1
|
Welch MW, Cross AJ, Solar Diaz IDP, Johnson DC, Parr E, Rathje TA, Borg RC, Boler DD. Maintained growth performance and reduced mortality of genetically resistant nursery pigs after an experimental virulent F18 enterotoxigenic Escherichia coli challenge. Transl Anim Sci 2025; 9:txaf004. [PMID: 39917050 PMCID: PMC11799738 DOI: 10.1093/tas/txaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of postweaning diarrhea (PWD) and mortality of weaned pigs. The objective of this study was to evaluate genetic resistance of the polymorphism at nucleotide 307 (M307) in the FUT1 gene, to F18 E. coli infection considering different genotypes. A total of 179 pigs were used for this study. Pigs were genotyped for susceptibility to F18+ E. coli prior to the trial. Treatments included: genotype M307GA-heterozygous for E. coli susceptibility (A), genotype M307GG-homozygous E. coli susceptibility (B), or genotype M307AA-homozygous for E. coli resistance (C). Pigs were weighed, assigned to pens based on genotype, and allowed to acclimate for 3 d prior to the challenge. On days 4, 5, and 6, pigs were inoculated intraorally at the oropharynx with an F18+ E. coli isolate at a geometric mean concentration of 9.8 × 109. Growth rate (average daily gain [ADG]), feed intake (average daily feed intake), and gain-to-feed ratio (G:F) were calculated by pen. All pigs were humanely euthanized at the end of the trial. Two fixed sections of ileum and distal jejunum were collected from a subpopulation and tested by in situ hybridization (ISH) to evaluate F18+ E. coli adherence. Fresh ileum samples were used for enumeration of F18, total E. coli, and total bacteria by real-time polymerase chain reaction. Mortality rates during the trial were 26.7% for genotype A, 18.3% for genotype B, and 0.0% for genotype C (P < 0.01). Starting weights prior to inoculation were not different (P = 0.29) among genotypes. Overall, pigs from genotype C grew 223 g/d faster (P = 0.04) than genotype A. Pigs from genotype C tended to grow 185 g/d faster (P = 0.09) than genotype B. G:F for genotype C (0.74) was 23% greater (P < 0.01) than G:F for genotype A (0.60) and tended to be 12% greater (P = 0.07) than genotype B (0.66). There were no differences in ADG or G:F between genotypes A and B. F18-specifc Cq units were decreased by 7.74 and 6.47 in genotypes A and B compared with genotype C (P ≤ 0.03). Signal by ISH was increased by 14.0-fold in genotype A compared with genotype C (P = 0.02). Adherence was not different among genotypes (P = 0.40). Genotype A had greater mortality and poorer growth performance than genotype B or C. Genotype C had no mortalities during the trial, grew faster, was more feed efficient, and had less F18 E. coli in the ileal mucosa compared with genotype A. Resistant genotypes provide an opportunity to reduce PWD and mortality due to an F18+ E. coli infection.
Collapse
Affiliation(s)
| | | | | | | | - Eric Parr
- Carthage Veterinary Service Ltd, Carthage, IL 62321, USA
| | | | | | - Dustin D Boler
- Carthage Veterinary Service Ltd, Carthage, IL 62321, USA
| |
Collapse
|
2
|
Dolatkhah N, Jafari A, Eslamian F, Toopchizadeh V, Saleh P, Hashemian M. Saccharomyces boulardii improves clinical and paraclinical indices in overweight/obese knee osteoarthritis patients: a randomized triple-blind placebo-controlled trial. Eur J Nutr 2024; 63:2291-2305. [PMID: 38761281 DOI: 10.1007/s00394-024-03428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE This study aimed to determine the effect of the probiotic Saccharomyces boulardii (S. boulardii) in patients with knee osteoarthritis (KOA). METHODS In this study, 70 patients with KOA were recruited via outpatient clinics between 2020 and 2021 and randomly assigned to receive probiotics or placebo supplements for 12 weeks. The primary outcome was a change in pain intensity according to the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score. RESULTS Sixty-three patients completed the trial. A linear mixed analysis of covariance (ANCOVA) model analysis showed that probiotic was better than placebo in decreasing the pain intensity measured by visual analogue scale (VAS) [-2.11 (-2.59, -1.62) in probiotic group and -0.90 (-1.32, -0.48) in placebo group, p = 0.002] and WOMAC pain score [-3.57 (-4.66, -2.49) in probiotic group and -1.43 (-2.33, -0.53) in placebo group, p < 0.001]. The daily intake of acetaminophen for pain management significantly decreased in the probiotic group [-267.18 (-400.47, -133.89) mg, p < 0.001] that was significantly better than placebo (p = 0.006). Probiotic significantly decreased the serum levels of high-sensitivity C-reactive protein (hs-CRP) inflammatory index [-2.72 (-3.24, -2.20) µg/ml] and malondialdehyde (MDA) oxidative stress index [-1.61 (-2.11, -1.11) nmol/ml] compared to the placebo (p = 0.002 and p < 0.001, respectively). Probiotic was better than placebo in increasing the scores of role disorder due to physical health (p = 0.023), pain (p = 0.048) and physical health (p = 0.031). CONCLUSION Probiotic S. boulardii supplementation in patients with KOA significantly improved pain intensity, some dimensions of QoL, and inflammatory and oxidative stress biomarkers with no severe side effects. TRIAL REGISTRY Registered on the Iranian clinical trial website ( http://www.irct.ir : IRCT20161022030424N4) on 2019-09-02.
Collapse
Affiliation(s)
- Neda Dolatkhah
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Alireza Jafari
- Department pf Physical Medicine and Rehabilitation, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Eslamian
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Toopchizadeh
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Saleh
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hashemian
- Department of Biology, School of Arts and Sciences, Utica University, Utica, NY, USA
| |
Collapse
|
3
|
Kim S, Cho J, Keum GB, Kwak J, Doo H, Choi Y, Kang J, Kim H, Chae Y, Kim ES, Song M, Kim HB. Investigation of the impact of multi-strain probiotics containing Saccharomyces cerevisiae on porcine production. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:876-890. [PMID: 39398307 PMCID: PMC11466735 DOI: 10.5187/jast.2024.e79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 10/15/2024]
Abstract
A balanced intestinal microbiome controls intestinal bacterial diseases, helps regulate immunity, and digests and utilizes nutrients, ultimately having a positive effect on the productivity of industrial animals. Yeasts help in the digestion process by breaking down indigestible fibers and producing organic acids, vitamins, and minerals. In particular, polysaccharides such as beta-glucan and mannan-oligosaccharides, which are present in the cell wall of yeast, inhibit the adhesion of pathogens to the surface of the gastrointestinal tract and increase resistance to disease to help maintain and improve intestinal health. Among the yeast additives used in animal feed, Saccharomyces cerevisiae is one of the most commonly used probiotics. However, it does not naturally reside in the intestine, so if it is supplied in combination with other species of probiotics that can compensate for it, many benefits and synergies can be expected for pigs in terms of maintaining intestinal health such as supplementing the immune system and improving digestion. A number of previous studies have demonstrated that dietary complex probiotic supplementation has growth-promoting effects in pigs, suggesting that multiple strains of probiotics may be more effective than single strain probiotics due to their additive and synergistic effects. In practice, however, the effects of complex probiotics are not always consistent, and can be influenced by a variety of factors. Therefore, this review comprehensively examines and discusses the literature related to the effects of complex probiotics using Saccharomyces cerevisiae in pig production.
Collapse
Affiliation(s)
- Sheena Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Jinho Cho
- Division of Food and Animal Science,
Chungbuk National University, Cheongju 28644, Korea
| | - Gi Beom Keum
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Jinok Kwak
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Hyunok Doo
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Yejin Choi
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Juyoun Kang
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Haram Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Yeongjae Chae
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Eun Sol Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| | - Minho Song
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 31434, Korea
| | - Hyeun Bum Kim
- Department of Animal Biotechnology,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
4
|
Palkovicsné Pézsa N, Kovács D, Somogyi F, Karancsi Z, Móritz AV, Jerzsele Á, Rácz B, Farkas O. Effects of Lactobacillus rhamnosus DSM7133 on Intestinal Porcine Epithelial Cells. Animals (Basel) 2023; 13:3007. [PMID: 37835613 PMCID: PMC10571805 DOI: 10.3390/ani13193007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Antimicrobial resistance is one of the biggest health challenges nowadays. Probiotics are promising candidates as feed additives contributing to the health of the gastrointestinal tract. The beneficial effect of probiotics is species/strain specific; the potential benefits need to be individually assessed for each probiotic strain or species. We established a co-culture model, in which gastrointestinal infection was modeled using Escherichia coli (E. coli) and Salmonella enterica serovar Typhimurium (S. enterica serovar Typhimurium). Using intestinal porcine epithelial cells (IPEC-J2), the effects of pre-, co-, and post-treatment with Lactobacillus (L.) rhamnosus on the barrier function, intracellular (IC) reactive oxygen species (ROS) production, proinflammatory cytokine (IL-6 and IL-8) response, and adhesion inhibition were tested. E. coli- and S. Typhimurium-induced barrier impairment and increased ROS production could be counteracted using L. rhamnosus (p < 0.01). S. Typhimurium-induced IL-6 production was reduced via pre-treatment (p < 0.05) and post-treatment (p < 0.01); increased IL-8 secretion was decreased via pre-, co-, and post-treatment (p < 0.01) with L. rhamnosus. L. rhamnosus demonstrated significant inhibition of adhesion for both S. Typhimurium (p < 0.001) and E. coli (p < 0.001 in both pre-treatment and post-treatment; p < 0.05 in co-treatment). This study makes a substantial contribution to the understanding of the specific benefits of L. rhamnosus. Our findings can serve as a basis for further in vivo studies carried out in pigs and humans.
Collapse
Affiliation(s)
- Nikolett Palkovicsné Pézsa
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Dóra Kovács
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Fanni Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
| | - Zita Karancsi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Alma Virág Móritz
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Ákos Jerzsele
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary;
| | - Orsolya Farkas
- Department of Pharmacology and Toxicology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary; (D.K.); (F.S.); (Z.K.); (A.V.M.); (Á.J.); (O.F.)
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| |
Collapse
|
5
|
Scollo A, Borello I, Ghilardi M, Cavagnini A. The Administration of Inactivated and Stabilized Whole-Cells of Saccharomyces cerevisiae to Gestating Sows Improves Lactation Efficiency and Post-Weaning Antimicrobial Use. Vet Sci 2023; 10:576. [PMID: 37756098 PMCID: PMC10538003 DOI: 10.3390/vetsci10090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Increasingly hyperprolific sows and the need to reduce antibiotics represent challenges in pig farming. The aim of this work was to determine the effects of a postbiotic obtained from inactivated and stabilized whole-cells of Saccharomyces cerevisiae, administered during the sow's gestation, on the performance of the mother and litter. Maternal feed intake, productive parameters, colostrum quality and post-weaning piglets' health were assessed, including antibiotic consumption. The trial involved 183 sows, divided into two groups: (1) sows fed with a daily supplementation of postbiotic during gestation (n = 90); (2) sows without any supplement (n = 93). Piglets were followed up at two different post-weaning sites. The lactation efficiency of the treated sows improved by +5.9% (41.3 ± 11.4 vs. 35.4 ± 11.6%; p = 0.011). Lactating piglets' mortality was lower in the treated group (25.1 ± 16.7 vs. 28.8 ± 14.4%; p = 0.048). The same tendency was shown in both the weaning sites, together with a reduced antibiotic consumption in weaning site 1 (0.72 ± 0.25 vs. 1.22 ± 0.30 DDDvet/PCU; p = 0.047). The results suggest the role of this postbiotic administered to the mother in improving the health status of the piglets. Furthermore, lactation efficiency is suggested as an interesting parameter for assessing the efficiency of farming.
