów Street, 04-141, Warsaw, Poland
| |
Collapse
|
8
|
Tu Y, Guo Y, Sun H, Zhang Y, Wang Q, Xu Y, Xie L, Zhu M. Tocilizumab attenuates choroidal neovascularization by regulating macrophage polarization through the IL-6R/STAT3/VEGF pathway. Heliyon 2024; 10:e27893. [PMID: 38524531 PMCID: PMC10958357 DOI: 10.1016/j.heliyon.2024.e27893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Globally, age-related macular degeneration (AMD) is the leading cause of irreversible visual impairment. Up to 80% of severe vision loss is caused by AMD, which is characterized by the development of choroidal neovascularization (CNV). Uncertainty exists regarding the precise pathophysiological mechanisms of CNV. It has been suggested that the interleukin (IL) IL-6/IL-6R signaling pathway is crucial in the progression of CNV. Tocilizumab (TCZ), a monoclonal antibody, binds to soluble and membrane-bound IL-6R and competitively inhibits IL-6 downstream signaling. Previous research has demonstrated that TCZ promotes several roles related to inflammation and neovascularization. However, the effects of TCZ on CNV and the underlying mechanism are still unknown. This study found that TCZ administration decreased the area and leakage of CNV lesions in the mice model of laser-induced CNV. Additionally, results demonstrated that TCZ promotes the expression of iNOS, CCL-3, CCL-5, TNF-α and inhibits the expression of Arg-1, IL-10, YM-1 and CD206. Furthermore, TCZ treatment inhibited the signal transducer and activator of transcription (STAT) STAT3/vascular endothelial growth factor (VEGF) pathway, which was activated after CNV formation. Colivelin, a STAT3 agonist, reversed the inhibitory effects of TCZ on CNV formation and macrophage polarization. In a mouse model of laser-induced CNV, our findings demonstrated that TCZ attenuated CNV formation and inhibited the leakage of CNV lesions by regulating macrophage polarization via inhibiting the STAT3/VEGF axis. TCZ is the potential therapeutic strategy for CNV.
Collapse
Affiliation(s)
- Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yang Guo
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haotian Sun
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuting Zhang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qiaoyun Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Jiangsu, China
| | - Yiqian Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Jiangsu, China
| | - Laiqing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Jiangsu, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
9
|
Wang J, Wang Z, Liu J, Zhou M, Wang H, Zhu H, Jiang M, Bo Q, Sun X. Chrysin alleviates DNA damage to improve disturbed immune homeostasis and pro-angiogenic environment in laser-induced choroidal neovascularization. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119657. [PMID: 38176443 DOI: 10.1016/j.bbamcr.2023.119657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/13/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
Choroidal neovascularization (CNV) is a devastating pathology of numerous ocular diseases, such as wet age-related macular degeneration (wAMD), which causes irreversible vision loss. Although anti-vascular endothelial growth factor (VEGF) therapy has been widely used, poor response or no response still exists in some cases, suggesting that there are other components involved in the angiogenic process. Therefore, the underlying mechanism needs to be clarified and new target of anti-angiogenic therapy is urgently needed. It has been demonstrated that damaged retinal pigment epithelium (RPE) cells can activate inflammasome, driving a degenerative tissue environment and an enhanced pro-angiogenic response, which implies that RPE dysfunction may be a hallmark of the pathogenesis. Previously, we have shown that DNA damage can induce RPE dysfunction, triggering senescence-associated secretory phenotype (SASP) and local inflammation. In this study, we identify that chrysin can reduce DNA damage, especially telomere erosion in vitro, thus compromise the dysfunction of RPE and the decreased expression of SASP factor. Importantly, we find that DNA damage of RPE cells is remarkable in laser-induced CNV lesion, resulting in inflammatory response, which can be ameliorated by chrysin, mainly through IL-17 signaling pathway and its downstream signal transducer and activator of transcription 3 (STAT3) activities. In summary, our results indicate the interplay between DNA damage, perturbed RPE homeostasis, inflammatory response and angiogenesis in laser-induced CNV, and more importantly, chrysin may be an effective therapeutic supplement for CNV.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Zilin Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Jingshu Liu
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, United Kingdom
| | - Minwen Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Hong Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Hong Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center For Visual Science And Photomedicine, Shanghai, China
| | - Mei Jiang
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Qiyu Bo
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai 200080, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Engineering Center For Visual Science And Photomedicine, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China.
| |
Collapse
|
10
|
Fang Y, Wang Q, Zhang L, Xie L. SIPA1 promotes angiogenesis by regulating VEGF secretion in Müller cells through STAT3 activation. Heliyon 2024; 10:e24869. [PMID: 38312659 PMCID: PMC10834823 DOI: 10.1016/j.heliyon.2024.e24869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Diabetic retinopathy (DR) is a prevalent complication of diabetes that can lead to vision loss. The chronic hyperglycemia associated with DR results in damage to the retinal microvasculature. Müller cells, as a kind of macroglia, play a crucial role in regulating the retinal vascular microenvironment. The objective of this study was to investigate the role of signal-induced proliferation-associated protein 1 (SIPA1) in regulating angiogenesis in Müller cells. Through proteomics, database analysis, endothelial cell function tests, and Western blot detection, we observed an up-regulation of SIPA1 expression in Müller cells upon high glucose stimulation. SIPA1 expression contributed to VEGF secretion in Müller cells and regulated the mobility of retinal vascular endothelial cells. Further investigation of the dependence of SIPA1 on VEGF secretion revealed that SIPA1 activated the phosphorylation STAT3, leading to its translocation into the nucleus. Overexpression of SIPA1 combined with the STAT3 inhibitor STATTIC demonstrated the regulation of SIPA1 in VEGF expression, dependent on STAT3 activation. These findings suggest that SIPA1 promotes the secretion of pro-angiogenic factors in Müller cells by activating the STAT3 signaling pathway, thereby highlighting SIPA1 as a potential therapeutic target for DR.
Collapse
Affiliation(s)
- Yanhong Fang
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Qionghua Wang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Lanyue Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Lin Xie
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Huang K, Liu X, Lv Z, Zhang D, Zhou Y, Lin Z, Guo J. MMP9-Responsive Graphene Oxide Quantum Dot-Based Nano-in-Micro Drug Delivery System for Combinatorial Therapy of Choroidal Neovascularization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207335. [PMID: 36871144 DOI: 10.1002/smll.202207335] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Age-related macular degeneration (AMD), especially wet AMD with choroidal neovascularization (CNV), commonly causes blindness in older patients and disruption of the choroid followed by second-wave injuries, including chronic inflammation, oxidative stress, and excessive matrix metalloproteinase 9 (MMP9) expression. Increased macrophage infiltrate in parallel with microglial activation and MMP9 overexpression on CNV lesions is shown to contribute to the inflammatory process and then enhance pathological ocular angiogenesis. Graphene oxide quantum dots (GOQDs), as natural antioxidants, exert anti-inflammatory effects and minocycline is a specific macrophage/microglial inhibitor that can suppress both macrophage/microglial activation and MMP9 activity. Herein, an MMP9-responsive GOQD-based minocycline-loaded nano-in-micro drug delivery system (C18PGM) is developed by chemically bonding GOQDs to an octadecyl-modified peptide sequence (C18-GVFHQTVS, C18P) that can be specifically cleaved by MMP9. Using a laser-induced CNV mouse model, the prepared C18PGM shows significant MMP9 inhibitory activity and anti-inflammatory action followed by antiangiogenic effects. Moreover, C18PGM combined with antivascular endothelial growth factor antibody bevacizumab markedly increases the antiangiogenesis effect by interfering with the "inflammation-MMP9-angiogenesis" cascade. The prepared C18PGM shows a good safety profile and no obvious ophthalmic or systemic side effects. The results taken together suggest that C18PGM is an effective and novel strategy for combinatorial therapy of CNV.
Collapse
Affiliation(s)
- Keke Huang
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Xin Liu
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Ziru Lv
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Di Zhang
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Yuling Zhou
- Department of ophthalmology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, Hubei, 435000, P. R. China
| | - Zhiqing Lin
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Juan Guo
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| |
Collapse
|
12
|
Liu Q, Sun S, Yang Z, Shao Y, Li X. Serum Amyloid A 4 as a Common Marker of Persistent Inflammation in Patients with Neovascular Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy. J Inflamm Res 2023; 16:3783-3797. [PMID: 37663754 PMCID: PMC10474861 DOI: 10.2147/jir.s417791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Background Neovascular age-related macular degeneration (nAMD) and its subtype, polypoidal choroidal vasculopathy (PCV), are common choroidal vasculopathies. Although they share many common clinical manifestations and treatment strategies, a lack of comprehensive analysis of these conditions means that it is difficult for researchers to further explore the common pathomechanisms of nAMD and PCV. The aim of this study was to characterize aqueous humor (AH) proteome alterations and identify a novel biomarker related to both nAMD and PCV. Methods Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) was adopted to analyze the AH proteomes of nAMD, PCV and controls. The target protein was validated using the enzyme-linked immunosorbent assay (ELISA) and subjected to receiver operating characteristic (ROC) curve analysis. Results A total of 737 different proteins were identified in all the groups, of which 544 were quantifiable. The bioinformatics analysis suggested that immune response activation is the essential event in both nAMD and PCV. Serum amyloid A (SAA) 4 is closely associated with a number of chronic inflammatory diseases, and it was enriched as the hub protein. ROC analysis showed that SAA4 could distinguish both nAMD and PCV from the controls. Conclusion This comprehensive study provides insights into, and furthers our understanding of, the pathological mechanism of nAMD and PCV. Additionally, the SAA4 level alteration may serve as a common biomarker of nAMD and PCV.
