1
|
Jung SW, Pi LQ, Jeon JJ, Kim YH, Lee S, Lee WS. Protective Effects of Korean Red Ginseng Against Oxidative Stress-Induced Damage in Human Hair. Ann Dermatol 2025; 37:1-11. [PMID: 39894668 PMCID: PMC11791020 DOI: 10.5021/ad.24.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Oxidative stress causes fatal damage to follicular keratinocytes (FKCs) and is a common pathophysiology of many hair disorders. OBJECTIVE This study investigated the protective effects of Red ginseng extract (RGE) and its main ginsenosides against oxidative hair damage using an in vitro organ model of human hair follicles. METHODS We examined whether RGE and its constituent ginsenosides could prevent oxidative damage induced by H₂O₂ in FKCs by suppressing apoptosis and promoting hair growth. RESULTS RGE and its main ginsenoside, G-Rb1, significantly inhibited reactive oxygen species production and apoptosis in FKCs. Furthermore, they effectively alleviated the inhibition of hair growth induced by oxidative damage and inhibited the transition of hair from the anagen to the telogen stage. The hair cycle and apoptosis were associated with the modulation of p53 and Bax/Bcl2 signaling. CONCLUSION RGE and G-Rb1 can effectively mitigate the oxidative damage caused by FKCs, thereby affecting hair growth and hair cycles.
Collapse
Affiliation(s)
- Seung-Won Jung
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Long-Quan Pi
- Department of Dermatology, Yanbian University Hospital, Yanji, China
| | - Jae Joon Jeon
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - You Hyun Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Solam Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Won-Soo Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea.
| |
Collapse
|
2
|
Huang J, Zhou Y, Li H, Du L, Chen Y, Hu Z, Miao Y. Preservation solution protects isolated hair micrografts by inhibiting apoptosis of hair bulb. Life Sci 2025; 361:123292. [PMID: 39643038 DOI: 10.1016/j.lfs.2024.123292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
AIMS To investigate the effectiveness of histidine-tryptophan-ketoglutarate (HTK) solution compared to Ringer's (RS) solution for preserving isolated hair follicles (HFs), focusing on structural integrity, cell viability, apoptosis prevention, and identifying the mechanisms of cell death during the preservation period. MATERIALS AND METHODS Isolated human HFs were preserved in HTK or RS solution for periods ranging from 2 to 12 h. Morphological changes were assessed using H&E staining and transmission electron microscopy (TEM). Cell viability, proliferation, and apoptosis were evaluated through Ki-67/TUNEL staining, live/dead cell staining, and immunofluorescence. Quantitative real-time PCR and Western blot analysis were conducted to examine apoptosis-related gene expression, and qPCR array analyses were performed to determine the pathways involved in HF apoptosis. KEY FINDINGS HTK solution preserved the structure of HFs more effectively than RS, maintaining collagen organization, preventing intercellular edema, and sustaining cell membrane integrity. HFs preserved in HTK solution exhibited significantly higher viability and proliferation rates, with a reduced rate of apoptosis compared to RS. Gene expression profiling indicated that HTK group inhibited the activation of the TNF signaling pathway and mitochondrial dysfunction, which were associated with apoptosis in RS-preserved HFs. SIGNIFICANCE This study demonstrates that HTK solution is more effective than RS solution for HF preservation, particularly in extended storage settings required for large-scale hair transplantation. By inhibiting apoptosis pathways and preserving cellular integrity, HTK solution may enhance the success and outcomes of hair transplant procedures, providing insights into optimizing micrograft preservation and reducing ischemia-hypoxia injury in isolated HFs.
Collapse
Affiliation(s)
- Junfei Huang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Yi Zhou
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Haoyuan Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Lijuan Du
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Yangpeng Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China.
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, China.
| |
Collapse
|
3
|
Bacqueville D, Lévêque M, Mas C, Haure M, Noustens A, Mengeaud V, Carrère S, Bessou‐Touya S, Duplan H, Rizzi NC, Saurat J. New Plant Extracts Exert Complementary Anti-Hair Loss Properties in Human In Vitro and Ex Vivo Models. J Cosmet Dermatol 2024; 23 Suppl 5:1-11. [PMID: 39606918 PMCID: PMC11603400 DOI: 10.1111/jocd.16616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Hair loss is linked to dysfunction of the growth (anagen), regression (catagen) and rest (telogen) phases of the hair follicle (HF) cycle. AIMS To evaluate the effects of a Silybum marianum extract (SME), manganese PCA (MnPCA), and a Lespedeza capitata extract (LCE) on markers of hair growth and anchorage in human follicle dermal papilla cells (HFDPCs), and to investigate the ability of a topical serum containing these active ingredients to improve HF growth in an ex vivo human scalp skin model. METHODS In HFDPCs, we assessed receptor tyrosine kinase phosphorylation and Wnt/β-catenin pathway activation; quantified versican, vascular endothelial growth factor (VEGF) and Dickkopf-1 (DDK1) secretion; and evaluated 5α-reductase (5αR) activity. Using scalp skin biopsies from two female donors, we measured hair shaft elongation, analyzed hair matrix keratinocyte proliferation and apoptosis, and determined HF cycle stage and score. RESULTS Compared to untreated HFDPCs, SME upregulated phosphorylation of growth factor receptors (EGFR:1.9 × and PDGFR: 2.8 ×) and their downstream effectors (ERK, GSK3, Akt, and STAT: 1.2-2.0 ×); MnPCA enhanced versican (33.0 ×) and VEGF (3.3 ×) secretion, and stimulated the Wnt/β-catenin pathway (+80%); and LCE reduced DKK1 secretion (-72%) and 5αR activity (dihydrotestosterone/testosterone ratio: -60%). Compared to untreated scalp skin biopsies, the serum enhanced hair shaft elongation (+102%), and significantly prolonged the anagen phase by improving hair cycle scores and stimulating hair matrix keratinocyte proliferation (+58%). CONCLUSIONS SME, MnPCA, and LCE displayed complementary anti-hair loss properties. The serum combining these active ingredients may be useful in hair loss treatment.
Collapse
Affiliation(s)
- Daniel Bacqueville
- R & D DepartmentPierre Fabre Dermo‐Cosmétique and Personal CareToulouseFrance
| | - Marguerite Lévêque
- R & D DepartmentPierre Fabre Dermo‐Cosmétique and Personal CareToulouseFrance
| | - Camille Mas
- R & D DepartmentPierre Fabre Dermo‐Cosmétique and Personal CareToulouseFrance
| | - Marie‐José Haure
- R & D DepartmentPierre Fabre Dermo‐Cosmétique and Personal CareToulouseFrance
| | - Anaïs Noustens
- R & D DepartmentPierre Fabre Dermo‐Cosmétique and Personal CareToulouseFrance
| | | | - Sophie Carrère
- R & D DepartmentPierre Fabre Dermo‐Cosmétique and Personal CareToulouseFrance
| | | | - Hélène Duplan
- R & D DepartmentPierre Fabre Dermo‐Cosmétique and Personal CareToulouseFrance
| | | | | |
Collapse
|
4
|
Wang W, Wang H, Luo Y, Li Z, Li J. Discovery of petroleum ether extract of eclipta targeting p53/Fas pathway for the treatment of chemotherapy-induced alopecia: Network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118405. [PMID: 38844249 DOI: 10.1016/j.jep.2024.118405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ecliptea herba, a traditional Chinese herbal medicine for hair loss, was first recorded in the Tang Dynasty's 'Qian Jin Yue Ling', of which the active ingredients and mechanisms of action in the treatment of chemotherapy-induced hair loss remain poorly investigated. AIM OF THE STUDY To investigate the effects of the petroleum ether extract of Eclipta (PEE) on alopecia and follicle damage and elucidate its potential therapeutic mechanisms using the integration of network pharmacology, bioinformatics, and experimental validation. MATERIALS AND METHODS UPLC-MS was used to analyse the chemical composition of PEE. A network pharmacology approach was employed to establish the 'components-targets-pathways' network of PEE to explore potential therapeutic pathways and targets. Molecular docking was used for validation, and the mechanism of PEE in treating chemotherapy-induced alopecia (CIA) was elucidated using in vitro and in vivo on CIA models. RESULTS UPLC-MS analysis of PEE revealed 185 components, while network pharmacology and molecular docking analyses revealed potential active compounds and their target molecules, suggesting the involvement of core genes, such as TP53, ESR1, AKT1, IL6, TNF, and EGFR. The key components included wedelolactone, dimethyl-wedelolactone, luteoloside, linarin, and hispidulin. In vivo, PEE promoted hair growth, restored the number of hair follicles, and reduced follicle apoptosis. Conversely, in vitro, PEE enhanced cell viability, reduced apoptosis, and protected HaCaT cells from damage induced by 4-hydroperoxycyclophosphamide (4-HC). CONCLUSIONS PEE alleviated hair follicle damage in CIA mice by inhibiting the P53/Fas pathway, which may be associated with inhibiting hair follicle cell apoptosis. This study provides a novel therapeutic strategy for treating cyclophosphamide-induced hair loss.
Collapse
Affiliation(s)
- Wuji Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, 563006, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China.
| | - Honglan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, 563006, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Yang Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, 563006, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, 563006, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China; Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, 563006, China; Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China.
| |
Collapse
|
5
|
Li S, Zou Q, Jiang Y, Wang Y, Ding X. A pig model exploring the postnatal hair follicle cycle. Front Cell Dev Biol 2024; 12:1361485. [PMID: 39391350 PMCID: PMC11464431 DOI: 10.3389/fcell.2024.1361485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction The hair follicle (HF) is a micro-organ capable of regeneration. A HF cycle consists of an anagen, catagen and telogen. Abnormalities in the HF cycle can lead to many hair disorders such as hair loss. The pig is a good biomedical model, but there are few data on their HF cycle. The aim of this study was to classify the pig HF cycle and determine the feasibility of the pig as an animal model for human HF cycle. Methods Skin samples from 10 different postnatal (P) days Yorkshire pigs was collected to determine the key time points of the first HF cycle in pig by H&E staining, immunofluorescence staining, q-PCR and western-blot. Results By morphological observation and detection of markers at different stages, pig HF cycle was classified into three main periods - the first anagen until P45, catagen (P45-P85), telogen (P85-P100), and next anagen (>P100). In addition, we examined the expression of important genes AE15, CD34, Versican, Ki67 et al. related to the HF cycle at different stages of pig HF, indicating that pig and human share similarities in morphology and marker gene expression patterns of HF cycle. Discussion Our findings will facilitate the study of HF cycle and offer researchers a suitable model for human hair research.
Collapse
Affiliation(s)
| | | | | | | | - Xiangdong Ding
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Bertolini M, Gherardini J, Chéret J, Alam M, Sulk M, Botchkareva NV, Biro T, Funk W, Grieshaber F, Paus R. Mechanical epilation exerts complex biological effects on human hair follicles and perifollicular skin: An ex vivo study approach. Int J Cosmet Sci 2024; 46:175-198. [PMID: 37923568 DOI: 10.1111/ics.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE Electrical epilation of unwanted hair is a widely used hair removal method, but it is largely unknown how this affects the biology of human hair follicles (HF) and perifollicular skin. Here, we have begun to explore how mechanical epilation changes selected key biological read-out parameters ex vivo within and around the pilosebaceous unit. METHODS Human full-thickness scalp skin samples were epilated ex vivo using an electro-mechanical device, organ-cultured for up to 6 days in serum-free, supplemented medium, and assessed at different time points by quantitative (immuno-)histomorphometry for selected relevant read-out parameters in epilated and sham-epilated control samples. RESULTS Epilation removed most of the hair shafts, often together with fragments of the outer and inner root sheath and hair matrix. This was associated with persistent focal thinning of the HF basal membrane, decreased melanin content of the residual HF epithelium, and increased HF keratinocyte apoptosis, including in the bulge, yet without affecting the number of cytokeratin 15+ HF epithelial stem cells. Sebocyte apoptosis in the peripheral zone was increased, albeit without visibly altering sebum production. Epilation transiently perturbed HF immune privilege, and increased the expression of ICAM-1 in the bulge and bulb mesenchyme, and the number of perifollicular MHC class II+ cells as well as mast cells around the distal epithelium and promoted mast cell degranulation around the suprabulbar and bulbar area. Moreover, compared to controls, several key players of neurogenic skin inflammation, itch, and/or thermosensation (TRPV1, TRPA1, NGF, and NKR1) were differentially expressed in post-epilation skin. CONCLUSION These data generated in denervated, organ-cultured human scalp skin demonstrate that epilation-induced mechanical HF trauma elicits surprisingly complex biological responses. These may contribute to the delayed re-growth of thinner and lighter hair shafts post-epilation and temporary post-epilation discomfort. Our findings also provide pointers regarding the development of topically applicable agents that minimize undesirable sequelae of epilation.
