1
|
Shen H, Zhou Z, Zhang X, Xu M, Jiang X, Qin W, Chen S. Comparative analysis of pyrosequencing and next-generation sequencing for assessing MGMT methylation in glioma patients. J Neurooncol 2025:10.1007/s11060-025-05015-y. [PMID: 40138094 DOI: 10.1007/s11060-025-05015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) gene promoter is pivotal in clinical decision-making for glioma patients. Pyrosequencing (PSQ) has been regarded as the gold standard for determining the MGMT promoter status. Nevertheless, PSQ is limited by its low throughput, high costs, and intricate protocols. In this study, we present a comparative analysis of the performance of PSQ and next-generation sequencing (NGS) in evaluating MGMT methylation in glioma patients. METHODS Initially, we developed an amplicon-based NGS method for quantifying MGMT methylation. Subsequently, a comparative assessment was carried out to evaluate the MGMT promoter methylation levels in 50 formalin-fixed paraffin-embedded (FFPE) glioma samples using both PSQ and NGS. Finally, a consistency analysis was performed to compare the results obtained from PSQ and NGS. RESULTS The results revealed a significant correlation between PSQ and NGS (R2 = 0.88). Moreover, the consistency rate of the test results among the 50 samples was 94% (47/50), with one negative sample and two positive samples showing inconsistency. These three samples were verified using MethyLight technology, and the results were consistent with those obtained from NGS. CONCLUSIONS This study indicates that, although PSQ is the gold standard, the quantitative detection of MGMT methylation by NGS is more accurate than that by PSQ. NGS is characterized by high throughput and cost-effectiveness, while also yielding accurate and stable results. Therefore, NGS provides a viable alternative to the PSQ method for detecting MGMT methylation.
Collapse
Affiliation(s)
- Huanming Shen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- HaploX Biotechnology, Shenzhen, China
| | | | | | | | | | - Wenjian Qin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Shifu Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- HaploX Biotechnology, Shenzhen, China.
| |
Collapse
|
2
|
Chen R, Wang H, Zeng L, He J, Liu X, Ji X, Yao P, Gu S. Perinatal hypoxia-mediated neurodevelopment abnormalities in congenital heart disease mouse model. Mol Med 2025; 31:109. [PMID: 40114103 PMCID: PMC11927194 DOI: 10.1186/s10020-025-01158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Cyanotic congenital heart disease (CHD) in children has been associated with neurodevelopmental abnormalities, although the underlying mechanisms remain largely unknown. Multiple factors are likely involved in this process. This research aims to explore the potential effects of hypoxia and vascular system-derived factors in neurodevelopmental outcomes in offspring. METHODS Mouse aorta endothelial cells (MEC) and amygdala neurons were isolated to investigate the effects of hypoxia on pro-inflammatory cytokine release, gene expression, redox balance, mitochondrial function, and epigenetic modifications. A CHD mouse model was established to evaluate the impact of perinatal hypoxia on fetal brain development. Estrogen receptor β (ERβ) expression in endothelial cells was modulated using Tie2-driven lentivirus both in vitro and in vivo study to assess the vascular system's contribution to hypoxia-mediated neurodevelopmental abnormalities. RESULTS Hypoxia exposure, along with factors released from MEC, led to altered gene expression, oxidative stress, mitochondrial dysfunction, and epigenetic modifications in amygdala neurons. In the CHD mouse model, perinatal hypoxia resulted in compromised vascular function, altered gene expression, disrupted redox balance in brain tissues, and impaired behavioral outcomes in offspring. Prenatal expression of ERβ in endothelial cells partially ameliorated these neurodevelopmental abnormalities, while prenatal knockdown of ERβ mimicked the effects of perinatal hypoxia. CONCLUSIONS Hypoxia, combined with endothelial cell-derived factors, induces epigenetic changes in neurons. In the CHD mouse model, perinatal hypoxia causes vascular dysfunction, altered gene expression, and redox imbalance in brain tissues, leading to behavioral impairments in offspring. Prenatal expression of ERβ in endothelial cells mitigates these effects, suggesting that modulating gene expression in the vascular system during pregnancy could play a protective role against hypoxia-induced neurodevelopmental abnormalities in CHD.
Collapse
Affiliation(s)
- Renwei Chen
- The First Affiliated Hospital, The First Clinical College, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 570206, China
| | - Haifan Wang
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 570206, China
| | - Liqin Zeng
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Shenzhen, 518033, China
| | - Jiafei He
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 570206, China
| | - Xiaohan Liu
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Shenzhen, 518033, China
| | - Xinting Ji
- The First Affiliated Hospital, The First Clinical College, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Paul Yao
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 570206, China.
| | - Shuo Gu
- The First Affiliated Hospital, The First Clinical College, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
3
|
Chikatani K, Chika N, Tanabe N, Mori Y, Suzuki O, Matsuyama T, Ishibashi K, Eguchi H, Okazaki Y, Yamaguchi T, Ishida H. Frequency and Molecular Characteristics of Mismatch Repair-deficient Status among Multiple Synchronous Colorectal Cancers. J Anus Rectum Colon 2025; 9:145-155. [PMID: 39882230 PMCID: PMC11772799 DOI: 10.23922/jarc.2024-092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/30/2024] [Indexed: 01/31/2025] Open
Abstract
Objectives Mismatch repair (MMR)-deficient (dMMR) colorectal cancer (CRC) have been largely categorized into three subtypes: MLH1-methylated, Lynch syndrome (LS)-associated, and Lynch-like syndrome (LLS)-associated. No studies have examined the prevalence and subtypes of synchronously diagnosed dMMR CRCs in detail. Therefore, this study aimed to examine the frequency and molecular characteristics of the dMMR status among multiple synchronous CRCs to clarify the clinical significance of identifying patients with such tumors. Methods Immunohistochemistry (IHC) of MMR proteins (MLH1, MSH2, MSH6, and PMS2) was performed for surgically and endoscopically resected (in conjunction with surgical resection) lesions from consecutive patients with initially diagnosed multiple synchronous CRCs between July 2014 and June 2020. When necessary, MLH1-methylation analysis and testing of germline and somatic MMR genes were performed. Results In total, 133 patients (33 females) had 309 lesions. The combinations of synchronous tumor sites were the left-sided colon/rectum only (n=67, 50.4%), both the right-sided colon and left-sided colon/rectum (n=42, 31.6%), and the right-sided colon only (n=24, 18.0%). IHC showed a loss of expression of at least one MMR protein in 10 (7.5%) of 133 patients and 17 (5.5%) of 309 lesions. Molecular analysis revealed that these 10 patients were categorized as having MLH1-methylated (n=5, 3.8% of all patients), LS-associated (n=4, 3.0%), or LLS-associated (n=1, 0.8%) CRC. Conclusions Our data will be useful for genetic counseling in patients with synchronous CRCs suspected of having LS. Screening for LS using IHC for MMR proteins in individuals with multiple synchronous CRCs is an effective approach.
Collapse
Affiliation(s)
- Kenichi Chikatani
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Noriyasu Chika
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Noriko Tanabe
- Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Yoshiko Mori
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
- Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Okihide Suzuki
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
- Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Takatoshi Matsuyama
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Keiichiro Ishibashi
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Hidetaka Eguchi
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuro Yamaguchi
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
- Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| |
Collapse
|
4
|
Liu X, Shen Q, Cheng L, Dai K, Wu Q, Liu X, Yao P, Zeng L. Synergistic inhibitory effects of tetramethylpyrazine and evodiamine on endometriosis development. J Steroid Biochem Mol Biol 2025; 245:106630. [PMID: 39486648 DOI: 10.1016/j.jsbmb.2024.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Endometriosis (EMS) belongs to a gynecological disorder with inflammation and the existence of endometrial-like tissues beyond the uterus, often leading to infertility and pelvic pain. Estrogen receptor β (ERβ) is significantly expressed in endometriosis (EMS) and recognized as a promising therapeutic target for EMS treatment by inhibiting ERβ activity. In this study, we investigated the potential mechanisms for tetramethylpyrazine (TMP)-mediated ERβ suppression, and the synergistic inhibitory effect of TMP and evodiamine (EVO) on ERβ expression and EMS development. We found that TMP suppresses ERβ expression by reducing the association of Oct3/4 with the ERβ promoter and decreasing Oct3/4 protein levels without affecting Oct3/4 transcript levels. A minimum dosage of 10 µM TMP is required to inhibit ERβ expression. Neither TMP (5 µM) nor EVO (2 µM) alone had any effect, but their combination synergistically inhibited ERβ expression and modulated related cellular processes, including redox balance, mitochondrial function, inflammation, and proliferation. Additionally, the combination of TMP (10 mg/kg body weight) and EVO (5 mg/kg) synergistically inhibited ERβ expression and EMS development in the mouse model. In conclusion, TMP suppresses ERβ expression by reducing the association of Oct3/4 with the ERβ promoter. Neither TMP nor EVO alone effectively suppresses ERβ in both laboratory and live organism models. However, their combination synergistically inhibits ERβ expression and EMS development, suggesting a potential therapeutic strategy for EMS using TMP and EVO.
Collapse
Affiliation(s)
- Xiaohan Liu
- Department of gynecology, Sun Yat-Sen University Affiliated, No.8 Hospital, Shenzhen 518033, PR China
| | - Qingjun Shen
- Department of gynecology, Sun Yat-Sen University Affiliated, No.8 Hospital, Shenzhen 518033, PR China
| | - Liqin Cheng
- Department of gynecology, Sun Yat-Sen University Affiliated, No.8 Hospital, Shenzhen 518033, PR China
| | - Kailing Dai
- Department of gynecology, Sun Yat-Sen University Affiliated, No.8 Hospital, Shenzhen 518033, PR China
| | - Qiaozhu Wu
- Department of gynecology, Sun Yat-Sen University Affiliated, No.8 Hospital, Shenzhen 518033, PR China
| | - Xiaole Liu
- Department of gynecology, Sun Yat-Sen University Affiliated, No.8 Hospital, Shenzhen 518033, PR China
| | - Paul Yao
- Department of gynecology, Sun Yat-Sen University Affiliated, No.8 Hospital, Shenzhen 518033, PR China.
| | - Liqin Zeng
- Department of gynecology, Sun Yat-Sen University Affiliated, No.8 Hospital, Shenzhen 518033, PR China.
| |
Collapse
|
5
|
Maruyama S, Imamura Y, Toihata T, Haraguchi I, Takamatsu M, Yamashita M, Nakashima Y, Oki E, Taguchi K, Yamamoto M, Mine S, Okamura A, Kanamori J, Nunobe S, Sano T, Kitano S, Noda T, Watanabe M. FOXP3+/CD8+ ratio associated with aggressive behavior in RUNX3-methylated diffuse esophagogastric junction tumor. Cancer Sci 2025; 116:178-191. [PMID: 39440906 PMCID: PMC11711055 DOI: 10.1111/cas.16373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
The tumor immune microenvironment is increasingly becoming a key consideration in developing treatment regimens for aggressive cancers, with evidence that regulatory T cells (Tregs) attenuate the antitumor response by interrupting cytotoxic T cells (CD8+). Here, we hypothesized the prognostic relevance of the proportions of Tregs (marked by forkhead box protein 3 [FOXP3]) and CD8+ cells in diffuse, non-Epstein-Barr virus (EBV)/non-microsatellite instability (MSI)-high gastroesophageal adenocarcinomas (GEAs), which are clinically characterized as more aggressive, immunologically inactive tumors as compared with their intestinal counterparts. Cell-count ratios of FOXP3+/CD8+ expression were calculated at the intratumoral region and invasive margin discretely on digital images from 303 chemo-naive non-EBV/non-MSI-high esophagogastric junction (EGJ) adenocarcinomas. A significant modifying prognostic effect of tumor histology was observed between 5-year EGJ cancer-specific survival and the FOXP3+/CD8+ ratio at the invasive margin in pStage I-III tumors (p for interaction = 0.022; hazard ratio [HR] = 8.47 and 95% confidence interval [CI], 2.04-35.19 for high ratio [vs. low] for diffuse; HR = 1.57 and 95% CI, 0.88-2.83 for high ratio [vs. low] for intestinal). A high FOXP3+/CD8+ ratio at the invasive margin was associated with RUNX3 methylation (p = 0.035) and poor prognosis in RUNX3-methylated diffuse histological subtype (5-year EGJ cancer-specific survival, 52.3% for high and 100% for low, p = 0.015). Multiomics data from The Cancer Genome Atlas linked CCL28 with RUNX3-suppressed diffuse histological subtypes of non-EBV/non-MSI-high GEA. Our data suggest that a high FOXP3+/CD8+ ratio at the invasive margin might indicate tumor immune escape via CCL28, particularly in the RUNX3-methylated diffuse histological subtype.
Collapse
Affiliation(s)
- Suguru Maruyama
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yu Imamura
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tasuku Toihata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ikumi Haraguchi
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Manabu Takamatsu
- Department of Pathology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makiko Yamashita
- Advanced Medical Development Center, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuichiro Nakashima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Taguchi
- Department of Pathology, Kyushu Cancer Center, National Hospital Organization, Fukuoka, Japan
| | - Manabu Yamamoto
- Department of Gastroenterological Surgery, Kyushu Cancer Center, National Hospital Organization, Fukuoka, Japan
| | - Shinji Mine
- Department of Esophageal and Gastroenterological Surgery, Juntendo University Hospital, Tokyo, Japan
| | - Akihiko Okamura
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Jun Kanamori
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Souya Nunobe
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takeshi Sano
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shigehisa Kitano
- Advanced Medical Development Center, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tetsuo Noda
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
6
|
Nakasone ES, Zemla TJ, Yu M, Lin SY, Ou FS, Carter K, Innocenti F, Saltz L, Grady WM, Cohen SA. Evaluating the utility of ZNF331 promoter methylation as a prognostic and predictive marker in stage III colon cancer: results from CALGB 89803 (Alliance). Epigenetics 2024; 19:2349980. [PMID: 38716804 PMCID: PMC11085945 DOI: 10.1080/15592294.2024.2349980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
While epigenomic alterations are common in colorectal cancers (CRC), few epigenomic biomarkers that risk-stratify patients have been identified. We thus sought to determine the potential of ZNF331 promoter hypermethylation (mZNF331) as a prognostic and predictive marker in colon cancer. We examined the association of mZNF331 with clinicopathologic features, relapse, survival, and treatment efficacy in patients with stage III colon cancer treated within a randomized adjuvant chemotherapy trial (CALGB/Alliance89803). Residual tumour tissue was available for genomic DNA extraction and methylation analysis for 385 patients. ZNF331 promoter methylation status was determined by bisulphite conversion and fluorescence-based real-time polymerase chain reaction. Kaplan-Meier estimator and Cox proportional hazard models were used to assess the prognostic and predictive role of mZNF331 in this well-annotated dataset, adjusting for clinicopathologic features and standard molecular markers. mZNF331 was observed in 267/385 (69.4%) evaluable cases. Histopathologic features were largely similar between patients with mZNF331 compared to unmethylated ZNF331 (unmZNFF31). There was no significant difference in disease-free or overall survival between patients with mZNF331 versus unmZNF331 colon cancers, even when adjusting for clinicopathologic features and molecular marker status. Similarly, there was no difference in disease-free or overall survival across treatment arms when stratified by ZNF331 methylation status. While ZNF331 promoter hypermethylation is frequently observed in CRC, our current study of a small subset of patients with stage III colon cancer suggests limited applicability as a prognostic marker. Larger studies may provide more insight and clarity into the applicability of mZNF331 as a prognostic and predictive marker.
