1
|
Lv W, An R, Li X, Zhang Z, Geri W, Xiong X, Yin S, Fu W, Liu W, Lin Y, Li J, Xiong Y. Multi-Omics Approaches Uncovered Critical mRNA-miRNA-lncRNA Networks Regulating Multiple Birth Traits in Goat Ovaries. Int J Mol Sci 2024; 25:12466. [PMID: 39596531 PMCID: PMC11595133 DOI: 10.3390/ijms252212466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The goat breeding industry on the Tibetan Plateau faces strong selection pressure to enhance fertility. Consequently, there is an urgent need to develop goat lines with higher fertility and adaptability. The ovary, as a key organ determining reproductive performance, is regulated by a complex transcriptional network involving numerous protein-coding and non-coding genes. However, the molecular mechanisms of the key mRNA-miRNA-lncRNA regulatory network in goat ovaries remain largely unknown. This study focused on the histology and differential mRNA/miRNA/lncRNA between Chuanzhong black goat (CBG, high productivity, multiple births) and Tibetan goat (TG, strong adaptability, single birth) ovaries. Histomorphological analysis showed that the medulla proportion in CBG ovaries was significantly reduced compared to TG. RNA-Seq and small RNA-Seq analysis identified 1218 differentially expressed (DE) mRNAs, 100 DE miRNAs, and 326 DE lncRNAs, which were mainly enriched in ovarian steroidogenesis, oocyte meiosis, biosynthesis of amino acids and protein digestion, and absorption signaling pathways. Additionally, five key mRNA-miRNA-lncRNA interaction networks regulating goat reproductive performance were identified, including TCL1B-novel68_mature-ENSCHIT00000010023, AKAP6-novel475_mature-ENSCHIT00000003176, GLI2-novel68_mature-XR_001919123.1, ITGB5-novel65_star-TCONS_00013850, and VWA2-novel71_mature-XR_001919911.1. Further analyses showed that these networks mainly affected ovarian function and reproductive performance by regulating biological processes such as germ cell development and oocyte development, which also affected the plateau adaptive capacity of the ovary by participating in the individual immune and metabolic capacities. In conclusion, we identified numerous mRNA-miRNA-lncRNA interaction networks involved in regulating ovarian function and reproductive performance in goats. This discovery offers new insights into the molecular breeding of Tibetan Plateau goats and provides a theoretical foundation for developing new goat lines with high reproductive capacity and strong adaptability to the plateau environment.
Collapse
Affiliation(s)
- Weibing Lv
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (W.L.); (R.A.); (X.L.); (Z.Z.); (W.G.); (X.X.); (S.Y.); (W.F.); (W.L.); (Y.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Ren An
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (W.L.); (R.A.); (X.L.); (Z.Z.); (W.G.); (X.X.); (S.Y.); (W.F.); (W.L.); (Y.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Xinmiao Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (W.L.); (R.A.); (X.L.); (Z.Z.); (W.G.); (X.X.); (S.Y.); (W.F.); (W.L.); (Y.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Zengdi Zhang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (W.L.); (R.A.); (X.L.); (Z.Z.); (W.G.); (X.X.); (S.Y.); (W.F.); (W.L.); (Y.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Wanma Geri
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (W.L.); (R.A.); (X.L.); (Z.Z.); (W.G.); (X.X.); (S.Y.); (W.F.); (W.L.); (Y.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Xianrong Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (W.L.); (R.A.); (X.L.); (Z.Z.); (W.G.); (X.X.); (S.Y.); (W.F.); (W.L.); (Y.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Shi Yin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (W.L.); (R.A.); (X.L.); (Z.Z.); (W.G.); (X.X.); (S.Y.); (W.F.); (W.L.); (Y.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (W.L.); (R.A.); (X.L.); (Z.Z.); (W.G.); (X.X.); (S.Y.); (W.F.); (W.L.); (Y.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Wei Liu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (W.L.); (R.A.); (X.L.); (Z.Z.); (W.G.); (X.X.); (S.Y.); (W.F.); (W.L.); (Y.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Yaqiu Lin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (W.L.); (R.A.); (X.L.); (Z.Z.); (W.G.); (X.X.); (S.Y.); (W.F.); (W.L.); (Y.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (W.L.); (R.A.); (X.L.); (Z.Z.); (W.G.); (X.X.); (S.Y.); (W.F.); (W.L.); (Y.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (W.L.); (R.A.); (X.L.); (Z.Z.); (W.G.); (X.X.); (S.Y.); (W.F.); (W.L.); (Y.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
2
|
Hu L, Liu H, Ma H, Zeng X, Cao Y, Liu B, Li H, Zhang X. TRAF6-mediated ubiquitination of AKT1 in the nucleus occurs in a β-arrestin2-dependent manner upon insulin stimulation. Biochem Pharmacol 2024; 226:116362. [PMID: 38871335 DOI: 10.1016/j.bcp.2024.116362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
AKT, also known as protein kinase B (PKB), serves as a crucial regulator of numerous biological functions, including cell growth, metabolism, and tumorigenesis. Increasing evidence suggests that the kinase activity of AKT is regulated via ubiquitination by various E3 ligase enzymes in response to different stimuli. However, the molecular mechanisms underlying insulin-induced AKT ubiquitination are not yet fully understood. Here, we show that activation of the insulin receptor (IR) leads to enhanced ubiquitination of AKT1 at K8 and K14 residues, facilitated by the cytosolic E3 ubiquitin ligase enzyme, TRAF6. Further investigation using AKT1 mutants with modified nucleocytoplasmic shuttling properties reveals that TRAF6-mediated AKT1 ubiquitination occurs within the nucleus in a β-Arr2-dependent manner. The nuclear entry of TRAF6 depends on importin β1, while β-Arr2 regulates this process by facilitating the interaction between TRAF6 and importin β1. Additionally, the ubiquitination of AKT1 is essential for its translocation to the activated IR on the plasma membrane, where it plays a functional role in recruiting Glut4 and facilitating glucose uptake. This study uncovers the cellular components and processes involved in insulin-induced ubiquitination and activation of AKT1, providing insights and detailed strategies for manipulating AKT1.
Collapse
Affiliation(s)
- Li Hu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Haiping Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Haixiang Ma
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Xingyue Zeng
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Yongkai Cao
- Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Bing Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Huijun Li
- Department of Pharmaceuticals, People's Hospital of Zunyi City Bo Zhou District, Zunyi 563000, China
| | - Xiaohan Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Radovich M, Solzak JP, Wang CJ, Hancock BA, Badve S, Althouse SK, Bray SM, Storniolo AMV, Ballinger TJ, Schneider BP, Miller KD. Initial Phase I Safety Study of Gedatolisib plus Cofetuzumab Pelidotin for Patients with Metastatic Triple-Negative Breast Cancer. Clin Cancer Res 2022; 28:3235-3241. [PMID: 35551360 PMCID: PMC9357180 DOI: 10.1158/1078-0432.ccr-21-3078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/18/2021] [Accepted: 05/10/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE The PI3K pathway is dysregulated in the majority of triple-negative breast cancers (TNBC), yet single-agent inhibition of PI3K has been ineffective in TNBC. PI3K inhibition leads to an immediate compensatory upregulation of the Wnt pathway. Dual targeting of both pathways is highly synergistic against TNBC models in vitro and in vivo. We initiated a phase I clinical trial combining gedatolisib, a pan-class I isoform PI3K/mTOR inhibitor, and cofetuzumab pelidotin, an antibody-drug conjugate against the cell-surface PTK7 protein (Wnt pathway coreceptor) with an auristatin payload. PATIENTS AND METHODS Participants (pt) had metastatic TNBC or estrogen receptor (ER) low (ER and PgR < 5%, HER2-negative) breast cancer, and had received at least one prior chemotherapy for advanced disease. The primary objective was safety. Secondary endpoints included overall response rate (ORR), clinical benefit at 18 weeks (CB18), progression-free survival (PFS), and correlative analyses. RESULTS A total of 18 pts were enrolled in three dose cohorts: gedatolisib 110 mg weekly + cofetuzumab pelidotin 1.4 mg/kg every 3 weeks (n = 4), 180 mg + 1.4 mg/kg (n = 3), and 180 mg + 2.8 mg/kg (n = 11). Nausea, anorexia, fatigue, and mucositis were common but rarely reached ≥grade 3 severity. Myelosuppression was uncommon. ORR was 16.7% (3/18). An additional 3 pts had stable disease (of these 2 had stable disease for >18 weeks); CB18 was 27.8%. Median PFS was 2.0 months (95% confidence interval for PFS: 1.2-6.2). Pts with clinical benefit were enriched with genomic alterations in the PI3K and PTK7 pathways. CONCLUSIONS The combination of gedatolisib + cofetuzumab pelidotin was well tolerated and demonstrated promising clinical activity. Further investigation of this drug combination in metastatic TNBC is warranted.
Collapse
Affiliation(s)
- Milan Radovich
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
- Department of Surgery, Division of Surgical Oncology, Indiana University School of Medicine
| | - Jeffrey P. Solzak
- Department of Surgery, Division of Surgical Oncology, Indiana University School of Medicine
| | - Chao J. Wang
- Department of Surgery, Division of Surgical Oncology, Indiana University School of Medicine
| | - Bradley A. Hancock
- Department of Surgery, Division of Surgical Oncology, Indiana University School of Medicine
| | - Sunil Badve
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
- Department of Pathology, Indiana University School of Medicine
| | - Sandra K. Althouse
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
- Department of Biostatistics and Data Health Science, Indiana University School of Medicine
| | | | - Anna Maria V. Storniolo
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine
| | - Tarah J. Ballinger
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine
| | - Bryan P. Schneider
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine
| | - Kathy D. Miller
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine
| |
Collapse
|
4
|
Gupta S, Kumar M, Chaudhuri S, Kumar A. The non-canonical nuclear functions of key players of the PI3K-AKT-MTOR pathway. J Cell Physiol 2022; 237:3181-3204. [PMID: 35616326 DOI: 10.1002/jcp.30782] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022]
Abstract
The PI3K-AKT-MTOR signal transduction pathway is one of the essential signalling cascades within the cell due to its involvement in many vital functions. The pathway initiates with the recruitment of phosphatidylinositol-3 kinases (PI3Ks) onto the plasma membrane, generating phosphatidylinositol-3,4,5-triphosphate [PtdIns(3,4,5)P3 ] and subsequently activating AKT. Being the central node of the PI3K network, AKT activates the mechanistic target of rapamycin kinase complex 1 (MTORC1) via Tuberous sclerosis complex 2 inhibition in the cytoplasm. Although the cytoplasmic role of the pathway has been widely explored for decades, we now know that most of the effector molecules of the PI3K axis diverge from the canonical route and translocate to other cell organelles including the nucleus. The presence of phosphoinositides (PtdIns) inside the nucleus itself indicates the existence of a nuclear PI3K signalling. The nuclear localization of these signaling components is evident in regulating many nuclear processes like DNA replication, transcription, DNA repair, maintenance of genomic integrity, chromatin architecture, and cell cycle control. Here, our review intends to present a comprehensive overview of the nuclear functions of the PI3K-AKT-MTOR signaling biomolecules.
