1
|
Michael H, Weng GW, Vallas MM, Lovos D, Chen E, Sheiffele P, Weng W. Metabolomics analysis reveals resembling metabolites between humanized γδ TCR mice and human plasma. Sci Rep 2024; 14:29321. [PMID: 39592837 PMCID: PMC11599612 DOI: 10.1038/s41598-024-81003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024] Open
Abstract
Gamma delta (γδ) T cells, which reside in mucosal and epithelial tissues, are integral to immune responses and are involved in various cancers, autoimmune, and infectious diseases. To study human γδ T cells to a translational level, we developed γδ humanized TCR-T1 (HuTCR-T1) mice using our TruHumanization platform. We compared the metabolomic profiles from plasma samples of wild-type (WT), γδ HuTCR-T1 mice, and humans using UHPLC-MS/MS. Untargeted metabolomics and lipidomics were used to screen all detectable metabolites. Principal component analysis revealed that the metabolomic profiles of γδ HuTCR-T1 mice closely resemble those of humans, with a clear segregation of metabolites between γδ HuTCR-T1 and WT mice. Most humanized γδ metabolites were classified as lipids, followed by organic compounds and amino acids. Pathway analysis identified significant alterations in the metabolism of tryptophan, tyrosine, sphingolipids, and glycerophospholipids, shifting these pathways towards a more human-like profile. Immunophenotyping showed that γδ HuTCR-T1 mice maintained normal proportions of both lymphoid and myeloid immune cell populations, closely resembling WT mice, with only a few exceptions. These findings demonstrate that the γδ HuTCR-T1 mouse model exhibits a metabolomic profile that is remarkably similar to that of humans, highlighting its potential as a relevant model for investigating the role of metabolites in disease development and progression. This model also offers an opportunity to discover therapeutic human TCRs.
Collapse
Affiliation(s)
- Husheem Michael
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America.
| | - Gene W Weng
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America
| | - Mikaela M Vallas
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America
| | - Douglas Lovos
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America
| | - Ellen Chen
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America
| | - Paul Sheiffele
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America
| | - Wei Weng
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America.
| |
Collapse
|
2
|
Nagahashi M, Miyoshi Y. Targeting Sphingosine-1-Phosphate Signaling in Breast Cancer. Int J Mol Sci 2024; 25:3354. [PMID: 38542328 PMCID: PMC10970081 DOI: 10.3390/ijms25063354] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 01/04/2025] Open
Abstract
In recent years, newly emerging therapies, such as immune checkpoint inhibitors and antibody-drug conjugates, have further improved outcomes for breast cancer patients. However, recurrent and metastatic breast cancer often eventually develops resistance to these drugs, and cure is still rare. As such, the development of new therapies for refractory breast cancer that differ from conventional mechanisms of action is necessary. Sphingosine-1-phosphate (S1P) is a key molecule with a variety of bioactive activities, including involvement in cancer cell proliferation, invasion, and metastasis. S1P also contributes to the formation of the cancer microenvironment by inducing surrounding vascular- and lymph-angiogenesis and regulating the immune system. In this article, we outline the basic mechanism of action of S1P, summarize previous findings on the function of S1P in cancer cells and the cancer microenvironment, and discuss the clinical significance of S1P in breast cancer and the therapeutic potential of targeting S1P signaling.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Department of Surgery, Division of Breast and Endocrine Surgery, School of Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan;
| | | |
Collapse
|
3
|
Xiao Q, Xia M, Tang W, Zhao H, Chen Y, Zhong J. The lipid metabolism remodeling: A hurdle in breast cancer therapy. Cancer Lett 2024; 582:216512. [PMID: 38036043 DOI: 10.1016/j.canlet.2023.216512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Lipids, as one of the three primary energy sources, provide energy for all cellular life activities. Lipids are also known to be involved in the formation of cell membranes and play an important role as signaling molecules in the intracellular and microenvironment. Tumor cells actively or passively remodel lipid metabolism, using the function of lipids in various important cellular life activities to evade therapeutic attack. Breast cancer has become the leading cause of cancer-related deaths in women, which is partly due to therapeutic resistance. It is necessary to fully elucidate the formation and mechanisms of chemoresistance to improve breast cancer patient survival rates. Altered lipid metabolism has been observed in breast cancer with therapeutic resistance, indicating that targeting lipid reprogramming is a promising anticancer strategy.
Collapse
Affiliation(s)
- Qian Xiao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Min Xia
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Weijian Tang
- Queen Mary School of Nanchang University, Nanchang University, Nanchang, 330031, PR China
| | - Hu Zhao
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yajun Chen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Jing Zhong
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China; Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
4
|
Laroche FJF, Li S, Shen N, Hwang SK, Nguyen G, Yu W, Wong CK, Quinton RJ, Berman JN, Liu CT, Singh A, Ganem NJ, Thiagalingam S, Feng H. S1P1 Threonine 236 Phosphorylation Mediates the Invasiveness of Triple-Negative Breast Cancer and Sensitivity to FTY720. Cells 2023; 12:980. [PMID: 37048053 PMCID: PMC10093541 DOI: 10.3390/cells12070980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
Hyperactive sphingosine 1-phosphate (S1P) signaling is associated with a poor prognosis of triple-negative breast cancer (TNBC). Despite recent evidence that links the S1P receptor 1 (S1P1) to TNBC cell survival, its role in TNBC invasion and the underlying mechanisms remain elusive. Combining analyses of human TNBC cells with zebrafish xenografts, we found that phosphorylation of S1P receptor 1 (S1P1) at threonine 236 (T236) is critical for TNBC dissemination. Compared to luminal breast cancer cells, TNBC cells exhibit a significant increase of phospho-S1P1 T236 but not the total S1P1 levels. Misexpression of phosphorylation-defective S1P1 T236A (alanine) decreases TNBC cell migration in vitro and disease invasion in zebrafish xenografts. Pharmacologic disruption of S1P1 T236 phosphorylation, using either a pan-AKT inhibitor (MK2206) or an S1P1 functional antagonist (FTY720, an FDA-approved drug for treating multiple sclerosis), suppresses TNBC cell migration in vitro and tumor invasion in vivo. Finally, we show that human TNBC cells with AKT activation and elevated phospho-S1P1 T236 are sensitive to FTY720-induced cytotoxic effects. These findings indicate that the AKT-enhanced phosphorylation of S1P1 T236 mediates much of the TNBC invasiveness, providing a potential biomarker to select TNBC patients for the clinical application of FTY720.
Collapse
Affiliation(s)
- Fabrice J. F. Laroche
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Sheng Li
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guizhou 550025, China
| | - Ning Shen
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Soo Kyung Hwang
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Gina Nguyen
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Wenling Yu
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Chen Khuan Wong
- Biomedical Genetics Section, Department of Medicine, Department of Pathology and Laboratory Medicine, Genetics and Genomics Graduate Program, Cancer Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Ryan J. Quinton
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Jason N. Berman
- Children’s Hospital of Eastern Ontario Research Institute, Departments of Pediatrics and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Ching-Ti Liu
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Anurag Singh
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Neil J. Ganem
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Sam Thiagalingam
- Biomedical Genetics Section, Department of Medicine, Department of Pathology and Laboratory Medicine, Genetics and Genomics Graduate Program, Cancer Center, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Hui Feng
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
5
|
Brier MR, Hamdi M, Rajamanikam J, Zhao H, Mansor S, Jones LA, Rahmani F, Jindal S, Koudelis D, Perlmutter JS, Wong DF, Nickels M, Ippolito JE, Gropler RJ, Schindler TH, Laforest R, Tu Z, Benzinger TLS. Phase 1 Evaluation of 11C-CS1P1 to Assess Safety and Dosimetry in Human Participants. J Nucl Med 2022; 63:1775-1782. [PMID: 35332093 PMCID: PMC9635683 DOI: 10.2967/jnumed.121.263189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 03/02/2022] [Indexed: 01/07/2023] Open
Abstract
This study evaluated the safety, dosimetry, and characteristics of 3-((2-fluoro-4-(5-(2'-methyl-2-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)-1,2,4-oxadiazol-3-yl)benzyl)(methyl-11C)amino)propanoic acid (11C-CS1P1), a radiotracer targeting sphingosine-1-phosphate receptor (S1PR) 1 (S1PR1). S1PR1 is of clinical interest because of its role in multiple sclerosis (and other conditions), with an expanding class of S1PR modulators approved for relapsing multiple sclerosis. 11C-CS1P1 binds S1PR1 with high specificity and has shown promise in animal models of inflammatory diseases. Methods: 11C-CS1P1 was injected into 5 male and 6 female healthy participants. Ten participants were imaged with PET using a multipass whole-body continuous-bed-motion acquisition, and one had dedicated head and neck PET and MRI. Participants were continuously monitored for safety events. Organ time-activity curve data were collected, integrated, and normalized to the injected activity. Organ radiation doses and effective dose were computed using the adult male and female models in OLINDA, version 2.2. SUV images were evaluated for qualitative biodistribution. Results: No adverse events were observed after the dose, including no bradycardia. The liver was the critical organ from dosimetry analysis (mean ± SD: female, 23.12 ± 5.19 μSv/MBq; male, 21.06 ± 1.63 μSv/MBq). The whole-body effective dose (as defined by International Commission on Radiological Protection publication 103) was 4.18 ± 0.30 μSv/MBq in women and 3.54 ± 0.14 μSv/MBq in men. Using a maximum delivered dose of 740 MBq (20 mCi), the effective dose for women would be 3.1 mSv (0.31 rem), with a liver dose of 17.1 mSv (1.7 rem); the effective dose for men would be 2.6 mSv (0.26 rem), with a liver dose of 15.6 mSv (1.56 rem). Brain uptake was seen predominantly in gray matter and correlated with regional S1PR1 RNA expression (r = 0.84). Conclusion: These results support the safety of 11C-CS1P1 for evaluation of inflammation in human clinical populations. Dosimetry permits repeated measures in the same participants. Brain uptake correlates well with known target topography.