Collapse
Affiliation(s)
- Elizabeth S. Nakasone
- Division of Oncology, University of Washington, Seattle, WA, USA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tyler J. Zemla
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN, USA
| | - Ming Yu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - She Yu Lin
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- School of Life Sciences, Nantong University, Nantong, P.R. China
| | - Fang-Shu Ou
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN, USA
| | - Kelly Carter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Federico Innocenti
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leonard Saltz
- Department of Gastrointestinal Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William M. Grady
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Gastroenterology, University of Washington, Seattle, WA, USA
| | - Stacey A. Cohen
- Division of Oncology, University of Washington, Seattle, WA, USA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
7
|
Ugai S, Yao Q, Takashima Y, Zhong Y, Matsuda K, Kawamura H, Imamura Y, Okadome K, Mima K, Arima K, Kosumi K, Song M, Meyerhardt JA, Giannakis M, Nowak JA, Ugai T, Ogino S. Clinicopathological, molecular, and prognostic features of colorectal carcinomas with KRAS c.34G>T (p.G12C) mutation. Cancer Sci 2024; 115:3455-3465. [PMID: 39039804 PMCID: PMC11448363 DOI: 10.1111/cas.16262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
Evidence indicates that combinations of anti-EGFR antibodies and KRAS p.G12C (c.34G>T) inhibitors can be an effective treatment strategy for advanced colorectal cancer. We hypothesized that KRAS c.34G>T (p.G12C)-mutated colorectal carcinoma might be a distinct tumor subtype. We utilized a prospective cohort incident tumor biobank (including 1347 colorectal carcinomas) and detected KRAS c.34G>T (p.G12C) mutation in 43 cases (3.2%) and other KRAS mutations (in codon 12, 13, 61, or 146) in 467 cases (35%). The CpG island methylator phenotype (CIMP)-low prevalence was similarly higher in KRAS c.34G>T mutants (52%) and other KRAS mutants (49%) than in KRAS-wild-type tumors (31%). KRAS c.34G>T mutants showed higher CIMP-high prevalence (14%) and lower CIMP-negative prevalence (33%) compared with other KRAS mutants (6% and 45%, respectively; p = 0.0036). Similar to other KRAS mutants, KRAS c.34G>T-mutated tumors were associated with cecal location, non-microsatellite instability (MSI)-high status, BRAF wild type, and PIK3CA mutation when compared with KRAS-wild-type tumors. Compared with BRAF-mutated tumors, KRAS c.34G>T mutants showed more frequent LINE-1 hypomethylation, a biomarker for early-onset colorectal carcinoma. KRAS c.34G>T mutants were not associated with other features, including the tumor tissue abundance of Fusobacterium nucleatum (F. animalis), pks+ Escherichia coli, Bifidobacterium, or (enterotoxigenic) Bacteroides fragilis. Among 1122 BRAF-wild-type colorectal carcinomas, compared with KRAS-wild-type tumors, multivariable-adjusted colorectal cancer-specific mortality hazard ratios (95% confidence interval) were 1.82 (1.05-3.17) in KRAS c.34G>T (p.G12C)-mutated tumors (p = 0.035) and 1.57 (1.22-2.02) in other KRAS-mutated tumors (p = 0.0004). Our study provides novel evidence for clinical and tumor characteristics of KRAS c.34G>T (p.G12C)-mutated colorectal carcinoma.
Collapse
Affiliation(s)
- Satoko Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Qian Yao
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Yasutoshi Takashima
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard MedicalBostonMassachusettsUSA
| | - Yuxue Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Kosuke Matsuda
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Hidetaka Kawamura
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
- Department of SurgeryFukushima Medical UniversityFukushimaJapan
| | - Yu Imamura
- Department of Esophageal SurgeryThe Cancer Institute Hospital of the Japanese Foundation of Cancer ResearchTokyoJapan
| | - Kazuo Okadome
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Kota Arima
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Keisuke Kosumi
- Department of Gastroenterological Surgery, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Mingyang Song
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
- Department of NutritionHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
- Clinical and Translational Epidemiology UnitMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Division of GastroenterologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Jeffrey A. Meyerhardt
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard MedicalBostonMassachusettsUSA
| | - Marios Giannakis
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard MedicalBostonMassachusettsUSA
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jonathan A. Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer Institute and Harvard MedicalBostonMassachusettsUSA
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of PathologyBrigham and Women's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Cancer Immunology ProgramDana‐Farber/Harvard Cancer CenterBostonMassachusettsUSA
- Tokyo Medical and Dental University (Institute of Science Tokyo)TokyoJapan
| |
Collapse
|
8
|
Moulton C, Lisi V, Silvestri M, Ceci R, Grazioli E, Sgrò P, Caporossi D, Dimauro I. Impact of Physical Activity on DNA Methylation Signatures in Breast Cancer Patients: A Systematic Review with Bioinformatic Analysis. Cancers (Basel) 2024; 16:3067. [PMID: 39272925 PMCID: PMC11394229 DOI: 10.3390/cancers16173067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer (BC) continues to significantly impact women worldwide. Numerous studies show that physical activity (PA) significantly enhances the quality of life, aids recovery, and improves survival rates in BC patients. PA's influence extends to altering DNA methylation patterns on both a global and gene-specific scale, potentially reverting abnormal DNA methylation, associated with carcinogenesis and various pathologies. This review consolidates the findings of the current literature, highlighting PA's impact on DNA methylation in BC patients. Our systematic analysis indicates that PA may elevate global DNA methylation within tumour tissues. Furthermore, it appears to modify gene-specific promoter methylation across a wide spectrum of genes in various tissues. Through bioinformatic analysis, to investigate the functional enrichment of these affected genes, we identified a predominant enrichment in metabolic pathways, cell cycle regulation, cell cycle checkpoints, mitosis, cellular stress responses, and molecular functions governing diverse binding processes. The Human Protein Atlas corroborates this enrichment, indicating gene functionality across 266 tissues, notably within various breast tissues. This systematic review unveils PA's capacity to systematically alter DNA methylation patterns across multiple tissues, particularly in BC patients. Emphasising its influence on crucial biological processes and functions, this alteration holds potential for restoring normal cellular functionality and the cell cycle. This reversal of cancer-associated patterns could potentially enhance recovery and improve survival outcomes.
Collapse
Affiliation(s)
- Chantalle Moulton
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Veronica Lisi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Monica Silvestri
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Roberta Ceci
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Elisa Grazioli
- Unit of Physical Exercise and Sport Sciences, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Paolo Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| | - Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy
| |
Collapse
|
9
|
Wang J, Liang Y, Liang X, Peng H, Wang Y, Xu M, Liang X, Yao H, Liu X, Zeng L, Yao P, Xiang D. Evodiamine suppresses endometriosis development induced by early EBV exposure through inhibition of ERβ. Front Pharmacol 2024; 15:1426660. [PMID: 39148548 PMCID: PMC11324466 DOI: 10.3389/fphar.2024.1426660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction: Endometriosis (EMS) is characterized as a prevalent gynecological inflammatory disorder marked by the existence of endometrial tissues situated beyond the uterus. This condition leads to persistent pelvic pain and may contribute to infertility. In this investigation, we explored the potential mechanism underlying the development of endometriosis (EMS) triggered by transient exposure to either latent membrane protein 1 (LMP1) or Epstein-Barr virus (EBV) in a mouse model. Additionally, we examined the potential inhibitory effect of evodiamine (EDM) on EMS. Methods: Immortalized human endometrial stromal cells (HESC) or epithelial cells (HEEC) were transiently exposed to either EBV or LMP1. The presence of evodiamine (EDM) was assessed for its impact on estrogen receptor β (ERβ) expression, as well as on cell metabolism parameters such as redox balance, mitochondrial function, inflammation, and proliferation. Additionally, a mixture of LMP1-treated HESC and HEEC was administered intraperitoneally to generate an EMS mouse model. Different dosages of EDM were employed for treatment to evaluate its potential suppressive effect on EMS development. Results: Transient exposure to either EBV or LMP1 triggers persistent ERβ expression through epigenetic modifications, subsequently modulating related cell metabolism for EMS development. Furthermore, 4.0 µM of EDM can efficiently reverse this effect in in vitro cell culture studies. Additionally, 20 mg/kg body weight of EDM treatment can partly suppress EMS development in the in vivo EMS mouse model. Conclusion: Transient EBV/LMP1 exposure triggers permanent ERβ expression, favoring later EMS development, EDM inhibits EMS development through ERβ suppression. This presents a novel mechanism for the development of endometriosis (EMS) in adulthood stemming from early Epstein-Barr virus (EBV) exposure during childhood. Moreover, evodiamine (EDM) stands out as a prospective candidate for treating EMS.
Collapse
Affiliation(s)
- Junling Wang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanqi Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoru Liang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huijuan Peng
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongxia Wang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingtao Xu
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuefang Liang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Helen Yao
- University of California at Riverside, Riverside, CA, United States
| | - Xiaohan Liu
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Shenzhen, China
| | - Liqin Zeng
- Department of Gynecology, Sun Yat-Sen University Affiliated No. 8 Hospital, Shenzhen, China
| | - Paul Yao
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongfang Xiang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Takashima Y, Kawamura H, Okadome K, Ugai S, Haruki K, Arima K, Mima K, Akimoto N, Nowak JA, Giannakis M, Garrett WS, Sears CL, Song M, Ugai T, Ogino S. Enrichment of Bacteroides fragilis and enterotoxigenic Bacteroides fragilis in CpG island methylator phenotype-high colorectal carcinoma. Clin Microbiol Infect 2024; 30:630-636. [PMID: 38266708 PMCID: PMC11043012 DOI: 10.1016/j.cmi.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/04/2023] [Accepted: 01/13/2024] [Indexed: 01/26/2024]
Abstract
OBJECTIVES Data support that enterotoxigenic Bacteroides fragilis (ETBF) harbouring the Bacteroides fragilis toxin (bft) gene may promote colorectal tumourigenesis through the serrated neoplasia pathway. We hypothesized that ETBF may be enriched in colorectal carcinoma subtypes with high-level CpG island methylator phenotype (CIMP-high), BRAF mutation, and high-level microsatellite instability (MSI-high). METHODS Quantitative PCR assays were designed to quantify DNA amounts of Bacteroides fragilis, ETBF, and each bft gene isotype (bft-1, bft-2, or bft-3) in colorectal carcinomas in the Health Professionals Follow-up Study and Nurses' Health Study. We used multivariable-adjusted logistic regression models with the inverse probability weighting method. RESULTS We documented 4476 colorectal cancer cases, including 1232 cases with available bacterial data. High DNA amounts of Bacteroides fragilis and ETBF were positively associated with BRAF mutation (p ≤ 0.0003), CIMP-high (p ≤ 0.0002), and MSI-high (p < 0.0001 and p = 0.01, respectively). Multivariable-adjusted odds ratios (with 95% confidence interval) for high Bacteroides fragilis were 1.40 (1.06-1.85) for CIMP-high and 2.14 (1.65-2.77) for MSI-high, but 1.02 (0.78-1.35) for BRAF mutation. Multivariable-adjusted odds ratios for high ETBF were 2.00 (1.16-3.45) for CIMP-high and 2.86 (1.64-5.00) for BRAF mutation, but 1.09 (0.67-1.76) for MSI-high. Neither Bacteroides fragilis nor ETBF was associated with colorectal cancer-specific or overall survival. DISCUSSION The tissue abundance of Bacteroides fragilis is associated with CIMP-high and MSI-high, whereas ETBF abundance is associated with CIMP-high and BRAF mutation in colorectal carcinoma. Our findings support the aetiological relevance of Bacteroides fragilis and ETBF in the serrated neoplasia pathway.
Collapse
Affiliation(s)
- Yasutoshi Takashima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Hidetaka Kawamura
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kazuo Okadome
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Satoko Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kosuke Mima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wendy S Garrett
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Cancer Immunology Program, Dana-Farber Harvard Cancer Centre, Boston, MA, USA.
| |
Collapse
|
11
|
Lulla RR, Buxton A, Krailo MD, Lazow MA, Boue DR, Leach JL, Lin T, Geller JI, Kumar SS, Nikiforova MN, Chandran U, Jogal SS, Nelson MD, Onar-Thomas A, Haas-Kogan DA, Cohen KJ, Kieran MW, Gajjar A, Drissi R, Pollack IF, Fouladi M. Vorinostat, temozolomide or bevacizumab with irradiation and maintenance BEV/TMZ in pediatric high-grade glioma: A Children's Oncology Group Study. Neurooncol Adv 2024; 6:vdae035. [PMID: 38596718 PMCID: PMC11003537 DOI: 10.1093/noajnl/vdae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Background Outcomes for children with high-grade gliomas (HGG) remain poor. This multicenter phase II trial evaluated whether concurrent use of vorinostat or bevacizumab with focal radiotherapy (RT) improved 1-year event-free survival (EFS) compared to temozolomide in children with newly diagnosed HGG who received maintenance temozolomide and bevacizumab. Methods Patients ≥ 3 and < 22 years with localized, non-brainstem HGG were randomized to receive RT (dose 54-59.4Gy) with vorinostat, temozolomide, or bevacizumab followed by 12 cycles of bevacizumab and temozolomide maintenance therapy. Results Among 90 patients randomized, the 1-year EFS for concurrent bevacizumab, vorinostat, or temozolomide with RT was 43.8% (±8.8%), 41.4% (±9.2%), and 59.3% (±9.5%), respectively, with no significant difference among treatment arms. Three- and five-year EFS for the entire cohort was 14.8% and 13.4%, respectively, with no significant EFS difference among the chemoradiotherapy arms. IDH mutations were associated with more favorable EFS (P = .03), whereas H3.3 K27M mutations (P = .0045) and alterations in PIK3CA or PTEN (P = .025) were associated with worse outcomes. Patients with telomerase- and alternative lengthening of telomeres (ALT)-negative tumors (n = 4) had an EFS of 100%, significantly greater than those with ALT or telomerase, or both (P = .002). While there was no difference in outcomes based on TERT expression, high TERC expression was associated with inferior survival independent of the telomere maintenance mechanism (P = .0012). Conclusions Chemoradiotherapy with vorinostat or bevacizumab is not superior to temozolomide in children with newly diagnosed HGG. Patients with telomerase- and ALT-negative tumors had higher EFS suggesting that, if reproduced, mechanism of telomere maintenance should be considered in molecular-risk stratification in future studies.
