1
|
Sun Z, Li J, Liu H, Fan Z. Insulin-Like Growth Factor-Binding Protein 5 Promotes the Cell Proliferation and Osteogenic Potential of Dental Pulp Stem Cells Dependent on Its Nuclear Localisation Sequence. J Oral Rehabil 2024; 51:2664-2674. [PMID: 39313926 DOI: 10.1111/joor.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVES Dental pulp stem cells (DPSCs) have been extensively used for tissue regeneration owing to their notable capabilities. Insulin-like growth factor-binding protein 5 (IGFBP5) regulates osteogenic differentiation of mesenchymal stem cells (MSCs); however, the underlying regulatory mechanisms require further investigation. MATERIALS AND METHODS Carboxyfluorescein succinimidyl ester, an alkaline phosphatase (ALP) activity assay and Alizarin Red staining were used to reveal the role of IGFBP5 in DPSCs. Protein expression levels were determined using western blotting. Immunofluorescence was used to observe cell sub-localisation. Subcutaneous transplantation in nude mice was used to observe the osteogenesis of DPSCs in vivo. RESULTS IGFBP5 enhanced the proliferation and osteogenic differentiation of DPSCs. Deletion of the nuclear localisation sequence (NLS) of IGFBP5 prevented its nuclear import and abolished all its promoting effects on DPSCs; ivermectin stimulation attenuated the enhancement of ALP activity by IGBFP5. Bone-like tissue formation promoted by IGFBP5 in vivo vanishes when the NLS is deleted. Inhibition of IGFBP5 nuclear import attenuated the IGFBP5-induced phosphorylation of JNK (p-JNK) and phosphorylated ERK (p-ERK) in DPSCs. CONCLUSION Our findings suggest that cell proliferation and osteogenic differentiation effects exerted by IGFBP5 on DPSCs are closely associated with their entry into the nucleus, thereby providing a novel potential target for tissue regeneration.
Collapse
Affiliation(s)
- Ziyan Sun
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Preventive Medicine, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Huina Liu
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Department of General Dentistry and Integrated Emergency Dental Care, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Waldrep KM, Rodgers JI, Garrett SM, Wolf BJ, Feghali-Bostwick CA. The Role of SOX9 in IGF-II-Mediated Pulmonary Fibrosis. Int J Mol Sci 2023; 24:11234. [PMID: 37510994 PMCID: PMC10378869 DOI: 10.3390/ijms241411234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Pulmonary fibrosis (PF) associated with systemic sclerosis (SSc) results in significant morbidity and mortality. We previously reported that insulin-like growth factor-II (IGF-II) is overexpressed in lung tissues and fibroblasts from SSc patients, and IGF-II fosters fibrosis by upregulating collagen type I, fibronectin, and TGFβ. We now show that IGF-II augments mRNA levels of profibrotic signaling molecules TGFβ2 (p ≤ 0.01) and TGFβ3 (p ≤ 0.05), collagen type III (p ≤ 0.01), and the collagen posttranslational modification enzymes P4HA2 (p ≤ 0.05), P3H2 (p ≤ 0.05), LOX (p = 0.065), LOXL2 (p ≤ 0.05), LOXL4 (p ≤ 0.05) in primary human lung fibroblasts. IGF-II increases protein levels of TGFβ2 (p ≤ 0.01), as well as COL3A1, P4HA2, P4Hβ, and LOXL4 (p ≤ 0.05). In contrast, IGF-II decreases mRNA levels of the collagen degradation enzymes cathepsin (CTS) K, CTSB, and CTSL and protein levels of CTSK (p ≤ 0.05). The SRY-box transcription factor 9 (SOX9) is overexpressed in SSc lung tissues at the mRNA (p ≤ 0.05) and protein (p ≤ 0.01) levels compared to healthy controls. IGF-II induces SOX9 in lung fibroblasts (p ≤ 0.05) via the IGF1R/IR hybrid receptor, and SOX9 regulates TGFβ2 (p ≤ 0.05), TGFβ3 (p ≤ 0.05), COL3A1 (p ≤ 0.01), and P4HA2 (p ≤ 0.001) downstream of IGF-II. Our results identify a novel IGF-II signaling axis and downstream targets that are regulated in a SOX9-dependent and -independent manner. Our findings provide novel insights on the role of IGF-II in promoting pulmonary fibrosis.
Collapse
Affiliation(s)
- Kristy M. Waldrep
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Jessalyn I. Rodgers
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Sara M. Garrett
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| | - Bethany J. Wolf
- Department of Public Health Sciences, Biostatistics and Bioinformatics, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Carol A. Feghali-Bostwick
- Department of Medicine, Rheumatology, Medical University of South Carolina, Charleston, SC 29425, USA; (K.M.W.); (J.I.R.); (S.M.G.)
| |
Collapse
|
3
|
Du H, Zhou Y, Du X, Zhang P, Cao Z, Sun Y. Insulin-like growth factor binding protein 5b of Trachinotus ovatus and its heparin-binding motif play a critical role in host antibacterial immune responses via NF-κB pathway. Front Immunol 2023; 14:1126843. [PMID: 36865533 PMCID: PMC9972581 DOI: 10.3389/fimmu.2023.1126843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Insulin-like growth factor binding protein 5 (IGFBP5) exerts an essential biological role in many processes, including apoptosis, cellular differentiation, growth, and immune responses. However, compared to mammalians, our knowledge of IGFBP5 in teleosts remains limited. Methods In this study, TroIGFBP5b, an IGFBP5 homologue from golden pompano (Trachinotus ovatus) was identified. Quantitative real-time PCR (qRT-PCR) was used to check its mRNA expression level in healthy condition and after stimulation. In vivo overexpression and RNAi knockdown method were performed to evaluate the antibacterial profile. We constructed a mutant in which HBM was deleted to better understand the mechanism of its role in antibacterial immunity. Subcellular localization and nuclear translocation were verified by immunoblotting. Further, proliferation of head kidney lymphocytes (HKLs) and phagocytic activity of head kidney macrophages (HKMs) were detected through CCK-8 assay and flow cytometry. Immunofluorescence microscopy assay (IFA) and dual luciferase reporter (DLR) assay were used to evaluate the activity in nuclear factor-κB (NF-κβ) pathway. Results The TroIGFBP5b mRNA expression level was upregulated after bacterial stimulation. In vivo, TroIGFBP5b overexpression significantly improved the antibacterial immunity of fish. In contrast, TroIGFBP5b knockdown significantly decreased this ability. Subcellular localization results showed that TroIGFBP5b and TroIGFBP5b-δHBM were both present in the cytoplasm of GPS cells. After stimulation, TroIGFBP5b-δHBM lost the ability to transfer from the cytoplasm to the nucleus. In addition, rTroIGFBP5b promoted the proliferation of HKLs and phagocytosis of HKMs, whereas rTroIGFBP5b-δHBM, suppressed these facilitation effects. Moreover, the in vivo antibacterial ability of TroIGFBP5b was suppressed and the effects of promoting expression of proinflammatory cytokines in immune tissues were nearly lost after HBM deletion. Furthermore, TroIGFBP5b induced NF-κβ promoter activity and promoted nuclear translocation of p65, while these effects were inhibited when the HBM was deleted. Discussion Taken together, our results suggest that TroIGFBP5b plays an important role in golden pompano antibacterial immunity and activation of the NF-κβ signalling pathway, providing the first evidence that the HBM of TroIGFBP5b plays a critical role in these processes in teleosts.
Collapse
Affiliation(s)
- Hehe Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China.,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Xiangyu Du
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Panpan Zhang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Zhenjie Cao
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China.,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China.,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
4
|
Ackerman JE, Best KT, Muscat SN, Pritchett EM, Nichols AE, Wu CL, Loiselle AE. Defining the spatial-molecular map of fibrotic tendon healing and the drivers of Scleraxis-lineage cell fate and function. Cell Rep 2022; 41:111706. [PMID: 36417854 PMCID: PMC9741867 DOI: 10.1016/j.celrep.2022.111706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/16/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
Tendon injuries heal via a scar-mediated response, and there are no biological approaches to promote more regenerative healing. Mouse flexor tendons heal through the formation of spatially distinct tissue areas: a highly aligned tissue bridge between the native tendon stubs that is enriched for adult Scleraxis-lineage cells and a disorganized outer shell associated with peri-tendinous scar formation. However, the specific molecular programs that underpin these spatially distinct tissue profiles are poorly defined. In the present study, we combine lineage tracing of adult Scleraxis-lineage cells with spatial transcriptomic profiling to define the overarching molecular programs that govern tendon healing and cell-fate decisions. Pseudotime analysis identified three fibroblast trajectories (synthetic, fibrotic, and reactive) and key transcription factors regulating these fate-switching decisions, including the progression of adult Scleraxis-lineage cells through the reactive trajectory. Collectively, this resource defines the molecular mechanisms that coordinate the temporo-spatial healing phenotype, which can be leveraged to inform therapeutic candidate selection.
Collapse
Affiliation(s)
- Jessica E. Ackerman
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Katherine T. Best
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Samantha N. Muscat
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Elizabeth M. Pritchett
- Genomics Research Center, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Anne E.C. Nichols
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Chia-Lung Wu
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Senior author
| | - Alayna E. Loiselle
- Center for Musculoskeletal Research, Department of Orthopedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY 14642, USA,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA,Senior author,Lead contact,Correspondence:
| |
Collapse
|
5
|
Waters JA, Urbano I, Robinson M, House CD. Insulin-like growth factor binding protein 5: Diverse roles in cancer. Front Oncol 2022; 12:1052457. [PMID: 36465383 PMCID: PMC9714447 DOI: 10.3389/fonc.2022.1052457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin-like growth factor binding proteins (IGFBPs) and the associated signaling components in the insulin-like growth factor (IGF) pathway regulate cell differentiation, proliferation, apoptosis, and adhesion. Of the IGFBPs, insulin-like growth factor binding protein 5 (IGFBP5) is the most evolutionarily conserved with a dynamic range of IGF-dependent and -independent functions, and studies on the actions of IGFBP5 in cancer have been somewhat paradoxical. In cancer, the IGFBPs respond to external stimuli to modulate disease progression and therapeutic responsiveness in a context specific manner. This review discusses the different roles of IGF signaling and IGFBP5 in disease with an emphasis on discoveries within the last twenty years, which underscore a need to clarify the IGF-independent actions of IGFBP5, the impact of its subcellular localization, the differential activities of each of the subdomains, and the response to elements of the tumor microenvironment (TME). Additionally, recent advances addressing the role of IGFBP5 in resistance to cancer therapeutics will be discussed. A better understanding of the contexts in which IGFBP5 functions will facilitate the discovery of new mechanisms of cancer progression that may lead to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Jennifer A. Waters
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Ixchel Urbano
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Mikella Robinson
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Carrie D. House
- Biology Department, San Diego State University, San Diego, CA, United States,Moore’s Cancer Center, University of California, San Diego, San Diego, CA, United States,*Correspondence: Carrie D. House,
| |
Collapse
|
6
|
Chiba N, Noguchi Y, Hwan Seong C, Ohnishi T, Matsuguchi T. EGR1 Plays an Important Role in BMP9-Mediated Osteoblast Differentiation by Promoting SMAD1/5 Phosphorylation. FEBS Lett 2022; 596:1720-1732. [PMID: 35594155 DOI: 10.1002/1873-3468.14407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/06/2022]
Abstract
Bone morphogenetic proteins (BMPs) are essential regulators of skeletal homeostasis, and BMP9 is the most potently osteogenic among them. Here, we found that BMP9 and BMP2 rapidly induced early growth response 1 (EGR1) protein expression in osteoblasts through MEK/ERK pathway-dependent transcriptional activation. Knockdown of EGR1 using siRNA significantly inhibited BMP9-induced matrix mineralization and osteogenic marker gene expression in osteoblasts. Knockdown of EGR1 significantly reduced SMAD1/5 phosphorylation and inhibited the expression of their transcriptional targets in osteoblasts stimulated by BMP9. In contrast, forced EGR1 overexpression in osteoblasts enhanced BMP9-mediated osteoblast differentiation and SMAD1/5 phosphorylation. An intracellular association between EGR1 and SMAD1/5 was identified using immunoprecipitation assays. These results indicated that EGR1 plays an important role in BMP9-stimulated osteoblast differentiation by enhancing SMAD1/5 phosphorylation.