Collapse
Affiliation(s)
- Matthew R Brier
- Department of Neurology, Washington University, St. Louis, Missouri
| | - Mahdjoub Hamdi
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | | | - Haiyang Zhao
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Syahir Mansor
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Lynne A Jones
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Farzaneh Rahmani
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Saurabh Jindal
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Deborah Koudelis
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Joel S Perlmutter
- Department of Neurology, Washington University, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
- Department of Neuroscience, Washington University, St. Louis, Missouri
- Department of Physical and Occupational Therapy, Washington University, St. Louis, Missouri; and
| | - Dean F Wong
- Department of Neurology, Washington University, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
- Department of Neuroscience, Washington University, St. Louis, Missouri
- Department of Psychiatry, Washington University, St. Louis, Missouri
| | - Michael Nickels
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Joseph E Ippolito
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Thomas H Schindler
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Zhude Tu
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri;
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri;
| |
Collapse
|
6
|
Clinical relevance of CERK and SPHK1 in breast cancer and their association with metastasis and drug resistance. Sci Rep 2022; 12:18239. [PMID: 36309544 PMCID: PMC9617946 DOI: 10.1038/s41598-022-20976-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/21/2022] [Indexed: 12/31/2022] Open
Abstract
Despite numerous reports on the altered sphingolipids metabolism in human cancers, their clinical significance in breast cancer remains obscure. Previously, we identified the high levels of sphingolipids, ceramide phosphates and sphingosine phosphates, and the genes involved in their synthesis, CERK and SPHK1, in breast cancer patients. The present study aimed to determine the correlations of CERK and SPHK1 with clinical outcomes as well as metastasis and drug resistance markers. Both local and TCGA cohorts were analysed. High-confidence regulatory interaction network was constructed to find association of target genes with metastasis and drug resistance. Furthermore, correlations of CERK and SPHK1 with selected metastasis and drug resistance markers were validated in both cohorts. Overexpression of CERK and SPHK1 was associated with nodal metastasis, late tumor stage and high proliferation potency. In addition, increased CERK expression was also indicative of poor patient survival. Computational network analysis revealed the association of CERK and SPHK1 with known metastasis markers MMP-2 and MMP-9 and drug resistance markers ABCC1 and ABCG2. Correlation analysis confirmed the associations of target genes with these markers in both local as well as TCGA cohort. The above findings suggest clinical utility of CERK and SPHK1 as potential biomarkers in breast cancer patients and thus could provide novel leads in the development of therapeutics.
Collapse
|
7
|
Hirata N, Yamada S, Yanagida S, Ono A, Yasuhiko Y, Kanda Y. Transforming Growth Factor Beta Promotes the Expansion of Cancer Stem Cells <i>via</i> S1PR3 by Ligand-Independent Notch Activation. Biol Pharm Bull 2022; 45:649-658. [DOI: 10.1248/bpb.b22-00112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Naoya Hirata
- Division of Pharmacology, National Institute of Health Sciences
| | - Shigeru Yamada
- Division of Pharmacology, National Institute of Health Sciences
| | - Shota Yanagida
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Atsushi Ono
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Yukuto Yasuhiko
- Division of Pharmacology, National Institute of Health Sciences
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences
| |
Collapse
|
8
|
Yu L, He L, Gan B, Ti R, Xiao Q, Yang X, Hu H, Zhu L, Wang S, Ren R. Structural insights into sphingosine-1-phosphate receptor activation. Proc Natl Acad Sci U S A 2022; 119:e2117716119. [PMID: 35412894 PMCID: PMC9169846 DOI: 10.1073/pnas.2117716119] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/22/2022] [Indexed: 01/06/2023] Open
Abstract
As a critical sphingolipid metabolite, sphingosine-1-phosphate (S1P) plays an essential role in immune and vascular systems. There are five S1P receptors, designated as S1PR1 to S1PR5, encoded in the human genome, and their activities are governed by endogenous S1P, lipid-like S1P mimics, or nonlipid-like therapeutic molecules. Among S1PRs, S1PR1 stands out due to its nonredundant functions, such as the egress of T and B cells from the thymus and secondary lymphoid tissues, making it a potential therapeutic target. However, the structural basis of S1PR1 activation and regulation by various agonists remains unclear. Here, we report four atomic resolution cryo-electron microscopy (cryo-EM) structures of Gi-coupled human S1PR1 complexes: bound to endogenous agonist d18:1 S1P, benchmark lipid-like S1P mimic phosphorylated Fingolimod [(S)-FTY720-P], or nonlipid-like therapeutic molecule CBP-307 in two binding modes. Our results revealed the similarities and differences of activation of S1PR1 through distinct ligands binding to the amphiphilic orthosteric pocket. We also proposed a two-step “shallow to deep” transition process of CBP-307 for S1PR1 activation. Both binding modes of CBP-307 could activate S1PR1, but from shallow to deep transition may trigger the rotation of the N-terminal helix of Gαi and further stabilize the complex by increasing the Gαi interaction with the cell membrane. We combine with extensive biochemical analysis and molecular dynamic simulations to suggest key steps of S1P binding and receptor activation. The above results decipher the common feature of the S1PR1 agonist recognition and activation mechanism and will firmly promote the development of therapeutics targeting S1PRs.
Collapse
Affiliation(s)
- Leiye Yu
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200437, China
- School of Life Sciences, University of Science and Technology of China, Anhui 230026, China
| | - Licong He
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bing Gan
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Rujuan Ti
- Warshal Institute of Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qingjie Xiao
- Zhangjiang Laboratory, National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xin Yang
- Suzhou Connect Biopharmaceuticals, Ltd
| | - Hongli Hu
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Lizhe Zhu
- Warshal Institute of Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruobing Ren
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200437, China
| |
Collapse
|
9
|
Tang X, Chen F, Xie LC, Liu SX, Mai HR. Targeting metabolism: A potential strategy for hematological cancer therapy. World J Clin Cases 2022; 10:2990-3004. [PMID: 35647127 PMCID: PMC9082716 DOI: 10.12998/wjcc.v10.i10.2990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/01/2021] [Accepted: 02/27/2022] [Indexed: 02/06/2023] Open
Abstract
Most hematological cancer-related relapses and deaths are caused by metastasis; thus, the importance of this process as a target of therapy should be considered. Hematological cancer is a type of cancer in which metabolism plays an essential role in progression. Therefore, we are required to block fundamental metastatic processes and develop specific preclinical and clinical strategies against those biomarkers involved in the metabolic regulation of hematological cancer cells, which do not rely on primary tumor responses. To understand progress in this field, we provide a summary of recent developments in the understanding of metabolism in hematological cancer and a general understanding of biomarkers currently used and under investigation for clinical and preclinical applications involving drug development. The signaling pathways involved in cancer cell metabolism are highlighted and shed light on how we could identify novel biomarkers involved in cancer development and treatment. This review provides new insights into biomolecular carriers that could be targeted as anticancer biomarkers.
Collapse
Affiliation(s)
- Xue Tang
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Fen Chen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Li-Chun Xie
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Si-Xi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| | - Hui-Rong Mai
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen 518038, Guangdong Province, China
| |
Collapse
|
10
|
Increased Sphingosine Kinase 1 Expression Is Associated with Poor Prognosis in Human Solid Tumors: A Meta-Analysis. DISEASE MARKERS 2022; 2022:8443932. [PMID: 35126792 PMCID: PMC8816543 DOI: 10.1155/2022/8443932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Methods PubMed, Web of Science, Embase, CNKI, and Wanfang databases were thoroughly searched for eligible studies, in which the relationship between SPHK1 expression and cancer prognosis was evaluated. Hazard ratios (HRs) and 95% confidence intervals (CIs) were pooled to estimate the impact of SPHK1 expression on cancer patients' survival. Odds ratios (ORs) and 95% CIs were combined to assess the association between SPHK1 expression and clinicopathological characteristics of cancer patients. The certainty of evidence was evaluated by Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria. Results Thirty studies comprising 32 cohorts with 5965 patients were included in this meta-analysis. The outcomes indicated that elevated SPHK1 expression was associated with worse overall survival (OS) (HR = 1.71, 95% CI: 1.45-2.01, P < 0.001) and disease-free survival (DFS) (HR = 1.34, 95% CI: 1.13-1.59, P = 0.001). What is more, SPHK1 overexpression was significantly correlated with certain phenotypes of tumor aggressiveness, such as clinical stage (OR = 2.07, 95% CI: 1.39-3.09, P < 0.001), tumor invasion (OR = 2.16, 95% CI: 1.47-3.18, P < 0.001), lymph node metastasis (OR = 2.04, 95% CI: 1.71-2.44, P < 0.001), and distant metastasis (OR = 3.16, 95% CI: 2.44-4.09, P < 0.001). The quality of the evidence for both OS and DFS was low. Conclusions Increased SPHK1 expression is related to poor prognosis in human cancers and may serve as a promising prognostic marker and therapeutic target for malignant patients. However, conclusions need to be treated with caution because of lack of high quality of evidence.
Collapse
|
11
|
Plasma Sphingosine-1-Phosphate Levels Are Associated with Progression of Estrogen Receptor-Positive Breast Cancer. Int J Mol Sci 2021; 22:ijms222413367. [PMID: 34948163 PMCID: PMC8703495 DOI: 10.3390/ijms222413367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Although numerous experiments revealed an essential role of a lipid mediator, sphingosine-1-phosphate (S1P), in breast cancer (BC) progression, the clinical significance of S1P remains unclear due to the difficulty of measuring lipids in patients. The aim of this study was to determine the plasma concentration of S1P in estrogen receptor (ER)-positive BC patients, as well as to investigate its clinical significance. We further explored the possibility of a treatment strategy targeting S1P in ER-positive BC patients by examining the effect of FTY720, a functional antagonist of S1P receptors, on hormone therapy-resistant cells. Plasma S1P levels were significantly higher in patients negative for progesterone receptor (PgR) expression than in those positive for expression (p = 0.003). Plasma S1P levels were also significantly higher in patients with larger tumor size (p = 0.012), lymph node metastasis (p = 0.014), and advanced cancer stage (p = 0.003), suggesting that higher levels of plasma S1P are associated with cancer progression. FTY720 suppressed the viability of not only wildtype MCF-7 cells, but also hormone therapy-resistant MCF-7 cells. Targeting S1P signaling in ER-positive BC appears to be a possible new treatment strategy, even for hormone therapy-resistant patients.