Collapse
Affiliation(s)
- Marta Bertolini
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Jennifer Gherardini
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jérémy Chéret
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Majid Alam
- Department of Dermatology and Venereology, Qatar Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Mathias Sulk
- Department of Dermatology, University of Münster, Münster, Germany
| | - Natalia V Botchkareva
- Department of Dermatology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Tamas Biro
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Wolfgang Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Dr. Dr. med. Funk, Munich, Germany
| | | | - Ralf Paus
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- CUTANEON - Skin & Hair Innovations, Hamburg, Germany
| |
Collapse
|
7
|
Chen H, Yamaguchi S, Wang Y, Kaminogo K, Sakai K, Hibi H. Cytoprotective role of human dental pulp stem cell-conditioned medium in chemotherapy-induced alopecia. Stem Cell Res Ther 2024; 15:84. [PMID: 38500206 PMCID: PMC10949570 DOI: 10.1186/s13287-024-03695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Chemotherapy-induced alopecia (CIA) is a distressing adverse effect of chemotherapy, with an estimated incidence of 65% and limited treatment options. Cyclophosphamide (CYP) is a common alopecia-inducing chemotherapy agent. Human dental pulp stem cells (DPSCs) secrete several paracrine factors that up-regulate hair growth. Conditioned medium (CM) collected from DPSCs (DPSC-CM) promotes hair growth; culturing mesenchymal stem cells under hypoxic conditions can enhance this effect. METHODS The effect of DPSC-CM cultured under normoxic (N-) and hypoxic (H-) conditions against CYP-mediated cytotoxicity in keratinocytes was examined using cell viability assay, lactate dehydrogenase (LDH) cytotoxicity assay, and apoptosis detection. The damage-response pathway was determined in a well-established CIA mouse model by analyzing macroscopic effects, histology, and apoptosis. Reverse transcription-quantitative PCR and Caspase-3/7 activity assay were used to investigate the impact of DPSC-CM on the molecular damage-response pathways in CYP-treated mice. The effect of post-CIA DPSC-CM application on post-CIA hair regrowth was analyzed by macroscopic effects and microstructure observation of the hair surface. Furthermore, to investigate the safety of DPSC-CM as a viable treatment option, the effect of DPSC-CM on carcinoma cell lines was examined by cell viability assay and a subcutaneous tumor model. RESULTS In the cell viability assay, DPSC-CM was observed to increase the number of keratinocytes over varying CYP concentrations. Furthermore, it reduced the LDH activity level and suppressed apoptosis in CYP-treated keratinocytes. DPSC-CM exhibited the cytoprotective role in vivo via the dystrophic anagen damage-response pathway. While both N-CM and H-CM downregulated the Caspase-3/7 activity level, H-CM downregulated Caspase-3 mRNA expression. The proportion of post-CIA H-CM-treated mice with > 90% normal hair was nearly twice that of vehicle- or N-CM-treated mice between days 50 and 59 post-depilation, suggesting that post-CIA H-CM application may accelerate hair regrowth and improve hair quality. Furthermore, DPSC-CM suppressed proliferation in vitro in certain carcinoma cell lines and did not promote the squamous cell carcinoma (SCC-VII) tumor growth rate in mice. CONCLUSIONS The potentiality of DPSC-CM and H-CM as a promising cytoprotective agent and hair regrowth stimulant, respectively, for CIA needs in-depth exploration.
Collapse
Affiliation(s)
- Hui Chen
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Yamaguchi
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Yilin Wang
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kento Kaminogo
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyoshi Sakai
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Oral and Maxillofacial Surgery, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
8
|
Paus R, Sevilla A, Grichnik JM. Human Hair Graying Revisited: Principles, Misconceptions, and Key Research Frontiers. J Invest Dermatol 2024; 144:474-491. [PMID: 38099887 DOI: 10.1016/j.jid.2023.09.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 02/25/2024]
Abstract
Hair graying holds psychosocial importance and serves as an excellent model for studying human pigmentation and aging in an accessible miniorgan. Current evidence suggests that graying results from an interindividually varying mixture of cumulative oxidative and DNA damage, excessive mTORC1 activity, melanocyte senescence, and inadequate production of pigmentation-promoting factors in the hair matrix. Various regulators modulate this process, including genetic factors (DNA repair defects and IRF4 sequence variation, peripheral clock genes, P-cadherin signaling, neuromediators, HGF, KIT ligand secretion, and autophagic flux. This leads to reduced MITF- and tyrosinase-controlled melanogenesis, defective melanosome transfer to precortical matrix keratinocytes, and eventual depletion of hair follicle (HF) pigmentary unit (HFPU) melanocytes and their local progenitors. Graying becomes irreversible only when bulge melanocyte stem cells are also depleted, occurring later in this process. Distinct pigmentary microenvironments are created as the HF cycles: early anagen is the most conducive phase for melanocytic reintegration and activation, and only during anagen can the phenotype of hair graying and repigmentation manifest, whereas the HFPU disassembles during catagen. The temporary reversibility of graying is highlighted by several drugs and hormones that induce repigmentation, indicating potential target pathways. We advise caution in directly applying mouse model concepts, define major open questions, and discuss future human antigraying strategies.
Collapse
Affiliation(s)
- Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; CUTANEON - Skin & Hair Innovations, Hamburg, Germany; Monasterium Laboratory, Münster, Germany.
| | - Alec Sevilla
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Internal Medicine, Lakeland Regional Health, Lakeland, Florida, USA
| | - James M Grichnik
- Department of Dermatology & Cutaneous Surgery, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
9
|
Zhang L, Luo L, Chen JY, Singh R, Baldwin WM, Fox DA, Lindner DJ, Martin DF, Caspi RR, Lin F. A CD6-targeted antibody-drug conjugate as a potential therapy for T cell-mediated disorders. JCI Insight 2023; 8:e172914. [PMID: 37917882 PMCID: PMC10795824 DOI: 10.1172/jci.insight.172914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023] Open
Abstract
The selective targeting of pathogenic T cells is a holy grail in the development of new therapeutics for T cell-mediated disorders, including many autoimmune diseases and graft versus host disease. We describe the development of a CD6-targeted antibody-drug conjugate (CD6-ADC) by conjugating an inactive form of monomethyl auristatin E (MMAE), a potent mitotic toxin, onto a mAb against CD6, an established T cell surface marker. Even though CD6 is present on all T cells, only the activated (pathogenic) T cells vigorously divide and thus are susceptible to the antimitotic MMAE-mediated killing via the CD6-ADC. We found CD6-ADC selectively killed activated proliferating human T cells and antigen-specific mouse T cells in vitro. Furthermore, in vivo, whereas the CD6-ADC had no significant detrimental effect on normal T cells in naive CD6-humanized mice, the same dose of CD6-ADC, but not the controls, efficiently treated 2 preclinical models of autoimmune uveitis and a model of graft versus host disease. These results provide evidence suggesting that CD6-ADC could be further developed as a potential therapeutic agent for the selective elimination of pathogenic T cells and treatment of many T cell-mediated disorders.
Collapse
Affiliation(s)
- Lingjun Zhang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Liping Luo
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Jin Y. Chen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Rupesh Singh
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - William M. Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - David A. Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel J. Lindner
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Rachel R. Caspi
- Laboratory of Immunology, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Edelkamp J, Lousada MB, Pinto D, Chéret J, Calabrese FM, Jiménez F, Erdmann H, Wessel J, Phillip B, Angelis MD, Rinaldi F, Bertolini M, Paus R. Management of the human hair follicle microbiome by a synthetic odorant. J Dermatol Sci 2023; 112:99-108. [PMID: 37858476 DOI: 10.1016/j.jdermsci.2023.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/17/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Human scalp hair follicles (HFs) engage in olfactory receptor (OR)-dependent chemosensation. Activation of olfactory receptor family 2 subfamily AT member 4 (OR2AT4) by the synthetic, sandalwood-like odorant Sandalore® up-regulated HF antimicrobial peptide expression of dermcidin (DCD), which had previously been thought to be produced exclusively by sweat and sebaceous glands. OBJECTIVES To understand if intrafollicular DCD production can be stimulated by a commonly used cosmetic odorant, thus altering human HF microbiome composition in a clinically beneficial manner. METHODS DCD expression was compared between fresh-frozen scalp biopsies and microdissected, full-length scalp HFs, organ-cultured in the presence/absence of the OR2AT4 agonist, Sandalore® and/or antibiotics and/or the competitive OR2AT4 antagonist, Phenirat®. Amplicon-based sequencing and microbial growth assays were performed to assess how this treatment affected the HF microbiome. RESULTS Synthetic odorant treatment upregulated epithelial DCD expression and exerted antimicrobial activity in human HFs ex vivo. Combined antibiotic and odorant treatment, during an ex vivo dysbiosis event, prevented HF tissue damage and favoured a more physiological microbiome composition. Sandalore®-conditioned medium, containing higher DCD content, favoured Staphylococcus epidermidis and Malassezia restricta over S. aureus and M. globosa, while exhibiting antimicrobial activity against Cutibacterium acnes. These effects were reversed by co-administration of Phenirat®. CONCLUSIONS We provide the first proof-of-principle that a cosmetic odorant impacts the human HF microbiome by up-regulating antimicrobial peptide production in an olfactory receptor-dependent manner. Specifically, a synthetic sandalwood-like odorant stimulates intrafollicular DCD production, likely via OR2AT4, and thereby controls microbial overgrowth. Thus, deserving further exploration as an adjuvant therapeutic principle in the management of folliculitis and dysbiosis-associated hair diseases.
Collapse
Affiliation(s)
- Janin Edelkamp
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany.
| | - Marta B Lousada
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany; Zoological Institute, Christian-Albrechts, University Kiel, Kiel, Germany
| | | | - Jérémy Chéret
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Francisco Jiménez
- Mediteknia, Skin & Hair Lab, Las Palmas de Gran Canaria, Spain; University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | | | - Julia Wessel
- Institute of Molecular Microbiology and Biotechnology (IMMB), University of Münster, Münster, Germany
| | - Bodo Phillip
- Institute of Molecular Microbiology and Biotechnology (IMMB), University of Münster, Münster, Germany
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Marta Bertolini
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Ralf Paus
- Monasterium Laboratory Skin and Hair Research Solutions GmbH, Münster, Germany; Mediteknia, Skin & Hair Lab, Las Palmas de Gran Canaria, Spain; CUTANEON Skin & Hair Innovations, Hamburg, Germany
| |
Collapse
|
11
|
Cheret J, Samra T, Verling SD, Gherardini J, Rodriguez-Feliz J, Bauman AJ, Sanchez CA, Wikramanayake TC, Xu XX, Paus R. Low-Intensity Ultrasound as a Potential Intervention Strategy to Protect Human Scalp Hair Follicles from Taxane-Induced Toxicity. J Invest Dermatol 2023; 143:1809-1813.e2. [PMID: 36990174 DOI: 10.1016/j.jid.2023.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023]
Affiliation(s)
- Jeremy Cheret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Florida, USA
| | - Tara Samra
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Florida, USA
| | - Samantha D Verling
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Florida, USA
| | - Jennifer Gherardini
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Florida, USA
| | | | - Alan J Bauman
- Bauman Medical Hair Transplant & Hair Loss Treatment Center, Boca Raton, Florida, USA
| | - Celina Amaya Sanchez
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Tongyu C Wikramanayake
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Florida, USA
| | - Xiang-Xi Xu
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Florida, USA; Monasterium Laboratory, Münster, Germany; CUTANEON, Hamburg, Germany.
| |
Collapse
|
12
|
Wikramanayake TC, Haberland NI, Akhundlu A, Laboy Nieves A, Miteva M. Prevention and Treatment of Chemotherapy-Induced Alopecia: What Is Available and What Is Coming? Curr Oncol 2023; 30:3609-3626. [PMID: 37185388 PMCID: PMC10137043 DOI: 10.3390/curroncol30040275] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Millions of new cancer patients receive chemotherapy each year. In addition to killing cancer cells, chemotherapy is likely to damage rapidly proliferating healthy cells, including the hair follicle keratinocytes. Chemotherapy causes substantial thinning or loss of hair, termed chemotherapy-induced alopecia (CIA), in approximately 65% of patients. CIA is often ranked as one of the most distressing adverse effects of chemotherapy, but interventional options have been limited. To date, only scalp cooling has been cleared by the US Food and Drug Administration (FDA) to prevent CIA. However, several factors, including the high costs not always covered by insurance, preclude its broader use. Here we review the current options for CIA prevention and treatment and discuss new approaches being tested. CIA interventions include scalp cooling systems (both non-portable and portable) and topical agents to prevent hair loss, versus topical and oral minoxidil, photobiomodulation therapy (PBMT), and platelet-rich plasma (PRP) injections, among others, to stimulate hair regrowth after hair loss. Evidence-based studies are needed to develop and validate methods to prevent hair loss and/or accelerate hair regrowth in cancer patients receiving chemotherapy, which could significantly improve cancer patients’ quality of life and may help improve compliance and consequently the outcome of cancer treatment.