Collapse
Affiliation(s)
- Qingyan Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People’s Republic of China
- Department of Ophthalmology, Anhui NO.2 Provincial People’s hospital, Hefei, 230041, People’s Republic of China
| | - Shuo Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People’s Republic of China
| | - Zhengwei Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People’s Republic of China
| | - Yan Shao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People’s Republic of China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, People’s Republic of China
| |
Collapse
|
13
|
Wang X, Wang T, Lam E, Alvarez D, Sun Y. Ocular Vascular Diseases: From Retinal Immune Privilege to Inflammation. Int J Mol Sci 2023; 24:12090. [PMID: 37569464 PMCID: PMC10418793 DOI: 10.3390/ijms241512090] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The eye is an immune privileged tissue that insulates the visual system from local and systemic immune provocation to preserve homeostatic functions of highly specialized retinal neural cells. If immune privilege is breached, immune stimuli will invade the eye and subsequently trigger acute inflammatory responses. Local resident microglia become active and release numerous immunological factors to protect the integrity of retinal neural cells. Although acute inflammatory responses are necessary to control and eradicate insults to the eye, chronic inflammation can cause retinal tissue damage and cell dysfunction, leading to ocular disease and vision loss. In this review, we summarized features of immune privilege in the retina and the key inflammatory responses, factors, and intracellular pathways activated when retinal immune privilege fails, as well as a highlight of the recent clinical and research advances in ocular immunity and ocular vascular diseases including retinopathy of prematurity, age-related macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Tianxi Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Enton Lam
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - David Alvarez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| |
Collapse
|
14
|
Abstract
Vision is an ability that depends on the precise structure and functioning of the retina. Any kind of stress or injury can disrupt the retinal architecture and leads to vision impairment, vision loss, and blindness. Immune system and immune response function maintain homeostasis in the microenvironment. Several genetic, metabolic, and environmental factors may alter retinal homeostasis, and these events may initiate various inflammatory cascades. The prolonged inflammatory state may contribute to the initiation and development of retinal disorders such as glaucoma, age-related macular degeneration, diabetic retinopathy, and retinitis pigmentosa, which pose a threat to vision. In the current review, we attempted to provide sufficient evidence on the role of inflammation in these retinal disorders. Moreover, this review paves the way to focus on therapeutic targets of the disease, which are found to be promising.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University; Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nikhlesh K Singh
- Integrative Biosciences Center, Wayne State University; Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
15
|
Yu J, Shen Y, Luo J, Jin J, Li P, Feng P, Guan H. Upadacitinib inhibits corneal inflammation and neovascularization by suppressing M1 macrophage infiltration in the corneal alkali burn model. Int Immunopharmacol 2023; 116:109680. [PMID: 36739832 DOI: 10.1016/j.intimp.2023.109680] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 02/05/2023]
Abstract
Alkali burn-induced corneal inflammation and subsequent corneal neovascularization (CNV) are major causes of corneal opacity and vision loss. M1 macrophages play a central role in inflammation and CNV. Therefore, modulation of M1 macrophage polarization is a promising strategy for corneal alkali burns. Here, we illustrate the effect and underlying mechanisms of upadacitinib on corneal inflammation and CNV induced by alkali burns in mice. The corneas of BALB/c mice were administered with 1 M NaOH for 30 s and randomly assigned to the vehicle group and the upadacitinib-treated group. Corneal opacity and corneal epithelial defects were assessed clinically. Quantitative real-time PCR (qRT-PCR), immunohistochemistry, and western blot analysis were performed to detect M1 macrophage polarization and CD31+ corneal blood vessels. The results showed that upadacitinib notably decreased corneal opacity, and promoted corneal wound healing. On day 7 and 14 after alkali burns, upadacitinib significantly suppressed CNV. Corneal alkali injury caused M1 macrophage recruitment in the cornea. In contrast to the vehicle, upadacitinib suppressed M1 macrophage infiltration and decreased the mRNA expression levels of inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1β, and vascular endothelial growth factor A (VEGF-A) in alkali-injured corneas. Moreover, upadacitinib dose-dependently inhibited M1 macrophage polarization by suppressing interferon (IFN)-γ-/lipopolysaccharide-stimulated STAT1 activation in vitro. Our findings reveal that upadacitinib can efficiently alleviate alkali-induced corneal inflammation and neovascularization by inhibiting M1 macrophage infiltration. These data demonstrate that upadacitinib is an effective drug for the treatment of corneal alkali burns.
Collapse
Affiliation(s)
- Jianfeng Yu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong 226001, China; Medical School of Nantong University, Nantong 226001, China
| | - Yao Shen
- Eye Institute, Affiliated Hospital of Nantong University, Nantong 226001, China; Medical School of Nantong University, Nantong 226001, China
| | - Jiawei Luo
- Eye Institute, Affiliated Hospital of Nantong University, Nantong 226001, China; Medical School of Nantong University, Nantong 226001, China
| | - Juan Jin
- Nantong Hospital of Traditional Chinese Medicine, Nantong 226001, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Nantong 226001, China; Medical School of Nantong University, Nantong 226001, China
| | - Peida Feng
- Medical School of Nantong University, Nantong 226001, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong 226001, China; Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
16
|
Arrigo A, Aragona E, Bandello F. The Role of Inflammation in Age-Related Macular Degeneration: Updates and Possible Therapeutic Approaches. Asia Pac J Ophthalmol (Phila) 2023; 12:158-167. [PMID: 36650098 DOI: 10.1097/apo.0000000000000570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 01/19/2023] Open
Abstract
Age-related macular degeneration (AMD) is a common retinal disease characterized by complex pathogenesis and extremely heterogeneous characteristics. Both in "dry" and "wet" AMD forms, the inflammation has a central role to promote the degenerative process and to stimulate the onset of complications. AMD is characterized by several proinflammatory stimuli, cells and mediators involved, and metabolic pathways. Nowadays, inflammatory biomarkers may be unveiled and analyzed by means of several techniques, including laboratory approaches, histology, immunohistochemistry, and noninvasive multimodal retinal imaging. These methodologies allowed to perform remarkable steps forward for understanding the role of inflammation in AMD pathogenesis, also offering new opportunities to optimize the diagnostic workup of the patients and to develop new treatments. The main goal of the present paper is to provide an updated scenario of the current knowledge regarding the role of inflammation in "dry" and "wet" AMD and to discuss new possible therapeutic strategies.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, University Vita-Salute San Raffaele, Milan, Italy
| | | | | |
Collapse
|
17
|
Khachigian LM, Liew G, Teo KYC, Wong TY, Mitchell P. Emerging therapeutic strategies for unmet need in neovascular age-related macular degeneration. J Transl Med 2023; 21:133. [PMID: 36810060 PMCID: PMC9942398 DOI: 10.1186/s12967-023-03937-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Neovascular age-related macular degeneration (nAMD) is a major cause of visual impairment and blindness. Anti-vascular endothelial growth factor (VEGF) agents, such as ranibizumab, bevacizumab, aflibercept, brolucizumab and faricimab have revolutionized the clinical management of nAMD. However, there remains an unmet clinical need for new and improved therapies for nAMD, since many patients do not respond optimally, may lose response over time or exhibit sub-optimal durability, impacting on real world effectiveness. Evidence is emerging that targeting VEGF-A alone, as most agents have done until recently, may be insufficient and agents that target multiple pathways (e.g., aflibercept, faricimab and others in development) may be more efficacious. This article reviews issues and limitations that have arisen from the use of existing anti-VEGF agents, and argues that the future may lie in multi-targeted therapies including alternative agents and modalities that target both the VEGF ligand/receptor system as well as other pathways.
Collapse
Affiliation(s)
- Levon M. Khachigian
- grid.1005.40000 0004 4902 0432Vascular Biology and Translational Research, Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Gerald Liew
- grid.476921.fCentre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
| | - Kelvin Y. C. Teo
- grid.419272.b0000 0000 9960 1711Singapore National Eye Centre and Singapore Eye Research Institute, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
| | - Tien Y. Wong
- grid.419272.b0000 0000 9960 1711Singapore National Eye Centre and Singapore Eye Research Institute, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore ,grid.12527.330000 0001 0662 3178Tsinghua Medicine, Tsinghua University, Beijing, China
| | - Paul Mitchell
- grid.476921.fCentre for Vision Research, Westmead Institute for Medical Research, University of Sydney, Westmead, Australia
| |
Collapse
|
18
|
Kakihara S, Matsuda Y, Hirabayashi K, Imai A, Iesato Y, Sakurai T, Kamiyoshi A, Tanaka M, Ichikawa-Shindo Y, Kawate H, Zhao Y, Zhang Y, Guo Q, Li P, Onishi N, Murata T, Shindo T. Role of Adrenomedullin 2/Intermedin in the Pathogenesis of Neovascular Age-Related Macular Degeneration. J Transl Med 2023; 103:100038. [PMID: 36870288 DOI: 10.1016/j.labinv.2022.100038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Adrenomedullin 2 (AM2; also known as intermedin) is a member of the adrenomedullin (AM) peptide family. Similarly to AM, AM2 partakes in a variety of physiological activities. AM2 has been reported to exert protective effects on various organ disorders; however, its significance in the eye is unknown. We investigated the role of AM2 in ocular diseases. The receptor system of AM2 was expressed more abundantly in the choroid than in the retina. In an oxygen-induced retinopathy model, physiological and pathologic retinal angiogenesis did not differ between AM2-knockout (AM2-/-) and wild-type mice. In contrast, in laser-induced choroidal neovascularization, a model of neovascular age-related macular degeneration, AM2-/- mice had enlarged and leakier choroidal neovascularization lesions, with exacerbated subretinal fibrosis and macrophage infiltration. Contrary to this, exogenous administration of AM2 ameliorated the laser-induced choroidal neovascularization-associated pathology and suppressed gene expression associated with inflammation, fibrosis, and oxidative stress, including that of VEGF-A, VEGFR-2, CD68, CTGF, and p22-phox. The stimulation of human adult retinal pigment epithelial (ARPE) cell line 19 cells with TGF-β2 and TNF-α induced epithelial-to-mesenchymal transition (EMT), whereas AM2 expression was also elevated. The induction of EMT was suppressed when the ARPE-19 cells were pretreated with AM2. A transcriptome analysis identified 15 genes, including mesenchyme homeobox 2 (Meox2), whose expression was significantly altered in the AM2-treated group compared with that in the control group. The expression of Meox2, a transcription factor that inhibits inflammation and fibrosis, was enhanced by AM2 treatment and attenuated by endogenous AM2 knockout in the early phase after laser irradiation. The AM2 treatment of endothelial cells inhibited endothelial to mesenchymal transition and NF-κB activation; however, this effect tended to be canceled following Meox2 gene knockdown. These results indicate that AM2 suppresses the neovascular age-related macular degeneration-related pathologies partially via the upregulation of Meox2. Thus, AM2 may be a promising therapeutic target for ocular vascular diseases.
