1
|
Affὸ S, Sererols-Viñas L, Garcia-Vicién G, Cadamuro M, Chakraborty S, Sirica AE. Cancer-Associated Fibroblasts in Intrahepatic Cholangiocarcinoma: Insights into Origins, Heterogeneity, Lymphangiogenesis, and Peritoneal Metastasis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:378-396. [PMID: 39117110 DOI: 10.1016/j.ajpath.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) denotes a rare, highly malignant, and heterogeneous class of primary liver adenocarcinomas exhibiting phenotypic characteristics of cholangiocyte differentiation. Among the distinctive pathological features of iCCA, one that differentiates the most common macroscopic subtype (eg, mass-forming type) of this hepatic tumor from conventional hepatocellular carcinoma is a prominent desmoplastic reaction manifested as a dense fibro-collagenous-enriched tumor stroma. Cancer-associated fibroblasts (CAFs) represent the most abundant mesenchymal cell type in the desmoplastic reaction. Although the protumor effects of CAFs in iCCA have been increasingly recognized, more recent cell lineage tracing studies, advanced single-cell RNA sequencing, and expanded biomarker analyses have provided new awareness into their ontogeny, as well as underscored their biological complexity as reflected by the presence of multiple subtypes. In addition, evidence supports CAFs' potential to display cancer-restrictive roles, including immunosuppression. However, CAFs also play important roles in facilitating metastasis, as exemplified by lymph node metastasis and peritoneal carcinomatosis, which are common in iCCA. Herein, the authors provide a timely appraisal of the origins and phenotypic and functional complexity of CAFs in iCCA, together with providing mechanistic insights into lymphangiogenesis and peritoneal metastasis relevant to this lethal human cancer.
Collapse
Affiliation(s)
- Silvia Affὸ
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Laura Sererols-Viñas
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gemma Garcia-Vicién
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Sanjukta Chakraborty
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Alphonse E Sirica
- Department of Pathology (Emeritus), Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| |
Collapse
|
2
|
Neumeyer V, Chavan P, Steiger K, Ebert O, Altomonte J. Cross-Talk Between Tumor Cells and Stellate Cells Promotes Oncolytic VSV Activity in Intrahepatic Cholangiocarcinoma. Cancers (Basel) 2025; 17:514. [PMID: 39941881 PMCID: PMC11816849 DOI: 10.3390/cancers17030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
As the mechanisms underlying tumorigenesis become better understood, the dynamic roles of cellular components of the tumor microenvironment, and their cross-talk with tumor cells, have come to light as key drivers of disease progression and have emerged as important targets of new cancer therapies. In the field of oncolytic virus (OV) therapy, stromal cells have been considered as potential barriers to viral spread, thus limiting virus replication and therapeutic outcome. However, new evidence indicates that intratumoral fibroblasts could support virus replication. We have demonstrated in a rat model of stromal-rich intrahepatic cholangiocarcinoma (CCA) that vesicular stomatitis virus (VSV) can be localized within intratumoral hepatic stellate cells (HSCs), in addition to tumor cells, when the virus was applied via hepatic arterial infusion. Furthermore, VSV was shown to efficiently kill CCA cells and activated HSCs, and co-culture of CCA and HSCs increased viral titers. Interestingly, this effect is also observed when each cell type is cultured alone in a conditioned medium of the other cell type, indicating that secreted cell factors are at least partially responsible for this phenomenon. Partial reduction in sensitivity to type I interferons was observed in co-culture systems, providing a possible mechanism for the increased viral titers. Together, the results indicate that targeting activated HSCs with VSV could provide an additional mechanism of OV therapy, which, until now has not been considered. Furthermore, these findings suggest that VSV is a potentially powerful therapeutic agent for stromal-rich tumors, such as CCA and pancreatic cancer, both of which are very difficult to treat with conventional therapy and have a very poor prognosis.
Collapse
Affiliation(s)
- Victoria Neumeyer
- Department of Internal Medicine 2, University Hospital of the Technical University of Munich, 81675 Munich, Germany
| | - Purva Chavan
- Department of Internal Medicine 2, University Hospital of the Technical University of Munich, 81675 Munich, Germany
| | - Katja Steiger
- Department of Pathology, Technical University of Munich, 81675 Munich, Germany
| | - Oliver Ebert
- Department of Internal Medicine 2, University Hospital of the Technical University of Munich, 81675 Munich, Germany
| | - Jennifer Altomonte
- Department of Internal Medicine 2, University Hospital of the Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
3
|
Yi J, Jeong JH, Won J, Chung S, Pak JH. The crosstalk between cholangiocytes and hepatic stellate cells promotes the progression of epithelial-mesenchymal transition and periductal fibrosis during Clonorchis sinensis infection. Parasit Vectors 2024; 17:151. [PMID: 38519993 PMCID: PMC10958959 DOI: 10.1186/s13071-024-06236-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
UNLABELLED ABSTRACT: BACKGROUND: Clonorchis sinensis infection is one of the risk factors that provokes chronic inflammation, epithelial hyperplasia, periductal fibrosis and even cholangiocarcinoma (CCA). Disrupted or aberrant intercellular communication among liver-constituting cells leads to pathological states that cause various hepatic diseases. This study was designed to investigate the pathological changes caused by C. sinensis excretory-secretory products (ESPs) in non-cancerous human cell lines (cholangiocytes [H69 cell line] and human hepatic stellate cells [LX2 cell line]) and their intercellular crosstalk, as well the pathological changes in infected mouse liver tissues. METHODS The cells were treated with ESPs, following which transforming growth factor beta 1 (TGF-β1) and interleukin-6 (IL-6) secretion levels and epithelial-mesenchymal transition (EMT)- and fibrosis-related protein expression were measured. The ESP-mediated cellular motility (migration/invasion) between two cells was assessed using the Transwell and three-dimensional microfluidic assay models. The livers of C. sinensis-infected mice were stained using EMT and fibrotic marker proteins. RESULTS Treatment of cells with ESPs increased TGF-β1 and IL-6 secretion and the expression of EMT- and fibrosis-related proteins. The ESP-mediated mutual cell interaction further affected the cytokine secretion and protein expression levels and promoted cellular motility. N-cadherin overexpression and collagen fiber deposition were observed in the livers of C. sinensis-infected mice. CONCLUSIONS These findings suggest that EMT and biliary fibrosis occur through intercellular communication between cholangiocytes and hepatic stellate cells during C. sinensis infection, promoting malignant transformation and advanced hepatobiliary abnormalities.
Collapse
Affiliation(s)
- Junyeong Yi
- Department of Biochemistry, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine and Asan Medical Center (AMC), 88 Olympic-Ro 43-Gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Ji Hoon Jeong
- Department of Biochemistry, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine and Asan Medical Center (AMC), 88 Olympic-Ro 43-Gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jihee Won
- School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jhang Ho Pak
- Department of Biochemistry, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine and Asan Medical Center (AMC), 88 Olympic-Ro 43-Gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
4
|
Ding B, Song Y, Liu S, Peng C, Zhang Y. Mechanisms underlying the changes in acetaldehyde dehydrogenase 1 in cholangiocarcinoma. J Cancer 2023; 14:3203-3213. [PMID: 37928420 PMCID: PMC10622993 DOI: 10.7150/jca.86967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/08/2023] [Indexed: 11/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the most recurrent malignant tumor found in the biliary system. It originates from the bile duct epithelial cells characterized by easy metastasis, high intermittent rate, and poor prognosis. Acetaldehyde dehydrogenase 1 (ALDH1), a marker of cancer stem cells, the levels of which are particularly elevated in various of malignant tumors. Additionally, the increased ALDH1 levels are closely related to the degree and prognosis of malignant tumors. This study reviewed the mechanisms underlying the changes in ALDH1 levels in CCA.
Collapse
Affiliation(s)
- Bai Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China
| | - Yinghui Song
- Central Laboratory of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410015, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China
- Central Laboratory of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410015, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005 Hunan Province, China
| | - Yujing Zhang
- Central Laboratory of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410015, China
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
5
|
Khizar H, Hu Y, Wu Y, Yang J. The role and implication of autophagy in cholangiocarcinoma. Cell Death Discov 2023; 9:332. [PMID: 37666811 PMCID: PMC10477247 DOI: 10.1038/s41420-023-01631-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor that originates from the biliary epithelial cells. It is characterized by a difficult diagnosis and limited treatment options. Autophagy is a cellular survival mechanism that maintains nutrient and energy homeostasis and eliminates intracellular pathogens. It is involved in various physiological and pathological processes, including the development of cancer. However, the role, mechanism, and potential therapeutic targets of autophagy in CCA have not been thoroughly studied. In this review, we introduce the classification, characteristics, process, and related regulatory genes of autophagy. We summarize the regulation of autophagy on the progression of CCA and collect the latest research progress on some autophagy modulators with clinical potential in CCA. In conclusion, combining autophagy modulators with immunotherapy, chemotherapy, and targeted therapy has great potential in the treatment of CCA. This combination may be a potential therapeutic target for CCA in the future.
Collapse
Affiliation(s)
- Hayat Khizar
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China
- Department of Oncology, The Fourth Affiliated Hospital, International Institute of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yufei Hu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China
- Department of Gastroenterology, The Fourth School of Clinical medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanhua Wu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China
- Department of Gastroenterology, The Fourth School of Clinical medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, 310006, Hangzhou, Zhejiang, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, 310006, Hangzhou, Zhejiang, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, 310006, Hangzhou, Zhejiang, China.
- Hangzhou Institute of Digestive Diseases, 310006, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Chung HH, Seo SH, Kim H, Kim Y, Kim DW, Lee KH, Lee KT, Heo JS, Han IW, Park SM, Jang KT, Lee JK, Park JK. Postoperative Prognostic Predictors of Bile Duct Cancers: Clinical Analysis and Immunoassays of Tissue Microarrays. Gut Liver 2023; 17:159-169. [PMID: 36317517 PMCID: PMC9840923 DOI: 10.5009/gnl220044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND/AIMS Cholangiocarcinoma frequently recurs even after curative resection. Expression levels of proteins such as epidermal growth factor receptor (EGFR), Snail, epithelial cadherin (E-cadherin), and interleukin-6 (IL-6) examined by immunohistochemistry have been studied as potential prognostic factors for cholangiocarcinoma. The aim of this study was to investigate significant factors affecting the prognosis of resectable cholangiocarcinoma. METHODS Ninety-one patients who underwent surgical resection at Samsung Medical Center for cholangiocarcinoma from 1995 to 2013 were included in this study. Expression levels of E-cadherin, Snail, IL-6, membranous EGFR, and cytoplasmic EGFR were analyzed by immunohistochemistry using tissue microarray blocks made from surgical specimens. RESULTS Patients with high levels of membranous EGFR in tissue microarrays had significantly shorter overall survival (OS) and disease-free survival (DFS): high membranous EGFR (score 0-2) 38.0 months versus low membranous EGFR (score 3) 14.4 months (p=0.008) and high membranous EGFR (score 0-2) 23.2 months versus low membranous EGFR (score 3) 6.1 months (p=0.004), respectively. On the other hand, E-cadherin, Snail, cytoplasmic EGFR, and IL-6 did not show significant association with OS or DFS. Patients with distant metastasis had significantly higher IL-6 levels than those with locoregional recurrence (p=0.01). CONCLUSIONS This study showed that overexpression of membranous EGFR was significantly associated with shorter OS and DFS in surgically resected bile duct cancer patients. In addition, higher IL-6 expression was a predictive marker for recurrence in cholangiocarcinoma patients with distant organ metastasis after surgical resection.
Collapse
Affiliation(s)
- Hwe Hoon Chung
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Hee Seo
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyemin Kim
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yuil Kim
- Department of Clinical Pathology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Dong Wuk Kim
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kwang Hyuck Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyu Taek Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jin Seok Heo
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - In Woong Han
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seon Mee Park
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Kee-Taek Jang
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong Kyun Lee
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joo Kyung Park
- Division of Gastroenterology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
7
|
Lian Y, Zeng S, Wen S, Zhao X, Fang C, Zeng N. Review and Application of Integrin Alpha v Beta 6 in the Diagnosis and Treatment of Cholangiocarcinoma and Pancreatic Ductal Adenocarcinoma. Technol Cancer Res Treat 2023; 22:15330338231189399. [PMID: 37525872 PMCID: PMC10395192 DOI: 10.1177/15330338231189399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 08/02/2023] Open
Abstract
Integrin Alpha v Beta 6 is expressed primarily in solid epithelial tumors, such as cholangiocarcinoma, pancreatic cancer, and colorectal cancer. It has been considered a potential and promising molecular marker for the early diagnosis and treatment of cancer. Cholangiocarcinoma and pancreatic ductal adenocarcinoma share genetic, histological, and pathophysiological similarities due to the shared embryonic origin of the bile duct and pancreas. These cancers share numerous clinicopathological characteristics, including growth pattern, poor response to conventional radiotherapy and chemotherapy, and poor prognosis. This review focuses on the role of integrin Alpha v Beta 6 in cancer progression. It addition, it reviews how the marker can be used in molecular imaging and therapeutic targets. We propose further research explorations and questions that need to be addressed. We conclude that integrin Alpha v Beta 6 may serve as a potential biomarker for cancer disease progression and prognosis.
