1
|
Gatti DM, Reynolds LA. Thymic eosinophils: What are you doing here? J Leukoc Biol 2025; 117:qiaf001. [PMID: 39776203 DOI: 10.1093/jleuko/qiaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/29/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025] Open
Abstract
The thymus is a primary lymphoid organ where major types of T lymphocytes undergo essential developmental processes. Eosinophils are among the cell types present in microenvironments within the thymus, and perhaps surprisingly, the role of thymic eosinophils, especially during homeostatic conditions, remains unclear. Major physiological events impact thymic organization and function throughout life, including age-related involution, pregnancy, and exposure to chemotherapy or radiation. In this review, we summarize literature that has explored factors that regulate the accumulation, phenotype, and location of thymic eosinophils during homeostatic development and during conditions in which homeostasis is perturbed. Further, we discuss the current theories as to the function of thymic eosinophils and consider how the heterogeneity of thymic eosinophil populations may reflect a temporal, spatial, and situational multifunctionality of thymic eosinophils.
Collapse
Affiliation(s)
- Dominique M Gatti
- Department of Biochemistry and Microbiology, PO Box 1700 STN CSC, Faculty of Science, University of Victoria, Victoria, British Columbia, Canada, V8W 2Y2
| | - Lisa A Reynolds
- Department of Biochemistry and Microbiology, PO Box 1700 STN CSC, Faculty of Science, University of Victoria, Victoria, British Columbia, Canada, V8W 2Y2
| |
Collapse
|
2
|
Ota A, Iguchi T, Nitta S, Muro R, Mino N, Tsukasaki M, Penninger JM, Nitta T, Takayanagi H. Synchronized development of thymic eosinophils and thymocytes. Int Immunol 2024; 36:617-628. [PMID: 38916145 PMCID: PMC11562637 DOI: 10.1093/intimm/dxae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/23/2024] [Indexed: 06/26/2024] Open
Abstract
The thymus is an organ required for T cell development and is also an eosinophil-rich organ; however, the nature and function of thymic eosinophils remain unclear. Here, we characterized the gene expression and differentiation mechanism of thymic eosinophils in mice. Thymic eosinophils showed a distinct gene expression profile compared with other organ-resident eosinophils. The number of thymic eosinophils was controlled by medullary thymic epithelial cells (mTECs). In Rag-deficient mice, the unique gene expression signature of thymic eosinophils was lost but restored by pre-T cell receptor signalling, which induces CD4+ CD8+ thymocyte differentiation, indicating that T cell differentiation beyond the CD4- CD8- stage is necessary and sufficient for the induction of thymic eosinophils. These results demonstrate that thymic eosinophils are quantitatively and qualitatively regulated by mTECs and developing thymocytes, respectively, suggesting that thymic eosinophils are a distinct, thymus-specific cell subset, induced by interactions with thymic cells.
Collapse
Affiliation(s)
- Ayami Ota
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takahiro Iguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sachiko Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Nanami Mino
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masayuki Tsukasaki
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Innovative Organoid Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Eric Kandel Institute, Department of Laboratory Medicine, Medical University Vienna, Vienna, Austria
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Gatti DM, Gauthier CM, Moeller BE, FitzPatrick RD, Kennedy MHE, Pluzhnikova V, Conway KME, Smazynski J, Chow RL, Reynolds LA. MHCII+CD80+ thymic eosinophils increase in abundance during neonatal development in mice and their accumulation is microbiota dependent. J Leukoc Biol 2023; 114:223-236. [PMID: 37227004 DOI: 10.1093/jleuko/qiad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Eosinophils are present in the thymus of mammals, yet their function at this site during homeostatic development is unknown. We used flow cytometry to determine the abundance and phenotype of eosinophils (here defined as SSchigh SiglecF+ CD11b+ CD45+ cells) in the thymus of mice during the neonatal period, the later postnatal period, and into adulthood. We show that both the total number of thymic eosinophils and their frequency among leukocytes increase over the first 2 wk of life and that their accumulation in the thymus is dependent on the presence of an intact bacterial microbiota. We report that thymic eosinophils express the interleukin-5 receptor (CD125), CD80, and IDO, and that subsets of thymic eosinophils express CD11c and major histocompatibility complex II (MHCII). We found that the frequency of MHCII-expressing thymic eosinophils increases over the first 2 wk of life, and that during this early-life period the highest frequency of MHCII-expressing thymic eosinophils is located in the inner medullary region. These data suggest a temporal and microbiota-dependent regulation of eosinophil abundance and functional capabilities in the thymus.
Collapse
Affiliation(s)
- Dominique M Gatti
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Courtney M Gauthier
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Brandon E Moeller
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Rachael D FitzPatrick
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Mia H E Kennedy
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Victoria Pluzhnikova
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Kate M E Conway
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Julian Smazynski
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
- Deeley Research Centre, BC Cancer, 2410 Lee Avenue, Victoria, British Columbia, V8R 6VSCanada
| | - Robert L Chow
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| | - Lisa A Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada
| |
Collapse
|
4
|
Larsson H, Albinsson Högberg S, Lind M, Rabe H, Lingblom C. Investigating immune profile by CyTOF in individuals with long-standing type 1 diabetes. Sci Rep 2023; 13:8171. [PMID: 37210405 DOI: 10.1038/s41598-023-35300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by T-cell mediated destruction of pancreatic beta cells. Eosinophils are found in pancreatic tissue from individuals with T1D. Eosinophilic suppression of T cells is dependent of the protein galectin-10. Little is known when it comes to the role of eosinophil granulocytes in type 1 diabetes. Here we show that individuals with long-standing T1D had lower levels of galectin-10hi eosinophils and a subgroup of galectin-10hi eosinophils were entirely absent in all T1D patients. In addition, 7% immature eosinophils were present in the circulation of T1D patients whereas 0.8% in healthy individuals. Furthermore, higher levels of CD4+CD8+ T cells and Th17 cells were observed in patients with T1D. Blood samples from 12 adult individuals with long-standing T1D and 12 healthy individuals were compared using cytometry by time-of-flight. Lower levels of galectin-10hi eosinophils, which are potent T cell suppressors, in individuals with T1D could indicate that activated T cells are enabled to unrestrictedly kill the insulin producing beta cells. This is the first study showing absence of galectin-10hi eosinophilic subgroup in individuals with T1D compared with healthy controls. This study is a first important step toward unraveling the role of the eosinophils in patients with T1D.