Collapse
Affiliation(s)
- Shinji Kakihara
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Yorishige Matsuda
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Kazutaka Hirabayashi
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Akira Imai
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Yasuhiro Iesato
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Megumu Tanaka
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Yuka Ichikawa-Shindo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Hisaka Kawate
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Yunlu Zhao
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Yan Zhang
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - QianQian Guo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Peixuan Li
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Naho Onishi
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan
| | - Toshinori Murata
- Department of Ophthalmology, Shinshu University School of Medicine, Nagano, Japan
| | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Nagano, Japan; Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan.
| |
Collapse
|
19
|
Wu Q, Chen Z, Wu C, Zhang L, Wu Y, Liu X, Wang Y, Zhang Z. MD2 Inhibits Choroidal Neovascularization via Antagonizing TLR4/MD2 Mediated Signaling Pathway. Curr Eye Res 2023; 48:474-484. [PMID: 36591949 DOI: 10.1080/02713683.2022.2164780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE To explore the pathological mechanism of Toll-like receptor 4 (TLR4) mediating neovascular age-related macular degeneration (nAMD) and the potential role of the TLR4 coreceptor myeloid differentiation protein 2 (MD2). METHODS In the study, we inhibited MD2 with the chalcone derivative L2H17 and we utilized a laser-induced choroidal neovascularization (CNV) mouse model and Tert-butyl hydroperoxide (TBHP)-challenged rhesus choroid-retinal endothelial (RF/6A) cells to assess the effect of MD2 blockade on CNV. RESULTS Inhibiting MD2 with L2H17 reduced angiogenesis in CNV mice, and significantly protected against retinal dysfunction. In retina and choroid/retinal pigment epithelium (RPE) tissues, L2H17 reduced phospho-ERK, phospho-P65 but not phospho-P38, phospho-JNK, and reduced the transcriptional levels of IL-6, TNF-α, ICAM-1 but not VCAM-1. L2H17 could protect RF/6A against TBHP-induced inflammation, oxidative stress, and apoptosis, via inhibiting the TLR4/MD2 signaling pathway and the following downstream mitogen-activated protein kinase (MAPK) and nuclear transcription factor-κB (NF-κB) activation. CONCLUSIONS Inhibiting MD2 with L2H17 significantly reduced CNV, suppressed inflammation, and oxidative stress by antagonizing TLR4/MD2 pathway in an MD2-dependent manner. MD2 may be a potential therapeutic target and L2H17 may offer an alternative treatment strategy for nAMD.
Collapse
Affiliation(s)
- Qi Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P. R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Zhang Chen
- The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenxin Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P. R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Lingxi Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuyang Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P. R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Xiyuan Liu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P. R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zongduan Zhang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P. R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| |
Collapse
|
20
|
Dubchak E, Obasanmi G, Zeglinski MR, Granville DJ, Yeung SN, Matsubara JA. Potential role of extracellular granzyme B in wet age-related macular degeneration and fuchs endothelial corneal dystrophy. Front Pharmacol 2022; 13:980742. [PMID: 36204224 PMCID: PMC9531149 DOI: 10.3389/fphar.2022.980742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Age-related ocular diseases are the leading cause of blindness in developed countries and constitute a sizable socioeconomic burden worldwide. Age-related macular degeneration (AMD) and Fuchs endothelial corneal dystrophy (FECD) are some of the most common age-related diseases of the retina and cornea, respectively. AMD is characterized by a breakdown of the retinal pigment epithelial monolayer, which maintains retinal homeostasis, leading to retinal degeneration, while FECD is characterized by degeneration of the corneal endothelial monolayer, which maintains corneal hydration status, leading to corneal edema. Both AMD and FECD pathogenesis are characterized by disorganized local extracellular matrix (ECM) and toxic protein deposits, with both processes linked to aberrant protease activity. Granzyme B (GrB) is a serine protease traditionally known for immune-mediated initiation of apoptosis; however, it is now recognized that GrB is expressed by a variety of immune and non-immune cells and aberrant extracellular localization of GrB substantially contributes to various age-related pathologies through dysregulated cleavage of ECM, tight junction, and adherens junction proteins. Despite growing recognition of GrB involvement in multiple age-related pathologies, its role in AMD and FECD remains poorly understood. This review summarizes the pathophysiology of, and similarities between AMD and FECD, outlines the current knowledge of the role of GrB in AMD and FECD, as well as hypothesizes putative contributions of GrB to AMD and FECD pathogenesis and highlights the therapeutic potential of pharmacologically inhibiting GrB as an adjunctive treatment for AMD and FECD.
Collapse
Affiliation(s)
- Eden Dubchak
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Gideon Obasanmi
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Matthew R. Zeglinski
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - David J. Granville
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - Sonia N. Yeung
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
- *Correspondence: Joanne A. Matsubara,
| |
Collapse
|
21
|
Ramshekar A, Bretz CA, Kunz E, Cung T, Richards BT, Stoddard GJ, Hageman GS, Chaqour B, Hartnett ME. Role of Erythropoietin Receptor Signaling in Macrophages or Choroidal Endothelial Cells in Choroidal Neovascularization. Biomedicines 2022; 10:1655. [PMID: 35884958 PMCID: PMC9312702 DOI: 10.3390/biomedicines10071655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023] Open
Abstract
Erythropoietin (EPO) has been proposed to reduce the progression of atrophic age-related macular degeneration (AMD) due to its potential role in neuroprotection. However, overactive EPO receptor (EPOR) signaling increased laser-induced choroidal neovascularization (CNV) and choroidal macrophage number in non-lasered mice, which raised the question of whether EPOR signaling increased CNV through the recruitment of macrophages to the choroid that released pro-angiogenic factors or through direct angiogenic effects on endothelial cells. In this study, we addressed the hypothesis that EPOR signaling increased CNV by direct effects on macrophages or endothelial cells. We used tamoxifen-inducible macrophage-specific or endothelial cell-specific EPOR knockout mice in the laser-induced CNV model, and cultured choroidal endothelial cells isolated from adult human donors. We found that macrophage-specific knockout of EPOR influenced laser-induced CNV in females only, whereas endothelial-specific knockout of EPOR reduced laser-induced CNV in male mice only. In cultured human choroidal endothelial cells, knockdown of EPOR reduced EPO-induced signal transducer and activator of transcription 3 (STAT3) activation. Taken together, our findings suggest that EPOR signaling in macrophages or choroidal endothelial cells regulates the development of CNV in a sex-dependent manner. Further studies regarding the role of EPO-induced signaling are required to assess EPO safety and to select or develop appropriate therapeutic approaches.
Collapse
Affiliation(s)
- Aniket Ramshekar
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Dr, Salt Lake City, UT 84132, USA; (A.R.); (C.A.B.); (E.K.); (T.C.)
| | - Colin A. Bretz
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Dr, Salt Lake City, UT 84132, USA; (A.R.); (C.A.B.); (E.K.); (T.C.)
| | - Eric Kunz
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Dr, Salt Lake City, UT 84132, USA; (A.R.); (C.A.B.); (E.K.); (T.C.)
| | - Thaonhi Cung
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Dr, Salt Lake City, UT 84132, USA; (A.R.); (C.A.B.); (E.K.); (T.C.)
| | - Burt T. Richards
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Dr, Salt Lake City, UT 84132, USA; (B.T.R.); (G.S.H.)
| | - Gregory J. Stoddard
- Department of Internal Medicine, University of Utah, 30 N 1900 E, Salt Lake City, UT 84132, USA;
| | - Gregory S. Hageman
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Dr, Salt Lake City, UT 84132, USA; (B.T.R.); (G.S.H.)
| | - Brahim Chaqour
- Department of Ophthalmology, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, PA 19104, USA;
| | - M. Elizabeth Hartnett
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Dr, Salt Lake City, UT 84132, USA; (A.R.); (C.A.B.); (E.K.); (T.C.)
| |
Collapse
|
22
|
Rasoulinejad SA, Sarreshtehdari N, Mafi AR. The crosstalk between VEGF signaling pathway and long non-coding RNAs in neovascular retinal diseases: Implications for anti-VEGF therapy. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Conti F, Lazzara F, Romano GL, Platania CBM, Drago F, Bucolo C. Caffeine Protects Against Retinal Inflammation. Front Pharmacol 2022; 12:824885. [PMID: 35069225 PMCID: PMC8773454 DOI: 10.3389/fphar.2021.824885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023] Open
Abstract
Caffeine, one of the most consumed central nervous system (CNS) stimulants, is an antagonist of A1 and A2A adenosine receptors. In this study, we investigated the potential protective effects of this methylxanthine in the retinal tissue. We tested caffeine by using in vitro and in vivo paradigms of retinal inflammation. Human retinal pigment epithelial cells (ARPE-19) were exposed to lipopolysaccharide (LPS) with or without caffeine. This latter was able to reduce the inflammatory response in ARPE-19 cells exposed to LPS, attenuating the release of IL-1β, IL-6, and TNF-α and the nuclear translocation of p-NFκB. Additionally, caffeine treatment restored the integrity of the ARPE-19 monolayer assessed by transepithelial electrical resistance (TEER) and the sodium fluorescein permeability test. Finally, the ischemia reperfusion (I/R) injury model was used in C57BL/6J mice to induce retinal inflammation and investigate the effects of caffeine treatment. Mouse eyes were treated topically with caffeine, and a pattern electroretinogram (PERG) was used to assess the retinal ganglion cell (RGC) function; furthermore, we evaluated the levels of IL-6 and BDNF in the retina. Retinal BDNF dropped significantly (p < 0.05) in the I/R group compared to the control group (normal mice); on the contrary, caffeine treatment maintained physiological levels of BDNF in the retina of I/R eyes. Caffeine was also able to reduce IL-6 mRNA levels in the retina of I/R eyes. In conclusion, these findings suggest that caffeine is a good candidate to counteract inflammation in retinal diseases.
Collapse
Affiliation(s)
- Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| |
Collapse
|
24
|
Droho S, Cuda CM, Perlman H, Lavine JA. Macrophage-derived interleukin-6 is necessary and sufficient for choroidal angiogenesis. Sci Rep 2021; 11:18084. [PMID: 34508129 PMCID: PMC8433398 DOI: 10.1038/s41598-021-97522-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/25/2021] [Indexed: 01/18/2023] Open
Abstract
Neovascular age-related macular degeneration (nAMD) commonly causes vision loss from aberrant angiogenesis, termed choroidal neovascularization (CNV). Interleukin-6 (IL6) is a pro-inflammatory and pro-angiogenic cytokine that is correlated with AMD progression and nAMD activity. We hypothesize that anti-IL6 therapy is a potential nAMD therapeutic. We found that IL6 levels were increased after laser injury and expressed by macrophages. Il6-deficiency decreased laser-induced CNV area and exogenous IL6 addition increased choroidal sprouting angiogenesis. Il6-null mice demonstrated equally increased macrophage numbers as wildtype mice. At steady state, IL6R expression was detected on peripheral blood and ocular monocytes. After laser injury, the number of IL6R+Ly6C+ monocytes in blood and IL6R+ macrophages in the eye were increased. In human choroid, macrophages expressed IL6, IL6R, and IL6ST. Furthermore, IL6R+ macrophages displayed a transcriptional profile consistent with STAT3 (signal transducer and activator of transcription 3) activation and angiogenesis. Our data show that IL6 is both necessary and sufficient for choroidal angiogenesis. Macrophage-derived IL6 may stimulate choroidal angiogenesis via classical activation of IL6R+ macrophages, which then stimulate angiogenesis. Targeting IL6 or the IL6R could be an effective adjunctive therapy for treatment-resistant nAMD patients.