Collapse
|
12
|
Hii LW, Chung FFL, Mai CW, Ng PY, Leong CO. Sphingosine Kinase 1 Signaling in Breast Cancer: A Potential Target to Tackle Breast Cancer Stem Cells. Front Mol Biosci 2021; 8:748470. [PMID: 34820423 PMCID: PMC8606534 DOI: 10.3389/fmolb.2021.748470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Sphingosine kinases (SPHKs) are conserved lipid enzymes that catalyze the formation of sphingosine-1-phosphate (S1P) through ATP-dependent phosphorylation of sphingosine. Two distinct SPHK isoforms, namely SPHK1 and SPHK2, have been identified to date, and the former has been implicated for its oncogenic roles in cancer development and progression. While SPHK1 signaling axis has been extensively studied in non-stem breast cancer cells, recent evidence has emerged to suggest a role of SPHK1 in regulating cancer stem cells (CSCs). With the clinical implications of CSCs in disease relapse and metastasis, it is believed that therapeutic approaches that can eradicate both non-stem cancer cells and CSCs could be a key to cancer cure. In this review, we first explore the oncogenic functions of sphingosine kinase 1 in human cancers and summarize current research findings of SPHK1 signaling with a focus on breast cancer. We also discuss the therapeutic potentials and perspectives of targeting SPHK1 signaling in breast cancer and cancer stem cells. We aim to offer new insights and inspire future studies looking further into the regulatory functions of SPHK1 in CSC-driven tumorigenesis, uncovering novel therapeutic avenues of using SPHK1-targeted therapy in the treatment of CSC-enriched refractory cancers.
Collapse
Affiliation(s)
- Ling-Wei Hii
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Ye M, Gai Y, Ji H, Jiang Y, Qiao P, Wang W, Zhang Y, Xia X, Lan X. A Novel Radioimmune 99mTc-Labeled Tracer for Imaging Sphingosine 1-Phosphate Receptor 1 in Tumor Xenografts: An In Vitro and In Vivo Study. Front Immunol 2021; 12:660842. [PMID: 34484174 PMCID: PMC8416251 DOI: 10.3389/fimmu.2021.660842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a phospholipid that regulates pleiotropic biological activities and exerts extracellular functions by binding to five specific G-protein-coupled receptors, S1P receptors (S1PR) 1-5. When activated by S1P, S1PR promote the proliferation and invasion of tumor cells by inducing the formation of new blood vessels. We developed and assessed a new monoclonal antibody imaging probe 99mTc-HYNIC-S1PR1mAb, to explore the feasibility of targeting the S1PR1 in vitro and in vivo. S1PR1mAb was prepared and followed by technetium-99m labeling with succinimidyl 6-hydraziniumnicotinate hydrochloride. Cell uptake and blocking studies were performed to investigate the binding specificity of 99mTc-HYNIC-S1PR1mAb in vitro. 99mTc-HYNIC-S1P1mAb was also tested in vivo in mice xenografted with SK-HEP-1 (high-expression of S1PR1) and MCF-7 (low-expression of S1PR1) using single-photon emission-computed tomography (SPECT). Ex vivo gamma counting of tissues from tumor-bearing mice was used to evaluate 99mTc-HYNIC-S1PR1mAb biodistribution. The biodistribution study results showed significantly higher uptake in SK-HEP-1 tumors than in MCF-7 tumors (P < 0.001). Reduced uptake of 99mTc-HYNIC-S1PR1mAb in SK-HEP-1 was observed in tumor-bearing nude mice pretreated with fingolimod, which binds competitively to the receptors, especially S1PR1. 99mTc-HYNIC-S1PR1mAb can be synthesized and specifically targeted to S1PR1 in vitro and in vivo, allowing S1PR1 expression assessment with SPECT imaging.
Collapse
Affiliation(s)
- Min Ye
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yaqun Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Pengxin Qiao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenxia Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
14
|
Venkatraman G, Tang X, Du G, Parisentti AM, Hemmings DG, Brindley DN. Lysophosphatidate Promotes Sphingosine 1-Phosphate Metabolism and Signaling: Implications for Breast Cancer and Doxorubicin Resistance. Cell Biochem Biophys 2021; 79:531-545. [PMID: 34415509 PMCID: PMC11948428 DOI: 10.1007/s12013-021-01024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) promote vasculogenesis, angiogenesis, and wound healing by activating a plethora of overlapping signaling pathways that stimulate mitogenesis, cell survival, and migration. As such, maladaptive signaling by LPA and S1P have major effects in increasing tumor progression and producing poor patient outcomes after chemotherapy and radiotherapy. Many signaling actions of S1P and LPA are not redundant; each are vital in normal physiology and their metabolisms differ. In the present work, we studied how LPA signaling impacts S1P metabolism and signaling in MDA-MB-231 and MCF-7 breast cancer cells. LPA increased sphingosine kinase-1 (SphK1) synthesis and rapidly activated cytosolic SphK1 through association with membranes. Blocking phospholipase D activity attenuated the LPA-induced activation of SphK1 and the synthesis of ABCC1 and ABCG2 transporters that secrete S1P from cells. This effect was magnified in doxorubicin-resistant MCF-7 cells. LPA also facilitated S1P signaling by increasing mRNA expression for S1P1 receptors. Doxorubicin-resistant MCF-7 cells had increased S1P2 and S1P3 receptor expression and show increased LPA-induced SphK1 activation, increased expression of ABCC1, ABCG2 and greater S1P secretion. Thus, LPA itself and LPA-induced S1P signaling counteract doxorubicin-induced death of MCF-7 cells. We conclude from the present and previous studies that LPA promotes S1P metabolism and signaling to coordinately increase tumor growth and metastasis and decrease the effectiveness of chemotherapy and radiotherapy for breast cancer treatment.
Collapse
Affiliation(s)
- Ganesh Venkatraman
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Guangwei Du
- Department of Integrative Biology & Pharmacology, University of Texas Health Science at Houston, Houston, TX, 77030, USA
| | - Amadeo M Parisentti
- Northern Ontario School of Medicine, Health Sciences North Research Institute, Sudbury, ON, P3E 2H2, Canada
| | - Denise G Hemmings
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
- Medical Microbiology and Immunology, Obstetrics and Gynecology, Women and Children's Health Research Institute, Li Ka Shing Institute of Virology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | - David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
15
|
Velazquez FN, Zhang L, Viscardi V, Trocchia C, Hannun YA, Obeid LM, Snider AJ. Loss of sphingosine kinase 1 increases lung metastases in the MMTV-PyMT mouse model of breast cancer. PLoS One 2021; 16:e0252311. [PMID: 34043703 PMCID: PMC8158862 DOI: 10.1371/journal.pone.0252311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a very heterogeneous disease, and ~30% of breast cancer patients succumb to metastasis, highlighting the need to understand the mechanisms of breast cancer progression in order to identify new molecular targets for treatment. Sphingosine kinase 1 (SK1) has been shown to be upregulated in patients with breast cancer, and several studies have suggested its involvement in breast cancer progression and/or metastasis, mostly based on cell studies. In this work we evaluated the role of SK1 in breast cancer development and metastasis using a transgenic breast cancer model, mouse mammary tumor virus-polyoma middle tumor-antigen (MMTV-PyMT), that closely resembles the characteristics and evolution of human breast cancer. The results show that SK1 deficiency does not alter tumor latency or growth, but significantly increases the number of metastatic lung nodules and the average metastasis size in the lung of MMTV-PyMT mice. Additionally, analysis of Kaplan-Meier plotter of human disease shows that high SK1 mRNA expression can be associated with a better prognosis for breast cancer patients. These results suggest a metastasis-suppressing function for SK1 in the MMTV-PyMT model of breast cancer, and that its role in regulating human breast cancer progression and metastasis may be dependent on the breast cancer type.
Collapse
Affiliation(s)
- Fabiola N. Velazquez
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Leiqing Zhang
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Valentina Viscardi
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Carolena Trocchia
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Yusuf A. Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Lina M. Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Ashley J. Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States of America
- Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, United States of America
- * E-mail:
| |
Collapse
|
16
|
Brown RDR, Veerman BEP, Oh J, Tate RJ, Torta F, Cunningham MR, Adams DR, Pyne S, Pyne NJ. A new model for regulation of sphingosine kinase 1 translocation to the plasma membrane in breast cancer cells. J Biol Chem 2021; 296:100674. [PMID: 33865856 PMCID: PMC8135045 DOI: 10.1016/j.jbc.2021.100674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 01/24/2023] Open
Abstract
The translocation of sphingosine kinase 1 (SK1) to the plasma membrane (PM) is crucial in promoting oncogenesis. We have previously proposed that SK1 exists as both a monomer and dimer in equilibrium, although it is unclear whether these species translocate to the PM via the same or different mechanisms. We therefore investigated the structural determinants involved to better understand how translocation might potentially be targeted for therapeutic intervention. We report here that monomeric WT mouse SK1 (GFP-mSK1) translocates to the PM of MCF-7L cells stimulated with carbachol or phorbol 12-myristate 13-acetate, whereas the dimer translocates to the PM in response to sphingosine-1-phosphate; thus, the equilibrium between the monomer and dimer is sensitive to cellular stimulus. In addition, carbachol and phorbol 12-myristate 13-acetate induced translocation of monomeric GFP-mSK1 to lamellipodia, whereas sphingosine-1-phosphate induced translocation of dimeric GFP-mSK1 to filopodia, suggesting that SK1 regulates different cell biological processes dependent on dimerization. GFP-mSK1 mutants designed to modulate dimerization confirmed this difference in localization. Regulation by the C-terminal tail of SK1 was investigated using GFP-mSK1 truncations. Removal of the last five amino acids (PPEEP) prevented translocation of the enzyme to the PM, whereas removal of the last ten amino acids restored translocation. This suggests that the penultimate five amino acids (SRRGP) function as a translocation brake, which can be released by sequestration of the PPEEP sequence. We propose that these determinants alter the arrangement of N-terminal and C-terminal domains in SK1, leading to unique surfaces that promote differential translocation to the PM.
Collapse
Affiliation(s)
- Ryan D R Brown
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Ben E P Veerman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Jeongah Oh
- SLING, Singapore Lipidomics Incubator, Life Sciences Institute and Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rothwelle J Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Federico Torta
- SLING, Singapore Lipidomics Incubator, Life Sciences Institute and Department of Biochemistry, YLL School of Medicine, National University of Singapore, Singapore, Singapore
| | - Margaret R Cunningham
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - David R Adams
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK.
| |
Collapse
|
17
|
Ren R, Pang B, Han Y, Li Y. A Glimpse of the Structural Biology of the Metabolism of Sphingosine-1-Phosphate. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:2515256421995601. [PMID: 37366379 PMCID: PMC10243590 DOI: 10.1177/2515256421995601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 06/28/2023]
Abstract
As a key sphingolipid metabolite, sphingosine-1-phosphate (S1P) plays crucial roles in vascular and immune systems. It regulates angiogenesis, vascular integrity and homeostasis, allergic responses, and lymphocyte trafficking. S1P is interconverted with sphingosine, which is also derived from the deacylation of ceramide. S1P levels and the ratio to ceramide in cells are tightly regulated by its metabolic pathways. Abnormal S1P production causes the occurrence and progression of numerous severe diseases, such as metabolic syndrome, cancers, autoimmune disorders such as multiple sclerosis, and kidney and cardiovascular diseases. In recent years, huge advances on the structure of S1P metabolic pathways have been accomplished. In this review, we have got a glimpse of S1P metabolism through structural and biochemical studies of: sphingosine kinases, S1P transporters and S1P receptors, and the development of therapeutics targeting S1P signaling. The progress we summarize here could provide fresh perspectives to further the exploration of S1P functions and facilitate the development of therapeutic molecules targeting S1P signaling with improved specificity and therapeutic effects.