Collapse
Affiliation(s)
- Norika Chiba
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| | - Yukie Noguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| | - Chang Hwan Seong
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan.,Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 8-35-1 Sakuragaoka, 890-8544, Japan
| |
Collapse
|
7
|
Jasso GJ, Jaiswal A, Varma M, Laszewski T, Grauel A, Omar A, Silva N, Dranoff G, Porter JA, Mansfield K, Cremasco V, Regev A, Xavier RJ, Graham DB. Colon stroma mediates an inflammation-driven fibroblastic response controlling matrix remodeling and healing. PLoS Biol 2022; 20:e3001532. [PMID: 35085231 PMCID: PMC8824371 DOI: 10.1371/journal.pbio.3001532] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/08/2022] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
Abstract
Chronic inflammation is often associated with the development of tissue fibrosis, but how mesenchymal cell responses dictate pathological fibrosis versus resolution and healing remains unclear. Defining stromal heterogeneity and identifying molecular circuits driving extracellular matrix deposition and remodeling stands to illuminate the relationship between inflammation, fibrosis, and healing. We performed single-cell RNA-sequencing of colon-derived stromal cells and identified distinct classes of fibroblasts with gene signatures that are differentially regulated by chronic inflammation, including IL-11-producing inflammatory fibroblasts. We further identify a transcriptional program associated with trans-differentiation of mucosa-associated fibroblasts and define a functional gene signature associated with matrix deposition and remodeling in the inflamed colon. Our analysis supports a critical role for the metalloprotease Adamdec1 at the interface between tissue remodeling and healing during colitis, demonstrating its requirement for colon epithelial integrity. These findings provide mechanistic insight into how inflammation perturbs stromal cell behaviors to drive fibroblastic responses controlling mucosal matrix remodeling and healing.
Collapse
Affiliation(s)
- Guadalupe J. Jasso
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alok Jaiswal
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mukund Varma
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Tyler Laszewski
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Angelo Grauel
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Abdifatah Omar
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nilsa Silva
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Glenn Dranoff
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Jeffrey A. Porter
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Keith Mansfield
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Viviana Cremasco
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute and David H. Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (RJX); (DBG)
| | - Daniel B. Graham
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (RJX); (DBG)
| |
Collapse
|
8
|
Identification of Impacted Pathways and Transcriptomic Markers as Potential Mediators of Pulmonary Fibrosis in Transgenic Mice Expressing Human IGFBP5. Int J Mol Sci 2021; 22:ijms222212609. [PMID: 34830489 PMCID: PMC8619832 DOI: 10.3390/ijms222212609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis is a serious disease characterized by extracellular matrix (ECM) component overproduction and remodeling. Insulin-like growth factor-binding protein 5 (IGFBP5) is a conserved member of the IGFBP family of proteins that is overexpressed in fibrotic tissues and promotes fibrosis. We used RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) between primary lung fibroblasts (pFBs) of homozygous (HOMO) transgenic mice expressing human IGFBP5 (hIGFBP5) and wild type mice (WT). The results of the differential expression analysis showed 2819 DEGs in hIGFBP5 pFBs. Functional enrichment analysis confirmed the pro-fibrotic character of IGFBP5 and revealed its impact on fundamental signaling pathways, including cytokine–cytokine receptor interaction, focal adhesion, AGE-RAGE signaling, calcium signaling, and neuroactive ligand-receptor interactions, to name a few. Noticeably, 7% of the DEGs in hIGFBP5-expressing pFBs are receptors and integrins. Furthermore, hub gene analysis revealed 12 hub genes including Fpr1, Bdkrb2, Mchr1, Nmur1, Cnr2, P2ry14, and Ptger3. Validation assays were performed to complement the RNAseq data. They confirmed significant differences in the levels of the corresponding proteins in cultured pFBs. Our study provides new insights into the molecular mechanism(s) of IGFBP5-associated pulmonary fibrosis through possible receptor interactions that drive fibrosis and tissue remodeling.
Collapse
|
9
|
Pryimak N, Zaiachuk M, Kovalchuk O, Kovalchuk I. The Potential Use of Cannabis in Tissue Fibrosis. Front Cell Dev Biol 2021; 9:715380. [PMID: 34708034 PMCID: PMC8542845 DOI: 10.3389/fcell.2021.715380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023] Open
Abstract
Fibrosis is a condition characterized by thickening or/and scarring of various tissues. Fibrosis may develop in almost all tissues and organs, and it may be one of the leading causes of morbidity and mortality. It provokes excessive scarring that excels the usual wound healing response to trauma in numerous organs. Currently, very little can be done to prevent tissue fibrosis, and it is almost impossible to reverse it. Anti-inflammatory and immunosuppressive drugs are among the few treatments that may be efficient in preventing fibrosis. Numerous publications suggest that cannabinoids and extracts of Cannabis sativa have potent anti-inflammatory and anti-fibrogenic properties. In this review, we describe the types and mechanisms of fibrosis in various tissues and discuss various strategies for prevention and dealing with tissue fibrosis. We further introduce cannabinoids and their potential for the prevention and treatment of fibrosis, and therefore for extending healthy lifespan.
Collapse
Affiliation(s)
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
10
|
Hamed O, Joshi R, Michi AN, Kooi C, Giembycz MA. β 2-Adrenoceptor Agonists Promote Extracellular Signal-Regulated Kinase 1/2 Dephosphorylation in Human Airway Epithelial Cells by Canonical, cAMP-Driven Signaling Independently of β-Arrestin 2. Mol Pharmacol 2021; 100:388-405. [PMID: 34341099 DOI: 10.1124/molpharm.121.000294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Chronic use of β 2-adrenoceptor agonists as a monotherapy in asthma is associated with a loss of disease control and an increased risk of mortality. Herein, we tested the hypothesis that β 2-adrenoceptor agonists, including formoterol, promote biased, β-arrestin (Arr) 2-dependent activation of the mitogen-activated protein kinases, ERK1/2, in human airway epithelial cells and, thereby, effect changes in gene expression that could contribute to their adverse clinical outcomes. Three airway epithelial cell models were used: the BEAS-2B cell line, human primary bronchial epithelial cells (HBEC) grown in submersion culture, and HBEC that were highly differentiated at an air-liquid interface. Unexpectedly, treatment of all epithelial cell models with formoterol decreased basal ERK1/2 phosphorylation. This was mediated by cAMP-dependent protein kinase and involved the inactivation of C-rapidly-activated fibrosarcoma, which attenuated downstream ERK1/2 activity, and the induction of dual-specificity phosphatase 1. Formoterol also inhibited the basal expression of early growth response-1, an ERK1/2-regulated gene that controls cell growth and repair in the airways. Neither carvedilol, a β 2-adrenoceptor agonist biased toward βArr2, nor formoterol promoted ERK1/2 phosphorylation in BEAS-2B cells, although β 2-adrenoceptor desensitization was compromised in ARRB2-deficient cells. Collectively, these results contest the hypothesis that formoterol activates ERK1/2 in airway epithelia by nucleating a βArr2 signaling complex; instead, they indicate that β 2-adrenoceptor agonists inhibit constitutive ERK1/2 activity in a cAMP-dependent manner. These findings are the antithesis of results obtained using acutely challenged native and engineered HEK293 cells, which have been used extensively to study mechanisms of ERK1/2 activation, and highlight the cell type dependence of β 2-adrenoceptor-mediated signaling. SIGNIFICANCE STATEMENT: It has been proposed that the adverse effects of β 2-adrenoceptor agonist monotherapy in asthma are mediated by genomic mechanisms that occur principally in airway epithelial cells and are the result of β-arrestin 2-dependent activation of ERK1/2. This study shows that β 2-adrenoceptor agonists, paradoxically, reduced ERK1/2 phosphorylation in airway epithelia by disrupting upstream rat sarcoma-C-rapidly accelerated fibrosarcoma complex formation and inducing dual-specificity phosphatase 1. Moreover, these effects were cAMP-dependent protein kinase-dependent, suggesting that β 2-adrenoceptor agonists were not biased toward β-arrestin 2 and acted via canonical, cAMP-dependent signaling.
Collapse
Affiliation(s)
- Omar Hamed
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Radhika Joshi
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aubrey N Michi
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cora Kooi
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mark A Giembycz
- Airways Inflammation Research Group, Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Baker Frost D, Savchenko A, Ogunleye A, Armstrong M, Feghali-Bostwick C. Elucidating the cellular mechanism for E2-induced dermal fibrosis. Arthritis Res Ther 2021; 23:68. [PMID: 33640015 PMCID: PMC7913437 DOI: 10.1186/s13075-021-02441-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Both TGFβ and estradiol (E2), a form of estrogen, are pro-fibrotic in the skin. In the connective tissue disease, systemic sclerosis (SSc), both TGFβ and E2 are likely pathogenic. Yet the regulation of TGFβ in E2-induced dermal fibrosis remains ill-defined. Elucidating those regulatory mechanisms will improve the understanding of fibrotic disease pathogenesis and set the stage for developing potential therapeutics. Using E2-stimulated primary human dermal fibroblasts in vitro and human skin tissue ex vivo, we identified the important regulatory proteins for TGFβ and investigated the extracellular matrix (ECM) components that are directly stimulated by E2-induced TGFβ signaling. METHODS We used primary human dermal fibroblasts in vitro and human skin tissue ex vivo stimulated with E2 or vehicle (ethanol) to measure TGFβ1 and TGFβ2 levels using quantitative PCR (qPCR). To identify the necessary cell signaling proteins in E2-induced TGFβ1 and TGFβ2 transcription, human dermal fibroblasts were pre-treated with an inhibitor of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway, U0126. Finally, human skin tissue ex vivo was pre-treated with SB-431542, a TGFβ receptor inhibitor, and ICI 182,780, an estrogen receptor α (ERα) inhibitor, to establish the effects of TGFβ and ERα signaling on E2-induced collagen 22A1 (Col22A1) transcription. RESULTS We found that expression of TGFβ1, TGFβ2, and Col22A1, a TGFβ-responsive gene, is induced in response to E2 stimulation. Mechanistically, Col22A1 induction was blocked by SB-431542 and ICI 182,780 despite E2 stimulation. Additionally, inhibiting E2-induced ERK/MAPK activation and early growth response 1 (EGR1) transcription prevents the E2-induced increase in TGFβ1 and TGFβ2 transcription and translation. CONCLUSIONS We conclude that E2-induced dermal fibrosis occurs in part through induction of TGFβ1, 2, and Col22A1, which is regulated through EGR1 and the MAPK pathway. Thus, blocking estrogen signaling and/or production may be a novel therapeutic option in pro-fibrotic diseases.