Collapse
|
13
|
Laufer Britva R, Keren A, Bertolini M, Ullmann Y, Paus R, Gilhar A. Involvement of ILC1-like innate lymphocytes in human autoimmunity, lessons from alopecia areata. eLife 2023; 12:80768. [PMID: 36930216 PMCID: PMC10023162 DOI: 10.7554/elife.80768] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Here, we have explored the involvement of innate lymphoid cells-type 1 (ILC1) in the pathogenesis of alopecia areata (AA), because we found them to be significantly increased around lesional and non-lesional HFs of AA patients. To further explore these unexpected findings, we first co-cultured autologous circulating ILC1-like cells (ILC1lc) with healthy, but stressed, organ-cultured human scalp hair follicles (HFs). ILClc induced all hallmarks of AA ex vivo: they significantly promoted premature, apoptosis-driven HF regression (catagen), HF cytotoxicity/dystrophy, and most important for AA pathogenesis, the collapse of the HFs physiological immune privilege. NKG2D-blocking or IFNγ-neutralizing antibodies antagonized this. In vivo, intradermal injection of autologous activated, NKG2D+/IFNγ-secreting ILC1lc into healthy human scalp skin xenotransplanted onto SCID/beige mice sufficed to rapidly induce characteristic AA lesions. This provides the first evidence that ILC1lc, which are positive for the ILC1 phenotype and negative for the classical NK markers, suffice to induce AA in previously healthy human HFs ex vivo and in vivo, and further questions the conventional wisdom that AA is always an autoantigen-dependent, CD8 +T cell-driven autoimmune disease.
Collapse
Affiliation(s)
- Rimma Laufer Britva
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
- Department of Dermatology, Rambam Health Care CampusHaifaIsrael
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| | | | - Yehuda Ullmann
- Department of Plastic Surgery, Rambam Medical CenterHaifaIsrael
| | - Ralf Paus
- Monasterium LaboratoryMünsterGermany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of MiamiMiamiUnited States
- CUTANEONHamburgGermany
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
14
|
Campiche R, Le Riche A, Edelkamp J, Botello AF, Martin E, Gempeler M, Bertolini M. An extract of Leontopodium alpinum inhibits catagen development ex vivo and increases hair density in vivo. Int J Cosmet Sci 2022; 44:363-376. [PMID: 35514231 PMCID: PMC9328135 DOI: 10.1111/ics.12783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/05/2022]
Abstract
Objectives Hair loss and reduction in hair volume are hallmarks of hair disorders, such as telogen effluvium, or male or female pattern hair loss, and hair ageing, which can cause severe distress in both men and women. Common anti‐hair loss drugs carry some side effects; therefore, novel, safer approaches targeting milder phenotypes are highly advocated. In this context, we investigated an extract of the alpine plant Edelweiss, Leontopodium alpinum var. Helvetia, for its ability to modulate hair follicle (HF) growth ex vivo and inhibit hair loss while increasing hair regeneration in vivo. Methods Human amputated HFs were microdissected from three donors, two women and one man, and cultured ex vivo for 6 days. After treatment with 0.001% Edelweiss extract (EWDE), we investigated hair shaft production and anagen/catagen conversion, and measured known parameters associated with hair growth, that is hair matrix keratinocyte proliferation and apoptosis, dermal papilla inductivity, and growth factors, by quantitative (immuno)histomorphometry. To assess the anti‐hair loss potential of the alpine plant compound, we performed a randomized, placebo‐controlled human study enrolling Caucasian women and men, aged 18 to 65 years, with normal hair loss. After 5 months’ daily use of an extract containing leave‐on serum, we analysed hair density and anagen‐to‐catagen/telogen ratio by the Trichogram analysis. Results Our results revealed a significant prolongation in the anagen phase in HFs treated with 0.001% Edelweiss, as indicated by an increase in HFs remaining in anagen and a significant decrease in hair cycle score. In line with this effect, EWDE significantly stimulated hair matrix (HM) keratinocyte proliferation, and dermal papilla inductivity, as shown by a significant up‐regulation of versican expression and alkaline phosphatase activity, and a tendential increase in FGF7 immunoreactivity in the dermal papilla of all HFs or only anagen VI HFs. Corroborating the ex vivo results, we observed a significant increase in growing hair shaft numbers (hair density) after treatment with Edelweiss extract formulation, and a tendential up‐regulation in the anagen‐to‐catagen/telogen ratio. Conclusions We show here, through several lines of evidence, that the selected extract of the alpine plant Leontopodium alpinum var Helvetia (Edelweiss) inhibits premature catagen induction, possibly by stimulating dermal papilla inductivity. It is therefore worth exploiting this extract clinically as an anti‐hair loss agent, both for preventing ageing‐associated hair shedding and as an adjuvant therapy for hair loss disorders.
Collapse
Affiliation(s)
- Remo Campiche
- DSM Nutritional Products, Personal Care & Aroma, Kaiseraugst, Switzerland
| | | | | | | | - Emmanuel Martin
- DSM Nutritional Products, Personal Care & Aroma, Kaiseraugst, Switzerland
| | - Mathias Gempeler
- DSM Nutritional Products, Personal Care & Aroma, Kaiseraugst, Switzerland
| | | |
Collapse
|
15
|
Wikramanayake TC, Chéret J, Sevilla A, Birch-Machin M, Paus R. Targeting mitochondria in dermatological therapy: Beyond oxidative damage and skin aging. Expert Opin Ther Targets 2022; 26:233-259. [PMID: 35249436 DOI: 10.1080/14728222.2022.2049756] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The analysis of the role of the mitochondria in oxidative damage and skin aging is a significant aspect of dermatological research. Mitochondria generate most reactive oxygen species (ROS); however, excessive ROS are cytotoxic and DNA-damaging and promote (photo-)aging. ROS also possesses key physiological and regulatory functions and mitochondrial dysfunction is prominent in several skin diseases including skin cancers. Although many standard dermatotherapeutics modulate mitochondrial function, dermatological therapy rarely targets the mitochondria. Accordingly, there is a rationale for "mitochondrial dermatology"-based approaches to be applied to therapeutic research. AREAS COVERED This paper examines the functions of mitochondria in cutaneous physiology beyond energy (ATP) and ROS production. Keratinocyte differentiation and epidermal barrier maintenance, appendage morphogenesis and homeostasis, photoaging and skin cancer are considered. Based on related PubMed search results, the paper evaluates thyroid hormones, glucocorticoids, Vitamin D3 derivatives, retinoids, cannabinoid receptor agonists, PPARγ agonists, thyrotropin, and thyrotropin-releasing hormone as instructive lead compounds. Moreover, the mitochondrial protein MPZL3 as a promising new drug target for future "mitochondrial dermatology" is highlighted. EXPERT OPINION Future dermatological therapeutic research should have a mitochondrial medicine emphasis. Focusing on selected lead agents, protein targets, in silico drug design, and model diseases will fertilize a mito-centric approach.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Jérémy Chéret
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Alec Sevilla
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Mark Birch-Machin
- Dermatological Sciences, Translational and Clinical Research Institute, and The UK National Innovation Centre for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Paus
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
16
|
Yue Z, Lei M, Paus R, Chuong CM. The global regulatory logic of organ regeneration: circuitry lessons from skin and its appendages. Biol Rev Camb Philos Soc 2021; 96:2573-2583. [PMID: 34145718 PMCID: PMC10874616 DOI: 10.1111/brv.12767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
In organ regeneration, the regulatory logic at a systems level remains largely unclear. For example, what defines the quantitative threshold to initiate regeneration, and when does the regeneration process come to an end? What leads to the qualitatively different responses of regeneration, which restore the original structure, or to repair which only heals a wound? Here we discuss three examples in skin regeneration: epidermal recovery after radiation damage, hair follicle fate choice after chemotherapy damage, and wound-induced feather regeneration. We propose that the molecular regulatory circuitry is of paramount significance in organ regeneration. It is conceivable that defects in these controlling pathways may lead to failed regeneration and/or organ renewal, and understanding the underlying logic could help to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- ZhiCao Yue
- Department of Cell Biology and Medical Genetics, Carson International Cancer Center, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518060, China
| | - Mingxing Lei
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400038, China
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, U.S.A
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA, 90033, U.S.A
| |
Collapse
|
17
|
Network Pharmacology Study and Experimental Confirmation Revealing the Ameliorative Effects of Decursin on Chemotherapy-Induced Alopecia. Pharmaceuticals (Basel) 2021; 14:ph14111150. [PMID: 34832932 PMCID: PMC8618121 DOI: 10.3390/ph14111150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Decursin, a pyranocoumarin compound from the root of Angelica gigas Nakai as a main constituent, has been reported to have various biological activities, including anti-inflammatory, anticancer, and antioxidant effects. This study aimed to predict and confirm the pharmacological relevance of Decursin on chemotherapy-induced alopecia (CIA) with the underlying molecular mechanisms. Decursin-targeted genes were compared with the gene set of alopecia and investigated through functional enrichment analysis. CIA was induced in C57BL/6J mice by injection of cyclophosphamide, and 1, 10, and 100 μM of Decursin were topically treated to depilated dorsal skin. KGF+ expression was detected in the dorsal skin tissues. Based on the predicted results, caspase, PIK3/AKT, and MAPKs protein expressions by Decursin were analyzed in the TNF-α-induced keratinocytes. The Decursin network had 60.20% overlapped genes with the network of alopecia. Biological processes, such as cellular response to chemical stimulus, apoptosis, PI3K-AKT signaling pathway, and MAPK signaling pathway, were derived from the Decursin network. In the Decursin-treated skin, there was morphological hair growth and histological restoration of hair follicles in the CIA mice. The KGF+ fluorescence and protein expressions were significantly increased by Decursin treatment. In addition, caspase-3, -7, and -8 expressions, induced by TNF-α, were dose-dependently decreased along with the inhibition of PI3K, AKT, ERK, and p38 expressions in Decursin-treated keratinocytes. These findings indicated that Decursin would be a potent therapeutic option for hair loss, in response to chemotherapy.
Collapse
|
18
|
Bhoyrul B, Asfour L, Lutz G, Mitchell L, Jerjen R, Sinclair RD, Holmes S, Chaudhry IH, Harries MJ. Clinicopathologic Characteristics and Response to Treatment of Persistent Chemotherapy-Induced Alopecia in Breast Cancer Survivors. JAMA Dermatol 2021; 157:1335-1342. [PMID: 34586345 DOI: 10.1001/jamadermatol.2021.3676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Importance Alopecia induced by classic chemotherapy affects up to 65% of patients and is usually reversible. However, there are increasing reports of persistent chemotherapy-induced alopecia (pCIA), especially for patients treated with taxane-containing chemotherapy regimens. Objective To analyze the clinicopathologic characteristics and response to treatment of patients with pCIA after chemotherapy for breast cancer. Design, Setting, and Participants In this case series, a retrospective evaluation was performed of patients with a diagnosis of pCIA after chemotherapy for breast cancer in 4 specialist hair clinics from November 1, 2011, to February 29, 2020. Main Outcomes and Measures Clinical, trichoscopic, and histopathologic characteristics and treatment outcomes were analyzed. For patients who presented with diffuse alopecia or diffuse rarefaction of hair over the midfrontal scalp with widening of the central part line and preservation of the frontal hairline, the Sinclair scale (grades 1-5, where 1 indicates normal hair density and 5 indicates the most severe stage of hair loss, with little or no hair in the centroparietal region) was used to assess severity. Results One hundred patients (99 women [99%]; mean age at presentation, 54.0 years [range, 29.0-74.1 years]) were included. Most patients had diffuse nonscarring alopecia (n = 39), female pattern hair loss (n = 55), or male pattern hair loss (n = 6). Six patients developed cicatricial alopecia. Taxane-containing regimens were used for most patients (92 [92%]) and were associated with more severe alopecia than regimens that did not contain taxanes (median Sinclair grade, 4 [IQR, 3-5] vs 2 [IQR, 2-2.5]; P < .001). A total of 76 of 86 patients (88%) had trichoscopic signs indistinguishable from those of androgenetic alopecia. Of 18 patients who had biopsies, 14 had androgenetic alopecia-like features, 2 had cicatricial alopecia, and 2 had features of both. Both topical and oral minoxidil, sometimes combined with antiandrogen therapy, were associated with an improvement in hair density (median Sinclair grade, 4 [IQR, 3-5] before treatment vs 3 [IQR, 2-4] after treatment; P < .001). Conclusions and Relevance This case series outlines previously unreported features of pCIA in patients with breast cancer, including a trichoscopic description. Cosmetically significant regrowth was achieved for a significant proportion of patients with topical or systemic treatments, suggesting that pCIA may be at least partly reversible.