Collapse
Affiliation(s)
- Sakshi Gupta
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mukund Kumar
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Soumi Chaudhuri
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
5
|
Khatpe AS, Adebayo AK, Herodotou CA, Kumar B, Nakshatri H. Nexus between PI3K/AKT and Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2021; 13:369. [PMID: 33498407 PMCID: PMC7864210 DOI: 10.3390/cancers13030369] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Signaling from estrogen receptor alpha (ERα) and its ligand estradiol (E2) is critical for growth of ≈70% of breast cancers. Therefore, several drugs that inhibit ERα functions have been in clinical use for decades and new classes of anti-estrogens are continuously being developed. Although a significant number of ERα+ breast cancers respond to anti-estrogen therapy, ≈30% of these breast cancers recur, sometimes even after 20 years of initial diagnosis. Mechanism of resistance to anti-estrogens is one of the intensely studied disciplines in breast cancer. Several mechanisms have been proposed including mutations in ESR1, crosstalk between growth factor and ERα signaling, and interplay between cell cycle machinery and ERα signaling. ESR1 mutations as well as crosstalk with other signaling networks lead to ligand independent activation of ERα thus rendering anti-estrogens ineffective, particularly when treatment involved anti-estrogens that do not degrade ERα. As a result of these studies, several therapies that combine anti-estrogens that degrade ERα with PI3K/AKT/mTOR inhibitors targeting growth factor signaling or CDK4/6 inhibitors targeting cell cycle machinery are used clinically to treat recurrent ERα+ breast cancers. In this review, we discuss the nexus between ERα-PI3K/AKT/mTOR pathways and how understanding of this nexus has helped to develop combination therapies.
Collapse
Affiliation(s)
- Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Christopher A. Herodotou
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.S.K.); (A.K.A.); (C.A.H.); (B.K.)
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
6
|
Koch M, Reinartz S, Saggau J, Knittel G, Rosen N, Fedorchenko O, Thelen L, Barthel R, Reinart N, Seeger-Nukpezah T, Reinhardt HC, Hallek M, Nguyen PH. Meta-Analysis Reveals Significant Sex Differences in Chronic Lymphocytic Leukemia Progression in the Eµ-TCL1 Transgenic Mouse Model. Cancers (Basel) 2020; 12:cancers12071980. [PMID: 32698538 PMCID: PMC7409315 DOI: 10.3390/cancers12071980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
The Eµ-TCL1 transgenic mouse model represents the most widely and extensively used animal model for chronic lymphocytic leukemia (CLL). In this report, we performed a meta-analysis of leukemia progression in over 300 individual Eµ-TCL1 transgenic mice and discovered a significantly accelerated disease progression in females compared to males. This difference is also reflected in an aggressive CLL mouse model with additional deletion of Tp53 besides the TCL1 transgene. Moreover, after serial adoptive transplantation of murine CLL cells, female recipients also succumbed to CLL earlier than male recipients. This sex-related disparity in the murine models is markedly contradictory to the human CLL condition. Thus, due to our observation we urge both careful consideration in the experimental design and accurate description of the Eµ-TCL1 transgenic cohorts in future studies.
Collapse
Affiliation(s)
- Maximilian Koch
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Sebastian Reinartz
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Julia Saggau
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Gero Knittel
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Natascha Rosen
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Oleg Fedorchenko
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Lisa Thelen
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Romy Barthel
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Nina Reinart
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Tamina Seeger-Nukpezah
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Hans Christian Reinhardt
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
- Clinic for Hematology, West German Cancer Center, University Hospital Essen, Essen, German Cancer Consortium (DKTK), 45147 Essen, Germany
| | - Michael Hallek
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
| | - Phuong-Hien Nguyen
- University of Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, 50931 Cologne, Germany; (M.K.); (S.R.); (J.S.); (G.K.); (N.R.); (O.F.); (L.T.); (R.B.); (N.R.); (T.S.-N.); (H.C.R.); (M.H.)
- Correspondence: ; Tel.: +49-221-478-84120; Fax: +49-221-478-84115
| |
Collapse
|
7
|
Yudushkin I. Control of Akt activity and substrate phosphorylation in cells. IUBMB Life 2020; 72:1115-1125. [PMID: 32125765 PMCID: PMC7317883 DOI: 10.1002/iub.2264] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/22/2020] [Indexed: 12/20/2022]
Abstract
Protein kinase B/Akt is a serine/threonine kinase that links receptors coupled to the PI3K lipid kinase to cellular anabolic pathways. Its activity in cells is controlled by reversible phosphorylation and an intramolecular lipid-controlled allosteric switch. In this review, I outline the current progress in understanding Akt regulatory mechanisms, define three models of Akt activation in cells, and highlight how intramolecular allosterism cooperates with cell-autonomous mechanisms to control Akt localization and activity and direct it toward specific sets of substrates in cells.
Collapse
Affiliation(s)
- Ivan Yudushkin
- Department of Structural and Computational BiologyUniversity of ViennaViennaAustria
| |
Collapse
|
8
|
Schulz D, Streller M, Piendl G, Brockhoff G, Reichert TE, Menevse AN, Beckhove P, Hautmann MG, Bauer RJ, Ettl T. Differential localization of PD-L1 and Akt-1 involvement in radioresistant and radiosensitive cell lines of head and neck squamous cell carcinoma. Carcinogenesis 2019; 41:984-992. [DOI: 10.1093/carcin/bgz177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/18/2022] Open
Abstract
Abstract
Immunotherapy by blockade of the PD-1/PD-L1 checkpoint demonstrated amazing tumor response in advanced cancer patients including head and neck squamous cell carcinoma (HNSCC). However, the majority of HNSCC patients still show little improvement or even hyperprogression. Irradiation is currently investigated as synergistic treatment modality to immunotherapy as it increases the number of T-cells thereby enhancing efficacy of immunotherapy. Apart from this immunogenic context a growing amount of data indicates that PD-L1 also plays an intrinsic role in cancer cells by regulating different cellular functions like cell proliferation or migration. Here, we demonstrate opposing membrane localization of PD-L1 in vital and apoptotic cell populations of radioresistant (RR) and radiosensitive (RS) HNSCC cell lines up to 72 h after irradiation using flow cytometry. Moreover, strong PD-L1 expression was found in nuclear and cytoplasmic cell fractions of RR. After irradiation PD-L1 decreased in nuclear fractions and increased in cytoplasmic fractions of RR cells. In contrast, RS cell lines did not express PD-L1, neither in the nucleus nor in cytoplasmic fractions. Additionally, overexpression of PD-L1 in RS cells led to a proportional increase of vital PD-L1 positive cells after irradiation. Moreover, co-immunoprecipitation experiments revealed an interaction between Akt-1 and PD-L1, mostly in irradiated RR cells compared to RS cells suggesting a differential influence of PD-L1 on cell signaling. In summary, our data imply the need for different therapeutic strategies dependent on the molecular context in which PD-L1 is embedded.
Collapse
Affiliation(s)
- D Schulz
- Department of Oral and Maxillofacial Surgery, Germany
| | - M Streller
- Department of Oral and Maxillofacial Surgery, Germany
| | - G Piendl
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | - G Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | - T E Reichert
- Department of Oral and Maxillofacial Surgery, Germany
| | - A N Menevse
- Regensburg Center for Interventional Immunology, University Regensburg, Regensburg, Germany
- Department of Hematology-Oncology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - P Beckhove
- Regensburg Center for Interventional Immunology, University Regensburg, Regensburg, Germany
- Department of Hematology-Oncology, Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - M G Hautmann
- Department of Radiotherapy, University of Regensburg, Regensburg, Germany
| | - R J Bauer
- Department of Oral and Maxillofacial Surgery, Germany
- Department of Oral and Maxillofacial Surgery, Center for Medical Biotechnology, University Hospital Regensburg, Regensburg, Germany
| | - T Ettl
- Department of Oral and Maxillofacial Surgery, Germany
| |
Collapse
|
9
|
Karlsson E, Veenstra C, Gårsjö J, Nordenskjöld B, Fornander T, Stål O. PTPN2 deficiency along with activation of nuclear Akt predict endocrine resistance in breast cancer. J Cancer Res Clin Oncol 2018; 145:599-607. [PMID: 30515568 PMCID: PMC6394658 DOI: 10.1007/s00432-018-2810-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/30/2018] [Indexed: 01/18/2023]
Abstract
Purpose The protein tyrosine phosphatase, non-receptor type 2 (PTNP2) regulates receptor tyrosine kinase signalling, preventing downstream activation of intracellular pathways like the PI3K/Akt pathway. The gene encoding the protein is located on chromosome 18p11; the 18p region is commonly deleted in breast cancer. In this study, we aimed to evaluate PTPN2 protein expression in a large breast cancer cohort, its possible associations to PTPN2 gene copy loss, Akt activation, and the potential use as a clinical marker in breast cancer. Methods PTPN2 protein expression was analysed by immunohistochemistry in 664 node-negative breast tumours from patients enrolled in a randomised tamoxifen trial. DNA was available for 146 patients, PTPN2 gene copy number was determined by real-time PCR. Results PTPN2 gene loss was detected in 17.8% of the tumours. Low PTPN2 protein expression was associated with higher levels of nuclear-activated Akt (pAkt-n). Low PTPN2 as well as the combination variable low PTPN2/high pAkt-n could be used as predictive markers of poor tamoxifen response. Conclusion PTPN2 negatively regulates Akt signalling and loss of PTPN2 protein along with increased pAkt-n is a new potential clinical marker of endocrine treatment efficacy, which may allow for further tailored patient therapies.
