1
|
Kelly MS, Shi P, Boiditswe SC, Qin E, Steenhoff AP, Mazhani T, Patel MZ, Cunningham CK, Rawls JF, Luinstra K, Gilchrist J, Maciejewski J, Hurst JH, Seed PC, Bulir D, Smieja M. Role of the upper airway microbiota in respiratory virus and bacterial pathobiont dynamics in the first year of life. Nat Commun 2025; 16:5195. [PMID: 40467627 PMCID: PMC12137660 DOI: 10.1038/s41467-025-60552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 05/27/2025] [Indexed: 06/11/2025] Open
Abstract
The mechanisms by which respiratory viruses predispose to secondary bacterial infections remain poorly characterized. Using 2,409 nasopharyngeal swabs from 300 infants enrolled in a prospective cohort study in Botswana, we perform a detailed analysis of factors that influence the dynamics of bacterial pathobiont colonization during infancy. We quantify the extent to which viruses increase the acquisition of Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae. We provide evidence of cooperative interactions between these pathobionts while identifying host characteristics and environmental exposures that influence the odds of pathobiont colonization during early life. Using 16S rRNA gene sequencing, we demonstrate that respiratory viruses result in losses of putatively beneficial Corynebacterium and Streptococcus species that are associated with a lower odds of pathobiont acquisition. These findings provide important insights into viral-bacterial relationships in the upper respiratory tract of direct relevance to respiratory infections and suggest that the bacterial microbiota is a potentially modifiable mechanism by which viruses promote bacterial respiratory infections.
Collapse
Affiliation(s)
- Matthew S Kelly
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana.
- Division of Pediatric Infectious Diseases, Duke University, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
| | - Pixu Shi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | | | - Emily Qin
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Andrew P Steenhoff
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Global Health Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pediatric Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tiny Mazhani
- University of Botswana School of Medicine, Gaborone, Botswana
| | - Mohamed Z Patel
- University of Botswana School of Medicine, Gaborone, Botswana
| | - Coleen K Cunningham
- Division of Pediatric Infectious Diseases, University of California, Irvine, Orange, CA, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Kathy Luinstra
- Infectious Disease Research Group, Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Jodi Gilchrist
- Infectious Disease Research Group, Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Julia Maciejewski
- Infectious Disease Research Group, Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Jillian H Hurst
- Division of Pediatric Infectious Diseases, Duke University, Durham, NC, USA
| | - Patrick C Seed
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - David Bulir
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Marek Smieja
- Infectious Disease Research Group, Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
2
|
Kelly MS, Shi P, Boiditswe SC, Qin E, Steenhoff AP, Mazhani T, Patel MZ, Cunningham CK, Rawls JF, Luinstra K, Gilchrist J, Maciejewski J, Hurst JH, Seed PC, Bulir D, Smieja M. The role of the microbiota in respiratory virus-bacterial pathobiont relationships in the upper respiratory tract. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.22.24315478. [PMID: 39502658 PMCID: PMC11537323 DOI: 10.1101/2024.10.22.24315478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The mechanisms by which respiratory viruses predispose to secondary bacterial infections remain poorly characterized. Using 2,409 nasopharyngeal swabs from 300 infants in Botswana, we performed a detailed analysis of factors that influence the dynamics of bacterial pathobiont colonization during infancy. We quantify the extent to which viruses increase the acquisition of Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae. We provide evidence of cooperative interactions between these pathobionts while identifying host characteristics and environmental exposures that influence the odds of pathobiont colonization during early life. Using 16S rRNA gene sequencing, we demonstrate that respiratory viruses result in losses of putatively beneficial Corynebacterium and Streptococcus species that are associated with a lower odds of pathobiont acquisition. These findings provide novel insights into viral-bacterial relationships in the URT of direct relevance to respiratory infections and suggest that the URT bacterial microbiota is a potentially modifiable mechanism by which viruses promote bacterial respiratory infections.
Collapse
Affiliation(s)
- Matthew S. Kelly
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Division of Pediatric Infectious Diseases, Duke University, Durham, North Carolina, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States
| | - Pixu Shi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, United States
| | | | - Emily Qin
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, United States
| | - Andrew P. Steenhoff
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana
- Global Health Center, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Tiny Mazhani
- University of Botswana School of Medicine, Gaborone, Botswana
| | | | - Coleen K. Cunningham
- Division of Pediatric Infectious Diseases, University of California, Irvine, Children’s Hospital of Orange County, Orange, California, United States
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States
| | - Kathy Luinstra
- Infectious Disease Research Group, Research Institute of St. Joe’s Hamilton, Hamilton, Ontario, Canada
| | - Jodi Gilchrist
- Infectious Disease Research Group, Research Institute of St. Joe’s Hamilton, Hamilton, Ontario, Canada
| | - Julia Maciejewski
- Infectious Disease Research Group, Research Institute of St. Joe’s Hamilton, Hamilton, Ontario, Canada
| | - Jillian H. Hurst
- Division of Pediatric Infectious Diseases, Duke University, Durham, North Carolina, United States
| | - Patrick C. Seed
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - David Bulir
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Marek Smieja
- Infectious Disease Research Group, Research Institute of St. Joe’s Hamilton, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Margarita V, Pau MC, Carboni G, Mannu F, Turrini F, Rappelli P, Pantaleo A, Dessì D, Zinellu E, Piras B, Fois AG, Rubino S, Pirina P, Fiori PL. Comparison of microbiological and molecular diagnosis for identification of respiratory secondary infections in COVID-19 patients and their antimicrobial resistance patterns. Diagn Microbiol Infect Dis 2024; 110:116479. [PMID: 39116653 DOI: 10.1016/j.diagmicrobio.2024.116479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
We report the use of a new multiplex Real-Time PCR platform to simultaneously identify 24 pathogens and 3 antimicrobial-resistance genes directly from respiratory samples of COVID-19 patients. Results were compared to culture-based diagnosis. Secondary infections were detected in 60% of COVID-19 patients by molecular analysis and 73% by microbiological assays, with no significant differences in accuracy, indicating Gram-negative bacteria as the predominant species. Among fungal superinfections, Aspergillus spp. were detected by both methods in more than 7% of COVID-19 patients. Oxacillin-resistant S. aureus and carbapenem-resistant K. pneumoniae were highlighted by both methods. Secondary microbial infections in SARS-CoV-2 patients are associated with poor outcomes and an increased risk of death. Since PCR-based tests significantly reduce the turnaround time to 4 hours and 30 minutes (compared to 48 hours for microbial culture), we strongly support the routine use of molecular techniques, in conjunction with microbiological analysis, to identify co/secondary infections.
Collapse
Affiliation(s)
- Valentina Margarita
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Maria Carmina Pau
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Gavino Carboni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | | | | | - Paola Rappelli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Azienda Ospedaliero Università (AOU), Sassari, 07100 Sassari, Italy
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Daniele Dessì
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | | | - Barbara Piras
- Azienda Ospedaliero Università (AOU), Sassari, 07100 Sassari, Italy
| | - Alessandro G Fois
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; Azienda Ospedaliero Università (AOU), Sassari, 07100 Sassari, Italy
| | - Salvatore Rubino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Azienda Ospedaliero Università (AOU), Sassari, 07100 Sassari, Italy
| | - Pietro Pirina
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; Azienda Ospedaliero Università (AOU), Sassari, 07100 Sassari, Italy
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; Azienda Ospedaliero Università (AOU), Sassari, 07100 Sassari, Italy
| |
Collapse
|
4
|
Wu X, Li RF, Lin ZS, Xiao C, Liu B, Mai KL, Zhou HX, Zeng DY, Cheng S, Weng YC, Zhao J, Chen RF, Jiang HM, Chen LP, Deng LZ, Xie PF, Yang WM, Xia XS, Yang ZF. Coinfection with influenza virus and non-typeable Haemophilus influenzae aggregates inflammatory lung injury and alters gut microbiota in COPD mice. Front Microbiol 2023; 14:1137369. [PMID: 37065141 PMCID: PMC10098174 DOI: 10.3389/fmicb.2023.1137369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
BackgroundAcute exacerbation of chronic obstructive pulmonary disease (AECOPD) is associated with high mortality rates. Viral and bacterial coinfection is the primary cause of AECOPD. How coinfection with these microbes influences host inflammatory response and the gut microbiota composition is not entirely understood.MethodsWe developed a mouse model of AECOPD by cigarette smoke exposure and sequential infection with influenza H1N1 virus and non-typeable Haemophilus influenzae (NTHi). Viral and bacterial titer was determined using MDCK cells and chocolate agar plates, respectively. The levels of cytokines, adhesion molecules, and inflammatory cells in the lungs were measured using Bio-Plex and flow cytometry assays. Gut microbiota was analyzed using 16S rRNA gene sequencing. Correlations between cytokines and gut microbiota were determined using Spearman’s rank correlation coefficient test.ResultsCoinfection with H1N1 and NTHi resulted in more severe lung injury, higher mortality, declined lung function in COPD mice. H1N1 enhanced NTHi growth in the lungs, but NTHi had no effect on H1N1. In addition, coinfection increased the levels of cytokines and adhesion molecules, as well as immune cells including total and M1 macrophages, neutrophils, monocytes, NK cells, and CD4 + T cells. In contrast, alveolar macrophages were depleted. Furthermore, coinfection caused a decline in the diversity of gut bacteria. Muribaculaceae, Lactobacillus, Akkermansia, Lachnospiraceae, and Rikenella were further found to be negatively correlated with cytokine levels, whereas Bacteroides was positively correlated.ConclusionCoinfection with H1N1 and NTHi causes a deterioration in COPD mice due to increased lung inflammation, which is correlated with dysbiosis of the gut microbiota.
Collapse
Affiliation(s)
- Xiao Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Run-Feng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Zheng-Shi Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuang Xiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Bin Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai-Lin Mai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - De-You Zeng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Sha Cheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Yun-Ceng Weng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui-Feng Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hai-Ming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li-Ping Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling-Zhu Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pei-Fang Xie
- The Affiliated Anning First Hospital and Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Wei-Min Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- Wei-Min Yang,
| | - Xue-Shan Xia
- The Affiliated Anning First Hospital and Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Xue-Shan Xia,
| | - Zi-Feng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- *Correspondence: Zi-Feng Yang,
| |
Collapse
|
5
|
Decreased Antibiotic Consumption Coincided with Reduction in Bacteremia Caused by Bacterial Species with Respiratory Transmission Potential during the COVID-19 Pandemic. Antibiotics (Basel) 2022; 11:antibiotics11060746. [PMID: 35740153 PMCID: PMC9219721 DOI: 10.3390/antibiotics11060746] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023] Open
Abstract
Nonpharmaceutical interventions implemented during the COVID-19 pandemic (2020−2021) have provided a unique opportunity to understand their impact on the wholesale supply of antibiotics and incidences of infections represented by bacteremia due to common bacterial species in Hong Kong. The wholesale antibiotic supply data (surrogate indicator of antibiotic consumption) and notifications of scarlet fever, chickenpox, and tuberculosis collected by the Centre for Health Protection, and the data of blood cultures of patients admitted to public hospitals in Hong Kong collected by the Hospital Authority for the last 10 years, were tabulated and analyzed. A reduction in the wholesale supply of antibiotics was observed. This decrease coincided with a significant reduction in the incidence of community-onset bacteremia due to Streptococcus pyogenes, Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis, which are encapsulated bacteria with respiratory transmission potential. This reduction was sustained during two pandemic years (period 2: 2020−2021), compared with eight pre-pandemic years (period 1: 2012−2019). Although the mean number of patient admissions per year (1,704,079 vs. 1,702,484, p = 0.985) and blood culture requests per 1000 patient admissions (149.0 vs. 158.3, p = 0.132) were not significantly different between periods 1 and 2, a significant reduction in community-onset bacteremia due to encapsulated bacteria was observed in terms of the mean number of episodes per year (257 vs. 58, p < 0.001), episodes per 100,000 admissions (15.1 vs. 3.4, p < 0.001), and per 10,000 blood culture requests (10.1 vs. 2.1, p < 0.001), out of 17,037,598 episodes of patient admissions with 2,570,164 blood culture requests. Consistent with the findings of bacteremia, a reduction in case notification of scarlet fever and airborne infections, including tuberculosis and chickenpox, was also observed; however, there was no reduction in the incidence of hospital-onset bacteremia due to Staphylococcus aureus or Escherichia coli. Sustained implementation of non-pharmaceutical interventions against respiratory microbes may reduce the overall consumption of antibiotics, which may have a consequential impact on antimicrobial resistance. Rebound of conventional respiratory microbial infections is likely with the relaxation of these interventions.