Collapse
Affiliation(s)
- Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Carla M Cuda
- Department of Medicine, Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Harris Perlman
- Department of Medicine, Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jeremy A Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
25
|
Wang Y, Liu X, Hu G, Hu C, Gao Y, Huo M, Zhu H, Liu M, Xu N. EGFR-IL-6 Signaling Axis Mediated the Inhibitory Effect of Methylseleninic Acid on Esophageal Squamous Cell Carcinoma. Front Pharmacol 2021; 12:719785. [PMID: 34393797 PMCID: PMC8363297 DOI: 10.3389/fphar.2021.719785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/13/2021] [Indexed: 01/15/2023] Open
Abstract
Epidemiological and experimental evidence indicate that selenium is associated with a reduced risk of some cancers, including esophageal cancer. However, the exact mechanism is still unclear. In the present study, we used esophageal squamous cell carcinoma (ESCC) cell lines and animal models to explore the anti-cancer mechanism of methylseleninic acid (MSA). Firstly, MSA treatment dramatically attenuated Epidermal Growth Factor Receptor (EGFR) protein expression but did not alter mRNA levels in ESCC cells. On the contrary, EGFR overexpression partly abolished the inhibitory effect of MSA. With a microRNA-array, we found MSA up-regulated miR-146a which directly targeted EGFR, whereas miR-146a inhibitor antagonized MSA-induced decrease of EGFR protein. We further used 4-nitroquinoline-1-oxide (4NQO)-induced esophageal tumor mice model to evaluate the inhibitory effect of MSA in vivo. MSA treatment significantly decreased the tumor burden and EGFR protein expression in tumor specimens. Furthermore, MSA treatment inhibited EGFR pathway and subsequntly reduced Interleukin-6 (IL-6) secretion in the supernatant of cancer cell lines. MSA-induced IL-6 suppression was EGFR-dependent. To further evaluate the association of IL-6 and the anti-tumor effect of MSA on esophageal cancer, we established the 4NQO-induced esophageal tumor model in IL-6 knock-out (IL-6 KO) mice. The results showed that IL-6 deficiency did not affect esophageal tumorigenesis in mice, but the inhibitory effect of MSA was abolished in IL-6 KO mice. In conclusion, our study demonstrated that MSA upregulated miR-146a which directly targeted EGFR, and inhibited EGFR protein expression and pathway activity, subsequently decreased IL-6 secretion. The inhibitory effect of MSA on esophageal cancer was IL-6 dependent. These results suggested that MSA may serve as a potential drug treating esophageal cancer.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianghe Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanghui Hu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenfei Hu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Gao
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miaomiao Huo
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
26
|
Schnabolk G, Obert E, Banda NK, Rohrer B. Systemic Inflammation by Collagen-Induced Arthritis Affects the Progression of Age-Related Macular Degeneration Differently in Two Mouse Models of the Disease. Invest Ophthalmol Vis Sci 2021; 61:11. [PMID: 33289791 PMCID: PMC7726584 DOI: 10.1167/iovs.61.14.11] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose Age-related macular degeneration (AMD) shares similar risk factors and inflammatory responses with rheumatoid arthritis (RA). Previously, we identified increased risk for dry AMD among patients with RA compared to control subjects, using retrospective data analysis. In this current study, we investigate the role of systemic inflammation triggered in a murine model of arthritis on choroidal neovascularization and retinal pigment epithelium (RPE) degeneration mouse models. Methods Collagen-induced arthritis (CIA) was induced in C57BL/6J mice prior to laser-induced choroidal neovascularization (CNV; wet AMD model) or sodium iodate-induced retinal degeneration (NaIO3; dry AMD model). CNV lesion size and retinal thickness were quantified by optical coherence photography (OCT), visual function was analyzed using optokinetic response and electroretinography, RPE morphology was examined by immunohistochemistry, and inflammatory gene expression was analyzed by quantitative PCR. Results CIA mice demonstrated decreased spatial acuity and contrast sensitivity, whereas no difference was observed in the RPE-generated c-wave. CNV lesion size was decreased in CIA mice. NaIO3 decreased c-wave amplitude, as well as retinal thickness, which was augmented by CIA. NaIO3 treatment resulted in loss of normal RPE hexagonal shape, which was further aggravated by CIA. Increased Cxcl9 expression was observed in the presence of CIA and CIA combined with AMD. Disease severity differences were observed between sexes. Conclusions Our data suggest systemic inflammation by CIA results in increased pathology in a dry AMD model, whereas it reduces lesions in a wet AMD model. These findings highlight the need for additional investigation into the role of secondary inflammation and sex-based differences on AMD.
Collapse
Affiliation(s)
- Gloriane Schnabolk
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Elisabeth Obert
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, United States.,Ralph H. Johnson VA Medical Center, Division of Research, Charleston, South Carolina, United States
| |
Collapse
|
27
|
Mettu PS, Allingham MJ, Cousins SW. Incomplete response to Anti-VEGF therapy in neovascular AMD: Exploring disease mechanisms and therapeutic opportunities. Prog Retin Eye Res 2021; 82:100906. [PMID: 33022379 PMCID: PMC10368393 DOI: 10.1016/j.preteyeres.2020.100906] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Intravitreal anti-vascular endothelial growth factor (VEGF) drugs have revolutionized the treatment of neovascular age-related macular degeneration (NVAMD). However, many patients suffer from incomplete response to anti-VEGF therapy (IRT), which is defined as (1) persistent (plasma) fluid exudation; (2) unresolved or new hemorrhage; (3) progressive lesion fibrosis; and/or (4) suboptimal vision recovery. The first three of these collectively comprise the problem of persistent disease activity (PDA) in spite of anti-VEGF therapy. Meanwhile, the problem of suboptimal vision recovery (SVR) is defined as a failure to achieve excellent functional visual acuity of 20/40 or better in spite of sufficient anti-VEGF treatment. Thus, incomplete response to anti-VEGF therapy, and specifically PDA and SVR, represent significant clinical unmet needs. In this review, we will explore PDA and SVR in NVAMD, characterizing the clinical manifestations and exploring the pathobiology of each. We will demonstrate that PDA occurs most frequently in NVAMD patients who develop high-flow CNV lesions with arteriolarization, in contrast to patients with capillary CNV who are highly responsive to anti-VEGF therapy. We will review investigations of experimental CNV and demonstrate that both types of CNV can be modeled in mice. We will present and consider a provocative hypothesis: formation of arteriolar CNV occurs via a distinct pathobiology, termed neovascular remodeling (NVR), wherein blood-derived macrophages infiltrate the incipient CNV lesion, recruit bone marrow-derived mesenchymal precursor cells (MPCs) from the circulation, and activate MPCs to become vascular smooth muscle cells (VSMCs) and myofibroblasts, driving the development of high-flow CNV with arteriolarization and perivascular fibrosis. In considering SVR, we will discuss the concept that limited or poor vision in spite of anti-VEGF may not be caused simply by photoreceptor degeneration but instead may be associated with photoreceptor synaptic dysfunction in the neurosensory retina overlying CNV, triggered by infiltrating blood-derived macrophages and mediated by Müller cell activation Finally, for each of PDA and SVR, we will discuss current approaches to disease management and treatment and consider novel avenues for potential future therapies.
Collapse
Affiliation(s)
- Priyatham S Mettu
- Duke Center for Macular Diseases, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, NC.
| | - Michael J Allingham
- Duke Center for Macular Diseases, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, NC
| | - Scott W Cousins
- Duke Center for Macular Diseases, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, NC; Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
28
|
Zapadka TE, Lindstrom SI, Batoki JC, Lee CA, Taylor BE, Howell SJ, Taylor PR. Aryl Hydrocarbon Receptor Agonist VAF347 Impedes Retinal Pathogenesis in Diabetic Mice. Int J Mol Sci 2021; 22:4335. [PMID: 33919327 PMCID: PMC8122442 DOI: 10.3390/ijms22094335] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy is the leading cause of blindness in the working-age population worldwide. Although the cause of diabetic retinopathy is multifactorial, IL-17A is a prevalent inflammatory cytokine involved in the promotion of diabetes-mediated retinal inflammation and the progression of diabetic retinopathy. The primary source of IL-17A is Th17 cells, which are T helper cells that have been differentiated by dendritic cells in a proinflammatory cytokine environment. Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can manipulate dendritic cell maturation, halt the production of IL-6 (a proinflammatory cytokine), and suppress Th17 cell differentiation. In the current study, we examined the efficacy of an AhR agonist, VAF347, as a potential therapeutic for the onset of non-proliferative diabetic retinopathy in streptozotocin (STZ)-induced diabetic C57BL/6 mice. We determined that diabetes-mediated leukostasis, oxidative stress, and inflammation in the retina of STZ-diabetic mice were all significantly lower when treated with the AhR agonist VAF347. Furthermore, when VAF347 was subcutaneously injected into STZ-diabetic mice, retinal capillary degeneration was ameliorated, which is the hallmark of non-proliferative diabetic retinopathy in this diabetes murine model. Collectively, these findings provide evidence that the AhR agonist VAF347 could be a potentially novel therapeutic for non-proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Thomas E. Zapadka
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Sarah I. Lindstrom
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
| | - Julia C. Batoki
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
| | - Chieh A. Lee
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
| | - Brooklyn E. Taylor
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
| | - Scott J. Howell
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| | - Patricia R. Taylor
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (T.E.Z.); (S.I.L.); (J.C.B.); (C.A.L.); (B.E.T.); (S.J.H.)