Collapse
Affiliation(s)
- Yunyu Lian
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Silue Zeng
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Sai Wen
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Xingyang Zhao
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Chihua Fang
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| | - Ning Zeng
- Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical and Engineering Technology Center of Digital Medicine, Guangzhou, China
| |
Collapse
|
8
|
Bao X, Li Q, Chen J, Chen D, Ye C, Dai X, Wang Y, Li X, Rong X, Cheng F, Jiang M, Zhu Z, Ding Y, Sun R, Liu C, Huang L, Jin Y, Li B, Lu J, Wu W, Guo Y, Fu W, Langley SR, Tano V, Fang W, Guo T, Sheng J, Zhao P, Ruan J. Molecular Subgroups of Intrahepatic Cholangiocarcinoma Discovered by Single-Cell RNA Sequencing-Assisted Multi-Omics Analysis. Cancer Immunol Res 2022; 10:811-828. [PMID: 35604302 DOI: 10.1158/2326-6066.cir-21-1101] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/07/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a relatively rare but highly aggressive tumor type that responds poorly to chemotherapy and immunotherapy. Comprehensive molecular characterization of ICC is essential for the development of novel therapeutics. Here, we constructed two independent cohorts from two clinic centers. A comprehensive multi-omics analysis of ICC via proteomic, whole-exome sequencing (WES), and single-cell RNA sequencing (scRNA-seq) was performed. Novel ICC tumor subtypes were derived in the training cohort (n=110) using proteomic signatures and their associated activated pathways, which was further validated in a validation cohort (n=41). Three molecular subtypes, chromatin remodeling, metabolism, and chronic inflammation, with distinct prognoses in ICC were identified. The chronic inflammation subtype associated with a poor prognosis. Our random forest algorithm revealed that mutation of lysine methyltransferase 2D (KMT2D) frequently occurred in the metabolism subtype and associated with lower inflammatory activity. scRNA-seq further identified an APOE+C1QB+ macrophage subtype, which showed the capacity to reshape the chronic inflammation subtype and contribute to a poor prognosis in ICC. Altogether, with single-cell transcriptome-assisted multi-omics analysis, we identified novel molecular subtypes of ICC and validated APOE+C1QB+ tumor-associated macrophages (TAMs) as potential immunotherapy targets against ICC.
Collapse
Affiliation(s)
- Xuanwen Bao
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiong Li
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinzhang Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Med, China
| | - Diyu Chen
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chanqi Ye
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaomeng Dai
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hang Zhou, China
| | - Yanfang Wang
- Ludwig-Maximilians-Universität München (LMU), 1, Germany
| | - Xin Li
- 5Department Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Germany
| | - Xiaoxiang Rong
- Nanfang Hospital, Southern medical University, Guangzhou 510000, Guangdong Province, People's Republic of China , GuangZhou, China
| | - Fei Cheng
- The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Ming Jiang
- The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Zheng Zhu
- Brigham and Women's Hospital, boston, United States
| | - Yongfeng Ding
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, China., China
| | - Rui Sun
- Westlake University, Hang Zhou, Zhejiang Province, China
| | | | - Lingling Huang
- Westlake Omics (Hangzhou) Biotechnology, Hangzhou, Zhejiang, China
| | - Yuzhi Jin
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hang Zhou, China
| | - Bin Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, China
| | - Wei Wu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yixuan Guo
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hang Zhou, China
| | - Wenguang Fu
- Affiliated Hospital of Southwest Medical University, China
| | | | - Vincent Tano
- Nanyang Technological University, Singapore, Singapore
| | - Weijia Fang
- First Affiliated Hospital Zhejiang University, Hangzhou, Zhejiang, China
| | | | - Jianpeng Sheng
- First Affiliated Hospital Zhejiang University, Hangzhou, Zhejiang, China
| | - Peng Zhao
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China, Hangzhou, China
| | - Jian Ruan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hang Zhou, China
| |
Collapse
|
9
|
Ciardiello D, Maiorano BA, Parente P, Rodriquenz MG, Latiano TP, Chiarazzo C, Pazienza V, Guerrera LP, Amoruso B, Normanno N, Martini G, Ciardiello F, Martinelli E, Maiello E. Immunotherapy for Biliary Tract Cancer in the Era of Precision Medicine: Current Knowledge and Future Perspectives. Int J Mol Sci 2022; 23:820. [PMID: 35055006 PMCID: PMC8775359 DOI: 10.3390/ijms23020820] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Biliary tract cancers (BTC) represent a heterogeneous and aggressive group of tumors with dismal prognosis. For a long time, BTC has been considered an orphan disease with very limited therapeutic options. In recent years a better understanding of the complex molecular landscape of biology is rapidly changing the therapeutic armamentarium. However, while 40-50% of patients there are molecular drivers susceptible to target therapy, for the remaining population new therapeutic options represent an unsatisfied clinical need. The role of immunotherapy in the continuum of treatment of patients with BTC is still debated. Despite initial signs of antitumor-activity, single-agent immune checkpoint inhibitors (ICIs) demonstrated limited efficacy in an unselected population. Therefore, identifying the best partner to combine ICIs and predictive biomarkers represents a key challenge to optimize the efficacy of immunotherapy. This review provides a critical analysis of completed trials, with an eye on future perspectives and possible biomarkers of response.
Collapse
Affiliation(s)
- Davide Ciardiello
- Oncology Unit, Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (B.A.M.); (M.G.R.); (T.P.L.); (C.C.); (L.P.G.); (B.A.); (E.M.)
- Oncology Unit, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (G.M.); (F.C.); (E.M.)
| | - Brigida Anna Maiorano
- Oncology Unit, Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (B.A.M.); (M.G.R.); (T.P.L.); (C.C.); (L.P.G.); (B.A.); (E.M.)
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, 000168 Rome, Italy
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Maria Grazia Rodriquenz
- Oncology Unit, Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (B.A.M.); (M.G.R.); (T.P.L.); (C.C.); (L.P.G.); (B.A.); (E.M.)
| | - Tiziana Pia Latiano
- Oncology Unit, Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (B.A.M.); (M.G.R.); (T.P.L.); (C.C.); (L.P.G.); (B.A.); (E.M.)
| | - Cinzia Chiarazzo
- Oncology Unit, Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (B.A.M.); (M.G.R.); (T.P.L.); (C.C.); (L.P.G.); (B.A.); (E.M.)
| | - Valerio Pazienza
- Division of Gastroenterology, Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy;
| | - Luigi Pio Guerrera
- Oncology Unit, Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (B.A.M.); (M.G.R.); (T.P.L.); (C.C.); (L.P.G.); (B.A.); (E.M.)
- Oncology Unit, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (G.M.); (F.C.); (E.M.)
| | - Brunella Amoruso
- Oncology Unit, Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (B.A.M.); (M.G.R.); (T.P.L.); (C.C.); (L.P.G.); (B.A.); (E.M.)
- Division of Medical Oncology, Università di Bari, 70124 Bari, Italy
| | - Nicola Normanno
- Cellular Biology and Biotherapy, Istituto Nazionale Tumori, “Fondazione G. Pascale”-IRCCS, 80131 Naples, Italy;
| | - Giulia Martini
- Oncology Unit, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (G.M.); (F.C.); (E.M.)
| | - Fortunato Ciardiello
- Oncology Unit, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (G.M.); (F.C.); (E.M.)
| | - Erika Martinelli
- Oncology Unit, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (G.M.); (F.C.); (E.M.)
| | - Evaristo Maiello
- Oncology Unit, Casa Sollievo della Sofferenza Hospital, 71013 San Giovanni Rotondo, Italy; (B.A.M.); (M.G.R.); (T.P.L.); (C.C.); (L.P.G.); (B.A.); (E.M.)
| |
Collapse
|
10
|
Wang Y, Jiang Y, Chen L. Role of miR-218-GREM1 axis in epithelial-mesenchymal transition of oral squamous cell carcinoma: An in vivo and vitro study based on microarray data. J Cell Mol Med 2020; 24:13824-13836. [PMID: 33107676 PMCID: PMC7754042 DOI: 10.1111/jcmm.15972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/13/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent cancer that develops in the head and neck area and has high annual mortality despite optimal treatment. microRNA‐218 (miR‐218) is a tumour inhibiting non‐coding RNA that has been reported to suppress the cell proliferation and invasion in various cancers. Thus, our study aims to determine the mechanism underlying the inhibitory role of miR‐218 in OSCC. We conducted a bioinformatics analysis to screen differentially expressed genes in OSCC and their potential upstream miRNAs. After collection of surgical OSCC tissues, we detected GREM1 expression by immunohistochemistry, RT‐qPCR and Western blot analysis, and miR‐218 expression by RT‐qPCR. The target relationship between miR‐218 and GREM1 was assessed by dual‐luciferase reporter gene assay. After loss‐ and gain‐of‐function experiments, OSCC cell proliferation, migration and invasion were determined by MTT assay, scratch test and Transwell assay, respectively. Expression of TGF‐β1, Smad4, p21, E‐cadherin, Vimentin and Snail was measured by RT‐qPCR and Western blot analysis. Finally, effects of miR‐218 and GREM1 on tumour formation and liver metastasis were evaluated in xenograft tumour‐bearing nude mice. GREM1 was up‐regulated, and miR‐218 was down‐regulated in OSCC tissues, and GREM1 was confirmed to be the target gene of miR‐218. Furthermore, after up‐regulating miR‐218 or silencing GREM1, OSCC cell proliferation, migration and invasion were reduced. In addition, expression of TGF‐β signalling pathway‐related genes was diminished by overexpressing miR‐218 or down‐regulating GREM1. Finally, up‐regulated miR‐218 or down‐regulated GREM1 reduced tumour growth and liver metastasis in vivo. Taken together, our findings suggest that the overexpression of miR‐218 may inhibit OSCC progression by inactivating the GREM1‐dependent TGF‐β signalling pathway.
Collapse
Affiliation(s)
- Yanpeng Wang
- Department of E.N.T., Linyi People's Hospital, Linyi, China
| | - Yifeng Jiang
- Department of Stomatology, Shandong Medical College, Linyi, China
| | - Long Chen
- Department of Stomatology, Linyi People's Hospital, Linyi, China
| |
Collapse
|
11
|
Kimawaha P, Jusakul A, Junsawang P, Loilome W, Khuntikeo N, Techasen A. Circulating TGF-β1 as the potential epithelial mesenchymal transition-biomarker for diagnosis of cholangiocarcinoma. J Gastrointest Oncol 2020; 11:304-318. [PMID: 32399272 DOI: 10.21037/jgo.2019.01.03] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is a malignant tumor arising from bile duct epithelium. The oncogenic risk factor is infection by the liver fluke, Opisthorchis viverrini (Ov). One of key mechanism in the development of CCA is epithelial mesenchymal transition (EMT). We aimed to investigate the expression of EMT-related proteins namely, E-cadherin, TGF-β1 and BMP-7 in CCA tissues, to determine the level of candidate EMT-related protein, and to examine whether there were significant correlations with clinicopathological data in sera of CCA patients compared with normal groups. Methods The expression of E-cadherin, TGF-β1 and BMP-7 was analyzed in human CCA tissues by immunohistochemistry and altered expressions compared to clinicopathological data were analyzed to identify the potential candidate EMT-biomarker. Subsequently, the level of candidate marker was determined in sera of CCA patients compared with normal and inflammatory-related diseases groups by enzyme-linked immunosorbent assay (ELISA). Results Immunohistochemical analysis showed that E-cadherin was expressed at a low level whereas TGF-β1 and BMP-7 showed high expression in CCA tissues when compared with liver from cadaveric donor. Interestingly, only high TGF-β1 expression in CCA tissues was significantly correlated with lymph node metastasis, severe cancer stage, intrahepatic CCA type and shorter survival time of CCA patients (P<0.05). Consequently, TGF-β1 was selected to determine the level in serum of CCA patients using ELISA. The results showed that serum TGF-β1 level was elevated in CCA patients compared to the normal group. Patients with high TGF-β1 levels were significantly correlated with metastasis status (P=0.03). Furthermore, receiver operating characteristic (ROC) analysis showed that serum TGF-β1 level is effective in distinguishing CCA patients from normal at the cut-off of 38.54 ng/mL with high sensitivity (71.1%) and specificity (68.9%) and from inflammatory-related diseases group at the cut-off of 38.67 ng/mL with effective sensitivity (68.0%) and specificity (71.1%). Furthermore, TGF-β1 could serve as a novel metastatic biomarker in CCA to diagnose the disease with 48.95 ng/mL as the cut-off along with the desired sensitivity and specificity (48.2% and 88.9% respectively). Conclusions The results of this study show that TGF-β1 could be a potential EMT-biomarker for diagnosis and prognosis of CCA.