Collapse
Affiliation(s)
| | - Leila Asfour
- The Dermatology Centre, Salford Royal National Health Service Foundation Trust, Salford, Greater Manchester, United Kingdom
| | - Gerhard Lutz
- Hair and Nail Medicine, Bonn, Germany.,Department of Dermatology and Allergy, University Hospital of Bonn, Bonn, Germany
| | - Lorne Mitchell
- Alan Lyell Centre for Dermatology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | | | - Rodney D Sinclair
- Sinclair Dermatology, Melbourne, Australia.,University of Melbourne, Melbourne, Australia
| | - Susan Holmes
- Alan Lyell Centre for Dermatology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Iskander H Chaudhry
- Department of Histopathology, Royal Liverpool and Broadgreen University Hospitals National Health Service Trust, Liverpool, United Kingdom
| | - Matthew J Harries
- The Dermatology Centre, Salford Royal National Health Service Foundation Trust, Salford, Greater Manchester, United Kingdom.,Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre and National Institute for Health Research Manchester Biomedical Research Centre, Manchester, United Kingdom
| |
Collapse
|
19
|
Piccini I, Brunken L, Chéret J, Ghatak S, Ramot Y, Alam M, Purba TS, Hardman J, Erdmann H, Jimenez F, Paus R, Bertolini M. PPARγ signaling protects hair follicle stem cells from chemotherapy-induced apoptosis and epithelial-mesenchymal transition. Br J Dermatol 2021; 186:129-141. [PMID: 34496034 DOI: 10.1111/bjd.20745] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Permanent chemotherapy-induced alopecia (pCIA), for which preventive interventions remain limited, can manifest with scarring. While the underlying pathomechanisms of pCIA are unclear, depletion of epithelial hair follicle (HF) stem cells (eHFSCs) is likely to play a role. OBJECTIVES To explore the hypothesis that eHFSCs undergo pathological epithelial-mesenchymal transition (EMT) besides apoptosis in pCIA, thus explaining the scarring phenotype. Furthermore, we tested whether a PPARγ modulator can prevent pCIA-associated pathomechanisms. METHODS Organ-cultured human scalp HFs were treated with the cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC). Additionally, HFs were pre-treated with the agnostic PPARγ modulator, N-Acetyl-GED-0507-34-Levo (NAGED), which we had previously shown to promote K15 expression and antagonize EMT in eHFSCs. RESULTS In accordance with anticipated hair bulb cytotoxicity, dystrophy and catagen induction, 4-HC promoted apoptosis along with increased p53 expression, DNA damage and pathological EMT in keratin 15+ (K15) bulge eHFSCs, as evidenced by decreased E-cadherin expression and the appearance of fibronectin- and vimentin-positive cells in the bulge. Pre-treatment with NAGED protected from 4-HC-induced hair bulb cytotoxicity/dystrophy, and halted apoptosis, p53 up-regulation, and EMT in the bulge, thereby significantly preventing the depletion of K15+ human eHFSCs ex vivo. CONCLUSIONS A cyclophosphamide metabolite alone suffices to damage and deplete human scalp eHFSCs by promoting apoptosis, DNA damage, and EMT ex vivo. Therefore, pCIA-therapeutic strategies need to target these pathological processes. Our data introduce the stimulation of PPARγ signaling as a novel intervention strategy for the prevention of pCIA, given the ability of NAGED to prevent chemotherapy-induced eHFSCs damage ex vivo.
Collapse
Affiliation(s)
- I Piccini
- Monasterium Laboratory, Münster, Germany
| | - L Brunken
- Monasterium Laboratory, Münster, Germany
| | - J Chéret
- Monasterium Laboratory, Münster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - S Ghatak
- Monasterium Laboratory, Münster, Germany
| | - Y Ramot
- Department of Dermatology, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - M Alam
- Monasterium Laboratory, Münster, Germany.,Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.,Dept. of Dermatology & Venereology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Doha, Qatar
| | - T S Purba
- Centre for Dermatology Research, University of Manchester, NIHR Biomedical Research Centre, Manchester, UK
| | - J Hardman
- Centre for Dermatology Research, University of Manchester, NIHR Biomedical Research Centre, Manchester, UK.,St John's Institute of Dermatology, King's College London, London, United Kingdom
| | | | - F Jimenez
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.,Mediteknia Dermatology Clinic, Las Palmas de Gran Canaria, Spain
| | - R Paus
- Monasterium Laboratory, Münster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, NIHR Biomedical Research Centre, Manchester, UK
| | | |
Collapse
|
20
|
Wikramanayake TC, Nicu C, Chéret J, Czyzyk TA, Paus R. Mitochondrially localized MPZL3 emerges as a signaling hub of mammalian physiology. Bioessays 2021; 43:e2100126. [PMID: 34486148 DOI: 10.1002/bies.202100126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022]
Abstract
MPZL3 is a nuclear-encoded, mitochondrially localized, immunoglobulin-like V-type protein that functions as a key regulator of epithelial cell differentiation, lipid metabolism, ROS production, glycemic control, and energy expenditure. Recently, MPZL3 has surfaced as an important modulator of sebaceous gland function and of hair follicle cycling, an organ transformation process that is also governed by peripheral clock gene activity and PPARγ. Given the phenotype similarities and differences between Mpzl3 and Pparγ knockout mice, we propose that MPZL3 serves as a signaling hub that is regulated by core clock gene products and/or PPARγ to translate signals from these nuclear transcription factors to the mitochondria to modulate circadian and metabolic regulation. Conservation between murine and human MPZL3 suggests that human MPZL3 may have similarly complex functions in health and disease. We summarize current knowledge and discuss future directions to elucidate the full spectrum of MPZL3 functions in mammalian physiology.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Carina Nicu
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Jérémy Chéret
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Traci A Czyzyk
- Department of Anesthesiology & Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA.,Metabolic Health Program, Mayo Clinic in Arizona, Scottsdale, Arizona, USA.,Discovery Biology-CMD, Merck & Co., Inc., South San Francisco, California, USA
| | - Ralf Paus
- Dr Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
21
|
Uchida Y, Gherardini J, Pappelbaum K, Chéret J, Schulte-Mecklenbeck A, Gross CC, Strbo N, Gilhar A, Rossi A, Funk W, Kanekura T, Almeida L, Bertolini M, Paus R. Resident human dermal γδT-cells operate as stress-sentinels: Lessons from the hair follicle. J Autoimmun 2021; 124:102711. [PMID: 34479087 DOI: 10.1016/j.jaut.2021.102711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/17/2021] [Accepted: 07/24/2021] [Indexed: 01/03/2023]
Abstract
Murine γδT-cells have stress-surveillance functions and are implicated in autoimmunity. Yet, whether human γδT-cells are also stress sentinels and directly promote autoimmune responses in the skin is unknown. Using a novel (mini-)organ assay, we tested if human dermis resident γδT-cells can recognize stressed human scalp hair follicles (HFs) to promote an alopecia areata (AA)-like autoimmune response. Accordingly, we show that γδT-cells from healthy human scalp skin are activated (CD69+), up-regulate the expression of NKG2D and IFN-γ, and become cytotoxic when co-cultured with autologous stressed HFs ex vivo. These autologous γδT-cells induce HF immune privilege collapse, dystrophy, and premature catagen, i.e. three hallmarks of the human autoimmune HF disorder, AA. This is mediated by CXCL12, MICA, and in part by IFN-γ and CD1d. In conclusion, human dermal γδT-cells exert physiological stress-sentinel functions in human skin, where their excessive activity can promote autoimmunity towards stressed HFs that overexpress CD1d, CXCL12, and/or MICA.
Collapse
Affiliation(s)
- Youhei Uchida
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jennifer Gherardini
- Monasterium Laboratory, Münster, Germany; Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | | | - Jérémy Chéret
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Amos Gilhar
- Skin Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alfredo Rossi
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, University ''La Sapienza'', Rome, Italy
| | - Wolfgang Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Dr. Dr. Med. Funk, Munich, Germany
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | - Ralf Paus
- Monasterium Laboratory, Münster, Germany; Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Centre for Dermatology Research, University of Manchester, MAHSC, And Manchester NIHR Biomedical Research Centre, Manchester, UK.
| |
Collapse
|
22
|
Stone RC, Aviv A, Paus R. Telomere Dynamics and Telomerase in the Biology of Hair Follicles and their Stem Cells as a Model for Aging Research. J Invest Dermatol 2021; 141:1031-1040. [PMID: 33509633 DOI: 10.1016/j.jid.2020.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
In this review, we propose that telomere length dynamics play an important but underinvestigated role in the biology of the hair follicle (HF), a prototypic, cyclically remodeled miniorgan that shows an intriguing aging pattern in humans. Whereas the HF pigmentary unit ages quickly, its epithelial stem cell (ESC) component and regenerative capacity are surprisingly aging resistant. Telomerase-deficient mice with short telomeres display an aging phenotype of hair graying and hair loss that is attributed to impaired HF ESC mobilization. Yet, it remains unclear whether the function of telomerase and telomeres in murine HF biology translate to the human system. Therefore, we propose new directions for future telomere research of the human HF. Such research may guide the development of novel treatments for selected disorders of human hair growth or pigmentation (e.g., chemotherapy-induced alopecia, telogen effluvium, androgenetic alopecia, cicatricial alopecia, graying). It might also increase the understanding of the global role of telomeres in aging-related human disease.
Collapse
Affiliation(s)
- Rivka C Stone
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA.
| | - Abraham Aviv
- The Center of Human Development and Aging, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom; Monasterium Laboratory, Münster, Germany
| |
Collapse
|
23
|
Haslam IS, Zhou G, Xie G, Teng X, Ao X, Yan Z, Smart E, Rutkowski D, Wierzbicka J, Zhou Y, Huang Z, Zhang Y, Farjo N, Farjo B, Paus R, Yue Z. Inhibition of Shh Signaling through MAPK Activation Controls Chemotherapy-Induced Alopecia. J Invest Dermatol 2021; 141:334-344. [DOI: 10.1016/j.jid.2020.05.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/16/2020] [Accepted: 05/11/2020] [Indexed: 01/09/2023]
|
24
|
Dunnill C, Ibraheem K, Peake M, Ioannou M, Palmer M, Smith A, Collett A, Georgopoulos NT. Cooling-mediated protection from chemotherapy drug-induced cytotoxicity in human keratinocytes by inhibition of cellular drug uptake. PLoS One 2020; 15:e0240454. [PMID: 33057448 PMCID: PMC7561111 DOI: 10.1371/journal.pone.0240454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/25/2020] [Indexed: 11/18/2022] Open
Abstract
Chemotherapy-induced alopecia (CIA) represents the most distressing side-effect for cancer patients. Scalp cooling is currently the only treatment to combat CIA, yet little is known about its cytoprotective effects in human hair follicles (HF). We have previously established in vitro human keratinocyte models to study the effects of taxanes and anthracyclines routinely-used clinically and reported that cooling markedly-reduced or even completely-prevented cytotoxicity in a temperature dependent manner. Using these models (including HF-derived primary keratinocytes), we now demonstrate that cooling markedly attenuates cellular uptake of the anthracyclines doxorubicin and epirubicin to reduce or prevent drug-mediated human keratinocyte cytotoxicity. We show marked reduction in drug uptake and nuclear localization qualitatively by fluorescence microscopy. We have also devised a flow cytometry-based methodology that permitted semi-quantitative analysis of differences in drug uptake, which demonstrated that cooling can reduce drug uptake by up to ~8-fold in comparison to normal/physiological temperature, an effect that was temperature-dependent. Our results provide evidence that attenuation of cellular drug uptake represents at least one of the mechanisms underpinning the ability of cooling to rescue human keratinocytes from chemotherapy drug-cytotoxicity, thus supporting the clinical efficacy of scalp cooling.