Collapse
|
6
|
Correlation of adhesion molecules and non-typeable haemophilus influenzae growth in a mice coinfected model of acute inflammation. Microbes Infect 2021; 23:104839. [PMID: 34023525 DOI: 10.1016/j.micinf.2021.104839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 01/11/2023]
Abstract
Primary influenza virus (IV) infection can predispose hosts to secondary infection with Haemophilus influenzae (H. influenzae), which further increases the severity and mortality of the disease. While adhesion molecules play a key role in the host inflammatory response and H. influenzae colonization, it remains to be clarified which types of adhesion molecules are associated with H. influenzae colonization and invasion following IV infection. In this study, we established a mouse model of co-infection with influenza A virus (A/Puerto Rico/8/34, H1N1) (PR8) and non-typeable H. influenzae (NTHi) and found that sequential infection with PR8 and NTHi induced a lethal synergy in mice. This outcome may be possibly due to increased NTHi loads, greater lung damage and higher levels of cytokines. Furthermore, the protein levels of intracellular adhesion molecules-1 (ICAM-1) and Fibronectin (Fn) were significantly increased in the lungs of coinfected mice, but the levels of carcinoembryonic adhesion molecule (CEACAM)-1, CEACAM-5 and platelet-activating factor receptor (PAFr) were unaffected. Both the protein levels of ICAM-1 and Fn were positively correlated with NTHi growth. These results indicate the correlation between adhesion molecules, including ICAM-1 and Fn, and NTHi growth in secondary NTHi pneumonia following primary IV infection.
Collapse
|
7
|
Cropet C, Abboud P, Mosnier E, Epelboin L, Djossou F, Schrooten W, Sobesky M, Nacher M. Relationship between influenza and dengue outbreaks, and subsequent bacterial sepsis in French Guiana: A time series analysis. J Public Health Res 2021; 10:1768. [PMID: 33553058 PMCID: PMC7856828 DOI: 10.4081/jphr.2021.1768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/26/2020] [Indexed: 11/23/2022] Open
Abstract
Background: Influenza has been shown to increase the risk for severe bacterial infection, in the tropics the seasonality of influenza epidemics is less marked, and this may not be the case. Dengue is often followed by prolonged asthenia and some physicians hypothesized increased susceptibility to infections based on anecdotal observations. Design and Methods: Time series of influenza and dengue surveillance were confronted bacterial sepsis admissions to test the hypotheses. Monthly surveillance data on influenza and dengue and aggregated sepsis data in Cayenne hospital were matched between 24/10/2007 and 27/09/2016. An ARIMA (1,0,1) model was used. Results The series of the number of monthly cases of sepsis was positively associated with the monthly number of cases of influenza at time t (β=0.001, p=0.0359). Forecasts were imperfectly correlated with sepsis since influenza is not the only risk factor for sepsis. None of the ARIMA models showed a significant link between the dengue series and the sepsis series. Conclusions: There was thus no link between dengue epidemics and sepsis, but it was estimated that for every 1,000 cases of flu there was one additional case of sepsis. In this tropical setting, influenza was highly seasonal, and improved vaccination coverage could have benefits on sepsis. Significance for public health Simultaneous infections may have complex consequences ranging from synergistic, neutral or antagonistic. Dengue fever and influenza cause repeated epidemics and may have consequences on the host’s immune response. Hypothesizing that an infection by dengue or influenza could increase the risk of bacterial infection we showed that there was no relation between dengue and sepsis, but that there was a relation between influenza and sepsis. Despite the tropical setting of French Guiana, the highly seasonal pattern of influenza suggests the vaccine reimbursement window should be extended.
Collapse
Affiliation(s)
- Claire Cropet
- Centre d'Investigation Clinique Antilles Guyane, CIC INSERM 1424
| | | | | | | | | | - Ward Schrooten
- Département d'Information Médicale, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Milko Sobesky
- Département d'Information Médicale, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Mathieu Nacher
- Centre d'Investigation Clinique Antilles Guyane, CIC INSERM 1424
| |
Collapse
|
8
|
Bassel LL, Kaufman EI, Alsop SNA, Buchan J, Hewson J, McCandless EE, Tiwari R, Sharif S, Vulikh K, Caswell JL. Effect of aerosolized bacterial lysate on development of naturally occurring respiratory disease in beef calves. J Vet Intern Med 2021; 35:655-665. [PMID: 33442910 PMCID: PMC7848379 DOI: 10.1111/jvim.16032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 01/14/2023] Open
Abstract
Background Bovine respiratory disease (BRD) is a major problem affecting beef cattle after arrival to feedlots. Alternatives to antibiotics are needed for prevention. Hypothesis Stimulation of pulmonary innate immune responses at the time of arrival to a feedlot reduces the occurrence and severity of BRD. Animals Sixty beef steers at high risk of BRD. Methods Randomized, double‐blinded, placebo‐controlled study. Calves received saline or a lysate of Staphylococcus aureus and Escherichia coli by aerosol, at 16 hours after feedlot arrival. Calves were monitored for 28 days for disease outcomes and levels of Mycoplasma bovis and Mannheimia haemolytica in nasal swabs. Results Death from M bovis pneumonia was significantly greater in lysate‐treated animals (6/29, 24%) compared to controls (1/29, 3%; odds ratio = 10.2; 95% confidence interval [CI] = 1.1‐96.0; P = .04). By 28 days after arrival, 29/29 lysate‐treated calves had ultrasonographic pulmonary consolidation compared to 24/29 control calves (P = .05). Lysate‐treated calves had lower weight gain compared to control calves (−8.8 kg, 95% CI = −17.1 to −0.5; P = .04), and higher body temperatures on days 4, 7, and 21 (0.19°C; 95% CI = 0.01‐0.37; P = .04). Nasal M bovis numbers increased over time and were higher in lysate‐treated calves (0.76 log CFU, 95% CI = 0.3‐1.2; P = .001). Conclusions and Clinical Importance Aerosol administration of a bacterial lysate exacerbated BRD in healthy high‐risk beef calves, suggesting that respiratory tract inflammation adversely affects how calves respond to subsequent natural infection with M bovis and other respiratory pathogens.
Collapse
Affiliation(s)
- Laura L Bassel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Emily I Kaufman
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Sarah-Nicole A Alsop
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jordan Buchan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Joanne Hewson
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Erin E McCandless
- Global Therapeutics Research, Veterinary Medicine Research and Development, Zoetis Inc., Kalamazoo, Michigan, USA
| | - Raksha Tiwari
- Global Therapeutics Research, Veterinary Medicine Research and Development, Zoetis Inc., Kalamazoo, Michigan, USA
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Ksenia Vulikh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jeff L Caswell
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Lyu Y, Li P, Yang Z, Zhong N. Exacerbation of disease by intranasal liquid administration following influenza virus infection in mice. Pathog Dis 2020; 78:5816566. [PMID: 32250390 DOI: 10.1093/femspd/ftaa017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
Although numerous studies have clarified the synergistic pathogenesis in mouse models of influenza A virus (IAV)-associated dual infections, fewer studies have investigated the influence of intranasal liquid administration on the disease. This study explored the effects of intranasal PBS administration in mouse models of mimic IAV dual infection and the infectious dose of IAV that caused equivalent pathogenesis in different dual infection models. Weights, survival rates, virus loads, lung indexes and lung pathology were compared. We demonstrated that intranasal PBS administration following H1N1 or H3N2 infection increased weight loss, mortality, virus replication and lung damage. No difference was observed if the order was reversed or PBS was given simultaneously with IAV. To induce equivalent virulence, a 20-fold difference in the infectious dose was needed when the H3N2-PBS superinfection and H3N2-PBS coinfection or PBS-H3N2 superinfection groups were compared. Our study demonstrated that the unfavourable effect of intranasal liquid administration should not be neglected and that both the strain and infectious dose of IAV should be considered to avoid an illusion of synergistic pathogenicity when establishing IAV-associated dual infection model. A 20-fold lower dose than that of coinfection may be a better choice for secondary infection following IAV.
Collapse
Affiliation(s)
- Yuanjun Lyu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Pengcheng Li
- Department of Burns and Plastic Surgery, Henan Children's Hospital, Zhengzhou, Henan 450052, China
| | - Zifeng Yang
- Clinical Virology Division, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 1 Kangda Road, Guangzhou 510230, China
| | - Nanshan Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
10
|
Macias AE, McElhaney JE, Chaves SS, Nealon J, Nunes MC, Samson SI, Seet BT, Weinke T, Yu H. The disease burden of influenza beyond respiratory illness. Vaccine 2020; 39 Suppl 1:A6-A14. [PMID: 33041103 PMCID: PMC7545338 DOI: 10.1016/j.vaccine.2020.09.048] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/10/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Although influenza is primarily considered a respiratory infection and causes significant respiratory mortality, evidence suggests that influenza has an additional burden due to broader consequences of the illness. Some of these broader consequences include cardiovascular events, exacerbations of chronic underlying conditions, increased susceptibility to secondary bacterial infections, functional decline, and poor pregnancy outcomes, all of which may lead to an increased risk for hospitalization and death. Although it is methodologically difficult to measure these impacts, epidemiological and interventional study designs have evolved over recent decades to better take them into account. Recognizing these broader consequences of influenza virus infection is essential to determine the full burden of influenza among different subpopulations and the value of preventive approaches. In this review, we outline the main influenza complications and societal impacts beyond the classical respiratory symptoms of the disease.
Collapse
Affiliation(s)
- Alejandro E Macias
- Department of Medicine and Nutrition, University of Guanajuato, Guanajuato, Mexico.
| | | | | | | | - Marta C Nunes
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | | | - Bruce T Seet
- Sanofi Pasteur, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| | | | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| |
Collapse
|
11
|
Penkert RR, Smith AP, Hrincius ER, McCullers JA, Vogel P, Smith AM, Hurwitz JL. Effect of Vitamin A Deficiency in Dysregulating Immune Responses to Influenza Virus and Increasing Mortality Rates After Bacterial Coinfections. J Infect Dis 2020; 223:1806-1816. [PMID: 32959872 DOI: 10.1093/infdis/jiaa597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Secondary bacterial coinfections are ranked as a leading cause of hospitalization and morbid conditions associated with influenza. Because vitamin A deficiency (VAD) and insufficiency are frequent in both developed and developing countries, we asked how VAD influences coinfection severity. METHODS VAD and control mice were infected with influenza virus for evaluation of inflammatory cytokines, cellular immune responses, and viral clearance. Influenza-infected mice were coinfected with Streptococcus pneumoniae to study weight loss and survival. RESULTS Naive VAD mouse lungs exhibited dysregulated immune function. Neutrophils were enhanced in frequency and there was a significant reduction in RANTES (regulated on activation of normal T cells expressed and secreted), a chemokine instrumental in T-cell homing and recruitment. After influenza virus infection, VAD mice experienced failures in CD4+ T-cell recruitment and B-cell organization into lymphoid structures in the lung. VAD mice exhibited higher viral titers than controls and slow viral clearance. There were elevated levels of inflammatory cytokines and innate cell subsets in the lungs. However, arginase, a marker of alternatively activated M2 macrophages, was rare. When influenza-infected VAD animals were exposed to bacteria, they experienced a 100% mortality rate. CONCLUSION Data showed that VAD dysregulated the immune response. Consequently, secondary bacterial infections were 100% lethal in influenza-infected VAD mice.