Collapse
Affiliation(s)
- Phongsaran Kimawaha
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Apinya Jusakul
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Prem Junsawang
- Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Anchalee Techasen
- Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
12
|
Sonongbua J, Siritungyong S, Thongchot S, Kamolhan T, Utispan K, Thuwajit P, Pongpaibul A, Wongkham S, Thuwajit C. Periostin induces epithelial‑to‑mesenchymal transition via the integrin α5β1/TWIST‑2 axis in cholangiocarcinoma. Oncol Rep 2020; 43:1147-1158. [PMID: 32020235 PMCID: PMC7057947 DOI: 10.3892/or.2020.7485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Periostin (PN) (also known as osteoblast-specific factor OSF-2) is a protein that in humans is encoded by the POSTN gene and has been correlated with a reduced survival of cholangiocarcinoma (CCA) patients, with the well-known effect of inducing epithelial-to-mesenchymal transition (EMT). The present study investigated the effect of PN, through integrin (ITG)α5β1, in EMT-mediated CCA aggressiveness. The alterations in EMT-related gene and protein expression were investigated by real-time PCR, western blot analysis and zymogram. The effects of PN on migration and the level of TWIST-2 were assessed in CCA cells with and without siITGα5 transfection. PN was found to induce CCA cell migration and EMT features, including increments in Twist-related protein 2 (TWIST-2), zinc finger protein SNAI1 (SNAIL-1), α-smooth muscle actin (ASMA), vimentin (VIM) and matrix metallopeptidase 9 (MMP-9), and a reduction in cytokeratin 19 (CK-19) together with cytoplasmic translocation of E-cadherin (CDH-1). Additionally, PN markedly induced MMP-9 activity. TWIST-2 was significantly induced in PN-treated CCA cells; this effect was attenuated in the ITGα5β1-knockdown cells and corresponded to reduced migration of the cancer cells. These results indicated that PN induced CCA migration through ITGα5β1/TWIST-2-mediated EMT. Moreover, clinical samples from CCA patients showed that higher levels of TWIST-2 were significantly correlated with shorter survival time. In conclusion, the ITGα5β1-mediated TWIST-2 signaling pathway regulates PN-induced EMT in CCA progression, and TWIST-2 is a prognostic marker of poor survival in CCA patients.
Collapse
Affiliation(s)
- Jumaporn Sonongbua
- Graduate Program in Immunology Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suchada Siritungyong
- Graduate Program in Immunology Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thanpawee Kamolhan
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | | | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Ananya Pongpaibul
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sopit Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
13
|
Roy S, Glaser S, Chakraborty S. Inflammation and Progression of Cholangiocarcinoma: Role of Angiogenic and Lymphangiogenic Mechanisms. Front Med (Lausanne) 2019; 6:293. [PMID: 31921870 PMCID: PMC6930194 DOI: 10.3389/fmed.2019.00293] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Cholangiocarcinoma (CCA), or cancer of the biliary epithelium is a relatively rare but aggressive form of biliary duct cancer which has a 5-year survival rate post metastasis of 2%. Although a number of risk factors are established for CCA growth and progression, a careful evaluation of the existing literature on CCA reveals that an inflammatory environment near the biliary tree is the most common causal link between the risk factors and the development of CCA. The fact that inflammation predisposes affected individuals to CCA is further bolstered by multiple observations where the presence and maintenance of an inflammatory microenvironment at the site of the primary tumor plays a significant role in the development and metastasis of CCA. In addition, mechanisms activating the tumor vasculature and enhancing angiogenesis and lymphangiogenesis significantly contribute to CCA aggressiveness and metastasis. This review aims to address the role of an inflammatory microenvironment-CCA crosstalk and will present the basic concepts, observations, and current perspectives from recent research studies in the field of tumor stroma of CCA.
Collapse
Affiliation(s)
- Sukanya Roy
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, TX, United States
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, TX, United States
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Bryan, TX, United States
| |
Collapse
|
14
|
Chen C, Nelson LJ, Ávila MA, Cubero FJ. Mitogen-Activated Protein Kinases (MAPKs) and Cholangiocarcinoma: The Missing Link. Cells 2019; 8:1172. [PMID: 31569444 PMCID: PMC6829385 DOI: 10.3390/cells8101172] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
In recent years, the incidence of both liver and biliary tract cancer has increased. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the two most common types of hepatic malignancies. Whereas HCC is the fifth most common malignant tumor in Western countries, the prevalence of CCA has taken an alarming increase from 0.3 to 2.1 cases per 100,000 people. The lack of specific biomarkers makes diagnosis very difficult in the early stages of this fatal cancer. Thus, the prognosis of CCA is dismal and surgery is the only effective treatment, whilst recurrence after resection is common. Even though chemotherapy and radiotherapy may prolong survival in patients with CCA, the 5-year survival rate is still very low-a significant global problem in clinical diagnosis and therapy. The mitogen-activated protein kinase (MAPK) pathway plays an important role in signal transduction by converting extracellular stimuli into a wide range of cellular responses including inflammatory response, stress response, differentiation, survival, and tumorigenesis. Dysregulation of the MAPK cascade involves key signaling components and phosphorylation events that play an important role in tumorigenesis. In this review, we discuss the pathophysiological role of MAPK, current therapeutic options, and the current situation of MAPK-targeted therapies in CCA.
Collapse
Affiliation(s)
- Chaobo Chen
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain.
- de Octubre Health Research Institute (imas12), 28040 Madrid, Spain.
- Department of General Surgery, Wuxi Xishan People's Hospital, Wuxi 214000, China.
| | - Leonard J Nelson
- Institute for Bioengineering (IBioE), School of Engineering, Faraday Building, The University of Edinburgh, Edinburgh EH9 3 JL, Scotland, UK.
| | - Matías A Ávila
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain.
- Centro de Investigacion Biomedica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain.
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain.
- de Octubre Health Research Institute (imas12), 28040 Madrid, Spain.
| |
Collapse
|
15
|
Wu HJ, Chu PY. Role of Cancer Stem Cells in Cholangiocarcinoma and Therapeutic Implications. Int J Mol Sci 2019; 20:ijms20174154. [PMID: 31450710 PMCID: PMC6747544 DOI: 10.3390/ijms20174154] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/12/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common type of liver cancer, and is highly aggressive with very poor prognosis. CCA is classified into intrahepatic cholangiocarcinoma (iCCA) and extra-hepatic cholangiocarcinoma (eCCA), which is further stratified into perihilar (pCCA) and distal (dCCA). Cancer stem cells (CSCs) are a subpopulation of cancer cells capable of tumor initiation and malignant growth, and are also responsible for chemoresistance. Thus, CSCs play an important role in CCA carcinogenesis. Surface markers such as CD133, CD24, CD44, EpCAM, Sox2, CD49f, and CD117 are important for identifying and isolating CCA CSCs. CSCs are present in the tumor microenvironment (TME), termed ‘CSC niche’, where cellular components and soluble factors interact to promote tumor initiation. Epithelial-to-mesenchymal transition (EMT) is another important mechanism underlying carcinogenesis, involved in the invasiveness, metastasis and chemoresistance of cancer. It has been demonstrated that EMT plays a critical role in generating CSCs. Therapies targeting the surface markers and signaling pathways of CCA CSCs, proteins involved in TME, and immune checkpoint proteins are currently under investigation. Therefore, this review focuses on recent studies on the roles of CSCs in CCA; the possible therapeutic strategies targeting CSCs of CCA are also discussed.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua County 505, Taiwan
| | - Pei-Yi Chu
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 231, Taiwan.
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan.
| |
Collapse
|
16
|
Papoutsoglou P, Louis C, Coulouarn C. Transforming Growth Factor-Beta (TGFβ) Signaling Pathway in Cholangiocarcinoma. Cells 2019; 8:960. [PMID: 31450767 PMCID: PMC6770250 DOI: 10.3390/cells8090960] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma is a deadly cancer worldwide, associated with a poor prognosis and limited therapeutic options. Although cholangiocarcinoma accounts for less than 15% of liver primary cancer, its silent nature restricts early diagnosis and prevents efficient treatment. Therefore, it is of clinical relevance to better understand the molecular basis of cholangiocarcinoma, including the signaling pathways that contribute to tumor onset and progression. In this review, we discuss the genetic, molecular, and environmental factors that promote cholangiocarcinoma, emphasizing the role of the transforming growth factor β (TGFβ) signaling pathway in the progression of this cancer. We provide an overview of the physiological functions of TGFβ signaling in preserving liver homeostasis and describe how advanced cholangiocarcinoma benefits from the tumor-promoting effects of TGFβ. Moreover, we report the importance of noncoding RNAs as effector molecules downstream of TGFβ during cholangiocarcinoma progression, and conclude by highlighting the need for identifying novel and clinically relevant biomarkers for a better management of patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Panagiotis Papoutsoglou
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), UMR_S 1241, 35033 Rennes, France
| | - Corentin Louis
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), UMR_S 1241, 35033 Rennes, France
| | - Cédric Coulouarn
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), UMR_S 1241, 35033 Rennes, France.
| |
Collapse
|
17
|
Somsuan K, Peerapen P, Boonmark W, Plumworasawat S, Samol R, Sakulsak N, Thongboonkerd V. ARID1A knockdown triggers epithelial-mesenchymal transition and carcinogenesis features of renal cells: role in renal cell carcinoma. FASEB J 2019; 33:12226-12239. [PMID: 31424966 DOI: 10.1096/fj.201802720rr] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Down-regulation/mutation of AT-rich interactive domain 1A (ARID1A), a novel tumor suppressor gene, has been reported in various cancers. Nevertheless, its role in renal cell carcinoma (RCC) remained unclear and underinvestigated. We thus evaluated carcinogenesis effects of ARID1A knockdown in nonmalignant Madin-Darby canine kidney (MDCK) renal cells using small interfering RNA (siRNA) against ARID1A (siARID1A). The siARID1A-transfected cells had decreased cell death, increased cell proliferation, and cell cycle shift (from G0/G1 to G2/M) compared with those transfected with controlled siRNA (siControl). Additionally, the siARID1A-transfected cells exhibited epithelial-mesenchymal transition (EMT) shown by greater spindle index, increased mesenchymal markers (fibronectin/vimentin), and decreased epithelial markers (E-cadherin/zonula occludens-1). Moreover, the siARID1A-transfected cells had increases in migratory activity, nuclear size, self-aggregated multicellular spheroid size, invasion capability, chemoresistance (to docetaxel), Snail family transcriptional repressor 1 expression, and TGF-β1 secretion. All of these siARID1A-knockdown effects on the carcinogenic features were reproducible in malignant RCC (786-O) cells, which exhibited a higher degree of carcinogenic phenotypes compared with the nonmalignant MDCK cells. Finally, immunohistochemistry showed obvious decrease in ARID1A protein expression in human RCC tissues (n = 23) compared with adjacent normal renal tissues (n = 23). These data indicate that ARID1A down-regulation triggers EMT and carcinogenesis features of renal cells in vitro, and its role in RCC could be proven in human tissues.-Somsuan, K., Peerapen, P., Boonmark, W., Plumworasawat, S., Samol, R., Sakulsak, N., Thongboonkerd, V. ARID1A knockdown triggers epithelial-mesenchymal transition and carcinogenesis features of renal cells: role in renal cell carcinoma.