Collapse
Affiliation(s)
- Helen Larsson
- Department of ENT, Head and Neck Surgery, NU Hospital Group, Trollhättan, Sweden
- Department of Otorhinolaryngology, Head and Neck Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Sofie Albinsson Högberg
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, 41346, Göteborg, Sweden
| | - Marcus Lind
- Department of Medicine, NU Hospital Group, Uddevalla, Trollhättan, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Department of Medicine, Sahlgrenska University Hospital, Göteborg, Region Västra Götaland, Sweden
| | - Hardis Rabe
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, 41346, Göteborg, Sweden
- RISE Research Institutes of Sweden, Bioscience and Materials, Göteborg, Sweden
| | - Christine Lingblom
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, 41346, Göteborg, Sweden.
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Göteborg, Region Västra Götaland, Sweden.
| |
Collapse
|
5
|
Syeda MZ, Hong T, Zhang C, Ying S, Shen H. Eosinophils: A Friend or Foe in Human Health and Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 9:26-38. [PMID: 36756082 PMCID: PMC9900469 DOI: 10.1159/000528156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022]
Abstract
Background Since their discovery, around 150 years, eosinophils research has been a field of changing perspective, and new directions are emerging since then. Summary Initially, eosinophils were perceived as terminally differentiated cytotoxic effector cells. Clearly, eosinophils are capable of playing functions other than immune responses, which is not surprising given their intricate interactions with pathogens as well as other circulating leukocytes. Attempts to comprehend the eosinophil biology and functions have yielded remarkable insights into their roles in human health and sickness. The use of FDA-approved eosinophils-targeting biologics has provided exciting opportunities to directly explore the contributions of eosinophils in disease etiology in humans. Key Messages In this review, we will focus on the eosinophils' lifecycle and discuss the current state of knowledge from mouse models and retrospective human studies demonstrating eosinophils' roles in the pathogenesis of human diseases such as asthma, cancer, and kidney disorders. Despite three recently approved anti-eosinophil agents, a number of key questions and challenges remain far from settled, thereby generating opportunity to further explore this enigmatic cell. A comprehensive understanding of eosinophils biology and function will surely aid in developing improved therapeutic strategies against eosinophils-associated disorders.
Collapse
Affiliation(s)
- Madiha Zahra Syeda
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, China,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Tu Hong
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, China,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,State Key Lab of Respiratory Disease, Guangzhou, China
| | - Songmin Ying
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, China,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China,*Songmin Ying,
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,State Key Lab of Respiratory Disease, Guangzhou, China,**Huahao Shen,
| |
Collapse
|
6
|
Wiśnicki K, Donizy P, Remiorz A, Janczak D, Krajewska M, Banasik M. Significance of Indoleamine 2,3-Dioxygenase Expression in the Immunological Response of Kidney Graft Recipients. Diagnostics (Basel) 2022; 12:2353. [PMID: 36292041 PMCID: PMC9600090 DOI: 10.3390/diagnostics12102353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Kidney transplantation is unquestionably the most advantageous and preferred treatment when patients with end-stage renal disease are considered. It does have a substantially positive influence on both the quality and expectancy of their lives. Thus, it is quintessential to extend the survival rate of kidney grafts. On account of T-cell-focused treatment, this is being exponentially achieved. The kynurenine pathway, as an immunosuppressive apparatus, and indoleamine 2,3-dioxygenase (IDO1), as its main regulator, are yet to be exhaustively explored. This review presents the recognised role of IDO1 and its influence on the kynurenine pathway, with emphasis on immunosuppression in kidney transplant protection.
Collapse
Affiliation(s)
- Krzysztof Wiśnicki
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Agata Remiorz
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Dariusz Janczak
- Department of Vascular, General and Transplantation Surgery, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
7
|
Krupa A, Kowalska I. The Kynurenine Pathway-New Linkage between Innate and Adaptive Immunity in Autoimmune Endocrinopathies. Int J Mol Sci 2021; 22:9879. [PMID: 34576041 PMCID: PMC8469440 DOI: 10.3390/ijms22189879] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
The kynurenine pathway (KP) is highly regulated in the immune system, where it promotes immunosuppression in response to infection or inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the main enzyme of KP, has a broad spectrum of activity on immune cells regulation, controlling the balance between stimulation and suppression of the immune system at sites of local inflammation, relevant to a wide range of autoimmune and inflammatory diseases. Various autoimmune diseases, among them endocrinopathies, have been identified to date, but despite significant progress in their diagnosis and treatment, they are still associated with significant complications, morbidity, and mortality. The precise cellular and molecular mechanisms leading to the onset and development of autoimmune disease remain poorly clarified so far. In breaking of tolerance, the cells of the innate immunity provide a decisive microenvironment that regulates immune cells' differentiation, leading to activation of adaptive immunity. The current review provided a comprehensive presentation of the known role of IDO1 and KP activation in the regulation of the innate and adaptive arms of the immune system. Significant attention has been paid to the immunoregulatory role of IDO1 in the most prevalent, organ-specific autoimmune endocrinopathies-type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| |
Collapse
|
8
|
Ondari E, Calvino-Sanles E, First NJ, Gestal MC. Eosinophils and Bacteria, the Beginning of a Story. Int J Mol Sci 2021; 22:8004. [PMID: 34360770 PMCID: PMC8347986 DOI: 10.3390/ijms22158004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Eosinophils are granulocytes primarily associated with TH2 responses to parasites or immune hyper-reactive states, such as asthma, allergies, or eosinophilic esophagitis. However, it does not make sense from an evolutionary standpoint to maintain a cell type that is only specific for parasitic infections and that otherwise is somehow harmful to the host. In recent years, there has been a shift in the perception of these cells. Eosinophils have recently been recognized as regulators of immune homeostasis and suppressors of over-reactive pro-inflammatory responses by secreting specific molecules that dampen the immune response. Their role during parasitic infections has been well investigated, and their versatility during immune responses to helminths includes antigen presentation as well as modulation of T cell responses. Although it is known that eosinophils can present antigens during viral infections, there are still many mechanistic aspects of the involvement of eosinophils during viral infections that remain to be elucidated. However, are eosinophils able to respond to bacterial infections? Recent literature indicates that Helicobacter pylori triggers TH2 responses mediated by eosinophils; this promotes anti-inflammatory responses that might be involved in the long-term persistent infection caused by this pathogen. Apparently and on the contrary, in the respiratory tract, eosinophils promote TH17 pro-inflammatory responses during Bordetella bronchiseptica infection, and they are, in fact, critical for early clearance of bacteria from the respiratory tract. However, eosinophils are also intertwined with microbiota, and up to now, it is not clear if microbiota regulates eosinophils or vice versa, or how this connection influences immune responses. In this review, we highlight the current knowledge of eosinophils as regulators of pro and anti-inflammatory responses in the context of both infection and naïve conditions. We propose questions and future directions that might open novel research avenues in the future.