Collapse
Affiliation(s)
- Rishi R Lulla
- Department of Pediatrics, Hasbro Children’s Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Allen Buxton
- Department of Biostatistics, Children’s Oncology Group, Monrovia, California, USA
| | - Mark D Krailo
- Department of Biostatistics, Children’s Oncology Group, Monrovia, California, USA
| | - Margot A Lazow
- Pediatric Neuro‑Oncology Program, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Daniel R Boue
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - James L Leach
- Department of Radiology and Medical Imaging, Cincinnati Children’s Hospital Medical Center, Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Tong Lin
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - James I Geller
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shiva Senthil Kumar
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Marina N Nikiforova
- Division of Molecular & Genomic Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Uma Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sachin S Jogal
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Marvin D Nelson
- Department of Radiology, Children’s Hospital Los Angeles, Keck University of Southern California School of Medicine, Los Angeles, California, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Kenneth J Cohen
- Division of Pediatric Oncology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark W Kieran
- Department of Pediatric Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Amar Gajjar
- Department of Pediatric Medicine, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Rachid Drissi
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, OH, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Ian F Pollack
- Department of Neurosurgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maryam Fouladi
- Pediatric Neuro‑Oncology Program, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
12
|
Qian T, Zhou Z, Zhang Q, Liou YL, Zhou H. SEPT9, H4C6, and RASSF1A methylation in nasopharyngeal swabs: A reflection of potential minimally invasive biomarkers for early screening of nasopharyngeal cancer. Medicine (Baltimore) 2023; 102:e36583. [PMID: 38115290 PMCID: PMC10727677 DOI: 10.1097/md.0000000000036583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
The potential value of epigenetic DNA methylation in early cancer screening has been demonstrated. Therefore, in this study, we performed QMS-PCR and quantitative reverse transcription PCR on the genes RASSF1A, H4C6, SEPT9, GSTP1, PAX1, SHOX2, and SOX2, which are common in epithelial cancers. We found hypermethylation in RASSF1A, H4C6 and SEPT9. The mRNA expressions of RASSF1A, H4C6 and SEPT9 in tumor group were significantly different from those in the inflammatory group and healthy group (P < .05). Receiver operating characteristic (ROC) analysis showed that the area under the curve (AUC) of RASSF1A, H4C6 and SEPT9 genes were 0.831, 0.856 and 0.767, respectively. The areas under the AUC curve of SEPT9 + H4C6, SEPT9 + RASSF1A and H4C6 + RASSF1A are 0.946, 0.912 and 0.851, respectively. The diagnostic ability of dual gene combination is better than that of single gene combination, among which SEPT9 and H4C6 combination has the best diagnostic effect. In conclusion, our findings suggest that H4C6, RASSF1A, and SEPT9 methylation occur more frequently in nasopharyngeal carcinoma, and their detection in nasopharyngeal swabs may be a minimally invasive tool for diagnosis of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Tai Qian
- Department of Pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhiwei Zhou
- Department of Pharmacy, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiongxia Zhang
- Department of Oncology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu-Light Liou
- Clinical Precision Medicine Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Honghao Zhou
- Clinical Precision Medicine Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
13
|
Chatterjee K, Mal S, Ghosh M, Chattopadhyay NR, Roy SD, Chakraborty K, Mukherjee S, Aier M, Choudhuri T. Blood-based DNA methylation in advanced Nasopharyngeal Carcinoma exhibited distinct CpG methylation signature. Sci Rep 2023; 13:22086. [PMID: 38086861 PMCID: PMC10716134 DOI: 10.1038/s41598-023-45001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 10/14/2023] [Indexed: 12/18/2023] Open
Abstract
The TNM staging system is currently used to detect cancer stages. Regardless, a small proportion of cancer patients recur even after therapy, suggesting more specific molecular tools are required to justify the stage-specific detection and prompt cancer diagnosis. Thus, we aimed to explore the blood-based DNA methylation signature of metastatic nasopharyngeal carcinoma (NPC) to establish a holistic methylation biomarker panel. For the identification of methylation signature, the EPIC BeadChip-based array was performed. Comparative analysis for identifying unique probes, validation, and functional studies was investigated by analyzing GEO and TCGA datasets. We observed 4093 differentially methylated probes (DMPs), 1232 hydroxymethylated probes, and 25 CpG islands. Gene expression study revealed both upregulated and downregulated genes. Correlation analysis suggested a positive (with a positive r, p ≤ 0.05) and negative (with a negative r, p ≤ 0.05) association with different cancers. TFBS analysis exhibited the binding site for many TFs. Furthermore, gene enrichment analysis indicated the involvement of those identified genes in biological pathways. However, blood-based DNA methylation data uncovered a distinct DNA methylation pattern, which might have an additive role in NPC progression by altering the TFs binding. Moreover, based on tissue-specificity, a variation of correlation between methylation and gene expression was noted in different cancers.
Collapse
Affiliation(s)
- Koustav Chatterjee
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India, 731235
| | - Sudipa Mal
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India, 731235
| | - Monalisha Ghosh
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India, 731235
| | | | - Sankar Deb Roy
- Department of Radiation Oncology, Eden Medical Center, Dimapur, Nagaland, India
| | - Koushik Chakraborty
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India, 731235
| | - Syamantak Mukherjee
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India, 731235
| | - Moatoshi Aier
- Department of Pathology, Eden Medical Center, Dimapur, Nagaland, India
| | - Tathagata Choudhuri
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India, 731235.
| |
Collapse
|
14
|
Danos P, Giannoni‐Luza S, Murillo Carrasco AG, Acosta O, Guevara‐Fujita ML, Cotrina Concha JM, Guerra Miller H, Pinto Oblitas J, Aguilar Cartagena A, Araujo JM, Fujita R, Buleje Sono JL. Promoter hypermethylation of RARB and GSTP1 genes in plasma cell-free DNA as breast cancer biomarkers in Peruvian women. Mol Genet Genomic Med 2023; 11:e2260. [PMID: 37548362 PMCID: PMC10724513 DOI: 10.1002/mgg3.2260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Promoter hypermethylation is one of the enabling mechanisms of hallmarks of cancer. Tumor suppressor genes like RARB and GSTP1 have been reported as hypermethylated in breast cancer tumors compared with normal tissues in several populations. This case-control study aimed to determine the association between the promoter methylation ratio (PMR) of RARB and GSTP1 genes (separately and as a group) with breast cancer and its clinical-pathological variables in Peruvian patients, using a liquid biopsy approach. METHODS A total of 58 breast cancer patients and 58 healthy controls, matched by age, participated in the study. We exacted cell-free DNA (cfDNA) from blood plasma and converted it by bisulfite salts. Methylight PCR was performed to obtain the PMR value of the studied genes. We determined the association between PMR and breast cancer, in addition to other clinicopathological variables. The sensitivity and specificity of the PMR of these genes were obtained. RESULTS A significant association was not found between breast cancer and the RARB PMR (OR = 1.90; 95% CI [0.62-6.18]; p = 0.210) or the GSTP1 PMR (OR = 6.57; 95% CI [0.75-307.66]; p = 0.114). The combination of the RARB + GSTP1 PMR was associated with breast cancer (OR = 2.81; 95% CI [1.02-8.22]; p = 0.026), controls under 50 years old (p = 0.048), patients older than 50 (p = 0.007), and postmenopausal (p = 0.034). The PMR of both genes showed a specificity of 86.21% and a sensitivity of 31.03%. CONCLUSION Promoter hypermethylation of RARB + GSTP1 genes is associated with breast cancer, older age, and postmenopausal Peruvian patients. The methylated promoter of the RARB + GSTP1 genes needs further validation to be used as a biomarker for liquid biopsy and as a recommendation criterion for additional tests in asymptomatic women younger than 50 years.
Collapse
Affiliation(s)
- Pierina Danos
- Centro de Genética y Biología MolecularUniversidad de San Martín de PorresLimaPeru
| | | | | | - Oscar Acosta
- Facultad de Medicina HumanaUniversidad de San Martín de PorresChiclayoPeru
- Facultad de Farmacia y BioquímicaUniversidad Nacional Mayor de San MarcosLimaPeru
| | | | | | | | | | | | | | - Ricardo Fujita
- Centro de Genética y Biología MolecularUniversidad de San Martín de PorresLimaPeru
| | | |
Collapse
|
15
|
Zhang Y, Wang JW, Su X, Li JE, Wei XF, Yang JR, Gao S, Fan YC, Wang K. F-box protein 43 promoter methylation as a novel biomarker for hepatitis B virus-associated hepatocellular carcinoma. Front Microbiol 2023; 14:1267844. [PMID: 38029156 PMCID: PMC10652413 DOI: 10.3389/fmicb.2023.1267844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) has a high prevalence and poor prognosis worldwide. Therefore, it is urgent to find effective and timely diagnostic markers. The objective of this study was to evaluate the diagnostic value of F-box protein 43 promoter methylation in peripheral blood mononuclear cells (PBMCs) for HCC. METHOD A total of 247 participants were included in this study, comprising individuals with 123 hepatitis B virus-associated HCC, 79 chronic hepatitis B, and 45 healthy controls. F-box protein 43 methylation and mRNA levels in PBMCs were detected by MethyLight and quantitative real-time PCR. RESULT F-box protein 43 promoter methylation levels were significantly lower in HCC PBMCs than the chronic hepatitis B (P < 0.001) and healthy control PBMCs (P < 0.001). Relative mRNA expression levels of F-box protein 43 in HCC PBMCs were significantly higher than those in chronic hepatitis B (P < 0.001) and healthy control PBMCs (P < 0.001). Receiver operating characteristic analysis of F-box protein 43 promoter methylation levels yielded an area under curve (AUC) of 0.793 with 76.42% sensitivity and 68.35% specificity when differentiating HCC from chronic hepatitis. These values for the F-box protein 43 promoter methylation level were superior to those of the alpha-fetoprotein serum (AFP) level (AUC: 0.780, sensitivity: 47.97%, and specificity: 96.20%), with increments in values for the combination of F-box protein 43 promoter methylation AFP levels (AUC: 0.888, sensitivity: 76.42%, and specificity: 86.08%). CONCLUSION Hypomethylation of the F-box protein 43 promoter in PBMCs is a promising biochemical marker for HBV-associated HCC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing-Wei Wang
- Department of Hepatology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Xing Su
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jin-E Li
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Fei Wei
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie-Ru Yang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Hepatology Institute of Shandong University, Shandong University, Jinan, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Hepatology Institute of Shandong University, Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
- Department of Hepatology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
- Hepatology Institute of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
16
|
Botezatu IV, Kondratova VN, Stroganova AM, Dranko SL, Lichtenstein AV. Aberrant methylation scanning by quantitative DNA melting analysis with hybridization probes as exemplified by liquid biopsy of SEPT9 and HIST1H4F in colorectal cancer. Clin Chim Acta 2023; 551:117591. [PMID: 37832390 DOI: 10.1016/j.cca.2023.117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/05/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
OBJECTIVE The generally accepted method of quantifying hypermethylated DNA by qPCR using methylation-specific primers has the risk of underestimating DNA methylation and requires data normalization. This makes the analysis complicated and less reliable. METHODS The end-point PCR method, called qDMA-HP (for quantitative DNA Melting Analysis with hybridization probes), which excludes the normalization procedure, is multiplexed and quantitative, has been proposed. qDMA-HP is characterized by the following features: (i) asymmetric PCR with methylation-independent primers; (ii) fluorescent dual-labeled, self-quenched probes (commonly known as TaqMan probes) covering several interrogated CpGs; (iii) post-PCR melting analysis of amplicon/probe hybrids; (iv) quantitation of unmethylated and methylated DNA alleles by measuring the areas under the corresponding melt peaks. RESULTS qDMA-HP was tested in liquid biopsy of colorectal cancer by evaluating SEPT9 and HIST1H4F methylations simultaneously in the single-tube reaction. Differences in the methylation levels in healthy donors versus cancer patients were statistically significant (p < 0.0001), AUCROC values were 0.795-0.921 for various marker combinations. CONCLUSIONS This proof-of-concept study shows that qDMA-HP is a simple, normalization-independent, quantitative, multiplex and "closed tube" method easily adapted to clinical settings. It is demonstrated, for the first time, that HIST1H4F is a perspective marker for liquid biopsy of colorectal cancer.
Collapse
Affiliation(s)
- Irina V Botezatu
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Valentina N Kondratova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Anna M Stroganova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Svetlana L Dranko
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Anatoly V Lichtenstein
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia.
| |
Collapse
|
17
|
Park SA, Masunaga N, Kagara N, Ohi Y, Gondo N, Abe K, Yoshinami T, Sota Y, Miyake T, Tanei T, Shimoda M, Sagara Y, Shimazu K. Evaluation of RASSF1A methylation in the lysate of sentinel lymph nodes for detecting breast cancer metastasis: A diagnostic accuracy study. Oncol Lett 2023; 26:475. [PMID: 37809046 PMCID: PMC10551867 DOI: 10.3892/ol.2023.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/15/2023] [Indexed: 10/10/2023] Open
Abstract
The restriction enzyme-based digital methylation-specific polymerase chain reaction (RE-dMSP) assay is useful for diagnosing sentinel lymph node (SN) metastasis in patients with breast cancer, by detecting tumor-derived methylated Ras association domain-containing protein 1 (RASSF1A). In addition, this assay has high concordance (95.0%) with one-step nucleic acid amplification (OSNA). The present study aimed to perform RE-dMSP using OSNA lysate from more patients and to re-evaluate its clinical usage. Overall, 418 SNs from 347 patients were evaluated using both OSNA and RE-dMSP. The concordance rate was 83.3% (348/418). RASSF1A methylation of the primary tumors was negative in 36 patients. When these patients were excluded, the concordance rate improved to 88.2% (330/374). Of the 79 OSNA-negative cases, 19 were RE-dMSP-positive, although all were positive for cytokeratin 19 expression in the primary tumor, suggesting that RE-dMSP can detect tumor-derived DNA with a higher sensitivity. The percent of methylated reference of the breast tumors showed a wide variety in the 16 OSNA-positive/RE-dMSP-negative cases, and such variability of methylation could have affected the results in these patients. In conclusion, although RE-dMSP can diagnose SN metastasis with high sensitivity and accuracy, and can be a supplementary tool to OSNA in breast cancer, RE-dMSP showed certain discordance with OSNA and critically depended on the absence or heterogeneity of DNA methylation in breast tumors. Further research is expected to develop an assay targeting other DNA alterations, such as mutations.
Collapse
Affiliation(s)
- Sung Ae Park
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Nanae Masunaga
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Naofumi Kagara
- Department of Breast Surgery, Osaka General Medical Center, Osaka 558-8558, Japan
| | - Yasuyo Ohi
- Department of Breast Surgery, Hakuaikai Sagara Hospital, Kagoshima 892-0833, Japan
| | - Naomi Gondo
- Department of Breast Surgery, Hakuaikai Sagara Hospital, Kagoshima 892-0833, Japan
| | - Kaori Abe
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tetsuhiro Yoshinami
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiaki Sota
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomohiro Miyake
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomonori Tanei
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Masafumi Shimoda
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yasuaki Sagara
- Department of Breast Surgery, Hakuaikai Sagara Hospital, Kagoshima 892-0833, Japan
| | - Kenzo Shimazu
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Yang J, Sun L, Liu X, Huang C, Peng J, Zeng X, Zheng H, Cen W, Xu Y, Zhu W, Wu X, Ling D, Zhang L, Wei M, Liu Y, Wang D, Wang F, Li Y, Li Q, Du Z. Targeted demethylation of the CDO1 promoter based on CRISPR system inhibits the malignant potential of breast cancer cells. Clin Transl Med 2023; 13:e1423. [PMID: 37740473 PMCID: PMC10517212 DOI: 10.1002/ctm2.1423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Cysteine dioxygenase 1 (CDO1) is frequently methylated, and its expression is decreased in many human cancers including breast cancer (BC). However, the functional and mechanistic aspects of CDO1 inactivation in BC are poorly understood, and the diagnostic significance of serum CDO1 methylation remains unclear. METHODS We performed bioinformatics analysis of publicly available databases and employed MassARRAY EpiTYPER methylation sequencing technology to identify differentially methylated sites in the CDO1 promoter of BC tissues compared to normal adjacent tissues (NATs). Subsequently, we developed a MethyLight assay using specific primers and probes for these CpG sites to detect the percentage of methylated reference (PMR) of the CDO1 promoter. Furthermore, both LentiCRISPR/dCas9-Tet1CD-based CDO1-targeted demethylation system and CDO1 overexpression strategy were utilized to detect the function and underlying mechanism of CDO1 in BC. Finally, the early diagnostic value of CDO1 as a methylation biomarker in BC serum was evaluated. RESULTS CDO1 promoter was hypermethylated in BC tissues, which was related to poor prognosis (p < .05). The CRISPR/dCas9-based targeted demethylation system significantly reduced the PMR of CDO1 promotor and increased CDO1 expression in BC cells. Consequently, this leads to suppression of cell proliferation, migration and invasion. Additionally, we found that CDO1 exerted a tumour suppressor effect by inhibiting the cell cycle, promoting cell apoptosis and ferroptosis. Furthermore, we employed the MethyLight to detect CDO1 PMR in BC serum, and we discovered that serum CDO1 methylation was an effective non-invasive biomarker for early diagnosis of BC. CONCLUSIONS CDO1 is hypermethylated and acts as a tumour suppressor gene in BC. Epigenetic editing of abnormal CDO1 methylation could have a crucial role in the clinical treatment and prognosis of BC. Additionally, serum CDO1 methylation holds promise as a valuable biomarker for the early diagnosis and management of BC.