Collapse
Affiliation(s)
- Elin Karlsson
- Department of Clinical and Experimental Medicine, Department of Oncology, Linköping University, 58185, Linköping, Sweden
| | - Cynthia Veenstra
- Department of Clinical and Experimental Medicine, Department of Oncology, Linköping University, 58185, Linköping, Sweden.
| | - Jon Gårsjö
- Department of Clinical and Experimental Medicine, Department of Oncology, Linköping University, 58185, Linköping, Sweden
| | - Bo Nordenskjöld
- Department of Clinical and Experimental Medicine, Department of Oncology, Linköping University, 58185, Linköping, Sweden
| | - Tommy Fornander
- Department of Oncology, Karolinska University Hospital and Karolinska Institute, 17176, Stockholm, Sweden
| | - Olle Stål
- Department of Clinical and Experimental Medicine, Department of Oncology, Linköping University, 58185, Linköping, Sweden
| |
Collapse
|
10
|
Zhou L, Wang M, Guo C, Zhu Y, Yu H, Zhang L, Yu P. Expression of pAkt is associated with a poor prognosis in Chinese women with invasive ductal breast cancer. Oncol Lett 2018; 15:4859-4866. [PMID: 29552125 PMCID: PMC5840663 DOI: 10.3892/ol.2018.7965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
Over the past three decades, numerous patients with breast cancer succumbed to cancer metastasis and recurrence, while, the exact mechanisms underlying this malignancy, and the potential biomarkers for prognosis prediction remain elusive. It was previously demonstrated that phosphorylated RAC-α serine/threonine-protein kinase (pAkt) and Beclin 1 was associated with cancer metastasis, and recurrence. Thus far, the expression patterns of pAkt and Beclin 1 in breast cancer tissues, and their associations with the prognosis of invasive ductal breast cancer remain inconclusive, which may be due to various factors, including ethnicity and pathological types. In the present study, a total of 90 Chinese female patients with invasive ductal breast cancer between June 1999 and August 2002 were enrolled at Shanghai First People's Hospital (Shanghai, China). The patients were followed up from 5 months to 13.5 years for survival analysis. The expressional levels of pAkt and Beclin 1 in invasive ductal breast cancer tissues, and the normal paracancerous tissues were measured by immunohistochemistry. Associations with prognosis following surgery were further evaluated using Cox regression analysis. In 90 invasive ductal breast cancer samples, pAkt was detected in 17 (18.9%) samples and Beclin 1 in 33 (36.7%) samples, but both were not detected in any of the paracancerous samples. Survival analysis revealed that pAkt expression carried a tendency to predict a shorter disease-free survival (DFS) in patients with invasive ductal breast cancer. Additionally, Beclin 1 expression was not significantly associated with survival. Furthermore, univariate Cox regression analysis demonstrated that pAkt expression was negatively associated with DFS and overall survival. Multivariate Cox regression analysis indicated that pAkt expression was an independent risk factor associated with poor prognosis in patients with invasive ductal breast cancer (all P<0.05). pAkt may be used as a potential prognostic biomarker in Chinese women with invasive ductal breast cancer.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Surgery, Branch of Shanghai First People's Hospital, Shanghai 200081, P.R. China
| | - Min Wang
- Department of Pathology, Branch of Shanghai First People's Hospital, Shanghai 200081, P.R. China
| | - Chongyong Guo
- Department of General Surgery, Binzhou People's Hospital, Binzhou, Shandong 256600, P.R. China
| | - Ying Zhu
- Department of Pathology, Branch of Shanghai First People's Hospital, Shanghai 200081, P.R. China
| | - Hua Yu
- Department of Surgery, Branch of Shanghai First People's Hospital, Shanghai 200081, P.R. China
| | - Lu Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Pei Yu
- Department of Orthopedics, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 210025, P.R. China
| |
Collapse
|
11
|
Carcinoma-associated fibroblasts affect sensitivity to oxaliplatin and 5FU in colorectal cancer cells. Oncotarget 2018; 7:59766-59780. [PMID: 27517495 PMCID: PMC5312347 DOI: 10.18632/oncotarget.11121] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/19/2016] [Indexed: 01/08/2023] Open
Abstract
The importance of tumor microenvironment (TME) as a relevant contributor to cancer progression and its role in the development of de novo resistance to targeted therapies has become increasingly apparent. However, the mechanisms of microenvironment-mediated drug resistance for nonspecific conventional chemotherapeutic agents, such as platinum compounds or antimetabolites, are still unclear. Here we describe a mechanism induced by soluble factors released by carcinoma-associated fibroblasts (CAFs) that induce the translocation of AKT, Survivin and P38 to the nucleus of tumor cells. These changes are guided to ensure DNA repair and the correct entrance and exit from mitosis in the presence of chemotherapy. We used conditioned media (CM) from normal-colonic fibroblasts and paired CAFs to assess dose response curves of oxaliplatin and 5-fluorouracil, separately or combined, compared with standard culture medium. We also evaluated a colony-forming assay and cell death to demonstrate the protective role of CAF-CM. Immunofluorescence confirmed the translocation of AKT, P38 and Survivin to the nucleus induced by CAF-soluble factors. We also have shown that STAT3 or P38 inhibition provides a promising strategy for overcoming microenvironment-mediated resistance. Conversely, pharmacologic AKT inhibition induces an antagonistic effect that relieves a cMET and STAT3-mediated compensatory feedback that might explain the failure of AKT inhibitors in the clinic so far.
Collapse
|
12
|
Riggio M, Perrone MC, Polo ML, Rodriguez MJ, May M, Abba M, Lanari C, Novaro V. AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins. Sci Rep 2017; 7:44244. [PMID: 28287129 PMCID: PMC5347151 DOI: 10.1038/srep44244] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study was to elucidate the mechanisms associated with the specific effects of AKT1 and AKT2 isoforms in breast cancer progression. We modulated the abundance of specific AKT isoforms in IBH-6 and T47D human breast cancer cell lines and showed that AKT1 promoted cell proliferation, through S6 and cyclin D1 upregulation, but it inhibited cell migration and invasion through β1-integrin and focal adhesion kinase (FAK) downregulation. In contrast, AKT2 promoted cell migration and invasion through F-actin and vimentin induction. Thus, while overexpression of AKT1 promoted local tumor growth, downregulation of AKT1 or overexpression of AKT2 promoted peritumoral invasion and lung metastasis. Furthermore, we evaluated The Cancer Genome Atlas (TCGA) dataset for invasive breast carcinomas and found that increased AKT2 but not AKT1 mRNA levels correlated with a worse clinical outcome. We conclude that AKT isoforms play specific roles in different steps of breast cancer progression, with AKT1 involved in the local tumor growth and AKT2 involved in the distant tumor dissemination, having AKT2 a poorer prognostic value and consequently being a worthwhile target for therapy.
Collapse
Affiliation(s)
- Marina Riggio
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - María C Perrone
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - María L Polo
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - María J Rodriguez
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - María May
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - Martín Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas. Fac. Ciencias Médicas - Universidad Nacional La Plata (1900), Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| | - Virginia Novaro
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490 Buenos Aires (1428), Argentina
| |
Collapse
|
13
|
Iqbal J, Thike AA, Cheok PY, Tse GMK, Tan PH. Insulin growth factor receptor-1 expression and loss of PTEN protein predict early recurrence in triple-negative breast cancer. Histopathology 2016; 61:652-9. [PMID: 22759273 DOI: 10.1111/j.1365-2559.2012.04255.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Insulin-like growth factor receptor-1 (IGFR-1) and its signalling axis promote tumorigenesis, metastasis, and resistance to existing forms of cancer therapy, and have become a major focus for the development of anticancer drugs. As oncological management options for triple-negative breast cancers (TNBCs) are limited, there is potential for the rapid development of novel selective anticancer agents specifically targeting components of the PTEN-phosphoinositide 3-kinase-AKT pathway, including the phosphorylated form of AKT (pAKT) and the tumour suppressor molecule PTEN. The aim of this study was to conduct immunohistochemical analyses to examine the levels of PTEN, IGFR-1 and pAKT expression in TNBCs, and determine whether these levels correlated with poor prognosis in this subset of aggressive breast cancers. METHODS AND RESULTS Immunohistochemistry was performed on paraffin-embedded tumour tissues from a consecutive cohort of 144 female patients diagnosed with TNBC. Associations of IGFR-1, PTEN and pAKT expression with clinicopathological parameters, disease-free survival (DFS) and overall survival (OS) were evaluated. There were significant increases in IGFR-1 expression (99%) and pAKT expression (92%) with concomitant loss of PTEN expression in the majority of cases (63%). Increased IGFR-1 expression and loss of PTEN expression were associated with reduced OS and DFS, respectively. pAKT expression showed a strong correlation with basal-like expression. Combinatorial immunophenotypic analyses showed that loss of PTEN expression with concomitant IGFR-1 expression correlated with poor DFS. CONCLUSION A high percentage of PTEN loss with overexpression of IGFR-1 and pAKT in TNBC indicates the potential of these molecules for predicting early recurrence and/or as targets in the formulation of effective alternative therapy regimens.