Collapse
Affiliation(s)
| | | | | | - Monica C. Gestal
- LSU Health, Department of Microbiology and Immunology, Louisiana State University (LSU), Shreveport, LA 71103, USA; (E.O.); (E.C.-S.); (N.J.F.)
| |
Collapse
|
9
|
Albinsson S, Lingblom C, Lundqvist C, Telemo E, Ekwall O, Wennerås C. Eosinophils interact with thymocytes and proliferate in the human thymus. Eur J Immunol 2021; 51:1539-1541. [PMID: 33686667 DOI: 10.1002/eji.202049080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/11/2021] [Accepted: 02/18/2021] [Indexed: 11/08/2022]
Abstract
Eosinophils differentiate and mature in the thymus, outside of the bone marrow, in healthy individuals. Locally developed thymic eosinophils may contribute to the maturation and selection of human thymocytes.
Collapse
Affiliation(s)
- Sofie Albinsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christine Lingblom
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland, Sweden
| | - Christina Lundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Esbjörn Telemo
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christine Wennerås
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Region Västra Götaland, Sweden
| |
Collapse
|
10
|
Abdel Hafez SMN, Allam FAFA, Elbassuoni E. Sex differences impact the pancreatic response to chronic immobilization stress in rats. Cell Stress Chaperones 2021; 26:199-215. [PMID: 32986228 PMCID: PMC7736456 DOI: 10.1007/s12192-020-01169-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/27/2022] Open
Abstract
Chronic stress has been related to multiple diseases. Inflammation is proposed strongly to link stress to stress-related diseases in different organs, such as small intestine, colon, and brain. However, stress cellular effect on the pancreatic tissue, especially the exocrine one, had received relatively little attention. This work aimed to evaluate the cellular effect of chronic immobilization stress on the pancreatic tissue function and structure along with evaluating the sex role in this type of pancreatic injury. Thirty rats were equally divided into 5 groups: control male, control female, stressed male, stressed female, and stressed female with bilateral ovariectomy. Stressed rats were exposed to immobilization for 1 h/day, 6 days/week, for 3 weeks. Rats were then decapitated for further biochemical, histological, histo-morphometric, and immunohistochemical study. The results showed that, in male and female rats, chronic immobilization stress produced hypoinsulinemia and hyperglycemia, with increasing exocrine pancreatic injury markers by increasing oxidative and inflammatory status of the pancreatic tissue, and exhibited a degenerative effect on the pancreatic tissue. However, the stress-induced pancreatic effects were more obvious in male rats and female rats with bilateral ovariectomy than that in female rats. It could be concluded that male animals were more susceptible to stress-induced pancreatic damage than females. The ovarian hormones are responsible, at least partly, for pancreatic tissue protection since the stress-induced pancreatic injury in females was exacerbated by ovariectomy. In this study, inflammatory and oxidative stress differences in both sexes could provide a plausible explanation for sex differences.
Collapse
Affiliation(s)
| | | | - Eman Elbassuoni
- Physiology Department, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
11
|
Elbassuoni EA, Abdel Hafez SM. Impact of chronic exercise on counteracting chronic stress-induced functional and morphological pancreatic changes in male albino rats. Cell Stress Chaperones 2019; 24:567-580. [PMID: 30903523 PMCID: PMC6527668 DOI: 10.1007/s12192-019-00988-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic stress has been linked to many diseases resulted from dysfunction of both the nervous system and peripheral organ systems. Yet, the effects of chronic stress on the pancreas have received relatively little attention. This work aims to investigate the influence of chronic stress exposure on both the endocrine and exocrine pancreatic function and morphology and its possible mechanism of action, and also to evaluate the impact of chronic exercise with moderate intensity on ameliorating the stress-induced pancreatic changes. Forty adult male albino rats were used and divided into four groups: control group, exercised group (3 weeks of swimming exercise), stressed group (3 weeks of immobilization stress), and stressed group practicing exercise (3 weeks of exercise, concomitant with 21 daily sessions of stress). On the final day of the experiment, all rats were sacrificed. Biochemical, immunohistochemical, and histological studies were conducted. The results showed that chronic immobilization stress produced hyperglycemia, hyperinsulinemia, and increased homeostatic model assessment of insulin resistance index (HOMA-IR) with increasing exocrine pancreatic injury markers by increasing oxidative and inflammatory status of the pancreatic tissue. Histological study showed the injurious effect of stress on the morphology of pancreatic tissue. Physical exercise protected the pancreas from the negative effects of stress through its anti-inflammatory and anti-oxidative effects, evidenced by increasing pancreatic interleukin 10 and total antioxidant capacity and decreasing pancreatic tumor necrosis factor-alpha, and malondialdehyde with ameliorating most of the histological changes induced by stress exposure. Physical exercise effectively counteracts chronic stress-induced pancreatic changes through different mechanisms.
Collapse
Affiliation(s)
- Eman A. Elbassuoni
- Physiology Department, Faculty of Medicine, Minia University, Minia, 61111 Egypt
| | - Sara M. Abdel Hafez
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, Minia, 61111 Egypt
| |
Collapse
|
12
|
Abstract
Eosinophils are a prominent cell type in particular host responses such as the response to helminth infection and allergic disease. Their effector functions have been attributed to their capacity to release cationic proteins stored in cytoplasmic granules by degranulation. However, eosinophils are now being recognized for more varied functions in previously underappreciated diverse tissue sites, based on the ability of eosinophils to release cytokines (often preformed) that mediate a broad range of activities into the local environment. In this Review, we consider evolving insights into the tissue distribution of eosinophils and their functional immunobiology, which enable eosinophils to secrete in a selective manner cytokines and other mediators that have diverse, 'non-effector' functions in health and disease.
