1
|
Mamazhakypov A, Maripov A, Sarybaev AS, Schermuly RT, Sydykov A. Mast Cells in Cardiac Remodeling: Focus on the Right Ventricle. J Cardiovasc Dev Dis 2024; 11:54. [PMID: 38392268 PMCID: PMC10889421 DOI: 10.3390/jcdd11020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
In response to various stressors, cardiac chambers undergo structural remodeling. Long-term exposure of the right ventricle (RV) to pressure or volume overload leads to its maladaptive remodeling, associated with RV failure and increased mortality. While left ventricular adverse remodeling is well understood and therapeutic options are available or emerging, RV remodeling remains underexplored, and no specific therapies are currently available. Accumulating evidence implicates the role of mast cells in RV remodeling. Mast cells produce and release numerous inflammatory mediators, growth factors and proteases that can adversely affect cardiac cells, thus contributing to cardiac remodeling. Recent experimental findings suggest that mast cells might represent a potential therapeutic target. This review examines the role of mast cells in cardiac remodeling, with a specific focus on RV remodeling, and explores the potential efficacy of therapeutic interventions targeting mast cells to mitigate adverse RV remodeling.
Collapse
Affiliation(s)
- Argen Mamazhakypov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Abdirashit Maripov
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Akpay S Sarybaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek 720040, Kyrgyzstan
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - Akylbek Sydykov
- Department of Internal Medicine, Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, 35392 Giessen, Germany
| |
Collapse
|
2
|
Loste A, Clément M, Delbosc S, Guedj K, Sénémaud J, Gaston AT, Morvan M, Even G, Gautier G, Eggel A, Arock M, Procopio E, Deschildre C, Louedec L, Michel JB, Deschamps L, Castier Y, Coscas R, Alsac JM, Launay P, Caligiuri G, Nicoletti A, Le Borgne M. Involvement of an IgE/Mast cell/B cell amplification loop in abdominal aortic aneurysm progression. PLoS One 2023; 18:e0295408. [PMID: 38055674 DOI: 10.1371/journal.pone.0295408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
AIMS IgE type immunoglobulins and their specific effector cells, mast cells (MCs), are associated with abdominal aortic aneurysm (AAA) progression. In parallel, immunoglobulin-producing B cells, organised in tertiary lymphoid organs (TLOs) within the aortic wall, have also been linked to aneurysmal progression. We aimed at investigating the potential role and mechanism linking local MCs, TLO B cells, and IgE production in aneurysmal progression. METHODS AND RESULTS Through histological assays conducted on human surgical samples from AAA patients, we uncovered that activated MCs were enriched at sites of unhealed haematomas, due to subclinical aortic wall fissuring, in close proximity to adventitial IgE+ TLO B cells. Remarkably, in vitro the IgEs deriving from these samples enhanced MC production of IL-4, a cytokine which favors IgE class-switching and production by B cells. Finally, the role of MCs in aneurysmal progression was further analysed in vivo in ApoE-/- mice subjected to angiotensin II infusion aneurysm model, through MC-specific depletion after the establishment of dissecting aneurysms. MC-specific depletion improved intramural haematoma healing and reduced aneurysmal progression. CONCLUSIONS Our data suggest that MC located close to aortic wall fissures are activated by adventitial TLO B cell-produced IgEs and participate to their own activation by providing support for further IgE synthesis through IL-4 production. By preventing prompt repair of aortic subclinical fissures, such a runaway MC activation loop could precipitate aneurysmal progression, suggesting that MC-targeting treatments may represent an interesting adjunctive therapy for reducing AAA progression.
Collapse
Affiliation(s)
- Alexia Loste
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Marc Clément
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Sandrine Delbosc
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Kevin Guedj
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Jean Sénémaud
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
- Department of Vascular and Thoracic Surgery, AP-HP, Bichat Hospital, Université Paris Cité, Paris, France
| | - Anh-Thu Gaston
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Marion Morvan
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Guillaume Even
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Grégory Gautier
- DHU FIRE, Paris, France
- INSERM UMRS 1149, Centre de Recherche sur l'Inflammation (CRI), Université Paris Cité, Paris, France
| | - Alexander Eggel
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Michel Arock
- Department of Biology and CNRS UMR8113, Ecole Normale Supérieure de Paris-Saclay, Saclay, France
| | - Emanuele Procopio
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Catherine Deschildre
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Liliane Louedec
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Jean-Baptiste Michel
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Lydia Deschamps
- Department of Pathology, AP-HP, Bichat Hospital, Université Paris Cité, Paris, France
| | - Yves Castier
- INSERM UMRS 1149, Centre de Recherche sur l'Inflammation (CRI), Université Paris Cité, Paris, France
| | - Raphaël Coscas
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- Department of Vascular Surgery, AP-HP, Ambroise Paré University Hospital, Université Paris Cité, Boulogne-Billancourt, France
| | - Jean-Marc Alsac
- Department of Vascular Surgery, AP-HP, Hôpital Européen Georges Pompidou, Université Paris Cité, Paris, France
| | - Pierre Launay
- DHU FIRE, Paris, France
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Giuseppina Caligiuri
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
- Department of Cardiology, AP-HP, Bichat Hospital, Université Paris Cité, Paris, France
| | - Antonino Nicoletti
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| | - Marie Le Borgne
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, LVTS, Paris, France
- DHU FIRE, Paris, France
| |
Collapse
|
3
|
Puhm F, Laroche A, Boilard E. Diversity of Megakaryocytes. Arterioscler Thromb Vasc Biol 2023; 43:2088-2098. [PMID: 37675634 DOI: 10.1161/atvbaha.123.318782] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023]
Abstract
Megakaryocytes are commonly known as large, polyploid, bone marrow resident cells that contribute to hemostasis through the production of platelets. Soon after their discovery in the 19th century, megakaryocytes were described in tissue locations other than the bone marrow, specifically in the lungs and the blood circulation. However, the localization of megakaryocytes in the lungs and the contribution of lung megakaryocytes to the general platelet pool has only recently been appreciated. Moreover, the conception of megakaryocytes as uniform cells with the sole purpose of platelet production has been challenged. Here, we review the literature on megakaryocyte cell identity and location with a special focus on recent observations of megakaryocyte subpopulations identified by transcriptomic analyses.
Collapse
Affiliation(s)
- Florian Puhm
- Department of Infectious Diseases and Immunity, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada (F.P., A.L., E.B.)
- Centre de Recherche ARThrite, Faculté de Médecine de l'Université Laval, Québec, Canada (F.P., A.L., E.B.)
| | - Audrée Laroche
- Department of Infectious Diseases and Immunity, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada (F.P., A.L., E.B.)
- Centre de Recherche ARThrite, Faculté de Médecine de l'Université Laval, Québec, Canada (F.P., A.L., E.B.)
| | - Eric Boilard
- Department of Infectious Diseases and Immunity, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Canada (F.P., A.L., E.B.)
- Centre de Recherche ARThrite, Faculté de Médecine de l'Université Laval, Québec, Canada (F.P., A.L., E.B.)
| |
Collapse
|
4
|
Wang RM, Mesfin JM, Karkanitsa M, Ungerleider JL, Zelus E, Zhang Y, Kawakami Y, Kawakami Y, Kawakami T, Christman KL. Immunomodulatory contribution of mast cells to the regenerative biomaterial microenvironment. NPJ Regen Med 2023; 8:53. [PMID: 37730736 PMCID: PMC10511634 DOI: 10.1038/s41536-023-00324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 08/31/2023] [Indexed: 09/22/2023] Open
Abstract
Bioactive immunomodulatory biomaterials have shown promise for influencing the immune response to promote tissue repair and regeneration. Macrophages and T cells have been associated with this response; however, other immune cell types have been traditionally overlooked. In this study, we investigated the role of mast cells in the regulation of the immune response to decellularized biomaterial scaffolds using a subcutaneous implant model. In mast cell-deficient mice, there was dysregulation of the expected M1 to M2 macrophage transition typically induced by the biomaterial scaffold. Polarization progression deviated in a sex-specific manner with an early transition to an M2 profile in female mice, while the male response was unable to properly transition past a pro-inflammatory M1 state. Both were reversed with adoptive mast cell transfer. Further investigation of the later-stage immune response in male mice determined a greater sustained pro-inflammatory gene expression profile, including the IL-1 cytokine family, IL-6, alarmins, and chemokines. These results highlight mast cells as another important cell type that influences the immune response to pro-regenerative biomaterials.
Collapse
Affiliation(s)
- Raymond M Wang
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Joshua M Mesfin
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Maria Karkanitsa
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Jessica L Ungerleider
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Emma Zelus
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA
| | - Yuxue Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yu Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
- Department of Dermatology, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Yuko Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
- Department of Dermatology, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Toshiaki Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
- Department of Dermatology, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Karen L Christman
- Shu Chien-Gene Lay Department of Bioengineering, Sanford Consortium of Regenerative Medicine, University of California San Diego, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|
5
|
Kesserwan S, Sadagurski M, Mao L, Klueh U. Mast Cell Deficiency in Mice Attenuates Insulin Phenolic Preservative-Induced Inflammation. Biomedicines 2023; 11:2258. [PMID: 37626754 PMCID: PMC10452641 DOI: 10.3390/biomedicines11082258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
One major obstacle that limits the lifespan of insulin infusion pumps is surmounting the tissue site reaction at the device implantation site. All commercial insulin formulations contain insulin phenolic preservatives (IPPs) designed to ensure insulin protein stability and prolong shelf-life. However, our laboratory demonstrated that these preservatives are cytotoxic and induce inflammation. Mature mast cells (MCs) reside in cutaneous tissue and are one of the first responders to an epidermal breach. Upon activation, MCs release proinflammatory and immunomodulatory prepacked mediators that exacerbate these inflammatory reactions. Thus, we hypothesized that once the epidermis is breached, cutaneous MCs are triggered inciting the inflammatory response to IPP-induced inflammation. This hypothesis was pursued utilizing our modified in vivo mouse air pouch model, including a c-kit dependent (C57BL/6J-kitW-sh/W-sh) and a c-kit independent (Cpa3-Cre; Mcl-1fl/fl) MC-deficient mouse model. Leukocytes were quantified in the mouse air pouch lavage fluid following flow cytometry analysis for IPP infusion under three different states, insulin-containing phenolic preservatives (Humalog®), insulin preservatives alone, and normal saline as a control. The air pouch wall was assessed using histopathological evaluations. Flow cytometry analysis demonstrated a statistically significant difference in inflammatory cell recruitment for both MC-deficient mouse models when compared to the control strain including infused control saline. Significantly less inflammation was observed at the site of infusion for the MC-deficient strains compared to the control strain. Overall, concordant results were obtained in both mouse types, C57Bl6-kitW-sh/W-sh and Cpa3-Cre; Mcl-1fl/fl. These findings in multiple model systems support the conclusion that MCs have important or possible unique roles in IPP-induced inflammation.
Collapse
Affiliation(s)
| | | | | | - Ulrike Klueh
- Integrative Biosciences Center (IBio), Wayne State University, Detroit, MI 48202, USA; (S.K.); (M.S.)
| |
Collapse
|
6
|
Niu Y, Zhou T, Zhang S, Li W, Wang K, Dong N, Wu Q. Corin deficiency impairs cardiac function in mouse models of heart failure. Front Cardiovasc Med 2023; 10:1164524. [PMID: 37636304 PMCID: PMC10450958 DOI: 10.3389/fcvm.2023.1164524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Corin is a protease in the natriuretic peptide system. Deleterious CORIN variants are associated with hypertension and heart disease. It remains unclear if and to what extent corin deficiency may contribute to heart failure (HF). Methods Corin knockout (KO) mice were used as a model. Cardiac function was assessed by echocardiography and tissue analysis in Corin KO mice at different ages or subjected to transverse aortic constriction (TAC), which increased pressure overload. Heart and lung tissues were analyzed for cardiac hypertrophy and lung edema using wheat germ agglutinin, Sirius red, Masson's trichrome, and Prussian blue staining. Recombinant corin was tested for its effect on cardiac function in the TAC-operated Corin KO mice. Selected gene expression in the heart was examined by RT-PCR. ELISA was used to analyze factors in plasma. Results Corin KO mice had progressive cardiac dysfunction with cardiac hypertrophy and fibrosis after 9 months of age, likely due to chronic hypertension. When Corin KO mice were subjected to TAC at 10-12 weeks of age, cardiac function decreased more rapidly than in similarly treated wild-type mice. When the TAC-operated Corin KO mice were treated with recombinant corin protein, cardiac dysfunction, hypertrophy, and fibrosis were ameliorated. The corin treatment also decreased the gene expression associated with cardiac hypertrophy and fibrosis, increased plasma cGMP levels, lowered plasma levels of N-terminal pro-atrial natriuretic peptide, angiotensin II, and aldosterone, and lessened lung edema in the Corin KO mice subjected to TAC. Conclusion Corin deficiency impairs cardiac function and exacerbates HF development in mice. Corin protein may be used to reduce cardiac hypertrophy and fibrosis, suppress the renin-angiotensin-aldosterone system, and improve cardiac function in HF.