Collapse
Affiliation(s)
- DeAnna Baker Frost
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, USA.
| | - Alisa Savchenko
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, USA
| | - Adeyemi Ogunleye
- Division of Plastic Surgery, University of North Carolina, Chapel Hill, USA
| | - Milton Armstrong
- Department of Surgery, Division of Plastic Surgery, Medical University of South Carolina, Charleston, USA
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
12
|
Sarvestani SK, Signs S, Hu B, Yeu Y, Feng H, Ni Y, Hill DR, Fisher RC, Ferrandon S, DeHaan RK, Stiene J, Cruise M, Hwang TH, Shen X, Spence JR, Huang EH. Induced organoids derived from patients with ulcerative colitis recapitulate colitic reactivity. Nat Commun 2021; 12:262. [PMID: 33431859 PMCID: PMC7801686 DOI: 10.1038/s41467-020-20351-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/30/2020] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of ulcerative colitis (UC), a major type of inflammatory bowel disease, remains unknown. No model exists that adequately recapitulates the complexity of clinical UC. Here, we take advantage of induced pluripotent stem cells (iPSCs) to develop an induced human UC-derived organoid (iHUCO) model and compared it with the induced human normal organoid model (iHNO). Notably, iHUCOs recapitulated histological and functional features of primary colitic tissues, including the absence of acidic mucus secretion and aberrant adherens junctions in the epithelial barrier both in vitro and in vivo. We demonstrate that the CXCL8/CXCR1 axis was overexpressed in iHUCO but not in iHNO. As proof-of-principle, we show that inhibition of CXCL8 receptor by the small-molecule non-competitive inhibitor repertaxin attenuated the progression of UC phenotypes in vitro and in vivo. This patient-derived organoid model, containing both epithelial and stromal compartments, will generate new insights into the underlying pathogenesis of UC while offering opportunities to tailor interventions to the individual patient.
Collapse
Affiliation(s)
- Samaneh K Sarvestani
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Steven Signs
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Bo Hu
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Yunku Yeu
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Hao Feng
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ying Ni
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - David R Hill
- Department of Internal Medicine, Gastroenterology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert C Fisher
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Sylvain Ferrandon
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Reece K DeHaan
- Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jennifer Stiene
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Michael Cruise
- Department of Pathology, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Tae Hyun Hwang
- Department of Quantitative Health Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Emina H Huang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
- Department of Colorectal Surgery, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
13
|
Widyastuti HP, Norden-Krichmar TM, Grosberg A, Zaragoza MV. Gene expression profiling of fibroblasts in a family with LMNA-related cardiomyopathy reveals molecular pathways implicated in disease pathogenesis. BMC MEDICAL GENETICS 2020; 21:152. [PMID: 32698886 PMCID: PMC7374820 DOI: 10.1186/s12881-020-01088-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
Background Intermediate filament proteins that construct the nuclear lamina of a cell include the Lamin A/C proteins encoded by the LMNA gene, and are implicated in fundamental processes such as nuclear structure, gene expression, and signal transduction. LMNA mutations predominantly affect mesoderm-derived cell lineages in diseases collectively termed as laminopathies that include dilated cardiomyopathy with conduction defects, different forms of muscular dystrophies, and premature aging syndromes as Hutchinson-Gilford Progeria Syndrome. At present, our understanding of the molecular mechanisms regulating tissue-specific manifestations of laminopathies are still limited. Methods To gain deeper insight into the molecular mechanism of a novel LMNA splice-site mutation (c.357-2A > G) in an affected family with cardiac disease, we conducted deep RNA sequencing and pathway analysis for nine fibroblast samples obtained from three patients with cardiomyopathy, three unaffected family members, and three unrelated, unaffected individuals. We validated our findings by quantitative PCR and protein studies. Results We identified eight significantly differentially expressed genes between the mutant and non-mutant fibroblasts, that included downregulated insulin growth factor binding factor protein 5 (IGFBP5) in patient samples. Pathway analysis showed involvement of the ERK/MAPK signaling pathway consistent with previous studies. We found no significant differences in gene expression for Lamin A/C and B-type lamins between the groups. In mutant fibroblasts, RNA-seq confirmed that only the LMNA wild type allele predominately was expressed, and Western Blot showed normal Lamin A/C protein levels. Conclusions IGFBP5 may contribute in maintaining signaling pathway homeostasis, which may lead to the absence of notable molecular and structural abnormalities in unaffected tissues such as fibroblasts. Compensatory mechanisms from other nuclear membrane proteins were not found. Our results also demonstrate that only one copy of the wild type allele is sufficient for normal levels of Lamin A/C protein to maintain physiological function in an unaffected cell type. This suggests that affected cell types such as cardiac tissues may be more sensitive to haploinsufficiency of Lamin A/C. These results provide insight into the molecular mechanism of disease with a possible explanation for the tissue specificity of LMNA-related dilated cardiomyopathy.
Collapse
Affiliation(s)
- Halida P Widyastuti
- UCI Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics and Department of Biological Chemistry, University of California, Irvine, School of Medicine, 2042 Hewitt Hall, Irvine, CA, 92697-3940, USA
| | - Trina M Norden-Krichmar
- Department of Epidemiology, University of California, Irvine, School of Medicine, 3062 Anteater Instruction and Research Building, Irvine, CA, 92697-7550, USA.
| | - Anna Grosberg
- Department of Biomedical Engineering and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, California, USA
| | - Michael V Zaragoza
- UCI Cardiogenomics Program, Department of Pediatrics, Division of Genetics & Genomics and Department of Biological Chemistry, University of California, Irvine, School of Medicine, 2042 Hewitt Hall, Irvine, CA, 92697-3940, USA.
| |
Collapse
|
14
|
Renaud L, da Silveira WA, Takamura N, Hardiman G, Feghali-Bostwick C. Prominence of IL6, IGF, TLR, and Bioenergetics Pathway Perturbation in Lung Tissues of Scleroderma Patients With Pulmonary Fibrosis. Front Immunol 2020; 11:383. [PMID: 32210969 PMCID: PMC7075854 DOI: 10.3389/fimmu.2020.00383] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
Scleroderma-associated pulmonary fibrosis (SSc-PF) and idiopathic pulmonary fibrosis (IPF) are two of many chronic fibroproliferative diseases that are responsible for nearly 45% of all deaths in developed countries. While sharing several pathobiological characteristics, they also have very distinct features. Currently no effective anti-fibrotic treatments exist that can halt the progression of PF or reverse it. Our goal is to uncover potential gene targets for the development of anti-fibrotic therapies efficacious in both diseases, and those specific to SSc-PF, by identifying universal pathways and molecules driving fibrosis in SSc-PF and IPF tissues as well as those unique to SSc-PF. Using DNA microarray data, a meta-analysis of the differentially expressed (DE) genes in SSc-PF and IPF lung tissues (diseased vs. normal) was performed followed by a full systems level analysis of the common and unique transcriptomic signatures obtained. Protein-protein interaction networks were generated to identify hub proteins and explore the data using the centrality principle. Our results suggest that therapeutic strategies targeting IL6 trans-signaling, IGFBP2, IGFL2, and the coagulation cascade may be efficacious in both SSc-PF and IPF. Further, our data suggest that the expression of matrikine-producing collagens is also perturbed in PF. Lastly, an overall perturbation of bioenergetics, specifically between glycolysis and fatty acid metabolism, was uncovered in SSc-PF. Our findings provide insights into potential targets for the development of anti-fibrotic therapies that could be effective in both IPF and SSc-PF.
Collapse
Affiliation(s)
- Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Willian A. da Silveira
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, United Kingdom
| | - Naoko Takamura
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Gary Hardiman
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, United Kingdom
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
15
|
Havis E, Duprez D. EGR1 Transcription Factor is a Multifaceted Regulator of Matrix Production in Tendons and Other Connective Tissues. Int J Mol Sci 2020; 21:ijms21051664. [PMID: 32121305 PMCID: PMC7084410 DOI: 10.3390/ijms21051664] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
Although the transcription factor EGR1 is known as NGF1-A, TIS8, Krox24, zif/268, and ZENK, it still has many fewer names than biological functions. A broad range of signals induce Egr1 gene expression via numerous regulatory elements identified in the Egr1 promoter. EGR1 is also the target of multiple post-translational modifications, which modulate EGR1 transcriptional activity. Despite the myriad regulators of Egr1 transcription and translation, and the numerous biological functions identified for EGR1, the literature reveals a recurring theme of EGR1 transcriptional activity in connective tissues, regulating genes related to the extracellular matrix. Egr1 is expressed in different connective tissues, such as tendon (a dense connective tissue), cartilage and bone (supportive connective tissues), and adipose tissue (a loose connective tissue). Egr1 is involved in the development, homeostasis, and healing processes of these tissues, mainly via the regulation of extracellular matrix. In addition, Egr1 is often involved in the abnormal production of extracellular matrix in fibrotic conditions, and Egr1 deletion is seen as a target for therapeutic strategies to fight fibrotic conditions. This generic EGR1 function in matrix regulation has little-explored implications but is potentially important for tendon repair.
Collapse
|
16
|
Steffensen LB, Conover CA, Oxvig C. PAPP-A and the IGF system in atherosclerosis: what's up, what's down? Am J Physiol Heart Circ Physiol 2019; 317:H1039-H1049. [PMID: 31518159 PMCID: PMC6879922 DOI: 10.1152/ajpheart.00395.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/26/2022]
Abstract
Pregnancy-associated plasma protein-A (PAPP-A) is a metalloproteinase with a well-established role in releasing bioactive insulin-like growth factor-1 (IGF-1) from IGF-binding protein-2, -4, and -5 by proteolytic processing of these. The IGF system has repeatedly been suggested to be involved in the pathology of atherosclerosis, and both PAPP-A and IGF-1 are proposed biomarkers and therapeutic targets for this disease. Several experimental approaches based on atherosclerosis mouse models have been undertaken to obtain causative and mechanistic insight to the role of these molecules in atherogenesis. However, reports seem conflicting. The literature suggests that PAPP-A is detrimental, while IGF-1 is beneficial. This raises important questions that need to be addressed. Here we summarize the various studies and discuss potential underlying explanations for this seemingly inconsistency with the objective of better understanding complexities and limitations when manipulating the IGF system in mouse models of atherosclerosis. A debate clarifying what's up and what's down is highly warranted going forward with the ultimate goal of improving atherosclerosis therapy by targeting the IGF system.