Collapse
Affiliation(s)
- Jabed Iqbal
- Department of Pathology, Singapore General Hospital, SingaporeDepartment of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
14
|
Diamanti S, Nikitakis N, Rassidakis G, Doulis I, Sklavounou A. Immunohistochemical evaluation of the mTOR pathway in intra-oral minor salivary gland neoplasms. Oral Dis 2016; 22:620-9. [PMID: 27177463 DOI: 10.1111/odi.12504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 04/16/2016] [Accepted: 05/04/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the expression of upstream and downstream molecules of the oncogenic mTOR signaling pathway in intra-oral minor salivary gland tumors (SGTs). MATERIALS AND METHODS Tissue samples consisted of 39 malignant and 13 benign minor SGTs, and 8 controls of normal minor salivary glands (NMSG). An immunohistochemical analysis for phosphorylated Akt, 4EBP1 and S6 (total and phosphorylated), and eIF4E was performed. RESULTS Expression of pAkt and 4EBP1 was observed in all SGTs and in most NMSG. p4EBP1 was detected in almost all SGT cases, NMSG being negative. S6 immunoreactivity was observed in 37.5% of NMSG, 92.3% of benign and 100% of malignant SGTs, while pS6 expression was observed in 77% of benign and 95% of malignant SGTs, but not in NMSG. Finally, eIF4E was expressed in 12.5% of NMSG, 69.2% of benign, and 76.9% of malignant tumors. All molecules studied had statistically significantly lower expression in NMSG compared with SGTs. Moreover, malignant neoplasms received higher scores compared with benign tumors for all molecules with the exception of eIF4E. CONCLUSION The mTOR signaling pathway is activated in SGTs, especially in malignancies. Therefore, the possible therapeutic role of targeting the mTOR pathway by rapamycin analogs in SGTs needs further investigation.
Collapse
Affiliation(s)
- S Diamanti
- Department of Oral Medicine and Pathology, Dental School, University of Athens, Athens, Greece. , .,Oral Medicine Department, 251 General Air Force and VA Hospital, Athens, Greece. ,
| | - N Nikitakis
- Department of Oral Medicine and Pathology, Dental School, University of Athens, Athens, Greece
| | - G Rassidakis
- Department of Pathology, Medical School, University of Athens, Athens, Greece.,Department of Pathology and Cytology, Carolinska University Hospital and Karolinska Institute, Solna, Sweden
| | - I Doulis
- Oral Medicine Department, 251 General Air Force and VA Hospital, Athens, Greece
| | - A Sklavounou
- Department of Oral Medicine and Pathology, Dental School, University of Athens, Athens, Greece
| |
Collapse
|
15
|
Bhat-Nakshatri P, Goswami CP, Badve S, Magnani L, Lupien M, Nakshatri H. Molecular Insights of Pathways Resulting from Two Common PIK3CA Mutations in Breast Cancer. Cancer Res 2016; 76:3989-4001. [DOI: 10.1158/0008-5472.can-15-3174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/31/2016] [Indexed: 11/16/2022]
|
16
|
Azim HA, Kassem L, Treilleux I, Wang Q, El Enein MA, Anis SE, Bachelot T. Analysis of PI3K/mTOR Pathway Biomarkers and Their Prognostic Value in Women with Hormone Receptor-Positive, HER2-Negative Early Breast Cancer. Transl Oncol 2016; 9:114-123. [PMID: 27084427 PMCID: PMC4833894 DOI: 10.1016/j.tranon.2016.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND: The PI3K/AKT/mTOR pathway alterations have been shown to play significant roles in the development, progression, and metastatic spread of breast cancer. Furthermore, they have been implicated in the process of drug resistance, especially endocrinal therapies. In this study, we aimed to define the correlation between the PI3K mutations and the expression of the phosphorylated forms of different downstream molecules in women with estrogen receptor (ER)–positive, human epidermal growth factor receptor 2–negative (luminal) early breast cancer treated at Cairo university hospitals. METHODS: Next-generation sequencing was used to detect mutations in the PIK3CA hotspots (in exons 9 and 20). Immunohistochemistry was performed on tissue microarray blocks prepared from samples of 35 Egyptian luminal breast cancer patients in the pathology department of Centre Léon Bérard (CLB). The intensity and the percentage of stained tumor cells were integrated to define high versus low biomarker expression. The cytoplasmic and nuclear stainings were graded separately. Patients were followed for a median of 4.7 years (2.1 to 6.9 years). Correlation was done between PI3K mutations and the immunohistochemistry expression of pAKT, LKB1, p4EBP1, and pS6 ribosomal protein (pS6RP) with the clinicopathologic features and disease free survival (DFS) of the patients. RESULTS: Median age at diagnosis was 51.3 years (range, 25 to 82 years). Tumors were larger than 20 mm in 79.2% of the cases, whereas 57.9% had axillary lymph node deposits. Only 12.3% of the patients had SBR grade I tumors, 50.8% had grade II, and 36.8% had grade III. ERs were negative in 6 patients (17%) after pathology review. Thirty-two cases were assessable for LKB1 and pAKT, 33 for p4EBP1 and pS6RP, and 24 for PI3K mutations. Nuclear LKB1, cytoplasmic LKB1, nuclear pAKT, cytoplasmic pAKT, nuclear p4EBP1, and cytoplasmic pS6RP expression was high in 65.6%, 62.5%, 62.5%, 68.8%, 42.4%, and 57.6%, respectively. PIK3CA mutations were found in 7 patients (29.2%). PI3K mutations were correlated with nuclear localization of pAKT (i.e., decreased cytoplasmic pAKT, P = .04; and increased nuclear pAKT, P = .10). There was a tendency toward an inverse correlation between PI3K mutations and the expression of pS6RP (P = .10) and p4EBP1 (P = .19). Nuclear LKB1 expression was a marker of good prognosis. It was associated with smaller tumors (P = .05), more ER (P = .08) and progesteron receptor (PgR) positivity (P = .002). In the Kaplan Meier (KM) model, patients with high nuclear LKB1 had longer DFS (hazard ratio = 0.36; 95% confidence interval, 0.15-1.10; P = .08). Nuclear pAKT high expression also carried a tendency toward longer DFS (hazard ratio = 0.51; 95% confidence interval, 0.11-1.16; P = .13). The expression of p4EBP1, pS6RP, and the PI3K mutational status did not show any prognostic significance in our cohort. CONCLUSION: Among the studied biomarkers, only nuclear expression of LKB1 and pAKT tended to predict better survival in breast cancer patients. PI3K mutation was correlated with the expression of nuclear pAKT but not pS6RP or p4EBP1.
Collapse
Affiliation(s)
- Hamdy A Azim
- Department of Clinical Oncology, Cairo University Hospital, Cairo, Egypt.
| | - Loay Kassem
- Department of Clinical Oncology, Cairo University Hospital, Cairo, Egypt.
| | | | - Qing Wang
- Genomic Platform-Translational Research Laboratory, Centre Léon Bérard, Lyon, France
| | - Mona Abu El Enein
- Department of Clinical Oncology, Cairo University Hospital, Cairo, Egypt
| | - Shady E Anis
- Department of Pathology, Cairo University Hospital, Cairo, Egypt
| | - Thomas Bachelot
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
17
|
Jain MV, Shareef A, Likus W, Cieślar-Pobuda A, Ghavami S, Łos MJ. Inhibition of miR301 enhances Akt-mediated cell proliferation by accumulation of PTEN in nucleus and its effects on cell-cycle regulatory proteins. Oncotarget 2016; 7:20953-65. [PMID: 26967567 PMCID: PMC4991504 DOI: 10.18632/oncotarget.7996] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/18/2016] [Indexed: 02/07/2023] Open
Abstract
Micro-RNAs (miRs) represent an innovative class of genes that act as regulators of gene expression. Recently, the aberrant expression of several miRs has been associated with different types of cancers. In this study, we show that miR301 inhibition influences PI3K-Akt pathway activity. Akt overexpression in MCF7 and MDAMB468 cells caused downregulation of miR301 expression. This effect was confirmed by co-transfection of miR301-modulators in the presence of Akt. Cells overexpressing miR301-inhibitor and Akt, exhibited increased migration and proliferation. Experimental results also confirmed PI3K, PTEN and FoxF2 as regulatory targets for miR301. Furthermore, Akt expression in conjunction with miR301-inhibitor increased nuclear accumulation of PTEN, thus preventing it from downregulating the PI3K-signalling. In summary, our data emphasize the importance of miR301 inhibition on PI3K-Akt pathway-mediated cellular functions. Hence, it opens new avenues for the development of new anti-cancer agents preferentially targeting PI3K-Akt pathway.
Collapse
Affiliation(s)
- Mayur V. Jain
- Department of Clinical & Experimental Medicine, Division of Cell Biology Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden
| | - Ahmad Shareef
- Department of Clinical & Experimental Medicine, Division of Cell Biology Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden
| | - Wirginia Likus
- Department of Human Anatomy, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Artur Cieślar-Pobuda
- Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Marek J. Łos
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
- LinkoCare Life Sciences AB, Linköping, Sweden
| |
Collapse
|
18
|
Yang SX, Polley E, Lipkowitz S. New insights on PI3K/AKT pathway alterations and clinical outcomes in breast cancer. Cancer Treat Rev 2016; 45:87-96. [PMID: 26995633 PMCID: PMC7436195 DOI: 10.1016/j.ctrv.2016.03.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 01/03/2023]
Abstract
PI3K/AKT signaling pathway plays an important role in tumorigenesis and regulates critical cellular functions including survival, proliferation and metabolism. PIK3CA mutations and AKT activation by phosphorylation (pAKT) are often detected in many cancers and especially at high frequencies in breast cancer. Mounting data suggest that PIK3CA mutations or pAKT are mostly associated with better or insignificant outcomes in estrogen receptor-positive (ER+) early stage breast cancer and tend to be with worse prognosis in ER- disease. pAKT expression has been identified to predict paclitaxel chemotherapy benefit in node-positive breast cancer. Preclinical and neoadjuvant trial data suggest that PIK3CA alterations confer resistance to HER2-targeted therapy and are associated with lower pathological complete response (pCR) rate in HER2-positive breast cancer. However, recent results from randomized clinical trials of adjuvant and metastatic settings show that patients with mutant and wildtype PIK3CA tumors derived similar benefit from anti-HER2 therapy. This article, with our new insights, aims to decipher the mixed data and discusses the influence of the potential confounding factors in the assessments. We also share our views for validation of PI3K/AKT alterations in relation to clinical outcome in the context of specific breast cancer subtypes and treatment modalities towards further advance of the precision medicine for breast cancer treatment.