Collapse
Affiliation(s)
- Yayan Niu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Shengnan Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Kun Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Medical School, Soochow University, Suzhou, China
| |
Collapse
|
7
|
Gu X, Wang K, Li W, He M, Zhou T, Liu M, Wu Q, Dong N. Corin Deficiency Diminishes Intestinal Sodium Excretion in Mice. BIOLOGY 2023; 12:945. [PMID: 37508377 PMCID: PMC10376046 DOI: 10.3390/biology12070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Sodium excretion, a critical process in sodium homeostasis, occurs in many tissues, including the kidney and intestine. Unlike in the kidney, the hormonal regulation of intestinal sodium excretion remains unclear. Atrial natriuretic peptide (ANP) is a crucial hormone in renal natriuresis. Corin is a protease critical for ANP activation. Corin and ANP are expressed mainly in the heart. In this study, we investigated corin, ANP, and natriuretic peptide receptor A (Npra) expression in mouse intestines. Corin and ANP expression was co-localized in enteroendocrine cells, whereas Npra expression was on the luminal epithelial cells. In Corin knockout (KO) mice, fecal Na+ and Cl- excretion decreased compared with that in wild-type (WT) mice. Such a decrease was not found in conditional Corin KO mice lacking cardiac corin selectively. In kidney conditional Corin KO mice lacking renal corin, fecal Na+ and Cl- excretion increased, compared to that in WT mice. When WT, Corin KO, and the kidney conditional KO mice were treated with aldosterone, the differences in fecal Na+ and Cl- levels disappeared. These results suggest that intestinal corin may promote fecal sodium excretion in a paracrine mechanism independent of the cardiac corin function. The increased fecal sodium excretion in the kidney conditional Corin KO mice likely reflected an intestinal compensatory response to renal corin deficiency. Our results also suggest that intestinal corin activity may antagonize aldosterone action in the promotion of fecal sodium excretion. These findings help us understand the hormonal mechanism controlling sodium excretion the intestinal tract.
Collapse
Affiliation(s)
- Xiabing Gu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Medical School, Suzhou 215006, China
| | - Kun Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Wenguo Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Medical School, Suzhou 215006, China
| | - Meiling He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Tiantian Zhou
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Medical School, Suzhou 215006, China
| |
Collapse
|
8
|
Mast Cell–Tumor Interactions: Molecular Mechanisms of Recruitment, Intratumoral Communication and Potential Therapeutic Targets for Tumor Growth. Cells 2022; 11:cells11030349. [PMID: 35159157 PMCID: PMC8834237 DOI: 10.3390/cells11030349] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are tissue-resident immune cells that are important players in diseases associated with chronic inflammation such as cancer. Since MCs can infiltrate solid tumors and promote or limit tumor growth, a possible polarization of MCs to pro-tumoral or anti-tumoral phenotypes has been proposed and remains as a challenging research field. Here, we review the recent evidence regarding the complex relationship between MCs and tumor cells. In particular, we consider: (1) the multifaceted role of MCs on tumor growth suggested by histological analysis of tumor biopsies and studies performed in MC-deficient animal models; (2) the signaling pathways triggered by tumor-derived chemotactic mediators and bioactive lipids that promote MC migration and modulate their function inside tumors; (3) the possible phenotypic changes on MCs triggered by prevalent conditions in the tumor microenvironment (TME) such as hypoxia; (4) the signaling pathways that specifically lead to the production of angiogenic factors, mainly VEGF; and (5) the possible role of MCs on tumor fibrosis and metastasis. Finally, we discuss the novel literature on the molecular mechanisms potentially related to phenotypic changes that MCs undergo into the TME and some therapeutic strategies targeting MC activation to limit tumor growth.
Collapse
|
9
|
Martínez-Gopar PE, Pérez-Rodríguez MJ, Rodríguez-Manzo G, Garduño-Gutierrez R, Tristán-López L, Angeles-López QD, González-Espinosa C, Pérez-Severiano F. Mast cells and histamine are involved in the neuronal damage observed in a quinolinic acid-induced model of Huntington's disease. J Neurochem 2021; 160:256-270. [PMID: 34665461 DOI: 10.1111/jnc.15527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
Huntington´s disease (HD) is a pathological condition that can be studied in mice by the administration of quinolinic acid (QUIN), an agonist of the N-methyl-d-aspartate receptor (NMDAR) that induces NMDAR-mediated cytotoxicity and neuroinflammation. Mast cells (MCs) participate in numerous inflammatory processes through the release of important amounts of histamine (HA). In this study, we aimed to characterize the participation of MCs and HA in the establishment of neural and oxidative damage in the QUIN-induced model of HD. C57BL6/J mice (WT), MC-deficient c-KitW-sh/W-sh (Wsh) mice and Wsh mice reconstituted by intracerebroventricular (i.c.v.) injection of 5 × 105 bone marrow-derived mast cells (BMMCs), or i.c.v. administered with HA (5 µg) were used. All groups of animals were intrastriatally injected with 1 µL QUIN (30 nmol/µL) and 3 days later, apomorphine-induced circling behavior, striatal GABA levels and the number of Fluoro-Jade positive cells, as indicators of neuronal damage, were determined. Also, lipid peroxidation (LP) and reactive oxygen species production (ROS), as markers of oxidative damage, were analyzed. Wsh mice showed less QUIN-induced neuronal and oxidative damage than WT and Wsh-MC reconstituted animals. Histamine administration restored the QUIN-induced neuronal and oxidative damage in the non-reconstituted Wsh mice to levels equivalent or superior to those observed in WT mice. Our results demonstrate that MCs and HA participate in the neuronal and oxidative damages observed in mice subjected to the QUIN -induced model of Huntington's disease.
Collapse
Affiliation(s)
- Pablo Eliasib Martínez-Gopar
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Unidad Sede Sur, Ciudad de Mexico, Mexico.,Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Unidad Sede Sur, Ciudad de Mexico, Mexico.,Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Unidad Sede Sur, Ciudad de Mexico, Mexico
| | - René Garduño-Gutierrez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Unidad Sede Sur, Ciudad de Mexico, Mexico
| | - Luis Tristán-López
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de Mexico, Mexico
| | - Quetzalli Denisse Angeles-López
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Unidad Sede Sur, Ciudad de Mexico, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| |
Collapse
|
10
|
Dan J, Izumi M, Habuchi H, Habuchi O, Takaya S, Kasai Y, Hayashi R, Aso K, Ushida T, Ikeuchi M. A novel mice model of acute flares in osteoarthritis elicited by intra-articular injection of cultured mast cells. J Exp Orthop 2021; 8:75. [PMID: 34495429 PMCID: PMC8426457 DOI: 10.1186/s40634-021-00391-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Mast cells are multifunctional in osteoarthritis (OA), and infiltration of activated mast cells likely contributes to disease severity and progression. However, the detailed mechanisms of action are unclear. The purpose of this study was to elucidate the role of mast cell infiltration in OA at histological level using a new mice model and to investigate pharmacological inhibitory effects of existing mast cell stabilizers in this model. METHODS Mice were injected intra-articularly with monosodium iodoacetate (MIA 0.5 mg) or PBS on day 0, and PBS, with or without mast cells (MC: 1 × 106 cells) on day 14. They were divided into four groups: OA flare (MIA + MC), OA (MIA + PBS), MC non-OA (PBS + MC), and PBS non-OA (PBS + PBS). In OA flare, the MC stabilizer drug (tranilast: 400 mg/kg/day) or PBS was administered intraperitoneally from days 15 to 21. RESULTS Histologically, modified Mankin score of the OA flare was significantly higher than that of OA (7.0 [1.8] vs. 3.3 [1.3], P < 0.05), and a larger number of mast cells was observed in OA flare than in OA (34.5 [6.3]/mm2 vs. 27.2 [2.3]/mm2, P < 0.05) on day 22. OA flare also showed acute exacerbation of pain and increased gene expression of pro-inflammatory cytokines and aggrecanase compared with OA. Administration of tranilast to OA flare-up provoked significant improvements in term of histological changes, pain, and gene expression at day 22. CONCLUSION Our novel model possibly mimics OA flare conditions, which may open a new strategy of disease-modifying treatment for OA, focused on controlling the multiple functions of mast cells.
Collapse
Affiliation(s)
- Junpei Dan
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho, Nankoku, Kochi Pref, Japan
| | - Masashi Izumi
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho, Nankoku, Kochi Pref, Japan.
| | - Hiroko Habuchi
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Osami Habuchi
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Shogo Takaya
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho, Nankoku, Kochi Pref, Japan
| | - Yusuke Kasai
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho, Nankoku, Kochi Pref, Japan
| | - Ryuzo Hayashi
- Center for Innovative and Translational Medicine, Kochi University, Nankoku, Japan
| | - Koji Aso
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho, Nankoku, Kochi Pref, Japan
| | - Takahiro Ushida
- Multidisciplinary Pain Center, Aichi Medical University, Nagakute, Japan
| | - Masahiko Ikeuchi
- Department of Orthopedic Surgery, Kochi Medical School, Kochi University, 185-1 Oko-cho, Nankoku, Kochi Pref, Japan
| |
Collapse
|
11
|
Galli SJ, Gaudenzio N, Tsai M. Mast Cells in Inflammation and Disease: Recent Progress and Ongoing Concerns. Annu Rev Immunol 2021; 38:49-77. [PMID: 32340580 DOI: 10.1146/annurev-immunol-071719-094903] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mast cells have existed long before the development of adaptive immunity, although they have been given different names. Thus, in the marine urochordate Styela plicata, they have been designated as test cells. However, based on their morphological characteristics (including prominent cytoplasmic granules) and mediator content (including heparin, histamine, and neutral proteases), test cells are thought to represent members of the lineage known in vertebrates as mast cells. So this lineage presumably had important functions that preceded the development of antibodies, including IgE. Yet mast cells are best known, in humans, as key sources of mediators responsible for acute allergic reactions, notably including anaphylaxis, a severe and potentially fatal IgE-dependent immediate hypersensitivity reaction to apparently harmless antigens, including many found in foods and medicines. In this review, we briefly describe the origins of tissue mast cells and outline evidence that these cells can have beneficial as well as detrimental functions, both innately and as participants in adaptive immune responses. We also discuss aspects of mast cell heterogeneity and comment on how the plasticity of this lineage may provide insight into its roles in health and disease. Finally, we consider some currently open questions that are yet unresolved.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; , .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California 94305, USA
| | - Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), INSERM UMR 1056, Université de Toulouse, 31 059 Toulouse CEDEX 9, France;
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA; , .,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, California 94305, USA
| |
Collapse
|
12
|
Taketomi Y, Endo Y, Higashi T, Murase R, Ono T, Taya C, Kobayashi T, Murakami M. Mast Cell-Specific Deletion of Group III Secreted Phospholipase A 2 Impairs Mast Cell Maturation and Functions. Cells 2021; 10:1691. [PMID: 34359862 PMCID: PMC8303318 DOI: 10.3390/cells10071691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
Tissue-resident mast cells (MCs) have important roles in IgE-associated and -independent allergic reactions. Although microenvironmental alterations in MC phenotypes affect the susceptibility to allergy, understanding of the regulation of MC maturation is still incomplete. We previously reported that group III secreted phospholipase A2 (sPLA2-III) released from immature MCs is functionally coupled with lipocalin-type prostaglandin D2 (PGD2) synthase in neighboring fibroblasts to supply a microenvironmental pool of PGD2, which in turn acts on the PGD2 receptor DP1 on MCs to promote their proper maturation. In the present study, we reevaluated the role of sPLA2-III in MCs using a newly generated MC-specific Pla2g3-deficient mouse strain. Mice lacking sPLA2-III specifically in MCs, like those lacking the enzyme in all tissues, had immature MCs and displayed reduced local and systemic anaphylactic responses. Furthermore, MC-specific Pla2g3-deficient mice, as well as MC-deficient KitW-sh mice reconstituted with MCs prepared from global Pla2g3-null mice, displayed a significant reduction in irritant contact dermatitis (ICD) and an aggravation of contact hypersensitivity (CHS). The increased CHS response by Pla2g3 deficiency depended at least partly on the reduced expression of hematopoietic PGD2 synthase and thereby reduced production of PGD2 due to immaturity of MCs. Overall, our present study has confirmed that MC-secreted sPLA2-III promotes MC maturation, thereby facilitating acute anaphylactic and ICD reactions and limiting delayed CHS response.