Collapse
Affiliation(s)
- Jiaojiao Yang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Liyue Sun
- Second Department of OncologyGuangdong Second Provincial General HospitalGuangzhouGuangdongP. R. China
| | - Xiao‐Yun Liu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Chan Huang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Junling Peng
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Xinxin Zeng
- Second Department of OncologyGuangdong Second Provincial General HospitalGuangzhouGuangdongP. R. China
| | - Hailin Zheng
- Department of Clinical LaboratorySun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Wenjian Cen
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Yu‐Xia Xu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Weijie Zhu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Xiao‐Yan Wu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Dongyi Ling
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Lu‐Lu Zhang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Mingbiao Wei
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Ye Liu
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Deshen Wang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Feng‐Hua Wang
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Yu‐Hong Li
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdongP. R. China
- Medical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouGuangdongP. R. China
| | - Ziming Du
- State Key Laboratory of Oncology in South ChinaSun Yat‐Sen University Cancer CenterGuangzhouGuangdongP. R. China
- Department of Molecular DiagnosticsSun Yat‐sen University Cancer CenterGuangzhouGuangdongP. R. China
| |
Collapse
|
19
|
Li F, Zhang Y, Wang ZH, Gao S, Fan YC, Wang K. SOCS1 methylation level is associated with prognosis in patients with acute-on-chronic hepatitis B liver failure. Clin Epigenetics 2023; 15:79. [PMID: 37149648 PMCID: PMC10163770 DOI: 10.1186/s13148-023-01495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/28/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Glucocorticoids could greatly improve the prognosis of patients with acute-on-chronic hepatitis B liver failure (ACHBLF). Suppressor of cytokine signaling (SOCS) 1 methylation has been shown to be associated with mortality in ACHBLF. METHODS Eighty patients with ACHBLF were divided into group glucocorticoid (GC) and group conservative medical (CM). Sixty patients with chronic hepatitis B (CHB), and Thirty healthy controls (HCs) served as control group. SOCS1 methylation levels in peripheral mononuclear cells (PBMCs) was detected by MethyLight. RESULTS SOCS1 methylation levels were significantly higher in patients with ACHBLF than those with CHB and HCs (P < 0.01, respectively). Nonsurvivors showed significantly higher SOCS1 methylation levels (P < 0.05) than survivors in both GC and CM groups in ACHBLF patients. Furthermore, the survival rates of the SOCS1 methylation-negative group were significantly higher than that of the methylation-positive group at 1 month (P = 0.014) and 3 months (P = 0.003) follow-up. Meanwhile, GC group and CM group had significantly lower mortality at 3 months, which may be related to application of glucocorticoid. In the SOCS1 methylation-positive group, the 1-month survival rate was significantly improved, which may be related to GC treatment (P = 0.020). However, no significant difference could be observed between the GC group and CM group in the methylation-negative group (P = 0.190). CONCLUSIONS GC treatment could decrease the mortality of ACHBLF and SOCS1 methylation levels might serve as prognostic marker for favorable response to glucocorticoid treatment.
Collapse
Affiliation(s)
- Feng Li
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, Shandong, China
| | - Ying Zhang
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, Shandong, China
| | - Zhao-Hui Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, Shandong, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, Shandong, China
- Hepatology Institute of Shandong University, Jinan, 250012, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, Shandong, China
- Hepatology Institute of Shandong University, Jinan, 250012, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Wenhuaxi Road 107#, Jinan, 250012, Shandong, China.
- Hepatology Institute of Shandong University, Jinan, 250012, China.
| |
Collapse
|
20
|
Hitchins MP, Alvarez R, Zhou L, Aguirre F, Dámaso E, Pineda M, Capella G, Wong JJL, Yuan X, Ryan SR, Sathe DS, Baxter MD, Cannon T, Biswas R, DeMarco T, Grzelak D, Hampel H, Pearlman R. MLH1-methylated endometrial cancer under 60 years of age as the "sentinel" cancer in female carriers of high-risk constitutional MLH1 epimutation. Gynecol Oncol 2023; 171:129-140. [PMID: 36893489 PMCID: PMC10153467 DOI: 10.1016/j.ygyno.2023.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVE Universal screening of endometrial carcinoma (EC) for mismatch repair deficiency (MMRd) and Lynch syndrome uses presence of MLH1 methylation to omit common sporadic cases from follow-up germline testing. However, this overlooks rare cases with high-risk constitutional MLH1 methylation (epimutation), a poorly-recognized mechanism that predisposes to Lynch-type cancers with MLH1 methylation. We aimed to determine the role and frequency of constitutional MLH1 methylation among EC cases with MMRd, MLH1-methylated tumors. METHODS We screened blood for constitutional MLH1 methylation using pyrosequencing and real-time methylation-specific PCR in patients with MMRd, MLH1-methylated EC ascertained from (i) cancer clinics (n = 4, <60 years), and (ii) two population-based cohorts; "Columbus-area" (n = 68, all ages) and "Ohio Colorectal Cancer Prevention Initiative (OCCPI)" (n = 24, <60 years). RESULTS Constitutional MLH1 methylation was identified in three out of four patients diagnosed between 36 and 59 years from cancer clinics. Two had mono-/hemiallelic epimutation (∼50% alleles methylated). One with multiple primaries had low-level mosaicism in normal tissues and somatic "second-hits" affecting the unmethylated allele in all tumors, demonstrating causation. In the population-based cohorts, all 68 cases from the Columbus-area cohort were negative and low-level mosaic constitutional MLH1 methylation was identified in one patient aged 36 years out of 24 from the OCCPI cohort, representing one of six (∼17%) patients <50 years and one of 45 patients (∼2%) <60 years in the combined cohorts. EC was the first/dual-first cancer in three patients with underlying constitutional MLH1 methylation. CONCLUSIONS A correct diagnosis at first presentation of cancer is important as it will significantly alter clinical management. Screening for constitutional MLH1 methylation is warranted in patients with early-onset EC or synchronous/metachronous tumors (any age) displaying MLH1 methylation.
Collapse
Affiliation(s)
- Megan P Hitchins
- Department of Biomedical Sciences, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Medicine (Oncology), Stanford University, Stanford, CA, USA.
| | - Rocio Alvarez
- Department of Biomedical Sciences, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lisa Zhou
- Department of Biomedical Sciences, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Francesca Aguirre
- Department of Biomedical Sciences, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Estela Dámaso
- Department of Medicine (Oncology), Stanford University, Stanford, CA, USA; Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, Av. Gran Via de l'Hospitalet, 199-203, 08908 L' Hospitalet de Llobregat, Barcelona, Spain; Molecular Genetics Unit, Elche University Hospital, Elche, Alicante. Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), FISABIO- Elche Health Department, Spain
| | - Marta Pineda
- Molecular Genetics Unit, Elche University Hospital, Elche, Alicante. Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), FISABIO- Elche Health Department, Spain; Consortium for Biomedical Research in Cancer - CIBERONC, Carlos III Institute of Health, Av. De Monforte de Lemos 5, 28029 Madrid, Spain
| | - Gabriel Capella
- Molecular Genetics Unit, Elche University Hospital, Elche, Alicante. Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), FISABIO- Elche Health Department, Spain; Consortium for Biomedical Research in Cancer - CIBERONC, Carlos III Institute of Health, Av. De Monforte de Lemos 5, 28029 Madrid, Spain
| | - Justin J-L Wong
- Epigenetics and RNA Biology Program Centenary Institute, and Faculty of Medicine and Health, The University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Xiaopu Yuan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shawnia R Ryan
- Hereditary Cancer Assessment Program, University of New Mexico Comprehensive Cancer Center, NM, USA
| | - Devika S Sathe
- Precision Medicine and Genetics, Frederick Health, MD, USA
| | | | - Timothy Cannon
- Cancer Genetics Program, Inova Schar Cancer Institute, Inova Fairfax Hospital, VA, USA
| | - Rakesh Biswas
- Cancer Genetics Program, Inova Schar Cancer Institute, Inova Fairfax Hospital, VA, USA
| | - Tiffani DeMarco
- Cancer Genetics Program, Inova Schar Cancer Institute, Inova Fairfax Hospital, VA, USA
| | | | - Heather Hampel
- Department of Internal Medicine and the Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA; Division of Clinical Cancer Genomics, Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Rachel Pearlman
- Department of Internal Medicine and the Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| |
Collapse
|
21
|
Chen S, Zhang P, Feng J, Li R, Chen J, Zheng WV, Zhang H, Yao P. LMP1 mediates tumorigenesis through persistent epigenetic modifications and PGC1β upregulation. Oncol Rep 2023; 49:53. [PMID: 36734290 PMCID: PMC9926514 DOI: 10.3892/or.2023.8490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Latent membrane protein 1 (LMP1), which is encoded by the Epstein‑Barr virus (EBV), has been considered as an oncogene, although the detailed mechanism behind its function remains unclear. It has been previously reported that LMP1 promotes tumorigenesis by upregulation of peroxisome proliferator‑activated receptor‑γ coactivator‑1β (PGC1β). The present study aimed to investigate the potential mechanism for transient EBV/LMP1 exposure‑mediated persistent PGC1β expression and subsequent tumorigenesis through modification of mitochondrial function. Luciferase reporter assay, chromatin immunoprecipitation and DNA mutation techniques were used to evaluate the PGC1β‑mediated expression of dynamin‑related protein 1 (DRP1). Tumorigenesis was evaluated by gene expression, oxidative stress, mitochondrial function and in vitro cellular proliferation assays. The potential effects of EBV, LMP1 and PGC1β on tumor growth were evaluated in an in vivo xenograft mouse model. The present in vitro experiments showed that LMP1 knockdown did not affect PGC1β expression or subsequent cell proliferation in EBV‑positive tumor cells. PGC1β regulated DRP1 expression by coactivation of GA‑binding protein α and nuclear respiratory factor 1 located on the DRP1 promoter, subsequently modulating mitochondrial fission. Transient exposure of either EBV or LMP1 in human hematopoietic stem cells caused persistent epigenetic changes and PGC1β upregulation after long‑term cell culture even in the absence of EBV/LMP1, which decreased oxidative stress, and potentiated mitochondrial function and cell proliferation in vitro. Enhanced tumor growth and shortened survival were subsequently observed in vivo. It was concluded that PGC1β expression and subsequent cell proliferation were independent from LMP1 in EBV‑positive tumor cells. PGC1β modulated mitochondria fission by regulation of DRP1 expression. Transient EBV/LMP1 exposure caused persistent PGC1β expression, triggering tumor growth in the absence of LMP1. The present study proposes a novel mechanism for transient EBV/LMP1 exposure‑mediated tumorigenesis through persistent epigenetic changes and PGC1β upregulation, uncovering the reason why numerous forms of lymphoma exhibit upregulated PGC1β expression, but are devoid of EBV/LMP1.
Collapse
Affiliation(s)
- Siliang Chen
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Ping Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jia Feng
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Rui Li
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Junhui Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Wei V. Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China,Correspondence to: Dr Paul Yao or Dr Hongyu Zhang, Department of Hematology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| | - Paul Yao
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China,Correspondence to: Dr Paul Yao or Dr Hongyu Zhang, Department of Hematology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| |
Collapse
|
22
|
Arima K, Zhong R, Ugai T, Zhao M, Haruki K, Akimoto N, Lau MC, Okadome K, Mehta RS, Väyrynen JP, Kishikawa J, Twombly TS, Shi S, Fujiyoshi K, Kosumi K, Ogata Y, Baba H, Wang F, Wu K, Song M, Zhang X, Fuchs CS, Sears CL, Willett WC, Giovannucci EL, Meyerhardt JA, Garrett WS, Huttenhower C, Chan AT, Nowak JA, Giannakis M, Ogino S. Western-Style Diet, pks Island-Carrying Escherichia coli, and Colorectal Cancer: Analyses From Two Large Prospective Cohort Studies. Gastroenterology 2022; 163:862-874. [PMID: 35760086 PMCID: PMC9509428 DOI: 10.1053/j.gastro.2022.06.054] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Evidence supports a carcinogenic role of Escherichia coli carrying the pks island that encodes enzymes for colibactin biosynthesis. We hypothesized that the association of the Western-style diet (rich in red and processed meat) with colorectal cancer incidence might be stronger for tumors containing higher amounts of pks+E coli. METHODS Western diet score was calculated using food frequency questionnaire data obtained every 4 years during follow-up of 134,775 participants in 2 United States-wide prospective cohort studies. Using quantitative polymerase chain reaction, we measured pks+E coli DNA in 1175 tumors among 3200 incident colorectal cancer cases that had occurred during the follow-up. We used the 3200 cases and inverse probability weighting (to adjust for selection bias due to tissue availability), integrated in multivariable-adjusted duplication-method Cox proportional hazards regression analyses. RESULTS The association of the Western diet score with colorectal cancer incidence was stronger for tumors containing higher levels of pks+E coli (Pheterogeneity = .014). Multivariable-adjusted hazard ratios (with 95% confidence interval) for the highest (vs lowest) tertile of the Western diet score were 3.45 (1.53-7.78) (Ptrend = 0.001) for pks+E coli-high tumors, 1.22 (0.57-2.63) for pks+E coli-low tumors, and 1.10 (0.85-1.42) for pks+E coli-negative tumors. The pks+E coli level was associated with lower disease stage but not with tumor location, microsatellite instability, or BRAF, KRAS, or PIK3CA mutations. CONCLUSIONS The Western-style diet is associated with a higher incidence of colorectal cancer containing abundant pks+E coli, supporting a potential link between diet, the intestinal microbiota, and colorectal carcinogenesis.
Collapse
Affiliation(s)
- Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Rong Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kazuo Okadome
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raaj S Mehta
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Juha P Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts; Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Junko Kishikawa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tyler S Twombly
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shanshan Shi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Keisuke Kosumi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yoko Ogata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Fenglei Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Xuehong Zhang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, Connecticut; Department of Medicine, Yale School of Medicine, New Haven, Connecticut; Smilow Cancer Hospital, New Haven, Connecticut; Genentech, South San Francisco, California
| | - Cynthia L Sears
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Wendy S Garrett
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts.
| |
Collapse
|
23
|
Wang F, Ugai T, Haruki K, Wan Y, Akimoto N, Arima K, Zhong R, Twombly TS, Wu K, Yin K, Chan AT, Giannakis M, Nowak JA, Meyerhardt JA, Liang L, Song M, Smith‐Warner SA, Zhang X, Giovannucci EL, Willett WC, Ogino S. Healthy and unhealthy plant-based diets in relation to the incidence of colorectal cancer overall and by molecular subtypes. Clin Transl Med 2022; 12:e893. [PMID: 35998061 PMCID: PMC9398226 DOI: 10.1002/ctm2.893] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Plant-based foods have been recommended for health. However, not all plant foods are healthy, and little is known about the association between plant-based diets and specific molecular subtypes of colorectal cancer (CRC). We examined the associations of healthy and unhealthy plant-based diets with the incidence of CRC and its molecular subtypes. METHODS While 123 773 participants of the Nurses' Health Study and the Health Professionals Follow-up Study had been followed up (3 143 158 person-years), 3077 of them had developed CRC. Healthy and unhealthy plant-based diet indices (hPDI and uPDI, respectively) were calculated using repeated food frequency questionnaire data. We determined the tumoural status of microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and BRAF and KRAS mutations. RESULTS Higher hPDI was associated with lower CRC incidence (multivariable hazard ratio [HR] comparing extreme quartiles, 0.86, 95% confidence interval [CI]: 0.77, 0.96; P-trend = .04), whereas higher uPDI was associated with higher CRC incidence (multivariable HR comparing extreme quartiles, 1.16, 95% CI: 1.04, 1.29; P-trend = .005). The association of hPDI significantly differed by KRAS status (P-heterogeneity = .003) but not by other tumour markers. The hPDI was associated with lower incidence of KRAS-wildtype CRC (multivariable HR comparing extreme quartiles, 0.74, 95% CI: 0.57, 0.96; P-trend = .004) but not KRAS-mutant CRC (P-trend = .22). CONCLUSIONS While unhealthy plant-based diet enriched with refined grains and sugar is associated with higher CRC incidence, healthy plant-based diet rich in whole grains, fruits and vegetables is associated with lower incidence of CRC, especially KRAS-wildtype CRC.