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
29
|
Montgomery A, Tam F, Gursche C, Cheneval C, Besler K, Enns W, Manku S, Rey K, Hanson PJ, Rose-John S, McManus BM, Choy JC. Overlapping and distinct biological effects of IL-6 classic and trans-signaling in vascular endothelial cells. Am J Physiol Cell Physiol 2021; 320:C554-C565. [PMID: 33471622 DOI: 10.1152/ajpcell.00323.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023]
Abstract
IL-6 affects tissue protective/reparative and inflammatory properties of vascular endothelial cells (ECs). This cytokine can signal to cells through classic and trans-signaling mechanisms, which are differentiated based on the expression of IL-6 receptor (IL-6R) on the surface of target cells. The biological effects of these IL-6-signaling mechanisms are distinct and have implications for vascular pathologies. We have directly compared IL-6 classic and trans-signaling in ECs. Human ECs expressed IL-6R in culture and in situ in coronary arteries from heart transplants. Stimulation of human ECs with IL-6, to model classic signaling, triggered the activation of phosphatidylinositol 3-kinase (PI3K)-Akt and ERK1/2 signaling pathways, whereas stimulation with IL-6 + sIL-6R, to model trans-signaling, triggered activation of STAT3, PI3K-Akt, and ERK1/2 pathways. IL-6 classic signaling reduced persistent injury of ECs in an allograft model of vascular rejection and inhibited cell death induced by growth factor withdrawal. When inflammatory effects were examined, IL-6 classic signaling did not induce ICAM or CCL2 expression but was sufficient to induce secretion of CXCL8 and support transmigration of neutrophil-like cells. IL-6 trans-signaling induced all inflammatory effects studied. Our findings show that IL-6 classic and trans-signaling have overlapping but distinct properties in controlling EC survival and inflammatory activation. This has implications for understanding the effects of IL-6 receptor-blocking therapies as well as for vascular responses in inflammatory and immune conditions.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/transplantation
- Cells, Cultured
- Cytokine Receptor gp130/agonists
- Cytokine Receptor gp130/metabolism
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelial Cells/transplantation
- Female
- Graft Rejection/metabolism
- Graft Rejection/pathology
- Graft Rejection/prevention & control
- Humans
- Inflammation Mediators/metabolism
- Interleukin-6/pharmacology
- Male
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Middle Aged
- Receptors, Interleukin-6/agonists
- Receptors, Interleukin-6/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Ashani Montgomery
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Franklin Tam
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Chris Gursche
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Catherine Cheneval
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Katrina Besler
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Winnie Enns
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sukhkbir Manku
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kevin Rey
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Paul J Hanson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts University Kiel, Kiel, Germany
| | - Bruce M McManus
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Jonathan C Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
30
|
Exacerbation of AMD Phenotype in Lasered CNV Murine Model by Dysbiotic Oral Pathogens. Antioxidants (Basel) 2021; 10:antiox10020309. [PMID: 33670526 PMCID: PMC7922506 DOI: 10.3390/antiox10020309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence underscores an association between age-related macular degeneration (AMD) and periodontal disease (PD), yet the biological basis of this linkage and the specific role of oral dysbiosis caused by PD in AMD pathophysiology remains unclear. Furthermore, a simple reproducible model that emulates characteristics of both AMD and PD has been lacking. Hence, we established a novel AMD+PD murine model to decipher the potential role of oral infection (ligature-enhanced) with the keystone periodontal pathogen Porphyromonas gingivalis, in the progression of neovasculogenesis in a laser-induced choroidal-neovascularization (Li-CNV) mouse retina. By a combination of fundus photography, optical coherence tomography, and fluorescein angiography, we documented inflammatory drusen-like lesions, reduced retinal thickness, and increased vascular leakage in AMD+PD mice retinae. H&E further confirmed a significant reduction of retinal thickness and subretinal drusen-like deposits. Immunofluorescence microscopy revealed significant induction of choroidal/retinal vasculogenesis in AMD+PD mice. qPCR identified increased expression of oxidative-stress, angiogenesis, pro-inflammatory mediators, whereas antioxidants and anti-inflammatory genes in AMD+PD mice retinae were notably decreased. Through qPCR, we detected Pg and its fimbrial 16s-RrNA gene expression in the AMD+PD mice retinae. To sum-up, this is the first in vivo study signifying a role of periodontal infection in augmentation of AMD phenotype, with the aid of a pioneering AMD+PD murine model established in our laboratory.
Collapse
|
31
|
Prairie E, Côté F, Tsakpinoglou M, Mina M, Quiniou C, Leimert K, Olson D, Chemtob S. The determinant role of IL-6 in the establishment of inflammation leading to spontaneous preterm birth. Cytokine Growth Factor Rev 2021; 59:118-130. [PMID: 33551331 DOI: 10.1016/j.cytogfr.2020.12.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022]
Abstract
Preterm birth (PTB) and its consequences are a major public health concern as preterm delivery is the main cause of mortality and morbidity at birth. There are many causes of PTB, but inflammation is undeniably associated with the process of premature childbirth and fetal injury. At present, treatments clinically available mostly involve attempt to arrest contractions (tocolytics) but do not directly address upstream maternal inflammation on development of the fetus. One of the possible solutions may lie in the modulation of inflammatory mediators. Of the many pro-inflammatory cytokines involved in the induction of PTB, IL-6 stands out for its pleiotropic effects and its involvement in both acute and chronic inflammation. Here, we provide a detailed review of the effects of IL-6 on the timing of childbirth, its occurrence during PTB and its indissociable roles with associated fetal tissue damage.
Collapse
Affiliation(s)
- Elizabeth Prairie
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, H3T 1C5, Canada; Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada
| | - France Côté
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, H3T 1C5, Canada; Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Marika Tsakpinoglou
- Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Michael Mina
- Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Christiane Quiniou
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, H3T 1C5, Canada.
| | - Kelycia Leimert
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton, T6G 2R3, Canada
| | - David Olson
- Departments of Obstetrics and Gynecology, Pediatrics and Physiology, University of Alberta, Edmonton, T6G 2R3, Canada
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, CHU Sainte-Justine Research Center, Montreal, H3T 1C5, Canada; Department of Pharmacology, Université de Montréal, Montreal, H3T 1J4, Canada.
| |
Collapse
|
32
|
Liu Y, Feng M, Cai J, Li S, Dai X, Shan G, Wu S. Repurposing bortezomib for choroidal neovascularization treatment via antagonizing VEGF-A and PDGF-D mediated signaling. Exp Eye Res 2021; 204:108446. [PMID: 33476605 DOI: 10.1016/j.exer.2021.108446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Neovascular age-related macular degeneration (neoAMD) is the leading cause of blindness in AMD and manifests as choroidal neovascularization (CNV). Anti-vascular endothelial growth factor (VEGF) therapies are the mainstay treatments but with limited efficacy and cause detrimental effects on the retina after long-term application. These disadvantages warrant alternative strategy. Herein, we examined the effect on CNV by intravitreal injection of bortezomib, a reversible proteasome inhibitor, and further dissected the mechanism. Krypton red Laser was used to create CNV model in mice. The angiogenesis volume was assessed in choroidal flat-mount with isolectin GS-IB4 labeling and the leakage was examined with fluorescein fundus angiography. Injection of Borsub inhibited angiogenesis in the CNV model which was dose-dependent; the injection significantly inhibited leakage as well. Furthermore, Borsub injection reduced the contents of VEGF-A, macrophage chemotactic factor 1 (MCP-1), and platelet-derived growth factor (PDGF)-D but not PDGF-B, examined by enzyme-linked immunosorbent assay, in choroid/retinal pigment epithelium (RPE) tissue. These injections also reduced phospho-VEGFR-2 and phospho-PDGFRβ in choroid/RPE tissue examined by immunoblotting. Moreover, Borsub inhibited the recruitment of mural cells or macrophages to laser-injured spots. Injection of Borsub indicated negative effect on scotopic and photopic responses recorded by electroretinogram. Altogether, intravitreal injection of Borsub significantly reduced CNV by antagonizing VEGF-A/Flk-1 and PDGF-D/PDGFRβ pathways without impacting electroretinography parameters. Thus, Borsub may offer an invaluable therapy for the prevention and treatment of neoAMD.
Collapse
Affiliation(s)
- Yimei Liu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China
| | - Meiling Feng
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China
| | - Jingjing Cai
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China
| | - Shifeng Li
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, PR China
| | - Xufeng Dai
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China
| | - Ge Shan
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, PR China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang, 325003, PR China.
| |
Collapse
|
33
|
The innate immune system in diabetic retinopathy. Prog Retin Eye Res 2021; 84:100940. [PMID: 33429059 DOI: 10.1016/j.preteyeres.2021.100940] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
The prevalence of diabetes has been rising steadily in the past half-century, along with the burden of its associated complications, including diabetic retinopathy (DR). DR is currently the most common cause of vision loss in working-age adults in the United States. Historically, DR has been diagnosed and classified clinically based on what is visible by fundoscopy; that is vasculature alterations. However, recent technological advances have confirmed pathology of the neuroretina prior to any detectable vascular changes. These, coupled with molecular studies, and the positive impact of anti-inflammatory therapeutics in DR patients have highlighted the central involvement of the innate immune system. Reminiscent of the systemic impact of diabetes, immune dysregulation has become increasingly identified as a key element of the pathophysiology of DR by interfering with normal homeostatic systems. This review uses the growing body of literature across various model systems to demonstrate the clear involvement of all three pillars of the immune system: immune-competent cells, mediators, and the complement system. It also demonstrates how the relative contribution of each of these requires more extensive analysis, including in human tissues over the continuum of disease progression. Finally, although this review demonstrates how the complex interactions of the immune system pose many more questions than answers, the intimately connected nature of the three pillars of the immune system may also point to possible new targets to reverse or even halt reverse retinopathy.
Collapse
|
34
|
Edwards M, Lutty GA. Bruch's Membrane and the Choroid in Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:89-119. [PMID: 33847999 DOI: 10.1007/978-3-030-66014-7_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A healthy choroidal vasculature is necessary to support the retinal pigment epithelium (RPE) and photoreceptors, because there is a mutualistic symbiotic relationship between the components of the photoreceptor/retinal pigment epithelium (RPE)/Bruch's membrane (BrMb)/choriocapillaris (CC) complex. This relationship is compromised in age-related macular degeneration (AMD) by the dysfunction or death of the choroidal vasculature. This chapter will provide a basic description of the human Bruch's membrane and choroidal anatomy and physiology and how they change in AMD.The choriocapillaris is the lobular, fenestrated capillary system of choroid. It lies immediately posterior to the pentalaminar Bruch's membrane (BrMb). The blood supply for this system is the intermediate blood vessels of Sattler's layer and the large blood vessels in Haller's layer.In geographic atrophy (GA), an advanced form of dry AMD, large confluent drusen form on BrMb, and hyperpigmentation (presumably dysfunction in RPE) appears to be the initial insult. The resorption of these drusen and loss of RPE (hypopigmentation) can be predictive for progression of GA. The death and dysfunction of CC and photoreceptors appear to be secondary events to loss in RPE. The loss of choroidal vasculature may be the initial insult in neovascular AMD (nAMD). We have observed a loss of CC with an intact RPE monolayer in nAMD, by making RPE hypoxic. These hypoxic cells then produce angiogenic substances like vascular endothelial growth factor (VEGF), which stimulate growth of new vessels from CC, resulting in choroidal neovascularization (CNV). Reduction in blood supply to the CC, often stenosis of intermediate and large blood vessels, is associated with CC loss.The polymorphisms in the complement system components are associated with AMD. In addition, the environment of the CC, basement membrane and intercapillary septa, is a proinflammatory milieu with accumulation of proinflammatory molecules like CRP and complement components during AMD. In this toxic milieu, CC die or become dysfunctional even early in AMD. The loss of CC might be a stimulus for drusen formation since the disposal system for retinal debris and exocytosed material from RPE would be limited. Ultimately, the photoreceptors die of lack of nutrients, leakage of serum components from the neovascularization, and scar formation.Therefore, the mutualistic symbiotic relationship of the photoreceptor/RPE/BrMb/CC complex is lost in both forms of AMD. Loss of this functionally integrated relationship results in death and dysfunction of all of the components in the complex.