Collapse
Affiliation(s)
- Yoshitaka Taketomi
- Center for Disease Biology and integrative Medicine, Laboratory of Microenvironmental and Metabolic Health Science, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.T.); (T.H.)
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; (Y.E.); (R.M.)
| | - Yuki Endo
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; (Y.E.); (R.M.)
- Department of Biology, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan;
| | - Takayoshi Higashi
- Center for Disease Biology and integrative Medicine, Laboratory of Microenvironmental and Metabolic Health Science, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.T.); (T.H.)
| | - Remi Murase
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; (Y.E.); (R.M.)
| | - Tomio Ono
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; (T.O.); (C.T.)
| | - Choji Taya
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; (T.O.); (C.T.)
| | - Tetsuyuki Kobayashi
- Department of Biology, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan;
| | - Makoto Murakami
- Center for Disease Biology and integrative Medicine, Laboratory of Microenvironmental and Metabolic Health Science, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.T.); (T.H.)
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan; (Y.E.); (R.M.)
| |
Collapse
|
13
|
IgE-activated mast cells enhance TLR4-mediated antigen-specific CD4 + T cell responses. Sci Rep 2021; 11:9686. [PMID: 33958642 PMCID: PMC8102524 DOI: 10.1038/s41598-021-88956-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
Mast cells are potent mediators of allergy and asthma, yet their role in regulating adaptive immunity remains ambiguous. On the surface of mast cells, the crosslinking of IgE bound to FcεRI by a specific antigen recognized by that IgE triggers the release of immune mediators such as histamine and cytokines capable of activating other immune cells; however, little is known about the mast cell contribution to the induction of endogenous, antigen-specific CD4+ T cells. Here we examined the effects of specific mast cell activation in vivo on the initiation of an antigen-specific CD4+ T cell response. While CD4+ T cells were not enhanced by FcεRI stimulation alone, their activation was synergistically enhanced when FcεRI activation was combined with TLR4 stimulation. This enhanced activation was dependent on global TLR4 stimulation but appeared to be less dependent on mast cell expressed TLR4. This study provides important new evidence to support the role of mast cells as mediators of the antigen-specific adaptive immune response.
Collapse
|
14
|
Smith JN, Dawson DM, Christo KF, Jogasuria AP, Cameron MJ, Antczak MI, Ready JM, Gerson SL, Markowitz SD, Desai AB. 15-PGDH inhibition activates the splenic niche to promote hematopoietic regeneration. JCI Insight 2021; 6:143658. [PMID: 33600377 PMCID: PMC8026178 DOI: 10.1172/jci.insight.143658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
The splenic microenvironment regulates hematopoietic stem and progenitor cell (HSPC) function, particularly during demand-adapted hematopoiesis; however, practical strategies to enhance splenic support of transplanted HSPCs have proved elusive. We have previously demonstrated that inhibiting 15-hydroxyprostaglandin dehydrogenase (15-PGDH), using the small molecule (+)SW033291 (PGDHi), increases BM prostaglandin E2 (PGE2) levels, expands HSPC numbers, and accelerates hematologic reconstitution after BM transplantation (BMT) in mice. Here we demonstrate that the splenic microenvironment, specifically 15-PGDH high-expressing macrophages, megakaryocytes (MKs), and mast cells (MCs), regulates steady-state hematopoiesis and potentiates recovery after BMT. Notably, PGDHi-induced neutrophil, platelet, and HSPC recovery were highly attenuated in splenectomized mice. PGDHi induced nonpathologic splenic extramedullary hematopoiesis at steady state, and pretransplant PGDHi enhanced the homing of transplanted cells to the spleen. 15-PGDH enzymatic activity localized specifically to macrophages, MK lineage cells, and MCs, identifying these cell types as likely coordinating the impact of PGDHi on splenic HSPCs. These findings suggest that 15-PGDH expression marks HSC niche cell types that regulate hematopoietic regeneration. Therefore, PGDHi provides a well-tolerated strategy to therapeutically target multiple HSC niches, promote hematopoietic regeneration, and improve clinical outcomes of BMT.
Collapse
Affiliation(s)
- Julianne Np Smith
- Department of Medicine and Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio, USA
| | - Dawn M Dawson
- Department of Medicine and Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio, USA
| | - Kelsey F Christo
- Department of Medicine and Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio, USA
| | - Alvin P Jogasuria
- Department of Medicine and Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark J Cameron
- Department of Medicine and Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio, USA
| | - Monika I Antczak
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Stanton L Gerson
- Department of Medicine and Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio, USA.,University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Sanford D Markowitz
- Department of Medicine and Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio, USA.,University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Amar B Desai
- Department of Medicine and Case Comprehensive Cancer Center Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Sasaki H, Imanishi M, Fujikura D, Sugiyama M, Tanimoto K, Mochiji Y, Takahashi Y, Hiura K, Watanabe M, Kashimoto T, Nakano K, Okamura T, Sasaki N. New inducible mast cell-deficient mouse model (Mcpt5/Cma1 DTR). Biochem Biophys Res Commun 2021; 551:127-132. [PMID: 33725574 DOI: 10.1016/j.bbrc.2021.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/05/2021] [Indexed: 02/03/2023]
Abstract
Mast cell-deficient mice are helpful for understanding the roles of mast cells in vivo. To date, a dozen mouse models for mast cell deficiency have been reported. However, mice with a specific depletion of all populations of mast cells have not been reported. We generated knock-in mice, termed Mcpt5/Cma1DTR mice, expressing human diphtheria toxin A (DT) receptor under the endogenous promoter of Mcpt5 (also known as Cma1), which encodes mouse mast cell protease-5. Flow cytometry and histological analysis showed that intraperitoneal injection of DT induced almost complete depletion of mast cells in heterozygote Mcpt5/Cma1DTR/+ mice. The deletion rates of mast cells in peritoneal cavity, mesentery, abdominal skin, ear skin, and glandular stomach were 99.9%, 100%, 98.7%, 97.7%, and 100%, respectively. Passive cutaneous anaphylaxis reaction also revealed mast cell deficiency in ear skin after DT treatment. Other than mast cells, a small percentage of marginal zone B cells in Mcpt5/Cma1DTR/+ mice were killed by DT treatment. In conclusion, the Mcpt5/Cma1DTR/+ mouse model is valuable for achieving conditional depletion of all populations of mast cells without inducing a marked reduction in other cells.
Collapse
Affiliation(s)
- Hayato Sasaki
- School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan
| | - Madoka Imanishi
- School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan
| | - Daisuke Fujikura
- School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan
| | - Makoto Sugiyama
- School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan
| | - Kyosuke Tanimoto
- School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan
| | - Yohei Mochiji
- School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan
| | - Yuki Takahashi
- School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan
| | - Koki Hiura
- School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan
| | - Masaki Watanabe
- School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan
| | | | - Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Nobuya Sasaki
- School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan.
| |
Collapse
|
16
|
Spatial Distribution of Mast Cells Regulates Asymmetrical Angiogenesis at the Ocular Surface. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1108-1117. [PMID: 33705754 DOI: 10.1016/j.ajpath.2021.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 11/23/2022]
Abstract
Mast cells, historically known for their function as effector cells in the induction of allergic diseases, reside in all vascularized tissues of the body, particularly, in proximity to blood and lymphatic vessels. Despite being neighboring sentinel cells to blood vessels, whether the spatial distribution of mast cells regulates the degree of angiogenesis remains to be investigated. Herein, an asymmetrical distribution of mast cells was shown at the murine ocular surface, with the higher number of mast cells distributed along the nasal limbus of the cornea compared with the temporal side. Using a well-characterized murine model of suture-induced corneal neovascularization, insult to the nasal side was shown to result in more extensive angiogenesis compared with that to the temporal side. To directly assess the impact of the spatial distribution of mast cell on angiogenesis, neovascularization was induced in mast cell-deficient mice (cKitw-sh). Unlike the wild-type (C57BL/6) mice, cKitw-sh mice did not show disproportionate growth of corneal blood vessels following the temporal and nasal insult. Moreover, cromolyn-mediated pharmacologic blockade of mast cells at the ocular surface attenuated the asymmetrical nasal and temporal neovascularization, suggesting that spatial distribution of mast cells significantly contributes to angiogenic response at the ocular surface.
Collapse
|
17
|
Strattan E, Hildebrandt GC. Mast Cell Involvement in Fibrosis in Chronic Graft-Versus-Host Disease. Int J Mol Sci 2021; 22:2385. [PMID: 33673565 PMCID: PMC7956846 DOI: 10.3390/ijms22052385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is most commonly a treatment for inborn defects of hematopoiesis or acute leukemias. Widespread use of HSCT, a potentially curative therapy, is hampered by onset of graft-versus-host disease (GVHD), classified as either acute or chronic GVHD. While the pathology of acute GVHD is better understood, factors driving GVHD at the cellular and molecular level are less clear. Mast cells are an arm of the immune system that are known for atopic disease. However, studies have demonstrated that they can play important roles in tissue homeostasis and wound healing, and mast cell dysregulation can lead to fibrotic disease. Interestingly, in chronic GVHD, aberrant wound healing mechanisms lead to pathological fibrosis, but the cellular etiology driving this is not well-understood, although some studies have implicated mast cells. Given this novel role, we here review the literature for studies of mast cell involvement in the context of chronic GVHD. While there are few publications on this topic, the papers excellently characterized a niche for mast cells in chronic GVHD. These findings may be extended to other fibrosing diseases in order to better target mast cells or their mediators for treatment of fibrotic disease.