Collapse
Affiliation(s)
- Annalisa Scollo
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, TO, Italy;
| | - Irene Borello
- Department of Veterinary Sciences, University of Torino, 10095 Grugliasco, TO, Italy;
| | | | | |
Collapse
|
6
|
Palumbo VD, Tutino R, Messina M, Santarelli M, Nigro C, Lo Secco G, Piceni C, Montanari E, Barletta G, Venturelli P, Geraci G, Bonventre S, Lo Monte AI. Altered Gut Microbic Flora and Haemorrhoids: Could They Have a Possible Relationship? J Clin Med 2023; 12:2198. [PMID: 36983199 PMCID: PMC10054427 DOI: 10.3390/jcm12062198] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
To date, the exact pathophysiology of haemorrhoids is poorly understood. The different philosophies on haemorrhoids aetiology may lead to different approaches of treatment. A pathogenic theory involving a correlation between altered anal canal microflora, local inflammation, and muscular dyssynergia is proposed through an extensive review of the literature. Since the middle of the twentieth century, three main theories exist: (1) the varicose vein theory, (2) the vascular hyperplasia theory, and (3) the concept of a sliding anal lining. These phenomena determine changes in the connective tissue (linked to inflammation), including loss of organization, muscular hypertrophy, fragmentation of the anal subepithelial muscle and the elastin component, and vascular changes, including abnormal venous dilatation and vascular thrombosis. Recent studies have reported a possible involvement of gut microbiota in gut motility alteration. Furthermore, dysbiosis seems to represent the leading cause of bowel mucosa inflammation in any intestinal district. The alteration of the gut microbioma in the anorectal district could be responsible for haemorrhoids and other anorectal disorders. A deeper knowledge of the gut microbiota in anorectal disorders lays the basis for unveiling the roles of these various gut microbiota components in anorectal disorder pathogenesis and being conductive to instructing future therapeutics. The therapeutic strategy of antibiotics, prebiotics, probiotics, and fecal microbiota transplantation will benefit the effective application of precision microbiome manipulation in anorectal disorders.
Collapse
Affiliation(s)
| | - Roberta Tutino
- General Surgery 3 O.U., Molinette Hospital, University Hospital Città della Salute e della Scienza di Torino, 10126 Torino, Italy; (R.T.)
| | - Marianna Messina
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90129 Palermo, Italy;
| | - Mauro Santarelli
- General Surgery 3 O.U., Molinette Hospital, University Hospital Città della Salute e della Scienza di Torino, 10126 Torino, Italy; (R.T.)
| | - Casimiro Nigro
- Department of Surgery, Università degli Studi di Roma “Tor Vergata”, 00173 Rome, Italy
| | - Giacomo Lo Secco
- Department of Surgical Sciences, University of Torino, 10126 Torino, Italy
| | - Chiara Piceni
- General Surgery 3 O.U., Molinette Hospital, University Hospital Città della Salute e della Scienza di Torino, 10126 Torino, Italy; (R.T.)
| | - Elena Montanari
- General Surgery 3 O.U., Molinette Hospital, University Hospital Città della Salute e della Scienza di Torino, 10126 Torino, Italy; (R.T.)
| | - Gabriele Barletta
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy (G.G.)
| | - Paolina Venturelli
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy (G.G.)
| | - Girolamo Geraci
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy (G.G.)
| | - Sebastiano Bonventre
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy (G.G.)
| | - Attilio Ignazio Lo Monte
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy (G.G.)
| |
Collapse
|
7
|
Pang Y, Zhang H, Wen H, Wan H, Wu H, Chen Y, Li S, Zhang L, Sun X, Li B, Liu X. Yeast Probiotic and Yeast Products in Enhancing Livestock Feeds Utilization and Performance: An Overview. J Fungi (Basel) 2022; 8:1191. [PMID: 36422012 PMCID: PMC9695268 DOI: 10.3390/jof8111191] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 10/29/2023] Open
Abstract
The intensive use of antibiotics as growth-promoting agents in animal production has resulted in the spread of animal antibiotic resistance and possibly human antibiotic resistance. Based on this premise, it is significant to explore an alternative approach to preventing infectious diseases and promoting animal growth and health. Yeast as the main natural growth promoter in livestock nutrition has been extensively studied for decades. Numerous yeasts and yeast-containing products are produced, marketed, and used in animal feed as providers of nutrient sources, probiotics, and nutrients or serve distinct nutritional functions. A large amount of scientific research suggests that yeasts and their derivatives may be good for animal growth performance and health, especially when animals are housed in poor sanitation or are suffering from disease. However, when yeasts are used as a surrogate for livestock antibiotics, the results vary according to several factors, including yeast species, yeast product components, feed ingredients, animal category, type of symptoms, and differences in the rearing environment. In this review, the effects of different yeasts on different animals will be reviewed. The types of widely used yeast products, their functional characteristics, and application effects will be discussed in order to provide a reference for the development and application of yeast feed products.
Collapse
Affiliation(s)
- Yuanxiang Pang
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing 100192, China
| | - Hailiang Zhang
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing 100192, China
| | - Haoyu Wen
- School of Biological Sciences, The University of Manchester, Manchester M13 9PL, UK
| | - Hongbing Wan
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing 100192, China
| | - Hao Wu
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing 100192, China
| | - Ying Chen
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing 100192, China
| | - Shengshuo Li
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing 100192, China
| | - Le Zhang
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing 100192, China
| | - Xiaojie Sun
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing 100192, China
| | - Bichen Li
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing 100192, China
| | - Xuelian Liu
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing 100192, China
| |
Collapse
|
8
|
Le Bon M, Tötemeyer S, Emes RD, Mellits KH. Gut transcriptome reveals differential gene expression and enriched pathways linked to immune activation in response to weaning in pigs. Front Genet 2022; 13:961474. [DOI: 10.3389/fgene.2022.961474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Weaning represents one of the most critical periods in pig production associated with increase in disease risk, reduction in performance and economic loss. Physiological changes faced by piglets during the weaning period have been well characterised, however little is currently known about the underlying molecular pathways involved in these processes. As pig meat remains one of the most consumed sources of protein worldwide, understanding how these changes are mediated is critical to improve pig production and consequently sustainable food production globally. In this study, we evaluated the effect of weaning on transcriptomic changes in the colon of healthy piglets over time using an RNA-sequencing approach. The findings revealed a complex and coordinated response to weaning with the majority of genes found to be rapidly differentially expressed within 1 day post weaning. Multiple genes and pathways affected by weaning in the colon were associated with immune regulation, cell signalling and bacterial defence. NOD-like receptors, Toll-like receptor and JAK-STAT signalling pathways were amongst the pathways significantly enriched. Immune activation was evidenced by the enrichment of pathways involved in interferon response, cytokines interactions, oxidoreductase activities and response to microbial invasion. Biosynthesis of amino acids, in particular arginine, was also amongst the most enriched KEGG pathways in weaned pigs, reinforcing the critical role of arginine in gut homeostasis under stress conditions. Overall, transcriptomic and physiological results suggest that pigs going through the weaning transition undergo a transient period of inflammatory state with a temporary breakdown of barrier functions in the gut. These findings could provide valuable tools to monitor host response post weaning, and may be of particular relevance for the investigation and development of intervention strategies aimed to reduce antibiotic use and improve pig health and performance.
Collapse
|
9
|
Chang SY, Song MH, Lee JH, Oh HJ, Kim YJ, An JW, Go YB, Song DC, Cho HA, Cho SY, Kim DJ, Kim MS, Kim HB, Cho JH. Phytogenic feed additives alleviate pathogenic Escherichia coli-induced intestinal damage through improving barrier integrity and inhibiting inflammation in weaned pigs. J Anim Sci Biotechnol 2022; 13:107. [PMID: 36050784 PMCID: PMC9438252 DOI: 10.1186/s40104-022-00750-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/03/2022] [Indexed: 01/23/2023] Open
Abstract
Background This study was conducted to investigate the effects of each phytogenic feed additive (PFA; PFA1, bitter citrus extract; PFA2, a microencapsulated blend of thymol and carvacrol; PFA3, a mixture of bitter citrus extract, thymol, and carvacrol; PFA4, a premixture of grape seed, grape marc extract, green tea, and hops; PFA5, fenugreek seed powder) on the growth performance, nutrient digestibility, intestinal morphology, and immune response in weaned pigs infected with Escherichia coli (E. coli). Results A total of 63 4-week-old weaned pigs were placed in individual metabolic cages and assigned to seven treatment groups. The seven treatments were as follows: 1) NC; basal diet without E. coli challenge, 2) PC; basal diet with E. coli challenge, 3) T1; PC + 0.04% PFA1, 4) T2; PC + 0.01% PFA2, 5) T3; PC + 0.10% PFA3, 6) T4; PC + 0.04% PFA4, 7) T5; PC + 0.10% PFA5. The experiments lasted in 21 d, including 7 d before and 14 d after the first E. coli challenge. In the E. coli challenge treatments, all pigs were orally inoculated by dividing a total of 10 mL of E. coli F18 for 3 consecutive days. The PFA-added groups significantly increased (P < 0.05) average daily gain and feed efficiency and decreased (P < 0.05) the fecal score at d 0 to 14 post-inoculation (PI). Tumor necrosis factor α was significantly lower (P < 0.05) in the PFA-added groups except for T1 in d 14 PI compared to the PC treatment. The T3 had a higher (P < 0.05) immunoglobulin G and immunoglobulin A concentration compared to the PC treatment at d 7 PI. Also, T3 showed significantly higher (P < 0.05) villus height:crypt depth and claudin 1 expression in ileal mucosa, and significantly down-regulated (P < 0.05) the expression of calprotectin compared to the PC treatment. Conclusions Supplementation of PFA in weaned pigs challenged with E. coli alleviated the negative effects of E. coli and improved growth performance. Among them, the mixed additive of bitter citrus extract, thymol, and carvacrol showed the most effective results, improving immune response, intestinal morphology, and expression of tight junctions.
Collapse
Affiliation(s)
- Se Yeon Chang
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Min Ho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Ji Hwan Lee
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Han Jin Oh
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Yong Ju Kim
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Jae Woo An
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Young Bin Go
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Dong Cheol Song
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Hyun Ah Cho
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea
| | | | | | | | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, 31116, South Korea.
| | - Jin Ho Cho
- Department of Animal Science, Chungbuk National University, Cheongju, 28644, South Korea.
| |
Collapse
|
10
|
Yang Z, Wu Y, Liu X, Zhang M, Peng J, Wei H. S. boulardii Early Intervention Maintains Gut Microbiome Structure and Promotes Gut Mucosal Barrier Function in Early-Weaned Rats. Nutrients 2022; 14:nu14173485. [PMID: 36079743 PMCID: PMC9459792 DOI: 10.3390/nu14173485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Early weaning leads to the disorder of the gut microbiome and gut mucosal barrier injury. Early intervention of gut microbiome colonization contributes to the development of the gut microbiome and gut function. The aim of this study was to explore the effects of Saccharomyces boulardii (S. boulardii) early intervention on the gut microbiome structure and gut mucosal barrier function of early-weaned rats. The results showed that S. boulardii early intervention improved growth performance along with a decrease in pathogenic bacteria, an increase in beneficial bacteria, a stable and complex microbiome, and a high level of microbial metabolism. Moreover, S. boulardii upregulated the mucosal barrier function including goblet cells and relative gene expression, tight junction, and sIgA level. Furthermore, S. boulardii suppressed the inflammatory response and promoted the anti-inflammatory response. Our study may provide a possible early intervention strategy for preventing an early weaning-induced disorder of the gut microbiome and loss of gut mucosal barrier function.