Collapse
Affiliation(s)
- Lasse B Steffensen
- Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, Odense, Denmark
| | | | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Adult and iPS-derived non-parenchymal cells regulate liver organoid development through differential modulation of Wnt and TGF-β. Stem Cell Res Ther 2019; 10:258. [PMID: 31416480 PMCID: PMC6694663 DOI: 10.1186/s13287-019-1367-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 01/03/2023] Open
Abstract
Background Liver organoid technology holds great promises to be used in large-scale population-based drug screening and in future regenerative medicine strategies. Recently, some studies reported robust protocols for generating isogenic liver organoids using liver parenchymal and non-parenchymal cells derived from induced pluripotent stem cells (iPS) or using isogenic adult primary non-parenchymal cells. However, the use of whole iPS-derived cells could represent great challenges for a translational perspective. Methods Here, we evaluated the influence of isogenic versus heterogenic non-parenchymal cells, using iPS-derived or adult primary cell lines, in the liver organoid development. We tested four groups comprised of all different combinations of non-parenchymal cells for the liver functionality in vitro. Gene expression and protein secretion of important hepatic function markers were evaluated. Additionally, liver development-associated signaling pathways were tested. Finally, organoid label-free proteomic analysis and non-parenchymal cell secretome were performed in all groups at day 12. Results We show that liver organoids generated using primary mesenchymal stromal cells and iPS-derived endothelial cells expressed and produced significantly more albumin and showed increased expression of CYP1A1, CYP1A2, and TDO2 while presented reduced TGF-β and Wnt signaling activity. Proteomics analysis revealed that major shifts in protein expression induced by this specific combination of non-parenchymal cells are related to integrin profile and TGF-β/Wnt signaling activity. Conclusion Aiming the translation of this technology bench-to-bedside, this work highlights the role of important developmental pathways that are modulated by non-parenchymal cells enhancing the liver organoid maturation. Electronic supplementary material The online version of this article (10.1186/s13287-019-1367-x) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Yasuoka H, Garrett SM, Nguyen XX, Artlett CM, Feghali-Bostwick CA. NADPH oxidase-mediated induction of reactive oxygen species and extracellular matrix deposition by insulin-like growth factor binding protein-5. Am J Physiol Lung Cell Mol Physiol 2019; 316:L644-L655. [PMID: 30810066 DOI: 10.1152/ajplung.00106.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Insulin-like growth factor binding protein-5 (IGFBP-5) induces production of the extracellular matrix (ECM) components collagen and fibronectin both in vitro and in vivo and is overexpressed in patients with fibrosing lung diseases, such as idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc). However, the mechanism by which IGFBP-5 exerts its fibrotic effect is incompletely understood. Recent reports have shown a substantial role of reactive oxygen species (ROS) in fibrosis; thus we hypothesized that IGFBP-5 induces production of ROS to mediate the profibrotic process. In vitro analyses revealed that ROS production was induced by recombinant and adenoviral vector-mediated IGFBP-5 (AdBP5) in a dose- and time-dependent manner, regulated through MEK/ERK and JNK signaling, and primarily mediated by NADPH oxidase (Nox). Silencing IGFBP-5 in SSc and IPF fibroblasts reduced ROS production. The antioxidants diphenyleneiodonium and N-acetylcysteine blocked IGFBP-5-stimulated ECM production in normal, SSc, and IPF human primary lung fibroblasts. In murine fibroblasts lacking critical components of the Nox machinery, AdBP5-stimulated ROS production and fibronectin expression were reduced compared with wild-type fibroblasts. IGFBP-5 stimulated transcriptional expression of Nox3 in human fibroblasts while selective knockdown of Nox3 reduced ROS production by IGFBP-5. Thus IGFBP-5 mediates fibrosis through production of ROS in a Nox-dependent manner.
Collapse
Affiliation(s)
- Hidekata Yasuoka
- Department of Internal Medicine, Division of Rheumatology, Fujita Health University School of Medicine , Aichi , Japan
| | - Sara M Garrett
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina , Charleston, South Carolina
| | - Xinh-Xinh Nguyen
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina , Charleston, South Carolina
| | - Carol M Artlett
- Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Carol A Feghali-Bostwick
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
19
|
Su Y, Nishimoto T, Hoffman S, Nguyen XX, Pilewski JM, Feghali-Bostwick C. Insulin-like growth factor binding protein-4 exerts antifibrotic activity by reducing levels of connective tissue growth factor and the C-X-C chemokine receptor 4. FASEB Bioadv 2018; 1:167-179. [PMID: 31482149 PMCID: PMC6720120 DOI: 10.1096/fba.2018-00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Insulin-like growth factor (IGF) system plays an important role in variety cellular biological functions; we previously reported levels of IGF binding proteins (IGFBP) -3 and -5 are increased in dermal and pulmonary fibrosis associated with the prototypic fibrosing disease systemic sclerosis (SSc), induce extracellular matrix (ECM) production, and promote fibrosis. We sought to examine the effects of another member of the family, IGFBP-4, on ECM production and fibrosis using cell-based, ex vivo organ culture and in vivo mouse lung fibrosis models. IGFBP-4 mRNA levels were significantly decreased in pulmonary fibroblasts of patients with SSc. ECM components were significantly reduced by endogenous and exogenous IGFBP-4. IGFBP-4 also blocked TGFβ-induced ECM production, and inhibited ECM production ex vivo in human lung and skin in organ culture. In vivo, IGFBP-4 reduced bleomycin-induced collagen production and histologic evidence of fibrosis. Silencing IGFBP-4 expression to mimic levels observed in SSc lung fibroblasts resulted in increased ECM production. IGFBP-4 reduced mRNA and protein levels of the chemokine receptor CXCR4 and the pro-fibrotic factor CTGF. Further, CTGF silencing potentiated the anti-fibrotic effects of IGFBP-4. Reduced IGFBP-4 levels in SSc lung fibroblasts may contribute to the fibrotic phenotype via loss of IGFBP-4 anti-fibrotic activity.
Collapse
Affiliation(s)
- YunYun Su
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Tetsuya Nishimoto
- Deceased, Allergy, and Critical Care, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Stanley Hoffman
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Xinh-Xinh Nguyen
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Carol Feghali-Bostwick
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, U.S.A
| |
Collapse
|
20
|
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellular space, (ii) interaction with and modulation of other growth factor pathways including EGF, TGF-β and VEGF, and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.
Collapse
Affiliation(s)
- L A Bach
- Department of Medicine (Alfred)Monash University, Melbourne, Australia
- Department of Endocrinology and DiabetesAlfred Hospital, Melbourne, Australia
| |
Collapse
|
21
|
Insulin-Like Growth Factor-1 Signaling in Lung Development and Inflammatory Lung Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6057589. [PMID: 30018981 PMCID: PMC6029485 DOI: 10.1155/2018/6057589] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/06/2018] [Indexed: 12/19/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) was firstly identified as a hormone that mediates the biological effects of growth hormone. Accumulating data have indicated the role of IGF-1 signaling pathway in lung development and diseases such as congenital disorders, cancers, inflammation, and fibrosis. IGF-1 signaling modulates the development and differentiation of many types of lung cells, including airway basal cells, club cells, alveolar epithelial cells, and fibroblasts. IGF-1 signaling deficiency results in alveolar hyperplasia in humans and disrupted lung architecture in animal models. The components of IGF-1 signaling pathways are potentiated as biomarkers as they are dysregulated locally or systemically in lung diseases, whereas data may be inconsistent or even paradoxical among different studies. The usage of IGF-1-based therapeutic agents urges for more researches in developmental disorders and inflammatory lung diseases, as the majority of current data are collected from limited number of animal experiments and are generally less exuberant than those in lung cancer. Elucidation of these questions by further bench-to-bedside researches may provide us with rational clinical diagnostic approaches and agents concerning IGF-1 signaling in lung diseases.
Collapse
|
22
|
Sanada F, Taniyama Y, Muratsu J, Otsu R, Shimizu H, Rakugi H, Morishita R. Source of Chronic Inflammation in Aging. Front Cardiovasc Med 2018; 5:12. [PMID: 29564335 PMCID: PMC5850851 DOI: 10.3389/fcvm.2018.00012] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/09/2018] [Indexed: 12/21/2022] Open
Abstract
Aging is a complex process that results from a combination of environmental, genetic, and epigenetic factors. A chronic pro-inflammatory status is a pervasive feature of aging. This chronic low-grade inflammation occurring in the absence of overt infection has been defined as “inflammaging” and represents a significant risk factor for morbidity and mortality in the elderly. The low-grade inflammation persists even after reversing pro-inflammatory stimuli such as LDL cholesterol and the renin–angiotensin system (RAS). Recently, several possible sources of chronic low-grade inflammation observed during aging and age-related diseases have been proposed. Cell senescence and dysregulation of innate immunity is one such mechanism by which persistent prolonged inflammation occurs even after the initial stimulus has been removed. Additionally, the coagulation factor that activates inflammatory signaling beyond its role in the coagulation system has been identified. This signal could be a new source of chronic inflammation and cell senescence. Here, we summarized the factors and cellular pathways/processes that are known to regulate low-grade persistent inflammation in aging and age-related disease.
Collapse
Affiliation(s)
- Fumihiro Sanada
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshiaki Taniyama
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Jun Muratsu
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Japan.,Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Rei Otsu
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hideo Shimizu
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
23
|
Nguyen XX, Muhammad L, Nietert PJ, Feghali-Bostwick C. IGFBP-5 Promotes Fibrosis via Increasing Its Own Expression and That of Other Pro-fibrotic Mediators. Front Endocrinol (Lausanne) 2018; 9:601. [PMID: 30374330 PMCID: PMC6196226 DOI: 10.3389/fendo.2018.00601] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 09/20/2018] [Indexed: 12/25/2022] Open
Abstract
Pulmonary fibrosis is a hallmark of diseases such as systemic sclerosis (SSc, scleroderma) and idiopathic pulmonary fibrosis (IPF). To date, the therapeutic options for patients with pulmonary fibrosis are limited, and organ transplantation remains the most effective option. Insulin-like growth factor-binding protein 5 (IGFBP-5) is a conserved member of the IGFBP family of proteins that is overexpressed in SSc and IPF. In this study, we demonstrate that both exogenous and adenovirally expressed IGFBP-5 promote fibrosis by increasing the production of extracellular matrix (ECM) genes and the expression of pro-fibrotic genes in primary human lung fibroblasts. IGFBP-5 increased expression of the pro-fibrotic growth factor CTGF and levels of the matrix crosslinking enzyme lysyl oxidase (LOX). Silencing of IGFBP-5 had different effects in lung fibroblasts from normal donors and patients with SSc or IPF. Moreover, we show that IGFBP-5 increases expression of ECM genes, CTGF, and LOX in human lung tissues maintained in organ culture. Together, our data extend our previous findings and demonstrate that IGFBP-5 exerts its pro-fibrotic activity by directly inducing expression of ECM and pro-fibrotic genes. Further, IGFBP-5 promotes its own expression, generating a positive feedback loop. This suggests that IGFBP-5 likely acts in concert with other growth factors to drive fibrosis and tissue remodeling.