Collapse
Affiliation(s)
- Rhiannon R Penkert
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Amanda P Smith
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Eike R Hrincius
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jonathan A McCullers
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, Tennessee, USA
| | - Peter Vogel
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Amber M Smith
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, Tennessee, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Julia L Hurwitz
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
12
|
Percopo CM, Ma M, Mai E, Redes JL, Kraemer LS, Minai M, Moore IN, Druey KM, Rosenberg HF. Alternaria alternata Accelerates Loss of Alveolar Macrophages and Promotes Lethal Influenza A Infection. Viruses 2020; 12:v12090946. [PMID: 32867061 PMCID: PMC7552021 DOI: 10.3390/v12090946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic inhalation of fungi and fungal components has been linked to the development of respiratory disorders, although their role with respect to the pathogenesis of acute respiratory virus infection remains unclear. Here, we evaluate inflammatory pathology induced by repetitive administration of a filtrate of the ubiquitous fungus, Alternaria alternata, and its impact on susceptibility to infection with influenza A. We showed previously that A. alternata at the nasal mucosae resulted in increased susceptibility to an otherwise sublethal inoculum of influenza A in wild-type mice. Here we demonstrate that A. alternata-induced potentiation of influenza A infection was not dependent on fungal serine protease or ribonuclease activity. Repetitive challenge with A. alternata prior to virus infection resulted proinflammatory cytokines, neutrophil recruitment, and loss of alveolar macrophages to a degree that substantially exceeded that observed in response to influenza A infection alone. Concomitant administration of immunomodulatory Lactobacillus plantarum, a strategy shown previously to limit virus-induced inflammation in the airways, blocked the exaggerated lethal response. These observations promote an improved understanding of severe influenza infection with potential clinical relevance for individuals subjected to continuous exposure to molds and fungi.
Collapse
Affiliation(s)
- Caroline M. Percopo
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (C.M.P.); (M.M.); (E.M.); (L.S.K.)
| | - Michelle Ma
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (C.M.P.); (M.M.); (E.M.); (L.S.K.)
| | - Eric Mai
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (C.M.P.); (M.M.); (E.M.); (L.S.K.)
| | - Jamie L. Redes
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.R.); (K.M.D.)
| | - Laura S. Kraemer
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (C.M.P.); (M.M.); (E.M.); (L.S.K.)
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (M.M.); (I.N.M.)
| | - Ian N. Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (M.M.); (I.N.M.)
| | - Kirk M. Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.R.); (K.M.D.)
| | - Helene F. Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (C.M.P.); (M.M.); (E.M.); (L.S.K.)
- Correspondence: ; Tel.: +1-301-761-6682
| |
Collapse
|
13
|
Abstract
Purpose of Review This investigation aims to understand the role and burden of viral co-infections for acute respiratory illnesses in children. Co-infection can be either viral-viral or viral-bacterial and with new technology there is more information on the role they play on the health of children. Recent Findings With the proliferation of multiplex PCR for rapid diagnosis of multiple viruses as well as innovations on identification of bacterial infections, research has been attempting to discover how these co-infections affect each other and the host. Studies are aiming to discern if the epidemiology of viruses seen at a population level is related to the interaction between different viruses on a host level. Studies are also attempting to discover the burden of morbidity and mortality of these viral-viral co-infections on the pediatric population. It is also becoming important to understand the interplay of certain viruses with specific bacteria and understanding the impact of viral-bacterial co-infections. Summary RSV continues to contribute to a large burden of disease for pediatric patients with acute respiratory illnesses. However, recent literature suggests that viral-viral co-infections do not add to this burden and might, in some cases, be protective of severe disease. Viral-bacterial co-infections, on the other hand, are most likely adding to the burden of morbidity in pediatric patients because of the synergistic way they can infect the nasopharyngeal space. Future research needs to focus on confirming these conclusions as it could affect hospital cohorting, role of molecular testing, and therapeutic interventions.
Collapse
Affiliation(s)
- Sarah D Meskill
- Department of Pediatrics, Sections of Emergency Medicine, Baylor College of Medicine, 6621 Fannin St. A2210, Houston, TX, USA.
| | - Shelease C O'Bryant
- Department of Pediatrics, Sections of Emergency Medicine, Baylor College of Medicine, 6621 Fannin St. A2210, Houston, TX, USA
| |
Collapse
|
14
|
Jia L, Zhao J, Yang C, Liang Y, Long P, Liu X, Qiu S, Wang L, Xie J, Li H, Liu H, Guo W, Wang S, Li P, Zhu B, Hao R, Ma H, Jiang Y, Song H. Severe Pneumonia Caused by Coinfection With Influenza Virus Followed by Methicillin-Resistant Staphylococcus aureus Induces Higher Mortality in Mice. Front Immunol 2019; 9:3189. [PMID: 30761162 PMCID: PMC6364753 DOI: 10.3389/fimmu.2018.03189] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/31/2018] [Indexed: 01/20/2023] Open
Abstract
Background: Coinfection with influenza virus and bacteria is a major cause of high mortality during flu pandemics. Understanding the mechanisms behind such coinfections is of utmost importance both for the clinical treatment of influenza and the prevention and control of epidemics. Methods: To investigate the cause of high mortality during flu pandemics, we performed coinfection experiments with H1N1 influenza virus and Staphylococcus aureus in which mice were infected with bacteria at time points ranging from 0 to 7 days after infection with influenza virus. Results: The mortality rates of mice infected with bacteria were highest 0-3 days after infection with influenza virus; lung tissues extracted from these co-infected mice showed higher infiltrating cells and thicker lung parenchyma than lung samples from coinfected mice in which influenza virus was introduced at other times and sequences. The levels of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-8, and IL-6 in the 0-3 day coinfected group were significantly higher than those in the other groups (p < 0.01), as were the mRNA levels of IFN-γ, IL-6, and TNF-α. Coinfection with influenza virus and S. aureus led to high mortality rates that are directly dependent on the sequence and timing of infection by both pathogens. Moreover, coinfection following this particular schedule induced severe pneumonia, leading to increased mortality. Conclusions: Our data suggest that prevention of bacterial co-infection in the early stage of influenza virus infection is critical to reducing the risk of clinical mortality.
Collapse
Affiliation(s)
- Leili Jia
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jiangyun Zhao
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chaojie Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yuan Liang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Pengwei Long
- Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Department of Health Care, Chinese PLA Joint Staff Headquarters Guard Bureau, Beijing, China
| | - Xiao Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shaofu Qiu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ligui Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jing Xie
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hao Li
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Hongbo Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Weiguang Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shan Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Peng Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | | | - Rongzhang Hao
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Hui Ma
- The 6th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongbin Song
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
15
|
Opatowski L, Baguelin M, Eggo RM. Influenza interaction with cocirculating pathogens and its impact on surveillance, pathogenesis, and epidemic profile: A key role for mathematical modelling. PLoS Pathog 2018; 14:e1006770. [PMID: 29447284 PMCID: PMC5814058 DOI: 10.1371/journal.ppat.1006770] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Evidence is mounting that influenza virus interacts with other pathogens colonising or infecting the human respiratory tract. Taking into account interactions with other pathogens may be critical to determining the real influenza burden and the full impact of public health policies targeting influenza. This is particularly true for mathematical modelling studies, which have become critical in public health decision-making. Yet models usually focus on influenza virus acquisition and infection alone, thereby making broad oversimplifications of pathogen ecology. Herein, we report evidence of influenza virus interactions with bacteria and viruses and systematically review the modelling studies that have incorporated interactions. Despite the many studies examining possible associations between influenza and Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Neisseria meningitidis, respiratory syncytial virus (RSV), human rhinoviruses, human parainfluenza viruses, etc., very few mathematical models have integrated other pathogens alongside influenza. The notable exception is the pneumococcus-influenza interaction, for which several recent modelling studies demonstrate the power of dynamic modelling as an approach to test biological hypotheses on interaction mechanisms and estimate the strength of those interactions. We explore how different interference mechanisms may lead to unexpected incidence trends and possible misinterpretation, and we illustrate the impact of interactions on public health surveillance using simple transmission models. We demonstrate that the development of multipathogen models is essential to assessing the true public health burden of influenza and that it is needed to help improve planning and evaluation of control measures. Finally, we identify the public health, surveillance, modelling, and biological challenges and propose avenues of research for the coming years.
Collapse
Affiliation(s)
- Lulla Opatowski
- Université de Versailles Saint Quentin, Institut Pasteur, Inserm, Paris, France
| | - Marc Baguelin
- London School of Hygiene & Tropical Medicine, London, United Kingdom
- Public Health England, London, United Kingdom
| | - Rosalind M. Eggo
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
16
|
Rotavirus Degrades Multiple Interferon (IFN) Type Receptors To Inhibit IFN Signaling and Protects against Mortality from Endotoxin in Suckling Mice. J Virol 2017; 92:JVI.01394-17. [PMID: 29070687 DOI: 10.1128/jvi.01394-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
STAT1 phosphorylation in response to exogenous interferon (IFN) administration can be inhibited by rotaviral replication both in vitro and in vivo In addition many rotavirus strains are resistant to the actions of different IFN types. The regulation by rotaviruses (RVs) of antiviral pathways mediated by multiple IFN types is not well understood. In this study, we find that during infection in vitro and in vivo, RVs significantly deplete IFN type I, II, and III receptors (IFNRs). Regulation of IFNRs occurred exclusively within RV-infected cells and could be abrogated by inhibiting the lysosomal-endosomal degradation pathway. In vitro, IFNR degradation was conserved across multiple RV strains that differ in their modes of regulating IFN induction. In suckling mice, exogenously administered type I, II, or III IFN induced phosphorylation of STAT1-Y701 within intestinal epithelial cells (IECs) of suckling mice. Murine EW strain RV infection transiently activated intestinal STAT1 at 1 day postinfection (dpi) but not subsequently at 2 to 3 dpi. In response to injection of purified IFN-α/β or -λ, IECs in EW-infected mice exhibited impaired STAT1-Y701 phosphorylation, correlating with depletion of different intestinal IFNRs and impaired IFN-mediated transcription. The ability of EW murine RV to inhibit multiple IFN types led us to test protection of suckling mice from endotoxin-mediated shock, an outcome that is dependent on the host IFN response. Compared to mortality in controls, mice infected with EW murine RV were substantially protected against mortality following parenteral endotoxin administration. These studies identify a novel mechanism of IFN subversion by RV and reveal an unexpected protective effect of RV infection on endotoxin-mediated shock in suckling mice.IMPORTANCE Antiviral functions of types I, II, and III IFNs are mediated by receptor-dependent activation of STAT1. Here, we find that RV degrades the types I, II, and III IFN receptors (IFNRs) in vitro In a suckling mouse model, RV effectively blocked STAT1 activation and transcription following injection of different purified IFNs. This correlated with significantly decreased protein expression of intestinal types I and II IFNRs. Recent studies demonstrate that in mice lipopolysaccharide (LPS)-induced lethality is prevented by genetic ablation of IFN signaling genes such as IFNAR1 and STAT1. When suckling mice were infected with RV, they were substantially protected from lethal exposure to endotoxin. These findings provide novel insights into the mechanisms underlying rotavirus regulation of different interferons and are likely to stimulate new research into both rotavirus pathogenesis and endotoxemia.