Collapse
Affiliation(s)
- Sherry X Yang
- National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Eric Polley
- Biometrics Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
TFAP2C expression in breast cancer: correlation with overall survival beyond 10 years of initial diagnosis. Breast Cancer Res Treat 2015; 152:519-31. [PMID: 26160249 DOI: 10.1007/s10549-015-3492-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/02/2015] [Indexed: 01/15/2023]
Abstract
Recurrence and death in a significant number of patients with ERα-positive breast cancer occurs 10-20 years after diagnosis. Prognostic markers for late events have been more elusive. TFAP2C (AP2γ) regulates the expression of ERα, the ERα pioneer factors FOXA1 and GATA3, and controls ERα-dependent transcription. The purpose of this investigation is to determine the long-term prognostic value of TFAP2C. A tissue microarray (TMA) consisting of breast tumors from 451 patients with median follow-up time of 10.3 years was created and tested for the expression of TFAP2C by immunohistochemistry. Wilcoxon Rank-Sum and Kruskal-Wallis tests were used to determine if TFAP2C H-scores correlate with other tumor markers. Cox proportional hazards regression models were used to determine whether TFAP2C H-scores and other tumor markers were related to overall and disease-free survival in univariate and multivariable models. TFPAC2 overexpression did not impact overall survival during the first 10 years after diagnosis, but was associated with a shorter survival after 10 years (HR 3.40, 95 % CI 1.58, 7.30; p value = 0.002). This late divergence persisted in ER-positive (HR 2.86, 95 % CI 1.29, 6.36; p value = 0.01) and endocrine therapy-positive subgroups (HR 4.19, 95 % CI 1.72, 10.23; p value = 0.002). For the ER+ and endocrine therapy subgroup, the HR was 3.82 (95 % CI 1.53, 9.50; p value = 0.004). TFAP2C H-scores were not correlated with other tumor markers or related to disease-free survival. In this hypothesis-generating study, we show that higher TFAP2C scores correlate with poor overall survival after 10 years of diagnosis in ERα-positive and endocrine therapy-treated subgroups.
Collapse
|
20
|
Jain MV, Jangamreddy JR, Grabarek J, Schweizer F, Klonisch T, Cieślar-Pobuda A, Łos MJ. Nuclear localized Akt enhances breast cancer stem-like cells through counter-regulation of p21(Waf1/Cip1) and p27(kip1). Cell Cycle 2015; 14:2109-20. [PMID: 26030190 DOI: 10.1080/15384101.2015.1041692] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Cancer stem-like cells (CSCs) are a rare subpopulation of cancer cells capable of propagating the disease and causing cancer recurrence. In this study, we found that the cellular localization of PKB/Akt kinase affects the maintenance of CSCs. When Akt tagged with nuclear localization signal (Akt-NLS) was overexpressed in SKBR3 and MDA-MB468 cells, these cells showed a 10-15% increase in the number of cells with CSCs enhanced ALDH activity and demonstrated a CD44(+High)/CD24(-Low) phenotype. This effect was completely reversed in the presence of Akt-specific inhibitor, triciribine. Furthermore, cells overexpressing Akt or Akt-NLS were less likely to be in G0/G1 phase of the cell cycle by inactivating p21(Waf1/Cip1) and exhibited increased clonogenicity and proliferation as assayed by colony-forming assay (mammosphere formation). Thus, our data emphasize the importance the intracellular localization of Akt has on stemness in human breast cancer cells. It also indicates a new robust way for improving the enrichment and culture of CSCs for experimental purposes. Hence, it allows for the development of simpler protocols to study stemness, clonogenic potency, and screening of new chemotherapeutic agents that preferentially target cancer stem cells. SUMMARY The presented data, (i) shows new, stemness-promoting role of nuclear Akt/PKB kinase, (ii) it underlines the effects of nuclear Akt on cell cycle regulation, and finally (iii) it suggests new ways to study cancer stem-like cells.
Collapse
Key Words
- 7-AAD, 7-aminoactinomycin D
- ALDH, aldehyde dehydrogenase
- Akt-NLS
- BPE, bovine pituitary epithelial
- Bcl2, B cell lymphoma 2
- CDK, cyclin-dependent kinase
- CSCs, cancer stem-like cells
- DEAB, diethylaminobenzaldehyde
- FBS, fetal bovine serum
- GAPDH, glucose-6-phosphate dehydrogenase
- GPCR, G-protein-coupled receptor
- GSK3, glycogen synthase kinase-3
- IGF1, insulin like growth factor 1
- JAK, Janus kinase
- NLS, nuclear localization signal
- PDK, phosphoinositide dependent kinase
- PH, pleckstrin-homology
- PI3K
- PI3K, phoshatidylinositol-3-kinase
- PKB, protein kinase B
- PTEN, phosphatase and tensin homolog
- PVDF, polyvinylidene fluoride
- RIPA, radioimmunoprecipitation
- RPMI, Roswell Park Memorial Institute
- RT, room temperature
- RTK, receptor tyrosine kinase
- STAT, signal transducer and activator of transcription
- T-ALL, T-cell acute lymphoblastic leukemia
- WT, wild type
- cancer stem-like cells
- hEGF, human epidermal growth factor
- mTOR
- mTOR, mammalian target of rapamycin
- poly-HEMA, poly-2-hydroxyethyl methacrylate
- stemness
Collapse
Affiliation(s)
- Mayur Vilas Jain
- a Department of Clinical & Experimental Medicine; Division of Cell Biology Integrative Regenerative Med. Center (IGEN); Linköping Univ. ; Linköping , Sweden
| | | | | | | | | | | | | |
Collapse
|
21
|
Davis WJ, Lehmann PZ, Li W. Nuclear PI3K signaling in cell growth and tumorigenesis. Front Cell Dev Biol 2015; 3:24. [PMID: 25918701 PMCID: PMC4394695 DOI: 10.3389/fcell.2015.00024] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/27/2015] [Indexed: 12/12/2022] Open
Abstract
The PI3K/Akt signaling pathway is a major driving force in a variety of cellular functions. Dysregulation of this pathway has been implicated in many human diseases including cancer. While the activity of the cytoplasmic PI3K/Akt pathway has been extensively studied, the functions of these molecules and their effector proteins within the nucleus are poorly understood. Harboring key cellular processes such as DNA replication and repair as well as nascent messenger RNA transcription, the nucleus provides a unique compartmental environment for protein–protein and protein–DNA/RNA interactions required for cell survival, growth, and proliferation. Here we summarize recent advances made toward elucidating the nuclear PI3K/Akt signaling cascade and its key components within the nucleus as they pertain to cell growth and tumorigenesis. This review covers the spatial and temporal localization of the major nuclear kinases having PI3K activities and the counteracting phosphatases as well as the role of nuclear PI3K/Akt signaling in mRNA processing and exportation, DNA replication and repair, ribosome biogenesis, cell survival, and tumorigenesis.
Collapse
Affiliation(s)
- William J Davis
- College of Medical Sciences, Washington State University Spokane, WA, USA
| | - Peter Z Lehmann
- College of Medical Sciences, Washington State University Spokane, WA, USA
| | - Weimin Li
- College of Medical Sciences, Washington State University Spokane, WA, USA
| |
Collapse
|
22
|
Papa A, Caruso D, Tomao S, Rossi L, Zaccarelli E, Tomao F. Triple-negative breast cancer: investigating potential molecular therapeutic target. Expert Opin Ther Targets 2014; 19:55-75. [PMID: 25307277 DOI: 10.1517/14728222.2014.970176] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) makes up about 10 - 20% of all breast cancers and the lack of hormone receptors and human epidermal growth factor receptor-2/Neu expression is responsible for poor prognosis, no targeted therapies and trouble in the clinical management. Tumor heterogeneity, also within the same tumor, is a major cause for this difficulty. Based on the introduction of new biological drugs against different kinds of tumor, many efforts have been made for classification of genetic alterations present in TNBC, leading to the identification of several oncogenes and tumor suppressor genes involved in breast cancer carcinogenesis. AREAS COVERED In this review we investigated the molecular alteration present in TNBC which could lead to the creation of new targeted therapies in the future, with the aim to counteract this disease in the most effective way. EXPERT OPINION In this context some hormone receptors like G-protein-coupled receptor 30 and androgen receptors may be a fascinating area to investigate; also, angiogenesis, represented not only by the classical VEGF/VEGFR relationship, but also by other molecules, like semaphorins, fibroblast growth factor and heparin-binding-EGF-like, is a mechanism in which new developments are expected. In this perspective, one technique that may show promise is the gene therapy; in particular the gene transfer could correct abnormal genetic function in cancer cells.
Collapse
Affiliation(s)
- Anselmo Papa
- Faculty of Pharmacy and Medicine, "Sapienza" University of Rome, Oncology Unit - ICOT, Via Franco Faggiana, 1668, Department of medico-surgical sciences and biotechnologies , Latina , Italy +3907736513342 ;
| | | | | | | | | | | |
Collapse
|
23
|
Bruce MC, McAllister D, Murphy LC. The kinome associated with estrogen receptor-positive status in human breast cancer. Endocr Relat Cancer 2014; 21:R357-70. [PMID: 25056177 DOI: 10.1530/erc-14-0232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Estrogen receptor alpha (ERα) regulates and is regulated by kinases involved in several functions associated with the hallmarks of cancer. The following literature review strongly suggests that distinct kinomes exist for ERα-positive and -negative human breast cancers. Importantly, consistent with the known heterogeneity of ERα-positive cancers, different subgroups exist, which can be defined by different kinome signatures, which in turn are correlated with clinical outcome. Strong evidence supports the interplay of kinase networks, suggesting that targeting a single node may not be sufficient to inhibit the network. Therefore, identifying the important hubs/nodes associated with each clinically relevant kinome in ER+ tumors could offer the ability to implement the best therapy options at diagnosis, either endocrine therapy alone or together with other targeted therapies, for improved overall outcome.