Collapse
Affiliation(s)
- Peter F Weller
- Division of Allergy and Inflammation, Harvard Medical School, Beth Israel Deaconess Medical Center, CLS 943, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Lisa A Spencer
- Division of Allergy and Inflammation, Harvard Medical School, Beth Israel Deaconess Medical Center, CLS 943, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| |
Collapse
|
13
|
Lingblom C, Käppi T, Bergquist H, Bove M, Arkel R, Saalman R, Wennerås C. Differences in eosinophil molecular profiles between children and adults with eosinophilic esophagitis. Allergy 2017; 72:1406-1414. [PMID: 28194801 DOI: 10.1111/all.13140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) afflicts both children and adults. It has been debated whether pediatric EoE and adult EoE represent different disease entities. The objectives of this study were to determine whether the blood eosinophil molecular pattern of children with EoE is (i) distinct from that of healthy children; and (ii) different from that of adults with EoE. METHODS Blood eosinophils from children and adults with EoE, and healthy controls, were analyzed with flow cytometry regarding levels of CD23, CD44, CD54, CRTH2, FOXP3, and galectin-10. Eosinophil FOXP3 and galectin-10 mRNA levels were determined by qPCR. The data were analyzed using a multivariate method of pattern recognition. RESULTS An eosinophil molecular pattern capable of distinguishing children with EoE from control children was identified. A smaller fraction of eosinophils from children with EoE expressed CD44 and a larger fraction expressed CRTH2 than the controls. Eosinophils from children with EoE also had higher levels of galectin-10 mRNA and lower levels of FOXP3 mRNA. The eosinophils from children with EoE had lower levels of surface CD54 and of FOXP3 mRNA compared with the eosinophils from the adult patients. A key finding was the detection in healthy individuals of age-related differences in the levels of several eosinophil markers. CONCLUSIONS Children with EoE can be distinguished from healthy children based on the molecular patterns of their blood eosinophils. Age-related physiologic differences in eosinophil molecular patterns may partly explain the different blood eosinophil phenotypes in children vs adults with EoE.
Collapse
Affiliation(s)
- C. Lingblom
- Department of Infectious Diseases; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - T. Käppi
- Department of Pediatrics; Institution of Clinical Sciences; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - H. Bergquist
- Department of ENT, Head and Neck Surgery; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - M. Bove
- Department of ENT, Head and Neck Surgery; NÄL Hospital; Trollhättan Sweden
| | - R. Arkel
- Department of Pediatrics; NÄL Hospital; Trollhättan Sweden
| | - R. Saalman
- Department of Pediatrics; Institution of Clinical Sciences; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - C. Wennerås
- Department of Infectious Diseases; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| |
Collapse
|
14
|
Abstract
Eosinophils are a minority circulating granulocyte classically viewed as being involved in host defense against parasites and promoting allergic reactions. However, a series of new regulatory functions for these cells have been identified in the past decade. During homeostasis, eosinophils develop in the bone marrow and migrate from the blood into target tissues following an eotaxin gradient, with interleukin-5 being a key cytokine for eosinophil proliferation, survival, and priming. In multiple target tissues, eosinophils actively regulate a variety of immune functions through their vast arsenal of granule products and cytokines, as well as direct cellular interaction with cells in proximity. The immunologic regulation of eosinophils extends from innate immunity to adaptive immunity and also involves non-immune cells. Herein, we summarize recent findings regarding novel roles of murine and human eosinophils, focusing on interactions with other hematopoietic cells. We also review new experimental tools available and remaining questions to uncover a greater understanding of this enigmatic cell.
Collapse
|
15
|
McBrien CN, Menzies-Gow A. The Biology of Eosinophils and Their Role in Asthma. Front Med (Lausanne) 2017; 4:93. [PMID: 28713812 PMCID: PMC5491677 DOI: 10.3389/fmed.2017.00093] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022] Open
Abstract
This review will describe the structure and function of the eosinophil. The roles of several relevant cell surface molecules and receptors will be discussed. We will also explore the systemic and local processes triggering eosinophil differentiation, maturation, and migration to the lungs in asthma, as well as the cytokine-mediated pathways that result in eosinophil activation and degranulation, i.e., the release of multiple pro-inflammatory substances from eosinophil-specific granules, including cationic proteins, cytokines, chemokines growth factors, and enzymes. We will discuss the current understanding of the roles that eosinophils play in key asthma processes such as airway hyperresponsiveness, mucus hypersecretion, and airway remodeling, in addition to the evidence relating to eosinophil–pathogen interactions within the lungs.
Collapse
Affiliation(s)
| | - Andrew Menzies-Gow
- Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
16
|
Lingblom C, Andersson J, Andersson K, Wennerås C. Regulatory Eosinophils Suppress T Cells Partly through Galectin-10. THE JOURNAL OF IMMUNOLOGY 2017; 198:4672-4681. [PMID: 28515279 DOI: 10.4049/jimmunol.1601005] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 04/17/2017] [Indexed: 12/15/2022]
Abstract
Eosinophils have the capacity to regulate the function of T cell subsets. Our aim was to test the hypothesis of the existence of a regulatory subset of eosinophils. Human eosinophils were incubated with T cells that were stimulated with allogeneic leukocytes or CD3/CD28 cross-linking. After 2 d of coculture, 11% of the eosinophils gained CD16 expression. A CD16hi subset of eosinophils, encompassing 1-5% of all eosinophils, was also identified in the blood of healthy subjects. FACS sorting showed that these CD16hi eosinophils were significantly stronger suppressors of T cell proliferation than were conventional CD16neg eosinophils. Human eosinophils contain stores of the immunoregulatory protein galectin-10. We found that Ab-mediated neutralization of galectin-10 partially abrogated the suppressive function of the eosinophils. Moreover, recombinant galectin-10 by itself was able to suppress T cell proliferation. Finally, we detected galectin-10-containing immune synapses between eosinophils and lymphocytes. To conclude, we describe a subset of suppressive eosinophils expressing CD16 that may escape detection because CD16-based negative selection is the standard procedure for the isolation of human eosinophils. Moreover, we show that galectin-10 functions as a T cell-suppressive molecule in eosinophils.