Collapse
|
17
|
Wang K, Xi W, Yang D, Zheng Y, Zhang Y, Chen Y, Yan C, Tian G, An S, Li X, An F, Du J, Hu K, Cao J, Ren L, Huang F, Gao Z. Rhinovirus is associated with severe adult community-acquired pneumonia in China. J Thorac Dis 2017; 9:4502-4511. [PMID: 29268520 DOI: 10.21037/jtd.2017.10.107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Human rhinovirus (HRV) is one of the most common viral etiologies detected in community-acquired pneumonia (CAP) adult cases. However, few is known about the characteristics of HRV-associated CAP. To describe the clinical features of HRV-associated CAP in immunocompetent adults admitted to multiple medical centers in mainland China over a 2-year period. Methods A total of 383 patients admitted to hospitals for CAP were enrolled from 46 medical centers in mainland China between January 2013 and December 2014. Multiplex real-time polymerase chain reaction (RT-PCR) assays for viral detection and DNA-based quantitative loop-mediated isothermal amplification (qLAMP) assays for bacterial detection were implemented to all lower respiratory tract specimens obtained from the patients. Twenty-eight cases (28/383, 7.3%) revealed HRV-positive PCR results. Patients with bronchoalveolar lavage (BAL) HRV-positive PCR results (n=20) were further enrolled and divided into two groups depending on the status of bacterial co-infection (viral group, n=12; viral-Bacterial group, n=8). Demographic, clinical and microbiological data were reviewed and compared in detail. Results Cases with HRV-infection were remarkably correlated with respiratory failure (14/20) and most of them (13/14) received mechanical ventilation. Fever (17/20), productive cough (15/20) and dyspnea (6/20) were common symptoms while flu-like symptoms were rarely observed in the cohort. Streptococcus pneumoniae (3/8), Klebsiella pneumoniae (3/8) and Mycoplasma pneumoniae (2/8) were most frequently identified bacterium in the viral-bacterial group. Compared with the viral group, higher incidence of septic shock (3/8 vs. 1/12, P=0.255), longer ICU length of stay (LOS) (10.0 vs. 6.5 days, P=0.686), longer hospital LOS (18.5 vs. 13.0 days, P=0.208) and higher 28-day mortality (2/8 vs. 2/12, P=1) were observed in the Viral-Bacterial group, although without statistically significant difference. Conclusions HRV is a common etiology in CAP among China adults, especially in severe CAP. Clinicians should be vigilant considering of the poor outcome. Highly qualified multiplex PCR techniques with invasive sampling are needed to increase the detection rate.
Collapse
Affiliation(s)
- Keqiang Wang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Wen Xi
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Donghong Yang
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Yali Zheng
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Yaqiong Zhang
- Department of Respiratory and Critical Care Medicine, Peking University International Hospital, Beijing 102206, China
| | - Yusheng Chen
- Department of Respiratory Medicine, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Chunliang Yan
- Department of Respiratory Medicine, Beijing Aerospace General Hospital, Beijing 100076, China
| | - Guizhen Tian
- Department of Respiratory Medicine, 263 Hospital of the Chinese People's Liberation Army, Beijing 101149, China
| | - Shuchang An
- Department of Respiratory Medicine, The First Hospital of Tsinghua University, Beijing 100016, China
| | - Xiangxin Li
- Department of Respiratory Medicine, Beijing Changping Hospital, Beijing 102200, China
| | - Fucheng An
- Department of Respiratory Medicine, Beijing Mentougou District Hospital, Beijing 102300, China
| | - Juan Du
- Department of Respiratory Medicine, The Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China
| | - Ke Hu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jie Cao
- Department of Respiratory Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lili Ren
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, China
| | - Fang Huang
- Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
18
|
Nunes MC, Cutland CL, Jones S, Downs S, Weinberg A, Ortiz JR, Neuzil KM, Simões EAF, Klugman KP, Madhi SA. Efficacy of Maternal Influenza Vaccination Against All-Cause Lower Respiratory Tract Infection Hospitalizations in Young Infants: Results From a Randomized Controlled Trial. Clin Infect Dis 2017; 65:1066-1071. [PMID: 28575286 PMCID: PMC5848298 DOI: 10.1093/cid/cix497] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/24/2017] [Indexed: 12/17/2022] Open
Abstract
Background Influenza immunization of pregnant women protects their young infants against laboratory-confirmed influenza infection. Influenza infection might predispose to subsequent bacterial infections that cause severe pneumonia. In a secondary analysis of a randomized clinical trial (RCT), we evaluated the effect of maternal vaccination on infant hospitalizations for all-cause acute lower respiratory tract infection (ALRI). Methods Infants born to women who participated in a double-blind placebo-controlled RCT in 2011 and 2012 on the efficacy of trivalent inactivated influenza vaccine (IIV) during pregnancy were followed during the first 6 months of life. Results The study included 1026 infants born to IIV recipients and 1023 born to placebo recipients. There were 52 ALRI hospitalizations (median age, 72 days). The incidence (per 1000 infant-months) of ALRI hospitalizations was lower in infants born to IIV recipients (3.4 [95% confidence interval {CI}, 2.2-5.4]; 19 cases) compared with placebo recipients (6.0 [95% CI, 4.3-8.5]; 33 cases) with a vaccine efficacy of 43.1% (P = .050). Thirty of the ALRI hospitalizations occurred during the first 90 days of life, 9 in the IIV group (3.0 [95% CI, 1.6-5.9]) and 21 in the placebo group (7.2 [95% CI, 4.7-11.0]) (incidence rate ratio, 0.43 [95% CI, .19-.93]) for a vaccine efficacy of 57.5% (P = .032). The incidence of ALRI hospitalizations was similar in the IIV and placebo group for infants >3 months of age. Forty-four of the hospitalized infants were tested for influenza virus infection and 1 tested positive. Conclusions Using an RCT as a vaccine probe, influenza vaccination during pregnancy decreased all-cause ALRI hospitalization during the first 3 months of life, suggesting possible protection against subsequent bacterial infections that influenza infection might predispose to. Clinical Trial Registration NCT01306669.
Collapse
Affiliation(s)
- Marta C Nunes
- Department of Science and Technology/National Research Foundation, Vaccine Preventable Diseases, and
- Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Clare L Cutland
- Department of Science and Technology/National Research Foundation, Vaccine Preventable Diseases, and
- Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephanie Jones
- Department of Science and Technology/National Research Foundation, Vaccine Preventable Diseases, and
- Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Sarah Downs
- Department of Science and Technology/National Research Foundation, Vaccine Preventable Diseases, and
- Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Adriana Weinberg
- Department of Pediatrics, Medicine and Pathology, University of Colorado Denver, Aurora
| | - Justin R Ortiz
- Department of Medicine and Department of Global Health, University of Washington, Seattle
| | | | - Eric A F Simões
- Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Department of Pediatrics, University of Colorado School of Medicine and Center for Global Health, Colorado School of Public Health, Aurora
| | | | - Shabir A Madhi
- Department of Science and Technology/National Research Foundation, Vaccine Preventable Diseases, and
- Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases, National Health Laboratory Service, Centre for Vaccines and Immunology, Johannesburg, South Africa
| |
Collapse
|
19
|
Morris DE, Cleary DW, Clarke SC. Secondary Bacterial Infections Associated with Influenza Pandemics. Front Microbiol 2017; 8:1041. [PMID: 28690590 PMCID: PMC5481322 DOI: 10.3389/fmicb.2017.01041] [Citation(s) in RCA: 343] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/24/2017] [Indexed: 12/16/2022] Open
Abstract
Lower and upper respiratory infections are the fourth highest cause of global mortality (Lozano et al., 2012). Epidemic and pandemic outbreaks of respiratory infection are a major medical concern, often causing considerable disease and a high death toll, typically over a relatively short period of time. Influenza is a major cause of epidemic and pandemic infection. Bacterial co/secondary infection further increases morbidity and mortality of influenza infection, with Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus reported as the most common causes. With increased antibiotic resistance and vaccine evasion it is important to monitor the epidemiology of pathogens in circulation to inform clinical treatment and development, particularly in the setting of an influenza epidemic/pandemic.
Collapse
Affiliation(s)
- Denise E. Morris
- Infectious Disease Epidemiology Group, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton Foundation NHS TrustSouthampton, United Kingdom
| | - David W. Cleary
- Infectious Disease Epidemiology Group, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton Foundation NHS TrustSouthampton, United Kingdom
| | - Stuart C. Clarke
- Infectious Disease Epidemiology Group, Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, University Hospital Southampton Foundation NHS TrustSouthampton, United Kingdom
- Global Health Research Institute, University of SouthamptonSouthampton, United Kingdom
- NIHR Southampton Respiratory Biomedical Research UnitSouthampton, United Kingdom
| |
Collapse
|
20
|
Arduin H, Domenech de Cellès M, Guillemot D, Watier L, Opatowski L. An agent-based model simulation of influenza interactions at the host level: insight into the influenza-related burden of pneumococcal infections. BMC Infect Dis 2017; 17:382. [PMID: 28577533 PMCID: PMC5455134 DOI: 10.1186/s12879-017-2464-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/15/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Host-level influenza virus-respiratory pathogen interactions are often reported. Although the exact biological mechanisms involved remain unelucidated, secondary bacterial infections are known to account for a large part of the influenza-associated burden, during seasonal and pandemic outbreaks. Those interactions probably impact the microorganisms' transmission dynamics and the influenza public health toll. Mathematical models have been widely used to examine influenza epidemics and the public health impact of control measures. However, most influenza models overlooked interaction phenomena and ignored other co-circulating pathogens. METHODS Herein, we describe a novel agent-based model (ABM) of influenza transmission during interaction with another respiratory pathogen. The interacting microorganism can persist in the population year round (endemic type, e.g. respiratory bacteria) or cause short-term annual outbreaks (epidemic type, e.g. winter respiratory viruses). The agent-based framework enables precise formalization of the pathogens' natural histories and complex within-host phenomena. As a case study, this ABM is applied to the well-known influenza virus-pneumococcus interaction, for which several biological mechanisms have been proposed. Different mechanistic hypotheses of interaction are simulated and the resulting virus-induced pneumococcal infection (PI) burden is assessed. RESULTS This ABM generates realistic data for both pathogens in terms of weekly incidences of PI cases, carriage rates, epidemic size and epidemic timing. Notably, distinct interaction hypotheses resulted in different transmission patterns and led to wide variations of the associated PI burden. Interaction strength was also of paramount importance: when influenza increased pneumococcus acquisition, 4-27% of the PI burden during the influenza season was attributable to influenza depending on the interaction strength. CONCLUSIONS This open-source ABM provides new opportunities to investigate influenza interactions from a theoretical point of view and could easily be extended to other pathogens. It provides a unique framework to generate in silico data for different scenarios and thereby test mechanistic hypotheses.