Collapse
Affiliation(s)
- Ruobing Ren
- Kobilka Institute of Innovative Drug
Discovery, School of Life and Health Sciences, the Chinese University
of Hong Kong, Shenzhen, China
| | - Bin Pang
- Kobilka Institute of Innovative Drug
Discovery, School of Life and Health Sciences, the Chinese University
of Hong Kong, Shenzhen, China
| | - Yufei Han
- Kobilka Institute of Innovative Drug
Discovery, School of Life and Health Sciences, the Chinese University
of Hong Kong, Shenzhen, China
| | - Yihao Li
- Kobilka Institute of Innovative Drug
Discovery, School of Life and Health Sciences, the Chinese University
of Hong Kong, Shenzhen, China
| |
Collapse
|
18
|
Velazquez FN, Hernandez-Corbacho M, Trayssac M, Stith JL, Bonica J, Jean B, Pulkoski-Gross MJ, Carroll BL, Salama MF, Hannun YA, Snider AJ. Bioactive sphingolipids: Advancements and contributions from the laboratory of Dr. Lina M. Obeid. Cell Signal 2020; 79:109875. [PMID: 33290840 PMCID: PMC8244749 DOI: 10.1016/j.cellsig.2020.109875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Sphingolipids and their synthetic enzymes have emerged as critical mediators in numerous diseases including inflammation, aging, and cancer. One enzyme in particular, sphingosine kinase (SK) and its product sphingosine-1-phosphate (S1P), has been extensively implicated in these processes. SK catalyzes the phosphorylation of sphingosine to S1P and exists as two isoforms, SK1 and SK2. In this review, we will discuss the contributions from the laboratory of Dr. Lina M. Obeid that have defined the roles for several bioactive sphingolipids in signaling and disease with an emphasis on her work defining SK1 in cellular fates and pathobiologies including proliferation, senescence, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Fabiola N Velazquez
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Hernandez-Corbacho
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Magali Trayssac
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jeffrey L Stith
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph Bonica
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Bernandie Jean
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael J Pulkoski-Gross
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Brittany L Carroll
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Mohamed F Salama
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ashley J Snider
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
19
|
Adams DR, Pyne S, Pyne NJ. Structure-function analysis of lipid substrates and inhibitors of sphingosine kinases. Cell Signal 2020; 76:109806. [PMID: 33035646 DOI: 10.1016/j.cellsig.2020.109806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022]
Abstract
The sphingosine kinases, SK1 and SK2, catalyse the formation of the bioactive signalling lipid, sphingosine 1-phosphate (S1P), from sphingosine. SK1 and SK2 differ in their subcellular localisation, trafficking and regulation, but the isoforms are also distinct in their selectivity toward naturally occurring and synthetic ligands as substrates and inhibitors. To date, only the structure of SK1 has been determined, and a structural basis for selectivity differences in substrate handling by SK2 has yet to be established. Here we present a structural rationale, based on homology modelling and ligand docking, to account for the capacity of SK2, but not SK1, to efficiently process the pharmacologically active substances, fingolimod (FTY720) and safingol, as substrates. We propose that two key residue differences in hSK2 (Ser305/Thr584 in place of Ala175/Ala339 in hSK1) facilitate conformational switching in the lipid head group anchor residue, Asp308 (corresponding to Asp178 in hSK1), to accommodate substrate diversity for SK2. Our analysis accounts for the contrasting behaviour of fingolimod and safingol as non-turnover inhibitors of SK1, but substrates for SK2, and the observed stereoselectivity for phosphorylation of the pro-S hydroxymethyl group of fingolimod to generate (S)-FTY720-P in vivo. We also rationalise why methylation of the pro-R hydroxymethyl of FTY720 switches the behaviour of the resulting compound, (R)-FTY720 methyl ether (ROMe), to SK2-selective inhibition. Whilst the pharmacological significance of (S)-FTY720-P is firmly established, as the active principle of fingolimod in treating relapsing-remitting multiple sclerosis, the potential importance of SK-mediated phosphorylation of other substrates, such as safingol and non-canonical naturally occuring substrates such as (4E,nZ)-sphingadienes, is less widely appreciated. Thus, the contribution of SK2-derived safingol 1-phosphate to the anti-cancer activity of safingol should be considered. Similarly, the biological role of sphingadiene 1-phosphates derived from plant-based dietary sphingadienes, which we also show here are substrates for both SK1 and SK2, merits investigation.
Collapse
Affiliation(s)
- David R Adams
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK.
| |
Collapse
|
20
|
Pyne NJ, Pyne S. Recent advances in the role of sphingosine 1-phosphate in cancer. FEBS Lett 2020; 594:3583-3601. [PMID: 32969034 DOI: 10.1002/1873-3468.13933] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that binds to a family of G protein-coupled receptors (S1P1-5 ) and intracellular targets, such as HDAC1/2, that are functional in normal and pathophysiologic cell biology. There is a significant role for sphingosine 1-phosphate in cancer underpinning the so-called hallmarks, such as transformation and replicative immortality. In this review, we survey the most recent developments concerning the role of sphingosine 1-phosphate receptors, sphingosine kinase and S1P lyase in cancer and the prognostic indications of these receptors and enzymes in terms of disease-specific survival and recurrence. We also provide evidence for identification of new therapeutic approaches targeting sphingosine 1-phosphate to prevent neovascularisation, to revert aggressive and drug-resistant cancers to more amenable forms sensitive to chemotherapy, and to induce cytotoxicity in cancer cells. Finally, we briefly describe current advances in the development of isoform-specific inhibitors of sphingosine kinases for potential use in the treatment of various cancers, where these enzymes have a predominant role. This review will therefore highlight sphingosine 1-phosphate signalling as a promising translational target for precision medicine in stratified cancer patients.
Collapse
Affiliation(s)
- Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
21
|
Tang X, Brindley DN. Lipid Phosphate Phosphatases and Cancer. Biomolecules 2020; 10:biom10091263. [PMID: 32887262 PMCID: PMC7564803 DOI: 10.3390/biom10091263] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/22/2022] Open
Abstract
Lipid phosphate phosphatases (LPPs) are a group of three enzymes (LPP1–3) that belong to a phospholipid phosphatase (PLPP) family. The LPPs dephosphorylate a wide spectrum of bioactive lipid phosphates, among which lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) are two important extracellular signaling molecules. The LPPs are integral membrane proteins, which are localized on plasma membranes and intracellular membranes, including the endoplasmic reticulum and Golgi network. LPPs regulate signaling transduction in cancer cells and demonstrate different effects in cancer progression through the breakdown of extracellular LPA and S1P and other intracellular substrates. This review is intended to summarize an up-to-date understanding about the functions of LPPs in cancers.
Collapse
Affiliation(s)
- Xiaoyun Tang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - David N. Brindley
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada;
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence:
| |
Collapse
|
22
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 378] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
23
|
Cohan S, Lucassen E, Smoot K, Brink J, Chen C. Sphingosine-1-Phosphate: Its Pharmacological Regulation and the Treatment of Multiple Sclerosis: A Review Article. Biomedicines 2020; 8:biomedicines8070227. [PMID: 32708516 PMCID: PMC7400006 DOI: 10.3390/biomedicines8070227] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), via its G-protein-coupled receptors, is a signaling molecule with important regulatory properties on numerous, widely varied cell types. Five S1P receptors (S1PR1-5) have been identified, each with effects determined by their unique G-protein-driven downstream pathways. The discovery that lymphocyte egress from peripheral lymphoid organs is promoted by S1P via S1PR-1 stimulation led to the development of pharmacological agents which are S1PR antagonists. These agents promote lymphocyte sequestration and reduce lymphocyte-driven inflammatory damage of the central nervous system (CNS) in animal models, encouraging their examination of efficacy in the treatment of multiple sclerosis (MS). Preclinical research has also demonstrated direct protective effects of S1PR antagonists within the CNS, by modulation of S1PRs, particularly S1PR-1 and S1PR-5, and possibly S1PR-2, independent of effects upon lymphocytes. Three of these agents, fingolimod, siponimod and ozanimod have been approved, and ponesimod has been submitted for regulatory approval. In patients with MS, these agents reduce relapse risk, sustained disability progression, magnetic resonance imaging markers of disease activity, and whole brain and/or cortical and deep gray matter atrophy. Future opportunities in the development of more selective and intracellular S1PR-driven downstream pathway modulators may expand the breadth of agents to treat MS.
Collapse
|
24
|
Abstract
Sphingosine-1-phosphate (S1P) can regulate several physiological and pathological processes. S1P signaling via its cell surface receptor S1PR1 has been shown to enhance tumorigenesis and stimulate growth, expansion, angiogenesis, metastasis, and survival of cancer cells. S1PR1-mediated tumorigenesis is supported and amplified by activation of downstream effectors including STAT3, interleukin-6, and NF-κB networks. S1PR1 signaling can also trigger various other signaling pathways involved in carcinogenesis including activation of PI3K/AKT, MAPK/ERK1/2, Rac, and PKC/Ca, as well as suppression of cyclic adenosine monophosphate (cAMP). It also induces immunological tolerance in the tumor microenvironment, while the immunosuppressive function of S1PR1 can also lead to the generation of pre-metastatic niches. Some tumor cells upregulate S1PR1 signaling pathways, which leads to drug resistant cancer cells, mainly through activation of STAT3. This signaling pathway is also implicated in some inflammatory conditions leading to the instigation of inflammation-driven cancers. Furthermore, it can also increase survival via induction of anti-apoptotic pathways, for instance, in breast cancer cells. Therefore, S1PR1 and its signaling pathways can be considered as potential anti-tumor therapeutic targets, alone or in combination therapies. Given the oncogenic nature of S1PR1 and its distribution in a variety of cancer cell types along with its targeting advantages over other molecules of this family, S1PR1 should be considered a favorable target in therapeutic approaches to cancer. This review describes the role of S1PR1 in cancer development and progression, specifically addressing breast cancer, glioma, and hematopoietic malignancies. We also discuss the potential use of S1P signaling modulators as therapeutic targets in cancer therapy.