Collapse
Affiliation(s)
- Christine Lingblom
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg SE-413 46, Sweden
| | - Jennie Andersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg SE-413 46, Sweden
| | - Kerstin Andersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg SE-413 46, Sweden
| | - Christine Wennerås
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg SE-413 46, Sweden
| |
Collapse
|
17
|
Abstract
Historically, eosinophils have been considered as end-stage cells involved in host protection against parasitic infection and in the mechanisms of hypersensitivity. However, later studies have shown that this multifunctional cell is also capable of producing immunoregulatory cytokines and soluble mediators and is involved in tissue homeostasis and modulation of innate and adaptive immune responses. In this review, we summarize the biology of eosinophils, including the function and molecular mechanisms of their granule proteins, cell surface markers, mediators, and pathways, and present comprehensive reviews of research updates on the genetics and epigenetics of eosinophils. We describe recent advances in the development of epigenetics of eosinophil-related diseases, especially in asthma. Likewise, recent studies have provided us with a more complete appreciation of how eosinophils contribute to the pathogenesis of various diseases, including hypereosinophilic syndrome (HES). Over the past decades, the definition and criteria of HES have been evolving with the progress of our understanding of the disease and some aspects of this disease still remain controversial. We also review recent updates on the genetic and molecular mechanisms of HES, which have spurred dramatic developments in the clinical strategies of diagnosis and treatment for this heterogeneous group of diseases. The conclusion from this review is that the biology of eosinophils provides significant insights as to their roles in health and disease and, furthermore, demonstrates that a better understanding of eosinophil will accelerate the development of new therapeutic strategies for patients.
Collapse
|
18
|
Jung J, Gleave Parson M, Kraft JD, Lyda L, Kobe B, Davis C, Robinson J, Peña MMO, Robinson CM. Elevated interleukin-27 levels in human neonatal macrophages regulate indoleamine dioxygenase in a STAT-1 and STAT-3-dependent manner. Immunology 2016; 149:35-47. [PMID: 27238498 PMCID: PMC4981608 DOI: 10.1111/imm.12625] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 12/12/2022] Open
Abstract
Microbial infections are a major cause of infant mortality as a result of limitations in immune defences. Interleukin-27 (IL-27) is a heterodimeric cytokine produced primarily by leucocytes and is immunosuppressive toward lymphocytes and leucocytes. Our laboratory demonstrated that human neonatal macrophages express IL-27 more abundantly than adult macrophages. Similarly in mice, IL-27 expression is elevated early in life and maintained through infancy. To determine IL-27-regulated mechanisms that may limit immunity, we evaluated the expression of a number of genes in response to this cytokine in primary human neonatal macrophages. Indoleamine 2,3-dioxygenase (IDO) gene expression was increased dose-responsively by IL-27. We have previously demonstrated inhibition of T-cell proliferation and cytokine production by neonatal macrophage-generated IL-27, and IDO is often implicated in this negative regulation. An increase in IDO protein was demonstrated by immunofluorescence microscopy and was consistent with increased enzyme activity following treatment with IL-27. Inclusion of a soluble receptor to neutralize endogenous IL-27, decreased IDO expression and activity compared with untreated macrophages. In response to IL-27, neonatal macrophages phosphorylate signal transdcuer and activator of transcription 1 (STAT-1) and STAT-3. Both transcription factors are recruited to the IDO regulatory region. STAT-3 dominates during steady-state regulation by lower levels of endogenous IL-27 production. A shift to enhanced STAT-1 recruitment occurs during increased levels of exogenously supplied IL-27. These data suggest an interesting interplay of STAT-1 and STAT-3 to regulate IDO activity and immunosuppression in response to different levels of IL-27 in the microenvironment of the immune response that may further our understanding of this interesting cytokine.
Collapse
Affiliation(s)
- Joo‐Yong Jung
- Department of BiologyBriar Cliff UniversitySioux CityIAUSA
| | - Madeline Gleave Parson
- Biomedical Sciences DepartmentWest Virginia School of Osteopathic MedicineLewisburgWVUSA
| | - Jennifer D. Kraft
- Department of Pathology Microbiology and ImmunologyUniversity of South Carolina School of MedicineColumbiaSCUSA
| | - Logan Lyda
- Biomedical Sciences DepartmentWest Virginia School of Osteopathic MedicineLewisburgWVUSA
| | - Brianna Kobe
- Biomedical Sciences DepartmentWest Virginia School of Osteopathic MedicineLewisburgWVUSA
| | - Celestia Davis
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
- Center for Colon Cancer ResearchUniversity of South CarolinaColumbiaSCUSA
| | - Jembber Robinson
- Department of Pathology Microbiology and ImmunologyUniversity of South Carolina School of MedicineColumbiaSCUSA
| | - Maria Marjorette O. Peña
- Department of Biological SciencesUniversity of South CarolinaColumbiaSCUSA
- Center for Colon Cancer ResearchUniversity of South CarolinaColumbiaSCUSA
| | - Cory M. Robinson
- Biomedical Sciences DepartmentWest Virginia School of Osteopathic MedicineLewisburgWVUSA
| |
Collapse
|
19
|
Berek C. Eosinophils: important players in humoral immunity. Clin Exp Immunol 2015; 183:57-64. [PMID: 26291602 DOI: 10.1111/cei.12695] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2015] [Indexed: 12/13/2022] Open
Abstract
Eosinophils perform numerous tasks. They are involved in inflammatory reactions associated with innate immune defence against parasitic infections and are also involved in pathological processes in response to allergens. Recently, however, it has become clear that eosinophils also play crucial non-inflammatory roles in the generation and maintenance of adaptive immune responses. Eosinophils, being a major source of the plasma cell survival factor APRIL (activation and proliferation-induced ligand), are essential not only for the long-term survival of plasma cells in the bone marrow, but also for the maintenance of these cells in the lamina propria which underlies the gut epithelium. At steady state under non-inflammatory conditions eosinophils are resident cells of the gastrointestinal tract, although only few are present in the major organized lymphoid tissue of the gut - the Peyer's patches (PP). Surprisingly, however, lack of eosinophils abolishes efficient class-switching of B cells to immunoglobulin (Ig)A in the germinal centres of PP. Thus, eosinophils are required to generate and to maintain mucosal IgA plasma cells, and as a consequence their absence leads to a marked reduction of IgA both in serum and in the gut-associated lymphoid tissues (GALT). Eosinophils thus have an essential part in long-term humoral immune protection, as they are crucial for the longevity of antibody-producing plasma cells in the bone marrow and, in addition, for gut immune homeostasis.