Collapse
Affiliation(s)
- Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanting Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangchen Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
11
|
Gaio D, DeMaere MZ, Anantanawat K, Eamens GJ, Falconer L, Chapman TA, Djordjevic S, Darling AE. Phylogenetic diversity analysis of shotgun metagenomic reads describes gut microbiome development and treatment effects in the post-weaned pig. PLoS One 2022; 17:e0270372. [PMID: 35749534 PMCID: PMC9232140 DOI: 10.1371/journal.pone.0270372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Intensive farming practices can increase exposure of animals to infectious agents against which antibiotics are used. Orally administered antibiotics are well known to cause dysbiosis. To counteract dysbiotic effects, numerous studies in the past two decades sought to understand whether probiotics are a valid tool to help re-establish a healthy gut microbial community after antibiotic treatment. Although dysbiotic effects of antibiotics are well investigated, little is known about the effects of intramuscular antibiotic treatment on the gut microbiome and a few studies attempted to study treatment effects using phylogenetic diversity analysis techniques. In this study we sought to determine the effects of two probiotic- and one intramuscularly administered antibiotic treatment on the developing gut microbiome of post-weaning piglets between their 3rd and 9th week of life. Shotgun metagenomic sequences from over 800 faecal time-series samples derived from 126 post-weaning piglets and 42 sows were analysed in a phylogenetic framework. Differences between individual hosts such as breed, litter, and age, were found to be important contributors to variation in the community composition. Host age was the dominant factor in shaping the gut microbiota of piglets after weaning. The post-weaning pig gut microbiome appeared to follow a highly structured developmental program with characteristic post-weaning changes that can distinguish hosts that were born as little as two days apart in the second month of life. Treatment effects of the antibiotic and probiotic treatments were found but were subtle and included a higher representation of Mollicutes associated with intramuscular antibiotic treatment, and an increase of Lactobacillus associated with probiotic treatment. The discovery of correlations between experimental factors and microbial community composition is more commonly addressed with OTU-based methods and rarely analysed via phylogenetic diversity measures. The latter method, although less intuitive than the former, suffers less from library size normalization biases, and it proved to be instrumental in this study for the discovery of correlations between microbiome composition and host-, and treatment factors.
Collapse
Affiliation(s)
- Daniela Gaio
- iThree Institute, University of Technology Sydney, Ultimo, Australia
- * E-mail:
| | | | - Kay Anantanawat
- iThree Institute, University of Technology Sydney, Ultimo, Australia
| | - Graeme J. Eamens
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia
| | - Linda Falconer
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia
| | - Toni A. Chapman
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, Australia
| | - Steven Djordjevic
- iThree Institute, University of Technology Sydney, Ultimo, Australia
| | - Aaron E. Darling
- iThree Institute, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
12
|
Dvorožňáková E, Vargová M, Hurníková Z, Lauková A, Revajová V. Modulation of lymphocyte subpopulations in the small intestine of mice treated with probiotic bacterial strains and infected with Trichinella spiralis. J Appl Microbiol 2022; 132:4430-4439. [PMID: 35304938 DOI: 10.1111/jam.15534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
AIMS To study the local intestinal lymphocyte immunity in mice with trichinellosis affected by probiotic bacteria. METHODS AND RESULTS Enterococcus faecium CCM8558, E. durans ED26E/7, Limosilactobacillus fermentum CCM7421 and Lactiplantibacillus plantarum 17L/1 were administered daily (109 CFU.ml-1 ) and mice were infected with Trichinella spiralis (400 larvae) on 7th day of treatment. T. spiralis infection significantly inhibited lymphocyte subpopulations from 5 to 25 days post infection (dpi). L. fermentum CCM7421 and L. plantarum 17L/1 restored the CD4+T cell numbers in the epithelium and lamina propria at control level from 11 dpi. All strains stimulated the CD8+T cells numbers in infected mice, which were restored in the lamina propria on 11 dpi and in the epithelium only on 32 dpi. B cells (CD19+) inhibition after T. spiralis infection was not affected by treatment till 25dpi. CONCLUSIONS The strain-specific immunomodulatory effect of tested bacteria was confirmed. L. fermentum CCM7421 and L. plantarum 17L/1 showed the greatest immunomodulatory potential on CD4+ and CD8+T lymphocytes in trichinellosis. E. faecium CCM8558 and E. durans ED26E/7 activated only CD8+T cells in the lamina propria. SIGNIFICANCE AND IMPACT OF STUDY Positive modulation of the gut lymphocyte immunity in T. spiralis infection with bacterial strains showed their beneficial effect in the host's antiparasitic defense.
Collapse
Affiliation(s)
- Emília Dvorožňáková
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Miroslava Vargová
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovak Republic.,University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| | - Zuzana Hurníková
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovak Republic
| | - Andrea Lauková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Košice, Slovak Republic
| | - Viera Revajová
- University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovak Republic
| |
Collapse
|
13
|
Kober AKMH, Riaz Rajoka MS, Mehwish HM, Villena J, Kitazawa H. Immunomodulation Potential of Probiotics: A Novel Strategy for Improving Livestock Health, Immunity, and Productivity. Microorganisms 2022; 10:microorganisms10020388. [PMID: 35208843 PMCID: PMC8878146 DOI: 10.3390/microorganisms10020388] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the use of probiotics as feed supplements in animal production has increased considerably due to the ban on antibiotic growth promoters in livestock. This review provides an overview of the current situation, limitation, and prospects for probiotic formulations applied to livestock. Recently, the use of probiotics in livestock has been suggested to significantly improve their health, immunity, growth performance, nutritional digestibility, and intestinal microbial balance. Furthermore, it was reported that the use of probiotics in animals was helpful in equilibrating their beneficial microbial population and microbial turnover via stimulating the host immune response through specific secretions and competitive exclusion of potentially pathogenic bacteria in the digestive tract. Recently, there has been great interest in the understanding of probiotics targeted diet and its ability to compete with harmful microbes and acquire their niches. Therefore, the present review explores the most commonly used probiotic formulations in livestock feed and their effect on animal health. In summary, this article provides an in-depth knowledge about the formulation of probiotics as a step toward a better alternative to antibiotic healthy growth strategies.
Collapse
Affiliation(s)
- A. K. M. Humayun Kober
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.R.R.); (H.M.M.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Dairy and Poultry Science, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh
- Correspondence: or (A.K.M.H.K.); (H.K.); Tel.: +880-1712-164794 (A.K.M.H.K.); +81-22-757-4372 (H.K.)
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.R.R.); (H.M.M.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hafiza Mahreen Mehwish
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.R.R.); (H.M.M.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina;
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.R.R.); (H.M.M.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: or (A.K.M.H.K.); (H.K.); Tel.: +880-1712-164794 (A.K.M.H.K.); +81-22-757-4372 (H.K.)
| |
Collapse
|
14
|
Coker OO. Non-bacteria microbiome (virus, fungi, and archaea) in gastrointestinal cancer. J Gastroenterol Hepatol 2022; 37:256-262. [PMID: 34825404 DOI: 10.1111/jgh.15738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022]
Abstract
The gastrointestinal tract houses millions of microbes collectively referred to as the gut microbiome. The gut microbes comprise of bacteria, viruses, fungi, archaea, and microscopic eukaryotes, which co-evolved or colonize the gut forming complex symbiotic and mutualistic relationships. A state of homeostasis is required between host and gut microbiome relationship to maintain several host beneficial processes. Alterations in the taxonomic and functional composition of the gut microbes are associated with several human diseases including gastrointestinal cancers. Owed to their overwhelming abundance and ease of characterization, several studies focus on the role of bacteria in gastrointestinal cancers. There is however growing evidence that non-bacteria gut microbes are associated with the pathogenesis of gastrointestinal cancers. This review details the association of non-bacteria gut microbes including fungi, viruses, and archaea and their potential manipulation in the prevention and treatment of human gastrointestinal cancers.
Collapse
Affiliation(s)
- Olabisi Oluwabukola Coker
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
15
|
Kim K, He Y, Jinno C, Kovanda L, Li X, Bravo D, Cox E, Liu Y. Supplementation of oligosaccharide-based polymer enhanced growth and disease resistance of weaned pigs by modulating intestinal integrity and systemic immunity. J Anim Sci Biotechnol 2022; 13:10. [PMID: 35016715 PMCID: PMC8753815 DOI: 10.1186/s40104-021-00655-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/21/2021] [Indexed: 11/18/2022] Open
Abstract
Background There is a great demand for antibiotic alternatives to maintain animal health and productivity. The objective of this experiment was to determine the efficacy of dietary supplementation of a blood group A6 type 1 antigen oligosaccharides-based polymer (Coligo) on growth performance, diarrhea severity, intestinal health, and systemic immunity of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli (ETEC), when compared with antibiotics. Results Pigs in antibiotic carbadox or Coligo treatment groups had greater (P < 0.05) body weight on d 5 or d 11 post-inoculation (PI) than pigs in the control group, respectively. Supplementation of antibiotics or Coligo enhanced (P < 0.05) feed efficiency from d 0 to 5 PI and reduced (P < 0.05) frequency of diarrhea throughout the experiment, compared with pigs in the control group. Supplementation of antibiotics reduced (P < 0.05) fecal β-hemolytic coliforms on d 2, 5, and 8 PI. Pigs in antibiotics or Coligo groups had reduced (P < 0.05) neutrophil counts and serum haptoglobin concentration compared to pigs in the control group on d 2 and 5 PI. Pigs in Coligo had reduced (P < 0.05) total coliforms in mesenteric lymph nodes on d 5 and 11 PI, whereas pigs in antibiotics or Coligo groups had reduced (P < 0.05) total coliforms in spleen on d 11 PI compared with pigs in the control group. On d 5 PI, pigs in the Coligo group had greater (P < 0.05) gene expression of ZO1 in jejunal mucosa, but less (P < 0.05) mRNA expression of IL1B, IL6, and TNF in ileal mucosa, in comparison with pigs in the control group. Supplementation of antibiotics enhanced (P < 0.05) the gene expression of OCLN in jejunal mucosa but decreased (P < 0.05) IL1B and IL6 gene expression in ileal mucosa, compared with the control. On d 11 PI, supplementation of antibiotics or Coligo up-regulated (P < 0.05) gene expression of CLDN1 in jejunal mucosa, but Coligo reduced (P < 0.05) IL6 gene expression in ileal mucosa compared to pigs in the control group. Conclusions Supplementation of Coligo improved growth performance, alleviated diarrhea severity, and enhanced gut health in weaned pigs infected with ETEC F18 in a manner similar to in-feed antibiotics. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00655-2.