Collapse
Affiliation(s)
| | - Gerhard Carl Hildebrandt
- Division of Hematology and Blood & Marrow Transplant, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA;
| |
Collapse
|
18
|
Hempel Sullivan H, Maynard JP, Heaphy CM, Lu J, De Marzo AM, Lotan TL, Joshu CE, Sfanos KS. Differential mast cell phenotypes in benign versus cancer tissues and prostate cancer oncologic outcomes. J Pathol 2021; 253:415-426. [PMID: 33338262 DOI: 10.1002/path.5606] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 12/22/2022]
Abstract
We reported previously that high numbers of mast cells in benign (extra-tumoral) regions of the prostate are associated with worse outcomes after radical prostatectomy including biochemical recurrence and the development of metastases. Herein, with a cohort of 384 men, we performed mast cell subtyping and report that higher minimum number of the tryptase-only (MCT ) subset of extra-tumoral mast cells is associated with increased risk of biochemical recurrence (comparing highest to lowest tertiles: HR 2.32, 95% CI 1.37-3.93; P-trend = 0.002), metastases (HR 3.62, 95% CI 1.75-7.47; P-trend 0.001), and death from prostate cancer (HR 2.87, 95% CI 1.19-6.95; P-trend = 0.02). Preliminary RNA sequencing and comparison of benign versus cancer tissue mast cells revealed differential expression of additional site-specific genes. We further demonstrate that the genes CXCR4 and TFE3 are more highly expressed in tumor-infiltrating mast cells as well as other tumor-infiltrating immune cells and in tumor cells, respectively, and represent an altered tumor microenvironment. KIT variants were also differentially expressed in benign versus cancer tissue mast cells, with KIT variant 1 (GNNK+ ) mast cells identified as more prevalent in extra-tumoral regions of the prostate. Finally, using an established mouse model, we found that mast cells do not infiltrate Hi-Myc tumors, providing a model to specifically examine the role of extra-tumoral mast cells in tumorigenesis. Hi-Myc mice crossed to mast cell knockout (Wsh) mice and aged to 1 year revealed a higher degree of pre-invasive lesions and invasive cancer in wild-type mice versus heterozygous and knockout mice. This suggests a dosage effect where higher numbers of extra-tumoral mast cells resulted in higher cancer invasion. Overall, our studies provide further evidence for a role of extra-tumoral mast cells in driving adverse prostate cancer outcomes. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Heidi Hempel Sullivan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janielle P Maynard
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Heaphy
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Jiayun Lu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Corinne E Joshu
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Ansari FM, Asif M, Kiani MN, Ara N, Ishaque M, Khan R. Evaluation of Mast Cell Density using CD117 antibody and Microvessel Density Using CD34 Antibody in Different Grades of Oral Squamous Cell Carcinoma. Asian Pac J Cancer Prev 2020; 21:3533-3538. [PMID: 33369449 PMCID: PMC8046326 DOI: 10.31557/apjcp.2020.21.12.3533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 11/30/2022] Open
Abstract
Objective: To compare mast cell and microvessel densities among histologic grades of oral squamous cell carcinoma. Setting: Armed Forces Institute of Pathology. Materials and Methods: A total of 60 specimens of OSCC comprising 20 each of well, moderately and poorly differentiated were evaluated. Immunohistochemical analysis was performed to measure MCD and MVD by applying monoclonal CD117 antibody and monoclonal CD34 antibody, on formalin fixed and paraffin embedded sections. ANOVA and Post Hoc Tukey test was employed to assess the densities and to compare the differences between different grades of OSCC. A p-value <0.05 was considered to as significant. Results: There were 67% males and 33% females with a mean age of 60.1±16.0years. Immunohistochemical analysis revealed MCD to be 31.0±5.5 25.05±5.2, 10.90±3.5 in well, moderately and poorly differentiated OSCC. The intergroup comparison of decrease in MCD was also found to be statistically significant. The mean MVD was found to be 17.55±4.2, 20.35±3.6 and 28.60±3.2 in WDOSCC, MDOSCC and PDOSCC respectively. The pair wise result of MVD was found insignificant between well and moderately differentiated OSCC (p=0.057). However, the results of MVD was significant for well versus poorly differentiated and moderately versus poorly differentiated OSCC (p<0.001). Conclusion: The protective role of mast cells in OSCC is favored as a decrease in MCD is observed with the advancing histological grade of tumor. Significant results of MCD and MVD reveal that they can be used as an indicator for the disease progression in oral tumors This outcome might help delineating tumor population to get advantage from novel treatment modalities like mast cell degranulation blocking agents and anti-angiogenic therapy.
Collapse
Affiliation(s)
- Fakeha Meraj Ansari
- Department of Histopathology, Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| | - Muhammad Asif
- Consultant Histopathologist, Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| | - Maryam Nazir Kiani
- Department of Histopathology, Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| | - Nighat Ara
- Department of Oral Pathology, Army Medical College, Rawalpindi, Pakistan
| | - Muhammad Ishaque
- Department of Histopathology, Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| | - Rabia Khan
- Department of Orthodontics, Armed Forces Institute of Dentistry, Rawalpindi, Pakistan
| |
Collapse
|
20
|
Genetic Deficiency and Pharmacological Stabilization of Mast Cells Ameliorate Pressure Overload-Induced Maladaptive Right Ventricular Remodeling in Mice. Int J Mol Sci 2020; 21:ijms21239099. [PMID: 33265921 PMCID: PMC7729505 DOI: 10.3390/ijms21239099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Although the response of the right ventricle (RV) to the increased afterload is an important determinant of the patient outcome, very little is known about the underlying mechanisms. Mast cells have been implicated in the pathogenesis of left ventricular maladaptive remodeling and failure. However, the role of mast cells in RV remodeling remains unexplored. We subjected mast cell-deficient WBB6F1-KitW/W-v (KitW/KitW-v) mice and their mast cell-sufficient littermate controls (MC+/+) to pulmonary artery banding (PAB). PAB led to RV dilatation, extensive myocardial fibrosis, and RV dysfunction in MC+/+ mice. In PAB KitW/KitW-v mice, RV remodeling was characterized by minimal RV chamber dilatation and preserved RV function. We further administered to C57Bl/6J mice either placebo or cromolyn treatment starting from day 1 or 7 days after PAB surgery to test whether mast cells stabilizing drugs can prevent or reverse maladaptive RV remodeling. Both preventive and therapeutic cromolyn applications significantly attenuated RV dilatation and improved RV function. Our study establishes a previously undescribed role of mast cells in pressure overload-induced adverse RV remodeling. Mast cells may thus represent an interesting target for the development of a new therapeutic approach directed specifically at the heart.
Collapse
|
21
|
El Ansari YS, Kanagaratham C, Lewis OL, Oettgen HC. IgE and mast cells: The endogenous adjuvant. Adv Immunol 2020; 148:93-153. [PMID: 33190734 DOI: 10.1016/bs.ai.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells and IgE are most familiar as the effectors of type I hypersensitivity reactions including anaphylaxis. It is becoming clear however that this pair has important immunomodulatory effects on innate and adaptive cells of the immune system. In this purview, they act as endogenous adjuvants to ignite evolving immune responses, promote the transition of allergic disease into chronic illness and disrupt the development of active mechanisms of tolerance to ingested foods. Suppression of IgE-mediated mast cell activation can be exerted by molecules targeting IgE, FcɛRI or signaling kinases including Syk, or by IgG antibodies acting via inhibitory Fcγ receptors. In 2015 we reviewed the evidence for the adjuvant functions of mast cells. This update includes the original text, incorporates some important developments in the field over the past five years and discusses how interventions targeting these pathways might have promise in the development of strategies to treat allergic disease.
Collapse
Affiliation(s)
- Yasmeen S El Ansari
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Cynthia Kanagaratham
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Owen L Lewis
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
22
|
Svanberg S, Li Z, Öhlund P, Roy A, Åbrink M. Mast Cells Limit Ear Swelling Independently of the Chymase Mouse Mast Cell Protease 4 in an MC903-Induced Atopic Dermatitis-Like Mouse Model. Int J Mol Sci 2020; 21:ijms21176311. [PMID: 32878208 PMCID: PMC7503626 DOI: 10.3390/ijms21176311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
Atopic dermatitis (AD) is a complex, often lifelong allergic disease with severe pruritus affecting around 10% of both humans and dogs. To investigate the role of mast cells (MCs) and MC-specific proteases on the immunopathogenesis of AD, a vitamin D3-analog (MC903) was used to induce clinical AD-like symptoms in c-kit-dependent MC-deficient Wsh−/− and the MC protease-deficient mMCP-4−/−, mMCP-6−/−, and CPA3−/− mouse strains. MC903-treatment on the ear lobe increased clinical scores and ear-thickening, along with increased MC and granulocyte infiltration and activity, as well as increased levels of interleukin 33 (IL-33) locally and thymic stromal lymphopoietin (TSLP) both locally and systemically. The MC-deficient Wsh−/− mice showed significantly increased clinical score and ear thickening albeit having lower ear tissue levels of IL-33 and TSLP as well as lower serum levels of TSLP as compared to the WT mice. In contrast, although having significantly increased IL-33 ear tissue levels the chymase-deficient mMCP-4−/− mice showed similar clinical score, ear thickening, and TSLP levels in ear tissue and serum as the WT mice, whereas mMCP-6 and CPA3 -deficient mice showed a slightly reduced ear thickening and granulocyte infiltration. Our results suggest that MCs promote and control the level of MC903-induced AD-like inflammation.
Collapse
Affiliation(s)
- Sofie Svanberg
- Evidensia Djurkliniken Öjebyn, Öjagatan 81, 94331 Öjebyn, Sweden;
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007 Uppsala, Sweden;
| | - Zhiqiang Li
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007 Uppsala, Sweden;
- Department of Immunology, School of Basic Medical Sciences, Guizhou Medical University, 550025 Guiyang, China
| | - Pontus Öhlund
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007 Uppsala, Sweden;
| | - Ananya Roy
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden;
| | - Magnus Åbrink
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, VHC, Box 7028, 75007 Uppsala, Sweden;
- Correspondence: ; Tel.: +46-70-673-6569
| |
Collapse
|
23
|
Valent P, Akin C, Hartmann K, Nilsson G, Reiter A, Hermine O, Sotlar K, Sperr WR, Escribano L, George TI, Kluin-Nelemans HC, Ustun C, Triggiani M, Brockow K, Gotlib J, Orfao A, Kovanen PT, Hadzijusufovic E, Sadovnik I, Horny HP, Arock M, Schwartz LB, Austen KF, Metcalfe DD, Galli SJ. Mast cells as a unique hematopoietic lineage and cell system: From Paul Ehrlich's visions to precision medicine concepts. Am J Cancer Res 2020; 10:10743-10768. [PMID: 32929378 PMCID: PMC7482799 DOI: 10.7150/thno.46719] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
The origin and functions of mast cells (MCs) have been debated since their description by Paul Ehrlich in 1879. MCs have long been considered 'reactive bystanders' and 'amplifiers' in inflammatory processes, allergic reactions, and host responses to infectious diseases. However, knowledge about the origin, phenotypes and functions of MCs has increased substantially over the past 50 years. MCs are now known to be derived from multipotent hematopoietic progenitors, which, through a process of differentiation and maturation, form a unique hematopoietic lineage residing in multiple organs. In particular, MCs are distinguishable from basophils and other hematopoietic cells by their unique phenotype, origin(s), and spectrum of functions, both in innate and adaptive immune responses and in other settings. The concept of a unique MC lineage is further supported by the development of a distinct group of neoplasms, collectively referred to as mastocytosis, in which MC precursors expand as clonal cells. The clinical consequences of the expansion and/or activation of MCs are best established in mastocytosis and in allergic inflammation. However, MCs have also been implicated as important participants in a number of additional pathologic conditions and physiological processes. In this article, we review concepts regarding MC development, factors controlling MC expansion and activation, and some of the fundamental roles MCs may play in both health and disease. We also discuss new concepts for suppressing MC expansion and/or activation using molecularly-targeted drugs.
Collapse
|
24
|
Zhang X, Wang X, Yin H, Zhang L, Feng A, Zhang QX, Lin Y, Bao B, Hernandez LL, Shi GP, Liu J. Functional Inactivation of Mast Cells Enhances Subcutaneous Adipose Tissue Browning in Mice. Cell Rep 2020; 28:792-803.e4. [PMID: 31315055 DOI: 10.1016/j.celrep.2019.06.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 04/08/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022] Open
Abstract
Adipose tissue browning and systemic energy expenditure provide a defense mechanism against obesity and associated metabolic diseases. In high-cholesterol Western diet-fed mice, mast cell (MC) inactivation ameliorates obesity and insulin resistance and improves the metabolic rate, but a direct role of adipose tissue MCs in thermogenesis and browning remains unproven. Here, we report that adrenoceptor agonist norepinephrine-stimulated metabolic rate and subcutaneous adipose tissue (SAT) browning are enhanced in MC-deficient Kitw-sh/w-sh mice and MC-stabilized wild-type mice on a chow diet. MC reconstitution to SAT in Kitw-sh/w-sh mice blocks these changes. Mechanistic studies demonstrate that MC inactivation elevates SAT platelet-derived growth factor receptor A (PDGFRα+) adipocyte precursor proliferation and accelerates beige adipocyte differentiation. Using the tryptophan hydroxylase 1 (TPH1) inhibitor and TPH1-deficient MCs, we show that MC-derived serotonin inhibits SAT browning and systemic energy expenditure. Functional inactivation of MCs or inhibition of MC serotonin synthesis in SAT promotes adipocyte browning and systemic energy metabolism in mice.