Collapse
Affiliation(s)
- C Berek
- B cell Immunology, Deutsches Rheuma Forschungszentrum, Berlin, Germany
| |
Collapse
|
20
|
Cromvik J, Johnsson M, Vaht K, Johansson JE, Wennerås C. Eosinophils in the blood of hematopoietic stem cell transplanted patients are activated and have different molecular marker profiles in acute and chronic graft-versus-host disease. Immun Inflamm Dis 2014; 2:99-113. [PMID: 25400930 PMCID: PMC4217552 DOI: 10.1002/iid3.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 12/20/2022] Open
Abstract
While increased numbers of eosinophils may be detected in patients with graft-versus-host disease (GVHD) following hematopoietic stem cell transplantation, it is not known if eosinophils play a role in GVHD. The aims of this study were to determine: whether eosinophils are activated during GVHD; whether the patterns of activation are similar in acute and chronic GVHD; and the ways in which systemic corticosteroids affect eosinophils. Transplanted patients (n = 35) were investigated for eosinophil numbers and the expression levels of 16 eosinophilic cell surface markers using flow cytometry; all the eosinophil data were analyzed by the multivariate method OPLS-DA. Different patterns of molecule expression were observed on the eosinophils from patients with acute, chronic, and no GVHD, respectively. The molecules that provided the best discrimination between acute and chronic GVHD were: the activation marker CD9; adhesion molecules CD11c and CD18; chemokine receptor CCR3; and prostaglandin receptor CRTH2. Patients with acute or chronic GVHD who received systemic corticosteroid treatment showed down-regulation of the cell surface markers on their eosinophils, whereas corticosteroid treatment had no effect on the eosinophil phenotype in the patients without GVHD. In summary, eosinophils are activated in GVHD, display different activation profiles in acute and chronic GVHD, and are highly responsive to systemic corticosteroids.
Collapse
Affiliation(s)
- Julia Cromvik
- Department of Hematology and Coagulation, University of Gothenburg Göteborg, Sweden
| | - Marianne Johnsson
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg Göteborg, Sweden
| | - Krista Vaht
- Department of Hematology and Coagulation, University of Gothenburg Göteborg, Sweden
| | - Jan-Erik Johansson
- Department of Hematology and Coagulation, University of Gothenburg Göteborg, Sweden
| | - Christine Wennerås
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg Göteborg, Sweden
| |
Collapse
|
21
|
Jacobsen EA, LeSuer WE, Willetts L, Zellner KR, Mazzolini K, Antonios N, Beck B, Protheroe C, Ochkur SI, Colbert D, Lacy P, Moqbel R, Appleton J, Lee NA, Lee JJ. Eosinophil activities modulate the immune/inflammatory character of allergic respiratory responses in mice. Allergy 2014; 69:315-27. [PMID: 24266710 DOI: 10.1111/all.12321] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND The importance and specific role(s) of eosinophils in modulating the immune/inflammatory phenotype of allergic pulmonary disease remain to be defined. Established animal models assessing the role(s) of eosinophils as contributors and/or causative agents of disease have relied on congenitally deficient mice where the developmental consequences of eosinophil depletion are unknown. METHODS We developed a novel conditional eosinophil-deficient strain of mice (iPHIL) through a gene knock-in strategy inserting the human diphtheria toxin (DT) receptor (DTR) into the endogenous eosinophil peroxidase genomic locus. RESULTS Expression of DTR rendered resistant mouse eosinophil progenitors sensitive to DT without affecting any other cell types. The presence of eosinophils was shown to be unnecessary during the sensitization phase of either ovalbumin (OVA) or house dust mite (HDM) acute asthma models. However, eosinophil ablation during airway challenge led to a predominantly neutrophilic phenotype (>15% neutrophils) accompanied by allergen-induced histopathologies and airway hyper-responsiveness in response to methacholine indistinguishable from eosinophilic wild-type mice. Moreover, the iPHIL neutrophilic airway phenotype was shown to be a steroid-resistant allergic respiratory variant that was reversible upon the restoration of peripheral eosinophils. CONCLUSIONS Eosinophil contributions to allergic immune/inflammatory responses appear to be limited to the airway challenge and not to the sensitization phase of allergen provocation models. The reversible steroid-resistant character of the iPHIL neutrophilic airway variant suggests underappreciated mechanisms by which eosinophils shape the character of allergic respiratory responses.