Collapse
Affiliation(s)
- Christopher Dunnill
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Khalidah Ibraheem
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Michael Peake
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Myria Ioannou
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Megan Palmer
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Adrian Smith
- Department of General Surgery, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield, United Kingdom
| | - Andrew Collett
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Nikolaos T. Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, United Kingdom
| |
Collapse
|
25
|
O'Sullivan JDB, Nicu C, Picard M, Chéret J, Bedogni B, Tobin DJ, Paus R. The biology of human hair greying. Biol Rev Camb Philos Soc 2020; 96:107-128. [PMID: 32965076 DOI: 10.1111/brv.12648] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Hair greying (canities) is one of the earliest, most visible ageing-associated phenomena, whose modulation by genetic, psychoemotional, oxidative, senescence-associated, metabolic and nutritional factors has long attracted skin biologists, dermatologists, and industry. Greying is of profound psychological and commercial relevance in increasingly ageing populations. In addition, the onset and perpetuation of defective melanin production in the human anagen hair follicle pigmentary unit (HFPU) provides a superb model for interrogating the molecular mechanisms of ageing in a complex human mini-organ, and greying-associated defects in bulge melanocyte stem cells (MSCs) represent an intriguing system of neural crest-derived stem cell senescence. Here, we emphasize that human greying invariably begins with the gradual decline in melanogenesis, including reduced tyrosinase activity, defective melanosome transfer and apoptosis of HFPU melanocytes, and is thus a primary event of the anagen hair bulb, not the bulge. Eventually, the bulge MSC pool becomes depleted as well, at which stage greying becomes largely irreversible. There is still no universally accepted model of human hair greying, and the extent of genetic contributions to greying remains unclear. However, oxidative damage likely is a crucial driver of greying via its disruption of HFPU melanocyte survival, MSC maintenance, and of the enzymatic apparatus of melanogenesis itself. While neuroendocrine factors [e.g. alpha melanocyte-stimulating hormone (α-MSH), adrenocorticotropic hormone (ACTH), ß-endorphin, corticotropin-releasing hormone (CRH), thyrotropin-releasing hormone (TRH)], and micropthalmia-associated transcription factor (MITF) are well-known regulators of human hair follicle melanocytes and melanogenesis, how exactly these and other factors [e.g. thyroid hormones, hepatocyte growth factor (HGF), P-cadherin, peripheral clock activity] modulate greying requires more detailed study. Other important open questions include how HFPU melanocytes age intrinsically, how psychoemotional stress impacts this process, and how current insights into the gerontobiology of the human HFPU can best be translated into retardation or reversal of greying.
Collapse
Affiliation(s)
- James D B O'Sullivan
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Carina Nicu
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Martin Picard
- Departments of Psychiatry and Neurology, Columbia University Irving Medical Center, 622 W 168th Street, PH1540N, New York, 10032, U.S.A
| | - Jérémy Chéret
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Barbara Bedogni
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Desmond J Tobin
- Charles Institute of Dermatology, University College Dublin, Dublin 4, Ireland
| | - Ralf Paus
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A.,Monasterium Laboratory, Skin & Hair Research Solutions GmbH, Münster, D-48149, Germany.,Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, M13 9PT, U.K
| |
Collapse
|
26
|
Huang WY, Hong JB, Chang M, Wang SY, Lai SF, Chien HF, Lin SJ. Lower proximal cup and outer root sheath cells regenerate hair bulbs during anagen hair follicle repair after chemotherapeutic injury. Exp Dermatol 2020; 30:503-511. [PMID: 32781495 DOI: 10.1111/exd.14175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/12/2020] [Accepted: 07/30/2020] [Indexed: 12/30/2022]
Abstract
The cell dynamics and cell origin for anagen hair follicle (HF) repair following chemotherapeutic injury are unclear. We first mapped the HF response to cyclophosphamide (CYP) at natural anagen VI in mice. We found that 30-60 mg/kg of CYP leads to dose-dependent HF dystrophy that was spontaneously repaired with anagen resumption, while 120 mg/kg of CYP prematurely induced catagen/telogen entry. To explore how anagen HF repair is achieved in the dystrophic anagen pathway, we analysed the cell dynamics at 30 mg/kg of CYP. Hair bulbs first shrunk due to matrix cell apoptosis associated with DNA double-strand breaks. DNA damage was repaired, and ordered hair bulb structures were restored within 96 hours. Bulge stem cells did not undergo apoptosis nor proliferation. K5+ basal lower proximal cup cells and outer root sheath cells quickly replenished the cells in the germinative zone and regenerated the concentric layered structures of the lower HF segment. Therefore, anagen HFs are able to summon extra-bulge progenitor cells in close proximity to the damaged matrix for quick repair after CYP injury.
Collapse
Affiliation(s)
- Wen-Yen Huang
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jin-Bon Hong
- Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Michael Chang
- Sophie Davis School of Biomedical Education, City University of New York, New York, NY, USA
| | - Shih-Yi Wang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Fan Lai
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiung-Fei Chien
- Division of Plastic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan.,TMU Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sung-Jan Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
27
|
Xing L, Ebetino FH, Boeckman RK, Srinivasan V, Tao J, Sawyer TK, Li J, Yao Z, Boyce BF. Targeting anti-cancer agents to bone using bisphosphonates. Bone 2020; 138:115492. [PMID: 32585321 PMCID: PMC8485333 DOI: 10.1016/j.bone.2020.115492] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
The skeleton is affected by numerous primary and metastatic solid and hematopoietic malignant tumors, which can cause localized sites of osteolysis or osteosclerosis that can weaken bones and increase the risk of fractures in affected patients. Chemotherapeutic drugs can eliminate some tumors in bones or reduce their volume and skeletal-related events, but adverse effects on non-target organs can significantly limit the amount of drug that can be administered to patients. In these circumstances, it may be impossible to deliver therapeutic drug concentrations to tumor sites in bones. One attractive mechanism to approach this challenge is to conjugate drugs to bisphosphonates, which can target them to bone where they can be released at diseased sites. Multiple attempts have been made to do this since the 1990s with limited degrees of success. Here, we review the results of pre-clinical and clinical studies made to target FDA-approved drugs and other antineoplastic small molecules to bone to treat diseases affecting the skeleton, including osteoporosis, metastatic bone disease, multiple myeloma and osteosarcoma. Results to date are encouraging and indicate that drug efficacy can be increased and side effects reduced using these approaches. Despite these successes, challenges remain: no drugs have gone beyond small phase 2 clinical trials, and major pharmaceutical companies have shown little interest in the approach to repurpose any of their drugs or to embrace the technology. Nevertheless, interest shown by smaller biotechnology companies in the technology suggests that bone-targeting of drugs with bisphosphonates has a viable future.
Collapse
Affiliation(s)
- Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Frank H Ebetino
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA; BioVinc, Pasadena, CA 91107, USA
| | - Robert K Boeckman
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | - Venkat Srinivasan
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | - Jianguo Tao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | - Jinbo Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
28
|
Lee EY, Nam YJ, Kang S, Choi EJ, Han I, Kim J, Kim DH, An JH, Lee S, Lee MH, Chung JH. The local hypothalamic-pituitary-adrenal axis in cultured human dermal papilla cells. BMC Mol Cell Biol 2020; 21:42. [PMID: 32522165 PMCID: PMC7310274 DOI: 10.1186/s12860-020-00287-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Stress is an important cause of skin disease, including hair loss. The hormonal response to stress is due to the HPA axis, which comprises hormones such as corticotropin releasing factor (CRF), adrenocorticotropic hormone (ACTH), and cortisol. Many reports have shown that CRF, a crucial stress hormone, inhibits hair growth and induces hair loss. However, the underlying mechanisms are still unclear. The aim of this study was to examine the effect of CRF on human dermal papilla cells (DPCs) as well as hair follicles and to investigate whether the HPA axis was established in cultured human DPCs. RESULTS CRF inhibited hair shaft elongation and induced early catagen transition in human hair follicles. Hair follicle cells, both human DPCs and human ORSCs, expressed CRF and its receptors and responded to CRF. CRF inhibited the proliferation of human DPCs through cell cycle arrest at G2/M phase and induced the accumulation of reactive oxygen species (ROS). Anagen-related cytokine levels were downregulated in CRF-treated human DPCs. Interestingly, increases in proopiomelanocortin (POMC), ACTH, and cortisol were induced by CRF in human DPCs, and antagonists for the CRF receptor blocked the effects of this hormone. CONCLUSION The results of this study showed that stress can cause hair loss by acting through stress hormones. Additionally, these results suggested that a fully functional HPA axis exists in human DPCs and that CRF directly affects human DPCs as well as human hair follicles under stress conditions.
Collapse
Affiliation(s)
- Eun Young Lee
- Department of Biotechnology, CHA University, 5th Flr. CHA Bio Complex, 355, Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea.,Center for Non-Clinical Evaluation, CHA Advanced Research Institute, Seongnam, Korea
| | - You Jin Nam
- Department of Biotechnology, CHA University, 5th Flr. CHA Bio Complex, 355, Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Sangjin Kang
- Department of Biotechnology, CHA University, 5th Flr. CHA Bio Complex, 355, Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea.,Chabio F&C, Seongnam, Korea
| | - Eun Ju Choi
- Department of Biotechnology, CHA University, 5th Flr. CHA Bio Complex, 355, Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam, Korea
| | | | - Dong Hyun Kim
- Department of Dermatology, CHA University, CHA Bundang Medical Center, Seongnam, Korea
| | - Ji Hae An
- Department of Dermatology, CHA University, CHA Bundang Medical Center, Seongnam, Korea
| | - Sunghou Lee
- Department of Biomedical Technology, College of Engineering, Sangmyung University, Cheonan, Korea
| | | | - Ji Hyung Chung
- Department of Biotechnology, CHA University, 5th Flr. CHA Bio Complex, 355, Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea.
| |
Collapse
|
29
|
Zhao J, Qin H, Xin J, Liu N, Han R, Perez-Campo FM, Li H. Discovery of genes and proteins possibly regulating mean wool fibre diameter using cDNA microarray and proteomic approaches. Sci Rep 2020; 10:7726. [PMID: 32382132 PMCID: PMC7206055 DOI: 10.1038/s41598-020-64903-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/30/2020] [Indexed: 01/06/2023] Open
Abstract
Wool fibre diameter (WFD) is one of the wool traits with higher economic impact. However, the main genes specifically regulating WFD remain unidentified. In this current work we have used Agilent Sheep Gene Expression Microarray and proteomic technology to investigate the gene expression patterns of body side skin, bearing more wool, in Aohan fine wool sheep, a Chinese indigenous breed, and compared them with that of small tail Han sheep, a sheep bread with coarse wool. Microarray analyses showed that most of the genes likely determining wool diameter could be classified into a few categories, including immune response, regulation of receptor binding and growth factor activity. Certain gene families might play a role in hair growth regulation. These include growth factors, immune cytokines, solute carrier families, cellular respiration and glucose transport amongst others. Proteomic analyses also identified scores of differentially expressed proteins.
Collapse
Affiliation(s)
- Jinshan Zhao
- Qingdao Agricultural University, Qingdao, China
- Qingdao Scitop Academy of Lactobacillus Co., Ltd, Qingdao, China
- Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, China
- China Agricultural University, Beijing, China
| | | | | | - Nan Liu
- Qingdao Agricultural University, Qingdao, China
| | - Rongwei Han
- Qingdao Agricultural University, Qingdao, China
| | | | - Hegang Li
- Qingdao Agricultural University, Qingdao, China.
- Qingdao Scitop Academy of Lactobacillus Co., Ltd, Qingdao, China.