Collapse
Affiliation(s)
- Keerakarn Somsuan
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ratirath Samol
- Department of Anatomical Pathology, Sawanpracharak Hospital, Nakorn Sawan, Thailand
| | - Natthiya Sakulsak
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
18
|
Miyata T, Yamashita YI, Yoshizumi T, Shiraishi M, Ohta M, Eguchi S, Aishima S, Fujioka H, Baba H. CXCL12 expression in intrahepatic cholangiocarcinoma is associated with metastasis and poor prognosis. Cancer Sci 2019; 110:3197-3203. [PMID: 31361379 PMCID: PMC6778649 DOI: 10.1111/cas.14151] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/30/2022] Open
Abstract
Intrahepatic cholangiocarcinoma is a rare malignant biliary neoplasm that causes a poor prognosis even after curative hepatectomy. Liver metastasis is the major recurrence pattern of intrahepatic cholangiocarcinoma; therefore, the prevention of liver metastasis is a desirable objective. The aim of this study is to identify gene(s) related to liver metastasis of intrahepatic cholangiocarcinoma and to examine the inhibitory effects on metastasis of intrahepatic cholangiocarcinoma by controlling such gene(s). We collected 3 pairs of intrahepatic cholangiocarcinoma frozen samples, and 36 pairs (primary and metastatic lesions) of intrahepatic cholangiocarcinoma formalin-fixed paraffin-embedded samples, from patients who underwent surgical resection at hospitals related to the Kyushu Study Group of Liver Surgery between 2002 and 2016. We carried out cDNA microarray analyses and immunohistochemistry to identify candidate genes, and evaluated one of them as a therapeutic target using human cholangiocarcinoma cell lines. We identified 4 genes related to liver metastasis using cDNA microarray, and found that CXCL12 was the only gene whose expression was significantly higher in liver metastasis than in primary intrahepatic cholangiocarcinoma by immunohistochemistry (P = .003). In prognosis, patients in the high CXCL12 group showed a significantly poor prognosis in disease-free (P < .0001) and overall survival (P = .0004). By knockdown of CXCL12, we could significantly suppress the invasive and migratory capabilities of 2 human cholangiocarcinoma cell lines. Therefore, CXCL12 might be associated with metastasis and poor prognosis in intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Tatsunori Miyata
- Department of Gastroenterological Surgery, Kumamoto University, Kumamoto, Japan.,Kyushu Study Group of Liver Surgery, Nagasaki, Japan
| | - Yo-Ichi Yamashita
- Department of Gastroenterological Surgery, Kumamoto University, Kumamoto, Japan.,Kyushu Study Group of Liver Surgery, Nagasaki, Japan
| | | | | | - Masayuki Ohta
- Kyushu Study Group of Liver Surgery, Nagasaki, Japan
| | - Susumu Eguchi
- Kyushu Study Group of Liver Surgery, Nagasaki, Japan
| | - Shinichi Aishima
- Department of Diagnostic Pathology, Saga University, Saga, Japan
| | | | - Hideo Baba
- Department of Gastroenterological Surgery, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
19
|
Yamaguchi T, Ikehara S, Akimoto Y, Nakanishi H, Kume M, Yamamoto K, Ohara O, Ikehara Y. TGF-β signaling promotes tube-structure-forming growth in pancreatic duct adenocarcinoma. Sci Rep 2019; 9:11247. [PMID: 31375695 PMCID: PMC6677751 DOI: 10.1038/s41598-019-47101-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Tube-forming growth is an essential histological feature of pancreatic duct adenocarcinoma (PDAC) and of the pancreatic duct epithelium; nevertheless, the nature of the signals that start to form the tubular structures remains unknown. Here, we showed the clonal growth of PDAC cell lines in a three-dimensional (3D) culture experiment that modeled the clonal growth of PDAC. At the beginning of this study, we isolated the sphere- and tube-forming clones from established mouse pancreatic cancer cell lines via limiting dilution culture using collagen gel. Compared with cells in spherical structures, the cells in the formed tubes exhibited a lower CK19 expression in 3D culture and in the tumor that grew in the abdominal cavity of nude mice. Conversely, the expression of the transforming growth factor β (TGF-β)-signaling target mRNAs was higher in the formed tube vs the spherical structures, suggesting that TGF-β signaling is more active in the tube-forming process than the sphere-forming process. Treatment of sphere-forming clones with TGF-β1 induced tube-forming growth, upregulated the TGF-β-signaling target mRNAs, and yielded electron microscopic findings of a fading epithelial phenotype. In contrast, the elimination of TGF-β-signaling activation by treatment with inhibitors diminished the tube-forming growth and suppressed the expression of the TGF-β-signaling target mRNAs. Moreover, upregulation of the Fn1, Mmp2, and Snai1 mRNAs, which are hallmarks of tube-forming growth in PDAC, was demonstrated in a mouse model of carcinogenesis showing rapid progression because of the aggressive invasion of tube-forming cancer. Our study suggests that the tube-forming growth of PDAC relies on the activation of TGF-β signaling and highlights the importance of the formation of tube structures.
Collapse
Affiliation(s)
- Takashi Yamaguchi
- Department of Molecular and Tumor Pathology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan
| | - Sanae Ikehara
- Department of Molecular and Tumor Pathology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, 181-8611, Japan
| | - Hayao Nakanishi
- Laboratory of Pathology and Clinical Research, Aichi Cancer Center Aichi Hospital, Okazaki, 444-0011, Japan
| | - Masahiko Kume
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Chiba, Japan
| | - Kazuo Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Chiba, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, 292-0818, Japan
| | - Yuzuru Ikehara
- Department of Molecular and Tumor Pathology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan. .,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan.
| |
Collapse
|
20
|
Alexaline MM, Magne B, Zuleta Rodríguez A, Nivet M, Bacqueville D, Lataillade J, Trouillas M. Influence of fibrin matrices and their released factors on epidermal substitute phenotype and engraftment. J Tissue Eng Regen Med 2019; 13:1362-1374. [DOI: 10.1002/term.2879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Maia M. Alexaline
- Unité mixte Inserm U1197 ‐ Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées Clamart France
- Celogos Paris France
| | - Brice Magne
- Unité mixte Inserm U1197 ‐ Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées Clamart France
- Scarcell therapeutics Paris France
| | - Amparo Zuleta Rodríguez
- Unité mixte Inserm U1197 ‐ Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées Clamart France
| | - Muriel Nivet
- Unité mixte Inserm U1197 ‐ Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées Clamart France
| | - Daniel Bacqueville
- Unité mixte Inserm U1197 ‐ Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées Clamart France
- Service Pharmacologie Division 2 et Pharmacocinétique cutanée, Département PharmacologieCentre R&D Pierre Fabre Dermo‐Cosmétique Toulouse France
| | - Jean‐Jacques Lataillade
- Unité mixte Inserm U1197 ‐ Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées Clamart France
| | - Marina Trouillas
- Unité mixte Inserm U1197 ‐ Institut de Recherche Biomédicale des Armées (IRBA), Antenne Centre de Transfusion Sanguine des Armées Clamart France
| |
Collapse
|
21
|
Fouassier L, Marzioni M, Afonso MB, Dooley S, Gaston K, Giannelli G, Rodrigues CMP, Lozano E, Mancarella S, Segatto O, Vaquero J, Marin JJG, Coulouarn C. Signalling networks in cholangiocarcinoma: Molecular pathogenesis, targeted therapies and drug resistance. Liver Int 2019; 39 Suppl 1:43-62. [PMID: 30903728 DOI: 10.1111/liv.14102] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
Abstract
Cholangiocarcinoma (CCA) is a deadly disease. While surgery may attain cure in a minor fraction of cases, therapeutic options in either the adjuvant or advanced setting are limited. The possibility of advancing the efficacy of therapeutic approaches to CCA relies on understanding its molecular pathogenesis and developing rational therapies aimed at interfering with oncogenic signalling networks that drive and sustain cholangiocarcinogenesis. These efforts are complicated by the intricate biology of CCA, which integrates not only the driving force of tumour cell-intrinsic alterations at the genetic and epigenetic level but also pro-tumorigenic cues conveyed to CCA cells by different cell types present in the rich tumour stroma. Herein, we review our current understanding of the mechanistic bases underpinning the activation of major oncogenic pathways causative of CCA pathogenesis. We subsequently discuss how this knowledge is being exploited to implement rationale-based and genotype-matched therapeutic approaches that predictably will radically transform CCA clinical management in the next decade. We conclude by highlighting the mechanisms of therapeutic resistance in CCA and reviewing innovative approaches to combat resistance at the preclinical and clinical level.
Collapse
Affiliation(s)
- Laura Fouassier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ospedali Riuniti - University Hospital, Ancona, Italy
| | - Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Steven Dooley
- Department of Medicine II, Molecular Hepatology Section, Heidelberg University, Mannheim, Germany
| | - Kevin Gaston
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Bari, Italy
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Elisa Lozano
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Serena Mancarella
- National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Bari, Italy
| | - Oreste Segatto
- Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Javier Vaquero
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Sorbonne Université, CNRS, Ecole Polytech., Univ. Paris-Sud, Observatoire de Paris, Université Paris-Saclay, PSL Research University, Paris, France
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Cédric Coulouarn
- Inserm, Univ Rennes, Inra, Institut NuMeCan (Nutrition Metabolisms and Cancer), Rennes, France
| |
Collapse
|
22
|
Matak A, Lahiri P, Ford E, Pabst D, Kashofer K, Stellas D, Thanos D, Zatloukal K. Stochastic phenotype switching leads to intratumor heterogeneity in human liver cancer. Hepatology 2018; 68:933-948. [PMID: 29171037 PMCID: PMC6175233 DOI: 10.1002/hep.29679] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 11/06/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED Intratumor heterogeneity is increasingly recognized as a major factor impacting diagnosis and personalized treatment of cancer. We characterized stochastic phenotype switching as a mechanism contributing to intratumor heterogeneity and malignant potential of liver cancer. Clonal analysis of primary tumor cell cultures of a human sarcomatoid cholangiocarcinoma identified different types of self-propagating subclones characterized by stable (keratin-7-positive or keratin-7-negative) phenotypes and an unstable phenotype consisting of mixtures of keratin-7-positive and keratin-7-negative cells, which lack stem cell features but may reversibly switch their phenotypes. Transcriptome sequencing and immunohistochemical studies with the markers Zeb1 and CD146/MCAM demonstrated that switching between phenotypes is linked to changes in gene expression related but not identical to epithelial-mesenchymal transition. Stochastic phenotype switching occurred during mitosis and did not correlate with changes in DNA methylation. Xenotransplantation assays with different cellular subclones demonstrated increased tumorigenicity of cells showing phenotype switching, resulting in tumors morphologically resembling the invasive component of primary tumor and metastasis. CONCLUSION Our data demonstrate that stochastic phenotype switching contributes to intratumor heterogeneity and that cells with a switching phenotype have increased malignant potential. (Hepatology 2017).
Collapse
Affiliation(s)
- Andrija Matak
- Institute of PathologyMedical University of GrazGrazAustria
| | - Pooja Lahiri
- Institute of PathologyMedical University of GrazGrazAustria
| | - Ethan Ford
- University of Western AustraliaCrawleyWAAustralia
| | - Daniela Pabst
- Institute of PathologyMedical University of GrazGrazAustria
| | - Karl Kashofer
- Institute of PathologyMedical University of GrazGrazAustria
| | | | | | - Kurt Zatloukal
- Institute of PathologyMedical University of GrazGrazAustria
| |
Collapse
|
23
|
Saentaweesuk W, Araki N, Vaeteewoottacharn K, Silsirivanit A, Seubwai W, Talabnin C, Muisuk K, Sripa B, Wongkham S, Okada S, Wongkham C. Activation of Vimentin Is Critical to Promote a Metastatic Potential of Cholangiocarcinoma Cells. Oncol Res 2018; 26:605-616. [PMID: 28762325 PMCID: PMC7844738 DOI: 10.3727/096504017x15009778205068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a highly metastatic tumor, and the majority of patients with CCA have a short survival time because there are no available effective treatments. Hence, a better understanding regarding CCA metastasis may provide an opportunity to improve the strategies for treatment. A comparison study between the highly metastatic cells and their parental cells is an approach to uncover the molecular mechanisms underlying the metastatic process. In the present study, a lung metastatic CCA cell line, KKU-214L5, was established by the in vivo selection of the tail vein-injected mouse model. KKU-214L5 cells possessed mesenchymal spindle-like morphology with higher migration and invasion abilities in vitro than the parental cells (KKU-214). KKU-214L5 also exhibited extremely aggressive lung colonization in the tail vein-injected metastatic model. Epithelial-mesenchymal transition (EMT) was clearly observed in KKU-214L5 cells. Significant downregulation of epithelial markers (ZO-1 and claudin-1), with unique upregulation of E-cadherin and mesenchymal markers (vimentin, β-catenin, and slug), was observed in KKU-214L5. Increasing MMP-2 and MMP-9 activities and CD147 expression reflected the high invasion activity in KKU-214L5 cells. Suppression of vimentin using siRNA significantly decreased the migration and invasion capabilities of KKU-214L5 to almost the basal levels of the parental cells without any change on the expression levels of other EMT markers and the activities of MMPs. These results suggest that vimentin activation is essential to potentiate the metastatic characters of CCA cells, and suppression of vimentin expression could be a potential strategy to improve the treatment of CCA, a highly metastatic cancer.
Collapse
Affiliation(s)
- Waraporn Saentaweesuk
- *Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- †Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- ‡Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Norie Araki
- ‡Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kulthida Vaeteewoottacharn
- *Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- †Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Atit Silsirivanit
- *Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- †Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- ‡Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Wunchana Seubwai
- †Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- §Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chutima Talabnin
- ¶School of Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Kanha Muisuk
- §Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Banchob Sripa
- †Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- #Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sopit Wongkham
- *Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- †Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Seiji Okada
- **Division of Hematopoiesis, Center of AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Chaisiri Wongkham
- *Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- †Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
24
|
Wang J, Liang WJ, Min GT, Wang HP, Chen W, Yao N. LTBP2 promotes the migration and invasion of gastric cancer cells and predicts poor outcome of patients with gastric cancer. Int J Oncol 2018; 52:1886-1898. [PMID: 29620158 PMCID: PMC5919710 DOI: 10.3892/ijo.2018.4356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/08/2018] [Indexed: 12/20/2022] Open
Abstract
Latent transforming growth factor-β-binding protein (LTBP)2 is a member of the fibrillin/LTBP superfamily of extracellular matrix proteins, and has been demonstrated to exhibit tumor-promoting and tumor-suppressive functions in different types of cancer. However, the function of LTBP2 in gastric cancer (GC) remains unknown. The aim of the present study was to investigate the expression and molecular function of LTBP2 in GC, and to evaluate its prognostic value for patients with GC. The results revealed that the expression of LTBP2 was upregulated in GC tissues and cell lines. Increased LTBP2 expression was associated with poor overall survival in patients with early-stage [tumor-node-metastasis (TNM) I/II] and late-stage (TNM III/IV) GC. Furthermore, silencing of LTBP2 effectively suppressed the proliferation, migration, invasion and epithelial-mesenchymal transition in GC cells. These results suggested that LTBP2 may be considered as a potential therapeutic target and a promising prognostic biomarker for human GC.