Collapse
Affiliation(s)
- E. A. Jacobsen
- Division of Pulmonary Medicine; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; Scottsdale AZ, USA USA
| | - W. E. LeSuer
- Division of Pulmonary Medicine; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; Scottsdale AZ, USA USA
| | - L. Willetts
- Division of Pulmonary Medicine; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; Scottsdale AZ, USA USA
- Pulmonary Research Group; Department of Medicine; University of Alberta; Edmonton AB, Canada USA
| | - K. R. Zellner
- Division of Pulmonary Medicine; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; Scottsdale AZ, USA USA
| | - K. Mazzolini
- Division of Pulmonary Medicine; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; Scottsdale AZ, USA USA
| | - N. Antonios
- Division of Pulmonary Medicine; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; Scottsdale AZ, USA USA
| | - B. Beck
- Division of Pulmonary Medicine; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; Scottsdale AZ, USA USA
| | - C. Protheroe
- Divisions of Hematology/Oncology; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; Scottsdale AZ, USA USA
| | - S. I. Ochkur
- Division of Pulmonary Medicine; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; Scottsdale AZ, USA USA
| | - D. Colbert
- Divisions of Hematology/Oncology; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; Scottsdale AZ, USA USA
| | - P. Lacy
- Pulmonary Research Group; Department of Medicine; University of Alberta; Edmonton AB, Canada USA
| | - R. Moqbel
- Division of Allergy and Immunology; Department of Immunology; University of Manitoba; Winnipeg MB, Canada USA
| | - J. Appleton
- Baker Institute for Animal Health; College of Veterinary Medicine; Cornell University; Ithaca NY USA
| | - N. A. Lee
- Divisions of Hematology/Oncology; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; Scottsdale AZ, USA USA
| | - J. J. Lee
- Division of Pulmonary Medicine; Department of Biochemistry and Molecular Biology; Mayo Clinic Arizona; Scottsdale AZ, USA USA
| |
Collapse
|
22
|
Huang HB, Liu YX, Hou Y, Wen L, Ge XH, Peng KM, Liu HZ. Distribution patterns of stromal eosinophil cells in chick thymus during postnatal development. Vet Immunol Immunopathol 2013; 153:123-127. [PMID: 23333191 DOI: 10.1016/j.vetimm.2012.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 01/21/2023]
Abstract
Eosinophils are a type of thymic stromal cell that are present in the thymus of both humans and mice. They participate in regulating T-cell development under non-pathological conditions. However, studies are scarce regarding the role of eosinophils in the development of the thymus in chickens. Therefore, this study investigated the distribution of eosinophils in normal chicken thymi at different stages of development. Seven thymi were obtained from chickens at days 1, 21 and 35 of development. The distribution of eosinophils in the thymi was analyzed by histological and immunohistochemical techniques using Lendrum's chromotrope 2R method and an antibody against eosinophilic cationic protein (ECP), respectively. Eosinophils were constitutively located in the chick thymus. They were mainly distributed in the thymic corticomedullary junction and medulla, especially around vessels and Hassall's corpuscles, and only a few were in the trabeculae among thymic lobules and around vessels. There were none in the cortex. The number of thymic eosinophils decreased with increasing age (P<0.01). These results indicated that eosinophils comprise a type of thymic stromal cells in the chick, which may regulate thymic development, especially during the early stages of development.
Collapse
Affiliation(s)
- Hai-Bo Huang
- Department of Anatomy, Histology and Embryology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Lee JJ, Jacobsen EA, Ochkur SI, McGarry MP, Condjella RM, Doyle AD, Luo H, Zellner KR, Protheroe CA, Willetts L, Lesuer WE, Colbert DC, Helmers RA, Lacy P, Moqbel R, Lee NA. Human versus mouse eosinophils: "that which we call an eosinophil, by any other name would stain as red". J Allergy Clin Immunol 2012; 130:572-84. [PMID: 22935586 DOI: 10.1016/j.jaci.2012.07.025] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/25/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
The respective life histories of human subjects and mice are well defined and describe a unique story of evolutionary conservation extending from sequence identity within the genome to the underpinnings of biochemical, cellular, and physiologic pathways. As a consequence, the hematopoietic lineages of both species are invariantly maintained, each with identifiable eosinophils. This canonical presence nonetheless does not preclude disparities between human and mouse eosinophils, their effector functions, or both. Indeed, many books and reviews dogmatically highlight differences, providing a rationale to discount the use of mouse models of human eosinophilic diseases. We suggest that this perspective is parochial and ignores the wealth of available studies and the consensus of the literature that overwhelming similarities (and not differences) exist between human and mouse eosinophils. The goal of this review is to summarize this literature and in some cases provide experimental details comparing and contrasting eosinophils and eosinophil effector functions in human subjects versus mice. In particular, our review will provide a summation and an easy-to-use reference guide to important studies demonstrating that although differences exist, more often than not, their consequences are unknown and do not necessarily reflect inherent disparities in eosinophil function but instead species-specific variations. The conclusion from this overview is that despite nominal differences, the vast similarities between human and mouse eosinophils provide important insights as to their roles in health and disease and, in turn, demonstrate the unique utility of mouse-based studies with an expectation of valid extrapolation to the understanding and treatment of patients.
Collapse
Affiliation(s)
- James J Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Workshop report from the National Institutes of Health Taskforce on the Research Needs of Eosinophil-Associated Diseases (TREAD). J Allergy Clin Immunol 2012; 130:587-96. [PMID: 22935587 DOI: 10.1016/j.jaci.2012.07.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 07/25/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND Eosinophils are blood cells that are often found in high numbers in the tissues of allergic conditions and helminthic parasite infections. The pathophysiologic roles that eosinophils may serve in other human "eosinophil-associated" diseases remain obscure. OBJECTIVE National Institutes of Health (NIH) Institutes and the Office of Disease Prevention assembled an international taskforce of clinical and basic scientists with the charge to propose and prioritize unmet research needs in eosinophil-associated diseases. METHODS The taskforce used an organ system approach to identify the different and common themes of eosinophil cell involvement in these diseases. In early 2012, a draft document was circulated for review. The document was amended and the prioritizations were set at a NIH-organized workshop in June 2012. RESULTS The taskforce identified significant research needs. These needs cross disease entities but some are disease specific. There are substantial shortcomings to the various preclinical animal models, as well as significant gaps in our epidemiologic, pathophysiologic, diagnostic, prognostic, and therapeutic knowledge. The taskforce recognized that recent efforts by patient advocacy groups have played instrumental roles in improving the identification and characterization of these disorders. However, communications among the eosinophil-interested communities, for example, governmental funding and regulatory agencies, and industry and clinician scientists need to be more comprehensive. CONCLUSIONS Significant efforts are required to address our knowledge gaps to improve the outcomes of eosinophil-associated diseases. NIH Institutes, other federal agencies, lay organizations, and the pharmaceutical industry should consider the taskforce's recommendations in their future research activities.
Collapse
|
25
|
Abstract
Surprisingly, the role(s) of eosinophils in health and disease is often summarized by clinicians and basic research scientists as a pervasive consensus opinion first learned in medical/graduate school. Eosinophils are rare white blood cells whose activities are primarily destructive and are only relevant in parasitic infections and asthma. However, is this consensus correct? This review argues that the wealth of available studies investigating the role(s) of eosinophils in both health and disease demonstrates that the activities of these granulocytes are far more expansive and complex than previously appreciated. In turn, this greater understanding has led to the realization that eosinophils have significant contributory roles in a wide range of diseases. Furthermore, published studies even implicate eosinophil-mediated activities in otherwise healthy persons. We suggest that the collective reports in the literature showing a role for eosinophils in an ever-increasing number of novel settings highlight the true complexity and importance of this granulocyte. Indeed, discussions of eosinophils are no longer simple and more often than not now begin with the question/statement "Did you know …?"