Collapse
Affiliation(s)
- Hélène Arduin
- Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases, UMR1181 - Université de Versailles Saint Quentin en Yvelines, Inserm, Institut Pasteur, B2PHI Unit – Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Matthieu Domenech de Cellès
- Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases, UMR1181 - Université de Versailles Saint Quentin en Yvelines, Inserm, Institut Pasteur, B2PHI Unit – Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Didier Guillemot
- Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases, UMR1181 - Université de Versailles Saint Quentin en Yvelines, Inserm, Institut Pasteur, B2PHI Unit – Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Laurence Watier
- Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases, UMR1181 - Université de Versailles Saint Quentin en Yvelines, Inserm, Institut Pasteur, B2PHI Unit – Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Lulla Opatowski
- Biostatistics, Biomathematics, Pharmacoepidemiology and Infectious Diseases, UMR1181 - Université de Versailles Saint Quentin en Yvelines, Inserm, Institut Pasteur, B2PHI Unit – Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
21
|
Wu M, Gibbons JG, DeLoid GM, Bedugnis AS, Thimmulappa RK, Biswal S, Kobzik L. Immunomodulators targeting MARCO expression improve resistance to postinfluenza bacterial pneumonia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L138-L153. [PMID: 28408365 DOI: 10.1152/ajplung.00075.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 01/12/2023] Open
Abstract
Downregulation of the alveolar macrophage (AM) receptor with collagenous structure (MARCO) leads to susceptibility to postinfluenza bacterial pneumonia, a major cause of morbidity and mortality. We sought to determine whether immunomodulation of MARCO could improve host defense and resistance to secondary bacterial pneumonia. RNAseq analysis identified a striking increase in MARCO expression between days 9 and 11 after influenza infection and indicated important roles for Akt and Nrf2 in MARCO recovery. In vitro, primary human AM-like monocyte-derived macrophages (AM-MDMs) and THP-1 macrophages were treated with IFNγ to model influenza effects. Activators of Nrf2 (sulforaphane) or Akt (SC79) caused increased MARCO expression and a MARCO-dependent improvement in phagocytosis in IFNγ-treated cells and improved survival in mice with postinfluenza pneumococcal pneumonia. Transcription factor analysis also indicated a role for transcription factor E-box (TFEB) in MARCO recovery. Overexpression of TFEB in THP-1 cells led to marked increases in MARCO. The ability of Akt activation to increase MARCO expression in IFNγ-treated AM-MDMs was abrogated in TFEB-knockdown cells, indicating Akt increases MARCO expression through TFEB. Increasing MARCO expression by targeting Nrf2 signaling or the Akt-TFEB-MARCO pathway are promising strategies to improve bacterial clearance and survival in postinfluenza bacterial pneumonia.
Collapse
Affiliation(s)
- Muzo Wu
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - John G Gibbons
- Biology Department, Clark University, Worcester, Massachusetts; and
| | - Glen M DeLoid
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Alice S Bedugnis
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Rajesh K Thimmulappa
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Shyam Biswal
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Lester Kobzik
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts;
| |
Collapse
|
22
|
Peteranderl C, Herold S. The Impact of the Interferon/TNF-Related Apoptosis-Inducing Ligand Signaling Axis on Disease Progression in Respiratory Viral Infection and Beyond. Front Immunol 2017; 8:313. [PMID: 28382038 PMCID: PMC5360710 DOI: 10.3389/fimmu.2017.00313] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/06/2017] [Indexed: 12/29/2022] Open
Abstract
Interferons (IFNs) are well described to be rapidly induced upon pathogen-associated pattern recognition. After binding to their respective IFN receptors and activation of the cellular JAK/signal transducer and activator of transcription signaling cascade, they stimulate the transcription of a plethora of IFN-stimulated genes (ISGs) in infected as well as bystander cells such as the non-infected epithelium and cells of the immune system. ISGs may directly act on the invading pathogen or can either positively or negatively regulate the innate and adaptive immune response. However, IFNs and ISGs do not only play a key role in the limitation of pathogen spread but have also been recently found to provoke an unbalanced, overshooting inflammatory response causing tissue injury and hampering repair processes. A prominent regulator of disease outcome, especially in-but not limited to-respiratory viral infection, is the IFN-dependent mediator TRAIL (TNF-related apoptosis-inducing ligand) produced by several cell types including immune cells such as macrophages or T cells. First described as an apoptosis-inducing agent in transformed cells, it is now also well established to rapidly evoke cellular stress pathways in epithelial cells, finally leading to caspase-dependent or -independent cell death. Hereby, pathogen spread is limited; however in some cases, also the surrounding tissue is severely harmed, thus augmenting disease severity. Interestingly, the lack of a strictly controlled and well balanced IFN/TRAIL signaling response has not only been implicated in viral infection but might furthermore be an important determinant of disease progression in bacterial superinfections and in chronic respiratory illness. Conclusively, the IFN/TRAIL signaling axis is subjected to a complex modulation and might be exploited for the evaluation of new therapeutic concepts aiming at attenuation of tissue injury.
Collapse
Affiliation(s)
- Christin Peteranderl
- Department of Internal Medicine II, German Center for Lung Research (DZL), University of Giessen, Marburg Lung Center (UGMLC), Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine II, German Center for Lung Research (DZL), University of Giessen, Marburg Lung Center (UGMLC), Giessen, Germany
| |
Collapse
|
23
|
Bellinghausen C, Rohde GGU, Savelkoul PHM, Wouters EFM, Stassen FRM. Viral-bacterial interactions in the respiratory tract. J Gen Virol 2016; 97:3089-3102. [PMID: 27902340 DOI: 10.1099/jgv.0.000627] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the respiratory tract, viruses and bacteria can interact on multiple levels. It is well known that respiratory viruses, particularly influenza viruses, increase the susceptibility to secondary bacterial infections. Numerous mechanisms, including compromised physical and immunological barriers, and changes in the microenvironment have hereby been shown to contribute to the development of secondary bacterial infections. In contrast, our understanding of how bacteria shape a response to subsequent viral infection is still limited. There is emerging evidence that persistent infection (or colonization) of the lower respiratory tract (LRT) with potential pathogenic bacteria, as observed in diseases like chronic obstructive pulmonary disease or cystic fibrosis, modulates subsequent viral infections by increasing viral entry receptors and modulating the inflammatory response. Moreover, recent studies suggest that even healthy lungs are not, as had long been assumed, sterile. The composition of the lung microbiome may thus modulate responses to viral infections. Here we summarize the current knowledge on the co-pathogenesis between viruses and bacteria in LRT infections.
Collapse
Affiliation(s)
- Carla Bellinghausen
- Department of Respiratory Medicine, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gernot G U Rohde
- Department of Respiratory Medicine, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paul H M Savelkoul
- Department of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Medical Microbiology & Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Frank R M Stassen
- Department of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
24
|
Bellinghausen C, Gulraiz F, Heinzmann ACA, Dentener MA, Savelkoul PHM, Wouters EF, Rohde GG, Stassen FR. Exposure to common respiratory bacteria alters the airway epithelial response to subsequent viral infection. Respir Res 2016; 17:68. [PMID: 27259950 PMCID: PMC4891894 DOI: 10.1186/s12931-016-0382-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022] Open
Abstract
Background Colonization of the airways with potential pathogenic bacteria is observed in a number of chronic respiratory diseases, such as COPD or cystic fibrosis. Infections with respiratory viruses are known triggers of exacerbations of these diseases. We here investigated if pre-exposure to bacteria alters the response of lung epithelial cells to subsequent viral infection. Methods Bronchial epithelial cells (BEAS-2B cells and primary bronchial epithelial cells) were exposed to heat-inactivated Haemophilus influenzae, Pseudomonas aeruginosa or Streptococcus pneumoniae and subsequently infected with respiratory syncytial virus (RSV), type 2 human adenovirus or influenza B. Levels of pro-inflammatory cytokines, viral replication and expression of pattern recognition receptors were determined in culture supernatants and/or cell lysates. Results Exposure of BEAS-2B cells to H. influenzae before and during RSV-infection synergistically increased the release of IL-6 (increase above calculated additive effect at 72 h: 56 % ± 3 %, mean ± SEM) and IL-8 (53 % ± 12 %). This effect was sustained even when bacteria were washed away before viral infection and was neither associated with enhanced viral replication, nor linked to increased expression of key pattern recognition receptors. P. aeruginosa enhanced the release of inflammatory cytokines to a similar extent, yet only if bacteria were also present during viral infection. S. pneumoniae did not enhance RSV-induced cytokine release. Surprisingly, adenovirus infection significantly reduced IL-6 release in cells exposed to either of the three tested bacterial strains by on average more than 50 %. Infection with influenza B on the other hand did not affect cytokine production in BEAS-2B cells exposed to the different bacterial strains. Conclusion Pre-exposure of epithelial cells to bacteria alters the response to subsequent viral infection depending on the types of pathogen involved. These findings highlight the complexity of microbiome interactions in the airways, possibly contributing to the susceptibility to exacerbations and the natural course of airway diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0382-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carla Bellinghausen
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.,Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Fahad Gulraiz
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.,Department of Cell Biology and Immunology, University of North Texas Health Science Center (UNT Health Science Center), Fort Worth, TX, USA
| | - Alexandra C A Heinzmann
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Mieke A Dentener
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Paul H M Savelkoul
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.,Department of Medical Microbiology & Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Emiel F Wouters
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gernot G Rohde
- Department of Respiratory Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Frank R Stassen
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands. .,, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands.
| |
Collapse
|
25
|
Itoh Y. Translational research on influenza virus infection using a nonhuman primate model. Pathol Int 2016; 66:132-141. [PMID: 26811109 DOI: 10.1111/pin.12385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/28/2015] [Indexed: 12/17/2022]
Abstract
Influenza virus infection is a seasonal infectious disease for humans, whereas it is also a zoonosis that is originally transmitted from animals to humans. Therefore, several animal models are used in research on influenza virus infection. We have used a nonhuman primate (NHP) model to extrapolate pathogenicity of various influenza viruses and efficacy of vaccines and antiviral drugs against the influenza viruses in humans. NHPs have genes, anatomical structure, and immune responses similar to those of humans as compared to other animal models. Using an NHP model, we revealed that the pandemic 2009 influenza A virus caused viral pneumonia as reported in human patients. Thus, it is thought that NHP models can be used to predict replication of emerging viruses in humans. We also examined the pathogenicity of highly pathogenic avian influenza viruses and evaluated a new therapeutic antibody in macaques under an immunocompromised condition. NHP models have provided promising results in research on other infectious diseases including Ebola virus and human/simian immunodeficiency virus infections. Thus, NHPs are important in biomedical research for determining the pathogenesis and for development of treatments, especially when clinical trials are difficult. We summarize the characteristics and advantages of research using NHP models in this review.
Collapse
Affiliation(s)
- Yasushi Itoh
- Department of Pathology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
26
|
Shrestha S, Foxman B, Berus J, van Panhuis WG, Steiner C, Viboud C, Rohani P. The role of influenza in the epidemiology of pneumonia. Sci Rep 2015; 5:15314. [PMID: 26486591 PMCID: PMC4614252 DOI: 10.1038/srep15314] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/15/2015] [Indexed: 12/25/2022] Open
Abstract
Interactions arising from sequential viral and bacterial infections play important roles in the epidemiological outcome of many respiratory pathogens. Influenza virus has been implicated in the pathogenesis of several respiratory bacterial pathogens commonly associated with pneumonia. Though clinical evidence supporting this interaction is unambiguous, its population-level effects-magnitude, epidemiological impact and variation during pandemic and seasonal outbreaks-remain unclear. To address these unknowns, we used longitudinal influenza and pneumonia incidence data, at different spatial resolutions and across different epidemiological periods, to infer the nature, timing and the intensity of influenza-pneumonia interaction. We used a mechanistic transmission model within a likelihood-based inference framework to carry out formal hypothesis testing. Irrespective of the source of data examined, we found that influenza infection increases the risk of pneumonia by ~100-fold. We found no support for enhanced transmission or severity impact of the interaction. For model-validation, we challenged our fitted model to make out-of-sample pneumonia predictions during pandemic and non-pandemic periods. The consistency in our inference tests carried out on several distinct datasets, and the predictive skill of our model increase confidence in our overall conclusion that influenza infection substantially enhances the risk of pneumonia, though only for a short period.