Collapse
Affiliation(s)
- Xinh-Xinh Nguyen
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Lutfiyya Muhammad
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Paul J. Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Carol Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- *Correspondence: Carol Feghali-Bostwick
| |
Collapse
|
24
|
Sanada F, Muratsu J, Otsu R, Shimizu H, Koibuchi N, Uchida K, Taniyama Y, Yoshimura S, Rakugi H, Morishita R. Local Production of Activated Factor X in Atherosclerotic Plaque Induced Vascular Smooth Muscle Cell Senescence. Sci Rep 2017; 7:17172. [PMID: 29215061 PMCID: PMC5719421 DOI: 10.1038/s41598-017-17508-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/27/2017] [Indexed: 11/10/2022] Open
Abstract
Our previous study demonstrated that coagulation factor Xa (FXa) induced endothelial cell senescence, resulting in inflammation and impaired angiogenesis. This mechanism is dictated through protease-activated receptors, PARs, insulin-like growth factor-binding protein 5 (IGFBP-5), and p53. Activation of PARs contributes to the pathophysiology of several chronic inflammatory diseases, including atherosclerosis. Thus, we speculated that similar mechanism might participate in the progression of atherosclerotic plaques. In the present study, we successfully identified the cells that produced FX/Xa in atherosclerosis using human atherosclerotic plaques obtained from carotid endarterectomy. In situ hybridization for FX revealed that FX was generated in vascular smooth muscle cells (VSMC), inflammatory cells, and endothelial cells. Then, we examined the effects of FXa on the growth of VSMC in vitro. The present study revealed that chronic FXa stimulation significantly induced the senescence of VSMC with concomitant upregulation of IGFBP-5 and p53. Inhibition of FXa signaling with rivaroxaban or knock down of IGFBP-5 significantly reduced FXa-induced VSMC senescence and inflammatory cytokine production. Finally, we confirmed that FXa and IGFBP-5 are co-distributed in atherosclerotic plaques. In conclusion, induction of senescence of VSMC induced by locally produced FX/Xa may contribute to the progression of atherosclerosis.
Collapse
Affiliation(s)
- Fumihiro Sanada
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Jun Muratsu
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.,Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Rei Otsu
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hideo Shimizu
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Nobutaka Koibuchi
- Departments of Pharmacology and Molecular Therapeutics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Kazutaka Uchida
- Department of Neurosurgery, Hyogo College of Medicine, Hyogo, Japan
| | - Yoshiaki Taniyama
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan. .,Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| | | | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
25
|
Le Bras A, Yu B, Issa Bhaloo S, Hong X, Zhang Z, Hu Y, Xu Q. Adventitial Sca1+ Cells Transduced With ETV2 Are Committed to the Endothelial Fate and Improve Vascular Remodeling After Injury. Arterioscler Thromb Vasc Biol 2017; 38:232-244. [PMID: 29191922 PMCID: PMC5757665 DOI: 10.1161/atvbaha.117.309853] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 11/15/2017] [Indexed: 01/06/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Vascular adventitial Sca1+ (stem cell antigen-1) progenitor cells preferentially differentiate into smooth muscle cells, which contribute to vascular remodeling and neointima formation in vessel grafts. Therefore, directing the differentiation of Sca1+ cells toward the endothelial lineage could represent a new therapeutic strategy against vascular disease. Approach and Results— We thus developed a fast, reproducible protocol based on the single-gene transfer of ETV2 (ETS variant 2) to differentiate Sca1+ cells toward the endothelial fate and studied the effect of cell conversion on vascular hyperplasia in a model of endothelial injury. After ETV2 transduction, Sca1+ adventitial cells presented a significant increase in the expression of early endothelial cell genes, including VE-cadherin, Flk-1, and Tie2 at the mRNA and protein levels. ETV2 overexpression also induced the downregulation of a panel of smooth muscle cell and mesenchymal genes through epigenetic regulations, by decreasing the expression of DNA-modifying enzymes ten-eleven translocation dioxygenases. Adventitial Sca1+ cells grafted on the adventitial side of wire-injured femoral arteries increased vascular wall hyperplasia compared with control arteries with no grafted cells. Arteries seeded with ETV2-transduced cells, on the contrary, showed reduced hyperplasia compared with control. Conclusions— These data give evidence that the genetic manipulation of vascular progenitors is a promising approach to improve vascular function after endothelial injury.
Collapse
Affiliation(s)
- Alexandra Le Bras
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Baoqi Yu
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Shirin Issa Bhaloo
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Xuechong Hong
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Zhongyi Zhang
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Yanhua Hu
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Qingbo Xu
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom.
| |
Collapse
|
26
|
Sun M, Long J, Yi Y, Xia W. Importin α-importin β complex mediated nuclear translocation of insulin-like growth factor binding protein-5. Endocr J 2017; 64:963-975. [PMID: 28835592 DOI: 10.1507/endocrj.ej17-0156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Insulin-like growth factor-binding protein (IGFBP)-5 is a secreted protein that binds to IGFs and modulates IGF actions, as well as regulates cell proliferation, migration, and apoptosis independent of IGF. Proper cellular localization is critical for the effective function of most signaling molecules. In previous studies, we have shown that the nuclear IGFBP-5 comes from ER-cytosol retro-translocation. In this study, we further investigated the pathway mediating IGFBP-5 nuclear import after it retro-translocation. Importin-α5 was identified as an IGFBP-5-interacting protein with a yeast two-hybrid system, and its interaction with IGFBP-5 was further confirmed by GST pull down and co-immunoprecipitation. Binding affinity of IGFBP-5 and importins were determined by surface plasmon resonance (IGFBP-5/importin-β: KD=2.44e-7, IGFBP-5/importin-α5: KD=3.4e-7). Blocking the importin-α5/importin-β nuclear import pathway using SiRNA or dominant negative impotin-β dramatically inhibited IGFBP-5-EGFP nuclear import, though importin-α5 overexpress does not affect IGFBP-5 nuclear import. Furthermore, nuclear IGFBP-5 was quantified using luciferase report assay. When deleted the IGFBP-5 nuclear localization sequence (NLS), IGFBP-5ΔNLS loss the ability to translocate into the nucleus and accumulation of IGFBP-5ΔNLS was visualized in the cytosol. Altogether, our findings provide a substantially evidence showed that the IGFBP-5 nuclear import is mediated by importin-α/importin-β complex, and NLS is critical domain in IGFBP-5 nuclear translocation.
Collapse
Affiliation(s)
- Min Sun
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Long
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuxin Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xia
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Pathogenesis of systemic sclerosis: recent insights of molecular and cellular mechanisms and therapeutic opportunities. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2017. [DOI: 10.5301/jsrd.5000249] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Systemic sclerosis (SSc) is a complex disease characterized by early microvascular abnormalities, immune dysregulation and chronic inflammation, and subsequent fibrosis of the skin and internal organs. Excessive fibrosis, distinguishing hallmark of SSc, is the end result of a complex series of interlinked vascular injury and immune activation, and represents a maladaptive repair process. Activated vascular, epithelial, and immune cells generate pro-fibrotic cytokines, chemokines, growth factors, lipid mediators, autoantibodies, and reactive oxygen species. These paracrine and autocrine cues in turn induce activation, differentiation, and survival of mesenchymal cells, ensuing tissue fibrosis through increased collagen synthesis, matrix deposition, tissue rigidity and remodeling, and vascular rarefaction. This review features recent insights of the pathogenic process of SSc, highlighting three major characteristics of SSc, microvasculopathy, excessive fibrosis, and immune dysregulation, and sheds new light on the understanding of molecular and cellular mechanisms contributing to the pathogenesis of SSc and providing novel avenues for targeted therapies.
Collapse
|
28
|
Yu L, Lu Y, Han X, Zhao W, Li J, Mao J, Wang B, Shen J, Fan S, Wang L, Wang M, Li L, Tang J, Song B. microRNA -140-5p inhibits colorectal cancer invasion and metastasis by targeting ADAMTS5 and IGFBP5. Stem Cell Res Ther 2016; 7:180. [PMID: 27906093 PMCID: PMC5134063 DOI: 10.1186/s13287-016-0438-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/13/2016] [Accepted: 11/10/2016] [Indexed: 02/08/2023] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignancies in the world. microRNA-140-5p (miR-140) has been shown to be involved in cartilage development and osteoarthritis (OA) pathogenesis. Some contradictions still exist concerning the role of miR-140 in tumor progression and metastasis, and the underlying mechanism is uncertain. Methods Immunohistochemistry was performed to determine the expressions of ADAMTS5 and IGFBP5 in CRC tissues. Human CRC cell lines HCT116 and RKO were transfected with miR-140 mimic, inhibitor, or small interfering RNA (siRNA) against ADAMTS5 or IGFBP5, respectively, using oligofectamine or lipofectamine 2000. Scratch-wound assay and transwell migration and invasion assays were used to evaluate the effects of miR-140 on the capabilities of migration and invasion. The levels of miR-140 and ADAMTS5 and IGFBP5 mRNA were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Western blot was performed to examine the expression of ADAMTS5 and IGFBP5 proteins. Results miR-140 was significantly reduced, whereas ADAMTS5 and IGFBP5 were upregulated, in the human CRC tissues compared to the corresponding normal colorectal mucosa. miR-140 downregulation and ADAMTS5 or IGFBP5 overexpression were associated with the advanced TNM stage and distant metastasis of CRC. There was a reverse correlation between miR-140 levels and ADAMTS5 and IGFBP5 expression in CRC tissues. ADAMTS5 and IGFBP5 were downregulated by miR-140 at both the protein and mRNA levels in the CRC cell lines. The gain-of- and loss-of-function studies showed that miR-140 inhibited CRC cell migratory and invasive capacities at least partially via downregulating the expression of ADAMTS5 and IGFBP5. Conclusions These findings suggest that miR-140 suppresses CRC progression and metastasis, possibly through downregulating ADAMTS5 and IGFBP5. miR-140 might be a potential therapeutic candidate for the treatment of CRC.
Collapse
Affiliation(s)
- Lihui Yu
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Ying Lu
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,Teaching Laboratory of Morphology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Xiaocui Han
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wenyue Zhao
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jiazhi Li
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jun Mao
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Bo Wang
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jie Shen
- Teaching Laboratory of Morphology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China
| | - Shujun Fan
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Lu Wang
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Mei Wang
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,Key Laboratory of Tumor Metastasis Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Lianhong Li
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jianwu Tang
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China.,Key Laboratory of Tumor Metastasis Research of Liaoning Province, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Bo Song
- Department of Pathology, Dalian Medical University, Dalian, 116044, People's Republic of China. .,Teaching Laboratory of Morphology, Dalian Medical University, No. 9 West Section, Lvshun South Road, Dalian, 116044, People's Republic of China.
| |
Collapse
|
29
|
Sanada F, Taniyama Y, Muratsu J, Otsu R, Iwabayashi M, Carracedo M, Rakugi H, Morishita R. Activated Factor X Induces Endothelial Cell Senescence Through IGFBP-5. Sci Rep 2016; 6:35580. [PMID: 27752126 PMCID: PMC5067718 DOI: 10.1038/srep35580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/30/2016] [Indexed: 12/03/2022] Open
Abstract
Uncontrolled coagulation contributes to the pathophysiology of several chronic inflammatory diseases. In these conditions, senescent cells are often observed and is involved in the generation of inflammation. The coincidence of hyper-coagulation, cell senescence, and inflammation suggests the existence of a common underlying mechanism. Recent evidence indicates that activated coagulation factor X (FXa) plays a role in the processes beyond blood coagulation. This non-hematologic function entails the mediation of inflammation and tissue remodeling. We therefore tested the hypothesis that FXa induces cell senescence resulting in tissue inflammation and impaired tissue regeneration. Human umbilical vein endothelial cells were stimulated with FXa for 14 days. The proliferation of cells treated with FXa was significantly smaller, and the fraction of senescence-associated β-galactosidase-positive cells was increased as compared to the control group. RT-qPCR array revealed that FXa increased the expression of IGFBP-5, EGR-1, p53, and p16INK4a. Inhibition of FXa by a direct FXa inhibitor, rivaroxaban, or IGFBP-5 by siRNA decreased FXa-induced cell senescence, restoring cell proliferation. Moreover, in an ischemic hind limb mouse model, FXa inhibited neovascularization by endothelial progenitor cell. However, rivaroxaban significantly restored FXa-induced impaired angiogenesis. In summary, FXa induced endothelial cell senescence through IGFBP-5, resulting in impaired angiogenesis.