Collapse
|
26
|
Tulic MK, Andrews D, Crook ML, Charles A, Tourigny MR, Moqbel R, Prescott SL. Changes in thymic regulatory T-cell maturation from birth to puberty: differences in atopic children. J Allergy Clin Immunol 2011; 129:199-206.e1-4. [PMID: 22104606 DOI: 10.1016/j.jaci.2011.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 10/09/2011] [Accepted: 10/13/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Characterization of regulatory immune pathways is a research priority for both the pathogenesis of allergic disease and potential therapeutic strategies. OBJECTIVE The thymus is a rich source of regulatory T (Treg) cells, which offers a novel opportunity to document the maturation of these pathways beyond limited studies on small volumes of peripheral blood available from young children. METHODS Thymus tissue was collected from children undergoing cardiac surgery (age, 1 week to 14 years), and skin prick testing was performed from 12 months of age. The ontogeny of Treg cell maturation and function was examined in atopic (n = 20) and nonatopic (n = 20) children by assessing their phenotype, enumeration, proliferation, and suppressive ability. RESULTS Age-related changes in the thymic cytokine milieu paralleled the changes seen in peripheral immune function. Specifically, the thymic microenvironment is similarly T(H)2 skewed during the early postnatal period, and this undergoes age-related suppression as the T(H)1 (IFN-γ) response increased. We detected CD4(+)CD25(+)CD127(lo/-) forkhead box protein 3 (FOXP3)-positive Treg cells in the neonatal thymus. These cells suppressed the proliferative response to allogeneic stimulation of CD4(+)CD25(-) T cells dose dependently. In nonatopic children Treg cell turnover and suppressive function increased with age and paralleled the increase in global thymic FOXP3 mRNA expression, whereas in atopic children Treg cell maturation was significantly delayed compared with that seen in age-matched nonatopic children. CONCLUSION These data suggest that the developmental changes in the thymus parallel the recognized changes in peripheral blood responses. There is also a developmental delay in the function of thymic regulatory cells in atopic compared with nonatopic children. These differences are fundamental to understanding early events that lead to immune dysregulation and might predispose to allergic disease.
Collapse
Affiliation(s)
- Meri K Tulic
- School of Paediatrics and Child Health, University of Western Australia, Perth, Australia.
| | | | | | | | | | | | | |
Collapse
|
27
|
Orihara K, Dil N, Anaparti V, Moqbel R. What's new in asthma pathophysiology and immunopathology? Expert Rev Respir Med 2011; 4:605-29. [PMID: 20923340 DOI: 10.1586/ers.10.57] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Research on asthma pathophysiology over the past decade has expanded the complex repertoire involved in the pathophysiology of asthma to include inflammatory, immune and structural cells, as well as a wide range of mediators. Studies have identified a role for connective and other mesenchymal tissues involved in airway remodeling. Recent findings have implicated the innate immune response in asthma and have revealed interesting patterns of interaction between the innate and adaptive immune response and the associated complex chronic inflammatory reaction. New immune cell populations have also been added to this repertoire, including Tregs, natural killer T cells and Th17 cells. The role of the eosinophil, a prominent pathological feature in most asthma phenotypes, has also been expanding to include roles such as tissue modifiers and immune regulators via a number of fascinating and hitherto unexplored mechanistic pathways. In addition, new and significant roles have been proposed for airway smooth muscle cells, fibroblasts, epithelial and endothelial cells. Tissue remodeling is now considered an integral element of asthma pathophysiology. Finally, an intricate network of mediators, released from both immune and inflammatory cells, including thymus stromal lymphopoietin and matrix metalloproteinases, have added to the complex milieu of asthma immunity and inflammation. These findings have implications for therapy and the search for novel strategies towards better disease management. Sadly, and perhaps due to the complex nature of asthma, advances in therapeutic discoveries and developments have been limited. Thus, understanding the precise roles played by the numerous dramatis personae in this odyssey, both individually and collectively within the context of asthma pathophysiology, continues to pose new challenges. It is clear that the next stage in this saga is to embark on studies that transcend reductionist approaches to involve system analysis of the complex and multiple variables involved in asthma, including the need to narrow down the phenotypes of this condition based on careful analysis of the organs (lung and airways), cells, mediators and other factors involved in bronchial asthma.
Collapse
Affiliation(s)
- Kanami Orihara
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
28
|
Shamri R, Xenakis JJ, Spencer LA. Eosinophils in innate immunity: an evolving story. Cell Tissue Res 2010; 343:57-83. [PMID: 21042920 DOI: 10.1007/s00441-010-1049-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/01/2010] [Indexed: 12/27/2022]
Abstract
Eosinophils are innate immune leukocytes found in relatively low numbers within the blood. Terminal effector functions of eosinophils, deriving from their capacity to release their content of tissue-destructive cationic proteins, have historically been considered primary effector mechanisms against specific parasites, and are likewise implicated in tissue damage accompanying allergic responses such as asthma. However, the past decade has seen dramatic advancements in the field of eosinophil immunobiology, revealing eosinophils to also be key participants in many other facets of innate immunity, from bridging innate and adaptive immune responses to orchestrating tissue remodeling events. Here, we review the multifaceted functions of eosinophils in innate immunity that are currently known, and discuss new avenues in this evolving story.
Collapse
Affiliation(s)
- Revital Shamri
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
29
|
Intelligent granules: are eosinophil crystalloid granules inimitable? J Allergy Clin Immunol 2010; 126:28-30. [PMID: 20538325 DOI: 10.1016/j.jaci.2010.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 01/04/2023]
|
30
|
Abstract
Eosinophils, innate immune leukocytes elicited by Th2 cells, have long been associated with the effector arm of Th2 immune responses. However, accumulating data over the past decade reveal a much more dynamic picture of Th2 immunity, where eosinophils are present very early in response to Th2-inducing agents and function in the initiation of Th2 immunity. Here we discuss recent data showing immune functions of eosinophils distinct from their previously appreciated tissue- and helminth-destructive capacities, providing strong evidence for a new paradigm of Th2 immunity defined by a dynamic interplay between eosinophils and T cells.
Collapse
|