Collapse
Affiliation(s)
- Jun Wang
- Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wen-Jia Liang
- Department of Ultrasound, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Guang-Tao Min
- Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Hong-Peng Wang
- Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wei Chen
- Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Nan Yao
- Fourth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
25
|
Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1270-1278. [DOI: 10.1016/j.bbadis.2017.07.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023]
|
26
|
Brivio S, Cadamuro M, Fabris L, Strazzabosco M. Molecular Mechanisms Driving Cholangiocarcinoma Invasiveness: An Overview. Gene Expr 2018; 18:31-50. [PMID: 29070148 PMCID: PMC5860940 DOI: 10.3727/105221617x15088670121925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The acquisition of invasive functions by tumor cells is a first and crucial step toward the development of metastasis, which nowadays represents the main cause of cancer-related death. Cholangiocarcinoma (CCA), a primary liver cancer originating from the biliary epithelium, typically develops intrahepatic or lymph node metastases at early stages, thus preventing the majority of patients from undergoing curative treatments, consistent with their very poor prognosis. As in most carcinomas, CCA cells gradually adopt a motile, mesenchymal-like phenotype, enabling them to cross the basement membrane, detach from the primary tumor, and invade the surrounding stroma. Unfortunately, little is known about the molecular mechanisms that synergistically orchestrate this proinvasive phenotypic switch. Autocrine and paracrine signals (cyto/chemokines, growth factors, and morphogens) permeating the tumor microenvironment undoubtedly play a prominent role in this context. Moreover, a number of recently identified signaling systems are currently drawing attention as putative mechanistic determinants of CCA cell invasion. They encompass transcription factors, protein kinases and phosphatases, ubiquitin ligases, adaptor proteins, and miRNAs, whose aberrant expression may result from either stochastic mutations or the abnormal activation of upstream pro-oncogenic pathways. Herein we sought to summarize the most relevant molecules in this field and to discuss their mechanism of action and potential prognostic relevance in CCA. Hopefully, a deeper knowledge of the molecular determinants of CCA invasiveness will help to identify clinically useful biomarkers and novel druggable targets, with the ultimate goal to develop innovative approaches to the management of this devastating malignancy.
Collapse
Affiliation(s)
- Simone Brivio
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Massimiliano Cadamuro
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
| | - Luca Fabris
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
- ‡Department of Molecular Medicine, University of Padua, Padua, Italy
- §Liver Center, School of Medicine Section of Digestive Diseases, Yale University, New Haven, CT, USA
| | - Mario Strazzabosco
- *School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- †International Center for Digestive Health, University of Milan-Bicocca, Monza, Italy
- §Liver Center, School of Medicine Section of Digestive Diseases, Yale University, New Haven, CT, USA
| |
Collapse
|
27
|
Cai X, Li J, Yuan X, Xiao J, Dooley S, Wan X, Weng H, Lu L. CD133 expression in cancer cells predicts poor prognosis of non-mucin producing intrahepatic cholangiocarcinoma. J Transl Med 2018; 16:50. [PMID: 29510695 PMCID: PMC5838940 DOI: 10.1186/s12967-018-1423-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND CD133 is a marker of stem cells as well cancer stem cells. This study investigated the association between CD133 expression in cancer cells and the clinical outcome of non-mucin producing intrahepatic cholangiocarcinoma (ICC). METHODS Fifty-seven non-mucin producing ICC patients were enrolled in this study. Immunohistochemistry (IHC) and immunofluorescence staining for CD133 as well as other cancer-associated proteins, including cytokeratin 19, TGF-β1, p-Smad2 and epithelial-mesenchymal transition (EMT) markers S100A4, E-Cadherin and Vimentin were analyzed. RESULTS IHC staining showed that tumor cells in 52.6% of patients expressed CD133. The CD133+ patients had significantly higher metastasis rate than those without CD133+ tumor cells (36.7% vs. 10.1%, p = 0.03). The CD133+ patients had shorter overall and disease-free survival time as compared to the CD133- patients. Furthermore, 90.9% of CD133+ patients developed cancer recurrence, as compared to 64.3% of CD133- patients (p = 0.02). As compared to CD133- patients, tumor cells in CD133+ patients demonstrated high levels of TGF-β/p-Smad2 as well as EMT-like alteration, characterized by loss of E-Cadherin and expression of Vimentin and S100A4. CONCLUSIONS CD133 expression in ICC tumor cells indicates poor prognosis of the disease and might be associated with TGF-β related EMT alterations.
Collapse
Affiliation(s)
- Xiaobo Cai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Li
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xiaodong Yuan
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jingbo Xiao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xinjian Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglei Weng
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Høgdall D, Lewinska M, Andersen JB. Desmoplastic Tumor Microenvironment and Immunotherapy in Cholangiocarcinoma. Trends Cancer 2018; 4:239-255. [PMID: 29506673 DOI: 10.1016/j.trecan.2018.01.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is a dismal disease which often is diagnosed at a late stage where the tumor is locally advanced, metastatic, and, as a result, is associated with low resectability. The heterogeneity of this cancer type is a major reason why the majority of patients fail to respond to therapy, and surgery remains their only curative option. Among patients who undergo surgical intervention, such tumors typically recur in 50% of cases within 1year. Thus, CCA is among the most aggressive and chemoresistant malignancies. CCA is characterized by marked tumor reactive stroma, a fibrogenic connective tissue which surrounds and infiltrates the tumor epithelium. This desmoplastic environment presents a clinical challenge, limiting drug delivery and supporting the growth of the tumor mass. In this review we attempt to highlight key pathways involved in cell to cell communication between the tumor epithelium and stroma, the immune components, and opportunities for novel strategies to improve patient outcome.
Collapse
Affiliation(s)
- Dan Høgdall
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark; Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; These authors contributed equally
| | - Monika Lewinska
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark; These authors contributed equally
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
29
|
Pudova EA, Kudryavtseva AV, Fedorova MS, Zaretsky AR, Shcherbo DS, Lukyanova EN, Popov AY, Sadritdinova AF, Abramov IS, Kharitonov SL, Krasnov GS, Klimina KM, Koroban NV, Volchenko NN, Nyushko KM, Melnikova NV, Chernichenko MA, Sidorov DV, Alekseev BY, Kiseleva MV, Kaprin AD, Dmitriev AA, Snezhkina AV. HK3 overexpression associated with epithelial-mesenchymal transition in colorectal cancer. BMC Genomics 2018; 19:113. [PMID: 29504907 PMCID: PMC5836836 DOI: 10.1186/s12864-018-4477-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common cancer worldwide. The main cause of death in CRC includes tumor progression and metastasis. At molecular level, these processes may be triggered by epithelial-mesenchymal transition (EMT) and necessitates specific alterations in cell metabolism. Although several EMT-related metabolic changes have been described in CRC, the mechanism is still poorly understood. RESULTS Using CrossHub software, we analyzed RNA-Seq expression profile data of CRC derived from The Cancer Genome Atlas (TCGA) project. Correlation analysis between the change in the expression of genes involved in glycolysis and EMT was performed. We obtained the set of genes with significant correlation coefficients, which included 21 EMT-related genes and a single glycolytic gene, HK3. The mRNA level of these genes was measured in 78 paired colorectal cancer samples by quantitative polymerase chain reaction (qPCR). Upregulation of HK3 and deregulation of 11 genes (COL1A1, TWIST1, NFATC1, GLIPR2, SFPR1, FLNA, GREM1, SFRP2, ZEB2, SPP1, and RARRES1) involved in EMT were found. The results of correlation study showed that the expression of HK3 demonstrated a strong correlation with 7 of the 21 examined genes (ZEB2, GREM1, TGFB3, TGFB1, SNAI2, TWIST1, and COL1A1) in CRC. CONCLUSIONS Upregulation of HK3 is associated with EMT in CRC and may be a crucial metabolic adaptation for rapid proliferation, survival, and metastases of CRC cells.
Collapse
Affiliation(s)
- Elena A. Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Elena N. Lukyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences Moscow, Moscow, Russia
| | | | - Asiya F. Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan S. Abramov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey L. Kharitonov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kseniya M. Klimina
- Vavilov Institute of General Genetics, Russian Academy of Sciences Moscow, Moscow, Russia
| | - Nadezhda V. Koroban
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nadezhda N. Volchenko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Kirill M. Nyushko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria A. Chernichenko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitry V. Sidorov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Boris Y. Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Marina V. Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
30
|
Zhang D, Li H, Jiang X, Cao L, Wen Z, Yang X, Xue P. Role of AP-2α and MAPK7 in the regulation of autocrine TGF-β/miR-200b signals to maintain epithelial-mesenchymal transition in cholangiocarcinoma. J Hematol Oncol 2017; 10:170. [PMID: 29084594 PMCID: PMC5663068 DOI: 10.1186/s13045-017-0528-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/21/2017] [Indexed: 12/15/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is characterized by early lymphatic, metastasis, and low survival rate. Epithelial-mesenchymal transition (EMT) is able to induce tumor metastasis. Although the TGF-β/miR-200 signals promote EMT in various types of cancer, the regulatory mechanism in CCA is still unclear. Methods Expression of miR-200b, TGF-β, and EMT markers were measured in tumor samples and cell lines by qRT-PCR and western blot. CCK8 assay was performed to measure the cell viability. Transwell assay was used to evaluate migration and invasion. The target genes of miR-200b and transcription factor of TGF-β were analyzed using dual-luciferase reporter system. Results We have demonstrated that CCA exhibited remarkable EMT phenotype and miR-200b was reduced in CCA patients (n = 20) and negatively correlated to TGF-β. Moreover, two CCA cells, HCCC, and RBE, with epithelial appearances treated with TGF-β, showed fibroblastic-like cell morphology with downregulated miR-200b expression. Forced expression of miR-200b abrogated TGF-β-induced EMT initiation, with decreased cell proliferation, migration, and invasion in vitro. Also, TFAP2A (encode AP-2α) and MAPK7 were found to be targeted by miR-200b to downregulate EMT and AP-2α inhibited miR-200b by directly promoting transcription of TGFB1. Overexpression of MAPK7 significantly reversed miR-200b-induced inhibition of EMT, migration, and proliferation by increasing the expression of TGF-β, cyclin D1, and Cdk2. Further, the administration of miR-200b induced a remarkably tumor regression in vivo and reduced the effect of TGF-β-related EMT in AP-2α and MAPK7-dependent manner. Conclusions Our study highlights that miR-200b-based gene therapy is effective in the treatment of CCA.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No 250 East Changgang Road, Guangzhou, 510260, China
| | - Haiyan Li
- Department of Breast and Thyroid Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No 250 East Changgang Road, Guangzhou, 510260, China
| | - Liangqi Cao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No 250 East Changgang Road, Guangzhou, 510260, China
| | - Zilong Wen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No 250 East Changgang Road, Guangzhou, 510260, China
| | - Xuewei Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No 250 East Changgang Road, Guangzhou, 510260, China
| | - Ping Xue
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No 250 East Changgang Road, Guangzhou, 510260, China.