Collapse
Affiliation(s)
- Kwangwook Kim
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Yijie He
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Cynthia Jinno
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Lauren Kovanda
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Xunde Li
- School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | | | - Eric Cox
- Department of Virology, Parasitology and Immunology, Ghent University, 9000, Ghent, Belgium
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
16
|
Mishra K, Bukavina L, Ghannoum M. Symbiosis and Dysbiosis of the Human Mycobiome. Front Microbiol 2021; 12:636131. [PMID: 34630340 PMCID: PMC8493257 DOI: 10.3389/fmicb.2021.636131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
The influence of microbiological species has gained increased visibility and traction in the medical domain with major revelations about the role of bacteria on symbiosis and dysbiosis. A large reason for these revelations can be attributed to advances in deep-sequencing technologies. However, the research on the role of fungi has lagged. With the continued utilization of sequencing technologies in conjunction with traditional culture assays, we have the opportunity to shed light on the complex interplay between the bacteriome and the mycobiome as they relate to human health. In this review, we aim to offer a comprehensive overview of the human mycobiome in healthy and diseased states in a systematic way. The authors hope that the reader will utilize this review as a scaffolding to formulate their understanding of the mycobiome and pursue further research.
Collapse
Affiliation(s)
- Kirtishri Mishra
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, OH, United States.,Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Laura Bukavina
- University Hospitals Cleveland Medical Center, Urology Institute, Cleveland, OH, United States.,Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Mahmoud Ghannoum
- Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Center for Medical Mycology, and Integrated Microbiome Core, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Dermatology, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
17
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 8: Pleuromutilins: tiamulin and valnemulin. EFSA J 2021; 19:e06860. [PMID: 34729088 PMCID: PMC8546795 DOI: 10.2903/j.efsa.2021.6860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The specific concentrations of tiamulin and valnemulin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for tiamulin, while for valnemulin no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these two antimicrobials.
Collapse
|
18
|
Zommiti M, Chikindas ML, Ferchichi M. Probiotics-Live Biotherapeutics: a Story of Success, Limitations, and Future Prospects-Not Only for Humans. Probiotics Antimicrob Proteins 2021; 12:1266-1289. [PMID: 31376026 DOI: 10.1007/s12602-019-09570-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In livestock production, lactic acid bacteria (LAB) represent the most widespread microorganisms used as probiotics. For such critical use, these bacteria must be correctly identified and characterized to ensure their safety and efficiency. Recently, probiotics have become highly recognized as supplements for humans and in particular for animals because of their beneficial outcome on health improvement and well-being maintenance. Various factors, encompassing dietary and management constraints, have been demonstrated to tremendously influence the structure, composition, and activities of gut microbial communities in farm animals. Previous investigations reported the potential of probiotics in animal diets and nutrition. But a high rate of inconsistency in the efficiency of probiotics has been reported. This may be due, in a major part, to the dynamics of the gastrointestinal microbial communities. Under stressing surroundings, the direct-fed microbials may play a key role as the salient limiting factor of the severity of the dysbiosis caused by disruption of the normal intestinal balance. Probiotics are live microorganisms, which confer health benefits on the host by positively modifying the intestinal microflora. Thus, the aim of this review is to summarize and to highlight the positive influence of probiotics and potential probiotic microbe supplementation in animal feed with mention of several limitations.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, 1006, Tunis, Tunisia
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,Center for Digestive Health, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ, USA
| | - Mounir Ferchichi
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, 1006, Tunis, Tunisia.
| |
Collapse
|
19
|
Wang T, Cheng K, Yu CY, Li QM, Tong YC, Wang C, Yang ZB, Wang T. Effects of a yeast-derived product on growth performance, antioxidant capacity, and immune function of broilers. Poult Sci 2021; 100:101343. [PMID: 34325110 PMCID: PMC8334739 DOI: 10.1016/j.psj.2021.101343] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/25/2022] Open
Abstract
Yeast culture plus enzymatically hydrolyzed yeast cell wall (YC-EHY) contains crude protein, mannan-oligosaccharide, β-glucan and yeast culture. This study was carried out to explore the effects of dietary YC-EHY at different levels on growth performance, antioxidant capacity, and immune function of broiler chickens. A total of 320 one-day-age male broiler chicks were allocated into 4 groups and were fed with a basal diet supplemented with 0 mg/kg (the control group), 50 mg/kg, 100 mg/kg, 150 mg/kg YC-EHY for 42 d. Dietary YC-EHY improved average daily gain and feed efficiency during the starter, grower, and overall periods as well as average body weight of broiler chickens on 42 d (linear and quadratic, P < 0.05). Broiler chickens fed with YC-EHY quadratically increased jejunal sucrase activity on 21 d (quadratic, P < 0.05), and linearly and quadratically enhanced maltase activity on 21 and 42 d (linear and quadratic, P < 0.05). Supplementing YC-EHY linearly and quadratically enhanced jejunal superoxide dismutase (SOD) activity on 21 and 42 d and glutathione peroxidase (GPX) activity on 42 d whereas decreased malonaldehyde (MDA) concentration on 42 d (linear and quadratic, P < 0.05). Consistently, the jejunal genes expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and SOD1 on 21 and 42 d, heme oxygenase-1 (HO-1) and GPX1 on 42 d were enhanced by YC-EHY supplementation (linear and quadratic, P < 0.05). The concentrations of jejunal immunoglobulin G (IgG) on 21 and 42 d and secreted immunoglobulin A (SIgA) on 42 d were linearly and quadratically elevated by supplementing YC-EHY (linear and quadratic, P < 0.05). Dietary YC-EHY quadratically increased jejunal IgG and IgM genes expression on 21 d (quadratic, P < 0.05), and linearly and quadratically enhanced the genes expression of IgG and IgM on 42 d (linear and quadratic, P < 0.05). Overall, this study indicated that supplementing YC-EHY could exert beneficial effects on growth performance, intestinal antioxidant capacity and immune function in broiler chickens.
Collapse
Affiliation(s)
- Ting Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kang Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Cai Yun Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qi Ming Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi Chun Tong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zai Bin Yang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
20
|
Kim K, He Y, Jinno C, Kovanda L, Li X, Song M, Liu Y. Trace amounts of antibiotic exacerbated diarrhea and systemic inflammation of weaned pigs infected with a pathogenic Escherichia coli. J Anim Sci 2021; 99:6159787. [PMID: 33693730 DOI: 10.1093/jas/skab073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/02/2021] [Indexed: 12/28/2022] Open
Abstract
The experiment was conducted to investigate the effects of trace amounts of antibiotic on growth performance, diarrhea, systemic immunity, and intestinal health of weaned pigs experimentally infected with an enterotoxigenic Escherichia coli. Weaned pigs (n = 34, 6.88 ± 1.03 kg body weight [BW]) were individually housed in disease containment rooms and randomly allotted to one of the three dietary treatments: nursery basal diet (CON) and two additional diets supplemented with 0.5 or 50 mg/kg carbadox to the nursery basal diet (TRA or REC), respectively. The experiment lasted 18 d with 7 d before and 11 d after the first E. coli inoculation. The E. coli F18 inoculum was orally provided to all pigs with a dose of 1010 colony-forming unit (CFU)/3 mL for three consecutive days. Fecal and blood samples were collected on day 0 before inoculation and days 2, 5, 8, and 11 postinoculation (PI) to test the percentage of β-hemolytic coliforms in total coliforms and complete blood cell count, respectively. Sixteen pigs were euthanized on day 5 PI, whereas the remaining pigs were euthanized at the end of the experiment to collect the jejunal and ileal mucosa and mesenteric lymph node for gene expression and bacterial translocation, respectively. Pigs in REC had greater (P < 0.05) final BW and lower (P < 0.05) overall frequency of diarrhea compared with pigs in the CON and TRA groups. Pigs in TRA had the lowest (P < 0.05) average daily gain and feed efficiency from day 0 to 5 PI, highest (P < 0.05) percentage of β-hemolytic coliforms in fecal samples on days 2 and 5 PI, and greatest (P < 0.05) bacterial colonies in mesenteric lymph nodes on day 11 PI compared with pigs in the CON and REC groups. Pigs in TRA had the greatest (P < 0.05) neutrophils on day 5 PI and higher (P < 0.05) white blood cell counts and lymphocytes than other groups on day 11 PI. Pigs in TRA had the greatest (P < 0.05) serum C-reactive protein on days 2 and 5 PI and serum tumor necrosis factor-α on day 5 PI, compared with pigs in the CON and REC groups. Pigs fed REC had increased (P < 0.05) mRNA expression of zona occludens-1 (ZO-1) and occludin (OCDN) and reduced (P < 0.05) interleukin-1 beta (IL1B), interleukin-6 (IL6), and tumor necrosis factor-alpha (TNFA) in ileal mucosa on day 5 PI, compared with the CON, whereas TRA upregulated (P < 0.05) mRNA expression of IL1B, IL6, and cyclooxygenase-2 (COX2) in the ileal mucosa on day 11 PI, compared with the REC. In conclusion, trace amounts of antibiotic may exacerbate the detrimental effects of E. coli infection on pig performance by increasing diarrhea and systemic inflammation of weanling pigs.
Collapse
Affiliation(s)
- Kwangwook Kim
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Yijie He
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Cynthia Jinno
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Lauren Kovanda
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Xunde Li
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, CA 95616, USA
| |
Collapse
|
21
|
Burdick Sanchez NC, Broadway PR, Carroll JA. Influence of Yeast Products on Modulating Metabolism and Immunity in Cattle and Swine. Animals (Basel) 2021; 11:ani11020371. [PMID: 33540746 PMCID: PMC7913008 DOI: 10.3390/ani11020371] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Nutritional supplementation has been used by livestock producers for many years in order to increase animal performance, improve animal health, and reduce negative effects associated with enteric and/or respiratory pathogens. Supplements such as yeast and yeast-based products have broad applications across many livestock production systems, including poultry, aquaculture, cattle, and swine and have been shown to benefit animal production at various stages. These benefits include improvement in milk production, weight gain and feed conversion, as well as immune function. Initial research into the mode of action for these effects has focused on stimulation of the immune system by the β-glucan fractions of yeast. However, emerging studies have revealed that some of the beneficial effects of yeast products may stem from altering metabolism, including the availability of glucose and fatty acids. These changes in metabolism, and potentially energy availability, may partially explain differences in immune function observed in yeast-supplemented livestock, as the energy demands of an activated immune system are extremely high. Thus, this paper explores the influence of yeast products on metabolism in cattle and swine, and how changes in metabolism and energy availability may contribute to improvements in immune function in supplemented animals.