Collapse
Affiliation(s)
- M Christine Bruce
- Department of Biochemistry and Medical GeneticsManitoba Institute of Cell Biology, University of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| | - Danielle McAllister
- Department of Biochemistry and Medical GeneticsManitoba Institute of Cell Biology, University of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| | - Leigh C Murphy
- Department of Biochemistry and Medical GeneticsManitoba Institute of Cell Biology, University of Manitoba and CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba, Canada R3E 0V9
| |
Collapse
|
24
|
Pérez-Tenorio G, Karlsson E, Stål O. Clinical value of isoform-specific detection and targeting of AKT1, AKT2 and AKT3 in breast cancer. BREAST CANCER MANAGEMENT 2014. [DOI: 10.2217/bmt.14.35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
SUMMARY Overactivation of the PI3K/AKT signaling pathway is frequently reported in breast cancer, consequently inhibitors targeting this pathway are clinically useful. AKT constitutes a hub in the regulation of several cancer hallmarks, such as proliferation, survival and migration. Three AKT isoforms, named AKT1, AKT2 and AKT3, are identified in humans. AKT alterations, mainly upregulation of phosphorylated AKT in tumors may have prognostic and predictive value. Moreover, the AKT isoforms may possess partly divergent cellular functions and be upregulated in certain breast cancer subtypes, suggesting the importance of isoform-specific analyses. In conclusion, AKT isoform-specific detection and targeting in different tumor subtypes will hopefully result into a further developed personalized medicine.
Collapse
Affiliation(s)
- Gizeh Pérez-Tenorio
- Department of Clinical & Experimental Medicine & Department of Oncology, Linköping University, Linköping, SE-58185, Sweden
| | - Elin Karlsson
- Department of Clinical & Experimental Medicine & Department of Oncology, Linköping University, Linköping, SE-58185, Sweden
| | - Olle Stål
- Department of Clinical & Experimental Medicine & Department of Oncology, Linköping University, Linköping, SE-58185, Sweden
| |
Collapse
|
25
|
El-Habr EA, Levidou G, Trigka EA, Sakalidou J, Piperi C, Chatziandreou I, Spyropoulou A, Soldatos R, Tomara G, Petraki K, Samaras V, Zisakis A, Varsos V, Vrettakos G, Boviatsis E, Patsouris E, Saetta AA, Korkolopoulou P. Complex interactions between the components of the PI3K/AKT/mTOR pathway, and with components of MAPK, JAK/STAT and Notch-1 pathways, indicate their involvement in meningioma development. Virchows Arch 2014; 465:473-85. [PMID: 25146167 DOI: 10.1007/s00428-014-1641-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/02/2014] [Accepted: 08/07/2014] [Indexed: 01/10/2023]
Abstract
We investigated the significance of PI3K/AKT/mTOR pathway and its interactions with MAPK, JAK/STAT and Notch pathways in meningioma progression. Paraffin-embedded tissue from 108 meningioma patients was analysed for the presence of mutations in PIK3CA and AKT1. These were correlated with the expression status of components of the PI3K/AKT/mTOR pathway, including p85α and p110γ subunits of PI3K, phosphorylated (p)-AKT, p-mTOR, p-p70S6K and p-4E-BP1, as well as of p-ERK1/2, p-STAT3 and Notch-1, clinicopathological data and patient survival. A mutation in PIK3CA or AKT1 was found in around 9 % of the cases. Higher grade meningiomas displayed higher nuclear expression of p-p70S6K; higher nuclear and cytoplasmic expression of p-4E-BP1 and of Notch-1; lower cytoplasmic expression of p85αPI3K, p-p70S6K and p-ERK1/2; and lower PTEN Histo-scores (H-scores). PTEN H-score was inversely correlated with recurrence probability. In univariate survival analysis, nuclear expression of p-4E-BP1 and absence of p-ERK1/2 expression portended adverse prognosis, whereas in multivariate survival analysis, p-ERK1/2 expression emerged as an independent favourable prognostic factor. Treatment of the human meningioma cell line HBL-52 with the PI3K inhibitor LY294002 resulted in reduction of p-AKT, p-p70S6K and p-ERK1/2 protein levels. The complex interactions established between components of the PI3K/AKT/mTOR pathway, or with components of the MAPK, JAK/STAT and Notch-1 pathways, appear to be essential for facilitating and fuelling meningioma progression.
Collapse
Affiliation(s)
- Elias A El-Habr
- First Department of Pathology, Laikon General Hospital, Athens University Medical School, 115 27, Athens, Greece,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Campbell PA, Rudnicki MA. Oct4 interaction with Hmgb2 regulates Akt signaling and pluripotency. Stem Cells 2014; 31:1107-20. [PMID: 23495099 DOI: 10.1002/stem.1365] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/26/2013] [Accepted: 01/31/2013] [Indexed: 12/20/2022]
Abstract
In pluripotent stem cells, bivalent domains mark the promoters of developmentally regulated loci. Histones in these chromatin regions contain coincident epigenetic modifications of gene activation and repression. How these marks are transmitted to maintain the pluripotent state in daughter progeny remains poorly understood. Our study demonstrates that Oct4 post-translational modifications (PTMs) form a positive feedback loop, which promotes Akt activation and interaction with Hmgb2 and the SET complex. This preserves H3K27me3 modifications in daughter progeny and maintains the pluripotent gene expression signature in murine embryonic stem cells. However, if Oct4 is not phosphorylated, a negative feedback loop is formed that inactivates Akt and initiates the DNA damage response. Oct4 sumoylation then is required for G1/S progression and transmission of the repressive H3K27me3 mark. Therefore, PTMs regulate the ability of Oct4 to direct the spatio-temporal formation of activating and repressing complexes to orchestrate chromatin plasticity and pluripotency. Our work highlights a previously unappreciated role for Oct4 PTM-dependent interactions in maintaining restrained Akt signaling and promoting a primitive epigenetic state.
Collapse
Affiliation(s)
- Pearl A Campbell
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
27
|
ROR1 can interact with TCL1 and enhance leukemogenesis in Eμ-TCL1 transgenic mice. Proc Natl Acad Sci U S A 2013; 111:793-8. [PMID: 24379361 DOI: 10.1073/pnas.1308374111] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncoembryonic antigen found on chronic lymphocytic leukemia (CLL) B cells, but not on normal adult tissues. We generated transgenic (Tg) mice with human ROR1 regulated by the murine Ig promoter/enhancer. In contrast to nontransgenic littermates, such animals had B-cell-restricted expression of ROR1 and could develop clonal expansions of ROR1(bright)CD5(+)B220(low) B cells resembling human CLL at ≥ 15 mo of age. Because immune-precipitation and mass spectrometry studies revealed that ROR1 could complex with T-cell leukemia 1 (TCL1) in CLL, we crossed these animals with Eµ-TCL1-Tg (TCL1) mice. Progeny with both transgenes (ROR1 × TCL1) developed CD5(+)B220(low) B-cell lymphocytosis and leukemia at a significantly younger median age than did littermates with either transgene alone. ROR1 × TCL1 leukemia B cells had higher levels of phospho-AKT than TCL1 leukemia cells and expressed high levels of human ROR1, which we also found complexed with TCL1. Transcriptome analyses revealed that ROR1 × TCL1 leukemia cells had higher expression of subnetworks implicated in embryonic and tumor-cell proliferation, but lower expression of subnetworks involved in cell-cell adhesion or cell death than did TCL1 leukemia cells. ROR1 × TCL1 leukemia cells also had higher proportions of Ki-67-positive cells, lower proportions of cells undergoing spontaneous apoptosis, and produced more aggressive disease upon adoptive transfer than TCL1 leukemia cells. However, treatment with an anti-ROR1 mAb resulted in ROR1 down-modulation, reduced phospho-AKT, and impaired engraftment of ROR1 × TCL1 leukemia cells. Our data demonstrate that ROR1 accelerates development/progression of leukemia and may be targeted for therapy of patients with CLL.
Collapse
|
28
|
Yip PY, Cooper WA, Kohonen-Corish MRJ, Lin BPC, McCaughan BC, Boyer MJ, Kench JG, Horvath LG. Phosphorylated Akt expression is a prognostic marker in early-stage non-small cell lung cancer. J Clin Pathol 2013; 67:333-40. [PMID: 24265323 DOI: 10.1136/jclinpath-2013-201870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIMS To determine the prognostic significance of pAkt expression in order to identify high-risk stage IB patients with non-small cell lung cancer (NSCLC) in an exploratory study. METHODS We identified 471 consecutive patients with stage IB primary NSCLC according to the American Joint Commission on Cancer 6th edition tumour-node-metastasis (TNM) staging system, who underwent surgical resection between 1990 and 2008. Patients who received neoadjuvant or adjuvant treatments were excluded. Pathology reports were reviewed, and pathological characteristics were extracted. Expression of phosphorylated Akt (pAkt) in both cytoplasmic and nuclear locations was assessed by immunohistochemistry, and clinicopathological factors were analysed against 10-year overall survival using Kaplan-Meier and Cox proportional hazards model. RESULTS 455 (96.6%) cancers were adequate for pAkt immunohistochemical analysis. The prevalence of pAkt expression in the cytoplasm and nucleus of the cancers was 60.7% and 43.7%, respectively. Patients whose cancers expressed higher levels of cytoplasmic pAkt had a trend towards longer overall survival than those with lower levels (p=0.06). Conversely, patients whose cancers expressed higher levels of nuclear pAkt had a poorer prognosis than those with lower levels of expression (p=0.02). Combined low cytoplasmic/high nuclear expression of pAkt was an independent predictor of overall survival (HR=2.86 (95% CI 1.35 to 6.04); p=0.006) when modelled with age (HR=1.05 (95% CI 1.03 to 1.07); p<0.001), extent of operation (HR=2.11 (95% CI 1.48 to 3.01); p<0.001), visceral pleural invasion (HR=1.63 (95% CI 1.24 to 2.15); p<0.001), gender, tumour size, histopathological type and grade (p>0.05). CONCLUSIONS Level of expression of pAkt in the cytoplasm and nucleus is an independent prognostic factor that may help to select patients with high-risk disease.