Collapse
Affiliation(s)
- Fumihiro Sanada
- Department of Clinical Gene Therapy, Suita, Osaka 565-0871, Japan
| | - Yoshiaki Taniyama
- Department of Clinical Gene Therapy, Suita, Osaka 565-0871, Japan.,Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jun Muratsu
- Department of Clinical Gene Therapy, Suita, Osaka 565-0871, Japan.,Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Rei Otsu
- Department of Clinical Gene Therapy, Suita, Osaka 565-0871, Japan
| | | | - Miguel Carracedo
- Department of Clinical Gene Therapy, Suita, Osaka 565-0871, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
30
|
Abstract
Insulin-like growth factor binding proteins (IGFBPs) 4-6 have important roles as modulators of IGF actions. IGFBP-4 and IGFBP-6 predominantly inhibit IGF actions, whereas IGFBP-5 may enhance these actions under some circumstances. IGFBP-6 is unique among the IGFBPs for its marked IGF-II binding preference. IGFBPs 4-6 are found in the circulation as binary complexes with IGFs that can enter tissues. Additionally, about half of the circulating IGFBP-5 is found in ternary complexes with IGFs and an acid labile subunit; this high molecular complex cannot leave the circulation and acts as an IGF reservoir. IGFBPs 4-6 also have IGF-independent actions. These IGFBPs are regulated in a cell-specific manner and their dysregulation may play a role in a range of diseases including cancer. However, there is no clear clinical indication for measuring serum levels of these IGFBPs at present.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Medicine (Alfred), Monash University, Prahran, 3181, Australia; Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, 3004, Australia.
| |
Collapse
|
31
|
Abstract
High extracellular NaCl is known to change expression of numerous genes, many of which are regulated by the osmoprotective transcription factor nuclear factor of activated T cells-5 (NFAT5). In the present study we employed RNA-Seq to provide a comprehensive, unbiased account of genes regulated by high NaCl in mouse embryonic fibroblast cells (MEFs). To identify genes regulated by NFAT5 we compared wild-type MEFs (WT-MEFs) to MEFs in which mutation of the NFAT5 gene inhibits its transcriptional activity (Null-MEFs). In WT-MEFs adding NaCl to raise osmolality from 300 to 500 mosmol/kg for 24 h increases expression of 167 genes and reduces expression of 412. Raising osmolality through multiple passages (adapted cells) increases expression of 196 genes and reduces expression of 528. In Null-MEFs, after 24 h of high NaCl, expression of 217 genes increase and 428 decrease, while in adapted Null-MEFs 143 increase and 622 decrease. Fewer than 10% of genes are regulated in common between WT- and null-MEFs, indicating a profound difference in regulation of high-NaCl induced genes induced by NFAT5 compared with those induced in the absence of NFAT5. Based on our findings we suggest a mechanism for this phenomenon, which had previously been unexplained. The NFAT5 DNA-binding motif (osmotic response element) is overrepresented in the vicinity of genes that NFAT5 upregulates, but not genes that it downregulates. We used Gene Ontology and manual curation to determine the function of the genes targeted by NFAT5, revealing many novel consequences of NFAT5 transcriptional activity.
Collapse
Affiliation(s)
- Yuichiro Izumi
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Wenjing Yang
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Maurice B Burg
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Joan D Ferraris
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
32
|
Su Y, Nishimoto T, Feghali-Bostwick C. IGFBP-5 Promotes Fibrosis Independently of Its Translocation to the Nucleus and Its Interaction with Nucleolin and IGF. PLoS One 2015; 10:e0130546. [PMID: 26103640 PMCID: PMC4478026 DOI: 10.1371/journal.pone.0130546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Insulin-like growth factor binding protein (IGFBP)-5 levels are increased in systemic sclerosis (SSc) skin and lung. We previously reported that IGFBP-5 is a pro-fibrotic factor that induces extracellular matrix (ECM) production and deposition. Since IGFBP-5 contains a nuclear localization signal (NLS) that facilitates its nuclear translocation, we sought to examine the role of nuclear translocation on the fibrotic activity of IGFBP-5 and identify IGFBP-5 binding partners relevant for its nuclear compartmentalization. METHODS We generated functional wild type IGFBP-5 and IGFBP-5 with a mutated NLS or a mutated IGF binding site. Abrogation of nuclear translocation in the NLS mutant was confirmed using immunofluorescence and immunoblotting of nuclear and cytoplasmic cellular extracts. Abrogation of IGF binding was confirmed using western ligand blot. The fibrotic activity of wild type and mutant IGFBP-5 was examined in vitro in primary human fibroblasts and ex vivo in human skin. We identified IGFBP-5 binding partners using immunoprecipitation and mass spectrometry. We examined the effect of nucleolin on IGFBP-5 localization and function via sequence-specific silencing in primary human fibroblasts. RESULTS Our results show that IGFBP-5-induced ECM production in vitro in primary human fibroblasts is independent of its nuclear translocation. The NLS-mutant also induced fibrosis ex vivo in human skin, thus confirming and extending the in vitro findings. Similar findings were obtained with the IGF-binding mutant. Nucleolin, a nucleolar protein that can serve as a nuclear receptor, was identified as an IGFBP-5 binding partner. Silencing nucleolin reduced IGFBP-5 translocation to the nucleus but did not block the ability of IGFBP-5 to induce ECM production and a fibrotic phenotype. CONCLUSIONS IGFBP-5 transport to the nucleus requires an intact NLS and nucleolin. However, nuclear translocation is not necessary for IGFBP-5 fibrotic activity; neither is IGF binding. Our data provide further insights into the role of cellular compartmentalization in IGFBP-5-induced fibrosis.
Collapse
Affiliation(s)
- Yunyun Su
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Tetsuya Nishimoto
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
33
|
Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE. Pathogenesis of Systemic Sclerosis. Front Immunol 2015; 6:272. [PMID: 26106387 PMCID: PMC4459100 DOI: 10.3389/fimmu.2015.00272] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/16/2015] [Indexed: 01/04/2023] Open
Abstract
Systemic scleroderma (SSc) is one of the most complex systemic autoimmune diseases. It targets the vasculature, connective tissue-producing cells (namely fibroblasts/myofibroblasts), and components of the innate and adaptive immune systems. Clinical and pathologic manifestations of SSc are the result of: (1) innate/adaptive immune system abnormalities leading to production of autoantibodies and cell-mediated autoimmunity, (2) microvascular endothelial cell/small vessel fibroproliferative vasculopathy, and (3) fibroblast dysfunction generating excessive accumulation of collagen and other matrix components in skin and internal organs. All three of these processes interact and affect each other. The disease is heterogeneous in its clinical presentation that likely reflects different genetic or triggering factor (i.e., infection or environmental toxin) influences on the immune system, vasculature, and connective tissue cells. The roles played by other ubiquitous molecular entities (such as lysophospholipids, endocannabinoids, and their diverse receptors and vitamin D) in influencing the immune system, vasculature, and connective tissue cells are just beginning to be realized and studied and may provide insights into new therapeutic approaches to treat SSc.
Collapse
Affiliation(s)
- Debendra Pattanaik
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| | - Monica Brown
- Section of Pediatric Rheumatology, Department of Pediatrics, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Bradley C Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Arnold E Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| |
Collapse
|
34
|
Nieminen T, Toivanen PI, Laakkonen JP, Heikura T, Kaikkonen MU, Airenne KJ, Ylä-Herttuala S. Slit2 modifies VEGF-induced angiogenic responses in rabbit skeletal muscle via reduced eNOS activity. Cardiovasc Res 2015; 107:267-76. [DOI: 10.1093/cvr/cvv161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/17/2015] [Indexed: 01/31/2023] Open
|
35
|
Abstract
Interstitial lung disease (ILD) encompasses a large and diverse group of pathological conditions that share similar clinical, radiological and pathological manifestations, despite potentially having quite different aetiologies and comorbidities. Idiopathic pulmonary fibrosis (IPF) represents probably the most aggressive form of ILD and systemic sclerosis is a multiorgan fibrotic disease frequently associated with ILD. Although the aetiology of these disorders remains unknown, in this review we analyse the pathogenic mechanisms by cell of interest (fibroblast, fibrocyte, myofibroblast, endothelial and alveolar epithelial cells and immune competent cells). New insights into the complex cellular contributions and interactions will be provided, comparing the role of cell subsets in the pathogenesis of IPF and systemic sclerosis. Distinct cell populations contribute to the complex pathogenesis of IPF and systemic sclerosis-associated ILDhttp://ow.ly/AjFaz
Collapse
|
36
|
Comparative expression profiling of insulin-like growth factor binding protein-5 in milk of Bos indicus and Bubalus bubalis during lactation. Animal 2015; 9:643-9. [DOI: 10.1017/s1751731114002985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
37
|
Hong H, Zhou T, Fang S, Jia M, Xu Z, Dai Z, Li C, Li S, Li L, Zhang T, Qi W, Bardeesi ASA, Yang Z, Cai W, Yang X, Gao G. Pigment epithelium-derived factor (PEDF) inhibits breast cancer metastasis by down-regulating fibronectin. Breast Cancer Res Treat 2014; 148:61-72. [PMID: 25284724 DOI: 10.1007/s10549-014-3154-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/24/2014] [Indexed: 11/29/2022]
Abstract
Pigment epithelium-derived factor (PEDF) plays an important role in the tumor growth and metastasis inhibition. It has been reported that PEDF expression is significantly reduced in breast cancer, and associated with disease progression and poor patient outcome. However, the exact mechanism of PEDF on breast cancer metastasis including liver and lung metastasis remains unclear. The present study aims to reveal the impact of PEDF on breast cancer. The orthotopic tumor mice model inoculated by MDA-MB-231 cells stably expressing PEDF or control cells was used to assess liver and lung metastasis of breast cancer. In vitro, migration and invasion experiments were used to detect the metastatic abilities of MDA-MB-231 and SKBR3 breast cancer cells with or without overexpression of PEDF. The metastatic-related molecules including EMT makers, fibronectin, and p-AKT and p-ERK were detected by qRT-PCR, Western blot, and Fluorescent immunocytochemistry. PEDF significantly inhibited breast cancer growth and metastasis in vivo and in vitro. Mechanically, PEDF inhibited breast cancer cell migration and invasion by down-regulating fibronectin and subsequent MMP2/MMP9 reduction via p-ERK and p-AKT signaling pathways. However, PEDF had no effect on EMT conversion in the breast cancer cells which was usually involved in cancer metastasis. Furthermore, the study showed that laminin receptor mediated the down-regulation of fibronectin by PEDF. These results reported for the first time that PEDF inhibited breast cancer metastasis by down-regulating fibronectin via laminin receptor/AKT/ERK pathway. Our findings demonstrated PEDF as a dual effector in limiting breast cancer growth and metastasis and highlighted a new avenue to block breast cancer progression.