Collapse
|
22
|
El‐Deep MH, Dawood MAO, Assar MH, Ahamad Paray B. Aspergillus awamori positively impacts the growth performance, nutrient digestibility, antioxidative activity and immune responses of growing rabbits. Vet Med Sci 2021; 7:226-235. [PMID: 32902158 PMCID: PMC7840208 DOI: 10.1002/vms3.345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/22/2020] [Accepted: 08/05/2020] [Indexed: 01/28/2023] Open
Abstract
In this study, we explored the effects of dietary administration of Aspergillus awamori on the growth, intestinal histomorphology, immune parameters and antioxidant enzyme activity of growing rabbits. The rabbits of 5 weeks of age (body weight, 855 ± 5.53 g) were allotted into four groups (12 rabbits per group) and fed four experimental diets enriched with A. awamori at 0, 50, 100 and 150 mg per kg diet for 8 weeks. After the feeding trial, an equal number of male APRI rabbits (3 months old; 4 groups, 5 rabbits per group) were housed in metabolism cages and fed the test diets for 14 days for the digestibility trial. All A. awamori-enriched diets induced a significant increase in the average body weight and weight gain of rabbits and significantly decreased the feed conversion ratio. In rabbits fed with A. awamori at 100 or 150 mg per kg diet, protein, lipid and fibber digestibility coefficients significantly increased compared with the control group. Intestinal villi measurements (length and thickness) were also enhanced in all rabbits fed with A. awamori. Adding A. awamori as a food supplement generally did not affect rabbit haematology and blood biochemistry values; however, at 150 mg per kg diet, it significantly increased the levels of haemoglobin and total protein, as well as red blood cell count. Furthermore, all enriched diets significantly increased rabbits' phagocytic activity and their phagocytic index. Rabbits fed with A. awamori also showed decreased malondialdehyde but increased catalase activity. In conclusion, A. awamori administered as feed supplement at 100-150 mg per kg of growing rabbits' diet enhances their growth, intestinal health and nutrient digestibility, and it raises the levels of their immune and antioxidative responses.
Collapse
Affiliation(s)
| | - Mahmoud A. O. Dawood
- Department of Animal ProductionFaculty of AgricultureKafrelsheikh UniversityKafr El‐SheikhEgypt
| | - Mohamed H. Assar
- Animal Production Research InstituteSakha StationKafr El‐SheikhEgypt
| | - Bilal Ahamad Paray
- Department of ZoologyCollege of ScienceKing Saud UniversityRiyadh ‐ 11451Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Mengistu BM, Bitsue HK, Huang K. The Effects of Selenium-Enriched Probiotics on Growth Performance, Oocysts Shedding, Intestinal Cecal Lesion Scores, Antioxidant Capacity, and mRNA Gene Expression in Chickens Infected with Eimeria tenella. Biol Trace Elem Res 2021; 199:278-291. [PMID: 32222936 DOI: 10.1007/s12011-020-02118-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 03/11/2020] [Indexed: 01/31/2023]
Abstract
This study was carried out to investigate the effects of selenium-enriched probiotics (SP) supplementation on growth performance, oocysts shedding, intestinal lesions and antioxidant capacities, and mRNA gene expression of local Chinese yellow male chickens infected with Eimeria tenella. One-day-old 270 chickens were randomly assigned into five groups, each consisting of three replicates with 18 chickens per replicate. Chickens in the negative and positive controls (NC, PC, respectively) received basal diets only (0.11 mg Se/kg), whereas the other groups were supplied basal diets with probiotics and designated as (P, 0.11 mg Se/kg), sodium selenite (SS, 0.41 mg Se/kg), and (SP, 0.41 mg Se/kg) groups. At 21 days of age, except the NC group, all other groups were infected by oral gavage with 1.5 × 104 sporulated E. tenella oocysts per chicken. Three chickens were randomly selected from each group for serum, liver, and cecal specimen collection. The results showed that P, SS, and SP had significant increase weight gain and feed intake. Additionally, these groups showed higher activities of serum superoxide dismutase (SOD) and glutathione peroxidase-1 (GPx1) compared to the PC group, whereas feed conversion ratio (FCR), serum catalase (CAT) activity, and malondialdehyde (MDA) content remained lower. Moreover, P, SS, and SP groups had lower oocyst shedding and cecal lesion scores. Significant upregulation of the glutathione peroxidase-1 (GPx1), glutathione peroxidase-4 (GPx4), Selenium W (SelW), and interferon gamma (IFN-γ) mRNA expression were detected in the SP group, which was then followed by SS when compared to the P group, whereas mRNA expression down-regulated in the PC group compared to NC, P, SS, and SP. In the NC and P groups, there were no significant differences in mRNA expression, except that IFN-γ mRNA level upregulated in P. We concluded that selenium-enriched probiotic supplementation has profound effects in enhancing the growth performance, antioxidant capacities, mRNA gene expression, reduced of oocysts shedding, and the cecal lesion scores of chickens and do provide protection against E. tenella.
Collapse
Affiliation(s)
- Berhe Mekonnen Mengistu
- College of Veterinary Sciences, Mekelle University, P.O.B: 2084, Mekelle, Tigrai, Ethiopia.
- College of Veterinary Medicine, Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, China.
| | - Habtom Kiros Bitsue
- College of Veterinary Sciences, Mekelle University, P.O.B: 2084, Mekelle, Tigrai, Ethiopia
| | - Kehe Huang
- College of Veterinary Medicine, Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Yue Y, He Z, Zhou Y, Ross RP, Stanton C, Zhao J, Zhang H, Yang B, Chen W. Lactobacillus plantarum relieves diarrhea caused by enterotoxin-producing Escherichia coli through inflammation modulation and gut microbiota regulation. Food Funct 2020; 11:10362-10374. [PMID: 33220669 DOI: 10.1039/d0fo02670k] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lactobacillus plantarum can relieve diarrhea caused by enterotoxigenic Escherichia coli (ETEC), but the remission mechanism has not been fully explained. This study compares the ability of four Lactobacillus plantarum strains from different niches to alleviate diarrhea caused by ETEC infection and explores their potential remission manner. The results showed that Lactobacillus plantarum CCFM1143 had the most obvious protective effect on diarrhea caused by ETEC. FGDLZ1M5, FCQNA30M6 and CCFM1143 reduced tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin (IL)-6 as well as jejunal injury. Moreover, FCQNA30M6 and CCFM1143 increased the aquaporin AQP3, and CCFM1143 increased interleukin (IL)-10 and decreased heat-stable enterotoxin (ST), while FGDLZ1M5 reduced the toll-like receptor (TLR4). The gut microbiota analysis demonstrated that ETEC increased Proteus and Pseudomonas and reduced Bifidobacterium, Odoribacter, Allobaculum and Blautia. A supplement of Lactobacillus plantarum could reconstruct the unbalanced gut microbiota. Furthermore, CCFM1143 significantly increased butyric acid, acetic acid, propionic acid and isobutyric acid, while FGDLZ1M5 only increased butyric acid. In summary, Lactobacillus plantarum alleviated ETEC-induced diarrhea by regulating the inflammatory cytokines, rebalancing the gut microbiota and modulating short-chain fatty acids (SCFAs) generation, which could provide the foundation and support for subsequent clinical trials and probiotic products.
Collapse
Affiliation(s)
- Yue Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rybarczyk A, Bogusławska-Wąs E, Łupkowska A. Effect of EM® probiotic on gut microbiota, growth performance, carcass and meat quality of pigs. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Lo Verso L, Matte JJ, Lapointe J, Talbot G, Bissonnette N, Blais M, Guay F, Lessard M. Impact of birth weight and neonatal nutritional interventions with micronutrients and bovine colostrum on the development of piglet immune response during the peri-weaning period. Vet Immunol Immunopathol 2020; 226:110072. [PMID: 32540688 DOI: 10.1016/j.vetimm.2020.110072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/19/2019] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
Immune system development of piglets is influenced by birth weight and colostrum and milk intake. Moreover, the dam transfer to piglets of vitamins A and D and copper, which play important role in immunity, is limited during lactation. In this study, we evaluated the potential of maternal and neonatal supplementations with vitamins A and D and copper, with or without neonatal supplementation of bovine colostrum (BC), to modulate the immune system development of low birth weight (LBW) and high birth weight (HBW) piglets during the peri-weaning period. Litters from 23 control sows (CONT) were assigned to one of the following treatments: 1) control (C); 2) oral administration at 2 and 8 days (d) of age of retinol-acetate, 25-hydroxyvitamin D and CuSO4 and exposure to UVB light for 15 min every second day from d 5 to d 21 (ADCu); 3) oral administration of dehydrated BC (4 g/d) from d 5 to d 10 (BC); 4) ADCu + BC. This experimental design was repeated with 24 sows fed extra daily supplements of 25-hydroxyvitamin D (4,000 IU), β-carotene (30,000 IU) and Cu-yeast (equivalent 45 mg of Cu) from 90 d of gestation until weaning at d 21 (SUPPL). Within each litter, 2 LBW and 2 HBW piglets were euthanized at d 16 and d 23 in order to characterize leukocyte subsets in mesenteric lymph nodes (MLN) and blood by flow cytometry, and to measure gene expression in the MLN and jejunal mucosa by qPCR. At d 16, results revealed that the percentages of γδ and cytotoxic T lymphocytes were significantly reduced in LBW compared to HBW piglets. The jejunal expression of interleukin (IL) 22 was also up-regulated, along with MLN expression of C-C Motif Chemokine Ligand 23, bone morphogenetic protein 2 and secreted phosphoprotein 1 (SPP1), whereas jejunal expression of tumor necrosis factor α was decreased in LBW piglets. At d 23, LBW piglets showed lower amounts of γδ T lymphocytes, higher percentages of CD3- and CD3-CD8α+CD16+ leukocytes (which include Natural killer cells) and lower jejunal expression of IL18. Furthermore, supplementation with BC increased the blood percentage of CD3-CD16+ leukocytes and reduced jejunal IL5 and MLN IL15 expression whereas supplementation with ADCu + BC increased jejunal TNF superfamily 13B and MLN SPP1 expression. Our results suggest that immune system development after birth differed between LBW and HBW piglets and that early dietary supplementation with BC and ADCu has the potential to modulate development of immune functions.
Collapse
Affiliation(s)
- Luca Lo Verso
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3 Canada; Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada.
| | - J Jacques Matte
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3 Canada
| | - Jérôme Lapointe
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3 Canada
| | - Guylaine Talbot
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3 Canada; Centre de recherche en infectiologie porcine et avicole (CRIPA-FQRNT), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, J2S 2M2 Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3 Canada
| | - Mylène Blais
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3 Canada; Centre de recherche en infectiologie porcine et avicole (CRIPA-FQRNT), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, J2S 2M2 Canada
| | - Frédéric Guay
- Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6 Canada; Centre de recherche en infectiologie porcine et avicole (CRIPA-FQRNT), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, J2S 2M2 Canada
| | - Martin Lessard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3 Canada; Centre de recherche en infectiologie porcine et avicole (CRIPA-FQRNT), Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, QC, J2S 2M2 Canada
| |
Collapse
|
27
|
Saccharomyces boulardii: What Makes It Tick as Successful Probiotic? J Fungi (Basel) 2020; 6:jof6020078. [PMID: 32512834 PMCID: PMC7344949 DOI: 10.3390/jof6020078] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Saccharomyces boulardii is a probiotic yeast often used for the treatment of GI tract disorders such as diarrhea symptoms. It is genetically close to the model yeast Saccharomyces cerevisiae and its classification as a distinct species or a S. cerevisiae variant has long been discussed. Here, we review the main genetic divergencies between S. boulardii and S. cerevisiae as a strategy to uncover the ability to adapt to the host physiological conditions by the probiotic. S. boulardii does possess discernible phenotypic traits and physiological properties that underlie its success as probiotic, such as optimal growth temperature, resistance to the gastric environment and viability at low pH. Its probiotic activity has been elucidated as a conjunction of multiple pathways, ranging from improvement of gut barrier function, pathogen competitive exclusion, production of antimicrobial peptides, immune modulation, and trophic effects. This review summarizes the participation of S. boulardii in these mechanisms and the multifactorial nature by which this yeast modulates the host microbiome and intestinal function.
