1
|
Trentalange A, Badaloni C, Porta D, Michelozzi P, Renzi M. Association between air quality and neurodegenerative diseases in River Sacco Valley: A retrospective cohort study in Latium, central Italy. Int J Hyg Environ Health 2025; 267:114578. [PMID: 40245549 DOI: 10.1016/j.ijheh.2025.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/21/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
Research on the relationship between air pollution and neurodegenerative diseases is growing. However, few studies focus on this association in contaminated sites. We investigated the association between long-term air pollution exposure and dementia/Parkinson's disease (PD) incidence in the River Sacco Valley, a contaminated site in central Italy. Through a retrospective cohort study, we enrolled 298,919 40+ years-old residents in 95 municipalities across the study area from 2007 to 2018. Residential exposure to benzene (C6H6), NO2, O3, PM10, PM2.5 and SO2 was estimated through FARM dispersion models with 1-4 km2 resolution. Risks were computed for interquartile range (IQR) increases of each pollutant. Incidence of dementia and PD was determined combining electronic health records. We used Cox proportional hazard regression with age as time axis and sex, socio-economic position (SEP) and municipality of residence as covariates. Study population was formed by 53 % females, 65 % 40-64 years old, 32 % medium-low SEP. Among 40+ years-old individuals, increased risks (HR; 95 % CIs) of dementia resulted from IQR increases of C6H6 (1.15; 1.11-1.18), NO2 (1.17; 1.14-1.21), PM10 (1.08; 1.04-1.11) and PM2.5 (1.10; 1.07-1.13). Increased risks of PD resulted from IQR increases of O3 (1.17; 1.14-1.21) and PM2.5 (1.02; 1.00-1.05). Vascular dementia's risk increases resulted from IQR increases of NO2 and PM2.5. Results for dementia and PD varied based on the pollutant analyzed. Our results concord with previous literature and the biological mechanisms that link air pollution to neurodegeneration. Air pollution might be a risk factor for dementia and PD.
Collapse
Affiliation(s)
| | - Chiara Badaloni
- Department of Epidemiology of Lazio Region Health Service/ASL Rome 1, Rome, Italy
| | - Daniela Porta
- Department of Epidemiology of Lazio Region Health Service/ASL Rome 1, Rome, Italy
| | - Paola Michelozzi
- Department of Epidemiology of Lazio Region Health Service/ASL Rome 1, Rome, Italy
| | - Matteo Renzi
- Department of Epidemiology of Lazio Region Health Service/ASL Rome 1, Rome, Italy
| |
Collapse
|
2
|
Kamara J, Kishinhi S, Manyele A, Saronga H, Bachwenkizi J. Association between ambient particulate matter and respiratory health among schoolchildren in Dar es Salaam city, Tanzania: a cross-sectional study. BMC Public Health 2025; 25:1314. [PMID: 40200277 PMCID: PMC11977915 DOI: 10.1186/s12889-025-22517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Urbanization and industrial activities have significantly contributed to the deterioration of air quality, with ambient particulate matter (PM2.5 and PM10) posing a major public health concern in most cities of developing countries. The impact of these pollutants on respiratory health, particularly that of schoolchildren, has remained inadequately studied. OBJECTIVE This study aimed to determine the level of ambient particulate matter (PM2.5 and PM10) and its association with respiratory symptoms among school children in Dar es Salaam, Tanzania. METHODS We conducted a cross-sectional study targeting schoolchildren aged 9-16 to investigate the impact of air pollution on respiratory health. A sample of 427 children was selected through stratified random sampling, which combined primary and secondary data. Standardized questionnaires and air quality monitoring for PM exposure were used to collect data. Analysis methods included descriptive statistics, and logistic regression to elucidate the association between PM exposure and respiratory symptoms. RESULTS The prevalence of respiratory symptoms among the schoolchildren was notably high, with 35.1% reporting coughing, 26.7% wheezing, 31.4% breathlessness, and 28.1% severe chest illness. Significant associations were found between proximity to