Collapse
Affiliation(s)
- Malia Edwards
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Gerard A Lutty
- Wilmer Ophthalmological Institute, Johns Hopkins Hospital, Baltimore, MD, USA.
| |
Collapse
|
35
|
Immunological Aspects of Age-Related Macular Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1256:143-189. [PMID: 33848001 DOI: 10.1007/978-3-030-66014-7_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Increasing evidence over the past two decades points to a pivotal role for immune mechanisms in age-related macular degeneration (AMD) pathobiology. In this chapter, we will explore immunological aspects of AMD, with a specific focus on how immune mechanisms modulate clinical phenotypes of disease and severity and how components of the immune system may serve as triggers for disease progression in both dry and neovascular AMD. We will briefly review the biology of the immune system, defining the role of immune mechanisms in chronic degenerative disease and differentiating from immune responses to acute injury or infection. We will explore current understanding of the roles of innate immunity (especially macrophages), antigen-specific immunity (T cells, B cells, and autoimmunity), immune amplifications systems, especially complement activity and the NLRP3 inflammasome, in the pathogenesis of both dry and neovascular AMD, reviewing data from pathology, experimental animal models, and clinical studies of AMD patients. We will also assess how interactions between the immune system and infectious pathogens could potentially modulate AMD pathobiology via alterations in in immune effector mechanisms. We will conclude by reviewing the paradigm of "response to injury," which provides a means to integrate various immunologic mechanisms along with nonimmune mechanisms of tissue injury and repair as a model to understand the pathobiology of AMD.
Collapse
|
36
|
Ma Z, Liu J, Li J, Jiang H, Kong J. Klotho Levels are Decreased and Associated with Enhanced Oxidative Stress and Inflammation in the Aqueous Humor in Patients with Exudative Age-related Macular Degeneration. Ocul Immunol Inflamm 2020; 30:630-637. [PMID: 33048602 DOI: 10.1080/09273948.2020.1828488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE To evaluate anti-aging protein klotho levels in the aqueous humor and its association with oxidative stress and inflammation in patients with age-related macular degeneration (AMD). METHODS Levels of klotho, oxidative, and antioxidative stress markers, and proinflammatory and anti-inflammatory markers in the aqueous humor from 28 patients with exudative AMD and 35 age-matched controls were measured. RESULTS Patients with AMD had lower levels of klotho, which were negatively correlated with macular lesion size. Patients with AMD also exhibited increased levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and interleukin (IL)-6 but not tumor necrosis factor‑α, and decreased levels of total antioxidant status (TAS) and IL-10. Moreover, levels of klotho were negatively correlated with levels of 8-OHdG and IL-6, but positively correlated with levels of TSA and IL-10. CONCLUSION Klotho levels in the aqueous humor are decreased and associated with oxidative stress and inflammation in patients with exudative AMD.
Collapse
Affiliation(s)
- Zhongxu Ma
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jingjing Liu
- Provincial Key Laboratory of Lens Research, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Li
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Hao Jiang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jun Kong
- Provincial Key Laboratory of Lens Research, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
37
|
Do JY, Kim J, Kim MJ, Lee JY, Park SY, Yanai R, Lee IK, Park S, Park DH. Fursultiamine Alleviates Choroidal Neovascularization by Suppressing Inflammation and Metabolic Reprogramming. Invest Ophthalmol Vis Sci 2020; 61:24. [PMID: 33107903 PMCID: PMC7594589 DOI: 10.1167/iovs.61.12.24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To assess the therapeutic effects of fursultiamine on choroidal neovascularization (CNV) through its modulation of inflammation and metabolic reprogramming in the retinal pigment epithelium (RPE). Methods The anti-angiogenic effects of fursultiamine were assessed by measuring vascular leakage and CNV lesion size in the laser-induced CNV mouse model. Inflammatory responses were evaluated by quantitative polymerase chain reaction, western blot, and ELISA in both CNV eye tissues and in vitro cell cultures using ARPE-19 cells or primary human RPE (hRPE) cells under lipopolysaccharide (LPS) treatment or hypoxia. Mitochondrial respiration was assessed by measuring oxygen consumption in ARPE-19 cells treated with LPS with or without fursultiamine, and lactate production was measured in ARPE-19 cells subjected to hypoxia with or without fursultiamine. Results In laser-induced CNV, fursultiamine significantly decreased vascular leakage and lesion size, as well as the numbers of both choroidal and retinal inflammatory cytokines, including IL-1β, IL-6, IL-8, and TNF-α. In LPS-treated ARPE-19 cells, fursultiamine decreased proinflammatory cytokine secretion and nuclear factor kappa B phosphorylation. Furthermore, fursultiamine suppressed LPS-induced upregulation of IL-6, IL-8, and monocyte chemoattractant protein-1 in a dose-dependent and time-dependent manner in primary hRPE cells. Interestingly, fursultiamine significantly enhanced mitochondrial respiration in the LPS-treated ARPE-19 cells. Additionally, fursultiamine attenuated hypoxia-induced aberrations, including lactate production and inhibitory phosphorylation of pyruvate dehydrogenase. Furthermore, fursultiamine attenuated hypoxia-induced VEGF secretion and mitochondrial fission in primary hRPE cells that were replicated in ARPE-19 cells. Conclusions Our findings show that fursultiamine is a viable putative therapeutic for neovascular age-related macular degeneration by modulating the inflammatory response and metabolic reprogramming by enhancing mitochondrial respiration in the RPE.
Collapse
Affiliation(s)
- Ji Yeon Do
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea
| | - Juhee Kim
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea
| | - Mi-Jin Kim
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea
| | - Jung Yi Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea.,R&D Center, JD Bioscience, Inc., Gwangju, Republic of Korea
| | - So-Young Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ryoji Yanai
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - In-Kyu Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea
| | - Sungmi Park
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea
| | - Dong Ho Park
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea.,Department of Ophthalmology, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
38
|
Tan W, Zou J, Yoshida S, Jiang B, Zhou Y. The Role of Inflammation in Age-Related Macular Degeneration. Int J Biol Sci 2020; 16:2989-3001. [PMID: 33061811 PMCID: PMC7545698 DOI: 10.7150/ijbs.49890] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease which incidence gradually increases with age. Inflammation participates in AMD pathogenesis, including choroidal neovascularization and geographic atrophy. It is also a kind of self-protective regulation from injury for the eyes. In this review, we described inflammation in AMD pathogenesis, summarized the roles played by inflammation-related cytokines, including pro-inflammatory and anti-inflammatory cytokines, as well as leukocytes (macrophages, dendritic cells, neutrophils, T lymphocytes and B lymphocytes) in the innate or adaptive immunity in AMD. Possible clinical applications such as potential diagnostic biomarkers and anti-inflammatory therapies were also discussed. This review overviews the inflammation as a target of novel effective therapies in treating AMD.
Collapse
Affiliation(s)
- Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| |
Collapse
|
39
|
Fan X, Shan X, Jiang S, Wang S, Zhang F, Tian Q, Chen D, Ma J, Xue F, Mao S, Fan J, Wang Y, Gong Y. YAP promotes endothelial barrier repair by repressing STAT3/VEGF signaling. Life Sci 2020; 256:117884. [DOI: 10.1016/j.lfs.2020.117884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 01/28/2023]
|
40
|
Xu J, Liu X, Zhang X, Marshall B, Dong Z, Liu Y, Espinosa-Heidmann DG, Zhang M. Ocular cytomegalovirus latency exacerbates the development of choroidal neovascularization. J Pathol 2020; 251:200-212. [PMID: 32243583 DOI: 10.1002/path.5447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/28/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial, progressive disease which represents a leading cause of irreversible visual impairment and blindness in older individuals. Human cytomegalovirus (HCMV), which infects 50-80% of humans, is usually acquired during early life and persists in a latent state for the life of the individual. In view of its previously described pro-angiogenic properties, we hypothesized that cytomegalovirus might be a novel risk factor for progression to an advanced form, neovascular AMD, which is characterized by choroidal neovascularization (CNV). The purpose of this study was to investigate if latent ocular murine cytomegalovirus (MCMV) infection exacerbated the development of CNV in vascular endothelial growth factor (VEGF)-overexpressing VEGF-Ahyper mice. Here we show that neonatal infection with MCMV resulted in dissemination of virus to various organs throughout the body including the eye, where it localized principally to the choroid in both VEGF-overexpressingVEGF-Ahyper and wild-type(WT) 129 mice. By 6 months post-infection, no replicating virus was detected in eyes and extraocular tissues, although virus DNA was still present in all eyes and extraocular tissues of both VEGF-Ahyper and WT mice. Expression of MCMV immediate early (IE) 1 mRNA was detected only in latently infected eyes of VEGF-Ahyper mice, but not in eyes of WT mice. Significantly increased CNV was observed in eyes of MCMV-infected VEGF-Ahyper mice compared to eyes of uninfected VEGF-Ahyper mice, while no CNV lesions were observed in eyes of either infected or uninfected WT mice. Protein levels of several inflammatory/angiogenic factors, particularly VEGF and IL-6, were significantly higher in eyes of MCMV-infected VEGF-Ahyper mice, compared to uninfected controls. Initial studies of ocular tissue from human cadavers revealed that HCMV DNA was present in four choroid/retinal pigment epithelium samples from 24 cadavers. Taken together, our data suggest that ocular HCMV latency could be a significant risk factor for the development of AMD. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jinxian Xu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.,The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Xinglou Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.,The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA.,Department of Pediatrics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xinyan Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.,The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - Brendan Marshall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.,Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.,The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA.,Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Diego G Espinosa-Heidmann
- The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA.,Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.,The James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| |
Collapse
|
41
|
Alves CH, Fernandes R, Santiago AR, Ambrósio AF. Microglia Contribution to the Regulation of the Retinal and Choroidal Vasculature in Age-Related Macular Degeneration. Cells 2020; 9:cells9051217. [PMID: 32423062 PMCID: PMC7290930 DOI: 10.3390/cells9051217] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
The retina is a highly metabolically active tissue with high-level consumption of nutrients and oxygen. This high metabolic demand requires a properly developed and maintained vascular system. The retina is nourished by two systems: the central retinal artery that supplies the inner retina and the choriocapillaris that supplies the outer retina and retinal pigment epithelium (RPE). Pathological neovascularization, characterized by endothelial cell proliferation and new vessel formation, is a common hallmark in several retinal degenerative diseases, including age-related macular degeneration (AMD). A limited number of studies have suggested that microglia, the resident immune cells of the retina, have an important role not only in the pathology but also in the formation and physiology of the retinal vascular system. Here, we review the current knowledge on microglial interaction with the retinal vascular system under physiological and pathological conditions. To do so, we first highlight the role of microglial cells in the formation and maintenance of the retinal vasculature system. Thereafter, we discuss the molecular signaling mechanisms through which microglial cells contribute to the alterations in retinal and choroidal vasculatures and to the neovascularization in AMD.