Collapse
|
28
|
Jiménez MJ, Berrios R, Stelzhammer S, Bracarense APFRL. Ingestion of organic acids and cinnamaldehyde improves tissue homeostasis of piglets exposed to enterotoxic Escherichia coli (ETEC). J Anim Sci 2020; 98:5707112. [PMID: 31943046 DOI: 10.1093/jas/skaa012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/13/2020] [Indexed: 12/28/2022] Open
Abstract
Organic acids (OA) and phytogenic compounds have been used in pig feeding as alternatives to antibiotic growth promoters. However, few studies have evaluated the systemic effect of the combination of these additives. The aim of this study was to assess the impact of an organic acid-based feed additive (OAFA), containing a blend of OA and cinnamaldehyde, on the tissue integrity of bacterially challenged piglets. Thirty weaned piglets 21 d old were used in a 19-d trial. Pigs received a standard diet during the first 7 d and afterward were allotted to five treatments. Dietary treatments were: Control (basal diet), Escherichia coli (basal diet and challenge with E. coli), colistin (basal diet + 200 mg colistin/kg feed + challenge with E. coli), OAFA1 (basal diet + 1 kg OAFA/ton feed + challenge with E. coli), and OAFA2 (basal diet + 2 kg OAFA/ton feed + challenge with E. coli). Seven days after the beginning of the treatment, the animals were challenged with an enterotoxic strain of E. coli (K88) for pigs. Five days after the challenge, all animals were euthanized for tissue sampling for histological and oxidative stress (intestine and liver) analysis. The reduced glutathione (GSH), ferric-reducing ability potential (FRAP), and free-radical scavenging ability (ABTS) assays were used to evaluate the intestinal antioxidant defense. Lipid peroxidation and superoxide anion production were evaluated through the levels of thiobarbituric acid-reactive substances (TBARS) and nitroblue tetrazolium (NBT) reduction assay, respectively. Animals fed the OAFA (1 and 2) diets had a decrease (P < 0.05) on histological changes in the intestine, liver, mesenteric lymph nodes, and spleen. Greater villus height (VH) and a higher ratio of VH to crypt depth (CD) were observed in animals of the OAFA2 group compared with the control and E. coli groups. The colistin and OAFA groups decreased (P < 0.05) the number of inflammatory cells in intestinal lamina propria. OAFA2 group increased (P < 0.05) intestinal cell proliferation. Colistin and OAFA2 supplementation induced a decrease (P < 0.05) in the levels of TBARS in both the intestine and liver compared with the E. coli group. In addition, an increase (P < 0.05) in GSH and FRAP ileal levels was observed in the OAFA2 group compared with E. coli group. These results show that the supplementation with OAFA in the diet of weaned piglets, especially at a dose of 2 kg/ton (OAFA2) protected tissues against enterotoxigenic Escherichia coli (ETEC) damage.
Collapse
Affiliation(s)
- Milton J Jiménez
- Department of Veterinary Medicine, Laboratory of Animal Pathology, Universidade Estadual de Londrina, Campus Universitário, Londrina, Brazil
| | | | | | - Ana Paula F R L Bracarense
- Department of Veterinary Medicine, Laboratory of Animal Pathology, Universidade Estadual de Londrina, Campus Universitário, Londrina, Brazil
| |
Collapse
|
29
|
Morales-Partera Á, Cardoso Toset F, Luque I, Maldonado A, Tarradas C, Gómez-Laguna J. Supplementing feed with Pediococcus acidilactici reduces Campylobacter load in finishing pigs. Vet Rec 2020; 187:e45. [PMID: 32327553 DOI: 10.1136/vr.105591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 03/14/2020] [Accepted: 03/29/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Pigs are asymptomatic carriers of foodborne bacteria, such as Salmonella enterica and Campylobacter species, which can pose a risk to human health. New strategies to control bacteria burden before reaching the slaughterhouse are necessary. This study evaluated the effect of Pediococcus acidilactici on performance parameters and on the burden of foodborne pathogens, that have subsequent implications on food quality and safety, in free-range finishing pigs at the slaughterhouse. METHODS Pigs were randomly allocated and blocked by weight into control group (control diet) and treated group (control diet supplemented with P acidilactici) 31 days before slaughter. Weight and average daily gain were recorded and changes in faecal microbiota were determined at the beginning and at the end of the study. RESULTS No changes were observed in performance parameters. No statistically significant differences were observed when comparing between treated and control animals at the beginning or at the end of the study. However, a significant decrease was detected in the counts of Campylobacter species in treated animals between day 0 and day 31 (4.86-3.40 log colony-forming units/g; P=0.002). CONCLUSION This study indicates that supplementation with P acidilactici represents a useful approach to control Campylobacter species load in free-range finishing pigs before slaughter.
Collapse
Affiliation(s)
- Ángela Morales-Partera
- Department of Animal Health, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', Cordoba, Spain.,Department of R&D, CICAP - Food Research Centre, Pozoblanco, Córdoba, Spain
| | | | - Inmaculada Luque
- Department of Animal Health, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', Cordoba, Spain
| | - Alfonso Maldonado
- Department of Animal Health, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', Cordoba, Spain
| | - Carmen Tarradas
- Department of Animal Health, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', Cordoba, Spain
| | - Jaime Gómez-Laguna
- Department of R&D, CICAP - Food Research Centre, Pozoblanco, Córdoba, Spain .,Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', Cordoba, Spain
| |
Collapse
|
30
|
Saleh AA, Paray BA, Dawood MA. Olive Cake Meal and Bacillus licheniformis Impacted the Growth Performance, Muscle Fatty Acid Content, and Health Status of Broiler Chickens. Animals (Basel) 2020; 10:E695. [PMID: 32316269 PMCID: PMC7222747 DOI: 10.3390/ani10040695] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/04/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Olive cake meal (OCM) is characterized by its high nutritional value and is used as an alternative source of protein and fats in poultry diets. However, due to the high percentage of fiber in OCM, beneficial bacteria cells are used to improve the digestion rates. Therefore, the influence of OCM and Bacillus licheniformis (BL) on the growth, nutrient utilization, blood chemistry, and muscle fatty acid profile of broilers was exclusively examined in this study. Three hundred and sixty birds were randomly divided into six experimental groups (6 replicates/10 birds each): Control, OCM (2%), OCM (4%), BL, OCM (2%)/BL, and OCM (4%)/BL groups. Although feed intake was not meaningfully influenced by dietary treatments, weight gain was enhanced and feed conversion ratio was reduced (p < 0.05). The abdominal fat was lowered in broilers fed OCM (2%), OCM (4%), OCM (2%)/BL, and OCM (4%)/BL diets without a difference to those fed BL only (p < 0.05). Interestingly, blood total protein, albumin, Newcastle disease (ND) titer, and high-density lipoprotein (HDL) cholesterol were significantly increased, while total cholesterol was decreased by the mixture of OCM and BL (p < 0.05). Muscle oleic and linoleic acids, as well as vitamin E, increased significantly in broilers fed both OCM (4%) and BL, while linolenic acid increased in all groups except those fed BL and control diets (p < 0.05). Liver malondialdehyde (MDA) was decreased by feeding BL or both OCM at 2% or 4% and BL (p < 0.05). In conclusion, the inclusion of BL to OCM diets resulted in improved fat utilization and, accordingly, enhanced growth, nutrient utilization, and antioxidative response in broilers. Based on the obtained results, it is recommended to use BL to improve the nutritional value of OCM and to increase the feed utilization of OCM by broilers.
Collapse
Affiliation(s)
- Ahmed A. Saleh
- Department of Poultry Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mahmoud A.O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
31
|
Mogilnicka I, Ufnal M. Gut Mycobiota and Fungal Metabolites in Human Homeostasis. Curr Drug Targets 2020; 20:232-240. [PMID: 30047327 DOI: 10.2174/1389450119666180724125020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/13/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Accumulating evidence suggests that microbiota play an important role in host's homeostasis. Thus far, researchers have mostly focused on the role of bacterial microbiota. However, human gut is a habitat for several fungal species, which produce numerous metabolites. Furthermore, various types of food and beverages are rich in a wide spectrum of fungi and their metabolites. METHODS We searched PUBMED and Google Scholar databases to identify clinical and pre-clinical studies on fungal metabolites, composition of human mycobiota and fungal dysbiosis. RESULTS Fungal metabolites may serve as signaling molecules and exert significant biological effects including trophic, anti-inflammatory or antibacterial actions. Finally, research suggests an association between shifts in gut fungi composition and human health. Changes in mycobiota composition have been found in obesity, hepatitis and inflammatory bowel diseases. CONCLUSION The influence of mycobiota and dietary fungi on homeostasis in mammals suggests a pharmacotherapeutic potential of modulating the mycobiota which may include treatment with probiotics and fecal transplantation. Furthermore, antibacterial action of fungi-derived molecules may be considered as a substitution for currently used antibacterial agents and preservatives in food industry.
Collapse
Affiliation(s)
- Izabella Mogilnicka
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of the Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
32
|
Liu H, Wang S, Zhang D, Wang J, Zhang W, Wang Y, Ji H. Effects of dietary supplementation with Pediococcus acidilactici ZPA017 on reproductive performance, fecal microbial flora and serum indices in sows during late gestation and lactation. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:120-126. [PMID: 36379222 PMCID: PMC6946981 DOI: 10.5713/ajas.18.0764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/13/2019] [Accepted: 04/20/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVE This study was conducted to determine the effects of dietary supplementation with Pediococcus acidilactici (P. acidilactici) ZPA017 as a probiotic on reproductive performance, fecal microbial flora and serum indices in sows during late gestation and lactation. METHODS A total of 94 sows (Large White×Yorkshire, average 4.50 parities) were randomly allotted to two dietary treatments: control diet and the diet supplemented with P. acidilactici ZPA017 (2.40×109 colony-forming unit/kg of diets). The study started at d 90 of gestation and conducted until d 28 of lactation. RESULTS Compared to sows fed the control diet, supplementation of P. acidilactici ZPA017 increased the number of weaning piglets, weaning weight of litter and piglets, survival rate of piglets at weaning (p<0.05), and decreased diarrhea rate of piglets in lactation (p<0.05). Dietary P. acidilactici ZPA017 increased fecal Lactobacillus populations (p = 0.030) and reduced fecal Escherichia coli and Staphylococcus aureus populations (p<0.05) of sows at weaning. Moreover, the supplementation of P. acidilactici ZPA017 increased serum concentrations of immunoglobulin G, immunoglobulin A and total protein (p<0.05), while decreased serum haptoglobin concentration and alanine aminotransferase activity (p<0.05) of sows at weaning. CONCLUSION Administration of P. acidilactici ZPA017 in diets during late gestation and lactation had positive effects on the reproductive performance, intestinal microflora balance and immunity of sows.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Dongyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Yamin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097,
China
| |
Collapse
|
33
|
Konkol D, Szmigiel I, Domżał-Kędzia M, Kułażyński M, Krasowska A, Opaliński S, Korczyński M, Łukaszewicz M. Biotransformation of rapeseed meal leading to production of polymers, biosurfactants, and fodder. Bioorg Chem 2019; 93:102865. [DOI: 10.1016/j.bioorg.2019.03.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/23/2022]
|
34
|
Gaboardi GC, Alves D, Gil de Los Santos D, Xavier E, Nunes AP, Finger P, Griep E, Roll V, Oliveira P, Silva A, Moreira Â, Conceição F. Influence of Pichia pastoris X-33 produced in industrial residues on productive performance, egg quality, immunity, and intestinal morphometry in quails. Sci Rep 2019; 9:15372. [PMID: 31653947 PMCID: PMC6814787 DOI: 10.1038/s41598-019-51908-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
This study was conducted in quails to evaluate the probiotic potential of Pichia pastoris X-33, cultivated in parboiled rice effluent supplemented with biodiesel glycerol or in standard medium Yeast Extract–Peptone–Dextrose (YPD). Forty-days-old female quails were divided into three treatments: T1 (Control) received a basal diet without P. pastoris; T2 (Pichia Effluent) received a basal diet supplemented with P. pastoris grown in parboiled rice effluent and biodiesel glycerol, and T3 (Pichia YPD) received a basal diet supplemented with P. pastoris produced in YPD. The birds were vaccinated against Newcastle Disease (NDV), Avian Infectious Bronchitis (IBV), and Gumboro Disease on days 1 and 28. The following parameters were analyzed: performance, egg quality, humoral immune response to the vaccines, organ weight, and intestinal morphometry. P. pastoris grown in YPD increased egg weight (p < 0.05). The lowest liver weight on day 14 was obtained in Pichia Effluent, whereas both P. pastoris supplemented groups had the lowest duodenum weights on day 14. Besides that, livers and duodenums presented no morphological changes in any of the three treatments. Supplementation of P. pastoris modulated the immune system of the birds, increasing anti-IBV, anti-NDV, and anti-Gumboro antibodies levels compared to the Control (p < 0.05). In conclusion, quail’s immune response was improved by Pichia pastoris X-33, either it was grown in YPD or industrial residues, and the egg weight increased with Pichia pastoris X-33 grown in YPD, thereby demonstrating to be a promising probiotic for poultry.