Collapse
|
25
|
Hii LW, Chung FFL, Mai CW, Yee ZY, Chan HH, Raja VJ, Dephoure NE, Pyne NJ, Pyne S, Leong CO. Sphingosine Kinase 1 Regulates the Survival of Breast Cancer Stem Cells and Non-stem Breast Cancer Cells by Suppression of STAT1. Cells 2020; 9:886. [PMID: 32260399 PMCID: PMC7226795 DOI: 10.3390/cells9040886] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) represent rare tumor cell populations capable of self-renewal, differentiation, and tumor initiation and are highly resistant to chemotherapy and radiotherapy. Thus, therapeutic approaches that can effectively target CSCs and tumor cells could be the key to efficient tumor treatment. In this study, we explored the function of SPHK1 in breast CSCs and non-CSCs. We showed that RNAi-mediated knockdown of SPHK1 inhibited cell proliferation and induced apoptosis in both breast CSCs and non-CSCs, while ectopic expression of SPHK1 enhanced breast CSC survival and mammosphere forming efficiency. We identified STAT1 and IFN signaling as key regulatory targets of SPHK1 and demonstrated that an important mechanism by which SPHK1 promotes cancer cell survival is through the suppression of STAT1. We further demonstrated that SPHK1 inhibitors, FTY720 and PF543, synergized with doxorubicin in targeting both breast CSCs and non-CSCs. In conclusion, we provide important evidence that SPHK1 is a key regulator of cell survival and proliferation in breast CSCs and non-CSCs and is an attractive target for the design of future therapies.
Collapse
Affiliation(s)
- Ling-Wei Hii
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Felicia Fei-Lei Chung
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE) International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France;
| | - Chun Wai Mai
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Zong Yang Yee
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Hong Hao Chan
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Vijay Joseph Raja
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10021, USA; (V.J.R.); (N.E.D.)
| | - Noah Elias Dephoure
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10021, USA; (V.J.R.); (N.E.D.)
| | - Nigel J. Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK; (N.J.P.); (S.P.)
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK; (N.J.P.); (S.P.)
| | - Chee-Onn Leong
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
26
|
Liu H, Laforest R, Gu J, Luo Z, Jones LA, Gropler RJ, Benzinger TLS, Tu Z. Acute Rodent Tolerability, Toxicity, and Radiation Dosimetry Estimates of the S1P1-Specific Radioligand [ 11C]CS1P1. Mol Imaging Biol 2020; 22:285-292. [PMID: 31165387 PMCID: PMC6893109 DOI: 10.1007/s11307-019-01380-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE In preclinical studies with rodent models of inflammatory diseases, [11C]CS1P1 has been identified as a promising imaging agent targeting sphingosine-1-phosphate receptor 1 (S1P1) in the central nervous system and other tissues. In preparation for USA Food and Drug Administration (FDA) approval of [11C]CS1P1 for human use, an acute biodistribution study in mice and an acute tolerability and toxicity evaluation in rats were conducted. PROCEDURES Acute organ biodistribution and excretion data was obtained using male and female Swiss Webster mice intravenously (IV) injected with 4.8-10 MBq of [11C]CS1P1. The organ residence times for each harvested organ were calculated using the animal biodistribution data, and were entered in the program OLINDA/EXM for C-11 to obtain human radiation dosimetry estimates. Acute tolerability and toxicity studies were conducted in male and female Sprague Dawley rats. Rats were administered an IV bolus of either the vehicle control or 0.3 mg/kg CS1P1. Blood samples were collected and a gross post-mortem examination was conducted at day 2 or day 15 post-injection. RESULTS The extrapolated human radiation dose estimates revealed that the highest organ dose was received by the liver with 24.05 μGy/MBq in males and 32.70 μGy/MBq in females. The effective dose (ED) estimates of [11C]CS1P1 were calculated at 3.5 μSv/MBq in males and 5.9 μSv/MBq in females. The acute tolerability and toxicity study identified 0.3 mg/kg as a no observable adverse effect level (NOAEL) dose, which is a ~ 300-fold dose multiple of the human equivalent dose of the mass to be injected for positron emission tomography (PET) imaging studies in humans as a no-observable-effect limit. CONCLUSIONS The toxicity study in rats suggested that injection dose of radiotracer [11C]CS1P1 with mass amount < 10 μg is safe for performing a human PET study. The dosimetry data supported an injection of 0.74 GBq (20 mCi) dose for human studies would be acceptable.
Collapse
Affiliation(s)
- Hui Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Richard Laforest
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jiwei Gu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zonghua Luo
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lynne A Jones
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
27
|
Alshaker H, Thrower H, Pchejetski D. Sphingosine Kinase 1 in Breast Cancer-A New Molecular Marker and a Therapy Target. Front Oncol 2020; 10:289. [PMID: 32266132 PMCID: PMC7098968 DOI: 10.3389/fonc.2020.00289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
It is now well-established that sphingosine kinase 1 (SK1) plays a significant role in breast cancer development, progression, and spread, whereas SK1 knockdown can reverse these processes. In breast cancer cells and tumors, SK1 was shown to interact with various pathways involved in cell survival and chemoresistance, such as nuclear factor-kappa B (NFκB), Notch, Ras/MAPK, PKC, and PI3K. SK1 is upregulated by estrogen signaling, which, in turn, confers cancer cells with resistance to tamoxifen. Sphingosine-1-phosphate (S1P) produced by SK1 has been linked to tumor invasion and metastasis. Both SK1 and S1P are closely linked to inflammation and adipokine signaling in breast cancer. In human tumors, high SK1 expression has been linked with poorer survival and prognosis. SK1 is upregulated in triple negative tumors and basal-like subtypes. It is often associated with high phosphorylation levels of ERK1/2, SFK, LYN, AKT, and NFκB. Higher tumor SK1 mRNA levels were correlated with poor response to chemotherapy. This review summarizes the up-to-date evidence and discusses the therapeutic potential for the SK1 inhibition in breast cancer, with emphasis on the mechanisms of chemoresistance and combination with other therapies such as gefitinib or docetaxel. We have outlined four key areas for future development, including tumor microenvironment, combination therapies, and nanomedicine. We conclude that SK1 may have a potential as a target for precision medicine, its high expression being a negative prognostic marker in ER-negative breast cancer, as well as a target for chemosensitization therapy.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| | - Hannah Thrower
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
28
|
Kim EY, Choi B, Kim JE, Park SO, Kim SM, Chang EJ. Interleukin-22 Mediates the Chemotactic Migration of Breast Cancer Cells and Macrophage Infiltration of the Bone Microenvironment by Potentiating S1P/SIPR Signaling. Cells 2020; 9:E131. [PMID: 31935914 PMCID: PMC7017200 DOI: 10.3390/cells9010131] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022] Open
Abstract
The interleukin-22 (IL-22) signaling pathway is well known to be involved in the progression of various cancer types but its role in bone metastatic breast cancer remains unclear. We demonstrate using human GEO profiling that bone metastatic breast cancer displays elevated interleukin-22 receptor 1 (IL-22R1) and sphingosine-1-phosphate receptor 1 (S1PR1) expression. Importantly, IL-22 stimuli promoted the expression of IL-22R1 and S1PR1 in aggressive MDA-MB-231 breast cancer cells. IL-22 treatment also increased sphingosine-1-phosphate production in mesenchymal stem cells (MSCs) and induced the sphingosine-1-phosphate (S1P)-mediated chemotactic migration of MDA-MB-231 cells. This effect was inhibited by an S1P antagonist. In addition to the S1PR1 axis, IL-22 stimulated the expression of matrix metalloproteinase-9 (MMP-9), thereby promoting breast cancer cell invasion. Moreover, IL-22 induced IL22R1 and S1PR1 expression in macrophages, myeloid cell, and MCP1 expression in MSCs to facilitate macrophage infiltration. Immunohistochemistry indicated that IL-22R1 and S1PR1 are overexpressed in invasive malignant breast cancers and that this correlates with the MMP-9 levels. Collectively, our present results indicate a potential role of IL-22 in driving the metastasis of breast cancers into the bone microenvironment through the IL22R1-S1PR1 axis.
Collapse
Affiliation(s)
- Eun-Young Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (E.-Y.K.); (B.C.); (J.-E.K.); (S.-O.P.); (S.-M.K.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Bongkun Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (E.-Y.K.); (B.C.); (J.-E.K.); (S.-O.P.); (S.-M.K.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Ji-Eun Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (E.-Y.K.); (B.C.); (J.-E.K.); (S.-O.P.); (S.-M.K.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Si-On Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (E.-Y.K.); (B.C.); (J.-E.K.); (S.-O.P.); (S.-M.K.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang-Min Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (E.-Y.K.); (B.C.); (J.-E.K.); (S.-O.P.); (S.-M.K.)
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (E.-Y.K.); (B.C.); (J.-E.K.); (S.-O.P.); (S.-M.K.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
29
|
Schneider G. S1P Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:129-153. [PMID: 32030688 DOI: 10.1007/978-3-030-35582-1_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sphingosine-1-phosphate (S1P), together with other phosphosphingolipids, has been found to regulate complex cellular function in the tumor microenvironment (TME) where it acts as a signaling molecule that participates in cell-cell communication. S1P, through intracellular and extracellular signaling, was found to promote tumor growth, angiogenesis, chemoresistance, and metastasis; it also regulates anticancer immune response, modulates inflammation, and promotes angiogenesis. Interestingly, cancer cells are capable of releasing S1P and thus modifying the behavior of the TME components in a way that contributes to tumor growth and progression. Therefore, S1P is considered an important therapeutic target, and several anticancer therapies targeting S1P signaling are being developed and tested in clinics.
Collapse
Affiliation(s)
- Gabriela Schneider
- James Graham Brown Cancer Center, Division of Medical Oncology & Hematology, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
30
|
Abstract
There is substantial evidence that the enzymes, sphingosine kinase 1 and 2, which catalyse the formation of the bioactive lipid sphingosine 1-phosphate, are involved in pathophysiological processes. In this chapter, we appraise the evidence that both enzymes are druggable and describe how isoform-specific inhibitors can be developed based on the plasticity of the sphingosine-binding site. This is contextualised with the effect of sphingosine kinase inhibitors in cancer, pulmonary hypertension, neurodegeneration, inflammation and sickling.