Collapse
Affiliation(s)
- Honghai Hong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou, 510080, Guangdong, China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mukund K, Mathewson M, Minamoto V, Ward SR, Subramaniam S, Lieber RL. Systems analysis of transcriptional data provides insights into muscle's biological response to botulinum toxin. Muscle Nerve 2014; 50:744-58. [PMID: 24536034 DOI: 10.1002/mus.24211] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 01/28/2014] [Accepted: 02/13/2014] [Indexed: 12/13/2022]
Abstract
INTRODUCTION This study provides global transcriptomic profiling and analysis of botulinum toxin A (BoNT-A)-treated muscle over a 1-year period. METHODS Microarray analysis was performed on rat tibialis anterior muscles from 4 groups (n = 4/group) at 1, 4, 12, and 52 weeks after BoNT-A injection compared with saline-injected rats at 12 weeks. RESULTS Dramatic transcriptional adaptation occurred at 1 week with a paradoxical increase in expression of slow and immature isoforms, activation of genes in competing pathways of repair and atrophy, impaired mitochondrial biogenesis, and increased metal ion imbalance. Adaptations of the basal lamina and fibrillar extracellular matrix (ECM) occurred by 4 weeks. The muscle transcriptome returned to its unperturbed state 12 weeks after injection. CONCLUSIONS Acute transcriptional adaptations resemble denervated muscle with some subtle differences, but resolved more quickly compared with denervation. Overall, gene expression across time correlates with the generally accepted BoNT-A time course and suggests that the direct action of BoNT-A in skeletal muscle is relatively rapid.
Collapse
Affiliation(s)
- Kavitha Mukund
- Bioinformatics and System Biology Graduate Program, University of California San Diego, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
39
|
Yasuoka H, Yamaguchi Y, Feghali-Bostwick CA. The membrane-associated adaptor protein DOK5 is upregulated in systemic sclerosis and associated with IGFBP-5-induced fibrosis. PLoS One 2014; 9:e87754. [PMID: 24551065 PMCID: PMC3923757 DOI: 10.1371/journal.pone.0087754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 01/02/2014] [Indexed: 01/12/2023] Open
Abstract
Systemic sclerosis (SSc) is characterized by excessive fibrosis of the skin and internal organs due to fibroblast proliferation and excessive production of extracellular matrix (ECM). We have shown that insulin-like growth factor binding protein (IGFBP)-5 plays an important role in the development of fibrosis in vitro, ex vivo, and in vivo. We identified a membrane-associated adaptor protein, downstream of tyrosine kinase/docking protein (DOK)5, as an IGFBP-5-regulated target gene using gene expression profiling of primary fibroblasts expressing IGFBP-5. DOK5 is a tyrosine kinase substrate associated with intracellular signaling. Our objective was to determine the role of DOK5 in the pathogenesis of SSc and specifically in IGFBP-5-induced fibrosis. DOK5 mRNA and protein levels were increased in vitro by endogenous and exogenous IGFBP-5 in primary human fibroblasts. DOK5 upregulation required activation of the mitogen-activated protein kinase (MAPK) signaling cascade. Further, IGFBP-5 triggered nuclear translocation of DOK5. DOK5 protein levels were also increased in vivo in mouse skin and lung by IGFBP-5. To determine the effect of DOK5 on fibrosis, DOK5 was expressed ex vivo in human skin in organ culture. Expression of DOK5 in human skin resulted in a significant increase in dermal thickness. Lastly, levels of DOK5 were compared in primary fibroblasts and lung tissues of patients with SSc and healthy donors. Both DOK5 mRNA and protein levels were significantly increased in fibroblasts and skin tissues of patients with SSc compared with those of healthy controls, as well as in lung tissues of SSc patients. Our findings suggest that IGFBP-5 induces its pro-fibrotic effects, at least in part, via DOK5. Furthermore, IGFBP-5 and DOK5 are both increased in SSc fibroblasts and tissues and may thus be acting in concert to promote fibrosis.
Collapse
Affiliation(s)
- Hidekata Yasuoka
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yukie Yamaguchi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Carol A. Feghali-Bostwick
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
40
|
Vijayan A, Guha D, Ameer F, Kaziri I, Mooney C, Bennett L, Sureshbabu A, Tonner E, Beattie J, Allan G, Edwards J, Flint D. IGFBP-5 enhances epithelial cell adhesion and protects epithelial cells from TGFβ1-induced mesenchymal invasion. Int J Biochem Cell Biol 2013; 45:2774-85. [DOI: 10.1016/j.biocel.2013.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 09/12/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022]
|
41
|
MicroRNA profiling implicates the insulin-like growth factor pathway in bleomycin-induced pulmonary fibrosis in mice. FIBROGENESIS & TISSUE REPAIR 2013; 6:16. [PMID: 23987664 PMCID: PMC3766165 DOI: 10.1186/1755-1536-6-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/31/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis is a disease characterized by alveolar epithelial cell injury, inflammatory cell infiltration and deposition of extracellular matrix in lung tissue. As mouse models of bleomycin-induced pulmonary fibrosis display many of the same phenotypes observed in patients with idiopathic pulmonary fibrosis, they have been used to study various aspects of the disease, including altered expression of microRNAs. RESULTS In this work, microRNA expression profiling of the lungs from treated C57BL/6J mice, relative to that of untreated controls, was undertaken to determine which alterations in microRNAs could in part regulate the fibrosis phenotype induced by bleomycin delivered through mini-osmotic pumps. We identified 11 microRNAs, including miR-21 and miR-34a, to be significantly differentially expressed (P < 0.01) in lungs of bleomycin treated mice and confirmed these data with real time PCR measurements. In situ hybridization of both miR-21 and miR-34a indicated that they were expressed in alveolar macrophages. Using a previously reported gene expression profile, we identified 195 genes to be both predicted targets of the 11 microRNAs and of altered expression in bleomycin-induced lung disease of C57BL/6J mice. Pathway analysis with these 195 genes indicated that altered microRNA expression may be associated with hepatocyte growth factor signaling, cholecystokinin/gastrin-mediated signaling, and insulin-like growth factor (IGF-1) signaling, among others, in fibrotic lung disease. The relevance of the IGF-1 pathway in this model was then demonstrated by showing lung tissue of bleomycin treated C57BL/6J mice had increased expression of Igf1 and that increased numbers of Igf-1 positive cells, predominantly in macrophages, were detected in the lungs. CONCLUSIONS We conclude that altered microRNA expression in macrophages is a feature which putatively influences the insulin-like growth factor signaling component of bleomycin-induced pulmonary fibrosis.
Collapse
|
42
|
Sampson N, Zenzmaier C, Heitz M, Hermann M, Plas E, Schäfer G, Klocker H, Berger P. Stromal insulin-like growth factor binding protein 3 (IGFBP3) is elevated in the diseased human prostate and promotes ex vivo fibroblast-to-myofibroblast differentiation. Endocrinology 2013; 154:2586-99. [PMID: 23720424 DOI: 10.1210/en.2012-2259] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dysregulation of the IGF axis is implicated in the development of benign prostatic hyperplasia (BPH) and prostate cancer (PCa), 2 of the most common diseases affecting elderly males. PCa is the second leading cause of male-related cancer death in Western societies. Although distinct pathologies, BPH and PCa are both characterized by extensive stromal remodeling, in particular fibroblast-to-myofibroblast differentiation, thought to be induced by elevated local production of TGFβ1. We previously showed that TGFβ1-mediated fibroblast-to-myofibroblast differentiation of primary human prostatic stromal cells resulted in the dsyregulation of several components of the IGF axis, including the induction of IGF binding protein 3 (IGFBP3). Using isoform-specific lentiviral-mediated knockdown, we demonstrate herein that IGFBP3 is essential for TGFβ1-mediated differentiation. Although recombinant human IGFBP3 alone was not sufficient to induce differentiation, IGFBP3 synergistically potentiated TGFβ1-mediated stromal remodeling predominantly via an IGF-independent mechanism. Consistent with these in vitro findings, IGFBP3 immunohistochemistry revealed elevated levels of IGFBP3 in the hyperplastic fibromuscular stroma of BPH specimens and in the tumor-adjacent stroma of high-grade PCa. Collectively these data indicate that the dysregulation of the stromal IGF axis, in particular elevated IGFBP3, plays a crucial role in fibroblast-to-myofibroblast differentiation in the diseased prostatic stroma and indicate the therapeutic potential of inhibiting stromal remodeling and the resulting dysregulation of the stromal IGF axis as a novel strategy for the treatment of advanced PCa and BPH.
Collapse
|
43
|
Bhattacharyya S, Fang F, Tourtellotte W, Varga J. Egr-1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). J Pathol 2012; 229:286-97. [PMID: 23132749 DOI: 10.1002/path.4131] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/24/2012] [Accepted: 10/05/2012] [Indexed: 12/13/2022]
Abstract
Fibroblasts and myofibroblasts are the key effector cells executing physiological tissue repair leading to regeneration on the one hand, and pathological fibrogenesis leading to chronic fibrosing conditions on the other. Recent studies identify the multifunctional transcription factor early growth response-1(Egr-1) as an important mediator of fibroblast activation triggered by diverse stimuli. Egr-1 has potent stimulatory effects on fibrotic gene expression, and aberrant Egr-1 expression or function is associated with animal models of fibrosis and human fibrotic disorders, including emphysema, pulmonary fibrosis, pulmonary hypertension and systemic sclerosis. Pharmacological suppression or genetic targeting of Egr-1 blocks fibrotic responses in vitro and ameliorates experimental fibrosis in the skin and lung. In contrast, Egr-1 appears to act as a negative regulator of hepatic fibrosis in mouse models, suggesting a context-dependent role in fibrosis. The Egr-1-binding protein Nab2 is an endogenous inhibitor of Egr-1-mediated signalling and abrogates the stimulation of fibrotic responses induced by transforming growth factor-β (TGFβ). Moreover, mice deficient in Nab2 show excessive collagen accumulation in the skin. These observations highlight a previously unsuspected fundamental physiological function for the Egr-1-Nab2 signalling axis in regulating fibrogenesis, and suggest that Egr-1 may be a potential novel therapeutic target in human diseases complicated by fibrosis. This review summarizes recent advances in understanding the regulation and complex functional role of Egr-1 and its related proteins and inhibitors in pathological fibrosis.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | |
Collapse
|
44
|
Kwapiszewska G, Chwalek K, Marsh LM, Wygrecka M, Wilhelm J, Best J, Egemnazarov B, Weisel FC, Osswald SL, Schermuly RT, Olschewski A, Seeger W, Weissmann N, Eickelberg O, Fink L. BDNF/TrkB Signaling Augments Smooth Muscle Cell Proliferation in Pulmonary Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2018-29. [DOI: 10.1016/j.ajpath.2012.08.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/30/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
|
45
|
Veraldi KL, Feghali-Bostwick CA. Insulin-like growth factor binding proteins-3 and -5: central mediators of fibrosis and promising new therapeutic targets. Open Rheumatol J 2012; 6:140-5. [PMID: 22802912 PMCID: PMC3395973 DOI: 10.2174/1874312901206010140] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 12/22/2022] Open
Abstract
Fibrosis involves an orchestrated cascade of events including activation of fibroblasts, increased production and deposition of extracellular matrix components, and differentiation of fibroblasts into myofibroblasts. Epithelial-mesenchymal cross-talk plays an important role in this process, and current hypotheses of organ fibrosis liken it to an aberrant wound healing response in which epithelial-mesenchymal transition (EMT) and cellular senescence may also contribute to disease pathogenesis. The fibrotic response is associated with altered expression of growth factors and cytokines, including increased levels of transforming growth factor-β1 (TGF-β1) and the more recent observation that increased levels of several insulin-like growth factor binding proteins (IGFBPs) are associated with a number of fibrotic conditions. IGFBPs have been implicated in virtually every cell type and process associated with the fibrotic response, making the IGFBPs attractive targets for the development of novel anti-fibrotic therapies. In this review, the current state of knowledge regarding the classical IGFBP family in organ fibrosis will be summarized and the clinical implications considered.