Collapse
|
24
|
Ono T, Yamaguchi T, Takao M, Kojika E, Iijima T, Horiguchi SI. Fusobacterium nucleatum load in MSI colorectal cancer subtypes. Int J Clin Oncol 2022; 27:1580-1588. [PMID: 35859218 DOI: 10.1007/s10147-022-02218-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Fusobacterium nucleatum (F. nucleatum) infection may lead to colorectal cancer (CRC) development in the context of microsatellite instability (MSI). To date, however, the relationship between F. nucleatum load and MSI CRC subtypes has not been clarified. METHODS One hundred seventy-nine consecutive patients with CRC were enrolled in the present study. In 94 patients with MSI CRC, 32 had hereditary MSI CRC from Lynch syndrome, 62 had sporadic MSI CRC, while the remaining 85 had microsatellite stable (MSS) CRC. The association of the F. nucleatum load with each CRC subtype and the patients' clinicopathological characteristics was examined. RESULTS Of the 179 patients with CRC, 158 (88.3%) were F. nucleatum-positive. A high F. nucleatum load was found in 84.4% (27/32), 96.8% (60/62), and 83.5% (71/85) of the patients with hereditary MSI CRC, sporadic MSI CRC, and MSS CRC, respectively (P = 0.024). In terms of clinicopathological features, a high F. nucleatum load was significantly associated with female, right-sided CRC, BRAF V600E, CpG island methylator phenotype-positive CRC, and MSI CRC (P = 0.008, P = 0.015, P = 0.007, P = 0.006, and P < 0.001, respectively). However, the clinicopathological characteristics did not differ significantly by F. nucleatum load between hereditary and sporadic MSI CRCs without tumor depth. CONCLUSIONS The F. nucleatum load was higher in hereditary MSI CRC than in MSS CRC as well as sporadic MSI CRC. These findings may contribute to preventing CRC in hereditary MSI CRC through appropriate intervention.
Collapse
Affiliation(s)
- Tomoyuki Ono
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
| | - Tatsuro Yamaguchi
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan. .,Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan. .,Department of Gastroenterology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan.
| | - Misato Takao
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8677, Japan
| | - Ekumi Kojika
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan.,Department of Gastroenterology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Takeru Iijima
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan.,Department of Gastroenterology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Shin-Ichiro Horiguchi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| |
Collapse
|
25
|
Zhang S, Shi W, Li KB, Han DM, Xu JJ. Ultrasensitive and Label-Free Detection of Multiple DNA Methyltransferases by Asymmetric Nanopore Biosensor. Anal Chem 2022; 94:4407-4416. [PMID: 35234450 DOI: 10.1021/acs.analchem.1c05332] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA methylation is catalyzed by a family of DNA methyltransferases that play crucial roles in various biological processes. Therefore, an ultrasensitive methyltransferase assay is highly desirable in biomedical research and clinical diagnosis. However, conventional assays for the detection of DNA methyltransferase activity often involve radioactive labeling, costly equipment, and laborious operation. In this study, an ultrasensitive and label-free method for detecting DNA adenine methyltransferase (Dam) and CpG methyltransferase (M.SssI) was developed using the nanopore technique coupled with DNA cascade signal amplification reactions. A hairpin DNA (HD) comprising of the methylation-responsive sequences was skillfully designed. In the presence of Dam methyltransferase, the corresponding recognition site of hairpin HD was methylated and specifically cleaved by DpnI endonuclease, thus forming a DNA fragment that induces the catalytic hairpin assembly and hybridization chain reaction (CHA-HCR). The generated products could be absorbed onto the Zr4+-coated nanopore, resulting in an ion current rectification signal change. Considering the high sensitivity of the nanopore and excellent specificity toward the recognition of methyltransferase/endonuclease, our developed method could detect both Dam and M.SssI methyltransferases in the same sensing platform. Furthermore, the designed nanopore sensor could realize the multiplex detection of Dam and M.SssI methyltransferases after integration with the cascaded INHIBIT-AND logic gate. This ultrasensitive methyltransferase assay holds great promise in the field of cancer diagnosis.
Collapse
Affiliation(s)
- Siqi Zhang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Wei Shi
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Kai-Bin Li
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - De-Man Han
- School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
26
|
Yu H, Niu Y, Jia G, Liang Y, Chen B, Sun R, Wang M, Huang S, Zeng J, Lu J, Li L, Guo X, Yao P. Maternal diabetes-mediated RORA suppression in mice contributes to autism-like offspring through inhibition of aromatase. Commun Biol 2022; 5:51. [PMID: 35027651 PMCID: PMC8758718 DOI: 10.1038/s42003-022-03005-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/23/2021] [Indexed: 01/31/2023] Open
Abstract
Retinoic acid-related orphan receptor alpha (RORA) suppression is associated with autism spectrum disorder (ASD) development, although the mechanism remains unclear. In this study, we aim to investigate the potential effect and mechanisms of RORA suppression on autism-like behavior (ALB) through maternal diabetes-mediated mouse model. Our in vitro study in human neural progenitor cells shows that transient hyperglycemia induces persistent RORA suppression through oxidative stress-mediated epigenetic modifications and subsequent dissociation of octamer-binding transcription factor 3/4 from the RORA promoter, subsequently suppressing the expression of aromatase and superoxide dismutase 2. The in vivo mouse study shows that prenatal RORA deficiency in neuron-specific RORA null mice mimics maternal diabetes-mediated ALB; postnatal RORA expression in the amygdala ameliorates, while postnatal RORA knockdown mimics, maternal diabetes-mediated ALB in offspring. In addition, RORA mRNA levels in peripheral blood mononuclear cells decrease to 34.2% in ASD patients (n = 121) compared to the typically developing group (n = 118), and the related Receiver Operating Characteristic curve shows good sensitivity and specificity with a calculated 84.1% of Area Under the Curve for ASD diagnosis. We conclude that maternal diabetes contributes to ALB in offspring through suppression of RORA and aromatase, RORA expression in PBMC could be a potential marker for ASD screening. Hong Yu, Yanbin Niu, Guohua Jia et al. integrate in vitro, in vivo, and human experiments to examine a link between RORA expression on autism-like behavior. Their results suggest that maternal diabetes may contribute to autism-like behavior via RORA suppression.
Collapse
Affiliation(s)
- Hong Yu
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Yanbin Niu
- Teachers College, Columbia University, New York, NY, 10027, USA
| | - Guohua Jia
- Hainan Women and Children's Medical Center, Haikou, 570206, P. R. China
| | - Yujie Liang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, 518020, P. R. China
| | - Baolin Chen
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Ruoyu Sun
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Min Wang
- Hainan Women and Children's Medical Center, Haikou, 570206, P. R. China
| | - Saijun Huang
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Jiaying Zeng
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China
| | - Jianpin Lu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, 518020, P. R. China
| | - Ling Li
- Hainan Women and Children's Medical Center, Haikou, 570206, P. R. China.
| | - Xiaoling Guo
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China.
| | - Paul Yao
- Department of Pediatrics, Foshan Maternity and Child Health Care Hospital, Foshan, 528041, P. R. China. .,Hainan Women and Children's Medical Center, Haikou, 570206, P. R. China.
| |
Collapse
|
27
|
Tost J. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:395-469. [DOI: 10.1007/978-3-031-11454-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Huang S, Zeng J, Sun R, Yu H, Zhang H, Su X, Yao P. Prenatal Progestin Exposure-Mediated Oxytocin Suppression Contributes to Social Deficits in Mouse Offspring. Front Endocrinol (Lausanne) 2022; 13:840398. [PMID: 35370982 PMCID: PMC8964973 DOI: 10.3389/fendo.2022.840398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiological studies have shown that maternal hormone exposure is associated with autism spectrum disorders (ASD). The hormone oxytocin (OXT) is a central nervous neuropeptide that plays an important role in social behaviors as well as ASD etiology, although the detailed mechanism remains largely unknown. In this study, we aim to investigate the potential role and contribution of OXT to prenatal progestin exposure-mediated mouse offspring. Our in vitro study in the hypothalamic neurons that isolated from paraventricular nuclei area of mice showed that transient progestin exposure causes persistent epigenetic changes on the OXT promoter, resulting in dissociation of estrogen receptor β (ERβ) and retinoic acid-related orphan receptor α (RORA) from the OXT promoter with subsequent persistent OXT suppression. Our in vivo study showed that prenatal exposure of medroxyprogesterone acetate (MPA) triggers social deficits in mouse offspring; prenatal OXT deficiency in OXT knockdown mouse partly mimics, while postnatal ERβ expression or postnatal OXT peptide injection partly ameliorates, prenatal MPA exposure-mediated social deficits, which include impaired social interaction and social abilities. On the other hand, OXT had no effect on prenatal MPA exposure-mediated anxiety-like behaviors. We conclude that prenatal MPA exposure-mediated oxytocin suppression contributes to social deficits in mouse offspring.
Collapse
Affiliation(s)
- Saijun Huang
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Jiaying Zeng
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Ruoyu Sun
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Hong Yu
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
| | - Haimou Zhang
- State Key Lab of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xi Su
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
- *Correspondence: Xi Su, ; Paul Yao,
| | - Paul Yao
- Department of Child Healthcare, Affiliated Foshan Maternity & Child Healthcare Hospital, The Second School of Clinical Medicine of Southern Medical University, Foshan, China
- *Correspondence: Xi Su, ; Paul Yao,
| |
Collapse
|
29
|
Singh A, Gupta S, Sachan M. Evaluation of the Diagnostic Potential of Candidate Hypermethylated Genes in Epithelial Ovarian Cancer in North Indian Population. Front Mol Biosci 2021; 8:719056. [PMID: 34778370 PMCID: PMC8581490 DOI: 10.3389/fmolb.2021.719056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/12/2021] [Indexed: 01/22/2023] Open
Abstract
Most ovarian cancers, despite improvement in management of cancer, are still diagnosed at an advanced stage. Early detection plays an essential role in reducing ovarian cancer mortality and, therefore, is critically needed. Liquid biopsies-based approaches hold significant promise for cancer detection. The present study investigates a panel of epigenetic biomarkers for the detection of epithelial ovarian cancer. A qPCR assay has been developed based on the assessment of DNA methylation markers in circulating cell-free DNA as a minimally invasive tool. Herein, the promoter methylation of seven ovarian cancer-specific genes (RASSF1A, DAPK1, SOX1, HOXA9, HIC1, SPARC, and SFRP1) was analyzed quantitatively in 120 tissue samples by MethyLight assay. The best-performing genes were further evaluated for their methylation status in 70 matched serum cell-free DNA of cancerous and non-cancerous samples. Additionally, DNA methylation patterns of these best-performing genes were validated by clonal bisulfite sequencing. The ROC (Receiver-operator characteristic) curves were constructed to evaluate the diagnostic performances of both individual and combined gene panels. The seven candidate genes displayed a methylation frequency of 61.0-88.0% in tissue samples. The promoter methylation frequencies for all the seven candidate genes were significantly higher in cancer samples than in normal matched controls. In tissue samples, the multiplex MethyLight assay for HOXA9, HIC1, and SOX1 were the best performing gene panels in terms of sensitivity and specificity. The three best-performing genes exhibited individual frequencies of 53.0-71.0% in serum CFDNA, and the multiplex assay for these genes were identified to discriminate serum from cancer patients and healthy individuals (area under the curve: HOXA9+HIC1 = 0.95, HIC1+SOX1 = 0.93 and HOXA9+SOX1 = 0.85). The results of MethyLight showed high concordance with clonal bisulfite sequencing results. Individual genes and combined panel exhibited better discriminatory efficiencies to identify ovarian cancer at various stages of disease when analyzed in tissue and serum cell-free DNA. We report a qPCR-based non-invasive epigenetic biomarker assay with high sensitivity and specificity for OC screening. Our findings also reveal the potential utility of methylation-based detection of circulating cell-free tumor DNA in the clinical management of ovarian cancer.
Collapse
Affiliation(s)
- Alka Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
30
|
Jahin M, Fenech-Salerno B, Moser N, Georgiou P, Flanagan J, Toumazou C, Mateo SD, Kalofonou M. Detection of MGMT methylation status using a Lab-on-Chip compatible isothermal amplification method. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:7385-7389. [PMID: 34892804 DOI: 10.1109/embc46164.2021.9630776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The growing cancer burden necessitates the development of cost-effective solutions that provide rapid, precise and personalised information to improve patient outcome. The aim of this study was to develop a novel, Lab-on-Chip compatible method for the detection and quantification of DNA methylation for MGMT, a well-established molecular biomarker for glioblastoma, with direct clinical translation as a predictive target. A Lab-on-Chip compatible isothermal amplification method (LAMP) was used to test its efficacy for detection of sequence-specific methylated regions of MGMT, with the method's specificity and sensitivity to have been compared against gold-standards (MethyLight, JumpStart). Our LAMP primer combinations were shown to be specific to the MGMT methylated region, while sensitivity assays determined that the amplification methods were capable of running at clinically relevant DNA concentrations of 0.2 - 20 ng/µL. For the first time, the ability to detect the presence of DNA methylation on bisulfite converted DNA was demonstrated on a Lab-on-Chip setup, laying the foundation for future applications of this platform to other epigenetic biomarkers in a point-of-care setting.
Collapse
|
31
|
Gurjao C, Zhong R, Haruki K, Li YY, Spurr LF, Lee-Six H, Reardon B, Ugai T, Zhang X, Cherniack AD, Song M, Van Allen EM, Meyerhardt JA, Nowak JA, Giovannucci EL, Fuchs CS, Wu K, Ogino S, Giannakis M. Discovery and Features of an Alkylating Signature in Colorectal Cancer. Cancer Discov 2021; 11:2446-2455. [PMID: 34140290 PMCID: PMC8487940 DOI: 10.1158/2159-8290.cd-20-1656] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/03/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
Several risk factors have been established for colorectal cancer, yet their direct mutagenic effects in patients' tumors remain to be elucidated. Here, we leveraged whole-exome sequencing data from 900 colorectal cancer cases that had occurred in three U.S.-wide prospective studies with extensive dietary and lifestyle information. We found an alkylating signature that was previously undescribed in colorectal cancer and then showed the existence of a similar mutational process in normal colonic crypts. This alkylating signature is associated with high intakes of processed and unprocessed red meat prior to diagnosis. In addition, this signature was more abundant in the distal colorectum, predicted to target cancer driver mutations KRAS p.G12D, KRAS p.G13D, and PIK3CA p.E545K, and associated with poor survival. Together, these results link for the first time a colorectal mutational signature to a component of diet and further implicate the role of red meat in colorectal cancer initiation and progression. SIGNIFICANCE: Colorectal cancer has several lifestyle risk factors, but the underlying mutations for most have not been observed directly in tumors. Analysis of 900 colorectal cancers with whole-exome sequencing and epidemiologic annotations revealed an alkylating mutational signature that was associated with red meat consumption and distal tumor location, as well as predicted to target KRAS p.G12D/p.G13D.This article is highlighted in the In This Issue feature, p. 2355.