Collapse
Affiliation(s)
- Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde , Glasgow, Scotland, UK
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde , Glasgow, Scotland, UK.
| |
Collapse
|
31
|
Abstract
As basic research into GPCR signaling and its association with disease has come into fruition, greater clarity has emerged with regards to how these receptors may be amenable to therapeutic intervention. As a diverse group of receptor proteins, which regulate a variety of intracellular signaling pathways, research in this area has been slow to yield tangible therapeutic agents for the treatment of a number of diseases including cancer. However, recently such research has gained momentum based on a series of studies that have sought to define GPCR proteins dynamics through the elucidation of their crystal structures. In this chapter, we define the approaches that have been adopted in developing better therapeutics directed against the specific parts of the receptor proteins, such as the extracellular and the intracellular domains, including the ligands and auxiliary proteins that bind them. Finally, we also briefly outline how GPCR-derived signaling transduction pathways hold great potential as additional targets.
Collapse
Affiliation(s)
- Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
32
|
S1P/S1P Receptor Signaling in Neuromuscolar Disorders. Int J Mol Sci 2019; 20:ijms20246364. [PMID: 31861214 PMCID: PMC6941007 DOI: 10.3390/ijms20246364] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
The bioactive sphingolipid metabolite, sphingosine 1-phosphate (S1P), and the signaling pathways triggered by its binding to specific G protein-coupled receptors play a critical regulatory role in many pathophysiological processes, including skeletal muscle and nervous system degeneration. The signaling transduced by S1P binding appears to be much more complex than previously thought, with important implications for clinical applications and for personalized medicine. In particular, the understanding of S1P/S1P receptor signaling functions in specific compartmentalized locations of the cell is worthy of being better investigated, because in various circumstances it might be crucial for the development or/and the progression of neuromuscular diseases, such as Charcot-Marie-Tooth disease, myasthenia gravis, and Duchenne muscular dystrophy.
Collapse
|
33
|
Wang P, Yuan Y, Lin W, Zhong H, Xu K, Qi X. Roles of sphingosine-1-phosphate signaling in cancer. Cancer Cell Int 2019; 19:295. [PMID: 31807117 PMCID: PMC6857321 DOI: 10.1186/s12935-019-1014-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022] Open
Abstract
The potent pleiotropic lipid mediator sphingosine-1-phosphate (S1P) participates in numerous cellular processes, including angiogenesis and cell survival, proliferation, and migration. It is formed by one of two sphingosine kinases (SphKs), SphK1 and SphK2. These enzymes largely exert their various biological and pathophysiological actions through one of five G protein-coupled receptors (S1PR1–5), with receptor activation setting in motion various signaling cascades. Considerable evidence has been accumulated on S1P signaling and its pathogenic roles in diseases, as well as on novel modulators of S1P signaling, such as SphK inhibitors and S1P agonists and antagonists. S1P and ceramide, composed of sphingosine and a fatty acid, are reciprocal cell fate regulators, and S1P signaling plays essential roles in several diseases, including inflammation, cancer, and autoimmune disorders. Thus, targeting of S1P signaling may be one way to block the pathogenesis and may be a therapeutic target in these conditions. Increasingly strong evidence indicates a role for the S1P signaling pathway in the progression of cancer and its effects. In the present review, we discuss recent progress in our understanding of S1P and its related proteins in cancer progression. Also described is the therapeutic potential of S1P receptors and their downstream signaling cascades as targets for cancer treatment.
Collapse
Affiliation(s)
- Peng Wang
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Yonghui Yuan
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China.,2Research and Academic Department, Cancer Hospital of China Medical University Liaoning Cancer Hospital & Institute, Shenyang, 110042 Liaoning China
| | - Wenda Lin
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Hongshan Zhong
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Ke Xu
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Xun Qi
- 1Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning China
| |
Collapse
|
34
|
Singh SK, Spiegel S. Sphingosine-1-phosphate signaling: A novel target for simultaneous adjuvant treatment of triple negative breast cancer and chemotherapy-induced neuropathic pain. Adv Biol Regul 2019; 75:100670. [PMID: 31708456 DOI: 10.1016/j.jbior.2019.100670] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
Triple-negative breast cancer (TNBC) is very aggressive with high metastatic and mortality rates and unfortunately, except for chemotherapy, there are few therapeutic options. The bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) regulates numerous processes important for cancer progression, metastasis, and neuropathic pain. The pro-drug FTY720 (fingolimod, Gilenya) used to treat multiple sclerosis is phosphorylated in the body to a S1P mimic that binds to S1PRs, except S1PR2, and also acts as a functional antagonist of S1PR1. This review highlights current findings showing that FTY720 has multiple anti-cancer activities and simultaneously prevents formation and actions of S1P. Moreover, in mouse breast cancer models, treatment with FTY720 reduces tumor growth, metastasis, and enhances sensitivity of advanced and hormonal refractory breast cancer and TNBC to conventional therapies. We discuss recent studies demonstrating that neuropathic pain induced by the chemotherapeutic bortezomib is also greatly reduced by administration of clinically relevant doses of FTY720, likely by targeting S1PR1 on astrocytes. FTY720 also shows promising anticancer potential in pre-clinical studies and is FDA approved, thus we suggest in this review that further studies are needed to pave the way for fast-tracking approval of FTY720/fingolimod for enhancing chemotherapy effectiveness and reduction of painful neuropathies.
Collapse
Affiliation(s)
- Sandeep K Singh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, Richmond, VA, USA.
| |
Collapse
|
35
|
Hashimoto N, Nagano H, Tanaka T. The role of tumor suppressor p53 in metabolism and energy regulation, and its implication in cancer and lifestyle-related diseases. Endocr J 2019; 66:485-496. [PMID: 31105124 DOI: 10.1507/endocrj.ej18-0565] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The tumor suppressor gene p53 is mutated in approximately more than 50% of human cancers. p53 is also referred to as the "cellular gatekeeper" or "guardian of the genome" because it protects the body from spreading mutated genome induced by various stress. When the cells receives stimuli such as DNA damage, oncogene activation, oxidative stress or undernutrition, p53 gives rise to a number of cellular responses, including cell cycle arrest, apoptosis, cellular senescence and metabolic adaptation. Related to energy metabolisms, it has been reported that p53 reduces glycolysis and enhances mitochondrial respiration. p53 is also involved in the regulation of other cellular metabolism and energy production systems: amino acid metabolism, fatty acid metabolism, nucleic acid metabolism, anti-oxidation, mitochondrial quality control, and autophagy. Moreover, recent studies have shown that p53 gene polymorphisms affect life expectancy and lifestyle-related disease such as type 2 diabetes, suggesting that there is a certain relationship between p53 function and metabolic disorders. In addition, mutant p53 protein does not only lose the tumor suppressor function, but it also gains novel oncogenic function and contributes to tumor development, involving cellular metabolism modification. Therefore, the importance of multifunctionality of p53, particularly with regard to intracellular metabolisms, arouses therapeutic interest and calls attention as the key molecule among cancer, lifestyle-related diseases and life expectancy.
Collapse
Affiliation(s)
- Naoko Hashimoto
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hidekazu Nagano
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomoaki Tanaka
- Department of Molecular Diagnosis, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
36
|
Activation of sphingosine kinase by lipopolysaccharide promotes prostate cancer cell invasion and metastasis via SphK1/S1PR4/matriptase. Oncogene 2019; 38:5580-5598. [DOI: 10.1038/s41388-019-0833-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 02/23/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023]
|
37
|
Abstract
Bioactive lipids are essential components of human cells and tissues. As discussed in this review, the cancer lipidome is diverse and malleable, with the ability to promote or inhibit cancer pathogenesis. Targeting lipids within the tumor and surrounding microenvironment may be a novel therapeutic approach for treating cancer patients. Additionally, the emergence of a novel super-family of lipid mediators termed specialized pro-resolving mediators (SPMs) has revealed a new role for bioactive lipid mediators in the resolution of inflammation in cancer biology. The role of SPMs in cancer holds great promise in our understanding of cancer pathogenesis and can ultimately be used in future cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Megan L Sulciner
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Allison Gartung
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Molly M Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Charles N Serhan
- Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Wang W, Hind T, Lam BWS, Herr DR. Sphingosine 1–phosphate signaling induces SNAI2 expression to promote cell invasion in breast cancer cells. FASEB J 2019; 33:7180-7191. [DOI: 10.1096/fj.201801635r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wei Wang
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Tatsuma Hind
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of PharmacologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Brenda Wan Shing Lam
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Deron R. Herr
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
39
|
Costales MG, Hoch DG, Abegg D, Childs-Disney JL, Velagapudi SP, Adibekian A, Disney MD. A Designed Small Molecule Inhibitor of a Non-Coding RNA Sensitizes HER2 Negative Cancers to Herceptin. J Am Chem Soc 2019; 141:2960-2974. [PMID: 30726072 DOI: 10.1021/jacs.8b10558] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A small molecule (1) with overlapping affinity for two microRNA (miRNA) precursors was used to inform design of a dimeric compound (2) selective for one of the miRNAs. In particular, 2 selectively targets the microRNA(miR)-515 hairpin precursor to inhibit production of miR-515 that represses sphingosine kinase 1 (SK1), a key enzyme in the biosynthesis of sphingosine 1-phosphate (S1P). Application of 2 to breast cancer cells enhanced SK1 and S1P levels, triggering a migratory phenotype. Knockout of SK1, forced overexpression of miR-515, and application of a small molecule SK1 inhibitor all ablated 2's effect on phenotype, consistent with its designed mode of action. Target profiling studies via Chem-CLIP showed that 2 bound selectively to the miR-515 hairpin precursor in cells. Global neoprotein synthesis upon addition of 2 to MCF-7 breast cancer cells demonstrated 2's selectivity and upregulation of cancer-associated proteins regulated by S1P. The most upregulated protein was human epidermal growth factor receptor 2 (ERBB2/HER2), which is regulated by the SK1/S1P pathway and is normally not expressed in MCF-7 cells. Like triple negative breast cancer (TNBC) cells, the lack of HER2 renders them insusceptible to Herceptin and its antibody-drug conjugate Kadcyla. In addition to proteomics, an RNA-seq study supports that 2 has limited off target effects and other studies support that 2 is more selective than an oligonucleotide. We therefore hypothesized that 2 could sensitize MCF-7 cells to anti-HER2 therapies. Indeed, application of 2 sensitized cells to Herceptin. These results were confirmed in two other cell lines that express miR-515 and are HER2-, the hepatocellular carcinoma cell line HepG2 and the TNBC line MDA-MB-231. Importantly, normal breast epithelial cells (MCF-10A) that do not express miR-515 are not affected by 2. These observations suggest a precision medicine approach to sensitize HER2- cancers to approved anticancer medicines. This study has implications for broadening the therapeutic utility of known targeted cancer therapeutics by using a secondary targeted approach to render otherwise insensitive cells, sensitive to a targeted therapeutic.