- Qingdao Institute of Animal Science and Veterinary Medicine, Qingdao, China.
| |
Collapse
|
30
|
Carré J, Suzuki T, Paus R. Do hair follicles operate as primitive, multifocal kidney‐like excretory (mini‐) organs? Exp Dermatol 2020; 29:357-365. [DOI: 10.1111/exd.14076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Jean‐Luc Carré
- Département de Biochimie et Pharmaco‐Toxicologie Hôpital de la Cavale Blanche CHRU Brest France
- EA 4685 Laboratoire des Interactions Epithelium ‐ Neurones University of Brest Brest France
| | - Takahiro Suzuki
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
- Department of Dermatology Hamamatsu University School of Medicine Hamamatsu Japan
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
- Centre for Dermatology Research University of Manchester Manchester UK
- Monasterium Laboratory Münster Germany
| |
Collapse
|
31
|
Hargitai R, Roivainen P, Kis D, Luukkonen J, Sáfrány G, Seppälä J, Szatmári T, Virén T, Vuolukka K, Salomaa S, Lumniczky K. Mitochondrial DNA damage in the hair bulb: can it be used as a noninvasive biomarker of local exposure to low LET ionizing radiation? Int J Radiat Biol 2019; 96:491-501. [PMID: 31846382 DOI: 10.1080/09553002.2020.1704910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: Our aim was to evaluate whether mitochondrial DNA (mtDNA) damage in hair bulbs could be a suitable biomarker for the detection of local exposure to ionizing radiation.Materials and methods: Mouse hair was collected 4 and 24 hours, 3 and 10 days after single whole-body exposure to 0, 0.1, and 2 Gy radiation. Pubic hair (treated area) and scalp hair (control area) were collected from 13 prostate cancer patients before and after fractioned radiotherapy with an average total dose of 2.7 Gy to follicles after five fractions. Unspecified lesion frequency of mtDNA was analyzed with long PCR, large mtDNA deletion levels were tested with real-time PCR.Results: Unspecified lesion frequency of mtDNA significantly increased in mouse hair 24 hours after irradiation with 2 Gy, but variance among samples was high. No increase in lesion frequency could be detected after 0.1 Gy irradiation. In prostate cancer patients, there was no significant change in either the unspecified lesion frequency or in the proportion of 4934-bp deleted mtDNA in pubic hair after radiotherapy. The proportions of murine 3860-bp common deletion, human 4977-bp common deletion and 7455-bp deleted mtDNA were too low to be analyzed reliably.Conclusions: Our results suggest that the unspecified lesion frequency and proportion of large deletions of mtDNA in hair bulbs are not suitable biomarkers of exposure to ionizing radiation.
Collapse
Affiliation(s)
- Rita Hargitai
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - Päivi Roivainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dávid Kis
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - Jukka Luukkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Géza Sáfrány
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - Jan Seppälä
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Tünde Szatmári
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - Tuomas Virén
- Center of Oncology, Kuopio University Hospital, Kuopio, Finland
| | | | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Katalin Lumniczky
- Department of Radiation Medicine, Division of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| |
Collapse
|
32
|
Gherardini J, Wegner J, Chéret J, Ghatak S, Lehmann J, Alam M, Jimenez F, Funk W, Böhm M, Botchkareva NV, Ward C, Paus R, Bertolini M. Transepidermal UV radiation of scalp skin ex vivo induces hair follicle damage that is alleviated by the topical treatment with caffeine. Int J Cosmet Sci 2019; 41:164-182. [PMID: 30746733 PMCID: PMC6850087 DOI: 10.1111/ics.12521] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022]
Abstract
Objectives Although the effect of ultraviolet radiation (UVR) on human skin has been extensively studied, very little is known on how UVR impacts on hair follicle (HF) homeostasis. Here, we investigated how solar spectrum UVR that hits the human skin surface impacts on HF biology, and whether any detrimental effects can be mitigated by a widely used cosmetic and nutraceutical ingredient, caffeine. Methods Human scalp skin with terminal HFs was irradiated transepidermally ex vivo using either 10 J/cm2UVA (340–440 nm) + 20 mJ/cm2UVB (290–320 nm) (low dose) or 50 J/cm2UVA + 50 mJ/cm2UVB (high dose) and organ‐cultured under serum‐free conditions for 1 or 3 days. 0.1% caffeine (5.15 mmol/L) was topically applied for 3 days prior to UV exposure with 40 J/cm2UVA + 40 mJ/cm2UVB and for 3 days after UVR. The effects on various toxicity and vitality read‐out parameters were measured in defined skin and HF compartments. Results Consistent with previous results, transepidermal UVR exerted skin cytotoxicity and epidermal damage. Treatment with high and/or low UVA+UVB doses also induced oxidative DNA damage and cytotoxicity in human HFs. In addition, it decreased proliferation and promoted apoptosis of HF outer root sheath (ORS) and hair matrix (HM) keratinocytes, stimulated catagen development, differentially regulated the expression of HF growth factors, and induced perifollicular mast cell degranulation. UVR‐mediated HF damage was more severe after irradiation with high UVR dose and reached also proximal HF compartments. The topical application of 0.1% caffeine did not induce skin or HF cytotoxicity and stimulated the expression of IGF‐1 in the proximal HF ORS. However, it promoted keratinocyte apoptosis in selected HF compartments. Moreover, caffeine provided protection towards UVR‐mediated HF cytotoxicity and dystrophy, keratinocyte apoptosis, and tendential up‐regulation of the catagen‐promoting growth factor. Conclusion Our study highlights the clinical relevance of our scalp UV irradiation ex vivo assay and provides the first evidence that transepidermal UV radiation negatively affects important human HF functions. This suggests that it is a sensible prophylactic strategy to integrate agents such as caffeine that can act as HF photoprotectants into sun‐protective cosmeceutical and nutraceutical formulations.
Collapse
Affiliation(s)
| | | | | | | | | | - Majid Alam
- Mediteknia Skin & Hair Lab, Universidad Fernando Pessoa Canarias, and Medical Pathology Group, IUIBS, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Francisco Jimenez
- Mediteknia Skin & Hair Lab, Universidad Fernando Pessoa Canarias, and Medical Pathology Group, IUIBS, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Wolfgang Funk
- Clinic for Plastic, Aesthetic and Reconstructive Surgery Dr. med. Funk, Munich, Germany
| | - Markus Böhm
- Department of Dermatology, University of Muenster, Muenster, Germany
| | | | - Chris Ward
- Monasterium Laboratory GmbH, Muenster, Germany
| | - Ralf Paus
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom.,Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
33
|
Alam M, Bertolini M, Gherardini J, Keren A, Ponce L, Chéret J, Alenfall J, Dunér P, Nilsson AH, Gilhar A, Paus R. An osteopontin-derived peptide inhibits human hair growth at least in part by decreasing fibroblast growth factor-7 production in outer root sheath keratinocytes. Br J Dermatol 2019; 182:1404-1414. [PMID: 31487385 DOI: 10.1111/bjd.18479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Given that unwanted hair growth (hirsutism, hypertrichosis) can cause major psychological distress, new pharmacological treatment strategies with safe and effective hair growth inhibitors that do not destroy the hair follicle (HF) and its stem cells need to be developed. OBJECTIVES To establish if osteopontin-derived fragments may modulate human hair growth given that human HFs express the multifunctional, immunomodulatory glycoprotein, osteopontin. METHODS Our hypothesis was tested ex vivo and in vivo by using a newly generated, toxicologically well-characterized, modified osteopontin-derived peptide (FOL-005), which binds to the HF. RESULTS In organ-cultured human HFs and scalp skin, and in human scalp skin xenotransplants onto SCID mice, FOL-005 treatment (60 nmol L-1 to 3 μmol L-1 ) significantly promoted premature catagen development without reducing the number of keratin 15-positive HF stem cells or showing signs of drug toxicity. Genome-wide DNA microarray, quantitative reverse-transcriptase polymerase chain reaction and immunohistochemistry revealed decreased expression of the hair growth promoter, fibroblast growth factor-7 (FGF7) by FOL-005, while cotreatment of HFs with recombinant FGF7 partially abrogated FOL-005-induced catagen promotion. CONCLUSIONS With caveats in mind, our study identifies this osteopontin-derived peptide as an effective, novel inhibitory principle for human hair growth ex vivo and in vivo, which deserves systematic clinical testing in hirsutism and hypertrichosis. What's already known about this topic? The treatment of unwanted hair growth (hypertrichosis, hirsutism) lacks pharmacological intervention, with only few and often unsatisfactory treatments available. Osteopontin is prominently expressed in human HFs and has been reported to be elevated during catagen in the murine hair cycle. What does this study add? We tested the effects on hair growth of a novel, osteopontin-derived fragment (FOL-005) ex vivo and in vivo. In human hair follicles, high-dose FOL-005 significantly reduces hair growth both ex vivo and in vivo. What is the translational message? High-dose FOL-005 may provide a new therapeutic opportunity as a treatment for unwanted hair growth.
Collapse
Affiliation(s)
- M Alam
- Monasterium Laboratory - Skin and Hair Research Solutions GmbH, Münster, Germany.,Mediteknia Skin & Hair Lab, Las Palmas de Gran Canaria, Spain.,Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - M Bertolini
- Monasterium Laboratory - Skin and Hair Research Solutions GmbH, Münster, Germany
| | - J Gherardini
- Monasterium Laboratory - Skin and Hair Research Solutions GmbH, Münster, Germany
| | - A Keren
- Laboratory for Skin Research, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - L Ponce
- Monasterium Laboratory - Skin and Hair Research Solutions GmbH, Münster, Germany
| | - J Chéret
- Monasterium Laboratory - Skin and Hair Research Solutions GmbH, Münster, Germany
| | | | - P Dunér
- Follicum AB, Lund, Sweden.,Department of Clinical Sciences, Lund University, Lund, Sweden
| | - A H Nilsson
- Follicum AB, Lund, Sweden.,Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - A Gilhar
- Laboratory for Skin Research, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - R Paus
- Centre for Dermatology Research, University of Manchester and NIHR Manchester Biomedical Research Centre, Manchester, U.K.,Dr. Philip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| |
Collapse
|
34
|
Overall clinical and trichoscopic analysis performed in patients who underwent pressurized intraperitoneal aerosol chemotherapy (PIPAC) treatment for peritoneal carcinomatosis - initial trial preliminary report. Postepy Dermatol Alergol 2019; 36:461-467. [PMID: 31616222 PMCID: PMC6791163 DOI: 10.5114/ada.2018.77096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/14/2018] [Indexed: 11/17/2022] Open
Abstract
Introduction Cutaneous adverse events are among the remaining problematic issues of current oncology. The term peritoneal carcinomatosis (PC) refers to the advanced cancer stage. The innovative treatment of PC includes the use of pressurized intraperitoneal aerosol chemotherapy (PIPAC). Aim To present a preliminary report from an initial trial aimed at an overall clinical and trichoscopic analysis performed in patients who underwent PIPAC treatment due to PC. Material and methods For all steps of this study we obtained the consent of the local bioethics commission #KB 196/2018. Three different hair assessment methods were used in our study: 1) general clinical and patient self-feeling assessment; 2) hair pull test; 3) and trichoscopic analysis. Results No hair or scalp disorders were noted in the observation period. In the self-feeling test assessment the vast majority recognized their hair as being of comparable quality or even better in quality compared to previous forms of chemotherapy they had undergone. In all patients we observed a reduction of hair loss in the pull test in the hospitalization period. In trichoscopic analysis we found all determinants and signs of hair disorders in the assessed group. Conclusions The PIPAC is safe and is not a burdensome or aggressive form of therapy, especially according to the very important factors influencing the potential quality of hair and hair loss. The authors, however, realize that to obtain comprehensive results and evaluate this novel and promising method we need to perform more research without any limitations like those in our study.
Collapse
|
35
|
Purba TS, Ng'andu K, Brunken L, Smart E, Mitchell E, Hassan N, O'Brien A, Mellor C, Jackson J, Shahmalak A, Paus R. CDK4/6 inhibition mitigates stem cell damage in a novel model for taxane-induced alopecia. EMBO Mol Med 2019; 11:e11031. [PMID: 31512803 PMCID: PMC6783643 DOI: 10.15252/emmm.201911031] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 01/29/2023] Open
Abstract
Taxanes are a leading cause of severe and often permanent chemotherapy‐induced alopecia. As the underlying pathobiology of taxane chemotherapy‐induced alopecia remains poorly understood, we investigated how paclitaxel and docetaxel damage human scalp hair follicles in a clinically relevant ex vivo organ culture model. Paclitaxel and docetaxel induced massive mitotic defects and apoptosis in transit amplifying hair matrix keratinocytes and within epithelial stem/progenitor cell‐rich outer root sheath compartments, including within Keratin 15+ cell populations, thus implicating direct damage to stem/progenitor cells as an explanation for the severity and permanence of taxane chemotherapy‐induced alopecia. Moreover, by administering the CDK4/6 inhibitor palbociclib, we show that transit amplifying and stem/progenitor cells can be protected from paclitaxel cytotoxicity through G1 arrest, without premature catagen induction and additional hair follicle damage. Thus, the current study elucidates the pathobiology of taxane chemotherapy‐induced alopecia, highlights the paramount importance of epithelial stem/progenitor cell‐protective therapy in taxane‐based oncotherapy, and provides preclinical proof‐of‐principle in a healthy human (mini‐) organ that G1 arrest therapy can limit taxane‐induced tissue damage.