Collapse
Affiliation(s)
- Giana Carla Gaboardi
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil.
| | - Débora Alves
- Faculdade de Agronomia, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | - Eduardo Xavier
- Faculdade de Agronomia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Ana Paula Nunes
- Faculdade de Medicina, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Paula Finger
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Emili Griep
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Victor Roll
- Faculdade de Agronomia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Patrícia Oliveira
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Arthur Silva
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Ângela Moreira
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Fabricio Conceição
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
35
|
Mohammad Malyar R, Li H, Enayatullah H, Hou L, Ahmad Farid R, Liu D, Akhter Bhat J, Miao J, Gan F, Huang K, Chen X. Zinc-enriched probiotics enhanced growth performance, antioxidant status, immune function, gene expression, and morphological characteristics of Wistar rats raised under high ambient temperature. 3 Biotech 2019; 9:291. [PMID: 31321197 PMCID: PMC6606684 DOI: 10.1007/s13205-019-1819-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/18/2019] [Indexed: 01/18/2023] Open
Abstract
The present study was conducted to evaluate the effects of zinc-enriched probiotics (ZnP) on growth performance, antioxidant status, immune function, related gene expression, and morphological characteristics of Wistar rats raised under high heat stress condition during summer. 36, 6-week-old male Wistar rats were randomly divided into three groups; fed with basal diet (control), basal diet with probiotics (P), and basal diet with zinc-enriched probiotics supplementation (ZnP, 100 mg/L), for 40 consecutive days. Blood samples were collected through intracardiac method on the last day of experiment and tissues were collected from liver, heart, and kidneys. The results revealed that both P and ZnP significantly (P < 0.05) enhanced growth performance. However, ZnP remarkably increased glutathione content, glutathione peroxidase, and superoxide dismutase activities but reduced malondialdehyde level in serum of the Wistar rats. The concentration of IL-2, IL-6, and IFN-γ was significantly (P < 0.05) increased with treatments of P and ZnP compared to control group while IL-10 was significantly (P < 0.05) decreased. Additionally, the expression of SOD1, SOD2, MT1, and MT2 genes was significantly (P < 0.05) up-regulated with the treatment of ZnP, but Hsp90 and Hsp70 heat shock genes were significantly (P < 0.05) down-regulated with the treatment of P and ZnP, respectively. Hematoxylin and Eosin staining showed that both P and ZnP supplementation treatments induced changes in villus height and intestinal wall thickness. In conclusion, zinc-enriched probiotics supplementation can improve the growth performance of Wistar rats under high ambient temperature through enhancing antioxidant status, immune function, related genes expression, and intestinal morphological characteristics. This product may serves as a potential nutritive supplement for Wistar rats under high heat stress conditions.
Collapse
Affiliation(s)
- Rahmani Mohammad Malyar
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
- Faculty of Veterinary Science, Nangarhar University, Jalalabad, Nangarhar Province Afghanistan
| | - Hu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hamdard Enayatullah
- College of Animal Science and Technology, Agricultural University, Nanjing, 210095 China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Rawan Ahmad Farid
- Faculty of Veterinary Science, Nangarhar University, Jalalabad, Nangarhar Province Afghanistan
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Javaid Akhter Bhat
- National Centre for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinfeng Miao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
36
|
Krüger W, Vielreicher S, Kapitan M, Jacobsen ID, Niemiec MJ. Fungal-Bacterial Interactions in Health and Disease. Pathogens 2019; 8:E70. [PMID: 31117285 PMCID: PMC6630686 DOI: 10.3390/pathogens8020070] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Fungi and bacteria encounter each other in various niches of the human body. There, they interact directly with one another or indirectly via the host response. In both cases, interactions can affect host health and disease. In the present review, we summarized current knowledge on fungal-bacterial interactions during their commensal and pathogenic lifestyle. We focus on distinct mucosal niches: the oral cavity, lung, gut, and vagina. In addition, we describe interactions during bloodstream and wound infections and the possible consequences for the human host.
Collapse
Affiliation(s)
- Wibke Krüger
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Sarah Vielreicher
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
- Institute of Microbiology, Friedrich Schiller University, Jena 07743, Germany.
| | - Maria Joanna Niemiec
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| |
Collapse
|
37
|
Barba-Vidal E, Martín-Orúe SM, Castillejos L. Practical aspects of the use of probiotics in pig production: A review. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Oh J, Harper M, Melgar A, Compart DMP, Hristov AN. Effects of Saccharomyces cerevisiae-based direct-fed microbial and exogenous enzyme products on enteric methane emission and productivity in lactating dairy cows. J Dairy Sci 2019; 102:6065-6075. [PMID: 31030921 DOI: 10.3168/jds.2018-15753] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/11/2019] [Indexed: 01/06/2023]
Abstract
The objective of this experiment was to investigate the effects of a Saccharomyces cerevisiae-based direct-fed microbial product (SDM) and an exogenous enzyme product (ENZ) on enteric methane emission, milk yield and composition, total-tract digestibility of nutrients, ruminal fermentation, and nitrogen excretion and secretion in lactating dairy cows. Eighteen Holstein cows were used in a 3 × 3 Latin square design experiment with three 28-d periods. Treatments were (1) control (no additive), (2) 28 g of SDM/d per cow, or (3) 10 g of ENZ/d per cow. Treatments were top-dressed at the time of feeding. The basal diet consisted of (dry matter basis) 60% forage and 40% concentrates and contained 16.5% crude protein and 32.0% neutral detergent fiber. Treatments had no effect on enteric methane production, yield (methane per kg of dry matter intake, DMI), or intensity (methane per kg of energy-corrected milk yield). Carbon dioxide production was similar among treatments. Compared with control, SDM increased milk yield by 2 kg/d without affecting DMI or feed efficiency. Supplementation of the diet with ENZ did not affect DMI, milk yield, or feed efficiency. Concentrations and yields of milk fat, true protein, and lactose, and energy-corrected milk yield were not different among treatments. Neither SDM nor ENZ had an effect on total-tract digestibility of nutrients or nitrogen excretion and secretion. Concentration of total volatile fatty acids (VFA) in ruminal fluid was increased by both SDM and ENZ, and rumen pH was decreased by SDM compared with the control. At levels similar to the control DMI, the increased concentration of VFA in ruminal fluid of cows receiving SDM suggests an increased postruminal supply of energy and may partly explain the increased milk yield with that treatment. However, it is important to note that milk composition and energy-corrected milk yield were not affected by treatment.
Collapse
Affiliation(s)
- J Oh
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - M Harper
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | | | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802.
| |
Collapse
|
39
|
Celi P, Verlhac V, Pérez Calvo E, Schmeisser J, Kluenter AM. Biomarkers of gastrointestinal functionality in animal nutrition and health. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2018.07.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Lo Verso L, Lessard M, Talbot G, Fernandez B, Fliss I. Isolation and Selection of Potential Probiotic Bacteria from the Pig Gastrointestinal Tract. Probiotics Antimicrob Proteins 2019; 10:299-312. [PMID: 28744832 DOI: 10.1007/s12602-017-9309-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present study aimed to isolate bacterial strains from the pig gastrointestinal tract that have antagonistic activity against potential pathogens and are able to produce antimicrobial compounds. That ability would be a first requirement for the strains' possible use as probiotics. Samples obtained from pig intestinal mucosa and contents were screened for the presence of antagonistic activity against pathogenic indicator strains of Escherichia coli, Salmonella, and Listeria by means of the double-layer technique. Samples displaying the largest inhibitory halos were further studied for the production of inhibitory substances using the agar diffusion and microtitration methods. The three most promising isolates were identified by sequencing of the 16S rRNA gene and showed highest affiliation to Lactobacillus salivarius. Optimal growth conditions and bacteriocin production were recorded in de Man, Rogosa, and Sharpe broth under anaerobic conditions at 37 °C. The antimicrobial substances were found to be sensitive to proteolytic enzymes but showed good stability at pH values below 6. Our findings suggest that these three intestinal strains are able to produce antimicrobial substances capable of inhibiting the growth of potential enteric pathogens and might have potential as probiotic feed additives for the prevention of gastrointestinal diseases.