Collapse
Affiliation(s)
- P Y Yip
- Department of Medical Oncology, Sydney Cancer Centre, Royal Prince Alfred Hospital, , Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Immunohistochemical Analysis of the Activation Status of the Akt/mTOR/pS6 Signaling Pathway in Oral Lichen Planus. Int J Dent 2013; 2013:743456. [PMID: 24228033 PMCID: PMC3818896 DOI: 10.1155/2013/743456] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/17/2013] [Accepted: 08/27/2013] [Indexed: 01/09/2023] Open
Abstract
Introduction. Aberrations of the Akt/mTOR/pS6 pathway have been linked to various types of human cancer, including oral squamous cell carcinoma (OSCC). The purpose of this study was to evaluate the activation status of Akt, mTOR, and pS6 in oral lichen planus (OLP) in comparison with oral premalignant and malignant lesions and normal oral mucosa (NM). Materials and Methods. Immunohistochemistry for p-Akt, p-mTOR, and phospho-pS6 was performed in 40 OLP, 20 oral leukoplakias (OL), 10 OSCC, and 10 control samples of NM. Results. Nuclear p-Akt expression was detected in the vast majority of cases in all categories, being significantly higher in OL. Cytoplasmic p-Akt and p-mTOR staining was present only in a minority of OLP cases, being significantly lower compared to OL and OSCC. Phospho-pS6 showed cytoplasmic positivity in most OLP cases, which however was significantly lower compared to OL and OSCC. Conclusions. Overall, cytoplasmic p-Akt, p-mTOR, and phospho-pS6 levels appear to be significantly lower in OLP compared to OL and OSCC. However, the expression of these molecules in a subset of OLP cases suggests that activation of Akt/mTOR/pS6 may occur in the context of OLP, possibly contributing to the premalignant potential of individual cases.
Collapse
|
30
|
Sperandio FF, Giudice FS, Corrêa L, Pinto DS, Hamblin MR, de Sousa SCOM. Low-level laser therapy can produce increased aggressiveness of dysplastic and oral cancer cell lines by modulation of Akt/mTOR signaling pathway. JOURNAL OF BIOPHOTONICS 2013; 6:839-47. [PMID: 23554211 PMCID: PMC3788041 DOI: 10.1002/jbio.201300015] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 05/21/2023]
Abstract
Low-level laser therapy (LLLT) is a non-thermal phototherapy used in several medical applications, including wound healing, reduction of pain and amelioration of oral mucositis. Nevertheless, the effects of LLLT upon cancer or dysplastic cells have been so far poorly studied. Head and neck cancer patients receiving LLLT for oral mucositis, for example, might have remaining tumor cells that could be stimulated by LLLT. This study demonstrated that LLLT (GaAlAs--660 nm or 780 nm, 40 mW, 2.05, 3.07 or 6.15 J/cm²) can modify oral dysplastic cells (DOK) and oral cancer cells (SCC9 and SCC25) growth by modulating the Akt/mTOR/CyclinD1 signaling pathway; LLLT significantly modified the expression of proteins related to progression and invasion in all the cell lines, and could aggravate oral cancer cellular behavior, increasing the expression of pAkt, pS6 and Cyclin D1 proteins and producing an aggressive Hsp90 isoform. Apoptosis was detected for SCC25 and was related to pAkt levels.
Collapse
Affiliation(s)
- Felipe F Sperandio
- Department of Oral Pathology, School of Dentistry, University of São Paulo, 2227 Prof. Lineu Prestes Av., Cidade Universitária, S∼ao Paulo, SP Brazil 05508-000, Brazil; The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Hashimoto M, Suizu F, Tokuyama W, Noguchi H, Hirata N, Matsuda-Lennikov M, Edamura T, Masuzawa M, Gotoh N, Tanaka S, Noguchi M. Protooncogene TCL1b functions as an Akt kinase co-activator that exhibits oncogenic potency in vivo. Oncogenesis 2013; 2:e70. [PMID: 24042734 PMCID: PMC3816220 DOI: 10.1038/oncsis.2013.30] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 07/16/2013] [Indexed: 02/07/2023] Open
Abstract
Protooncogene T-cell leukemia 1 (TCL1), which is implicated in human T-cell prolymphocytic leukemia (T-PLL), interacts with Akt and enhances its kinase activity, functioning as an Akt kinase co-activator. Two major isoforms of TCL1 Protooncogenes (TCL1 and TCL1b) are present adjacent to each other on human chromosome 14q.32. In human T-PLL, both TCL1 and TCL1b are activated by chromosomal translocation. Moreover, TCL1b-transgenic mice have never been created. Therefore, it remains unclear whether TCL1b itself, independent of TCL1, exhibits oncogenicity. In co-immunoprecipitation assays, both ectopic and endogenous TCL1b interacted with Akt. In in vitro Akt kinase assays, TCL1b enhanced Akt kinase activity in dose- and time-dependent manners. Bioinformatics approaches utilizing multiregression analysis, cluster analysis, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway mapping, Venn diagrams and Gene Ontology (GO) demonstrated that TCL1b showed highly homologous gene-induction signatures similar to Myr-Akt or TCL1. TCL1b exhibited oncogenicity in in vitro colony-transformation assay. Further, two independent lines of β-actin promoter-driven TCL1b-transgenic mice developed angiosarcoma on the intestinal tract. Angiosarcoma is a rare form of cancer in humans with poor prognosis. Using immunohistochemistry, 11 out of 13 human angiosarcoma samples were positively stained with both anti-TCL1b and anti-phospho-Akt antibodies. Consistently, in various cancer tissues, 69 out of 146 samples were positively stained with anti-TCL1b, out of which 46 were positively stained with anti-phospho-Akt antibodies. Moreover, TCL1b structure-based inhibitor 'TCL1b-Akt-in' inhibited Akt kinase activity in in vitro kinase assays and PDGF (platelet-derived growth factor)-induced Akt kinase activities-in turn, 'TCL1b-Akt-in' inhibited cellular proliferation of sarcoma. The current study disclosed TCL1b bears oncogenicity and hence serves as a novel therapeutic target for human neoplastic diseases.
Collapse
Affiliation(s)
- M Hashimoto
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Uranga RM, Katz S, Salvador GA. Enhanced phosphatidylinositol 3-kinase (PI3K)/Akt signaling has pleiotropic targets in hippocampal neurons exposed to iron-induced oxidative stress. J Biol Chem 2013; 288:19773-84. [PMID: 23687303 DOI: 10.1074/jbc.m113.457622] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The PI3K/Akt pathway is a key component in synaptic plasticity and neuronal survival. The aim of this work was to investigate the participation of the PI3K/Akt pathway and its outcome on different molecular targets such as glycogen synthase kinase 3β (GSK3β) and Forkhead box-O (FoxO) transcription factors during mild oxidative stress triggered by iron overload. The exposure of mouse hippocampal neurons (HT22) to different concentrations of Fe(2+) (25-200 μm) for 24 h led us to define a mild oxidative injury status (50 μm Fe(2+)) in which cell morphology showed changes typical of neuronal damage with increased lipid peroxidation and cellular oxidant levels but no alteration of cellular viability. There was a simultaneous increase in both Akt and GSK3β phosphorylation. Levels of phospho-FoxO3a (inactive form) increased in the cytosolic fraction of cells treated with iron in a PI3K-dependent manner. Moreover, PI3K and Akt translocated to the nucleus in response to oxidative stress. Iron-overloaded cells harboring a constitutively active form of Akt showed decreased oxidants levels. Indeed, GSH synthesis under oxidative stress conditions was regulated by activated Akt. Our results show that activation of the PI3K/Akt pathway during iron-induced neurotoxicity regulates multiple targets such as GSK3β, FoxO transcriptional activity, and glutathione metabolism, thus modulating the neuronal response to oxidative stress.
Collapse
Affiliation(s)
- Romina María Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
| | | | | |
Collapse
|
33
|
Zhu H, Bhaijee F, Ishaq N, Pepper DJ, Backus K, Brown AS, Zhou X, Miele L. Correlation of Notch1, pAKT and nuclear NF-κB expression in triple negative breast cancer. Am J Cancer Res 2013; 3:230-239. [PMID: 23593544 PMCID: PMC3623841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/15/2013] [Indexed: 06/02/2023] Open
Abstract
Gene expression profiling reveals elevated Notch1 mRNA expression in triple negative breast cancers (TNBC), both basaloid and claudin-low subtypes. Notch ligands, Jagged1 and Jagged2, have been correlated with poor prognosis in TNBC. AKT, an oncogenic protein kinase family that is activated downstream of Notch in breast cancer cell lines, is frequently activated in breast cancer. Recent publications suggest that inhibition of cell growth, migration, invasion, and induction of apoptosis caused by Notch1 or Jagged1 inhibition may be attributed in part to inactivation of the AKT signaling pathway. There is significant evidence that Notch1 activates NF-κB in several models, and that AKT can mediate NF-κB activation. In this study, we evaluated Notch1 protein expression by immunohistochemistry (IHC) and correlated this with expression of pAKT and nuclear NF-κB p65 (RelA) in TNBC. A tissue microarray (TMA) containing 32 formalin-fixed, paraffin-embedded (FFPE) TNBC tumor specimens was constructed from the archival tissue database of the Department of Pathology at UMMC and IHC for Notch1 protein, pAKT 1/2/3 (Ser473), and NF-κB, p65 subunit was performed on the TMA with appropriate positive and negative controls. Of the 32 TNBC in our cohort, 100% expressed Notch1 protein by IHC: 24 (75%) showed cytoplasmic expression, 25 (78%) showed membranous expression, and 17 (53%) showed both cytoplasmic and membranous expression. Overall, 29 (91%) expressed pAKT by IHC: 28 (97%) showed cytoplasmic expression, 14 (48%) showed nuclear expression and 13 (45%) showed both cytoplasmic and nuclear expression. Nuclear staining for NF-κB p65 was detected in all 32 TNBC specimens with variable intensities. On bivariate analysis, cytoplasmic Notch1 was significantly correlated with cytoplasmic pAKT (r = 0.373, P = 0.035) and nuclear NF-κB (r = 0.483, P = 0.005); both cytoplasmic and nuclear pAKT significantly correlated with nuclear NF-κB (r = 0.391, P = 0.027; r = 0.525, P = 0.002, respectively). These results suggest that 1) the cross-talk between Notch1, AKT and NF-κB identified in preclinical models may operate in a significant fraction of human TNBC, and 2) combination therapy with agents targeting these pathways warrants further investigation.