Collapse
Affiliation(s)
- Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Yin
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Lei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Airong Feng
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qiu-Xia Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Bin Bao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China
| | - Laura L Hernandez
- Department of Dairy Science, University of Wisconsin, Madison, WI 53706, USA
| | - Guo-Ping Shi
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
25
|
Hernandez JD, Yu M, Sibilano R, Tsai M, Galli SJ. Development of multiple features of antigen-induced asthma pathology in a new strain of mast cell deficient BALB/c-Kit W-sh/W-sh mice. J Transl Med 2020; 100:516-526. [PMID: 31857699 PMCID: PMC7102933 DOI: 10.1038/s41374-019-0354-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 11/26/2022] Open
Abstract
Mast cell-deficient mice are widely used to identify and quantify contributions of mast cells to diverse biological responses in vivo, including allergic inflammation. However, despite the fact that scores of genes have been identified as modifiers of allergic inflammation, most mast cell-deficient models have been available only on a single genetic background. We transferred the KitW-sh allele onto the BALB/c background to generate BALB/c mast cell-deficient mice (BALB/c-KitW-sh/W-sh). BALB/c-KitW-sh/W-sh mice have dramatically reduced mast cell numbers (0-2% of wild type) in all tissues examined, as well as subtle hematologic differences from the corresponding wild type mice, including splenomegaly with evidence of increased splenic hematopoiesis. We examined in BALB/c-KitW-sh/W-sh mice models of allergic inflammation that are substantially diminished in C57BL/6-KitW-sh/W-sh mast cell-deficient mice. In a model of acute allergic inflammation, i.e., IgE-dependent passive cutaneous anaphylaxis, both ear swelling and leukocyte infiltration were largely or entirely absent in BALB/c-KitW-sh/W-sh mice. In contrast, in two different models of allergic airway inflammation, airway hyperresponsiveness, lung inflammation, and airway remodeling developed robustly in mast cell-deficient BALB/c-KitW-sh/W-sh mice. These results support the conclusion that the importance of mast cell contributions in various models of allergic inflammation may be at least partially determined by genetic background.
Collapse
Affiliation(s)
- Joseph D Hernandez
- Department of Pathology and the Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mang Yu
- Department of Pathology and the Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Riccardo Sibilano
- Department of Pathology and the Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Mindy Tsai
- Department of Pathology and the Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen J Galli
- Department of Pathology and the Sean N. Parker Center for Allergy & Asthma Research, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
26
|
Galli SJ, Metz M, Starkl P, Marichal T, Tsai M. Mast cells and IgE in defense against lethality of venoms: Possible "benefit" of allergy[]. ALLERGO JOURNAL INTERNATIONAL 2020; 29:46-62. [PMID: 33224714 PMCID: PMC7673288 DOI: 10.1007/s40629-020-00118-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/20/2019] [Indexed: 01/15/2023]
Abstract
Physicians think of mast cells and IgE primarily in the context of allergic disorders, including fatal anaphylaxis. This 'bad side' of mast cells and IgE is so well accepted that it can be difficult to think of them in other contexts, particularly those in which they may have beneficial functions. However, there is evidence that mast cells and IgE, as well as basophils (circulating granulocytes whose functions partially overlap with those of mast cells), can contribute to host defense as components of adaptive type 2 immune responses to helminths, ticks and certain other parasites. Accordingly, allergies often are conceptualized as "misdirected" type 2 immune responses, in which IgE antibodies are produced against any of a diverse group of apparently harmless antigens, and against components of animal venoms. Indeed, certain unfortunate patients who have become sensitized to venoms develop severe IgE-associated allergic reactions, including fatal anaphylaxis, upon subsequent venom exposure. In this review, we will describe evidence that mast cells can enhance innate resistance, and survival, to challenge with reptile or arthropod venoms during a first exposure to such venoms. We also will discuss findings indicating that, in mice surviving an initial encounter with venom, acquired type 2 immune responses, IgE antibodies, the high affinity IgE receptor (FcεRI), and mast cells can contribute to acquired resistance to the lethal effects of both honeybee venom and Russell's viper venom. These findings support the hypothesis that mast cells and IgE can help protect the host against venoms and perhaps other noxious substances.
Collapse
Affiliation(s)
- Stephen J. Galli
- Department of Pathology and the Sean N. Parker Center for Allergy Research, Stanford University School of Medicine, Stanford, California, 94305; USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, 94305; USA
| | - Martin Metz
- Department of Dermatology and Allergy, Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Philipp Starkl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Department of Medicine 1, Laboratory of Infection Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Marichal
- GIGA-Research and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Mindy Tsai
- Department of Pathology and the Sean N. Parker Center for Allergy Research, Stanford University School of Medicine, Stanford, California, 94305; USA
| |
Collapse
|
27
|
Galli SJ, Metz M, Starkl P, Marichal T, Tsai M. Mast cells and IgE in defense against lethality of venoms: Possible "benefit" of allergy*. ALLERGO JOURNAL 2020. [DOI: 10.1007/s15007-020-0746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Mast cells drive IgE-mediated disease but might be bystanders in many other inflammatory and neoplastic conditions. J Allergy Clin Immunol 2019; 144:S19-S30. [DOI: 10.1016/j.jaci.2019.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 01/05/2023]
|
29
|
Wiqas A, LeSauter J, Taub A, Austin RN, Silver R. Elevated zinc transporter ZnT3 in the dentate gyrus of mast cell-deficient mice. Eur J Neurosci 2019; 51:1504-1513. [PMID: 31502721 DOI: 10.1111/ejn.14575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/01/2019] [Accepted: 07/25/2019] [Indexed: 11/27/2022]
Abstract
Zinc is important in neurogenesis, but excessive levels can cause apoptosis and other pathologies leading to cognitive impairments. Mast cells are present in many brain regions including the hippocampus, an area rich in vesicular zinc. Mast cells contain zinc-rich granules and a well-developed mechanism for uptake of zinc ions; both features point to the potential for a role in zinc homeostasis. Prior work using the Timm stain supported this hypothesis, as increased labile zinc was detected in the hippocampus of mast cell-deficient mice compared to wild-type mice while no differences in total zinc were found between the two genotypes in the whole brain or other tissues. The current report further examines differences in zinc homeostasis between wild-type and mast cell-deficient mice by exploring the zinc transporter ZnT3, which transports labile zinc into synaptic vesicles. The first study used immunocytochemistry to localize ZnT3 within the mossy fibre layer of the hippocampus to determine whether there was differential expression of ZnT3 in wild-type versus mast cell-deficient mice. The second study used inductively coupled plasma mass spectrometry (ICP-MS) to determine total zinc content in the whole dentate gyrus of the two genotypes. The immunocytochemical results indicate that there are higher levels of ZnT3 localized to the mossy fibre layer of the dentate gyrus of mast cell-deficient mice than in wild-type mice. The ICP-MS data reveal no differences in total zinc in dentate gyrus as a whole. The results are consistent with the hypothesis that mast cells participate in zinc homeostasis at the level of synaptic vesicles.
Collapse
Affiliation(s)
- Amen Wiqas
- Department of Biology, Barnard College, Columbia University, New York, New York
| | - Joseph LeSauter
- Department of Neuroscience, Barnard College, Columbia University, New York, New York
| | - Alana Taub
- Department of Psychology, Columbia University, New York, New York
| | | | - Rae Silver
- Department of Neuroscience, Barnard College, Columbia University, New York, New York.,Department of Psychology, Columbia University, New York, New York
| |
Collapse
|
30
|
He A, Fang W, Zhao K, Wang Y, Li J, Yang C, Benadjaoud F, Shi GP. Mast cell-deficiency protects mice from streptozotocin-induced diabetic cardiomyopathy. Transl Res 2019; 208:1-14. [PMID: 30738862 PMCID: PMC6527494 DOI: 10.1016/j.trsl.2019.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/20/2018] [Accepted: 01/17/2019] [Indexed: 01/01/2023]
Abstract
Mast cells (MCs) have been implicated in the pathogenesis of cardiometabolic diseases by releasing pro-inflammatory mediators. Patients and animals with diabetic cardiomyopathy (DCM) also show inflammatory cell accumulation in the heart. Here, we detected MCs in mouse heart after streptozotocin (STZ)-induced DCM. DCM production caused significant systole and diastole interventricular septum and left ventricular (LV) posterior wall thinning, and systolic LV internal dilation in wild-type (WT) mice. DCM production also led to significant reductions of fractional shortening percentage, heart rate, body weight, heart weight, and significant increases of kidney, pancreas, and lung weight to body weight ratios, and blood hemoglobin HbA1c and glucose levels in WT mice. All these changes were improved or disappeared in MC-deficient KitW-sh/W-sh mice. In the myocardium from WT DCM mice, we detected significant decrease of cardiac cell proliferation and increases of cardiac cell death, chemokine expression, macrophage infiltration, inflammatory cytokine expression, and collagen deposition. These changes were also improved or disappeared in KitW-sh/W-sh DCM mice. Adoptive transfer of bone marrow-derived MCs (BMMCs) from WT mice fully or partially reversed these cardiac functional and morphologic changes in KitW-sh/W-sh DCM recipient mice. Yet, adoptive transfer of BMMCs from Il6-/- and Tnf-/- mice failed to make these corrections or at much less extent than the WT BMMCs. Mechanistic studies demonstrated a role of MC and MC-derived IL6 and TNF-α in promoting cardiomyocyte death and cardiac fibroblast TGF-β signaling, and collagen synthesis and deposition. Therefore, MC inhibition may have therapeutic potential in attenuating DCM progression.
Collapse
Affiliation(s)
- Aina He
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China; Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wenqian Fang
- Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Kun Zhao
- Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jie Li
- Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Chongzhe Yang
- Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Feriel Benadjaoud
- Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Guo-Ping Shi
- Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
31
|
Miyabe Y, Miyabe C, Mani V, Mempel TR, Luster AD. Atypical complement receptor C5aR2 transports C5a to initiate neutrophil adhesion and inflammation. Sci Immunol 2019; 4:eaav5951. [PMID: 31076525 DOI: 10.1126/sciimmunol.aav5951] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
Chemoattractant-induced arrest of circulating leukocytes and their subsequent diapedesis is a fundamental component of inflammation. However, how tissue-derived chemoattractants are transported into the blood vessel lumen to induce leukocyte entry into tissue is not well understood. Here, intravital microscopy in live mice has shown that the "atypical" complement C5a receptor 2 (C5aR2) and the atypical chemokine receptor 1 (ACKR1) expressed on endothelial cells were required for the transport of C5a and CXCR2 chemokine ligands, respectively, into the vessel lumen in a murine model of immune complex-induced arthritis. Transported C5a was required to initiate C5aR1-mediated neutrophil arrest, whereas transported chemokines were required to initiate CXCR2-dependent neutrophil transdendothelial migration. These findings provide new insights into how atypical chemoattractant receptors collaborate with "classical" signaling chemoattractant receptors to control distinct steps in the recruitment of neutrophils into tissue sites of inflammation.