Collapse
Affiliation(s)
- Luca Lo Verso
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec, J1M 0C8, Canada.
| | - Martin Lessard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec, J1M 0C8, Canada
| | - Guylaine Talbot
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, Quebec, J1M 0C8, Canada
| | - Benoit Fernandez
- Institute of Nutrition and Functional Foods, Université Laval, Quebec City, Quebec, G1K 7P4, Canada
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, Quebec City, Quebec, G1K 7P4, Canada
| |
Collapse
|
41
|
Lessard M, Blais M, Beaudoin F, Deschene K, Verso LL, Bissonnette N, Lauzon K, Guay F. Piglet weight gain during the first two weeks of lactation influences the immune system development. Vet Immunol Immunopathol 2018; 206:25-34. [PMID: 30502909 DOI: 10.1016/j.vetimm.2018.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 02/07/2023]
Abstract
The aim of this study was to investigate the effect of the piglet growth during the first week of life on ileal expression of genes and on development of the immune system. Eight litters adjusted to 12 piglets were used. Within each litter, the piglet that showed the lowest weight gain (LWG; n = 8) and the one that showed the highest weight gain (HWG; n = 8) in their first week of life were enrolled. Peripheral blood mononuclear cells (PBMC) were isolated on days 8 and 16 to characterize cellular population profiles and to assess ex-vivo secretion of interleukin-10 (IL-10), IL-6 and tumor necrosis factor-α (TNF-α). On day 16, piglets were euthanized and ileum samples were collected to extract RNA for microarray analysis and gene expression by qPCR. As expected, growth performance of LWG piglet was impaired compared to HWG piglets (P < 0.05). From day 8 to 16, the percentage of CD21+ B cells significantly increased in blood of heavier HWG piglets while the percentage remained constant in smaller LWG piglets (P weight x day = 0.01). For the CD4+CD8α- Th cells, a marked increase was observed in LWG piglets from 8 to 16 days of age (P = 0.002) whereas no significant change occurred in HWG piglets. Percentages of CD14+ monocytes and other MHC-II+ cells were respectively higher and lower on day 8 compared to day 16 for both groups of piglets (P < 0.01). On day 8, LPS-activated PBMC from LWG piglets produced less IL-6 compared to HWG piglets (P < 0.05). Microarray analysis of gene expression in piglets' ileum tissue indicated that several genes involed in defense response and response to oxidative stress were modulated differently in LWG compared to HWG. Gene analysis by Q-PCR confirmed microarray results and revealed that IL-10, SOD1, NOS2, NOD2, TLR4, TLR9, CD40 and CD74 expressions were significantly decreased (P < 0.05) in LWG in comparison to HWG piglets, while MYD88 and NFkBiA showed a tendency to decrease (0.05 ≤ P < 0.07). These results suggest that birth weight and milk intake affect the growth performances and the development of immunity by modulating the expression of genes associated with immunity and oxidative stress in piglets' intestinal tissue, and by affecting the leukocyte populations involved in innate and cell-mediated immunity in nursing piglets. Therefore, impaired development of immune system in LWG piglets might have an impact on their resistance to infections later in life.
Collapse
Affiliation(s)
- Martin Lessard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada.
| | - Mylène Blais
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Frédéric Beaudoin
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Karine Deschene
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Luca Lo Verso
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada; Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Karoline Lauzon
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C3, Canada
| | - Frédéric Guay
- Faculté des sciences de l'agriculture et de l'alimentation, Département des sciences animales, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
42
|
Abstract
Intensive farming may involve the use of diets, environments or management practices that impose physiological and psychological stressors on the animals. In particular, early weaning is nowadays a common practice to increase the productive yield of pig farms. Still, it is considered one of the most critical periods in swine production, where piglet performance can be seriously affected and where they are predisposed to the overgrowth of opportunistic pathogens. Pig producers nowadays face the challenge to overcome this situation in a context of increasing restrictions on the use of antibiotics in animal production. Great efforts are being made to find strategies to help piglets overcome the challenges of early weaning. Among them, a nutritional strategy that has received increasing attention in the last few years is the use of probiotics. It has been extensively documented that probiotics can reduce digestive disorders and improve productive parameters. Still, research in probiotics so far has also been characterized as being inconsistent and with low reproducibility from farm to farm. Scientific literature related to probiotic effects against gastrointestinal pathogens will be critically examined in this review. Moreover, the actual practical approach when using probiotics in these animals, and potential strategies to increase consistency in probiotic effects, will be discussed. Thus, considering the boost in probiotic research observed in recent years, this paper aims to provide a much-needed, in-depth review of the scientific data published to-date. Furthermore, it aims to be useful to swine nutritionists, researchers and the additive industry to critically consider their approach when developing or using probiotic strategies in weaning piglets.
Collapse
|
43
|
McAllister TA, Wang Y, Diarra MS, Alexander T, Stanford K. Challenges of a one-health approach to the development of alternatives to antibiotics. Anim Front 2018; 8:10-20. [PMID: 32002214 PMCID: PMC6952028 DOI: 10.1093/af/vfy002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, Canada
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, West Guelph, ON, Canada
| | - Trevor Alexander
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge Alberta, Canada
| | - Kim Stanford
- Alberta Agriculture and Forestry, Lethbrisdge, Alberta, Canada
| |
Collapse
|
44
|
Fomenky BE, Chiquette J, Bissonnette N, Talbot G, Chouinard PY, Ibeagha-Awemu EM. Impact of Saccharomyces cerevisiae boulardii CNCMI-1079 and Lactobacillus acidophilus BT1386 on total lactobacilli population in the gastrointestinal tract and colon histomorphology of Holstein dairy calves. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Dubreuil JD. Enterotoxigenic Escherichia coli and probiotics in swine: what the bleep do we know? BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2017; 36:75-90. [PMID: 28785529 PMCID: PMC5510153 DOI: 10.12938/bmfh.16-030] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/18/2017] [Indexed: 12/28/2022]
Abstract
The concept of certain microorganisms conferring direct benefits to the host relates to the term "probiotic". Probiotics are microorganisms, bacteria, or yeast that when administered orally in sufficient quantity can counteract the effect of pathogenic microorganisms. The gastrointestinal (GI) tract is the site where probiotics are believed to play the most important role. The proposed effects of probiotics include antagonism of pathogens, interference with adherence, competition for nutrients, enterotoxin inactivation, modulation of the immune response, and strengthening of the intestinal barrier. From birth to postweaning, piglets are very sensitive to gut colonisation by pathogens. Enterotoxigenic Escherichia coli represents one of the most common agents of swine diarrhoea. The enterotoxins produced by this E. coli virotype are responsible for the loss of electrolytes and water observed following infection. This review addresses more specifically the studies done during the last 10 years deciphering the molecular mechanisms at play between host cell and probiotic interactions in the swine GI tract.
Collapse
Affiliation(s)
- Jean Daniel Dubreuil
- Department of Pathology and Microbiology, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 7C6, Canada
| |
Collapse
|
46
|
Bissonnette N, Jiang X, Matte J, Guay F, Talbot G, Bontempo V, Gong J, Wang Q, Lessard M. Effect of a post-weaning diet supplemented with functional feed additives on ileal transcriptome activity and serum cytokines in piglets challenged with lipopolysaccharide. Vet Immunol Immunopathol 2016; 182:136-149. [DOI: 10.1016/j.vetimm.2016.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 09/26/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
|
47
|
Stier H, Bischoff SC. Influence of Saccharomyces boulardii CNCM I-745on the gut-associated immune system. Clin Exp Gastroenterol 2016; 9:269-279. [PMID: 27695355 PMCID: PMC5027949 DOI: 10.2147/ceg.s111003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The probiotic Saccharomyces boulardii CNCM I-745 (also known as Saccharomyces cerevisiae HANSEN CBS 5926; in the following S. boulardii) has proven its effectiveness in preventive and therapeutic treatment of many gastrointestinal diseases, especially diseases associated with acute diarrhea. In particular, antibiotic-associated diarrhea, Clostridium difficile-associated diarrhea, traveller’s diarrhea, as well as acute diarrhea due to common viral and bacterial infections in children and adults. Aim The aim of this review is to summarize the experimental studies elucidating the molecular and immunological mechanisms by which these clinically proven effects are archived, with an emphasis on the gut-associated immune system. The main focus is laid on anti-inflammatory and immune-modulatory action of S. boulardii involved in bacterial or enterotoxin-mediated diarrhea and inflammation. An attempt is made to differentiate between the effects associated with cellular versus soluble factors and between prophylactic and therapeutic effects. Methods A literature search was performed in PubMed/PubMed Central for the effects of S. boulardii on the gut-associated immune system (focus acute diarrhea). Results and conclusion S. boulardii exhibits its positive effect by the direct effects on pathogens or their toxins as well as by influencing the host’s infection-induced signaling cascades and its innate and adaptive immune system. The combination of these mechanisms results in a reduction of the pathogens’ ability for adhesion or colonization and an attenuation of the overreacting inflammatory immune response. Thereby, the integrity of the intestinal epithelial cell layer is preserved or restored, and the diarrheic leakage of fluids into the intestinal lumen is attenuated.
Collapse
Affiliation(s)
| | - Stephan C Bischoff
- Department of Clinical Nutrition, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
48
|
Jiang XR, Zhang HJ, Wang J, Wu SG, Yue HY, Lü HY, Cui H, Bontempo V, Qi GH. Effect of dried tangerine peel extract supplementation on the growth performance and antioxidant status of broiler chicks. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.1080/1828051x.2016.1222246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Saber A, Alipour B, Faghfoori Z, Yari Khosroushahi A. Cellular and molecular effects of yeast probiotics on cancer. Crit Rev Microbiol 2016; 43:96-115. [PMID: 27561003 DOI: 10.1080/1040841x.2016.1179622] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cancer is one of the main causes of human deaths worldwide. The exact mechanisms of initiation and progression of malignancies are not clear yet, but there is a common agreement about the role of colonic microbiota in the etiology of different cancers. Probiotics have been examined for their anti-cancer effects, and different mechanisms have been suggested about their antitumor functions. Nonpathogenic yeasts, as members of probiotics family, can be effective on gut microbiota dysbiosis. Generally safe yeasts have shown so many beneficial effects on human health. Probiotic yeasts influence physiology, metabolism, and immune homeostasis in the colon and contribute to cancer treatment due to possessing anti-inflammatory, anti-proliferative and anti-cancer properties. This study reviews some of the health-beneficial effects of probiotic yeasts and their biological substances like folic acid and β-glucan on cancer and focuses on the possible cellular and molecular mechanisms of probiotic yeasts such as influencing pathogenic bacteria, inactivation of carcinogenic compounds, especially those derived from food, improvement of intestinal barrier function, modulation of immune responses, antitoxic function, apoptosis, and anti-proliferative effects.
Collapse
Affiliation(s)
- Amir Saber
- a Biotechnology Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee, Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran.,c Department of Biochemistry and Diet Therapy , Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Beitollah Alipour
- c Department of Biochemistry and Diet Therapy , Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran.,d Nutrition Research Center, Faculty of Nutrition, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Zeinab Faghfoori
- e Faculty of Medicine, Semnan University of Medical Sciences , Semnan , Iran
| | - Ahmad Yari Khosroushahi
- f Drug Applied Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran.,g Department of Pharmacognosy , Faculty of Pharmacy, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
50
|
Buntyn JO, Schmidt TB, Nisbet DJ, Callaway TR. The Role of Direct-Fed Microbials in Conventional Livestock Production. Annu Rev Anim Biosci 2015; 4:335-55. [PMID: 26667362 DOI: 10.1146/annurev-animal-022114-111123] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Supplementation of direct-fed microbials (DFM) as a means to improve the health and performance of livestock has generated significant interest over the past 15+ years. A driving force for this increased interest in DFM is to reduce or eliminate the use of low-dose antibiotics in livestock production. This increased attention toward DFM supplementation has generated an extensive body of research. This effort has resulted in conflicting reports. Although there has been considerable variation in the design of these studies, one of the main causes for this lack of consistency may be attributed to the variation in the experimental immune challenge incorporated to evaluate DFM supplementation. Taking into account the experimental immune challenge, there is strong evidence to suggest that DFM supplementation may have an impact on the immune response, overall health, and performance of livestock.
Collapse
Affiliation(s)
- J O Buntyn
- Animal Science Department, University of Nebraska-Lincoln, Lincoln, Nebraska 68583; ,
| | - T B Schmidt
- Animal Science Department, University of Nebraska-Lincoln, Lincoln, Nebraska 68583; ,
| | - D J Nisbet
- Food and Feed Safety Research Unit, South Plains Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, College Station, Texas 77845;
| | - T R Callaway
- Food and Feed Safety Research Unit, South Plains Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, College Station, Texas 77845;
| |
Collapse
|