Collapse
Affiliation(s)
- Sourya Shrestha
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD 21205, USA
| | - Betsy Foxman
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joshua Berus
- Undergraduate Research Opportunity Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Willem G. van Panhuis
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh PA 15261, USA
| | - Claudia Steiner
- Healthcare Cost and Utilization Project, Center for Delivery, Organization and Markets, Agency for Healthcare Research and Quality, U.S. Department of Health and Human Services, Rockville, MD 20850, USA
| | - Cécile Viboud
- Division of International Epidemiology and Population Studies, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pejman Rohani
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, School of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
27
|
Ellis GT, Davidson S, Crotta S, Branzk N, Papayannopoulos V, Wack A. TRAIL+ monocytes and monocyte-related cells cause lung damage and thereby increase susceptibility to influenza-Streptococcus pneumoniae coinfection. EMBO Rep 2015; 16:1203-18. [PMID: 26265006 PMCID: PMC4576987 DOI: 10.15252/embr.201540473] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/10/2015] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pneumoniae coinfection is a major cause of influenza-associated mortality; however, the mechanisms underlying pathogenesis or protection remain unclear. Using a clinically relevant mouse model, we identify immune-mediated damage early during coinfection as a new mechanism causing susceptibility. Coinfected CCR2−/− mice lacking monocytes and monocyte-derived cells control bacterial invasion better, show reduced epithelial damage and are overall more resistant than wild-type controls. In influenza-infected wild-type lungs, monocytes and monocyte-derived cells are the major cell populations expressing the apoptosis-inducing ligand TRAIL. Accordingly, anti-TRAIL treatment reduces bacterial load and protects against coinfection if administered during viral infection, but not following bacterial exposure. Post-influenza bacterial outgrowth induces a strong proinflammatory cytokine response and massive inflammatory cell infiltrate. Depletion of neutrophils or blockade of TNF-α facilitate bacterial outgrowth, leading to increased mortality, demonstrating that these factors aid bacterial control. We conclude that inflammatory monocytes recruited early, during the viral phase of coinfection, induce TRAIL-mediated lung damage, which facilitates bacterial invasion, while TNF-α and neutrophil responses help control subsequent bacterial outgrowth. We thus identify novel determinants of protection versus pathology in influenza–Streptococcus pneumoniae coinfection.
Collapse
Affiliation(s)
| | | | | | - Nora Branzk
- Mill Hill Laboratory, Francis Crick Institute, London, UK
| | | | - Andreas Wack
- Mill Hill Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
28
|
Mifsud EJ, Tan AC, Short KR, Brown LE, Chua BY, Jackson DC. Reducing the impact of influenza-associated secondary pneumococcal infections. Immunol Cell Biol 2015; 94:101-8. [PMID: 26134269 DOI: 10.1038/icb.2015.71] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 01/19/2023]
Abstract
When administered prophylactically, we show that the Toll-like receptor-2 (TLR-2) agonist PEG-Pam2Cys (pegylated-S-(2,3-bis(palmitoyloxy)propyl)cysteine) not only mediates potent anti-viral activity against influenza virus but also reduces the impact of secondary infections with Streptococcus pneumoniae (the pneumococcus) by reducing (i) pulmonary viral and bacterial burdens, (ii) the levels of proinflammatory cytokines that normally accompany influenza and S. pneumoniae secondary infections and (iii) the vascular permeability of the pulmonary tract that can allow bacterial invasion of the blood in mice. We also show that an inactivated detergent-disrupted influenza virus vaccine formulated with the Pam2Cys-based adjuvant R4-Pam2Cys provides the host with both immediate and long-term protection against secondary pneumococcal infections following influenza virus infection through innate and specific immune mechanisms, respectively. Vaccinated animals generated influenza virus-specific immune responses that provided the host with long-term protection against influenza virus and its sequelae. This vaccine, which generates an immediate response, provides an additional countermeasure, which is ideal for use even in the midst of an influenza outbreak.
Collapse
Affiliation(s)
- Edin J Mifsud
- Department of Microbiology and Immunology at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Amabel C Tan
- Department of Microbiology and Immunology at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Kirsty R Short
- Department of Microbiology and Immunology at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Lorena E Brown
- Department of Microbiology and Immunology at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - David C Jackson
- Department of Microbiology and Immunology at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
29
|
Hraiech S, Papazian L, Rolain JM, Bregeon F. Animal models of polymicrobial pneumonia. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3279-92. [PMID: 26170617 PMCID: PMC4492661 DOI: 10.2147/dddt.s70993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pneumonia is one of the leading causes of severe and occasionally life-threatening infections. The physiopathology of pneumonia has been extensively studied, providing information for the development of new treatments for this condition. In addition to in vitro research, animal models have been largely used in the field of pneumonia. Several models have been described and have provided a better understanding of pneumonia under different settings and with various pathogens. However, the concept of one pathogen leading to one infection has been challenged, and recent flu epidemics suggest that some pathogens exhibit highly virulent potential. Although "two hits" animal models have been used to study infectious diseases, few of these models have been described in pneumonia. Therefore the aims of this review were to provide an overview of the available literature in this field, to describe well-studied and uncommon pathogen associations, and to summarize the major insights obtained from this information.
Collapse
Affiliation(s)
- Sami Hraiech
- IHU Méditerranée infection, URMITE CNRS IRD INSERM UMR 7278, Marseille, France ; Réanimation - Détresses Respiratoires et infections Sévères, APHM, CHU Nord, Marseille, France
| | - Laurent Papazian
- IHU Méditerranée infection, URMITE CNRS IRD INSERM UMR 7278, Marseille, France ; Réanimation - Détresses Respiratoires et infections Sévères, APHM, CHU Nord, Marseille, France
| | - Jean-Marc Rolain
- IHU Méditerranée infection, URMITE CNRS IRD INSERM UMR 7278, Marseille, France
| | - Fabienne Bregeon
- IHU Méditerranée infection, URMITE CNRS IRD INSERM UMR 7278, Marseille, France ; Service d'explorations Fonctionnelles Respiratoires, APHM, CHU Nord, Marseille, France
| |
Collapse
|
30
|
Brealey JC, Sly PD, Young PR, Chappell KJ. Viral bacterial co-infection of the respiratory tract during early childhood. FEMS Microbiol Lett 2015; 362:fnv062. [PMID: 25877546 DOI: 10.1093/femsle/fnv062] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2015] [Indexed: 12/21/2022] Open
Abstract
Acute respiratory infection (ARI) is an important cause of morbidity in children. Mixed aetiology is frequent, with pathogenic viruses and bacteria co-detected in respiratory secretions. However, the clinical significance of these viral/bacterial co-infections has long been a controversial topic. While severe bacterial pneumonia following influenza infection has been well described, associations are less clear among infections caused by viruses that are more common in young children, such as respiratory syncytial virus. Although assessing the overall contribution of bacteria to disease severity is complicated by the presence of many confounding factors in clinical studies, understanding the role of viral/bacterial co-infections in defining the outcome of paediatric ARI will potentially reveal novel treatment and prevention strategies, improving patient outcomes. This review summarizes current evidence for the clinical significance of respiratory viral/bacterial co-infections in young children, discusses possible mechanisms of cooperative interaction between these pathogens and highlights areas that require further investigation.
Collapse
Affiliation(s)
- Jaelle C Brealey
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Peter D Sly
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, QLD 4006, Australia Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Keith J Chappell
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
31
|
Safaeyan F, Nahaei MR, Seifi SJ, Kafil HS, Sadeghi J. Quantitative detection of Staphylococcus aureus, Streptococcus pneumoniae and Haemophilus influenzae in patients with new influenza A (H1N1)/2009 and influenza A/2010 virus infection. GMS HYGIENE AND INFECTION CONTROL 2015; 10:Doc06. [PMID: 25914868 PMCID: PMC4399408 DOI: 10.3205/dgkh000249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Viral influenza is a seasonal infection associated with significant morbidity and mortality. In the United States more than 35,000 deaths and 200,000 hospitalizations are recorded annually due to influenza. Secondary bacterial infections or co-infections associated with cases of influenza are a leading cause of severe morbidity and mortality, especially among high-risk groups such as the elderly and young children. AIM The aim of the present study was the quantitative detection of S. aureus, S. pneumoniae and H. influenzae in a group of patients with seasonal influenza A, influenza A (H1N1) pandemic 2009, and patients with symptoms of respiratory infection, but the negative for H1N1 serving as control group. METHOD In total, 625 patients suspected respiratory infection from April 2009 to April 2010 were studied. There were 58 patients with influenza A H1N1 and 567 patients negative for influenza A H1N1. From November 2010 to February 2011, 158 patients with respiratory symptoms were analyzed for seasonal influenza A. There were 25 patients with seasonal influenza A. To check the colonization status among the healthy individuals 62 healthy persons were further investigated. Individual were screened in parallel. The choices of special genes were amplified from clinical specimens using real-time PCR with a cutoff of 10(4) CFU/mL to differentiate colonization from infection in respiratory tract. RESULTS S. aureus, S. pneumoniae and H. influenzae were detected in 12%, 26% and 33% of patients with H1N1, while the corresponding figures were 9%, 19%, and 31% for H1N1 negative patients. Among patients with seasonal influenza A 12% S. aureus, 24% S. pneumoniae, and 32% H. influenzae co-infections were detected, while influenza negative control group yielded 5% S. aureus, 11% S. pneumoniae, and 10% H. influenzae, respectively. CONCLUSION The results of this study indicated that the serotype of pandemic H1N1 2009 did not increase incidence of secondary infection with S. aureus, S. pneumoniae and H. influenzae. Quantitative detection of secondary bacterial infection by QR-PCR can help us for distinguishing colonization from infection and controlling misuse of antibiotics and bacterial drug resistances.
Collapse
Affiliation(s)
- Firouzeh Safaeyan
- Tuberculosis & Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Nahaei
- Tuberculosis & Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sirus Jedary Seifi
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadeghi
- Department of Medical Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Finney LJ, Ritchie A, Pollard E, Johnston SL, Mallia P. Lower airway colonization and inflammatory response in COPD: a focus on Haemophilus influenzae. Int J Chron Obstruct Pulmon Dis 2014; 9:1119-32. [PMID: 25342897 DOI: 10.2147/copd.s54477] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial infection of the lower respiratory tract in chronic obstructive pulmonary disease (COPD) patients is common both in stable patients and during acute exacerbations. The most frequent bacteria detected in COPD patients is Haemophilus influenzae, and it appears this organism is uniquely adapted to exploit immune deficiencies associated with COPD and to establish persistent infection in the lower respiratory tract. The presence of bacteria in the lower respiratory tract in stable COPD is termed colonization; however, there is increasing evidence that this is not an innocuous phenomenon but is associated with airway inflammation, increased symptoms, and increased risk for exacerbations. In this review, we discuss host immunity that offers protection against H. influenzae and how disturbance of these mechanisms, combined with pathogen mechanisms of immune evasion, promote persistence of H. influenzae in the lower airways in COPD. In addition, we examine the role of H. influenzae in COPD exacerbations, as well as interactions between H. influenzae and respiratory virus infections, and review the role of treatments and their effect on COPD outcomes. This review focuses predominantly on data derived from human studies but will refer to animal studies where they contribute to understanding the disease in humans.