Collapse
Affiliation(s)
- Yoshishige Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chie Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vinidhra Mani
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Zhang X, Huang Q, Wang X, Deng Z, Li J, Yan X, Jauhiainen M, Metso J, Libby P, Liu J, Shi GP. Dietary cholesterol is essential to mast cell activation and associated obesity and diabetes in mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1690-1700. [PMID: 30978390 DOI: 10.1016/j.bbadis.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Mast cell (MC) deficiency in KitW-sh/W-sh mice and inhibition with disodium chromoglycate (DSCG) or ketotifen reduced obesity and diabetes in mice on a high-cholesterol (1.25%) Western diet. Yet, Kit-independent MC-deficient mice and mice treated with DSCG disproved MC function in obesity and diabetes when mice are fed a high-fat diet (HFD) that contains no cholesterol. This study reproduced the obesity and diabetes inhibitory activities of DSCG and ketotifen from mice on a Western diet. Yet, such inhibitory effects were diminished in mice on the HFD. DSCG and ketotifen MC inhibitory activities were recovered from mice on the HFD supplemented with the same amount of cholesterol (1.25%) as that in the Western diet. DSCG and ketotifen effectively blunted the high-cholesterol diet-induced elevations of blood histamine and adipose tissue MC degranulation. Pearson's correlation test demonstrated significant and positive correlations between plasma histamine and total cholesterol or low-density lipoprotein-cholesterol (LDL). In cultured bone marrow-derived MCs, plasma from mice following a Western diet or a cholesterol-supplemented HFD, but not those from HFD-fed mice, induced MC degranulation and the release of β-hexosaminidase, histamine, and serotonin. IgE, LDL, very low-density lipoprotein, and high-density lipoprotein also induced MC activation, which can be inhibited by DSCG and ketotifen depending on the doses and types of MC inhibitors and cholesterol, and also the MC granule molecules of interest. DSCG or ketotifen lost their activities in inhibiting LDL-induced activation of MCs from LDL receptor-deficient mice. These results indicate that dietary cholesterol critically influences the function of mouse MCs.
Collapse
Affiliation(s)
- Xian Zhang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qin Huang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xin Wang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhiyong Deng
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie Li
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiang Yan
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, National Institute for Health and Welfare, Genomics and biomarkers unit, Biomedicum 2U, Helsinki, Finland
| | - Jari Metso
- Minerva Foundation Institute for Medical Research, National Institute for Health and Welfare, Genomics and biomarkers unit, Biomedicum 2U, Helsinki, Finland
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jian Liu
- School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Ghouse SM, Polikarpova A, Muhandes L, Dudeck J, Tantcheva-Poór I, Hartmann K, Lesche M, Dahl A, Eming S, Müller W, Behrendt R, Roers A. Although Abundant in Tumor Tissue, Mast Cells Have No Effect on Immunological Micro-milieu or Growth of HPV-Induced or Transplanted Tumors. Cell Rep 2019; 22:27-35. [PMID: 29298428 DOI: 10.1016/j.celrep.2017.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/27/2017] [Accepted: 12/04/2017] [Indexed: 02/09/2023] Open
Abstract
High numbers of mast cells populate the stroma of many types of neoplasms, including human papilloma virus-induced benign and malignant tumors in man and mouse. Equipped with numerous pattern recognition receptors and capable of executing important pro-inflammatory responses, mast cells are considered innate sentinels that significantly impact tumor biology. Mast cells were reported to promote human papilloma virus (HPV)-induced epithelial hyperproliferation and neo-angiogenesis in an HPV-driven mouse model of skin cancer. We analyzed HPV-induced epithelial hyperplasia and squamous cell carcinoma formation, as well as growth of tumors inoculated into the dermis, in mice lacking skin mast cells. Unexpectedly, the absence of mast cells had no effect on HPV-induced epithelial growth or angiogenesis, on growth kinetics of inoculated tumors, or on the immunological tumor micro-milieu. Thus, the conspicuous recruitment of mast cells into tumor tissues cannot necessarily be equated with important mast cell functions in tumor growth.
Collapse
Affiliation(s)
| | - Anastasia Polikarpova
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Lina Muhandes
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Jan Dudeck
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | | | - Karin Hartmann
- Department of Dermatology, University of Luebeck, 23538 Luebeck, Germany
| | | | - Andreas Dahl
- Biotechnology Center, TU Dresden, 01307 Dresden, Germany
| | - Sabine Eming
- Department of Dermatology, University of Cologne, 50931 Cologne, Germany
| | - Werner Müller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Rayk Behrendt
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany.
| |
Collapse
|
34
|
Jachetti E, D'Incà F, Danelli L, Magris R, Dal Secco C, Vit F, Cancila V, Tripodo C, Scapini P, Colombo MP, Pucillo C, Frossi B. Frontline Science: Mast cells regulate neutrophil homeostasis by influencing macrophage clearance activity. J Leukoc Biol 2019; 105:633-644. [PMID: 30817046 DOI: 10.1002/jlb.4hi1018-390r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/13/2019] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
The receptor tyrosine kinase cKit and its ligand stem cell factor are essential for mast cells (MC) development and survival. Strains with mutations affecting the Kit gene display a profound MC deficiency in all tissues and have been extensively used to investigate the role of MC in both physiologic and pathologic conditions. However, these mice present a variety of abnormalities in other immune cell populations that can affect the interpretation of MC-related responses. C57BL/6 KitW-sh are characterized by an aberrant extramedullary myelopoiesis and systemic neutrophilia. MC deficiency in KitW-sh mice can be selectively repaired by engraftment with in vitro-differentiated MC to validate MC-specific functions. Nevertheless, the impact of MC reconstitution on other immune populations has never been evaluated in detail. Here, we specifically investigated the neutrophil compartment in primary and secondary lymphoid organs of C57BL/6 KitW-sh mice before and after MC reconstitution. We found that, albeit not apparently affecting neutrophils phenotype or maturation, MC reconstitution of KitW-sh mice restored the number of neutrophils at a level similar to that of wild-type C57BL/6 mice. In vitro and ex vivo experiments indicated that MC can influence neutrophil clearance by increasing macrophages' phagocytic activity. Furthermore, the G-CSF/IL-17 axis was also influenced by the presence or absence of MC in KitW-sh mice. These data suggest that MC play a role in the control of neutrophil homeostasis and that this aspect should be taken into account in the interpretation of results obtained using KitW-sh mice.
Collapse
Affiliation(s)
- Elena Jachetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica D'Incà
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Luca Danelli
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Raffaella Magris
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Chiara Dal Secco
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Filippo Vit
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Patrizia Scapini
- Division of General Pathology, University of Verona, Verona, Italy
| | - Mario Paolo Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carlo Pucillo
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| | - Barbara Frossi
- Immunology Section, Department of Medicine, University of Udine, Udine, Italy
| |
Collapse
|
35
|
Cunin P, Nigrovic PA. Megakaryocytes as immune cells. J Leukoc Biol 2019; 105:1111-1121. [PMID: 30645026 DOI: 10.1002/jlb.mr0718-261rr] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Platelets play well-recognized roles in inflammation, but their cell of origin-the megakaryocyte-is not typically considered an immune lineage. Megakaryocytes are large polyploid cells most commonly identified in bone marrow. Egress via sinusoids enables migration to the pulmonary capillary bed, where elaboration of platelets can continue. Beyond receptors involved in hemostasis and thrombosis, megakaryocytes express receptors that confer immune sensing capacity, including TLRs and Fc-γ receptors. They control the proliferation of hematopoietic cells, facilitate neutrophil egress from marrow, possess the capacity to cross-present antigen, and can promote systemic inflammation through microparticles rich in IL-1. Megakaryocytes internalize other hematopoietic lineages, especially neutrophils, in an intriguing cell-in-cell interaction termed emperipolesis. Together, these observations implicate megakaryocytes as direct participants in inflammation and immunity.
Collapse
Affiliation(s)
- Pierre Cunin
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter A Nigrovic
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Arifuzzaman M, Mobley YR, Choi HW, Bist P, Salinas CA, Brown ZD, Chen SL, Staats HF, Abraham SN. MRGPR-mediated activation of local mast cells clears cutaneous bacterial infection and protects against reinfection. SCIENCE ADVANCES 2019; 5:eaav0216. [PMID: 30613778 PMCID: PMC6314830 DOI: 10.1126/sciadv.aav0216] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/27/2018] [Indexed: 05/22/2023]
Abstract
Mast cells (MCs) are strategically distributed at barrier sites and prestore various immunocyte-recruiting cytokines, making them ideal targets for selective activation to treat peripheral infections. Here, we report that topical treatment with mastoparan, a peptide MC activator (MCA), enhances clearance of Staphylococcus aureus from infected mouse skins and accelerates healing of dermonecrotic lesions. Mastoparan functions by activating connective tissue MCs (CTMCs) via the MRGPRX2 (Mas-related G protein-coupled receptor member X2) receptor. Peripheral CTMC activation, in turn, enhances recruitment of bacteria-clearing neutrophils and wound-healing CD301b+ dendritic cells. Consistent with MCs playing a master coordinating role, MC activation also augmented migration of various antigen-presenting dendritic cells to draining lymph nodes, leading to stronger protection against a second infection challenge. MCAs therefore orchestrate both the innate and adaptive immune arms, which could potentially be applied to combat peripheral infections by a broad range of pathogens.
Collapse
Affiliation(s)
- Mohammad Arifuzzaman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Yuvon R. Mobley
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Hae Woong Choi
- Department of Pathology, Duke University, Durham, NC 27710, USA
| | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| | | | - Zachary D. Brown
- Undergraduate Program in Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Swaine L. Chen
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Infectious Diseases Group, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Herman F. Staats
- Department of Pathology, Duke University, Durham, NC 27710, USA
- Department of Immunology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Soman N. Abraham
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
- Department of Pathology, Duke University, Durham, NC 27710, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
- Department of Immunology, Duke University, Durham, NC 27710, USA
- Corresponding author.
| |
Collapse
|
37
|
Mast cells as protectors of health. J Allergy Clin Immunol 2018; 144:S4-S18. [PMID: 30468774 DOI: 10.1016/j.jaci.2018.10.054] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/16/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs), which are well known for their effector functions in TH2-skewed allergic and also autoimmune inflammation, have become increasingly acknowledged for their role in protection of health. It is now clear that they are also key modulators of immune responses at interface organs, such as the skin or gut. MCs can prime tissues for adequate inflammatory responses and cooperate with dendritic cells in T-cell activation. They also regulate harmful immune responses in trauma and help to successfully orchestrate pregnancy. This review focuses on the beneficial effects of MCs on tissue homeostasis and elimination of toxins or venoms. MCs can enhance pathogen clearance in many bacterial, viral, and parasitic infections, such as through Toll-like receptor 2-triggered degranulation, secretion of antimicrobial cathelicidins, neutrophil recruitment, or provision of extracellular DNA traps. The role of MCs in tumors is more ambiguous; however, encouraging new findings show they can change the tumor microenvironment toward antitumor immunity when adequately triggered. Uterine tissue remodeling by α-chymase (mast cell protease [MCP] 5) is crucial for successful embryo implantation. MCP-4 and the tryptase MCP-6 emerge to be protective in central nervous system trauma by reducing inflammatory damage and excessive scar formation, thereby protecting axon growth. Last but not least, proteases, such as carboxypeptidase A, released by FcεRI-activated MCs detoxify an increasing number of venoms and endogenous toxins. A better understanding of the plasticity of MCs will help improve these advantageous effects and hint at ways to cut down detrimental MC actions.
Collapse
|
38
|
Pregnancy-Associated Cardiac Hypertrophy in Corin-Deficient Mice: Observations in a Transgenic Model of Preeclampsia. Can J Cardiol 2018; 35:68-76. [PMID: 30595185 DOI: 10.1016/j.cjca.2018.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/19/2018] [Accepted: 11/01/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Preeclampsia increases the risk of heart disease. Defects in the protease corin, including the variant T555I/Q568P found in approximately 12% of blacks, have been associated with preeclampsia and cardiac hypertrophy. The objective of this study was to investigate the role of corin and the T555I/Q568P variant in preeclampsia-associated cardiac alterations using genetically modified mouse models. METHODS Virgin wild-type (WT) and corin knockout mice with or without a cardiac WT corin or T555I/Q568P variant transgene were mated at 3 or 6 months of age. Age- and genotype-matched virgin mice were used as controls. Cardiac morphology and function were assessed at gestational day 18.5 or 28 days postpartum by histologic and echocardiographic analyses. RESULTS Pregnant corin knockout mice at gestational day 18.5 developed cardiac hypertrophy. Such a pregnancy-associated phenotype was not found in WT or corin knockout mice with a cardiac WT corin transgene. Pregnant corin knockout mice with a cardiac T555I/Q568P variant transgene developed cardiac hypertrophy similar to that in pregnant corin knockout mice. The cardiac hypertrophy persisted postpartum in corin knockout mice and was worse if the mice were mated at 6 instead of 3 months of age. There was no hypertrophy-associated decrease in cardiac function in pregnant corin knockout mice. CONCLUSIONS In mice, corin deficiency causes cardiac hypertrophy during pregnancy. Replacement of cardiac WT corin, but not the T555I/Q568P variant found in blacks, rescues this phenotype, indicating a local antihypertrophic function of corin in the heart. Corin deficiency may represent an underlying mechanism in preeclampsia-associated cardiomyopathies.