| |
Collapse
|
31
|
Sritananuwat P, Sueangoen N, Thummarati P, Islam K, Suthiphongchai T. Blocking ERK1/2 signaling impairs TGF-β1 tumor promoting function but enhances its tumor suppressing role in intrahepatic cholangiocarcinoma cells. Cancer Cell Int 2017; 17:85. [PMID: 28959141 PMCID: PMC5615482 DOI: 10.1186/s12935-017-0454-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
Background Transforming growth factor-β (TGF-β) plays a paradoxical role in cancer: it suppresses proliferation at early stages but promotes metastasis at late stages. This cytokine is upregulated in cholangiocarcinoma and is implicated in cholangiocarcinoma invasion and metastasis. Here we investigated the roles of non-Smad pathway (ERK1/2) and Smad in TGF-β tumor promoting and suppressing activities in intrahepatic cholangiocarcinoma (ICC) cells. Methods TGF-β1 effects on proliferation, invasion and migration of ICC cells, KKU-M213 and/or HuCCA-1, were investigated using MTT, colony formation, in vitro Transwell and wound healing assays. Levels of mRNAs and proteins/phospho-proteins were measured by quantitative (q)RT-PCR and Western blotting respectively. E-cadherin localization was examined by immunofluorescence and secreted MMP-9 activity was assayed by gelatin zymography. The role of ERK1/2 signaling was evaluated by treating cells with TGF-β1 in combination with MEK1/2 inhibitor U0126, and that of Smad2/3 and Slug using siSmad2/3- and siSlug-transfected cells. Results h-TGF-β1 enhanced KKU-M213 cell invasion and migration and induced epithelial-mesenchymal transition as shown by an increase in vimentin, Slug and secreted MMP-9 levels and by a change in E-cadherin localization from membrane to cytosol, while retaining the cytokine’s ability to attenuate cell proliferation. h-TGF-β1 stimulated Smad2/3 and ERK1/2 phosphorylation, and the MEK1/2 inhibitor U0126 attenuated TGF-β1-induced KKU-M213 cell invasion and MMP-9 production but moderately enhanced the cytokine growth inhibitory activity. The latter effect was more noticeable in HuCCA-1 cells, which resisted TGF-β-anti-proliferative activity. Smad2/3 knock-down suppressed TGF-β1 ability to induce ERK1/2 phosphorylation, Slug expression and cell invasion, whereas Slug knock-down suppressed cell invasion and vimentin expression but marginally affected ERK1/2 activation and MMP-9 secretion. These results indicate that TGF-β1 activated ERK1/2 through Smad2/3 but not Slug pathway, and that ERK1/2 enhanced TGF-β1 tumor promoting but repressed its tumor suppressing functions. Conclusions Inhibiting ERK1/2 activation attenuates TGF-β1 tumor promoting effect (invasion) but retains its tumor suppressing role, thereby highlighting the importance of ERK1/2 in resolving the TGF-β paradox switch. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0454-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Phaijit Sritananuwat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand.,Present Address: Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Natthaporn Sueangoen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand.,Present Address: Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Parichut Thummarati
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Kittiya Islam
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | | |
Collapse
|
32
|
Lustri AM, Di Matteo S, Fraveto A, Costantini D, Cantafora A, Napoletano C, Bragazzi MC, Giuliante F, De Rose AM, Berloco PB, Grazi GL, Carpino G, Alvaro D. TGF-β signaling is an effective target to impair survival and induce apoptosis of human cholangiocarcinoma cells: A study on human primary cell cultures. PLoS One 2017; 12:e0183932. [PMID: 28873435 PMCID: PMC5584931 DOI: 10.1371/journal.pone.0183932] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) and its subtypes (mucin- and mixed-CCA) arise from the neoplastic transformation of cholangiocytes, the epithelial cells lining the biliary tree. CCA has a high mortality rate owing to its aggressiveness, late diagnosis and high resistance to radiotherapy and chemotherapeutics. We have demonstrated that CCA is enriched for cancer stem cells which express epithelial to mesenchymal transition (EMT) traits, with these features being associated with aggressiveness and drug resistance. TGF-β signaling is upregulated in CCA and involved in EMT. We have recently established primary cell cultures from human mucin- and mixed-intrahepatic CCA. In human CCA primary cultures with different levels of EMT trait expression, we evaluated the anticancer effects of: (i) CX-4945, a casein kinase-2 (CK2) inhibitor that blocks TGF-β1-induced EMT; and (ii) LY2157299, a TGF-β receptor I kinase inhibitor. We tested primary cell lines expressing EMT trait markers (vimentin, N-cadherin and nuclear catenin) but negative for epithelial markers, and cell lines expressing epithelial markers (CK19-positive) in association with EMT traits. Cell viability was evaluated by MTS assays, apoptosis by Annexin V FITC and cell migration by wound-healing assay. Results: at a dose of 10 μM, CX4945 significantly decreased cell viability of primary human cell cultures from both mucin and mixed CCA, whereas in CK19-positive cell cultures, the effect of CX4945 on cell viability required higher concentrations (>30μM). At the same concentrations, CX4945 also induced apoptosis (3- fold increase vs controls) which correlated with the expression level of CK2 in the different CCA cell lines (mucin- and mixed-CCA). Indeed, no apoptotic effects were observed in CK19-positive cells expressing lower CK2 levels. The effects of CX4945 on viability and apoptosis were associated with an increased number of γ-H2ax (biomarker for DNA double-strand breaks) foci, suggesting the active role of CK2 as a repair mechanism in CCAs. LY2157299 failed to influence cell proliferation or apoptosis but significantly inhibited cell migration. At a 50 μM concentration, in fact, LY2157299 significantly impaired (at 24, 48 and 120 hrs) the wound-healing of primary cell cultures from both mucin-and mixed-CCA. In conclusion, we demonstrated that CX4945 and LY2157299 exert relevant but distinct anticancer effects against human CCA cells, with CX4945 acting on cell viability and apoptosis, and LY2157299 impairing cell migration. These results suggest that targeting the TGF-β signaling with a combination of CX-4945 and LY2157299 could have potential benefits in the treatment of human CCA.
Collapse
Affiliation(s)
- Anna Maria Lustri
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Sabina Di Matteo
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Alice Fraveto
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Daniele Costantini
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Alfredo Cantafora
- Medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, RM, ROMA, Italy
| | - Chiara Napoletano
- Department of Experimental Medicine, University of Rome Sapienza, Roma, Italy
| | | | - Felice Giuliante
- Catholic University of the Sacred Heart School of Medicine, Roma, Italy
| | | | - Pasquale B. Berloco
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Roma, Italy
| | - Gian Luca Grazi
- Regina Elena National Cancer Institute, the Gastroenterology Unit, Roma, Italy
| | - Guido Carpino
- Department of Health Science, University of Rome Foro Italico, Roma, Italy
| | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, RM, ROMA, Italy
- * E-mail:
| |
Collapse
|
33
|
Yu Z, Cheng H, Zhu H, Cao M, Lu C, Bao S, Pan Y, Li Y. Salinomycin enhances doxorubicin sensitivity through reversing the epithelial-mesenchymal transition of cholangiocarcinoma cells by regulating ARK5. ACTA ACUST UNITED AC 2017; 50:e6147. [PMID: 28832761 PMCID: PMC5561806 DOI: 10.1590/1414-431x20176147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022]
Abstract
Chemotherapy response rates in patients with cholangiocarcinoma remain low, primarily due to the development of drug resistance. Epithelial-mesenchymal transition (EMT) of cancer cells is widely accepted to be important for metastasis and progression, but it has also been linked to the development of chemoresistance. Salinomycin (an antibiotic) has shown some potential as a chemotherapeutic agent as it selectively kills cancer stem cells, and has been hypothesized to block the EMT process. In this study, we investigated whether salinomycin could reverse the chemoresistance of cholangiocarcinoma cells to the chemotherapy drug doxorubicin. We found that combined salinomycin with doxorubicin treatment resulted in a significant decrease in cell viability compared with doxorubicin or salinomycin treatment alone in two cholangiocarcinoma cell lines (RBE and Huh-28). The dosages of both drugs that were required to produce a cytotoxic effect decreased, indicating that these two drugs have a synergistic effect. In terms of mechanism, salinomycin reversed doxorubicin-induced EMT of cholangiocarcinoma cells, as shown morphologically and through the detection of EMT markers. Moreover, we showed that salinomycin treatment downregulated the AMP-activated protein kinase family member 5 (ARK5) expression, which regulates the EMT process of cholangiocarcinoma. Our results indicated that salinomycin reversed the EMT process in cholangiocarcinoma cells by inhibiting ARK5 expression and enhanced the chemosensitivity of cholangiocarcinoma cells to doxorubicin. Therefore, a combined treatment of salinomycin with doxorubicin could be used to enhance doxorubicin sensitivity in patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Z Yu
- Department of General Surgery, Qingdao Clinic Medical College, Nanjing Medical University, Qingdao, China.,Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - H Cheng
- Department of General Surgery, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - H Zhu
- Department of Gastroenterology, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - M Cao
- Department of General Surgery, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - C Lu
- Department of General Surgery, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - S Bao
- Department of General Surgery, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Y Pan
- Department of General Surgery, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Y Li
- Department of General Surgery, Qingdao Clinic Medical College, Nanjing Medical University, Qingdao, China
| |
Collapse
|
34
|
Rahnemai-Azar AA, Weisbrod A, Dillhoff M, Schmidt C, Pawlik TM. Intrahepatic cholangiocarcinoma: Molecular markers for diagnosis and prognosis. Surg Oncol 2017; 26:125-137. [PMID: 28577718 DOI: 10.1016/j.suronc.2016.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/24/2016] [Accepted: 12/29/2016] [Indexed: 02/08/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver tumor with increasing incidence worldwide. The outcome of patients with iCCA is dismal owing to tumor's aggressiveness, late diagnosis and lack of effective treatment options. Detection of the tumor at early stages may make surgical resection, as only potential curative treatment, more feasible. Unfortunately, despite recent developments in imaging modalities and laboratory tests, the diagnosis of iCCA remains challenging and patients often present in advanced stages when surgery cannot be offered. Moreover, accurate assessment of disease burden is critical to optimize management strategy, including the use of adjuvant therapies and clinical trials. Identifying iCCA specific diagnostic and prognostic biomarkers has been a focus of interest among many investigators with a progressive increase in data on iCCA related to advances in "omics" technologies. We herein summarize iCCA biomarkers and define the molecular mechanisms underlying iCCA carcinogenesis, as well as highlight potential diagnostic and prognostic application of molecular biomarkers.
Collapse
Affiliation(s)
- Amir A Rahnemai-Azar
- Department of Surgery, University of Washington Medical Center, Seattle, WA, USA
| | - Allison Weisbrod
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Mary Dillhoff
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Carl Schmidt
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
35
|
Hall C, Ehrlich L, Venter J, O'Brien A, White T, Zhou T, Dang T, Meng F, Invernizzi P, Bernuzzi F, Alpini G, Lairmore TC, Glaser S. Inhibition of the apelin/apelin receptor axis decreases cholangiocarcinoma growth. Cancer Lett 2017; 386:179-188. [PMID: 27894959 PMCID: PMC5510601 DOI: 10.1016/j.canlet.2016.11.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE Cholangiocarcinoma (CCA) is a malignancy of the biliary epithelium that is associated with low five-year survival. The apelin receptor (APLNR), which is activated by the apelin peptide, has not been studied in CCA. The purpose of this study is to determine if inhibition of the apelin/APLNR axis can inhibit CCA growth. METHODS Immunohistochemistry, rtPCR, immunofluorescence, flow cytometry, and ELISA was used to measure APLNR expression in human CCA cells and tissues. Mz-ChA-1 cells were treated with increasing concentrations of apelin and ML221, an APLNR antagonist. Expression of proliferative and angiogenic genes were measured via rtPCR. In vivo, Mz-ChA-1 cells were injected into the flanks of nu/nu mice, which were treated with ML221 (150 μg/kg) via tail vein injection. RESULTS Expression of the apelin/APLNR axis was increased in CCA. In vitro, CCA proliferation and angiogenesis was inhibited by ML221 treatment. ML221 treatment significantly decreased tumor growth in nu/nu mice. CONCLUSION The apelin/APLNR axis regulates CCA proliferation and angiogenesis. Inhibition of the apelin/APLNR axis decreases tumor growth in our xenograft model. Targeting APLNR signaling has the potential to serve as a novel, tumor directed therapy for CCA.