Collapse
Affiliation(s)
- Lydia J Finney
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Andrew Ritchie
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Patrick Mallia
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
33
|
Ripley DA, Morris RH, Maddocks SE. Dual stimulation with bacterial and viral components increases the expression of hepcidin in human monocytes. FEMS Microbiol Lett 2014; 359:161-5. [PMID: 25145495 DOI: 10.1111/1574-6968.12553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/17/2014] [Accepted: 07/29/2014] [Indexed: 12/24/2022] Open
Abstract
Hepcidin belongs to the antimicrobial peptide (AMP) family and is the key regulator of iron metabolism. It modulates iron homeostasis by binding to, and degrading the iron exporter molecule, ferroportin, thus inhibiting cellular iron efflux. Many antimicrobial peptides have a dual function; some are able to act directly as an antimicrobial agent as well as having an immunoregulatory role in the host. Toll-like receptors (TLRs) bind to components of microorganisms, activate cellular signal transduction pathways and stimulate innate immune responses. The effect of TLR3 (poly I:C) and TLR9 (CpG) co-stimulation of THP-1-derived monocytes using purified TLR ligands showed that 24 h after exposure poly I:C and CpG ligands in combination, hepcidin expression was significantly increased (10-fold) when compared to the untreated control. This combination of TLR ligands mimics simultaneous bacterial and viral infections, thus suggesting a potential key role for hepcidin in combined infections. Additionally, using a chequerboard assay, we have shown that hepcidin has an antagonistic effect in combination with the antibiotics rifampicin and tetracycline against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes, evidenced by a fractional inhibitory concentration index (FICI) > 4. This finding has important implications for future treatment regimens especially in an era of increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Delia A Ripley
- Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | | | | |
Collapse
|
34
|
Compans RW, Oldstone MBA. Secondary bacterial infections in influenza virus infection pathogenesis. Curr Top Microbiol Immunol 2014; 385:327-56. [PMID: 25027822 PMCID: PMC7122299 DOI: 10.1007/82_2014_394] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Influenza is often complicated by bacterial pathogens that colonize the nasopharynx and invade the middle ear and/or lung epithelium. Incidence and pathogenicity of influenza-bacterial coinfections are multifactorial processes that involve various pathogenic virulence factors and host responses with distinct site- and strain-specific differences. Animal models and kinetic models have improved our understanding of how influenza viruses interact with their bacterial co-pathogens and the accompanying immune responses. Data from these models indicate that considerable alterations in epithelial surfaces and aberrant immune responses lead to severe inflammation, a key driver of bacterial acquisition and infection severity following influenza. However, further experimental and analytical studies are essential to determining the full mechanistic spectrum of different viral and bacterial strains and species and to finding new ways to prevent and treat influenza-associated bacterial coinfections. Here, we review recent advances regarding transmission and disease potential of influenza-associated bacterial infections and discuss the current gaps in knowledge.
Collapse
Affiliation(s)
- Richard W. Compans
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia USA
| | - Michael B. A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California USA
| |
Collapse
|
35
|
Tripathi S, White MR, Hartshorn KL. The amazing innate immune response to influenza A virus infection. Innate Immun 2013; 21:73-98. [PMID: 24217220 DOI: 10.1177/1753425913508992] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Influenza A viruses (IAVs) remain a major health threat and a prime example of the significance of innate immunity. Our understanding of innate immunity to IAV has grown dramatically, yielding new concepts that change the way we view innate immunity as a whole. Examples include the role of p53, autophagy, microRNA, innate lymphocytes, endothelial cells and gut commensal bacteria in pulmonary innate immunity. Although the innate response is largely beneficial, it also contributes to major complications of IAV, including lung injury, bacterial super-infection and exacerbation of reactive airways disease. Research is beginning to dissect out which components of the innate response are helpful or harmful. IAV uses its limited genetic complement to maximum effect. Several viral proteins are dedicated to combating innate responses, while other viral structural or replication proteins multitask as host immune modulators. Many host innate immune proteins also multitask, having roles in cell cycle, signaling or normal lung biology. We summarize the plethora of new findings and attempt to integrate them into the larger picture of how humans have adapted to the threat posed by this remarkable virus. We explore how our expanded knowledge suggests ways to modulate helpful and harmful inflammatory responses, and develop novel treatments.
Collapse
Affiliation(s)
- Shweta Tripathi
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| | - Mitchell R White
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| | - Kevan L Hartshorn
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| |
Collapse
|
36
|
Metzger DW, Sun K. Immune dysfunction and bacterial coinfections following influenza. THE JOURNAL OF IMMUNOLOGY 2013; 191:2047-52. [PMID: 23964104 DOI: 10.4049/jimmunol.1301152] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Secondary pulmonary infections by encapsulated bacteria including Streptococcus pneumoniae and Staphylococcus aureus following influenza represent a common and challenging clinical problem. The reasons for this polymicrobial synergy are still not completely understood, hampering development of effective prophylactic and therapeutic interventions. Although it has been commonly thought that viral-induced epithelial cell damage allows bacterial invasiveness, recent studies by several groups have now implicated dysfunctional innate immune defenses following influenza as the primary culprit for enhanced susceptibility to secondary bacterial infections. Understanding the immunological imbalances that are responsible for virus/bacteria synergy will ultimately allow the design of effective, broad-spectrum therapeutic approaches for prevention of enhanced susceptibility to these pathogens.
Collapse
Affiliation(s)
- Dennis W Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| | | |
Collapse
|
37
|
Schmitt EG, Haribhai D, Jeschke JC, Co DO, Ziegelbauer J, Yan K, Iwakura Y, Mishra MK, Simpson P, Salzman NH, Williams CB. Chronic follicular bronchiolitis requires antigen-specific regulatory T cell control to prevent fatal disease progression. THE JOURNAL OF IMMUNOLOGY 2013; 191:5460-76. [PMID: 24163409 DOI: 10.4049/jimmunol.1301576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To study regulatory T (Treg) cell control of chronic autoimmunity in a lymphoreplete host, we created and characterized a new model of autoimmune lung inflammation that targets the medium and small airways. We generated transgenic mice that express a chimeric membrane protein consisting of hen egg lysozyme and a hemoglobin epitope tag under the control of the Clara cell secretory protein promoter, which largely limited transgene expression to the respiratory bronchioles. When Clara cell secretory protein-membrane hen egg lysozyme/hemoglobin transgenic mice were crossed to N3.L2 TCR transgenic mice that recognize the hemoglobin epitope, the bigenic progeny developed dense, pseudo-follicular lymphocytic peribronchiolar infiltrates that resembled the histological pattern of follicular bronchiolitis. Aggregates of activated IFN-γ- and IL-17A-secreting CD4(+) T cells as well as B cells surrounded the airways. Lung pathology was similar in Ifng(-/-) and Il17a(-/-) mice, indicating that either cytokine is sufficient to establish chronic disease. A large number of Ag-specific Treg cells accumulated in the lesions, and Treg cell depletion in the affected mice led to an interstitial spread of the disease that ultimately proved fatal. Thus, Treg cells act to restrain autoimmune responses, resulting in an organized and controlled chronic pathological process rather than a progressive disease.
Collapse
Affiliation(s)
- Erica G Schmitt
- Section of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Genome-wide fitness profiling reveals adaptations required by Haemophilus in coinfection with influenza A virus in the murine lung. Proc Natl Acad Sci U S A 2013; 110:15413-8. [PMID: 24003154 DOI: 10.1073/pnas.1311217110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial coinfection represents a major cause of morbidity and mortality in epidemics of influenza A virus (IAV). The bacterium Haemophilus influenzae typically colonizes the human upper respiratory tract without causing disease, and yet in individuals infected with IAV, it can cause debilitating or lethal secondary pneumonia. Studies in murine models have detected immune components involved in susceptibility and pathology, and yet few studies have examined bacterial factors contributing to coinfection. We conducted genome-wide profiling of the H. influenzae genes that promote its fitness in a murine model of coinfection with IAV. Application of direct, high-throughput sequencing of transposon insertion sites revealed fitness phenotypes of a bank of H. influenzae mutants in viral coinfection in comparison with bacterial infection alone. One set of virulence genes was required in nonvirally infected mice but not in coinfection, consistent with a defect in anti-bacterial defenses during coinfection. Nevertheless, a core set of genes required in both in vivo conditions indicated that many bacterial countermeasures against host defenses remain critical for coinfection. The results also revealed a subset of genes required in coinfection but not in bacterial infection alone, including the iron-sulfur cluster regulator gene, iscR, which was required for oxidative stress resistance. Overexpression of the antioxidant protein Dps in the iscR mutant restored oxidative stress resistance and ability to colonize in coinfection. The results identify bacterial stress and metabolic adaptations required in an IAV coinfection model, revealing potential targets for treatment or prevention of secondary bacterial pneumonia after viral infection.
Collapse
|
39
|
Habibzay M, Weiss G, Hussell T. Bacterial superinfection following lung inflammatory disorders. Future Microbiol 2013; 8:247-56. [PMID: 23374129 DOI: 10.2217/fmb.12.143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The lung environment is designed to prevent innate responses to harmless commensal microorganisms and environmental antigens. Features of an intact respiratory epithelium are critical to this process. A damaged or altered lung epithelial surface will therefore remove or alter the suppressive signals delivered to local innate immune cells, and inflammation ensues. Timely resolution of inflammation is important to prevent bystander tissue damage. However, if resolving pathways themselves are prolonged or repeated, they too can cause undesirable consequences, including bacterial superinfections, which we discuss here.
Collapse
Affiliation(s)
- Maryam Habibzay
- Imperial College London, Leukocyte Biology Section, National Heart & Lung Institute, London, UK
| | | | | |
Collapse
|
40
|
Yamamoto T, Mizoguchi Y, Kaneno H, Yamamoto K, Inoue Y, Kawashima H, Kase T, Shimotsuji T. Serum immunoglobulin G subclass levels and estimated clinical severity caused by possible influenza A (H1N1) pdm 2009 infection. J Infect Chemother 2013; 19:833-42. [PMID: 23467791 DOI: 10.1007/s10156-013-0570-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 02/03/2013] [Indexed: 11/27/2022]
Abstract
The clinical severity of the 2009 pandemic H1N1 influenza (H1N1 pdm09) was thought to be related to the difference between the amount of viral load and condition of the host immune response. We investigated the role of serum levels of IgG and its subclasses in clinical severity using the data from 45 child inpatients suffering from bronchitis or mild pneumonia caused by possible H1N1 pdm09 (pH1N1 pdm09) infection. After selecting parameters for serum IgG subclasses and logarithmically transformed urinary beta-2 microglobulin/creatinine (b2MG/Cr) values and admission duration, we performed path analysis using a mean covariance structure equation analysis to investigate the relationship between the clinical severity and the foregoing selected parameters. Total path analyses using a Bayesian method revealed that the estimated clinical severity caused by pH1N1 pdm09 was positively associated with maximal respiration rates, admission duration, and log urinary b2MG/Cr levels, whereas negatively associated with serum IgG, IgG1, IgG2, and IgG3 levels, duration of neuraminidase inhibitor therapy in outpatient clinics, and age. Serum IgG and its subclasses (IgG1-IgG3) reduced estimated clinical severity in children with pH1N1 pdm09 infection.
Collapse
Affiliation(s)
- Takehisa Yamamoto
- Department of Pediatrics, Minoh City Hospital, 5-7-1 Kayano, Minoh, Osaka, 562-8562, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Bosch AATM, Biesbroek G, Trzcinski K, Sanders EAM, Bogaert D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog 2013; 9:e1003057. [PMID: 23326226 PMCID: PMC3542149 DOI: 10.1371/journal.ppat.1003057] [Citation(s) in RCA: 436] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Respiratory infectious diseases are mainly caused by viruses or bacteria that often interact with one another. Although their presence is a prerequisite for subsequent infections, viruses and bacteria may be present in the nasopharynx without causing any respiratory symptoms. The upper respiratory tract hosts a vast range of commensals and potential pathogenic bacteria, which form a complex microbial community. This community is assumed to be constantly subject to synergistic and competitive interspecies interactions. Disturbances in the equilibrium, for instance due to the acquisition of new bacteria or viruses, may lead to overgrowth and invasion. A better understanding of the dynamics between commensals and pathogens in the upper respiratory tract may provide better insight into the pathogenesis of respiratory diseases. Here we review the current knowledge regarding specific bacterial–bacterial and viral–bacterial interactions that occur in the upper respiratory niche, and discuss mechanisms by which these interactions might be mediated. Finally, we propose a theoretical model to summarize and illustrate these mechanisms.