Collapse
Affiliation(s)
- Carino Gurjao
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Rong Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yvonne Y Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Liam F Spurr
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Pritzker School of Medicine, Biological Sciences Division, University of Chicago, Chicago, Illinois
| | | | - Brendan Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Andrew D Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Nowak
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Charles S Fuchs
- Yale Cancer Center, Yale School of Medicine, Smilow Cancer Hospital, New Haven, Connecticut
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Shuji Ogino
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
32
|
Hambalek JA, Kong JE, Brown C, Munoz HE, Horn T, Bogumil M, Quick E, Ozcan A, Di Carlo D. Methylation-Sensitive Loop-Mediated Isothermal Amplification (LAMP): Nucleic Acid Methylation Detection through LAMP with Mobile Fluorescence Readout. ACS Sens 2021; 6:3242-3252. [PMID: 34467761 DOI: 10.1021/acssensors.1c00902] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of epigenetic gene regulation and its role in disease have motivated a growing field of epigenetic diagnostics for risk assessment and screening. In particular, irregular cytosine DNA base methylation has been implicated in several diseases, yet the methods for detecting these epigenetic marks are limited to lengthy protocols requiring bulky and costly equipment. We demonstrate a simple workflow for detecting methylated CpG dinucleotides in synthetic and genomic DNA samples using methylation-sensitive restriction enzyme digestion followed by loop-mediated isothermal amplification. We additionally demonstrate a cost-effective mobile fluorescence reader comprising a light-emitting diode bundle, a mirror, and optical fibers to transduce fluorescence signals associated with DNA amplification. The workflow can be performed in approximately 1 h, requiring only a simple heat source, and can therefore provide a foundation for distributable point-of-care testing of DNA methylation levels.
Collapse
Affiliation(s)
- Jacob Amos Hambalek
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Janay Elise Kong
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Calvin Brown
- Department of Electrical & Computer Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Hector Enrique Munoz
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Thomas Horn
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Michael Bogumil
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Eleni Quick
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Aydogan Ozcan
- Department of Electrical & Computer Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Dino Di Carlo
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California 90024, United States
| |
Collapse
|
33
|
Ugai T, Zhao M, Shimizu T, Akimoto N, Shi S, Takashima Y, Zhong R, Lau MC, Haruki K, Arima K, Fujiyoshi K, Langworthy B, Masugi Y, da Silva A, Nosho K, Baba Y, Song M, Chan AT, Wang M, Meyerhardt JA, Giannakis M, Väyrynen JP, Nowak JA, Ogino S. Association of PIK3CA mutation and PTEN loss with expression of CD274 (PD-L1) in colorectal carcinoma. Oncoimmunology 2021; 10:1956173. [PMID: 34377593 PMCID: PMC8331006 DOI: 10.1080/2162402x.2021.1956173] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy targeting the CD274 (PD-L1)/PDCD1 (PD-1) immune checkpoint axis has emerged as a promising treatment strategy for various cancers. Experimental evidence suggests that phosphatidylinositol-4,5-bisphosphonate 3-kinase (PI3K) signaling may upregulate CD274 expression. Thus, we hypothesized that PIK3CA mutation, PTEN loss, or their combined status might be associated with CD274 overexpression in colorectal carcinoma. We assessed tumor CD274 and PTEN expression by immunohistochemistry and assessed PIK3CA mutation by pyrosequencing in 753 patients among 4,465 incident rectal and colon cancer cases that had occurred in two U.S.-wide prospective cohort studies. To adjust for potential confounders and selection bias due to tissue availability, inverse probability weighted multivariable ordinal logistic regression analyses used the 4,465 cases and tumoral data including microsatellite instability, CpG island methylator phenotype, KRAS and BRAF mutations. PIK3CA mutation and loss of PTEN expression were detected in 111 of 753 cases (15%) and 342 of 585 cases (58%), respectively. Tumor CD274 expression was negative in 306 (41%), low in 195 (26%), and high in 252 (33%) of 753 cases. PTEN loss was associated with CD274 overexpression [multivariable odds ratio (OR) 1.83; 95% confidence interval (CI), 1.22–2.75; P = .004]. PIK3CA mutation was statistically-insignificantly (P = .036 with the stringent alpha level of 0.005) associated with CD274 overexpression (multivariable OR, 1.54; 95% CI, 1.03–2.31). PIK3CA-mutated PTEN-lost tumors (n = 33) showed higher prevalence of CD274-positivity (82%) than PIK3CA-wild-type PTEN-lost tumors (n = 204; 70% CD274-positivity) and PTEN-expressed tumors (n = 147; 50% CD274-positivity) (P = .003). Our findings support the role of PI3K signaling in the CD274/PDCD1 pathway.
Collapse
Affiliation(s)
- Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Takashi Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shanshan Shi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yasutoshi Takashima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rong Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin Langworthy
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yohei Masugi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Annacarolina da Silva
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Katsuhiko Nosho
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yoshifumi Baba
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Juha P Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.,Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
34
|
Ahn J, Heo S, Lee J, Bang D. Introduction to Single-Cell DNA Methylation Profiling Methods. Biomolecules 2021; 11:1013. [PMID: 34356635 PMCID: PMC8301785 DOI: 10.3390/biom11071013] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is an epigenetic mechanism that is related to mammalian cellular differentiation, gene expression regulation, and disease. In several studies, DNA methylation has been identified as an effective marker to identify differences between cells. In this review, we introduce single-cell DNA-methylation profiling methods, including experimental strategies and approaches to computational data analysis. Furthermore, the blind spots of the basic analysis and recent alternatives are briefly described. In addition, we introduce well-known applications and discuss future development.
Collapse
Affiliation(s)
- Jongseong Ahn
- Department of Chemistry, Yonsei University, Seoul 03722, Korea; (J.A.); (S.H.)
| | - Sunghoon Heo
- Department of Chemistry, Yonsei University, Seoul 03722, Korea; (J.A.); (S.H.)
| | - Jihyun Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Korea
- Department of Biomedical Science and Technology, Kyung Hee University, Seoul 02447, Korea
| | - Duhee Bang
- Department of Chemistry, Yonsei University, Seoul 03722, Korea; (J.A.); (S.H.)
| |
Collapse
|
35
|
Kagawa M, Kawakami S, Yamamoto A, Suzuki O, Kamae N, Eguchi H, Okazaki Y, Yamamoto G, Akagi K, Tamaru JI, Yamaguchi T, Arai T, Ishida H. Identification of Lynch syndrome-associated DNA mismatch repair-deficient bladder cancer in a Japanese hospital-based population. Int J Clin Oncol 2021; 26:1524-1532. [PMID: 34213665 DOI: 10.1007/s10147-021-01922-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/03/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The prevalence of Lynch syndrome (LS)-associated DNA mismatch repair (MMR)-deficient bladder cancer (BC) has scarcely been investigated. METHODS Immunohistochemistry for four MMR proteins (MLH1, MSH2, MSH6, and PMS2) was performed in formalin-fixed paraffin-embedded (FFPE) sections prepared from the resected specimens of 618 consecutive newly diagnosed BC cases. Genetic/epigenetic analyses were performed in patients displaying the loss of any MMR proteins in the tumor. RESULTS Of the 618 patients, 9 (1.5%) showed the loss of MMR protein expression via immunohistochemistry; specifically, 3, 3, 2, and 1 patients displayed the loss of MLH1/PMS2, PMS2, MSH6, and MSH2/MSH6, respectively. All nine patients were male with a median age of 68 years (63-79 years). One had been previously diagnosed as having LS with an MSH2 variant. Genetic testing demonstrated the presence of a pathogenic PMS2 variant (n = 1), a variant of uncertain significance in MSH2 (n = 1), and no pathogenic germline variants of the MMR genes (n = 1). One patient with MSH6-deficient BC did not complete the genetic testing because of severe degradation of DNA extracted from the FFPE specimen, but the patient was strongly suspected to have LS because of their history of colon cancer and MSH6-deficient upper urinary tract cancer. There remained a possibility that the remaining four patients who refused genetic testing had LS. CONCLUSIONS The prevalence of LS-associated MMR-deficient BC was estimated to be 0.6-1.1% among unselected BC cases.
Collapse
Affiliation(s)
- Makoto Kagawa
- Department of Urology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan
| | - Satoru Kawakami
- Department of Urology, Saitama Medical Center, Saitama Medical University, 1981 Kamoda, Kawagoe, Saitama, 350-8550, Japan.
| | - Azusa Yamamoto
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Okihide Suzuki
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan.,Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Nao Kamae
- Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Hidetaka Eguchi
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Gou Yamamoto
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Prefecture Cancer Center, Saitama, Japan
| | - Kiwamu Akagi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Prefecture Cancer Center, Saitama, Japan
| | - Jun-Ichi Tamaru
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tatsuro Yamaguchi
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan.,Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
36
|
Duerinck J, Schwarze JK, Awada G, Tijtgat J, Vaeyens F, Bertels C, Geens W, Klein S, Seynaeve L, Cras L, D'Haene N, Michotte A, Caljon B, Salmon I, Bruneau M, Kockx M, Van Dooren S, Vanbinst AM, Everaert H, Forsyth R, Neyns B. Intracerebral administration of CTLA-4 and PD-1 immune checkpoint blocking monoclonal antibodies in patients with recurrent glioblastoma: a phase I clinical trial. J Immunother Cancer 2021; 9:jitc-2020-002296. [PMID: 34168003 PMCID: PMC8231061 DOI: 10.1136/jitc-2020-002296] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Background Patients with recurrent glioblastoma (rGB) have a poor prognosis with a median overall survival (OS) of 30–39 weeks in prospective clinical trials. Intravenous administration of programmed cell death protein 1 and cytotoxic T-lymphocyte-associated antigen 4 inhibitors has low activity in patients with rGB. In this phase I clinical trial, intracerebral (IC) administration of ipilimumab (IPI) and nivolumab (NIVO) in combination with intravenous administration of NIVO was investigated. Methods Within 24 hours following the intravenous administration of a fixed dose (10 mg) of NIVO, patients underwent a maximal safe resection, followed by injection of IPI (10 mg; cohort-1), or IPI (5 mg) plus NIVO (10 mg; cohort-2) in the brain tissue lining the resection cavity. Intravenous administration of NIVO (10 mg) was repeated every 2 weeks (max. five administrations). Next generation sequencing and RNA gene expression profiling was performed on resected tumor tissue. Results Twenty-seven patients were enrolled (cohort-1: n=3; cohort-2: n=24). All patients underwent maximal safe resection and planned IC administrations and preoperative NIVO. Thirteen patients (cohort-1: n=3; cohort-2: n=10) received all five postoperative intravenous doses of NIVO. In cohort-2, 14 patients received a median of 3 (range 1–4) intravenous doses. Subacute postoperative neurological deterioration (n=2) was reversible on steroid treatment; no other central nervous system toxicity was observed. Immune-related adverse events were infrequent and mild. GB recurrence was diagnosed in 26 patients (median progression-free survival (PFS) is 11.7 weeks (range 2–152)); 21 patients have died due to progression. Median OS is 38 weeks (95% CI: 27 to 49) with a 6-month, 1-year, and 2-year OS-rate of, respectively, 74.1% (95% CI: 57 to 90), 40.7% (95% CI: 22 to 59), and 27% (95% CI: 9 to 44). OS compares favorable against a historical cohort (descriptive Log-Rank p>0.003). No significant difference was found with respect to PFS (descriptive Log-Rank test p>0.05). A higher tumor mRNA expression level of B7-H3 was associated with a significantly worse survival (multivariate Cox logistic regression, p>0.029). Conclusion IC administration of NIVO and IPI following maximal safe resection of rGB was feasible, safe, and associated with encouraging OS. Trial registration NCT03233152.
Collapse
Affiliation(s)
- Johnny Duerinck
- Department of Neurosurgery, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Julia Katharina Schwarze
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Gil Awada
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Jens Tijtgat
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Freya Vaeyens
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Cleo Bertels
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Wietse Geens
- Department of Neurosurgery, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Samuel Klein
- Department of Neurosurgery, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Laura Seynaeve
- Department of Neurology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Louise Cras
- Department of Pathology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Nicky D'Haene
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Alex Michotte
- Department of Neurology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.,Department of Pathology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ben Caljon
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Isabelle Salmon
- Department of Pathology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Michaël Bruneau
- Department of Neurosurgery, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | | | - Sonia Van Dooren
- Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Anne-Marie Vanbinst
- Department of Radiology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Hendrik Everaert
- Department of Nuclear Medicine, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ramses Forsyth
- Department of Pathology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Bart Neyns
- Department of Medical Oncology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
37
|
Nakayama Y, Iijima T, Inokuchi T, Kojika E, Takao M, Takao A, Koizumi K, Horiguchi SI, Hishima T, Yamaguchi T. Clinicopathological features of sporadic MSI colorectal cancer and Lynch syndrome: a single-center retrospective cohort study. Int J Clin Oncol 2021; 26:1881-1889. [PMID: 34148153 DOI: 10.1007/s10147-021-01968-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The clinical and pathological features of sporadic microsatellite instability-high (MSI) colorectal cancer (CRC) are still unclear. The present study aimed to clarify the clinicopathological features of sporadic MSI CRC in comparison with those of Lynch syndrome (LS) exploratorily. METHODS The present study was a single-center, retrospective cohort study. Sporadic MSI CRC was defined as MSI CRC with aberrant promoter hypermethylation of the MLH1 gene, while hereditary MSI CRC was defined colorectal cancer in patients with LS. RESULTS In total, 2653 patients were enrolled; of these, 120 (4.5%) had MSI CRC, 98 had sporadic MSI CRC, and 22 had LS. Patients with sporadic MSI CRC were significantly older (p < 0.001) than those with LS and had a right-sided colonic tumor (p < 0.001) which was pathologically poorly differentiated or mucinous (p = 0.025). The overall survival rate was significantly lower in patients with stage I, II or III MSI CRC than in those with LS (p = 0.024). However, the recurrence-free survival rate did not differ significantly (p = 0.85). CONCLUSIONS We concluded that patients with sporadic MSI are significantly older, tumors more likely to locate in the right-sided colon, pathologically poorly differentiated or mucinous, and worse overall survival than in those with LS.
Collapse
Affiliation(s)
- Yujiro Nakayama
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
- Department of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, Hikarigaoka, Fukushima, 960-1247, Japan
- Department of Surgery, Southern Tohoku General Hospital, Fukushima, 963-8052, Japan
| | - Takeru Iijima
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Takuhiko Inokuchi
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Ekumi Kojika
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Misato Takao
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Akinari Takao
- Department of Gastroenterology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Koichi Koizumi
- Department of Gastroenterology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Shin-Ichiro Horiguchi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan
| | - Tatsuro Yamaguchi
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan.
- Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22, Honkomagome, Bunkyo-ku, Tokyo, 113-0021, Japan.
| |
Collapse
|
38
|
Genetic testing for inherited colorectal cancer and polyposis, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:1807-1817. [PMID: 34140662 DOI: 10.1038/s41436-021-01207-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth most frequently diagnosed cancer and 30% of all cases of CRC are believed to have a familial component and up to one-third of these (10%) are hereditary. Pathogenic germline variants in multiple genes have been associated with predisposition to hereditary CRC or polyposis. Lynch syndrome (LS) is the most common hereditary CRC syndrome, caused by variants in the mismatch repair (MMR) genes MLH1, MSH2, MSH6, and PMS2 and is inherited in a dominant manner. Heritable conditions associated with colonic polyposis include familial adenomatous polyposis (FAP) associated with APC pathogenic variants, MUTYH-associated polyposis (MAP) caused by biallelic MUTYH pathogenic variants, and polymerase proofreading-associated polyposis (PPAP) caused by POLE or POLD1 pathogenic variants. Given the overlapping phenotypes of the cancer syndromes along with the limited sensitivity of using clinical criteria alone, a multigene panel testing approach to diagnose these conditions using next-generation sequencing (NGS) is effective and efficient. This technical standard is not recommended for use in the clinic for patient evaluation. Please refer to National Comprehensive Cancer Network (NCCN) clinical practice guidelines to determine an appropriate testing strategy and guide medical screening and management. This 2021 edition of the American College of Medical Genetics and Genomics (ACMG) technical standard supersedes the 2013 edition on this topic.