Collapse
Affiliation(s)
- C. Henrique Alves
- Retinal Dysfunction and Neuroinflammation Lab, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.H.A.); (R.F.); (A.R.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Rosa Fernandes
- Retinal Dysfunction and Neuroinflammation Lab, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.H.A.); (R.F.); (A.R.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - Ana Raquel Santiago
- Retinal Dysfunction and Neuroinflammation Lab, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.H.A.); (R.F.); (A.R.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
| | - António Francisco Ambrósio
- Retinal Dysfunction and Neuroinflammation Lab, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (C.H.A.); (R.F.); (A.R.S.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-480093
| |
Collapse
|
42
|
Farjood F, Ahmadpour A, Ostvar S, Vargis E. Acute mechanical stress in primary porcine RPE cells induces angiogenic factor expression and in vitro angiogenesis. J Biol Eng 2020; 14:13. [PMID: 32355505 PMCID: PMC7183714 DOI: 10.1186/s13036-020-00235-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Background Choroidal neovascularization (CNV) is a major cause of blindness in patients with age-related macular degeneration. CNV is characterized by new blood vessel growth and subretinal fluid accumulation, which results in mechanical pressure on retinal pigment epithelial (RPE) cells. The overexpression of RPE-derived angiogenic factors plays an important role in inducing CNV. In this work, we investigated the effect of mechanical stress on the expression of angiogenic factors in porcine RPE cells and determined the impact of conditioned medium on in-vitro angiogenesis. Results The goal of this study was to determine whether low levels of acute mechanical stress during early CNV can induce the expression of angiogenic factors in RPE cells and accelerate angiogenesis. Using a novel device, acute mechanical stress was applied to primary porcine RPE cells and the resulting changes in the expression of major angiogenic factors, VEGF, ANG2, HIF-1α, IL6, IL8 and TNF-α, were examined using immunocytochemistry, qRT-PCR, and ELISA. An in vitro tube formation assay was used to determine the effect of secreted angiogenic proteins due to mechanical stress on endothelial tube formation by human umbilical vein endothelial cells (HUVECs). Our results showed an increase in the expression of VEGF, ANG2, IL-6 and IL-8 in response to mechanical stress, resulting in increased in vitro angiogenesis. Abnormal epithelial-mesenchymal transition (EMT) in RPE cells is also associated with CNV and further retinal degeneration. Our qRT-PCR results verified an increase in the expression of EMT genes, CDH2, VIM and FN1, in RPE cells. Conclusions In conclusion, we showed that acute mechanical stress induces the expression of major angiogenic and EMT factors and promotes in vitro angiogenesis, suggesting that mechanical stress plays a role in promoting aberrant angiogenesis in AMD.
Collapse
Affiliation(s)
- Farhad Farjood
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322 USA.,2Present address: Neural Stem Cell Institute, Rensselaer, NY 12144 USA
| | - Amir Ahmadpour
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322 USA.,3Present address: Department of Animal Sciences, Yasouj University, Yasouj, 75918-74934 Iran
| | - Sassan Ostvar
- 4Division of General Medicine, Columbia University Medical Center, New York, NY 10032 USA
| | - Elizabeth Vargis
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322 USA
| |
Collapse
|
43
|
Tomita Y, Cakir B, Liu CH, Fu Z, Huang S, Cho SS, Britton WR, Sun Y, Puder M, Hellström A, Talukdar S, Smith LEH. Free fatty acid receptor 4 activation protects against choroidal neovascularization in mice. Angiogenesis 2020; 23:385-394. [PMID: 32140799 DOI: 10.1007/s10456-020-09717-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
To examine whether free fatty acid receptor 4 (FFAR4) activation can protect against choroidal neovascularization (CNV), which is a common cause of blindness, and to elucidate the mechanism underlying the inhibition, we used the mouse model of laser-induced CNV to mimic angiogenic aspects of age-related macular degeneration (AMD). Laser-induced CNV was compared between groups treated with an FFAR4 agonist or vehicle, and between FFAR4 wild-type (Ffar4+/+) and knock out (Ffar4-/-) mice on a C57BL/6J/6N background. The ex vivo choroid-sprouting assay, including primary retinal pigment epithelium (RPE) and choroid, without retina was used to investigate whether FFAR4 affects choroidal angiogenesis. Western blotting for pNF-ĸB/NF-ĸB and qRT-PCR for Il-6, Il-1β, Tnf-α, Vegf, and Nf-ĸb were used to examine the influence of FFAR4 on inflammation, known to influence CNV. RPE isolated from Ffar4+/+ and Ffar4-/- mice were used to assess RPE contribution to inflammation. The FFAR4 agonist suppressed laser-induced CNV in C57BL/6J mice, and CNV increased in Ffar4-/- compared to Ffar4+/+ mice. We showed that the FFAR4 agonist acted through the FFAR4 receptor. The FFAR4 agonist suppressed mRNA expression of inflammation markers (Il-6, Il-1β) via the NF-ĸB pathway in the retina, choroid, RPE complex. The FFAR4 agonist suppressed neovascularization in the choroid-sprouting ex vivo assay and FFAR4 deficiency exacerbated sprouting. Inflammation markers were increased in primary RPE cells of Ffar4-/- mice compared with Ffar4+/+ RPE. In this mouse model, the FFAR4 agonist suppressed CNV, suggesting FFAR4 to be a new molecular target to reduce pathological angiogenesis in CNV.
Collapse
Affiliation(s)
- Yohei Tomita
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Bertan Cakir
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Shuo Huang
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Steve S Cho
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - William R Britton
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Mark Puder
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, USA
| | - Ann Hellström
- Pediatric Ophthalmology, Sahlgrenska Academy, The Queen Silvia Children's Hospital, Göteborg, Sweden
| | | | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
44
|
Lee EK, Kim YJ, Shon WJ, Yu HG. A telomerase-derived peptide vaccine inhibits laser-induced choroidal neovascularization in a rat model. Transl Res 2020; 216:30-42. [PMID: 31655029 DOI: 10.1016/j.trsl.2019.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/05/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
Abstract
GV1001, a novel peptide derived from human telomerase reverse transcriptase, reportedly has anticancer and anti-inflammatory effects. Choroidal neovascularization (CNV) is a complex pathogenic process that involves angiogenesis, inflammation, cellular immunity, and other factors. This study was aimed at investigating the effect of GV1001 on laser-induced CNV in a rat model. Brown Norway rats were subcutaneously administered GV1001 (0.1 nM, 1 nM, and 10 nM) daily, beginning 3 days prior, and ending 14 days after laser photocoagulation. Optical coherence tomography, fluorescein angiography, choroidal flat mount, and histologic analysis were performed to analyze CNV. The protein level of IκB-α and nuclear translocation of nuclear factor κB (NF-κB) was analyzed via immunohistochemistry of p65. Multiplex immunoassay was performed to evaluate the interleukin (IL)-1β, IL-6, vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1, and tumor necrosis factor-α levels. The GV1001-treated group had significantly lower CNV thickness, smaller CNV area, and lower proportion of CNV lesions with clinically significant fluorescein leakage than vehicle-treated group. GV1001 treatment inhibited IκB-α degradation and NF-κB p65 nuclear translocation. At 1 nM concentration, GV1001 had highest inhibitory effect on CNV and NF-κB signaling activation; moreover, it suppressed the levels of IL-1β, IL-6, and VEGF significantly. The present study demonstrates that GV1001 treatment led to significant suppression of laser-induced CNV, alongside inhibition of inflammatory processes including NF-κB activation and subsequent upregulation of proinflammatory cytokines. Therefore, this provides molecular evidence of potential validity of GV1001 treatment as a therapeutic strategy for neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Eun Kyoung Lee
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Joo Kim
- Department of Ophthalmology, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Won-Jun Shon
- Department of Conservative Dentistry, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Hyeong Gon Yu
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
45
|
Xu J, Tu Y, Wang Y, Xu X, Sun X, Xie L, Zhao Q, Guo Y, Gu Y, Du J, Du S, Zhu M, Song E. Prodrug of epigallocatechin-3-gallate alleviates choroidal neovascularization via down-regulating HIF-1α/VEGF/VEGFR2 pathway and M1 type macrophage/microglia polarization. Biomed Pharmacother 2019; 121:109606. [PMID: 31743875 DOI: 10.1016/j.biopha.2019.109606] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss in the elderly and is attributed to choroidal neovascularization (CNV), which is a feature of wet AMD. The hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) pathway contributes to the pathogenesis of CNV. M1-type macrophages/microglia secrete interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α), facilitating the development of CNV. Epigallocatechin-3-gallate (EGCG) is a kind of polyphenol in green tea that exerts anti-inflammatory and antiangiogenic effects. In this study, a prodrug of EGCG (pro-EGCG) alleviated mouse laser-induced CNV leakage and reduced CNV area by down-regulating HIF-1α/VEGF/VEGFR2 pathway; M1-type macrophage/microglia polarization; as well as endothelial cell viability, proliferation, migration and tube formation, indicating a novel potential therapy for AMD.