Collapse
Affiliation(s)
- Astrid A. T. M. Bosch
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center-Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Giske Biesbroek
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center-Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Krzysztof Trzcinski
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center-Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Elisabeth A. M. Sanders
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center-Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Debby Bogaert
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center-Wilhelmina Children's Hospital, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
42
|
McCullers JA. Do specific virus-bacteria pairings drive clinical outcomes of pneumonia? Clin Microbiol Infect 2012; 19:113-8. [PMID: 23231363 DOI: 10.1111/1469-0691.12093] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/27/2012] [Accepted: 10/30/2012] [Indexed: 12/01/2022]
Abstract
Bacterial pneumonia is a common contributor to severe outcomes of influenza. Epidemiological data suggest that the incidence, severity and associated bacterial pathogens differ between epidemics and by geographical location within epidemics. Data from animal models demonstrate that differences in both viral and bacterial strains alter the incidence and outcomes of pneumonia. For influenza viruses, evolutionary changes to specific virulence factors appear to alter the ability of viruses within particular lineages to prime the host for secondary bacterial infection. Although bacterial strains differ considerably in disease potential in the setting of viral co-infection, the bacterial virulence factors underlying this finding are currently unknown. The hypothesis that geographical variation exists in the prevalence of bacterial strains expressing factors that enable efficient disease potentiation during viral epidemics should be considered as one explanation for regional differences in severity. This would have implications for surveillance, vaccine development, and the conduct of clinical trials for the prevention or treatment of pneumonia.
Collapse
Affiliation(s)
- J A McCullers
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN 38103, USA.
| |
Collapse
|
43
|
Leung RKK, Zhou JW, Guan W, Li SK, Yang ZF, Tsui SKW. Modulation of potential respiratory pathogens by pH1N1 viral infection. Clin Microbiol Infect 2012; 19:930-5. [PMID: 23167452 DOI: 10.1111/1469-0691.12054] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 09/17/2012] [Accepted: 09/21/2012] [Indexed: 12/18/2022]
Abstract
While much effort has been made to characterize influenza A pdm09 virus (pH1N1), the flu that was responsible for the fourth influenza pandemic, there is a lack of study on the composition of bacteria that lead to secondary infection. In this study, we recruited pneumonia patients with and without pH1N1 infection and characterized their oropharyngeal microbiota by the unbiased high-throughput sequencing method. While there were no significant differences in common bacterial pneumonia-causative agents (Acinetobacter and Streptococcus species), previously unreported Pseudomonas species equipped with chemotaxis and flagellar assembly genes significantly increased (>20-fold) in the pH1N1-infected group. Bacillus and Ralstonia species that also increased significantly (5-10-fold) were also found to possess similar signaling and motility genes. In contrast, no such genes were found in oral commensal Prevotella, Veillonella and Neisseria species, which decreased significantly, or in either Acinetobacter or 10 out of 21 Streptococcus species, including Streptococcus pneumoniae. Our results support the notion that pH1N1 infection provides a niche for previously unnoticed potential respiratory pathogens that were able to access the lower respiratory tract with weakened immunity.
Collapse
Affiliation(s)
- R K-K Leung
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
44
|
Damjanovic D, Small CL, Jeyananthan M, McCormick S, Xing Z. Immunopathology in influenza virus infection: Uncoupling the friend from foe. Clin Immunol 2012; 144:57-69. [DOI: 10.1016/j.clim.2012.05.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 04/30/2012] [Accepted: 05/08/2012] [Indexed: 12/23/2022]
|
45
|
Su JY, Tan LR, Lai P, Liang HC, Qin Z, Ye MR, Lai XP, Su ZR. Experimental study on anti-inflammatory activity of a TCM recipe consisting of the supercritical fluid CO2 extract of Chrysanthemum indicum, Patchouli Oil and Zedoary Turmeric Oil in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:608-614. [PMID: 21920423 DOI: 10.1016/j.jep.2011.08.055] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 08/23/2011] [Accepted: 08/25/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chrysanthemum indicum (Compositae) Linné, Pogostemon cablin (Blanco) Benth and Curcuma wenyujin (Zingiberaceae) Y. H. Chen et C. Ling are three of the extensively used herbal remedies among traditional Chinese medicines for the purpose of anti-inflammation. A traditional Chinese medicine (TCM) recipe named CPZ consisting extracts of the above three herbs, has shown noteworthy anti-influenza activity, which is closely related to its anti-inflammatory feature. AIM OF THIS STUDY To investigated the anti-inflammtory activity of CPZ in vivo for a further exploration of the recipe's anti-inflammatory properties. MATERIALS AND METHODS The anti-inflammatory property of CPZ on acute inflammation was evaluated by inflammatory models of dimethylbenzene (DMB)-induced ear vasodilatation and acetic acid-induced capillary permeability enhancement in mice, as well as the carrageenan-induced paw edema rat model, in which inflammation-related cytokine including prostaglandin E(2) (PGE(2)), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and nitric oxide (NO) in the edematous paw tissue were determined by enzyme linked immunosorbent assay (ELISA). Moreover, effect of CPZ on chronic inflammation was observed through granuloma formation in rats subjected to cotton pellet implantation. RESULTS CPZ (340, 170, and 85 mg/kg for mice, p.o.) not only decreased the DMB-induced ear vasodilatation but also attenuated capillary permeability under acetic acid challenge in mice. And the significant inhibition on carrageenan-induced paw edema was observed. Further more, the ELISA results showed that CPZ (170, 85, and 42.5 mg/kg for rats, p.o.) could up-regulate the level of IL-1β in the edema paw tissue of rats significantly while down-regulate that of PGE(2), but no apparent effect on TNF-α or NO was observed in the test. Besides, CPZ had a certain degree of restraining effect on the cotton pellet-induced granuloma formation in rats and the highest dose of 170 mg/kg even showed a significant suppression on it. CONCLUSION The above results indicated that CPZ possessed a potent anti-inflammatory activity, which is indicated to be closely associated with its regulation on IL-1β and PGE(2) thereby mediating the inflammatory response acting at an appropriate level.
Collapse
Affiliation(s)
- Ji-Yan Su
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan 523808, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang WY, Lim JH, Li JD. Synergistic and feedback signaling mechanisms in the regulation of inflammation in respiratory infections. Cell Mol Immunol 2012; 9:131-5. [PMID: 22307042 DOI: 10.1038/cmi.2011.65] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pneumonia, the most typical and frequent lower respiratory tract infection (LRTI), is a leading cause of health problems in the United States. Bacteria represent the most prevailing cause of pneumonia in both children and adults. Although pneumonia with a single bacterial infection is common, a significant portion of patients with pneumonia is polymicrobial. This infection is often complexed with other physiological factors such as cytokines and growth factors. Nontypeable Haemophilus influenzae (NTHi) is the most frequently recovered Gram-negative bacterial pathogen in the respiratory system and induces strong inflammatory responses. NTHi also synergizes with other respiratory pathogens, such as Streptococcus pneumoniae and respiratory viruses and pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α). It is noteworthy that NTHi not only synergizes with growth factors such as transforming growth factor-beta (TGF-β), but also utilizes growth factor receptors such as TGF-β receptor and epidermal growth factor receptor (EGFR), to enhance inflammatory responses. Although appropriate inflammation is a protective response against invading pathogens, an uncontrolled inflammatory response is often detrimental to the host. Thus, inflammation must be tightly regulated. The human immune system has evolved strategies for controlling overactive inflammatory response. One such important mechanism is via regulation of negative feedback regulators for inflammation. CYLD, a multifunctional deubiquitinase, was originally reported as a tumor suppressor, but was recently identified as a negative regulator for nuclear factor-kappa B (NF-κB) signaling. It is induced by NTHi and TNF-α via a NF-κB-dependent mechanism, thereby serving as an inducible negative feedback regulator for tightly controlling inflammation in NTHi infection.
Collapse
Affiliation(s)
- Wenzhuo Y Wang
- Center for Inflammation, Immunity and Infection, and Department of Biology, Georgia State University, Atlanta, GA 30302, USA
| | | | | |
Collapse
|
47
|
Bordetella pertussis infection exacerbates influenza virus infection through pertussis toxin-mediated suppression of innate immunity. PLoS One 2011; 6:e19016. [PMID: 21533103 PMCID: PMC3080395 DOI: 10.1371/journal.pone.0019016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 03/23/2011] [Indexed: 01/02/2023] Open
Abstract
Pertussis (whooping cough) is frequently complicated by concomitant infections with respiratory viruses. Here we report the effect of Bordetella pertussis infection on subsequent influenza virus (PR8) infection in mouse models and the role of pertussis toxin (PT) in this effect. BALB/c mice infected with a wild-type strain of B. pertussis (WT) and subsequently (up to 14 days later) infected with PR8 had significantly increased pulmonary viral titers, lung pathology and mortality compared to mice similarly infected with a PT-deficient mutant strain (ΔPT) and PR8. Substitution of WT infection by intranasal treatment with purified active PT was sufficient to replicate the exacerbating effects on PR8 infection in BALB/c and C57/BL6 mice, but the effects of PT were lost when toxin was administered 24 h after virus inoculation. PT had no effect on virus titers in primary cultures of murine tracheal epithelial cells (mTECs) in vitro, suggesting the toxin targets an early immune response to increase viral titers in the mouse model. However, type I interferon responses were not affected by PT. Whole genome microarray analysis of gene expression in lung tissue from PT-treated and control PR8-infected mice at 12 and 36 h post-virus inoculation revealed that PT treatment suppressed numerous genes associated with communication between innate and adaptive immune responses. In mice depleted of alveolar macrophages, increase of pulmonary viral titers by PT treatment was lost. PT also suppressed levels of IL-1β, IL-12, IFN-γ, IL-6, KC, MCP-1 and TNF-α in the airways after PR8 infection. Furthermore PT treatment inhibited early recruitment of neutrophils and NK cells to the airways. Together these findings demonstrate that infection with B. pertussis through PT activity predisposes the host to exacerbated influenza infection by countering protective innate immune responses that control virus titers.
Collapse
|
48
|
Abstract
Bacterial super-infections contribute to the significant morbidity and mortality associated with influenza and other respiratory virus infections. There are robust animal model data, but only limited clinical information on the effectiveness of licensed antiviral agents for the treatment of bacterial complications of influenza. The association of secondary bacterial pathogens with fatal pneumonia during the recent H1N1 influenza pandemic highlights the need for new development in this area. Basic and clinical research into viral-bacterial interactions over the past decade has revealed several mechanisms that underlie this synergism. By applying these insights to antiviral drug development, the potential exists to improve outcomes by means other than direct inhibition of the virus.
Collapse
Affiliation(s)
- Jonathan A McCullers
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
49
|
Abstract
Despite advances in diagnosis and treatment, bacterial sepsis remains a major cause of pediatric morbidity and mortality, particularly among neonates, the critically ill, and the growing immunocompromised patient population. Sepsis is the end point of a complex and dynamic series of events in which both host and microbial factors drive high morbidity and potentially lethal physiologic alterations. In this article we provide a succinct overview of the events that lead to pediatric bloodstream infections (BSIs) and sepsis, with a focus on the molecular mechanisms used by bacteria to subvert host barriers and local immunity to gain access to and persist within the systemic circulation. In the events preceding and during BSI and sepsis, Gram-positive and Gram-negative pathogens use a battery of factors for translocation, inhibition of immunity, molecular mimicry, intracellular survival, and nutrient scavenging. Gaps in understanding the molecular pathogenesis of bacterial BSIs and sepsis are highlighted as opportunities to identify and develop new therapeutics.
Collapse
Affiliation(s)
- Stacey L. Bateman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Center for Microbial Pathogenesis, Duke University School of Medicine, Durham, NC 27710
| | - Patrick C. Seed
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710
- Center for Microbial Pathogenesis, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
50
|
Hartshorn KL. New look at an old problem: bacterial superinfection after influenza. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:536-9. [PMID: 20019194 DOI: 10.2353/ajpath.2010.090880] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kevan L Hartshorn
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|