Collapse
Affiliation(s)
- Talveen S Purba
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Kayumba Ng'andu
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Lars Brunken
- Monasterium Laboratory - Skin & Hair Research Solutions GmbH, Münster, Germany
| | - Eleanor Smart
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Ellen Mitchell
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Nashat Hassan
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Aaron O'Brien
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Charlotte Mellor
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | - Jennifer Jackson
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK
| | | | - Ralf Paus
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester & NIHR Biomedical Research Centre, Manchester, UK.,Monasterium Laboratory - Skin & Hair Research Solutions GmbH, Münster, Germany.,Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
36
|
Kim JY, Ohn J, Yoon JS, Kang BM, Park M, Kim S, Lee W, Hwang S, Kim JI, Kim KH, Kwon O. Priming mobilization of hair follicle stem cells triggers permanent loss of regeneration after alkylating chemotherapy. Nat Commun 2019; 10:3694. [PMID: 31455775 PMCID: PMC6711970 DOI: 10.1038/s41467-019-11665-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
The maintenance of genetic integrity is critical for stem cells to ensure homeostasis and regeneration. Little is known about how adult stem cells respond to irreversible DNA damage, resulting in loss of regeneration in humans. Here, we establish a permanent regeneration loss model using cycling human hair follicles treated with alkylating agents: busulfan followed by cyclophosphamide. We uncover the underlying mechanisms by which hair follicle stem cells (HFSCs) lose their pool. In contrast to immediate destructive changes in rapidly proliferating hair matrix cells, quiescent HFSCs show unexpected massive proliferation after busulfan and then undergo large-scale apoptosis following cyclophosphamide. HFSC proliferation is activated through PI3K/Akt pathway, and depletion is driven by p53/p38-induced cell death. RNA-seq analysis shows that HFSCs experience mitotic catastrophe with G2/M checkpoint activation. Our findings indicate that priming mobilization causes stem cells to lose their resistance to DNA damage, resulting in permanent loss of regeneration after alkylating chemotherapy. Hair follicles (HFs) are sensitive to chemotherapy but recover from quiescent HF stem cells, although sometimes chemotherapy results in permanent loss. Here, Kim et al. establish a model of permanent chemotherapy-induced alopecia to uncover the underlying mechanisms depleting human HF stem cells.
Collapse
Affiliation(s)
- Jin Yong Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, 03080, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea
| | - Jungyoon Ohn
- Department of Dermatology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, 03080, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea
| | - Ji-Seon Yoon
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, 03080, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea
| | - Bo Mi Kang
- Department of Dermatology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, 03080, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea
| | - Minji Park
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, 03080, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sookyung Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Woochan Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | | | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Kyu Han Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, 03080, Korea.,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, 03080, Korea. .,Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, 03080, Korea.
| |
Collapse
|
37
|
Inhibition of ATP binding cassette transporter B1 sensitizes human hair follicles to chemotherapy-induced damage. J Dermatol Sci 2019; 95:44-47. [PMID: 31272852 DOI: 10.1016/j.jdermsci.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 01/08/2023]
|
38
|
Philpott MP. Culture of the human pilosebaceous unit, hair follicle and sebaceous gland. Exp Dermatol 2019; 27:571-577. [PMID: 29693730 DOI: 10.1111/exd.13669] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 12/25/2022]
Abstract
Terence Kealey first pioneered the isolation and organ maintenance of human eccrine and sebaceous glands in the early to mid-1980. This led to subsequent methods describing the isolation and culture of human hair follicles, the human pilosebaceous unit as well as the sebaceous duct. The importance of these models in the study of the biology of human skin glands and appendages has been demonstrated in numerous publications and their importance as models for animal replacement, refinement and reduction (3Rs) is increasingly important. In particular, in vitro (ex vivo) hair follicle culture has played a significant part in helping elucidate the role of signalling molecules in regulating hair growth and hair fibre formation and has been especially useful in understanding metabolic aspects of hair growth. However, obtaining sufficient numbers of hair follicles is becoming increasingly difficult as plastic surgery becomes less invasive and smaller skin samples provided. There is therefore an urgent requirement for the next generation of in vitro models using cell lines and tissue engineering, and this has led to the development of immortalised cell lines as well as attempts to model hair follicle embryogenesis in vitro and development of skin on a chip.
Collapse
Affiliation(s)
- Michael P Philpott
- Centre for Cell Biology and Cutaneous Research Blizard Institute, Queen Mary University London, London, UK
| |
Collapse
|
39
|
Haslam IS, Smart E. Chemotherapy-Induced Hair Loss: The Use of Biomarkers for Predicting Alopecic Severity and Treatment Efficacy. Biomark Insights 2019; 14:1177271919842180. [PMID: 31037027 PMCID: PMC6475836 DOI: 10.1177/1177271919842180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/08/2019] [Indexed: 01/08/2023] Open
Abstract
Damage to hair follicles following exposure to toxic chemotherapeutics can cause substantial hair loss, commonly known as chemotherapy-induced alopecia (CIA). Preventive therapies remain limited; however, recent advances in the use of scalp cooling technologies have proved successful in preventing or reducing hair loss in some patients. Further improvements in scalp cooling efficacy and/or development of novel treatments to prevent chemotherapy-induced hair loss are required. To achieve this, post-chemotherapy assessment of hair follicle damage markers, with and without scalp cooling, would provide invaluable mechanistic and prognostic information. At present, the availability of such data is extremely limited. This article describes the potential utility of a combination of biomarkers in assessing drug-induced alopecia and the protective potential of existing or new treatments. A greater understanding of the precise mechanisms of anti-CIA therapies through biomarker analysis would enhance the rationale, use, and development of such treatments.
Collapse
Affiliation(s)
- Iain S Haslam
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Eleanor Smart
- Centre for Dermatology Research, University of Manchester, Manchester, UK
| |
Collapse
|
40
|
Zhang GY, Langan EA, Meier NT, Funk W, Siemers F, Paus R. Thyroxine (T4) may promote re-epithelialisation and angiogenesis in wounded human skin ex vivo. PLoS One 2019; 14:e0212659. [PMID: 30925152 PMCID: PMC6440638 DOI: 10.1371/journal.pone.0212659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
There is a pressing need for improved preclinical model systems in which to study human skin wound healing. Here, we report the development and application of a serum-free full thickness human skin wound healing model. Not only can re-epithelialization (epidermal repair) and angiogenesis be studied in this simple and instructive model, but the model can also be used to identify clinically relevant wound-healing promoting agents, and to dissect underlying candidate mechanisms of action in the target tissue. We present preliminary ex vivo data to suggest that Thyroxine (T4), which reportedly promotes skin wound healing in rodents in vivo, may promote key features of human skin wound healing. Namely, T4 stimulates re-epithelialisation and angiogenesis, and modulates both wound healing-associated epidermal keratin expression and energy metabolism in experimentally wound human skin. Functionally, the wound healing-promoting effects of T4 are at least partially mediated via fibroblast growth factor/fibroblast growth factor receptor-mediated signalling, since they could be significantly antagonized by bFGF-neutralizing antibody. Thus, this pragmatic, easy-to-use full-thickness human skin wound healing model provides a useful preclinical research tool in the search for clinically relevant candidate wound healing-promoting agents. These ex vivo data encourage further pre-clinical testing of topical T4 as a cost-efficient, novel agent in the management of chronic human skin wounds.
Collapse
Affiliation(s)
- Guo-You Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ewan A. Langan
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | | | | | - Frank Siemers
- Department of Plastic and Hand Surgery, BG Klinikum Bergmannstrost, Halle/Salle, Germany
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Gao Q, Zhou G, Lin SJ, Paus R, Yue Z. How chemotherapy and radiotherapy damage the tissue: Comparative biology lessons from feather and hair models. Exp Dermatol 2018; 28:413-418. [PMID: 30457678 DOI: 10.1111/exd.13846] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022]
Abstract
Chemotherapy and radiotherapy are common modalities for cancer treatment. While targeting rapidly growing cancer cells, they also damage normal tissues and cause adverse effects. From the initial insult such as DNA double-strand break, production of reactive oxygen species (ROS) and a general stress response, there are complex regulatory mechanisms that control the actual tissue damage process. Besides apoptosis, a range of outcomes for the damaged cells are possible including cell cycle arrest, senescence, mitotic catastrophe, and inflammatory responses and fibrosis at the tissue level. Feather and hair are among the most actively proliferating (mini-)organs and are highly susceptible to both chemotherapy and radiotherapy damage, thus provide excellent, experimentally tractable model systems for dissecting how normal tissues respond to such injuries. Taking a comparative biology approach to investigate this has turned out to be particularly productive. Started in chicken feather and then extended to murine hair follicles, it was revealed that in addition to p53-mediated apoptosis, several other previously overlooked mechanisms are involved. Specifically, Shh, Wnt, mTOR, cytokine signalling and ROS-mediated degradation of adherens junctions have been implicated in the damage and/or reparative regeneration process. Moreover, we show here that inflammatory responses, which can be prominent upon histological examination of chemo- or radiotherapy-damaged hair follicle, may not be essential for the hair loss phenotype. These studies point to fundamental, evolutionarily conserved mechanisms in controlling tissue responses in vivo, and suggest novel strategies for the prevention and management of adverse effects that arise from chemo- or radiotherapy.
Collapse
Affiliation(s)
- QingXiang Gao
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - GuiXuan Zhou
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian, China
| | - Sung-Jan Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.,Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Centre for Dermatology Research, University of Manchester, Manchester, UK
| | - ZhiCao Yue
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
42
|
Riccio G, Sommella E, Badolati N, Salviati E, Bottone S, Campiglia P, Dentice M, Tenore GC, Stornaiuolo M, Novellino E. Annurca Apple Polyphenols Protect Murine Hair Follicles from Taxane Induced Dystrophy and Hijacks Polyunsaturated Fatty Acid Metabolism toward β-Oxidation. Nutrients 2018; 10:nu10111808. [PMID: 30463345 PMCID: PMC6267362 DOI: 10.3390/nu10111808] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/31/2018] [Accepted: 11/14/2018] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy-induced alopecia (CIA) is a common side effect of conventional chemotherapy and represents a major problem in clinical oncology. Even months after the end of chemotherapy, many cancer patients complain of hair loss, a condition that is psychologically difficult to manage. CIA disturbs social and sexual interactions and causes anxiety and depression. Synthetic drugs protecting from CIA and endowed with hair growth stimulatory properties are prescribed with caution by oncologists. Hormones, growth factors, morphogens could unwontedly protect tumour cells or induce cancer cell proliferation and are thus considered incompatible with many chemotherapy regimens. Nutraceuticals, on the contrary, have been shown to be safe and effective treatment options for hair loss. We here show that polyphenols from Malus Pumila Miller cv Annurca are endowed with hair growth promoting activity and can be considered a safe alternative to avoid CIA. In vitro, Annurca Apple Polyphenolic Extract (AAE) protects murine Hair Follicles (HF) from taxanes induced dystrophy. Moreover, in virtue of its mechanism of action, AAE is herein proven to be compatible with chemotherapy regimens. AAE forces HFs to produce ATP using mitochondrial β-oxidation, reducing Pentose Phosphate Pathway (PPP) rate and nucleotides production. As consequence, DNA replication and mitosis are not stimulated, while a pool of free amino acids usually involved in catabolic reactions are spared for keratin production. Moreover, measuring the effect exerted on Poly Unsaturated Fatty Acid (PUFA) metabolism, we prove that AAE promotes hair-growth by increasing the intracellular levels of Prostaglandins F2α (PGF2α) and by hijacking PUFA catabolites toward β-oxidation.
Collapse
Affiliation(s)
- Gennaro Riccio
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Eduardo Sommella
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
| | - Nadia Badolati
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Emanuela Salviati
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
| | - Sara Bottone
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Pietro Campiglia
- Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy.
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80149 Naples, Italy.