Collapse
|
39
|
Ito T, Suzuki O, Kamae N, Tamaru JI, Arai T, Yamaguchi T, Akagi K, Eguchi H, Okazaki Y, Mochiki E, Ishida H. Comprehensive analysis of DNA mismatch repair-deficient gastric cancer in a Japanese hospital-based population. Jpn J Clin Oncol 2021; 51:886-894. [PMID: 33728435 DOI: 10.1093/jjco/hyab026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The attention on mismatch repair-deficient (dMMR) gastric cancer has increased in this era of anti-PD-1 blockade therapy; however, the prevalence and molecular genetics of patients with dMMR gastric cancer have not been completely investigated. METHODS Immunohistochemistry of MMR proteins (MLH1, MSH2, MSH6 and PMS2) was performed on formalin-fixed paraffin-embedded sections prepared from resected primary gastric cancers of 513 consecutive patients. Genetic and/or epigenetic alterations of the MMR genes were also investigated. RESULTS Loss of expression of one or more MMR proteins was observed in 58 patients (11.3%); 54 patients showed loss of MLH1/PMS2, 3 patients showed loss of MLH1/PMS2/MSH6 and 1 patient showed loss of PMS2 alone. Among these 58 patients, 55 showed hypermethylation of the promoter region of MLH1. Genetic testing revealed that the remaining three patients had Lynch syndrome (n = 1) or Lynch-like syndrome (n = 2). A total of 15 patients (25.9% of all patients with dMMR gastric cancer and 2.9% of all patients with gastric cancer), including 11 patients with stage I-III dMMR gastric cancer who had recurrence and 4 patients with stage IV dMMR gastric cancer, are potential candidates for the use of anti-PD-1 blockades. CONCLUSIONS This is the first study to investigate the frequency and molecular genetic mechanisms of dMMR gastric cancer comprehensively, focusing on the benefit of using PD-1 blockades. Our observations will be beneficial in the clinical practice of metastatic gastric cancer.
Collapse
Affiliation(s)
- Tetsuya Ito
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Okihide Suzuki
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan.,Department of Clinical Genomics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Nao Kamae
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan.,Department of Clinical Genomics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Jun-Ichi Tamaru
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Tatsuro Yamaguchi
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kiwamu Akagi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | - Hidetaka Eguchi
- Diagnostics and Therapeutics of Intractable Diseases and Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases and Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Erito Mochiki
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
40
|
Kagawa M, Kawakami S, Yamamoto A, Suzuki O, Eguchi H, Okazaki Y, Akagi K, Tamaru JI, Arai T, Yamaguchi T, Ishida H. Prevalence and clinicopathological/molecular characteristics of mismatch repair protein-deficient tumours among surgically treated patients with prostate cancer in a Japanese hospital-based population. Jpn J Clin Oncol 2021; 51:639-645. [PMID: 33244609 DOI: 10.1093/jjco/hyaa207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/10/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The prevalence and molecular characteristics of deficient mismatch repair prostate cancer in the Japanese population have scarcely been investigated. METHODS Immunohistochemistry for mismatch repair proteins (MLH1, MSH2, MSH6 and PMS2) was performed in formalin-fixed paraffin-embedded sections prepared from resected primary prostate cancers in patients who underwent prostatectomy at our institution between January 2001 and May 2016. Genetic and/or epigenetic alterations of mismatch repair genes were investigated in patients with any loss of mismatch repair protein expression in the tumour. RESULTS Of the 337 patients, four (1.2%) showed loss of mismatch repair protein expression on immunohistochemistry. All four patients showed loss of both MSH2 and MSH6 protein expression. Genetic testing was performed in two of the four patients, demonstrating no pathogenic germline alterations were present. In each of these two patients, at least one somatic alteration inactivating MSH2 without MSH2 hypermethylation was identified, leading to the diagnosis of supposed 'Lynch-like syndrome'. Patients with deficient mismatch repair prostate cancer were at a significantly higher stage (pT2pN0 vs. pT3-4pN0/pTanypN1, P = 0.02) and had a greater Gleason score (<8 vs. ≥8, P < 0.01) than those with proficient mismatch repair prostate cancer. CONCLUSIONS The prevalence of deficient mismatch repair prostate cancer in the Japanese hospital-based prostatectomized population was extremely low. To improve screening efficacy for deficient mismatch repair prostate cancer, screening candidates can be limited to patients with locally advanced, node-positive and/or Gleason score of 8 or greater prostate cancer. Universal tumour screening for Lynch syndrome seems ineffective in patients with prostate cancer.
Collapse
Affiliation(s)
- Makoto Kagawa
- Department of Urology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Satoru Kawakami
- Department of Urology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Azusa Yamamoto
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Okihide Suzuki
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Hidetaka Eguchi
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kiwamu Akagi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | - Jun-Ichi Tamaru
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Tatsuro Yamaguchi
- Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
41
|
Xiang L, Chen LM, Zhai YJ, Sun WJ, Yang JR, Fan YC, Wang K. Hypermethylation of secreted frizzled related protein 2 gene promoter serves as a noninvasive biomarker for HBV-associated hepatocellular carcinoma. Life Sci 2021; 270:119061. [PMID: 33454364 DOI: 10.1016/j.lfs.2021.119061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
For patients with hepatocellular carcinoma (HCC), early detection is critical to improve survival. Secreted frizzled-related protein 2 (SFRP2) is a candidate tumor suppressor as Wnt antagonist and SFRP2 promoter has been found hypermethylated in various malignancies. This study aimed to investigate the methylation status of SFRP2 promoter in hepatitis B virus (HBV) associated HCC and estimate its diagnostic value as a non-invasive biomarker. A total of 293 patients, including 132 patients with HBV-associated HCC, 121 with chronic hepatitis B (CHB) and 40 healthy controls (HCs) were enrolled. SFRP2 methylation level in peripheral mononuclear cells (PBMCs) was quantitatively detected by MethyLight. SFRP2 methylation level was significantly higher in patients with HBV-associated HCC than in those with CHB (p < 0.001) and HCs (p < 0.001) while mRNA level of SFRP2 was significantly lower in HCC group than the other two groups (p < 0.05). In HCC subgroup, SFRP2 methylation level markedly increased in patients >50 years old, female, with negative HBeAg, negative HBV-DNA and poor differentiation compared with the remaining groups (P < 0.05). Furthermore, SFRP2 methylation level showed a significantly better diagnostic value than alpha-fetoprotein (AFP) and the combination of AFP and methylation levels of SFRP2 markedly improved the area under the receiver operating characteristic curve (p < 0.05). In conclusion, hypermethylation of SFRP2 promoter exists in HBV-associated HCC. The combination of SFRP2 methylation level in PBMCs and AFP could significantly improve the diagnostic ability of AFP in discriminating HBV-associated HCC from CHB and SFRP2 methylation level had the potential to serve as a non-invasive biomarker for HCC diagnosis.
Collapse
Affiliation(s)
- Lin Xiang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - La-Mei Chen
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu-Jia Zhai
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Wei-Juan Sun
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie-Ru Yang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China; Institute of Hepatology, Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, China; Institute of Hepatology, Shandong University, Jinan, China.
| |
Collapse
|
42
|
Kóder G, Olasz J, Tanyi JL, George E, Tóth L, Antal-Szalmás P, Nagy B, Bubán T, András C, Urbancsek H, Laczik M, Csuka O, Damjanovich L, Tanyi M. Identification of Novel Pathogenic Sequence Variants of the Mismatch Repair Genes During Screening for Lynch Syndrome in a Single Centre of Eastern Hungary. J Gastrointest Cancer 2021; 51:1007-1015. [PMID: 31939059 PMCID: PMC7399673 DOI: 10.1007/s12029-020-00359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Introduction Lynch syndrome is an autosomal dominant disorder, most frequent leading to colon cancer. Identification of patients with Lynch syndrome and screening of their family members are available prevention approach that can significantly decrease mortality. Unfortunately, routine screening still does not belong to standard of care in Hungary. In this study, we performed a comprehensive screening in order to identify patients with mismatch repair (MMR) mutation between the years of 2011 and 2014. Identified mutations were compared with those already published in the international databases. Patients and Methods Patients who underwent treatment for colorectal cancer at the Surgical Institute of the University of Debrecen were screened using the modified Amsterdam and Bethesda Criteria. Immunohistochemistry and microsatellite analyses were performed in order to identify possible mutation carrier cases. Suspicious cases underwent DNA sequencing to detect mutations in the mismatch repair genes (hMLH1, hMSH2). Results All together 760 colorectal cancer patients were screened. A total of 28 patients were identified as possible MMR mutation carrier and underwent further genetic evaluation. Pathogenic sequence variants of the MMR gene were found in 5 patients. Hypermethylation of the promoter region of the hMLH1 gene was identified in 2 patients. Two out of the 5 pathogenic sequence variants of the MMR gene were first identified by our group while other 2 mutations were previously published as possible founder mutations. Conclusion Identification of families with Lynch syndrome, while challenging because of variable phenotypes at diagnosis, is feasible with available molecular biological technologies and crucial to reduce mortality caused by this syndrome.
Collapse
Affiliation(s)
- Gergely Kóder
- Department of Surgery, Faculty of General Medicine, Medical and Health Science Centre, University of Debrecen, Móricz Zs. Krt. 22, Debrecen, 4032, Hungary.
| | - Judit Olasz
- Department of Pathogenetics, National Institute of Oncology, Budapest, Hungary
| | - Janos L Tanyi
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania Health System, Pennsylvania, PA, USA
| | - Erin George
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania Health System, Pennsylvania, PA, USA
| | - László Tóth
- Department of Pathology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Antal-Szalmás
- Department of Laboratory Medicine, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bubán
- Department of Internal Medicine, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Csilla András
- Department of Oncology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Hilda Urbancsek
- Department of Oncology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Laczik
- R&D Epigenetics Department of Diagenode SA, Liège, Belgium
| | - Orsolya Csuka
- Department of Pathogenetics, National Institute of Oncology, Budapest, Hungary
| | - László Damjanovich
- Department of Surgery, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Tanyi
- Department of Surgery, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
43
|
Liu J, Liang Y, Jiang X, Xu J, Sun Y, Wang Z, Lin L, Niu Y, Song S, Zhang H, Xue Z, Lu J, Yao P. Maternal Diabetes-Induced Suppression of Oxytocin Receptor Contributes to Social Deficits in Offspring. Front Neurosci 2021; 15:634781. [PMID: 33633538 PMCID: PMC7900564 DOI: 10.3389/fnins.2021.634781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/18/2021] [Indexed: 01/15/2023] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by impaired skills in social interaction and communication in addition to restricted and repetitive behaviors. Many different factors may contribute to ASD development; in particular, oxytocin receptor (OXTR) deficiency has been reported to be associated with ASD, although the detailed mechanism has remained largely unknown. Epidemiological study has shown that maternal diabetes is associated with ASD development. In this study, we aim to investigate the potential role of OXTR on maternal diabetes-mediated social deficits in offspring. Our in vitro study of human neuron progenitor cells showed that hyperglycemia induces OXTR suppression and that this suppression remains during subsequent normoglycemia. Further investigation showed that OXTR suppression is due to hyperglycemia-induced persistent oxidative stress and epigenetic methylation in addition to the subsequent dissociation of estrogen receptor β (ERβ) from the OXTR promoter. Furthermore, our in vivo mouse study showed that maternal diabetes induces OXTR suppression; prenatal OXTR deficiency mimics and potentiates maternal diabetes-mediated anxiety-like behaviors, while there is less of an effect on autism-like behaviors. Additionally, postnatal infusion of OXTR partly, while infusion of ERβ completely, reverses maternal diabetes-induced social deficits. We conclude that OXTR may be an important factor for ASD development and that maternal diabetes-induced suppression of oxytocin receptor contributes to social deficits in offspring.
Collapse
Affiliation(s)
- Jianbo Liu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Yujie Liang
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Xing Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianchang Xu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Yumeng Sun
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Zichen Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ling Lin
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Yanbin Niu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shiqi Song
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Huawei Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhenpeng Xue
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Jianping Lu
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| | - Paul Yao
- Department of Child Psychiatry, Kangning Hospital of Shenzhen, Shenzhen Mental Health Center, Shenzhen, China
| |
Collapse
|
44
|
Wang L, He X, Ugai T, Haruki K, Lo CH, Hang D, Akimoto N, Fujiyoshi K, Wang M, Fuchs CS, Meyerhardt JA, Zhang X, Wu K, Chan AT, Giovannucci EL, Ogino S, Song M. Risk Factors and Incidence of Colorectal Cancer According to Major Molecular Subtypes. JNCI Cancer Spectr 2021; 5:pkaa089. [PMID: 33442661 PMCID: PMC7791624 DOI: 10.1093/jncics/pkaa089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 12/27/2022] Open
Abstract
Background Colorectal cancer (CRC) is a heterogeneous disease that can develop via 3 major pathways: conventional, serrated, and alternate. We aimed to examine whether the risk factor profiles differ according to pathway-related molecular subtypes. Methods We examined the association of 24 risk factors with 4 CRC molecular subtypes based on a combinatorial status of microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and BRAF and KRAS mutations by collecting data from 2 large US cohorts. We used inverse probability weighted duplication-method Cox proportional hazards regression to evaluate differential associations across subtypes. Results We documented 1175 CRC patients with molecular subtype data: subtype 1 (n = 498; conventional pathway; non-MSI-high, CIMP-low or negative, BRAF-wild-type, KRAS-wild-type), subtype 2 (n = 138; serrated pathway; any MSI status, CIMP-high, BRAF-mutated, KRAS-wild-type), subtype 3 (n = 367; alternate pathway; non-MSI-high, CIMP-low or negative, BRAF-wild-type, KRAS-mutated), and subtype 4 (n = 172; other marker combinations). Statistically significant heterogeneity in associations with CRC subtypes was found for age, sex, and smoking, with a higher hazard ratio (HR) observed for the subtype 2 (HR per 10 years of age = 2.64, 95% CI = 2.13 to 3.26; HR for female = 2.65, 95% CI = 1.60 to 4.39; HR per 20-pack-year of smoking = 1.29, 95% CI = 1.14 to 1.45) than other CRC subtypes (all P heterogeneity < .005). A stronger association was found for adiposity measures with subtype 1 CRC in men and subtype 3 CRC in women and for several dietary factors with subtype 1 CRC, although these differences did not achieve statistical significance at α level of .005. Conclusions Risk factor profiles may differ for CRC arising from different molecular pathways.