Collapse
|
39
|
Carlin JL, Jain S, Duroux R, Suresh RR, Xiao C, Auchampach JA, Jacobson KA, Gavrilova O, Reitman ML. Activation of adenosine A 2A or A 2B receptors causes hypothermia in mice. Neuropharmacology 2018; 139:268-278. [PMID: 29548686 PMCID: PMC6067974 DOI: 10.1016/j.neuropharm.2018.02.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/26/2018] [Accepted: 02/28/2018] [Indexed: 12/25/2022]
Abstract
Extracellular adenosine is a danger/injury signal that initiates protective physiology, such as hypothermia. Adenosine has been shown to trigger hypothermia via agonism at A1 and A3 adenosine receptors (A1AR, A3AR). Here, we find that adenosine continues to elicit hypothermia in mice null for A1AR and A3AR and investigated the effect of agonism at A2AAR or A2BAR. The poorly brain penetrant A2AAR agonists CGS-21680 and PSB-0777 caused hypothermia, which was not seen in mice lacking A2AAR. MRS7352, a likely non-brain penetrant A2AAR antagonist, inhibited PSB-0777 hypothermia. While vasodilation is probably a contributory mechanism, A2AAR agonism also caused hypometabolism, indicating that vasodilation is not the sole mechanism. The A2BAR agonist BAY60-6583 elicited hypothermia, which was lost in mice null for A2BAR. Low intracerebroventricular doses of BAY60-6583 also caused hypothermia, indicating a brain site of action, with neuronal activation in the preoptic area and paraventricular nucleus of the hypothalamus. Thus, agonism at any one of the canonical adenosine receptors, A1AR, A2AAR, A2BAR, or A3AR, can cause hypothermia. This four-fold redundancy in adenosine-mediated initiation of hypothermia may reflect the centrality of hypothermia as a protective response.
Collapse
Affiliation(s)
- Jesse Lea Carlin
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Shalini Jain
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Romain Duroux
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - R Rama Suresh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - John A Auchampach
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Jain S, Panyutin A, Liu N, Xiao C, Piñol RA, Pundir P, Girardet C, Butler AA, Dong X, Gavrilova O, Reitman ML. Melanotan II causes hypothermia in mice by activation of mast cells and stimulation of histamine 1 receptors. Am J Physiol Endocrinol Metab 2018; 315:E357-E366. [PMID: 29812984 PMCID: PMC6171009 DOI: 10.1152/ajpendo.00024.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intraperitoneal administration of the melanocortin agonist melanotan II (MTII) to mice causes a profound, transient hypometabolism/hypothermia. It is preserved in mice lacking any one of melanocortin receptors 1, 3, 4, or 5, suggesting a mechanism independent of the canonical melanocortin receptors. Here we show that MTII-induced hypothermia was abolished in KitW-sh/W-sh mice, which lack mast cells, demonstrating that mast cells are required. MRGPRB2 is a receptor that detects many cationic molecules and activates mast cells in an antigen-independent manner. In vitro, MTII stimulated mast cells by both MRGPRB2-dependent and -independent mechanisms, and MTII-induced hypothermia was intact in MRGPRB2-null mice. Confirming that MTII activated mast cells, MTII treatment increased plasma histamine levels in both wild-type and MRGPRB2-null, but not in KitW-sh/W-sh, mice. The released histamine produced hypothermia via histamine H1 receptors because either a selective antagonist, pyrilamine, or ablation of H1 receptors greatly diminished the hypothermia. Other drugs, including compound 48/80, a commonly used mast cell activator, also produced hypothermia by both mast cell-dependent and -independent mechanisms. These results suggest that mast cell activation should be considered when investigating the mechanism of drug-induced hypothermia in mice.
Collapse
Affiliation(s)
- Shalini Jain
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH) , Bethesda, Maryland
| | - Anna Panyutin
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH) , Bethesda, Maryland
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH) , Bethesda, Maryland
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Ramón A Piñol
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Priyanka Pundir
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Clémence Girardet
- Department of Pharmacology and Physiology, Saint Louis School of Medicine , St. Louis, Missouri
| | - Andrew A Butler
- Department of Pharmacology and Physiology, Saint Louis School of Medicine , St. Louis, Missouri
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH) , Bethesda, Maryland
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| |
Collapse
|
41
|
Schubert N, Lisenko K, Auerbach C, Weitzmann A, Ghouse SM, Muhandes L, Haase C, Häring T, Schulze L, Voehringer D, Gunzer F, Müller W, Feyerabend TB, Rodewald HR, Dudeck A, Roers A. Unimpaired Responses to Vaccination With Protein Antigen Plus Adjuvant in Mice With Kit-Independent Mast Cell Deficiency. Front Immunol 2018; 9:1870. [PMID: 30210490 PMCID: PMC6123530 DOI: 10.3389/fimmu.2018.01870] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/30/2018] [Indexed: 12/23/2022] Open
Abstract
Innate inflammatory responses are crucial for induction and regulation of T cell and antibody responses. Mast cell (MC)-deficient Kit mutant mice showed impaired adaptive immunity, suggesting that MCs provide essential adjuvant activities, and pharmacological MC activation was proposed as a new adjuvant principle. However, the Kit mutations result in complex alterations of the immune system in addition to MC deficiency. We revisited the role of MCs in vaccination responses using Mcpt5-Cre R26DTA/DTA and Cpa3Cre/+ mice that lack connective tissue MCs or all MCs, respectively, but feature an otherwise normal immune system. These animals showed no impairment of T and B cell responses to intradermal vaccination with protein antigen plus complete Freund’s adjuvant. Moreover, we demonstrate that the adjuvant effects of the MC secretagogue c48/80 in intradermal or mucosal immunization are independent of the presence of MCs. We hence find no evidence for a regulation by MCs of adaptive immune responses to protein antigens. The finding that immunological MC functions differ from those suggested by experiments in Kit mutants, emphasizes the importance of rigorous tests in Kit-independent MC-deficiency models.
Collapse
Affiliation(s)
- Nadja Schubert
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Katharina Lisenko
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Christian Auerbach
- Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, University of Technology Dresden, Dresden, Germany
| | - Anke Weitzmann
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Shanawaz Mohammed Ghouse
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Lina Muhandes
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Christa Haase
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Tobias Häring
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Livia Schulze
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Florian Gunzer
- Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, University of Technology Dresden, Dresden, Germany
| | - Werner Müller
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Anne Dudeck
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany.,Medical Faculty, Institute for Molecular and Clinical Immunology, Otto von Guericke University, Magdeburg, Germany
| | - Axel Roers
- Medical Faculty Carl Gustav Carus, Institute for Immunology, University of Technology Dresden, Dresden, Germany
| |
Collapse
|
42
|
Gaudenzio N, Marichal T, Galli SJ, Reber LL. Genetic and Imaging Approaches Reveal Pro-Inflammatory and Immunoregulatory Roles of Mast Cells in Contact Hypersensitivity. Front Immunol 2018; 9:1275. [PMID: 29922295 PMCID: PMC5996070 DOI: 10.3389/fimmu.2018.01275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 01/31/2023] Open
Abstract
Contact hypersensitivity (CHS) is a common T cell-mediated skin disease induced by epicutaneous sensitization to haptens. Mast cells (MCs) are widely deployed in the skin and can be activated during CHS responses to secrete diverse products, including some with pro-inflammatory and anti-inflammatory functions. Conflicting results have been obtained regarding pathogenic versus protective roles of MCs in CHS, and this has been attributed in part to the limitations of certain models for studying MC functions in vivo. This review discusses recent advances in the development and analysis of mouse models to investigate the roles of MCs and MC-associated products in vivo. Notably, fluorescent avidin-based two-photon imaging approaches enable in vivo selective labeling and simultaneous tracking of MC secretory granules (e.g., during MC degranulation) and MC gene activation by real-time longitudinal intravital microscopy in living mice. The combination of such genetic and imaging tools has shed new light on the controversial role played by MCs in mouse models of CHS. On the one hand, they can amplify CHS responses of mild severity while, on the other hand, can limit the inflammation and tissue injury associated with more severe or chronic models, in part by representing an initial source of the anti-inflammatory cytokine IL-10.
Collapse
Affiliation(s)
- Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056, INSERM, Université de Toulouse, Toulouse, France
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Liege University, Liège, Belgium
- Faculty of Veterinary Medicine, Liege University, Liège, Belgium
- WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Immunology and Microbiology, Stanford University School of Medicine, Stanford, CA, United States
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
| | - Laurent L. Reber
- Unit of Antibodies in Therapy and Pathology, INSERM Unit 1222, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
43
|
Sinha S, Bheemsetty VA, Inamdar MS. A double helical motif in OCIAD2 is essential for its localization, interactions and STAT3 activation. Sci Rep 2018; 8:7362. [PMID: 29743632 PMCID: PMC5943604 DOI: 10.1038/s41598-018-25667-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/20/2018] [Indexed: 02/08/2023] Open
Abstract
The Ovarian Carcinoma Immunoreactive Antigen domain (OCIAD) - containing proteins OCIAD1/Asrij and OCIAD2, are implicated in several cancers and neurodegenerative diseases. While Asrij has a conserved role in facilitating STAT3 activation for JAK/STAT signaling, the expression and function of OCIAD2 in non-cancerous contexts remains unknown. Here, we report that ociad2 neighbors ociad1/asrij in most vertebrate genomes, and the two genes likely arose by tandem gene duplication, probably somewhere between the Ordovician and Silurian eras. We show that ociad2 expression is higher in the mouse kidney, liver and brain relative to other tissues. OCIAD2 localizes to early endosomes and mitochondria, and interacts with Asrij and STAT3. Knockdown and overexpression studies showed that OCIAD2 is essential for STAT3 activation and cell migration, which could contribute to its role in tumor metastasis. Structure prediction programs, protein disruption studies, biochemical and functional assays revealed a double helical motif in the OCIA domain that is necessary and sufficient for its localization, interactions and STAT3 activation. Given the importance of JAK/STAT signaling in development and disease, our studies shed light on the evolution and conserved function of the OCIA domain in regulating this pathway and will be critical for understanding this clinically important protein family.
Collapse
Affiliation(s)
- Saloni Sinha
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | | | - Maneesha S Inamdar
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
44
|
Brown MA, Weinberg RB. Mast Cells and Innate Lymphoid Cells: Underappreciated Players in CNS Autoimmune Demyelinating Disease. Front Immunol 2018; 9:514. [PMID: 29619025 PMCID: PMC5871669 DOI: 10.3389/fimmu.2018.00514] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/27/2018] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis, are autoimmune CNS inflammatory diseases. As a result of a breakdown in the relatively impermeable blood–brain barrier (BBB) in affected individuals, myelin-specific CD4+ and CD8+ T cells gain entry into the immune privileged CNS and initiate myelin, oligodendrocyte, and nerve axon destruction. However, despite the absolute requirement for T cells, there is increasing evidence that innate immune cells also play critical amplifying roles in disease pathogenesis. By modulating the character and magnitude of the myelin-reactive T cell response and regulating BBB integrity, innate cells affect both disease initiation and progression. Two classes of innate cells, mast cells and innate lymphoid cells (ILCs), have been best studied in models of allergic and gastrointestinal inflammatory diseases. Yet, there is emerging evidence that these cell types also exert a profound influence in CNS inflammatory disease. Both cell types are residents within the meninges and can be activated early in disease to express a wide variety of disease-modifying cytokines and chemokines. In this review, we discuss how mast cells and ILCs can have either disease-promoting or -protecting effects on MS and other CNS inflammatory diseases and how sex hormones may influence this outcome. These observations suggest that targeting these cells and their unique mediators can be exploited therapeutically.