Collapse
Affiliation(s)
- Chad Hall
- Scott & White Medical Center, Department of Surgery, Temple, TX 76508, USA
| | - Laurent Ehrlich
- Scott & White Medical Center, Department of Medicine, Temple, TX 76508, USA; Scott & White Medical Center, Department of Surgery, Temple, TX 76508, USA
| | - Julie Venter
- Scott & White Medical Center, Department of Medicine, Temple, TX 76508, USA
| | - April O'Brien
- Research, Central Texas Veterans Health Care System, Temple, TX 76504, USA
| | - Tori White
- Research, Central Texas Veterans Health Care System, Temple, TX 76504, USA
| | - Tianhao Zhou
- Scott & White Medical Center, Department of Medicine, Temple, TX 76508, USA; Texas A&M University Health Science Center, Temple, TX 76504, USA
| | - Tien Dang
- Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, TX 76504, USA
| | - Fanyin Meng
- Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, TX 76504, USA
| | - Pietro Invernizzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Francesca Bernuzzi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, TX 76504, USA; Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, TX 76504, USA; Scott & White Medical Center, Department of Medicine, Temple, TX 76508, USA; Scott & White Medical Center, Department of Surgery, Temple, TX 76508, USA
| | - Terry C Lairmore
- Scott & White Medical Center, Department of Surgery, Temple, TX 76508, USA
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, TX 76504, USA; Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, TX 76504, USA; Scott & White Medical Center, Department of Medicine, Temple, TX 76508, USA.
| |
Collapse
|
36
|
Vaquero J, Guedj N, Clapéron A, Nguyen Ho-Bouldoires TH, Paradis V, Fouassier L. Epithelial-mesenchymal transition in cholangiocarcinoma: From clinical evidence to regulatory networks. J Hepatol 2017; 66:424-441. [PMID: 27686679 DOI: 10.1016/j.jhep.2016.09.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/26/2016] [Accepted: 09/17/2016] [Indexed: 02/06/2023]
Abstract
Cholangiocarcinoma (CCA) is an aggressive tumor with a poor prognosis due to its late clinical presentation and the lack of effective non-surgical therapies. Unfortunately, most of the patients are not eligible for curative surgery owing to the presence of metastases at the time of diagnosis. Therefore, it is important to understand the steps leading to cell dissemination in patients with CCA. To metastasize from the primary site, cancer cells must acquire migratory and invasive properties by a cell plasticity-promoting phenomenon known as epithelial-mesenchymal transition (EMT). EMT is a reversible dynamic process by which epithelial cells gradually adopt structural and functional characteristics of mesenchymal cells, and has lately become a centre of attention in the field of metastatic dissemination. In the present review, we aim to provide an extensive overview of the current clinical data and the prognostic value of different EMT markers that have been analysed in CCA. We summarize all the regulatory networks implicated in EMT from the membrane receptors to the main EMT-inducing transcription factors (SNAIL, TWIST and ZEB). Furthermore, since a tumor is a complex structure not exclusively formed by tumor cells, we also address the prominent role of the main cell types of the desmoplastic stroma that characterizes CCA in the regulation of EMT. Finally, we discuss the therapeutic considerations and difficulties faced to develop an effective anti-EMT treatment due to the redundancies and bypasses among the pathways regulating EMT.
Collapse
Affiliation(s)
- Javier Vaquero
- INSERM, Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France; FONDATION ARC, F-94803 Villejuif, France
| | - Nathalie Guedj
- Service d'Anatomie Pathologique Hôpital Beaujon, F-92110 Clichy, France; INSERM, UMR 1149, Centre de Recherche sur l'Inflammation, F-75018 Paris, France
| | - Audrey Clapéron
- INSERM, Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France
| | | | - Valérie Paradis
- Service d'Anatomie Pathologique Hôpital Beaujon, F-92110 Clichy, France; INSERM, UMR 1149, Centre de Recherche sur l'Inflammation, F-75018 Paris, France
| | - Laura Fouassier
- INSERM, Sorbonne Universités, UPMC Univ Paris 06, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.
| |
Collapse
|
37
|
Yokobori T, Nishiyama M. TGF-β Signaling in Gastrointestinal Cancers: Progress in Basic and Clinical Research. J Clin Med 2017; 6:jcm6010011. [PMID: 28106769 PMCID: PMC5294964 DOI: 10.3390/jcm6010011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/31/2016] [Accepted: 01/16/2017] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor (TGF)-β superfamily proteins have many important biological functions, including regulation of tissue differentiation, cell proliferation, and migration in both normal and cancer cells. Many studies have reported that TGF-β signaling is associated with disease progression and therapeutic resistance in several cancers. Similarly, TGF-β-induced protein (TGFBI)—a downstream component of the TGF-β signaling pathway—has been shown to promote and/or inhibit cancer. Here, we review the state of basic and clinical research on the roles of TGF-β and TGFBI in gastrointestinal cancers.
Collapse
Affiliation(s)
- Takehiko Yokobori
- Research Program for Omics-based Medical Science, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Masahiko Nishiyama
- Research Program for Omics-based Medical Science, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
38
|
Kovalenko YA, Zharikov YO. [Portal cholangiocarcinoma: epidemiology, staging principles and aspects of tumor biology]. Khirurgiia (Mosk) 2017:85-91. [PMID: 29186104 DOI: 10.17116/hirurgia20171185-91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
| | - Yu O Zharikov
- A.V. Vishnevsky Institute of Surgery, Moscow, Russia
| |
Collapse
|
39
|
Nakanuma Y, Uchida T, Sato Y, Uesaka K. An S100P-positive biliary epithelial field is a preinvasive intraepithelial neoplasm in nodular-sclerosing cholangiocarcinoma. Hum Pathol 2016; 60:46-57. [PMID: 27984121 DOI: 10.1016/j.humpath.2016.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/08/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022]
Abstract
Nodular-sclerosing cholangiocarcinoma (NS-CCA) is a common CCA of the intrahepatic large, perihilar, and distal bile ducts. Intraepithelial biliary neoplasms, such as the mucosal extension of carcinoma and preinvasive neoplastic lesions (ie, biliary intraepithelial neoplasia) reportedly occur in the bile ducts around CCA. In the present study, we collectively refer to these intraepithelial lesions as "intraepithelial neoplasms of the bile duct (IENBs)". We examined the IENBs in 57 surgically resected cases of NS-CCA. S100P immunostaining was used to help detect IENBs. The IENBs formed field(s) of continuous neoplastic biliary epithelial cells and showed a flat, micropapillary, or papillotubular configuration. IENBs could be classified into 3 categories based on their atypia: group A (neoplastic but not enough for malignancy), B (neoplastic and sufficiently well differentiated for high-grade dysplasia), and C (overtly malignant and variably differentiated). IENB was found in 31 of 57 cases, with group C the most common (26 cases) followed by group B (22 cases) and group A (16 cases). The expression of cancer-related molecules and MIB-1 index of groups A and B differed from those of invasive CCA, whereas these features of group C were relatively similar to those of invasive CCA. In conclusion, IENB was not infrequently found in NS-CCA and could be classified into 3 grades. Preinvasive lesions (biliary intraepithelial neoplasias) are likely to be found in groups A and B, whereas cancerization would be included in group C. The classification of IENB may be useful for future studies of the preinvasive intraepithelial neoplastic lesions of NS-CCAs.
Collapse
Affiliation(s)
- Yasuni Nakanuma
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, 411-8777, Japan.
| | - Tsuneyuki Uchida
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, 411-8777, Japan; Department of Hepatobiliary Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, 411-8777, Japan
| | - Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, 920-8640, Japan
| | - Katsuhiko Uesaka
- Department of Hepatobiliary Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, 411-8777, Japan
| |
Collapse
|
40
|
Li L, Guo HJ, Zhu LY, Zheng L, Liu X. A supercritical-CO2 extract of Ganoderma lucidum spores inhibits cholangiocarcinoma cell migration by reversing the epithelial-mesenchymal transition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:491-497. [PMID: 27064008 DOI: 10.1016/j.phymed.2016.02.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Ganoderma lucidum (G. lucidum) is an oriental medical mushroom that has been widely used in Asian countries for centuries to prevent and treat different diseases, including cancer. HYPOTHESIS/PURPOSE The objective of this study was to investigate the effect of A supercritical-CO2 extract of G. lucidum spores on the transforming growth factor beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) of cholangiocarcinoma cells. STUDY DESIGN This was an in vitro study with human cholangiocarcinoma TFK-1 cells treated with varying concentrations of G. lucidum. METHODS A supercritical-CO2 extract of G. lucidum spores (GLE) was obtained from completely sporoderm-broken germinating G. lucidum spores by supercritical fluid carbon dioxide (SCF-CO2) extraction. GLE pre-incubated with human cholangiocarcinoma TFK-1 cells prior to TGF-β1 treatment (2ng/ml) for 48h. Changes in EMT markers were analyzed by western blotting and immunofluorescence. The formation of F-actin stress fibers was assessed via immunostaining with phalloidin and examined using confocal microscopy. Additionally, the effect of the GLE on TGF-β1-induced migration was investigated by a Boyden chamber assay. RESULTS TGF-β1-induced reduction in E-cadherin expression was associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin and Fibronectin were evident in predominantly elongated fibroblast-like cells. The GLE suppressed the TGF-β1-induced morphological changes and the changes in cadherin expression, and also inhibited the formation of F-actin stress fibers, which are a hallmark of EMT. The GLE also inhibited TGF-β1-induced migration of TFK-1 cells. CONCLUSION Our findings provide new evidence that GLE suppress cholangiocarcinoma migration in vitro through inhibition of TGF-β1-induced EMT. The GLE may be clinically applied in the prevention and/or treatment of cancer metastasis.
Collapse
Affiliation(s)
- Lian Li
- State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou, Guangdong, PR China
| | - Hui-Jun Guo
- Basic Medical College Jiangxi University of traditional Chinese Medicine, Nanchang, Jiangxi, PR China
| | - Ling-Yan Zhu
- State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou, Guangdong, PR China
| | - Limin Zheng
- State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou, Guangdong, PR China
| | - Xin Liu
- Academy of Food and Health Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
41
|
Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, Lind GE, Folseraas T, Forbes SJ, Fouassier L, Geier A, Calvisi DF, Mertens JC, Trauner M, Benedetti A, Maroni L, Vaquero J, Macias RIR, Raggi C, Perugorria MJ, Gaudio E, Boberg KM, Marin JJG, Alvaro D. Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol 2016; 13:261-80. [PMID: 27095655 DOI: 10.1038/nrgastro.2016.51] [Citation(s) in RCA: 948] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) is a heterogeneous group of malignancies with features of biliary tract differentiation. CCA is the second most common primary liver tumour and the incidence is increasing worldwide. CCA has high mortality owing to its aggressiveness, late diagnosis and refractory nature. In May 2015, the "European Network for the Study of Cholangiocarcinoma" (ENS-CCA: www.enscca.org or www.cholangiocarcinoma.eu) was created to promote and boost international research collaboration on the study of CCA at basic, translational and clinical level. In this Consensus Statement, we aim to provide valuable information on classifications, pathological features, risk factors, cells of origin, genetic and epigenetic modifications and current therapies available for this cancer. Moreover, future directions on basic and clinical investigations and plans for the ENS-CCA are highlighted.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Ikerbasque, CIBERehd, Paseo del Dr. Begiristain s/n, E-20014, San Sebastian, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy
| | - Marco Marzioni
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Pietro Invernizzi
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
- Program for Autoimmune Liver Diseases, International Center for Digestive Health, Department of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Guro E Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0310, Oslo, Norway
| | - Trine Folseraas
- Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, N-0424, Oslo, Norway
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, 49 Little France Crescent, EH16 4SB, Edinburgh, United Kingdom
| | - Laura Fouassier
- INSERM UMR S938, Centre de Recherche Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571, Paris cedex 12, Fondation ARC, 9 rue Guy Môquet 94803 Villejuif, France
| | - Andreas Geier
- Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacherstrasse 6, D-97080, Würzburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, Universitätsmedizin Greifswald, Friedrich-Löffler-Strasse 23e, 17489, Greifswald, Germany
| | - Joachim C Mertens
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Antonio Benedetti
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Luca Maroni
- Department of Clinic and Molecular Sciences, Polytechnic University of Marche, Via Tronto 10, 60020, Ancona, Italy
| | - Javier Vaquero
- INSERM UMR S938, Centre de Recherche Saint-Antoine, 184 rue du Faubourg Saint-Antoine, 75571, Paris cedex 12, Fondation ARC, 9 rue Guy Môquet 94803 Villejuif, France
| | - Rocio I R Macias
- Department of Physiology and Pharmacology, Experimental Hepatology and Drug Targeting (HEVEFARM), Campus Miguel de Unamuno, E.I.D. S-09, University of Salamanca, IBSAL, CIBERehd, 37007, Salamanca, Spain
| | - Chiara Raggi
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, Ikerbasque, CIBERehd, Paseo del Dr. Begiristain s/n, E-20014, San Sebastian, Spain
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50, 00161, Rome, Italy
| | - Kirsten M Boberg
- Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Pb. 4950 Nydalen, N-0424, Oslo, Norway
| | - Jose J G Marin
- Department of Physiology and Pharmacology, Experimental Hepatology and Drug Targeting (HEVEFARM), Campus Miguel de Unamuno, E.I.D. S-09, University of Salamanca, IBSAL, CIBERehd, 37007, Salamanca, Spain
| | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Viale dell'Università 37, 00185, Rome, Italy
| |
Collapse
|
42
|
Da CL, Tan Y, Zhan YY, Li YW, Liu K, Wang RZ. Radiation-induced expression of HOTAIR, Snail and E-cadherin in esophageal squamous cell carcinoma cells. Shijie Huaren Xiaohua Zazhi 2016; 24:1227-1232. [DOI: 10.11569/wcjd.v24.i8.1227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of X-ray radiation on the expression of HOTAIR and epithelial-mesenchymal transition (EMT) related factors in esophageal squamous cell carcinoma (ESCC).
METHODS: Eca109 cells were irradiated with 0, 2, 4, 6, or 8 Gy of X-rays. After 0, 2, 4, 8, 16, or 24 h of radiation, the expression of HOTAIR, Snail and E-cadherin was detected by qRT-PCR and Western blot.