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II. Via Montesano 49, 80149 Naples, Italy.
| |
Collapse
|
43
|
Rossi A, Caterina Fortuna M, Caro G, Cardone M, Garelli V, Grassi S, Carlesimo M. Monitoring chemotherapy‐induced alopecia with trichoscopy. J Cosmet Dermatol 2018; 18:575-580. [DOI: 10.1111/jocd.12687] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/11/2018] [Accepted: 05/10/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Alfredo Rossi
- Department of Internal Medicine and Medical Specialties “Sapienza” University of Rome Rome Italy
| | - Maria Caterina Fortuna
- Department of Internal Medicine and Medical Specialties “Sapienza” University of Rome Rome Italy
| | - Gemma Caro
- Department of Internal Medicine and Medical Specialties “Sapienza” University of Rome Rome Italy
| | - Michele Cardone
- Department of Internal Medicine and Medical Specialties “Sapienza” University of Rome Rome Italy
| | - Valentina Garelli
- Department of Internal Medicine and Medical Specialties “Sapienza” University of Rome Rome Italy
| | - Sara Grassi
- Dermatology, Department of Clinical‐Surgical, Diagnostic and Pediatric Sciences University of Pavia Pavia Italy
| | - Marta Carlesimo
- Department of Internal Medicine and Medical Specialties “Sapienza” University of Rome Rome Italy
| |
Collapse
|
44
|
Rossi A, Fortuna MC, Caro G, Pigliacelli F, D'Arino A, Carlesimo M. Chemotherapy-induced alopecia: A novel observation. Australas J Dermatol 2018; 60:e61-e62. [PMID: 29741222 DOI: 10.1111/ajd.12835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alfredo Rossi
- Department of Internal Medicine and Medical Specialties, II School, Sapienza University of Rome, Rome, Italy
| | - Maria Caterina Fortuna
- Department of Internal Medicine and Medical Specialties, II School, Sapienza University of Rome, Rome, Italy
| | - Gemma Caro
- Department of Internal Medicine and Medical Specialties, II School, Sapienza University of Rome, Rome, Italy
| | - Flavia Pigliacelli
- Department of Internal Medicine and Medical Specialties, II School, Sapienza University of Rome, Rome, Italy
| | - Andrea D'Arino
- Department of Internal Medicine and Medical Specialties, II School, Sapienza University of Rome, Rome, Italy
| | - Marta Carlesimo
- Department of Dermatology, II School, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
45
|
Parodi C, Hardman JA, Allavena G, Marotta R, Catelani T, Bertolini M, Paus R, Grimaldi B. Autophagy is essential for maintaining the growth of a human (mini-)organ: Evidence from scalp hair follicle organ culture. PLoS Biol 2018; 16:e2002864. [PMID: 29590104 PMCID: PMC5891029 DOI: 10.1371/journal.pbio.2002864] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 04/09/2018] [Accepted: 03/08/2018] [Indexed: 12/11/2022] Open
Abstract
Autophagy plays a crucial role in health and disease, regulating central cellular processes such as adaptive stress responses, differentiation, tissue development, and homeostasis. However, the role of autophagy in human physiology is poorly understood, highlighting a need for a model human organ system to assess the efficacy and safety of strategies to therapeutically modulate autophagy. As a complete, cyclically remodelled (mini-)organ, the organ culture of human scalp hair follicles (HFs), which, after massive growth (anagen), spontaneously enter into an apoptosis-driven organ involution (catagen) process, may provide such a model. Here, we reveal that in anagen, hair matrix keratinocytes (MKs) of organ-cultured HFs exhibit an active autophagic flux, as documented by evaluation of endogenous lipidated Light Chain 3B (LC3B) and sequestosome 1 (SQSTM1/p62) proteins and the ultrastructural visualization of autophagosomes at all stages of the autophagy process. This autophagic flux is altered during catagen, and genetic inhibition of autophagy promotes catagen development. Conversely, an anti-hair loss product markedly enhances intrafollicular autophagy, leading to anagen prolongation. Collectively, our data reveal a novel role of autophagy in human hair growth. Moreover, we show that organ-cultured scalp HFs are an excellent preclinical research model for exploring the role of autophagy in human tissue physiology and for evaluating the efficacy and tissue toxicity of candidate autophagy-modulatory agents in a living human (mini-)organ.
Collapse
Affiliation(s)
- Chiara Parodi
- Department of Drug Discovery and Development, Laboratory of Molecular Medicine, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Jonathan A. Hardman
- The Centre for Dermatology Research, University of Manchester, MAHSC, and National Institutes of Health Biomedical Research Center, Manchester, United Kingdom
| | - Giulia Allavena
- Department of Drug Discovery and Development, Laboratory of Molecular Medicine, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Roberto Marotta
- Department of Drug Discovery and Development, Laboratory of Molecular Medicine, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Tiziano Catelani
- Department of Drug Discovery and Development, Laboratory of Molecular Medicine, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | - Marta Bertolini
- Monasterium Laboratory, Münster, Germany
- Department of Dermatology, University of Münster, Münster, Germany
| | - Ralf Paus
- The Centre for Dermatology Research, University of Manchester, MAHSC, and National Institutes of Health Biomedical Research Center, Manchester, United Kingdom
- Monasterium Laboratory, Münster, Germany
- Department of Dermatology and Cutaneous Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Benedetto Grimaldi
- Department of Drug Discovery and Development, Laboratory of Molecular Medicine, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| |
Collapse
|
46
|
Dunnill CJ, Al-Tameemi W, Collett A, Haslam IS, Georgopoulos NT. A Clinical and Biological Guide for Understanding Chemotherapy-Induced Alopecia and Its Prevention. Oncologist 2017; 23:84-96. [PMID: 28951499 DOI: 10.1634/theoncologist.2017-0263] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced alopecia (CIA) is the most visibly distressing side effect of commonly administered chemotherapeutic agents. Because psychological health has huge relevance to lifestyle, diet, and self-esteem, it is important for clinicians to fully appreciate the psychological burden that CIA can place on patients. Here, for the first time to our knowledge, we provide a comprehensive review encompassing the molecular characteristics of the human hair follicle (HF), how different anticancer agents damage the HF to cause CIA, and subsequent HF pathophysiology, and we assess known and emerging prevention modalities that have aimed to reduce or prevent CIA. We argue that, at present, scalp cooling is the only safe and U.S. Food and Drug Administration-cleared modality available, and we highlight the extensive available clinical and experimental (biological) evidence for its efficacy. The likelihood of a patient that uses scalp cooling during chemotherapy maintaining enough hair to not require a wig is approximately 50%. This is despite different types of chemotherapy regimens, patient-specific differences, and possible lack of staff experience in effectively delivering scalp cooling. The increased use of scalp cooling and an understanding of how to deliver it most effectively to patients has enormous potential to ease the psychological burden of CIA, until other, more efficacious, equally safe treatments become available. IMPLICATIONS FOR PRACTICE Chemotherapy-induced alopecia (CIA) represents perhaps the most distressing side effect of chemotherapeutic agents and is of huge concern to the majority of patients. Scalp cooling is currently the only safe option to combat CIA. Clinical and biological evidence suggests improvements can be made, including efficacy in delivering adequately low temperature to the scalp and patient-specific cap design. The increased use of scalp cooling, an understanding of how to deliver it most effectively, and biological evidence-based approaches to improve its efficacy have enormous potential to ease the psychological burden of CIA, as this could lead to improvements in treatment and patient quality-of-life.
Collapse
Affiliation(s)
- Christopher John Dunnill
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, United Kingdom
| | - Wafaa Al-Tameemi
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Andrew Collett
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, United Kingdom
| | - Iain Stuart Haslam
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, United Kingdom
| | - Nikolaos Theodoros Georgopoulos
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, United Kingdom
| |
Collapse
|
47
|
Jadkauskaite L, Coulombe PA, Schäfer M, Dinkova-Kostova AT, Paus R, Haslam IS. Oxidative stress management in the hair follicle: Could targeting NRF2 counter age-related hair disorders and beyond? Bioessays 2017; 39. [PMID: 28685843 DOI: 10.1002/bies.201700029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Widespread expression of the transcription factor, nuclear factor (erythroid-derived 2)-like 2 (NRF2), which maintains redox homeostasis, has recently been identified in the hair follicle (HF). Small molecule activators of NRF2 may therefore be useful in the management of HF pathologies associated with redox imbalance, ranging from HF greying and HF ageing via androgenetic alopecia and alopecia areata to chemotherapy-induced hair loss. Indeed, NRF2 activation has been shown to prevent peroxide-induced hair growth inhibition. Multiple parameters can increase the levels of reactive oxygen species in the HF, for example melanogenesis, depilation-induced trauma, neurogenic and autoimmune inflammation, toxic drugs, environmental stressors such as UV irradiation, genetic defects and aging-associated mitochondrial dysfunction. In this review, the potential mechanisms whereby NRF2 activation could prove beneficial in treatment of redox-associated HF disorders are therefore discussed.
Collapse
Affiliation(s)
- Laura Jadkauskaite
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthias Schäfer
- Department of Biology, Institute of Molecular Health Sciences, Swiss Institute of Technology (ETH), Zürich, Switzerland
| | - Albena T Dinkova-Kostova
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Ralf Paus
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK.,Department of Dermatology, University of Münster, Münster, Germany
| | - Iain S Haslam
- Centre for Dermatology Research, School of Biological Sciences, University of Manchester, Manchester, UK.,Department of Biological Sciences, School of Applied Science, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
48
|
Haslam IS, Jadkauskaite L, Szabó IL, Staege S, Hesebeck-Brinckmann J, Jenkins G, Bhogal RK, Lim FL, Farjo N, Farjo B, Bíró T, Schäfer M, Paus R. Oxidative Damage Control in a Human (Mini-) Organ: Nrf2 Activation Protects against Oxidative Stress-Induced Hair Growth Inhibition. J Invest Dermatol 2017; 137:295-304. [DOI: 10.1016/j.jid.2016.08.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/08/2023]
|
49
|
Purba TS, Brunken L, Hawkshaw NJ, Peake M, Hardman J, Paus R. A primer for studying cell cycle dynamics of the human hair follicle. Exp Dermatol 2016; 25:663-8. [PMID: 27094702 DOI: 10.1111/exd.13046] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2016] [Indexed: 12/28/2022]
Abstract
The cell cycle is of major importance to human hair follicle (HF) biology. Not only is continuously active cell cycling required to facilitate healthy hair growth in anagen VI HFs, but perturbations in the cell cycle are likely to be of significance in HF pathology (i.e. in scarring, non-scarring, chemotherapy-induced and androgenic alopecias). However, cell cycle dynamics of the human hair follicle (HF) are poorly understood in contrast to what is known in mouse. The current Methods Review aims at helping to close this gap by presenting a primer that introduces immunohistological/immunofluorescent techniques to study the cell cycle in the human HF. Moreover, this primer encourages the exploitation of the human HF as a powerful and clinically relevant tool to investigate mammalian cell cycle biology in situ. To achieve this, we describe methods to study markers of general 'proliferation' (nuclei count, Ki-67 expression), apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labelling, cleaved caspase 3), mitosis (phospho-histone H3, 'pS780'), DNA synthesis (5-ethynyl-2'-deoxyuridine) and cell cycle regulation (cyclins) in the human HF. In addition, we provide specific examples of dual immunolabelling for instructive cell cycle analyses and for investigating the cell cycle behaviour of specific HF keratinocyte subpopulations, such as keratin 15+ stem/progenitor cells.
Collapse
Affiliation(s)
- Talveen S Purba
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lars Brunken
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Department of Dermatology, Venerology and Allergy, Charité University Medicine Berlin, Berlin, Germany
| | - Nathan J Hawkshaw
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Michael Peake
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,BSc Programme Biological Sciences, University of Huddersfield, Huddersfield, UK
| | - Jonathan Hardman
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Ralf Paus
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Department of Dermatology, University of Münster, Münster, Germany
| |
Collapse
|
50
|
Botchkarev VA, Sharov AA. Modeling Chemotherapy-Induced Hair Loss: From Experimental Propositions toward Clinical Reality. J Invest Dermatol 2016; 136:557-559. [PMID: 26902124 DOI: 10.1016/j.jid.2015.10.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 11/16/2022]
Abstract
Chemotherapy-induced hair loss is one of the most devastating side effects of cancer treatment. To study the effects of chemotherapeutic agents on the hair follicle, a number of experimental models have been proposed. Yoon et al. report that transplantation of human scalp hair follicles onto chemotherapy-treated immunodeficient mice serves as an excellent in vivo model for chemotherapy-induced hair loss. Yoon et al. demonstrate that (i) the response of human hair follicles grafted onto immunodeficient mice to cyclophosphamide resembles the key features of the chemotherapy-induced hair loss seen in patients with cancer and (ii) this human in vivo model for chemotherapy-induced hair loss is closer to clinical reality than to any earlier models. Undoubtedly, this model will serve as a valuable tool for analyses of the mechanisms that underlie this devastating side effect of anti-cancer therapy.
Collapse
Affiliation(s)
- Vladimir A Botchkarev
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK; Departments of Dermatology, Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.
| | - Andrey A Sharov
- Departments of Dermatology, Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|