Collapse
Affiliation(s)
- Liang Wang
- Center of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Xiaosheng He
- Department of Colorectal Surgery, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Program in MPE Molecular Pathological Epidemiology, Boston, MA, USA
| | - Koichiro Haruki
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Program in MPE Molecular Pathological Epidemiology, Boston, MA, USA
| | - Chun-Han Lo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dong Hang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, P.R. China
| | - Naohiko Akimoto
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Program in MPE Molecular Pathological Epidemiology, Boston, MA, USA
| | - Kenji Fujiyoshi
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Program in MPE Molecular Pathological Epidemiology, Boston, MA, USA
| | - Molin Wang
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Charles S Fuchs
- Department of Medicine, Yale Cancer Center, New Haven, CT, USA
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Medicine, Smilow Cancer Hospital, New Haven, CT, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Program in MPE Molecular Pathological Epidemiology, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
45
|
Cui L, Zhao MH, Li CC, Wang Q, Luo X, Zhang CY. A Host–Guest Interaction-Based and Metal–Organic Gel-Based Biosensor with Aggregation-Induced Electrochemiluminescence Enhancement for Methyltransferase Assay. Anal Chem 2021; 93:2974-2981. [DOI: 10.1021/acs.analchem.0c04904] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Min-hui Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chen-chen Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Quanbo Wang
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
46
|
Yamamoto A, Yamaguchi T, Suzuki O, Ito T, Chika N, Kamae N, Tamaru JI, Nagai T, Seki H, Arai T, Tachikawa T, Akagi K, Eguchi H, Okazaki Y, Ishida H. Prevalence and molecular characteristics of DNA mismatch repair deficient endometrial cancer in a Japanese hospital-based population. Jpn J Clin Oncol 2021; 51:60-69. [PMID: 32844218 DOI: 10.1093/jjco/hyaa142] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The prevalence and molecular characteristics of defective DNA mismatch repair endometrial cancers in the Japanese population have been underexplored. Data supporting clinical management of patients with Lynch-like syndrome and germline variant of uncertain significance of mismatch repair genes are still lacking. METHODS Immunohistochemistry of mismatch repair proteins (MLH1, MSH2, MSH6 and PMS2) was performed on formalin-fixed paraffin-embedded sections prepared from resected primary endometrial cancers in 395 women with a median age of 59 years. Genetic and/or epigenetic alterations of the mismatch repair genes were also investigated. RESULTS Loss of expression of one or more mismatch repair proteins was observed in 68 patients (17.2%). A total of 17 out of 68 patients (25%, 4.3% of all cases) were identified as candidates for genetic testing for Lynch syndrome after excluding 51 patients with MLH1 hypermethylated cancer. Fourteen of these 17 patients subjected to genetic testing were found to have Lynch syndrome (n = 5), germline variant of uncertain significance (n = 2) or Lynch-like syndrome (n = 7). Compared with patients with Lynch syndrome, those with germline variant of uncertain significance and Lynch-like syndrome tended to demonstrate an older age at the time of endometrial cancer diagnosis (P = 0.07), less fulfillment of the revised Bethesda guidelines (P = 0.09) and lower prevalence of Lynch syndrome-associated tumors in their first-degree relatives (P = 0.01). CONCLUSIONS This study provides useful information for management in patients with DNA mismatch repair endometrial cancer. Specifically, cancer surveillance as recommended in patients with Lynch syndrome might not be necessary in patients with germline variant of uncertain significance and Lynch-like syndrome and their relatives.
Collapse
Affiliation(s)
- Azusa Yamamoto
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tatsuro Yamaguchi
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan.,Department of Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan.,Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Okihide Suzuki
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan.,Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tetsuya Ito
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Noriyasu Chika
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Nao Kamae
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan.,Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Jun-Ichi Tamaru
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tomonori Nagai
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Hiroyuki Seki
- Department of Obstetrics and Gynecology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Tetsuhiko Tachikawa
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | - Kiwamu Akagi
- Division of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, Saitama, Japan
| | - Hidetaka Eguchi
- Diagnosis and Therapeutics of Intractable Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yasushi Okazaki
- Diagnosis and Therapeutics of Intractable Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideyuki Ishida
- Department of Digestive Tract and General Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan.,Department of Clinical Genetics, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| |
Collapse
|
47
|
De Chiara L, Leiro-Fernandez V, Rodríguez-Girondo M, Valverde D, Botana-Rial MI, Fernández-Villar A. Comparison of Bisulfite Pyrosequencing and Methylation-Specific qPCR for Methylation Assessment. Int J Mol Sci 2020; 21:ijms21239242. [PMID: 33287451 PMCID: PMC7730915 DOI: 10.3390/ijms21239242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022] Open
Abstract
Different methodological approaches are available to assess DNA methylation biomarkers. In this study, we evaluated two sodium bisulfite conversion-dependent methods, namely pyrosequencing and methylation-specific qPCR (MS-qPCR), with the aim of measuring the closeness of agreement of methylation values between these two methods and its effect when setting a cut-off. Methylation of tumor suppressor gene p16/INK4A was evaluated in 80 lung cancer patients from which cytological lymph node samples were obtained. Cluster analyses were used to establish methylated and unmethylated groups for each method. Agreement and concordance between pyrosequencing and MS-qPCR was evaluated with Pearson’s correlation, Bland–Altman, Cohen’s kappa index and ROC curve analyses. Based on these analyses, cut-offs were derived for MS-qPCR. An acceptable correlation (Pearson’s R2 = 0.738) was found between pyrosequencing (PYRmean) and MS-qPCR (NMP; normalized methylation percentage), providing similar clinical results when categorizing data as binary using cluster analysis. Compared to pyrosequencing, MS-qPCR tended to underestimate methylation for values between 0 and 15%, while for methylation >30% overestimation was observed. The estimated cut-off for MS-qPCR data based on cluster analysis, kappa-index agreement and ROC curve analysis were much lower than that derived from pyrosequencing. In conclusion, our results indicate that independently of the approach used for estimating the cut-off, the methylation percentage obtained through MS-qPCR is lower than that calculated for pyrosequencing. These differences in data and therefore in the cut-off should be examined when using methylation biomarkers in the clinical practice.
Collapse
Affiliation(s)
- Loretta De Chiara
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain;
- Centro de Investigaciones Biomédicas (CINBIO), Centro Singular de Investigación de Galicia, Universidad de Vigo, 36310 Vigo, Spain
- Correspondence: ; Tel.: +34-986-813-841
| | - Virginia Leiro-Fernandez
- Pulmonary Department, Hospital Álvaro Cunqueiro, EOXI Vigo, 36213 Vigo, Spain; (V.L.-F.); (M.I.B.-R.); (A.F.-V.)
- PneumoVigo I +i Research Group, Sanitary Research Institute Galicia Sur (IIS Galicia Sur), 36213 Vigo, Spain
| | - Mar Rodríguez-Girondo
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2300RC Leiden, The Netherlands;
| | - Diana Valverde
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain;
- Centro de Investigaciones Biomédicas (CINBIO), Centro Singular de Investigación de Galicia, Universidad de Vigo, 36310 Vigo, Spain
| | - María Isabel Botana-Rial
- Pulmonary Department, Hospital Álvaro Cunqueiro, EOXI Vigo, 36213 Vigo, Spain; (V.L.-F.); (M.I.B.-R.); (A.F.-V.)
- PneumoVigo I +i Research Group, Sanitary Research Institute Galicia Sur (IIS Galicia Sur), 36213 Vigo, Spain
| | - Alberto Fernández-Villar
- Pulmonary Department, Hospital Álvaro Cunqueiro, EOXI Vigo, 36213 Vigo, Spain; (V.L.-F.); (M.I.B.-R.); (A.F.-V.)
- PneumoVigo I +i Research Group, Sanitary Research Institute Galicia Sur (IIS Galicia Sur), 36213 Vigo, Spain
| |
Collapse
|
48
|
Imamura Y, Toihata T, Haraguchi I, Ogata Y, Takamatsu M, Kuchiba A, Tanaka N, Gotoh O, Mori S, Nakashima Y, Oki E, Mori M, Oda Y, Taguchi K, Yamamoto M, Morita M, Yoshida N, Baba H, Mine S, Nunobe S, Sano T, Noda T, Watanabe M. Immunogenic characteristics of microsatellite instability-low esophagogastric junction adenocarcinoma based on clinicopathological, molecular, immunological and survival analyses. Int J Cancer 2020; 148:1260-1275. [PMID: 32997798 DOI: 10.1002/ijc.33322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 11/09/2022]
Abstract
Microsatellite instability (MSI) is categorized by mutation frequency: high MSI (MSI-H), low MSI (MSI-L) and microsatellite stable (MSS). MSI-H tumors have a distinct immunogenic phenotype, with immunotherapies using checkpoint inhibitors already approved for the treatment of MSI-H gastroesophageal adenocarcinoma (GEA); this is not observed for MSI-L or MSS. Here, we tested the hypothesis that MSI-L tumors are also a distinct phenotype and potentially immunogenic. MSI-PCR assays (BAT25, BAT26, BAT40, D2S123, D5S346 and D17S250) were performed on 363 Epstein-Barr virus-negative, surgically resected esophagogastric junction (EGJ) adenocarcinoma samples. Tumors were characterized as MSI-H (≥2 markers), MSI-L (1 marker) or MSS (0 markers). CD8+ cell counts, PD-L1 and HER2 expression levels, TP53 mutations, epigenetic alterations and prognostic significance were also examined. All pathological and molecular experiments were conducted using serial, whole-tumor sections of chemo-naïve surgical specimens. MSI-H and MSI-L were assigned to 28 (7.7%) and 24 (6.6%) cases, respectively. Compared to MSS cases, MSI-L cases had significantly higher intratumoral CD8+ cell infiltration (P = .048) and favorable EGJ cancer-specific survival (multivariate hazard ratio = 0.35, 95% CI, 0.12-0.82; P = .012). MSI-L tumors were also significantly associated with TP53-truncating mutations as compared to MSI-H (P = .009) and MSS (P = .012) cases, and this trend was also observed in GEA data from The Cancer Genome Atlas (TCGA). Indel mutational burden among TCGA MSI-L tumors was significantly higher than that of MSS tumors (P = .016). These results suggest that MSI-L tumors may have a distinct tumor phenotype and be potentially immunogenic in EGJ adenocarcinoma.
Collapse
Affiliation(s)
- Yu Imamura
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tasuku Toihata
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ikumi Haraguchi
- Cancer Precision Medicine Center, Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoko Ogata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Manabu Takamatsu
- Department of Pathology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Aya Kuchiba
- Division of Biostatistical Research, Center for Public Health Sciences/Biostatistics Division, CRAS, National Cancer Center Japan, Tokyo, Japan
| | - Norio Tanaka
- Cancer Precision Medicine Center, Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Osamu Gotoh
- Cancer Precision Medicine Center, Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Seiichi Mori
- Cancer Precision Medicine Center, Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuichiro Nakashima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kenichi Taguchi
- Department of Pathology, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Manabu Yamamoto
- Department of Surgery, Fukuoka Sanno Hospital, Fukuoka, Japan.,Department of Gastroenterological Surgery, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Masaru Morita
- Department of Gastroenterological Surgery, National Hospital Organization, Kyushu Cancer Center, Fukuoka, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinji Mine
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Esophageal and Gastroenterological Surgery, Juntendo University Hospital, Tokyo, Japan
| | - Souya Nunobe
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takeshi Sano
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tetsuo Noda
- Cancer Precision Medicine Center, Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
49
|
Liu H, Meng X, Wang J. Real time quantitative methylation detection of PAX1 gene in cervical cancer screening. Int J Gynecol Cancer 2020; 30:1488-1492. [PMID: 32616628 DOI: 10.1136/ijgc-2019-001144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION DNA methylation is currently found to be associated with the progression of cervical intraepithelial neoplasia and the development of cervical cancer. The aim of this study was to analyze the role of real time quantitative methylation detection of the PAX1 gene in cervical cancer screening. METHODS All eligible patients who underwent multiple detections for cervical cancer were assigned to the normal cervical group (n=21), cervical intraepithelial neoplasia I group (n=7), cervical intraepithelial neoplasia II+III group (n=12), or invasive cervical cancer group (n=14) based on pathological gradings. The methylation level of the PAX1 gene was detected using the real time quantitative methylation specific polymerase chain reaction assay and assessed by △Cp value. The diagnostic performance of PAX1 methylation detection was compared with folic acid receptor mediated diagnosis, the Thinprep cytology test, and human papilloma virus (HPV) testing. RESULTS The △Cp value in the invasive cervical cancer group was (6.15±4.07), significantly lower than that in the other groups (F=26.45, p<0.001). The area under the curve (AUC) of PAX1 methylation detection was 0.902 (95% confidence interval (CI) 0.817-0.986; p<0.001), and sensitivity and specificity were 92.30% and 78.60% when the cut-off value of △Cp was 13.28. The AUC of PAX1 methylation detection was notably larger compared with 0.709 for folic acid receptor mediated diagnosis (95% CI 0.568-0.849, p=0.009), 0.702 for the Thinprep cytology test (95% CI 0.559-0.844, p=0.015), and 0.655 for HPV testing (95% CI 0.508-0.802, p=0.014). CONCLUSION Through quantitative methylation specific polymerase chain reaction assay characterized by rapid screening and simple operation, the methylation detection of the PAX1 gene exhibited a higher diagnostic performance and may be a promising method for cervical cancer screening.
Collapse
Affiliation(s)
- Haifeng Liu
- The 2nd Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, China
| | - Xia Meng
- The 2nd Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, China
| | - Jingyi Wang
- The 2nd Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, China
| |
Collapse
|
50
|
Fujiyoshi K, Chen Y, Haruki K, Ugai T, Kishikawa J, Hamada T, Liu L, Arima K, Borowsky J, Väyrynen JP, Zhao M, Lau MC, Gu S, Shi S, Akimoto N, Twombly TS, Drew DA, Song M, Chan AT, Giovannucci EL, Meyerhardt JA, Fuchs CS, Nishihara R, Lennerz JK, Giannakis M, Nowak JA, Zhang X, Wu K, Ogino S. Smoking Status at Diagnosis and Colorectal Cancer Prognosis According to Tumor Lymphocytic Reaction. JNCI Cancer Spectr 2020; 4:pkaa040. [PMID: 32923934 PMCID: PMC7477375 DOI: 10.1093/jncics/pkaa040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Smoking has been associated with worse colorectal cancer patient survival and may potentially suppress the immune response in the tumor microenvironment. We hypothesized that the prognostic association of smoking behavior at colorectal cancer diagnosis might differ by lymphocytic reaction patterns in cancer tissue. METHODS Using 1474 colon and rectal cancer patients within 2 large prospective cohort studies (Nurses' Health Study and Health Professionals Follow-up Study), we characterized 4 patterns of histopathologic lymphocytic reaction, including tumor-infiltrating lymphocytes (TILs), intratumoral periglandular reaction, peritumoral lymphocytic reaction, and Crohn's-like lymphoid reaction. Using covariate data of 4420 incident colorectal cancer patients in total, an inverse probability weighted multivariable Cox proportional hazards regression model was conducted to adjust for selection bias due to tissue availability and potential confounders, including tumor differentiation, disease stage, microsatellite instability status, CpG island methylator phenotype, long interspersed nucleotide element-1 methylation, and KRAS, BRAF, and PIK3CA mutations. RESULTS The prognostic association of smoking status at diagnosis differed by TIL status. Compared with never smokers, the multivariable-adjusted colorectal cancer-specific mortality hazard ratio for current smokers was 1.50 (95% confidence interval = 1.10 to 2.06) in tumors with negative or low TIL and 0.43 (95% confidence interval = 0.16 to 1.12) in tumors with intermediate or high TIL (2-sided P interaction = .009). No statistically significant interactions were observed in the other patterns of lymphocytic reaction. CONCLUSIONS The association of smoking status at diagnosis with colorectal cancer mortality may be stronger for carcinomas with negative or low TIL, suggesting a potential interplay of smoking and lymphocytic reaction in the colorectal cancer microenvironment.
Collapse
Affiliation(s)
- Kenji Fujiyoshi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Surgery, Kurume University, Kurume, Fukuoka, Japan
| | - Yang Chen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Junko Kishikawa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Tsuyoshi Hamada
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Li Liu
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kota Arima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jennifer Borowsky
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Juha P Väyrynen
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Melissa Zhao
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Simeng Gu
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Shanshan Shi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Tyler S Twombly
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, CT, USA
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
- Smilow Cancer Hospital, New Haven, CT, USA
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jochen K Lennerz
- Department of Pathology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|