Collapse
Affiliation(s)
- Melissa A Brown
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Rebecca B Weinberg
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
45
|
Bakthavatchalu V, Wert KJ, Feng Y, Mannion A, Ge Z, Garcia A, Scott KE, Caron TJ, Madden CM, Jacobsen JT, Victora G, Jaenisch R, Fox JG. Cytotoxic Escherichia coli strains encoding colibactin isolated from immunocompromised mice with urosepsis and meningitis. PLoS One 2018; 13:e0194443. [PMID: 29554148 PMCID: PMC5858775 DOI: 10.1371/journal.pone.0194443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/02/2018] [Indexed: 01/19/2023] Open
Abstract
Immune-compromised mouse models allow for testing the preclinical efficacy of human cell transplantations and gene therapy strategies before moving forward to clinical trials. However, CRISPR/Cas9 gene editing of the Wsh/Wsh mouse strain to create an immune-compromised model lacking function of Rag2 and Il2rγ led to unexpected morbidity and mortality. This warranted an investigation to ascertain the cause and predisposing factors associated with the outbreak. Postmortem examination was performed on 15 moribund mice. The main lesions observed in these mice consisted of ascending urogenital tract infections, suppurative otitis media, pneumonia, myocarditis, and meningoencephalomyelitis. As Escherichia coli strains harboring polyketide synthase (pks) genomic island were recently isolated from laboratory mice, the tissue sections from the urogenital tract, heart, and middle ear were subjected to E. coli specific PNA-FISH assay that revealed discrete colonies of E. coli associated with the lesions. Microbiological examination and 16S rRNA sequencing confirmed E. coli-induced infection and septicemia in the affected mice. Further characterization by clb gene analysis and colibactin toxicity assays of the pks+ E. coli revealed colibactin-associated cytotoxicity. Rederivation of the transgenic mice using embryo transfer produced mice with an intestinal flora devoid of pks+ E. coli. Importantly, these barrier-maintained rederived mice have produced multiple litters without adverse health effects. This report is the first to describe acute morbidity and mortality associated with pks+ E. coli urosepsis and meningitis in immunocompromised mice, and highlights the importance of monitoring and exclusion of colibactin-producing pks+ E. coli.
Collapse
Affiliation(s)
- Vasudevan Bakthavatchalu
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Katherine J. Wert
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Anthony Mannion
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alexis Garcia
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kathleen E. Scott
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Tyler J. Caron
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Carolyn M. Madden
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Johanne T. Jacobsen
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Gabriel Victora
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
46
|
Jachetti E, Cancila V, Rigoni A, Bongiovanni L, Cappetti B, Belmonte B, Enriquez C, Casalini P, Ostano P, Frossi B, Sangaletti S, Chiodoni C, Chiorino G, Pucillo CE, Tripodo C, Colombo MP. Cross-Talk between Myeloid-Derived Suppressor Cells and Mast Cells Mediates Tumor-Specific Immunosuppression in Prostate Cancer. Cancer Immunol Res 2018. [PMID: 29523597 DOI: 10.1158/2326-6066.cir-17-0385] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immunotherapy, including the use of checkpoint inhibitors, is a potent therapeutic approach for some cancers, but has limited success with prostate tumors, in which immune suppression is instigated by the tumor. The immunosuppressive capacity of mast cells, which promote adenocarcinoma development in the prostate, prompted our investigation on whether mast cells promote tolerance to SV40 Large-T antigen, the transforming oncogene in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. The incidence of adenocarcinoma was reduced in the offspring of a cross between TRAMP mice and mast cell-deficient KitWsh mice. TRAMP mice are tolerant to the SV40 Large T antigen, which is otherwise immunogenic in normal syngeneic B6 mice. Genetic ablation of mast cells in TRAMP mice restored their ability to mount a tumor-specific cytotoxic T-cell response. In KitWsh-TRAMP mice, the restored T-cell immunity correlated with the reduced activity of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC), along with their reduced expression of Arg1, Nos2, and Stat3 Having found that CD40L-expressing mast cells can interact in vivo with CD40-expressing PMN-MDSC, we then determined that only KitWsh-TRAMP mice reconstituted with mast cells expressing CD40L could restore PMN-MDSCs suppressive functions, T-cell unresponsiveness and adenocarcinoma development. Thus, mast cells have an immunoregulatory effect on PMN-MDSCs activity through CD40L-CD40 interaction, favoring immunosuppression and tumor onset. In prostate cancer patients, in silico analyses correlated poor clinical outcomes with high expression of genes related to mast cells and PMN-MDSCs. Cancer Immunol Res; 6(5); 552-65. ©2018 AACR.
Collapse
Affiliation(s)
- Elena Jachetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Alice Rigoni
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Bongiovanni
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Barbara Cappetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Claudia Enriquez
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Casalini
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Barbara Frossi
- Department of Medical and Biological Science, University of Udine, Udine, Italy
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Carlo E Pucillo
- Department of Medical and Biological Science, University of Udine, Udine, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
47
|
Abstract
Mast cells are hematopoietic progenitor-derived, granule-containing immune cells that are widely distributed in tissues that interact with the external environment, such as the skin and mucosal tissues. It is well-known that mast cells are significantly involved in IgE-mediated allergic reactions, but because of their location, it has also been long hypothesized that mast cells can act as sentinel cells that sense pathogens and initiate protective immune responses. Using mast cell or mast cell protease-deficient murine models, recent studies by our groups and others indicate that mast cells have pleiotropic regulatory roles in immunological responses against pathogens. In this review, we discuss studies that demonstrate that mast cells can either promote host resistance to infections caused by bacteria and fungi or contribute to dysregulated immune responses that can increase host morbidity and mortality. Overall, these studies indicate that mast cells can influence innate immune responses against bacterial and fungal infections via multiple mechanisms. Importantly, the contribution of mast cells to infection outcomes depends in part on the infection model, including the genetic approach used to assess the influence of mast cells on host immunity, hence highlighting the complexity of mast cell biology in the context of innate immune responses.
Collapse
Affiliation(s)
- Adrian M Piliponsky
- Departments of Pediatrics and Pathology, University of Washington, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Luigina Romani
- Pathology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Center of functional genomics (C.U.R.Ge.F.), Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
48
|
Lotinun S, Suwanwela J, Poolthong S, Baron R. Kit W-sh Mutation Prevents Cancellous Bone Loss during Calcium Deprivation. Calcif Tissue Int 2018; 102:93-104. [PMID: 29032463 DOI: 10.1007/s00223-017-0334-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022]
Abstract
Calcium is essential for normal bone growth and development. Inadequate calcium intake increases the risk of osteoporosis and fractures. Kit ligand/c-Kit signaling plays an important role in regulating bone homeostasis. Mice with c-Kit mutations are osteopenic. The present study aimed to investigate whether impairment of or reduction in c-Kit signaling affects bone turnover during calcium deprivation. Three-week-old male WBB6F1/J-Kit W /Kit W-v /J (W/W v ) mice with c-Kit point mutation, Kit W-sh /HNihrJaeBsmJ (W sh /W sh ) mice with an inversion mutation in the regulatory elements upstream of the c-Kit promoter region, and their wild-type controls (WT) were fed either a normal (0.6% calcium) or a low calcium diet (0.02% calcium) for 3 weeks. μCT analysis indicated that both mutants fed normal calcium diet had significantly decreased cortical thickness and cancellous bone volume compared to WT. The low calcium diet resulted in a comparable reduction in cortical bone volume and cortical thickness in the W/W v and W sh /W sh mice, and their corresponding controls. As expected, the low calcium diet induced cancellous bone loss in the W/W v mice. In contrast, W sh /W sh cancellous bone did not respond to this diet. This c-Kit mutation prevented cancellous bone loss by antagonizing the low calcium diet-induced increase in osteoblast and osteoclast numbers in the W sh /W sh mice. Gene expression profiling showed that calcium deficiency increased Osx, Ocn, Alp, type I collagen, c-Fms, M-CSF, and RANKL/OPG mRNA expression in controls; however, the W sh mutation suppressed these effects. Our findings indicate that although calcium restriction increased bone turnover, leading to osteopenia, the decreased c-Kit expression levels in the W sh /W sh mice prevented the low calcium diet-induced increase in cancellous bone turnover and bone loss but not the cortical bone loss.
Collapse
Affiliation(s)
- Sutada Lotinun
- Department of Physiology and Craniofacial and Skeletal Disorders Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.
| | - Jaijam Suwanwela
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Suchit Poolthong
- Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Chen S, Wang H, Li H, Zhang Y, Wu Q. Functional analysis of corin protein domains required for PCSK6-mediated activation. Int J Biochem Cell Biol 2017; 94:31-39. [PMID: 29180304 DOI: 10.1016/j.biocel.2017.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/20/2017] [Accepted: 11/24/2017] [Indexed: 02/08/2023]
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone essential for normal blood pressure and cardiac function. Corin is a transmembrane serine protease that activates ANP. Recently, we identified proprotein convertase subtilisin/kexin-6 (PCSK6), also called PACE4, as the long-sought corin activator. Both corin and PCSK6 are expressed in cardiomyocytes, but corin activation occurs only on the cell surface. It remains unknown if cell membrane association is needed for PCSK6 to activate corin. Here we expressed corin deletion mutants in HEK293 cells to analyze the domain structures required for PCSK6-mediated activation. Our results show that soluble corin lacking the transmembrane domain was activated by PCSK6 in the conditioned medium but not intracellularly. Recombinant PCSK6 also activated the soluble corin under cell-free conditions. Moreover, PCSK6-mediated corin activation was not enhanced by cell membrane fractions. These results indicate that cell membrane association is unnecessary for PCSK6 to activate corin. Experiments with monensin that blocks PCSK6 secretion and immunostaining indicated that the soluble corin and PCSK6 were secreted via different intracellular pathways, which may explain the lack of corin activation inside the cell. We also found that the protein domains in the corin pro-peptide region were dispensable for PCSK6-mediated activation and that addition of heparan sulfate and chondroitin sulfate or treatment with heparinase or chondroitinase did not alter corin activation by PCSK6 in HEK293 cells. Together, our results provide important insights into the molecular and cellular mechanisms underlying PCSK6-mediated corin activation that is critical for cardiovascular homeostasis.
Collapse
Affiliation(s)
- Shenghan Chen
- From the Human Aging Research Institute and School of Life Science, Nanchang University, Nanchang, China; The Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - Hao Wang
- The Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - Heng Li
- From the Human Aging Research Institute and School of Life Science, Nanchang University, Nanchang, China
| | - Yue Zhang
- The Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qingyu Wu
- The Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA; The Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
50
|
Zhou H, Zhu J, Liu M, Wu Q, Dong N. Role of the protease corin in chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells. J Tissue Eng Regen Med 2017; 12:973-982. [PMID: 28714548 DOI: 10.1002/term.2514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/30/2017] [Accepted: 07/11/2017] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cells (MSCs) have the potency to differentiate into chondrocytes, osteocytes and adipocytes. Corin is a cardiac protease that activates the natriuretic peptides, thereby regulating blood volume and pressure. In addition to the heart, corin gene upregulation was reported in bone marrow- and adipose tissue-derived MSCs that underwent osteogenic differentiation. To date, the biological significance of corin expression in MSC differentiation remains unknown. In this study we isolated and cultured human bone marrow-derived MSCs that were capable of undergoing chondrogenic, osteogenic and adipogenic lineage differentiation. By reverse transcription polymerase chain reaction (RT-PCR) and immunostaining, we found that corin expression was upregulated when these MSCs underwent chondrogenic, osteogenic and adipogenic differentiation. The upregulation of corin expression was most significant in the cells undergoing chondrogenic lineage differentiation. Silencing corin gene expression by small hairpin RNA in the MSCs inhibited chondrogenic, but not osteogenic and adipogenic, differentiation. These results suggest a novel function of corin in MSC differentiation and chondrocyte development.
Collapse
Affiliation(s)
- Haibin Zhou
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinsong Zhu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|