Collapse
Affiliation(s)
- He Zhu
- Cancer Institute, University of Mississippi Medical CenterJackson, MS 39216
- Department of Pathology, University of Mississippi Medical CenterJackson, MS 39216
| | - Feriyl Bhaijee
- Department of Pathology, University of Mississippi Medical CenterJackson, MS 39216
| | - Nivin Ishaq
- Department of Pathology, University of Mississippi Medical CenterJackson, MS 39216
| | - Dominique J Pepper
- Department of Medicine, University of Mississippi Medical CenterJackson, MS 39216
| | - Kandis Backus
- Cancer Institute, University of Mississippi Medical CenterJackson, MS 39216
| | - Alexandra S Brown
- Department of Pathology, University of Mississippi Medical CenterJackson, MS 39216
| | - Xinchun Zhou
- Department of Pathology, University of Mississippi Medical CenterJackson, MS 39216
| | - Lucio Miele
- Cancer Institute, University of Mississippi Medical CenterJackson, MS 39216
- Department of Medicine, University of Mississippi Medical CenterJackson, MS 39216
- Department of Pharmacology and Toxicology, University of Mississippi Medical CenterJackson, MS 39216
| |
Collapse
|
34
|
Activation of Akt, mTOR, and the estrogen receptor as a signature to predict tamoxifen treatment benefit. Breast Cancer Res Treat 2012; 137:397-406. [PMID: 23242584 PMCID: PMC3539073 DOI: 10.1007/s10549-012-2376-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 01/13/2023]
Abstract
The frequent alterations of the PI3K/Akt/mTOR-growth signaling pathway are proposed mechanisms for resistance to endocrine therapy in breast cancer, partly through regulation of estrogen receptor α (ER) activity. Reliable biomarkers for treatment prediction are required for improved individualized treatment. We performed a retrospective immunohistochemical analysis of primary tumors from 912 postmenopausal patients with node-negative breast cancer, randomized to either tamoxifen or no adjuvant treatment. Phosphorylated (p) Akt-serine (s) 473, p-mTOR-s2448, and ER phosphorylations-s167 and -s305 were evaluated as potential biomarkers of prognosis and tamoxifen treatment efficacy. High expression of p-mTOR indicated a reduced response to tamoxifen, most pronounced in the ER+/progesterone receptor (PgR) + subgroup (tamoxifen vs. no tamoxifen: hazard ratio (HR), 0.86; 95 % confidence interval (CI), 0.31–2.38; P = 0.78), whereas low p-mTOR expression predicted tamoxifen benefit (HR, 0.29; 95 % CI, 0.18–0.49; P = 0.000002). In addition, nuclear p-Akt-s473 as well as p-ER at -s167 and/or -s305 showed interaction with tamoxifen efficacy with borderline statistical significance. A combination score of positive pathway markers including p-Akt, p-mTOR, and p-ER showed significant association with tamoxifen benefit (test for interaction; P = 0.029). Cross-talk between growth signaling pathways and ER-signaling has been proposed to affect tamoxifen response in hormone receptor-positive breast cancer. The results support this hypothesis, as an overactive pathway was significantly associated with reduced response to tamoxifen. A clinical pre-treatment test for cross-talk markers would be a step toward individualized adjuvant endocrine treatment with or without the addition of PI3K/Akt/mTOR pathway inhibitors.
Collapse
|
35
|
Martelli AM, Tabellini G, Bressanin D, Ognibene A, Goto K, Cocco L, Evangelisti C. The emerging multiple roles of nuclear Akt. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2168-78. [PMID: 22960641 DOI: 10.1016/j.bbamcr.2012.08.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 12/26/2022]
|
36
|
Grell P, Fabian P, Khoylou M, Radova L, Slaby O, Hrstka R, Vyzula R, Hajduch M, Svoboda M. Akt expression and compartmentalization in prediction of clinical outcome in HER2-positive metastatic breast cancer patients treated with trastuzumab. Int J Oncol 2012; 41:1204-12. [PMID: 22842582 PMCID: PMC3583615 DOI: 10.3892/ijo.2012.1576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/23/2012] [Indexed: 12/29/2022] Open
Abstract
Trastuzumab is effective in about half of HER2-positive breast cancer patients. The PI3K/Akt signalling pathway plays an important role in the process of primary and secondary resistance to anti-HER2 targeted therapy. We evaluated the relationship between expression, activation and subcellular localization of selected Akt isoforms and response to trastuzumab-based anti-HER2 targeted therapy in patients with HER2-positive metastatic breast cancer. Seventy-four women with verified HER2-positive breast cancer were treated with trastuzumab for metastatic disease. Immunohistochemistry was used to evaluate Akt1, Akt2, pAkt Thr308 and pAkt Ser473 expression. For pAkt, cytoplasmic and nuclear fractions were assessed separately. Even though Akt isoforms were expressed in the majority of tumours, activated Akt (pAkt) was present in the cytoplasm only and not in the nucleus in >20% of tumours, and there was no pAkt at all in another 7–13% of tumours. Patients whose tumours showed strong Akt2 expression and had pAkt (pAkt-Thr308 and/or pAkt-Ser473) detectable in the cytoplasm as well as nucleus (n+c), exhibited improved time to progression (TTP) and overall survival from the initiation of trastuzumab therapy (OSt). Patients with tumours with strong Akt2 and pAkt Thr308 (n+c) had superior TTP (17.0 vs. 7.6 months, P=0.024; HR 0.52) and OSt (51.8 vs. 16.8 months, P=0.0009; HR 0.34) compared to other tumours. Similar results were found for strong Akt2 and pAkt Ser473 (n+c): TTP 13.1 vs. 7.2 months (P=0.085, HR 0.62) and OSt 50.8 vs. 17.0 months (P=0.009; HR 0.45). This study is the first to prove the significance of Akt kinase isoform, activity and compartmentalization for the prediction of response to trastuzumab-based therapy in patients with HER2-positive metastatic breast cancer.
Collapse
Affiliation(s)
- Peter Grell
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu M, Wang L, Bongartz T, Hawse JR, Markovic SN, Schaid DJ, Mushiroda T, Kubo M, Nakamura Y, Kamatani N, Goss PE, Ingle JN, Weinshilboum RM. Aromatase inhibitors, estrogens and musculoskeletal pain: estrogen-dependent T-cell leukemia 1A (TCL1A) gene-mediated regulation of cytokine expression. Breast Cancer Res 2012; 14:R41. [PMID: 22405131 PMCID: PMC3446375 DOI: 10.1186/bcr3137] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 02/10/2012] [Accepted: 03/09/2012] [Indexed: 12/20/2022] Open
Abstract
Introduction Arthralgias and myalgias are major side effects associated with aromatase inhibitor (AI) therapy of breast cancer. In a recent genome-wide association study, we identified SNPs - including one that created an estrogen response element near the 3' end of the T-cell leukemia 1A (TCL1A) gene - that were associated with musculoskeletal pain in women on adjuvant AI therapy for breast cancer. We also showed estrogen-dependent, SNP-modulated variation in TCL1A expression and, in preliminary experiments, showed that TCL1A could induce IL-17RA expression. In the present study, we set out to determine whether these SNPs might influence cytokine expression and effect more widely, and, if so, to explore the mechanism of TCL1A-related AI-induced side effects. Methods The functional genomic experiments performed included determinations of TCL1A, cytokine and cytokine receptor expression in response to estrogen treatment of U2OS cells and lymphoblastoid cell lines that had been stably transfected with estrogen receptor alpha. Changes in mRNA and protein expression after gene knockdown and overexpression were also determined, as was NF-κB transcriptional activity. Results Estradiol (E2) increased TCL1A expression and, in a TCL1A SNP-dependent fashion, also altered the expression of IL-17, IL-17RA, IL-12, IL-12RB2 and IL-1R2. TCL1A expression was higher in E2-treated lymphoblastoid cell lines with variant SNP genotypes, and induction of the expression of cytokine and cytokine receptor genes was mediated by TCL1A. Finally, estrogen receptor alpha blockade with ICI-182,780 in the presence of E2 resulted in greatly increased NF-κB transcriptional activity, but only in cells that carried variant SNP genotypes. These results linked variant TCL1A SNP sequences that are associated with AI-dependent musculoskeletal pain with increased E2-dependent TCL1A expression and with downstream alterations in cytokine and cytokine receptor expression as well as NF-κB transcriptional activity. Conclusions SNPs near the 3' terminus of TCL1A were associated with AI-dependent musculoskeletal pain. E2 induced SNP-dependent TCL1A expression, which in turn altered IL-17, IL-17RA, IL-12, IL-12RB2, and IL-1R2 expression as well as NF-κB transcriptional activity. These results provide a pharmacogenomic explanation for a clinically important adverse drug reaction as well as insights into a novel estrogen-dependent mechanism for the modulation of cytokine and cytokine receptor expression.
Collapse
Affiliation(s)
- Mohan Liu
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M. Myocardial AKT: the omnipresent nexus. Physiol Rev 2011; 91:1023-70. [PMID: 21742795 PMCID: PMC3674828 DOI: 10.1152/physrev.00024.2010] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.
Collapse
Affiliation(s)
- Mark A Sussman
- Department of Biology, San Diego State University, SDSU Heart Institute, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen B, Li W. [Current status of Akt in non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:1059-63. [PMID: 21081049 PMCID: PMC6000488 DOI: 10.3779/j.issn.1009-3419.2010.11.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lung cancer is one of the most common malignant tumors in the world, but its pathogenesis has still been remaining confusing. As an important protein in several signaling pathways, Akt has been identified to play a major role in the growth, proliferation, apoptosis and invasion of tumor cells. This paper is to review the effects of Akt, together with PDK1, Raf-1 and p70S6K, which are upstream and downstream regulatory molecules of Akt, and provide a new basis for the pathogenesis of non-small cell lung cancer.
Collapse
Affiliation(s)
- Bojiang Chen
- Department of Respiratory Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | | |
Collapse
|