Collapse
Affiliation(s)
- Jiaowen Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Wang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China; Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Xun Xu
- Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai, China; Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Xiaodong Sun
- Shanghai Key Laboratory of Ocular Fundus Disease, Shanghai, China; Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Laiqing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qingliang Zhao
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yang Guo
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yonghui Gu
- Department of Ophthalmology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jingxia Du
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shu Du
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - E Song
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
46
|
Litwińska Z, Sobuś A, Łuczkowska K, Grabowicz A, Mozolewska-Piotrowska K, Safranow K, Kawa MP, Machaliński B, Machalińska A. The Interplay Between Systemic Inflammatory Factors and MicroRNAs in Age-Related Macular Degeneration. Front Aging Neurosci 2019; 11:286. [PMID: 31695606 PMCID: PMC6817913 DOI: 10.3389/fnagi.2019.00286] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/04/2019] [Indexed: 12/20/2022] Open
Abstract
We aimed to explore the expression of systemic inflammatory factors and selected intracellular miRNAs that regulate inflammatory signaling pathways potentially involved in age-related macular degeneration (AMD) pathogenesis. A total of 179 patients with wet AMD, 175 with dry AMD and 121 controls were enrolled in the study. Soluble inflammatory factors were analyzed in plasma samples using Luminex technology. Expression of selected miRNAs was analyzed in isolated nucleated peripheral blood cells (PBNCs) using real-time qPCR. Wet AMD was an independent factor associated with higher concentrations of IL-6 (β = +0.24, p = 0.0004), GM-CSF (β = +0.31, p < 0.001), IFN-γ (β = +0.58, p < 0.001), higher expression of miRNA-23a-3p (β = +0.60, p < 0.0001), miRNA-30b (β = +0.32, p < 0.0001), miRNA-191-5p (β = +0.28, p < 0.0001) and lower concentration of IL-1β (β = −0.25, p = 0.0003), IL-5 (β = −0.45, p < 0.001), IL-10 (β = −0.45, p < 0.001), IL-12 (β = −0.35, p < 0.001), lower expression of miRNA-16-5p (β = −0.31, p < 0.0001), miRNA-17-3p (β = −0.18, p = 0.01), miRNA-150-5p (β = −0.18, p = 0.01) and miRNA-155-5p (β = −0.47, p < 0.0001). Multivariate analysis revealed that dry AMD was an independent factor associated with higher concentration of GM-CSF (β = +0.34, p < 0.001), IL-6 (β = +0.13, p = 0.05), higher expression of miRNA-23a-3p (β = +0.60, p < 0.0001), miRNA-126-3p (β = +0.23, p = 0.0005), miRNA-126-5p (β = +0.16, p = 0.01), miRNA 146a (β = +0.14, p = 0.03), and mRNA191-5p (β = +0.15, p = 0.03) and lower concentrations of TNF-α (β = +0.24, p = 0.0004), IL-1β (β = −0.39, p < 0.001), IL-2 (β = −0.20, p = 0.003), IL-5 (β = −0.54, p < 0.001), IL-10 (β = −0.56, p < 0.001), IL-12 (β = −0.51, p < 0.001), lower expression of miRNA-16-5p (β = −0.23, p = 0.0004), miRNA-17-3p (β = −0.20, p = 0.003) and miRNA-17-5p (β = −0.19, p = 0.004). Negative correlations between visual acuity and WBC, lymphocyte count, TNF-α, IL-1 β, IL-2, IL-4, IL-6, IL-10 concentrations and miRNA-191-5p, as well as positive correlations between visual acuity and miRNA-126-3p, -126-5p, and -155-5p PBNCs expression were found in AMD patients. No such correlations were found in the control group. Our results may suggest the role of both intra- and extracellular mechanisms implicated in inflammatory response regulation in multifactorial AMD pathogenesis.
Collapse
Affiliation(s)
- Zofia Litwińska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Anna Sobuś
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Aleksandra Grabowicz
- First Department of Ophthalmology, Pomeranian Medical University, Szczecin, Poland
| | | | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Miłosz Piotr Kawa
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Anna Machalińska
- First Department of Ophthalmology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
47
|
Inhibitory effect of nintedanib on VEGF secretion in retinal pigment epithelial cells induced by exposure to a necrotic cell lysate. PLoS One 2019; 14:e0218632. [PMID: 31386668 PMCID: PMC6684070 DOI: 10.1371/journal.pone.0218632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/05/2019] [Indexed: 11/19/2022] Open
Abstract
Necrosis is a form of cell death that results in rupture of the plasma membrane and the release of cellular contents, and it can give rise to sterile inflammation in the retina and other tissues. The secretion of vascular endothelial growth factor (VEGF) by retinal pigment epithelial (RPE) cells contributes to retinal homeostasis as well as to pathological angiogenesis. We have now examined the effect of a necrotic cell lysate prepared from human RPE cells (NLR) on the release of VEGF by healthy RPE cells. We found that NLR markedly increased the release of VEGF from RPE cells and that this effect was attenuated by nintedanib, a multiple receptor tyrosine kinase inhibitor, whereas it was unaffected by inhibitors of NF-κB signaling or of caspase-1. NLR also induced the phosphorylation of extracellular signal-regulated kinase (Erk) and signal transducer and activator of transcription 3 (Stat3) in a manner sensitive to inhibition by nintedanib, although inhibitors of Erk and Stat3 signaling pathways did not affect NLR-induced VEGF secretion. In addition, nintedanib attenuated the development of choroidal neovascularization in mice. Our results have thus shown that a necrotic lysate of RPE cells induced VEGF secretion from healthy RPE cells and that this effect was mediated by receptor tyrosine kinase signaling. They therefore suggest that VEGF secretion by healthy RPE cells is a potential therapeutic target for retinal diseases associated with sterile inflammation and pathological angiogenesis.
Collapse
|
48
|
Cheng SC, Huang WC, S Pang JH, Wu YH, Cheng CY. Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways. Int J Mol Sci 2019; 20:ijms20122957. [PMID: 31212975 PMCID: PMC6628093 DOI: 10.3390/ijms20122957] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/08/2019] [Accepted: 06/13/2019] [Indexed: 12/27/2022] Open
Abstract
Quercetin, a bioflavonoid derived from vegetables and fruits, exerts anti-inflammatory effects in various diseases. Our previous study revealed that quercetin could suppress the expression of matrix metalloprotease-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1) to achieve anti-inflammatory effects in tumor necrosis factor-α (TNF-α)-stimulated human retinal pigment epithelial (ARPE-19) cells. The present study explored whether quercetin can inhibit the interleukin-1β (IL-1β)-induced production of inflammatory cytokines and chemokines in ARPE-19 cells. Prior to stimulation by IL-1β, ARPE-19 cells were pretreated with quercetin at various concentrations (2.5–20 µM). The results showed that quercetin could dose-dependently decrease the mRNA and protein levels of ICAM-1, IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP-1). It also attenuated the adherence of the human monocytic leukemia cell line THP-1 to IL-1β-stimulated ARPE-19 cells. We also demonstrated that quercetin inhibited signaling pathways related to the inflammatory process, including phosphorylation of mitogen-activated protein kinases (MAPKs), inhibitor of nuclear factor κ-B kinase (IKK)α/β, c-Jun, cAMP response element-binding protein (CREB), activating transcription factor 2 (ATF2) and nuclear factor (NF)-κB p65, and blocked the translocation of NF-κB p65 into the nucleus. Furthermore, MAPK inhibitors including an extracellular signal-regulated kinase (ERK) 1/2 inhibitor (U0126), a p38 inhibitor (SB202190) and a c-Jun N-terminal kinase (JNK) inhibitor (SP600125) decreased the expression of soluble ICAM-1 (sICAM-1), but not ICAM-1. U0126 and SB202190 could inhibit the expression of IL-6, IL-8 and MCP-1, but SP600125 could not. An NF-κB inhibitor (Bay 11-7082) also reduced the expression of ICAM-1, sICAM-1, IL-6, IL-8 and MCP-1. Taken together, these results provide evidence that quercetin protects ARPE-19 cells from the IL-1β-stimulated increase in ICAM-1, sICAM-1, IL-6, IL-8 and MCP-1 production by blocking the activation of MAPK and NF-κB signaling pathways to ameliorate the inflammatory response.
Collapse
Affiliation(s)
- Shu-Chen Cheng
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33372, Taiwan.
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan.
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Jong-Hwei S Pang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Yi-Hong Wu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33372, Taiwan.
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Ching-Yi Cheng
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan.
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan.
| |
Collapse
|
49
|
Mesquida M, Drawnel F, Fauser S. The role of inflammation in diabetic eye disease. Semin Immunopathol 2019; 41:427-445. [PMID: 31175392 DOI: 10.1007/s00281-019-00750-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
Mounting evidence suggests that immunological mechanisms play a fundamental role in the pathogenesis of diabetic retinopathy (DR) and diabetic macular edema (DME). Upregulation of cytokines and other proinflammatory mediators leading to persistent low-grade inflammation is believed to actively contribute to the DR-associated damage to the retinal vasculature, inducing breakdown of the blood-retinal barrier, subsequent macular edema formation, and promotion of retinal neovascularization. This review summarizes the current knowledge of the biological processes providing an inflammatory basis for DR and DME. In addition, emerging therapeutic approaches targeting inflammation are discussed, including blockade of angiopoietin 2 and other molecular targets such as interleukin (IL)-6, IL-1β, plasma kallikrein, and integrins.
Collapse
Affiliation(s)
- Marina Mesquida
- Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, Barcelona, Spain.
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Faye Drawnel
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Sascha Fauser
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
50
|
Akhtar-Schäfer I, Wang L, Krohne TU, Xu H, Langmann T. Modulation of three key innate immune pathways for the most common retinal degenerative diseases. EMBO Mol Med 2019; 10:emmm.201708259. [PMID: 30224384 PMCID: PMC6180304 DOI: 10.15252/emmm.201708259] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review highlights the role of three key immune pathways in the pathophysiology of major retinal degenerative diseases including diabetic retinopathy, age‐related macular degeneration, and rare retinal dystrophies. We first discuss the mechanisms how loss of retinal homeostasis evokes an unbalanced retinal immune reaction involving responses of local microglia and recruited macrophages, activity of the alternative complement system, and inflammasome assembly in the retinal pigment epithelium. Presenting these key mechanisms as complementary targets, we specifically emphasize the concept of immunomodulation as potential treatment strategy to prevent or delay vision loss. Promising molecules are ligands for phagocyte receptors, specific inhibitors of complement activation products, and inflammasome inhibitors. We comprehensively summarize the scientific evidence for this strategy from preclinical animal models, human ocular tissue analyses, and clinical trials evolving in the last few years.
Collapse
Affiliation(s)
- Isha Akhtar-Schäfer
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Luping Wang
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Tim U Krohne
- Department of Ophthalmology, University of Bonn, Bonn, Germany
| | - Heping Xu
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany .,Center for Molecular Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|