RESULTS: In Eca109 cells irradiated for 24 h, X-ray dose-dependently increased HOTAIR and Snail expression levels but decreased E-cadherin mRNA and protein expression. The mRNA expression levels of HOTAIR and Snail in the 6 Gy and 8 Gy groups were significantly higher than those in the 0 Gy group. Of note, Snail protein level dramatically increased in the 4 Gy group. The expression of E-cadherin mRNA and protein was statistically lower in the 6 Gy and 8 Gy groups compared with the 0 Gy group (P < 0.01). In Eca109 cells irradiated with 8 Gy X-ray, X-ray time-dependently increased the expression of HOTAIR and Snail but decreased E-cadherin mRNA and protein expression. HOTAIR and Snail mRNA and protein expression was significantly higher in the 8 and 16 h groups than in the 0 h group, while the expression of E-cadherin mRNA and protein was gradually decreased in the 8 h group compared with the 0 h group.
CONCLUSION: X-ray induces abnormal expression of HOTAIR, Snail and E-cadherin time- and dose-dependently, which may result in the occurrence of cellular radioresistance.
Collapse
|
43
|
Fabregat I, Moreno-Càceres J, Sánchez A, Dooley S, Dewidar B, Giannelli G, ten Dijke P. TGF-β signalling and liver disease. FEBS J 2016; 283:2219-32. [DOI: 10.1111/febs.13665] [Citation(s) in RCA: 345] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/29/2015] [Accepted: 01/20/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL); L'Hospitalet; Barcelona Spain
- Department of Physiological Sciences II; University of Barcelona; Spain
| | | | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology II; San Carlos Clinical Hospital Health Research Institute (IdISSC); Madrid Spain
| | - Steven Dooley
- Department of Medicine II; Heidelberg University; Mannheim Germany
| | - Bedair Dewidar
- Department of Medicine II; Heidelberg University; Mannheim Germany
- Department of Pharmacology and Toxicology; Tanta University; Egypt
| | - Gianluigi Giannelli
- Department of Biomedical Sciences and Human Oncology; University of Bari Medical School; Italy
| | - Peter ten Dijke
- Department of Molecular and Cell Biology; Cancer Genomics Centre Netherlands; Leiden The Netherlands
| | | |
Collapse
|
44
|
Zharikov YO, Kovalenko YA, Czhao AV. [Biomolecular prognostic factors in Klatskin tumor]. Khirurgiia (Mosk) 2016:82-85. [PMID: 27447008 DOI: 10.17116/hirurgia2016582-85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yu O Zharikov
- A.V. Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yu A Kovalenko
- A.V. Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Czhao
- A.V. Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
45
|
Brivio S, Cadamuro M, Fabris L, Strazzabosco M. Epithelial-to-Mesenchymal Transition and Cancer Invasiveness: What Can We Learn from Cholangiocarcinoma? J Clin Med 2015; 4:2028-41. [PMID: 26703747 PMCID: PMC4693158 DOI: 10.3390/jcm4121958] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/04/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022] Open
Abstract
In addition to its well-established role in embryo development, epithelial-to-mesenchymal transition (EMT) has been proposed as a general mechanism favoring tumor metastatization in several epithelial malignancies. Herein, we review the topic of EMT in cholangiocarcinoma (CCA), a primary liver cancer arising from the epithelial cells lining the bile ducts (cholangiocytes) and characterized by an abundant stromal reaction. CCA carries a dismal prognosis, owing to a pronounced invasiveness and scarce therapeutic opportunities. In CCA, several reports indicate that cancer cells acquire a number of EMT biomarkers and functions. These phenotypic changes are likely induced by both autocrine and paracrine signals released in the tumor microenvironment (cytokines, growth factors, morphogens) and intracellular stimuli (microRNAs, oncogenes, tumor suppressor genes) variably associated with specific disease mechanisms, including chronic inflammation and hypoxia. Nevertheless, evidence supporting a complete EMT of neoplastic cholangiocytes into stromal cells is lacking, and the gain of EMT-like changes by CCA cells rather reflects a shift towards an enhanced pro-invasive phenotype, likely induced by the tumor stroma. This concept may help to identify new biomarkers of early metastatic behavior along with potential therapeutic targets.
Collapse
Affiliation(s)
- Simone Brivio
- School of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy.
| | - Massimiliano Cadamuro
- School of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy.
- Department of Molecular Medicine, University of Padua School of Medicine, Viale Colombo 3, 35131 Padua, Italy.
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Viale Colombo 3, 35131 Padua, Italy.
- Liver Center, Section of Digestive Diseases, Yale University, TAC Building, 333 Cedar Street, New Haven, CT 06520, USA.
| | - Mario Strazzabosco
- School of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy.
- Liver Center, Section of Digestive Diseases, Yale University, TAC Building, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
46
|
TGF-β1 Reduces miR-29a Expression to Promote Tumorigenicity and Metastasis of Cholangiocarcinoma by Targeting HDAC4. PLoS One 2015; 10:e0136703. [PMID: 26441331 PMCID: PMC4595145 DOI: 10.1371/journal.pone.0136703] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/06/2015] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor β1 (TGF-β1) and miRNAs play important roles in cholangiocarcinoma progression. In this study, miR-29a level was found significantly decreased in both cholangiocarcinoma tissues and tumor cell lines. TGF-β1 reduced miR-29a expression in tumor cell lines. Furthermore, anti-miR-29a reduced the proliferation and metastasis capacity of cholangiocarcinoma cell lines in vitro, overexpression of miR-29a counteracted TGF-β1-mediated cell growth and metastasis. Subsequent investigation identified HDAC4 is a direct target of miR-29a. In addition, restoration of HDAC4 attenuated miR-29a-mediated inhibition of cell proliferation and metastasis. Conclusions: TGF-β1/miR-29a/HDAC4 pathway contributes to the pathogenesis of cholangiocarcinoma and our data provide new therapeutic targets for cholangiocarcinoma.
Collapse
|
47
|
Romano M, De Francesco F, Gringeri E, Giordano A, Ferraro GA, Di Domenico M, Cillo U. Tumor Microenvironment Versus Cancer Stem Cells in Cholangiocarcinoma: Synergistic Effects? J Cell Physiol 2015; 231:768-76. [PMID: 26357947 DOI: 10.1002/jcp.25190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 09/09/2015] [Indexed: 12/19/2022]
Abstract
Cholangiocarcinoma (CCAs) may be defined as tumors that derived from the biliary tree with the differentiation in the biliary epithelial cells. This tumor is malignant, extremely aggressive with a poor prognosis. It can be treated surgically and its pathogenesis is poorly understood. The tumor microenvironment (TME) is a very important factor in the regulation of tumor angiogenesis, invasion, and metastasis. Besides cancer stem cells (CSCs) can modulate tumor growth, stroma formation, and migratory capability. The initial stage of tumorigenesis is characterized by genetic mutations and epigenetic alterations due to intrinsic factors which lead to the generation of oncogenes thus inducing tumorigenesis. CSCs may result from precancerous stem cells, cell de-differentiation, normal stem cells, or an epithelial-mesenchymal transition (EMT). CSCs have been found in the cancer niche, and EMT may occur early within the tumor microenvironment. Previous studies have demonstrated evidence of cholangiocarcinoma stem cells (CD133, CD24, EpCAM, CD44, and others) and the presence of these markers has been associated with malignant potential. The interaction between TME and cholangiocarcinoma stem cells via signaling mediators may create an environment that accommodates tumor growth, yielding resistance to cytotoxic insults (chemotherarapeutic). While progress has been made in the understanding of the mechanisms, the interactions in the tumorigenic process still remain a major challenge. Our review, addresses recent concepts of TME-CSCs interaction and will emphasize the importance of early detection with the use of novel diagnostic mechanisms such as CCA-CSC biomarkers and the importance of tumor stroma to define new treatments. J. Cell. Physiol. 231: 768-776, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maurizio Romano
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| | - Francesco De Francesco
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples, Naples, Italy
| | - Enrico Gringeri
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| | - Giuseppe A Ferraro
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples, Naples, Italy
| | - Marina Di Domenico
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Umberto Cillo
- Department of Surgery, Oncology and Gastroenterology, Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, Padua, Italy
| |
Collapse
|
48
|
Yu C, Xin W, Zhen J, Liu Y, Javed A, Wang R, Wan Q. Human antigen R mediated post-transcriptional regulation of epithelial-mesenchymal transition related genes in diabetic nephropathy. J Diabetes 2015; 7:562-72. [PMID: 25265983 DOI: 10.1111/1753-0407.12220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/04/2014] [Accepted: 09/08/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Human antigen R (HuR) is a ubiquitously expressed RNA-binding protein that modulates gene expression at the post-transcriptional level. While cytoplasmic HuR expression was identified as a marker in epithelial-mesenchymal transition (EMT) process of several types of cancer, its role in diabetic nephropathy (DN) remains unclear. METHODS Renal biopsies from Type 2 diabetic patients and STZ-induced DN rats were stained for HuR and EMT markers. Redistribution of HuR was detected by immunostaining and western blot in high glucose stimulated cells. RNAi was used to supress HuR expression. The binding affinity for EMT-related genes was evaluated by immunoprecipitation. RESULTS Cytoplasmic HuR expression was elevated in human and rat DN specimens along with EMT changes compared to normal controls. HuR shuttling between nucleus and cytoplasm facilitated epithelial to mesenchymal transition in renal epithelial cells. The suppression of HuR partially inhibited EMT of high glucose stimulated HK-2 cells. Furthermore, HuR bound to 3'-UTRs of critical cytokines or transcription factors mRNA involved in EMT process. CONCLUSION Acquired phenotypic traits of EMT were partially through the enhanced HuR-binding proteins and its post-transcriptional regulation role in DN.
Collapse
Affiliation(s)
- Che Yu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wei Xin
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Junhui Zhen
- Department of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, China
| | - Yi Liu
- Department of Respiratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Akhtar Javed
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qiang Wan
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Institute of Endocrinology, Shandong Academy of Clinical Medicine, Jinan, China
| |
Collapse
|
49
|
Molecular mechanism of local drug delivery with Paclitaxel-eluting membranes in biliary and pancreatic cancer: new application for an old drug. Gastroenterol Res Pract 2015; 2015:568981. [PMID: 25983747 PMCID: PMC4423024 DOI: 10.1155/2015/568981] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 12/31/2022] Open
Abstract
Implantation of self-expanding metal stents (SEMS) is palliation for patients suffering from inoperable malignant obstructions associated with biliary and pancreatic cancers. Chemotherapeutic agent-eluting stents have been developed because SEMS are susceptible to occlusion by tumor in-growth. We reported recently that paclitaxel-eluting SEMS provide enhanced local drug delivery in an animal model. However, little is known about the molecular mechanisms by which paclitaxel-eluting stents attenuate tumor growth. We investigated the signal transduction pathways underlying the antiproliferative effects of a paclitaxel-eluting membrane (PEM) implanted in pancreatic/cholangiocarcinoma tumor bearing nude mice. Molecular and cellular alterations were analyzed in the PEM-implanted pancreatic/cholangiocarcinoma xenograft tumors by Western blot, immunoprecipitation, and immunofluorescence. The quantities of paclitaxel released into the tumor and plasma were determined by liquid chromatography-tandem mass spectroscopy. Paclitaxel from the PEM and its diffusion into the tumor inhibited angiogenesis, which involved suppression of mammalian target of rapamycin (mTOR) through regulation of hypoxia inducible factor (HIF-1) and increased apoptosis. Moreover, implantation of the PEM inhibited tumor-stromal interaction-related expression of proteins such as CD44, SPARC, matrix metalloproteinase-2, and vimentin. Local delivery of paclitaxel from a PEM inhibited growth of pancreatic/cholangiocarcinoma tumors in nude mice by suppressing angiogenesis via the mTOR and inducing apoptosis signal pathway.
Collapse
|
50
|
Raggi C, Invernizzi P, Andersen JB. Impact of microenvironment and stem-like plasticity in cholangiocarcinoma: molecular networks and biological concepts. J Hepatol 2015; 62:198-207. [PMID: 25220250 DOI: 10.1016/j.jhep.2014.09.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/30/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022]
Abstract
Clinical complexity, anatomic diversity and molecular heterogeneity of cholangiocarcinoma (CCA) represent a major challenge in the assessment of effective targeted therapies. Molecular and cellular mechanisms underlying the diversity of CCA growth patterns remain a key issue of clinical concern. Crucial questions comprise the nature of the CCA-origin, the initial target for cellular transformation as well as the relationship with the cancer stem cells (CSC) concept. Additionally, since CCA often develops in the context of an inflammatory milieu (cirrhosis and cholangitis), the stromal compartment or tumour microenvironment (TME) likely promotes initiation and progression of this malignancy, contributing to its heterogeneity. This review will emphasize the dynamic interplay between stem-like intrinsic and TME-extrinsic pathways, which may represent novel options for multi-targeted therapies in CCA.
Collapse
Affiliation(s)
- Chiara Raggi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy.
| | - Pietro Invernizzi
- Liver Unit and Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|