Collapse
Affiliation(s)
- Matthew G Costales
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Dominic G Hoch
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Daniel Abegg
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Jessica L Childs-Disney
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Sai Pradeep Velagapudi
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Alexander Adibekian
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| | - Matthew D Disney
- Department of Chemistry , The Scripps Research Institute , 130 Scripps Way , Jupiter , Florida 33458 , United States
| |
Collapse
|
40
|
Curbing Lipids: Impacts ON Cancer and Viral Infection. Int J Mol Sci 2019; 20:ijms20030644. [PMID: 30717356 PMCID: PMC6387424 DOI: 10.3390/ijms20030644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022] Open
Abstract
Lipids play a fundamental role in maintaining normal function in healthy cells. Their functions include signaling, storing energy, and acting as the central structural component of cell membranes. Alteration of lipid metabolism is a prominent feature of cancer, as cancer cells must modify their metabolism to fulfill the demands of their accelerated proliferation rate. This aberrant lipid metabolism can affect cellular processes such as cell growth, survival, and migration. Besides the gene mutations, environmental factors, and inheritance, several infectious pathogens are also linked with human cancers worldwide. Tumor viruses are top on the list of infectious pathogens to cause human cancers. These viruses insert their own DNA (or RNA) into that of the host cell and affect host cellular processes such as cell growth, survival, and migration. Several of these cancer-causing viruses are reported to be reprogramming host cell lipid metabolism. The reliance of cancer cells and viruses on lipid metabolism suggests enzymes that can be used as therapeutic targets to exploit the addiction of infected diseased cells on lipids and abrogate tumor growth. This review focuses on normal lipid metabolism, lipid metabolic pathways and their reprogramming in human cancers and viral infection linked cancers and the potential anticancer drugs that target specific lipid metabolic enzymes. Here, we discuss statins and fibrates as drugs to intervene in disordered lipid pathways in cancer cells. Further insight into the dysregulated pathways in lipid metabolism can help create more effective anticancer therapies.
Collapse
|
41
|
Shen Y, Zhao S, Wang S, Pan X, Zhang Y, Xu J, Jiang Y, Li H, Zhang Q, Gao J, Yang Q, Zhou Y, Jiang S, Yang H, Zhang Z, Zhang R, Li J, Zhou D. S1P/S1PR3 axis promotes aerobic glycolysis by YAP/c-MYC/PGAM1 axis in osteosarcoma. EBioMedicine 2018; 40:210-223. [PMID: 30587459 PMCID: PMC6412077 DOI: 10.1016/j.ebiom.2018.12.038] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023] Open
Abstract
Background Osteosarcoma (OS) is a malignant tumor mainly occurring in young people. Due to the limited effective therapeutic strategies, OS patients cannot achieve further survival improvement. G-protein-coupled receptors (GPCRs) constitute the largest family of cell membrane receptors and consequently hold the significant promise for tumor imaging and targeted therapy. We aimed to explore the biological functions of Sphingosine 1-phosphate receptor 3 (S1PR3), one of the members of GPCRs family, in OS and the possibility of S1PR3 as an effective target for the treatment of osteosarcoma. Methods The quantitative real time PCR (qRT-PCR) and western blotting were used to analyze the mRNA and protein expressions. Cell counting kit-8 (CCK8), colony formation assay and cell apoptosis assay were performed to test the cellular proliferation in vitro. Subcutaneous xenograft mouse model was generated to evaluate the functions of S1PR3 in vivo. RNA sequencing was used to compare gene expression patterns between S1PR3-knockdown and control MNNG-HOS cells. In addition, metabolic alternations in OS cells were monitored by XF96 metabolic flux analyzer. Co-immunoprecipitation (Co-IP) assay was used to explore the interaction between Yes-associated protein (YAP) and c-MYC. Chromatin immunoprecipitation was used to investigate the binding capability of PGAM1 and YAP or c-MYC. Moreover, the activities of promoter were determined by the luciferase reporter assay. Findings S1PR3 and its specific ligand Sphingosine 1-phosphate (S1P) were found elevated in OS, and the higher expression of S1PR3 was correlated with the poor survival rate. Moreover, our study has proved that the S1P/S1PR3 axis play roles in proliferation promotion, apoptosis inhibition, and aerobic glycolysis promotion of osteosarcoma cells. Mechanistically, the S1P/S1PR3 axis inhibited the phosphorylation of YAP and promoted the nuclear translocation of YAP, which contributed to the formation of the YAP–c-MYC complex and enhanced transcription of the important glycolysis enzyme PGAM1. Moreover, the S1PR3 antagonist TY52156 exhibited in vitro and in vivo synergistic inhibitory effects with methotrexate on OS cell growth. Interpretation Our study unveiled a role of S1P, a bioactive phospholipid, in glucose metabolism reprogram through interaction with its receptor S1PR3. Targeting S1P/S1PR3 axis might serve as a potential therapeutic target for patients with OS. Fund This research was supported by National Natural Science Foundation of China (81472445 and 81672587).
Collapse
Affiliation(s)
- Yifei Shen
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, China
| | - Shujie Zhao
- Department of Orthopedic, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Shenyu Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaohui Pan
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, China
| | - Yunkun Zhang
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, China
| | - Jingwen Xu
- Department of Nutrition, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, China
| | - Yuqing Jiang
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, China
| | - Haibo Li
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, China
| | - Qiang Zhang
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, China
| | - Jianbo Gao
- Department of Nutrition, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, China
| | - Qin Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Zhou
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhigang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Fengxian Hospital, Southern Medical University, Shanghai 201499, China..
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Dong Zhou
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
42
|
Luo Z, Han J, Liu H, Rosenberg AJ, Chen DL, Gropler RJ, Perlmutter JS, Tu Z. Syntheses and in vitro biological evaluation of S1PR1 ligands and PET studies of four F-18 labeled radiotracers in the brain of nonhuman primates. Org Biomol Chem 2018; 16:9171-9184. [PMID: 30462126 PMCID: PMC6561338 DOI: 10.1039/c8ob02609b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of seventeen hydroxyl-containing sphingosine 1-phosphate receptor 1 (S1PR1) ligands were designed and synthesized. Their in vitro binding potencies were determined using [32P]S1P competitive binding assays. Compounds 10a, 17a, 17b, and 24 exhibited high S1PR1 binding potencies with IC50 values ranging from 3.9 to 15.4 nM and also displayed high selectivity for S1PR1 over other S1P receptor subtypes (IC50 > 1000 nM for S1PR2-5). The most potent compounds 10a, 17a, 17b, and 24 were subsequently radiolabeled with F-18 in high yields and purities. MicroPET studies in cynomolgus macaque showed that [18F]10a, [18F]17a, and [18F]17b but not [18F]24 crossed the blood brain barrier and had high initial brain uptake. Further validation of [18F]10a, [18F]17a, and [18F]17b in preclinical models of neuroinflammation is warranted to identify a suitable PET radioligand to quantify S1PR1 expression in vivo as a metric of an inflammatory response.
Collapse
Affiliation(s)
- Zonghua Luo
- Department of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
GPCR Modulation in Breast Cancer. Int J Mol Sci 2018; 19:ijms19123840. [PMID: 30513833 PMCID: PMC6321247 DOI: 10.3390/ijms19123840] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most prevalent cancer found in women living in developed countries. Endocrine therapy is the mainstay of treatment for hormone-responsive breast tumors (about 70% of all breast cancers) and implies the use of selective estrogen receptor modulators and aromatase inhibitors. In contrast, triple-negative breast cancer (TNBC), a highly heterogeneous disease that may account for up to 24% of all newly diagnosed cases, is hormone-independent and characterized by a poor prognosis. As drug resistance is common in all breast cancer subtypes despite the different treatment modalities, novel therapies targeting signaling transduction pathways involved in the processes of breast carcinogenesis, tumor promotion and metastasis have been subject to accurate consideration. G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors involved in the development and progression of many tumors including breast cancer. Here we discuss data regarding GPCR-mediated signaling, pharmacological properties and biological outputs toward breast cancer tumorigenesis and metastasis. Furthermore, we address several drugs that have shown an unexpected opportunity to interfere with GPCR-based breast tumorigenic signals.
Collapse
|
44
|
Garandeau D, Noujarède J, Leclerc J, Imbert C, Garcia V, Bats ML, Rambow F, Gilhodes J, Filleron T, Meyer N, Brayer S, Arcucci S, Tartare-Deckert S, Ségui B, Marine JC, Levade T, Bertolotto C, Andrieu-Abadie N. Targeting the Sphingosine 1-Phosphate Axis Exerts Potent Antitumor Activity in BRAFi-Resistant Melanomas. Mol Cancer Ther 2018; 18:289-300. [PMID: 30482853 DOI: 10.1158/1535-7163.mct-17-1141] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 06/04/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022]
Abstract
BRAF inhibitors (BRAFi) are used to treat patients with melanoma harboring the V600E mutation. However, resistance to BRAFi is inevitable. Here, we identified sphingosine 1-phosphate (S1P) receptors as regulators of BRAFV600E-mutant melanoma cell-autonomous resistance to BRAFi. Moreover, our results reveal a distinct sphingolipid profile, that is, a tendency for increased very long-chain ceramide species, in the plasma of patients with melanoma who achieve a response to BRAFi therapy as compared with patients with progressive disease. Treatment with BRAFi resulted in a strong decrease in S1PR1/3 expression in sensitive but not in resistant cells. Genetic and pharmacologic interventions, that increase ceramide/S1P ratio, downregulated S1PR expression and blocked BRAFi-resistant melanoma cell growth. This effect was associated with a decreased expression of MITF and Bcl-2. Moreover, the BH3 mimetic ABT-737 improved the antitumor activity of approaches targeting S1P-metabolizing enzymes in BRAFi-resistant melanoma cells. Collectively, our findings indicate that targeting the S1P/S1PR axis could provide effective therapeutic options for patients with melanoma who relapse after BRAFi therapy.