Collapse
Affiliation(s)
- Kristen L Veraldi
- The Division of Pulmonary, Allergy, and Critical Care Medicine, and Pittsburgh Scleroderma Center, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
46
|
Sirica AE. The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 2011; 9:44-54. [PMID: 22143274 DOI: 10.1038/nrgastro.2011.222] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intrahepatic cholangiocarcinoma is typically characterized by a dense desmoplastic stroma, of which cancer-associated myofibroblasts (which express α-smooth muscle actin), are a major cellular component. These stromal myofibroblasts have a crucial role in accelerating the progression of intrahepatic cholangiocarcinoma and in promoting resistance to therapy through interactive autocrine and paracrine signaling pathways that promote malignant cell proliferation, migration, invasiveness, apoptosis resistance and/or epithelial-mesenchymal transition. These changes correlate with aggressive tumor behavior. Hypoxic desmoplasia and aberrant Hedgehog signaling between stromal myofibroblastic cells and cholangiocarcinoma cells are also critical modulators of intrahepatic cholangiocarcinoma progression and therapy resistance. A novel strategy has been developed to achieve improved therapeutic outcomes in patients with advanced intrahepatic cholangiocarcinoma, based on targeting of multiple interactive pathways between cancer-associated myofibroblasts and intrahepatic cholangiocarcinoma cells that are associated with disease progression and poor survival. Unique organotypic cell culture and orthotopic rat models of cholangiocarcinoma progression are well suited to the rapid preclinical testing of this potentially paradigm-shifting strategy.
Collapse
Affiliation(s)
- Alphonse E Sirica
- Division of Cellular and Molecular Pathogenesis, Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, VA 23298-0297, USA.
| |
Collapse
|
47
|
The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. NATURE REVIEWS. GASTROENTEROLOGY & HEPATOLOGY 2011. [PMID: 22143274 DOI: 10.1038/nrgastro.2011.222.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intrahepatic cholangiocarcinoma is typically characterized by a dense desmoplastic stroma, of which cancer-associated myofibroblasts (which express α-smooth muscle actin), are a major cellular component. These stromal myofibroblasts have a crucial role in accelerating the progression of intrahepatic cholangiocarcinoma and in promoting resistance to therapy through interactive autocrine and paracrine signaling pathways that promote malignant cell proliferation, migration, invasiveness, apoptosis resistance and/or epithelial-mesenchymal transition. These changes correlate with aggressive tumor behavior. Hypoxic desmoplasia and aberrant Hedgehog signaling between stromal myofibroblastic cells and cholangiocarcinoma cells are also critical modulators of intrahepatic cholangiocarcinoma progression and therapy resistance. A novel strategy has been developed to achieve improved therapeutic outcomes in patients with advanced intrahepatic cholangiocarcinoma, based on targeting of multiple interactive pathways between cancer-associated myofibroblasts and intrahepatic cholangiocarcinoma cells that are associated with disease progression and poor survival. Unique organotypic cell culture and orthotopic rat models of cholangiocarcinoma progression are well suited to the rapid preclinical testing of this potentially paradigm-shifting strategy.
Collapse
|
48
|
Zhang Y, Bonzo JA, Gonzalez FJ, Wang L. Diurnal regulation of the early growth response 1 (Egr-1) protein expression by hepatocyte nuclear factor 4alpha (HNF4alpha) and small heterodimer partner (SHP) cross-talk in liver fibrosis. J Biol Chem 2011; 286:29635-43. [PMID: 21725089 PMCID: PMC3191004 DOI: 10.1074/jbc.m111.253039] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/30/2011] [Indexed: 12/17/2022] Open
Abstract
Early growth response 1 (Egr-1) protein is a critical regulator of genes contributing to liver fibrosis; however, little is known about the upstream transcriptional factors that control its expression. Here we show that Egr-1 expression is tightly regulated by nuclear receptor signaling. Hepatocyte nuclear factor 4α (HNF4α) activated the Egr-1 promoter through three DR1 response elements as identified by trans-activation assays. Deletion of these response elements or knockdown of HNF4α using siRNA largely abrogated Egr-1 promoter activation. HNF4α activity, as well as its enrichment on the Egr-1 promoter, were markedly repressed by small heterodimer partner (SHP) co-expression. Egr-1 mRNA and protein were transiently induced by HNF4α. On the contrary, HNF4α siRNA reduced Egr-1 expression at both the mRNA and protein levels, and overexpression of SHP reversed these effects. Conversely, knockdown of SHP by siRNA elevated Egr-1 protein. Interestingly, Egr-1 mRNA exhibited diurnal fluctuation, which was synchronized to the cyclic expression of SHP and HNF4α after cells were released from serum shock. Unexpectedly, the levels of Egr-1 mRNA and protein were highly up-regulated in Hnf4α(-/-) mice. Both HNF4α and Egr-1 expression were dramatically increased in SHP(-/-) mice with bile duct ligation and in human cirrhotic livers, which was inversely correlated with diminished SHP expression. In conclusion, our study revealed control network for Egr-1 expression through a feedback loop between SHP and HNF4α.
Collapse
Affiliation(s)
- Yuxia Zhang
- From the Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84132 and
| | - Jessica A. Bonzo
- the Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Frank J. Gonzalez
- the Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Li Wang
- From the Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84132 and
| |
Collapse
|
49
|
Yamaguchi Y, Yasuoka H, Stolz DB, Feghali-Bostwick CA. Decreased caveolin-1 levels contribute to fibrosis and deposition of extracellular IGFBP-5. J Cell Mol Med 2011; 15:957-69. [PMID: 20345844 PMCID: PMC2995014 DOI: 10.1111/j.1582-4934.2010.01063.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Our previous studies have demonstrated increased expression of insulin-like growth factor binding protein-5 (IGFBP-5) in fibrotic tissues and IGFBP-5 induction of extracellular matrix (ECM) components. The mechanism resulting in increased IGFBP-5 in the extracellular milieu of fibrotic fibroblasts is unknown. Since Caveolin-1 (Cav-1) has been implicated to play a role in membrane trafficking and signal transduction in tissue fibrosis, we examined the effect of Cav-1 on IGFBP-5 internalization, trafficking and secretion. We demonstrated that IGFBP-5 localized to lipid rafts in human lung fibroblasts and bound Cav-1. Cav-1 was detected in the nucleus in IGFBP-5-expressing fibroblasts, within aggregates enriched with IGFBP-5, suggesting a coordinate trafficking of IGFBP-5 and Cav-1 from the plasma membrane to the nucleus. This trafficking was dependent on Cav-1 as fibroblasts from Cav-1 null mice had increased extracellular IGFBP-5, and as fibroblasts in which Cav-1 was silenced or lipid raft structure was disrupted through cholesterol depletion also had defective IGFBP-5 internalization. Restoration of Cav-1 function through administration of Cav-1 scaffolding peptide dramatically increased IGFBP-5 uptake. Finally, we demonstrated that IGFBP-5 in the ECM protects fibronectin from proteolytic degradation. Taken together, our findings identify a novel role for Cav-1 in the internalization and nuclear trafficking of IGFBP-5. Decreased Cav-1 expression in fibrotic diseases likely leads to increased deposition of IGFBP-5 in the ECM with subsequent reduction in ECM degradation, thus identifying a mechanism by which reduced Cav-1 and increased IGFBP-5 concomitantly contribute to the perpetuation of fibrosis.
Collapse
Affiliation(s)
- Yukie Yamaguchi
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
50
|
Baran CP, Fischer SN, Nuovo GJ, Kabbout MN, Hitchcock CL, Bringardner BD, McMaken S, Newland CA, Cantemir-Stone CZ, Phillips GS, Ostrowski MC, Marsh CB. Transcription factor ets-2 plays an important role in the pathogenesis of pulmonary fibrosis. Am J Respir Cell Mol Biol 2011; 45:999-1006. [PMID: 21562315 DOI: 10.1165/rcmb.2010-0490oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ets-2 is a ubiquitous transcription factor activated after phosphorylation at threonine-72. Previous studies highlighted the importance of phosphorylated ets-2 in lung inflammation and extracellular matrix remodeling, two pathways involved in pulmonary fibrosis. We hypothesized that phosphorylated ets-2 played an important role in pulmonary fibrosis, and we sought to determine the role of ets-2 in its pathogenesis. We challenged ets-2 (A72/A72) transgenic mice (harboring a mutated form of ets-2 at phosphorylation site threonine-72) and ets-2 (wild-type/wild-type [WT/WT]) control mice with sequential intraperitoneal injections of bleomycin, followed by quantitative measurements of lung fibrosis and inflammation and primary cell in vitro assays. Concentrations of phosphorylated ets-2 were detected via the single and dual immunohistochemical staining of murine lungs and lung sections from patients with idiopathic pulmonary fibrosis. Ets-2 (A72/A72) mice were protected from bleomycin-induced pulmonary fibrosis, compared with ets-2 (WT/WT) mice. This protection was characterized by decreased lung pathological abnormalities and the fibrotic gene expression of Type I collagen, Type III collagen, α-smooth muscle actin, and connective tissue growth factor. Immunohistochemical staining of lung sections from bleomycin-treated ets-2 (WT/WT) mice and from patients with idiopathic pulmonary fibrosis demonstrated increased staining of phosphorylated ets-2 that colocalized with Type I collagen expression and to fibroblastic foci. Lastly, primary lung fibroblasts from ets-2 (A72/A72) mice exhibited decreased expression of Type I collagen in response to stimulation with TGF-β, compared with fibroblasts from ets-2 (WT/WT) mice. These data indicate the importance of phosphorylated ets-2 in the pathogenesis of pulmonary fibrosis through the expression of Type I collagen and (myo)fibroblast activation.
Collapse
Affiliation(s)
- Christopher P Baran
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|