Collapse
Affiliation(s)
- David Garandeau
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Justine Noujarède
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Justine Leclerc
- Université Nice Sophia-Antipolis, Inserm, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Caroline Imbert
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Virginie Garcia
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marie-Lise Bats
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | | | - Julia Gilhodes
- Bureau des essais cliniques, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Thomas Filleron
- Bureau des essais cliniques, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Nicolas Meyer
- Service de Dermatologie-Oncologie, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Stéphanie Brayer
- Service de Dermatologie-Oncologie, Institut Universitaire du Cancer de Toulouse-Oncopôle, Toulouse, France
| | - Silvia Arcucci
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Sophie Tartare-Deckert
- Université Nice Sophia-Antipolis, Inserm, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Bruno Ségui
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | | | - Thierry Levade
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.,Laboratoire de Biochimie Métabolique, CHU Toulouse, France
| | - Corine Bertolotto
- Université Nice Sophia-Antipolis, Inserm, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Nathalie Andrieu-Abadie
- Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France.
| |
Collapse
|
45
|
Pharmacological Inhibition of Serine Palmitoyl Transferase and Sphingosine Kinase-1/-2 Inhibits Merkel Cell Carcinoma Cell Proliferation. J Invest Dermatol 2018; 139:807-817. [PMID: 30399362 DOI: 10.1016/j.jid.2018.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/21/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
Abstract
The majority of Merkel cell carcinoma, a highly aggressive neuroendocrine cancer of the skin, is associated with Merkel cell polyomavirus infection. Polyomavirus binding, internalization, and infection are mediated by glycosphingolipids. Besides receptor function, bioactive sphingolipids are increasingly recognized as potent regulators of several hallmarks of cancer. Merkel cell polyomavirus+ and Merkel cell polyomavirus- cells express serine palmitoyl transferase subunits and sphingosine kinase (SK) 1/2 mRNA. Induced expression of Merkel cell polyomavirus-large tumor antigen in human lung fibroblasts resulted in upregulation of SPTLC1-3 and SK 1/2 expression. Therefore, we exploited pharmacological inhibition of sphingolipid metabolism as an option to interfere with proliferation of Merkel cell polyomavirus+ Merkel cell carcinoma cell lines. We used myriocin (a serine palmitoyl transferase antagonist) and two SK inhibitors (SKI-II and ABC294640). In MKL-1 and WaGa cells myriocin decreased cellular ceramide, sphingomyelin, and sphingosine-1-phosphate content. SKI-II increased ceramide species but decreased sphingomyelin and sphingosine-1-phosphate concentrations. Aberrant sphingolipid homeostasis was associated with reduced cell viability, increased necrosis, procaspase-3 and PARP processing, caspase-3 activity, and decreased AKTS473 phosphorylation. Myriocin and SKI-II decreased tumor size and Ki-67 staining of xenografted MKL-1 and WaGa tumors on the chorioallantoic membrane. Our data suggest that pharmacological inhibition of sphingolipid synthesis could represent a potential therapeutic approach in Merkel cell carcinoma.
Collapse
|
46
|
Pyne NJ, Pyne S. Does the Sphingosine 1-Phosphate Receptor-1 Provide a Better or Worse Prognostic Outcome for Breast Cancer Patients? Front Oncol 2018; 8:417. [PMID: 30319979 PMCID: PMC6170648 DOI: 10.3389/fonc.2018.00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
47
|
Maczis MA, Maceyka M, Waters MR, Newton J, Singh M, Rigsby MF, Turner TH, Alzubi MA, Harrell JC, Milstien S, Spiegel S. Sphingosine kinase 1 activation by estrogen receptor α36 contributes to tamoxifen resistance in breast cancer. J Lipid Res 2018; 59:2297-2307. [PMID: 30315000 DOI: 10.1194/jlr.m085191] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 10/04/2018] [Indexed: 01/01/2023] Open
Abstract
In breast cancer, 17β-estradiol (E2) plays critical roles mainly by binding to its canonical receptor, estrogen receptor (ER) α66, and eliciting genomic effects. E2 also triggers rapid, nongenomic responses. E2 activates sphingosine kinase 1 (SphK1), increasing sphingosine-1-phosphate (S1P) that binds to its receptors, leading to important breast cancer signaling. However, the E2 receptor responsible for SphK1 activation has not yet been identified. Here, we demonstrate in triple-negative breast cancer cells, which lack the canonical ERα66 but express the novel splice variant ERα36, that ERα36 is the receptor responsible for E2-induced activation of SphK1 and formation and secretion of S1P and dihydro-S1P, the ligands for S1PRs. Tamoxifen, the first-line endocrine therapy for breast cancer, is an antagonist of ERα66, but an agonist of ERα36, and, like E2, activates SphK1 and markedly increases secretion of S1P. A major problem with tamoxifen therapy is development of acquired resistance. We found that tamoxifen resistance correlated with increased SphK1 and ERα36 expression in tamoxifen-resistant breast cancer cells, in patient-derived xenografts, and in endocrine-resistant breast cancer patients. Our data also indicate that targeting this ERα36 and SphK1 axis may be a therapeutic option to circumvent endocrine resistance and improve patient outcome.
Collapse
Affiliation(s)
- Melissa A Maczis
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael Maceyka
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Michael R Waters
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Jason Newton
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Manjulata Singh
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Madisyn F Rigsby
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Tia H Turner
- Department of Pathology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Mohammad A Alzubi
- Department of Pathology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - J Chuck Harrell
- Department of Pathology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sheldon Milstien
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular BiologyVirginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
48
|
Abstract
While normal angiogenesis is critical for development and tissue growth, pathological angiogenesis is important for the growth and spread of cancers by supplying nutrients and oxygen as well as providing a conduit for distant metastasis. The interaction among extracellular matrix molecules, tumor cells, endothelial cells, fibroblasts, and immune cells is critical in pathological angiogenesis, in which various angiogenic growth factors, chemokines, and lipid mediators produced from these cells as well as hypoxic microenvironment promote angiogenesis by regulating expression and/or activity of various related genes. Sphingosine 1-phosphate and lysophosphatidic acid, bioactive lipid mediators which act via specific G protein-coupled receptors, play critical roles in angiogenesis. In addition, other lipid mediators including prostaglandin E2, lipoxin, and resolvins are produced in a stimulus-dependent manner and have pro- or anti-angiogenic effects, presumably through their specific GPCRs. Dysregulated lipid mediator signaling pathways are observed in the contxt of some tumors. This review will focus on LPA and S1P, two bioactive lipid mediators in their regulation of angiogenesis and cell migration that are critical for tumor growth and spread.
Collapse
Affiliation(s)
- Yu Hisano
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, United States.
| |
Collapse
|
49
|
Chen KM, Tan J, Way GP, Doing G, Hogan DA, Greene CS. PathCORE-T: identifying and visualizing globally co-occurring pathways in large transcriptomic compendia. BioData Min 2018; 11:14. [PMID: 29988723 PMCID: PMC6029133 DOI: 10.1186/s13040-018-0175-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/18/2018] [Indexed: 12/29/2022] Open
Abstract
Background Investigators often interpret genome-wide data by analyzing the expression levels of genes within pathways. While this within-pathway analysis is routine, the products of any one pathway can affect the activity of other pathways. Past efforts to identify relationships between biological processes have evaluated overlap in knowledge bases or evaluated changes that occur after specific treatments. Individual experiments can highlight condition-specific pathway-pathway relationships; however, constructing a complete network of such relationships across many conditions requires analyzing results from many studies. Results We developed PathCORE-T framework by implementing existing methods to identify pathway-pathway transcriptional relationships evident across a broad data compendium. PathCORE-T is applied to the output of feature construction algorithms; it identifies pairs of pathways observed in features more than expected by chance as functionally co-occurring. We demonstrate PathCORE-T by analyzing an existing eADAGE model of a microbial compendium and building and analyzing NMF features from the TCGA dataset of 33 cancer types. The PathCORE-T framework includes a demonstration web interface, with source code, that users can launch to (1) visualize the network and (2) review the expression levels of associated genes in the original data. PathCORE-T creates and displays the network of globally co-occurring pathways based on features observed in a machine learning analysis of gene expression data. Conclusions The PathCORE-T framework identifies transcriptionally co-occurring pathways from the results of unsupervised analysis of gene expression data and visualizes the relationships between pathways as a network. PathCORE-T recapitulated previously described pathway-pathway relationships and suggested experimentally testable additional hypotheses that remain to be explored. Electronic supplementary material The online version of this article (10.1186/s13040-018-0175-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathleen M Chen
- 1Department of Systems Pharmacology and Translational Therapeutics. Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104 USA
| | - Jie Tan
- 2Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
| | - Gregory P Way
- 1Department of Systems Pharmacology and Translational Therapeutics. Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104 USA
| | - Georgia Doing
- 3Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
| | - Deborah A Hogan
- 3Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
| | - Casey S Greene
- 1Department of Systems Pharmacology and Translational Therapeutics. Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104 USA
| |
Collapse
|
50
|
El Buri A, Adams DR, Smith D, Tate RJ, Mullin M, Pyne S, Pyne NJ. The sphingosine 1-phosphate receptor 2 is shed in exosomes from breast cancer cells and is N-terminally processed to a short constitutively active form that promotes extracellular signal regulated kinase activation and DNA synthesis in fibroblasts. Oncotarget 2018; 9:29453-29467. [PMID: 30034630 PMCID: PMC6047680 DOI: 10.18632/oncotarget.25658] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022] Open
Abstract
We demonstrate here that the G protein-coupled receptor (GPCR), sphingosine 1-phosphate receptor 2 (S1P2, Mr = 40 kDa) is shed in hsp70+ and CD63+ containing exosomes from MDA-MB-231 breast cancer cells. The receptor is taken up by fibroblasts, where it is N-terminally processed to a shorter form (Mr = 36 kDa) that appears to be constitutively active and able to stimulate the extracellular signal regulated kinase-1/2 (ERK-1/2) pathway and DNA synthesis. An N-terminally truncated construct of S1P2, which may correspond to the processed form of the receptor generated in fibroblasts, was found to be constitutively active when over-expressed in HEK293 cells. Analysis based on the available crystal structure of the homologous S1P1 receptor suggests that, in the inactive-state, the N-terminus of S1P2 may tension TM1 so as to maintain a compressive action on TM7. This in turn may stabilise a closed basal state interface between the intracellular ends of TM7 and TM6. Cleavage and removal of the S1P2 N-terminal peptide is postulated to facilitate relaxation of TM1 and accompanying separation of TM6 and TM7. The latter transition is one of the key elements of G protein engagement and is required to open the intracellular coupling interface beneath the GPCR helix bundle. Therefore, removal at the N-terminus of S1P2 is likely to enhance G protein coupling. These findings provide the first evidence that S1P2 is released from breast cancer cells in exosomes and is processed by fibroblasts to promote ERK signaling and proliferation of these cells.
Collapse
Affiliation(s)
- Ashref El Buri
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - David R Adams
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Douglas Smith
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Rothwelle J Tate
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Margaret Mullin
- Electron Microscopy Facility, School of Life Sciences, MVLS, Joseph Black Building, University of Glasgow, Glasgow, Scotland, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| |
Collapse
|