pollution sources (OR = 3.4, 95% CI: 2.3-5.0, p < 0.001 for coughing; OR = 7.0, 95% CI: 2.9-17.2, p < 0.001 for wheezing; OR = 3.9, 95% CI: 2.3-6.6, p < 0.001 for breathlessness; OR = 6.4, 95% CI: 3.3-12.0, p < 0.001 for severe chest illness), household smoking (OR = 1.2, 95% CI: 1.02-1.4, p < 0.05 for wheezing; OR = 1.2, 95% CI: 1.01-1.4, p < 0.05 for severe chest illness), and the use of biomass for cooking (OR = 2.4, 95% CI: 1.4-4.0, p < 0.01 for wheezing; OR = 2.3, 95% CI: 1.4-3.8, p < 0.01 for severe chest illness) with the occurrence of respiratory symptoms. Ambient PM levels, particularly PM2.5 and PM10, exceeded WHO limits in several locations. WHO recommends PM2.5 levels below 5 µg/m3 and PM10 below 15 µg/m3, while Dar es Salaam recorded PM2.5 between 35-50 µg/m3 and PM10 between 75-100 µg/m3, significantly higher than recommended. CONCLUSION The study emphasizes the significant impact of air pollution on the respiratory health of schoolchildren in Dar es Salaam and calls for targeted interventions to reduce particulate matter exposure, particularly in high-risk urban areas of Dar es salaam, Tanzania.
Collapse
Affiliation(s)
- Justus Kamara
- School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania.
- Medical Department, Saifee Hospital Zanzibar Ltd, Zanzibar, Tanzania.
| | - Stephen Kishinhi
- Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - Asinta Manyele
- Department of Electronics and Telecommunication Engineering, Dar Es Salaam Institute of Technology, Dar Es Salaam, Tanzania
| | - Happiness Saronga
- Department of Behavioral Sciences, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Jovine Bachwenkizi
- Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| |
Collapse
|
3
|
Beronja B, Karan A, Lukic B, Milosevic I, Dotlic J, Gazibara T. Smoking patterns and outcomes of severe sars-CoV-2 infection: a retrospective cohort study. Monaldi Arch Chest Dis 2025. [PMID: 39834219 DOI: 10.4081/monaldi.2025.2916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 11/11/2024] [Indexed: 01/22/2025] Open
Abstract
The purpose of this study was to analyze the association between the number of cigarettes smoked and the length of smoking with mortality among patients who were hospitalized in the intensive care unit (ICU) due to SARS-CoV-2 infection. This retrospective cohort study was conducted at the General Hospital in Sombor (Serbia). Patients who were hospitalized because of severe SARS-CoV-2 infection between March 2021 and March 2023 were included in this study. Data were retrieved from electronic medical records, including those on smoking status, duration of smoking, and the number of cigarettes smoked per day. Of 307 patients whose medical records were analyzed, 40.7% were current smokers. Current smokers more often required treatment in the ICU, where they also had a higher mortality rate compared to current non-smokers. Longer duration of smoking was independently associated with dying of SARS-CoV-2 infection in the ICU. The Kaplan-Meier survival curve showed that hospitalized patients with SARS-CoV-2 infection who smoked had poorer survival compared to current non-smokers. According to the receiver operating characteristic curve, patients who smoked for more than 40 years had a 73.9% chance of dying from SARS-CoV-2 infection. Current smokers who smoked 22.5 cigarettes per day had a 75.4% chance of dying from SARS-CoV-2 infection in the ICU. Smokers with severe SARS-CoV-2 infection had a higher likelihood of having poor outcomes. Longer duration of smoking was an independent predictor of SARS-CoV-2 mortality. Smoking prevention and smoking cessation are of paramount importance in the prevention of SARS-CoV-2-related mortality.
Collapse
Affiliation(s)
| | | | | | - Ivana Milosevic
- Faculty of Medicine, University of Belgrade; Clinic of Infectious and Tropical Diseases, University Clinical Center of Serbia, Belgrade
| | - Jelena Dotlic
- Faculty of Medicine, University of Belgrade; Clinic of Obstetrics and Gynecology, University Clinical Center of Serbia, Belgrade
| | - Tatjana Gazibara
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade
| |
Collapse
|
4
|
Rodriguez P, López-Landa A, Romo-Parra H, Rubio-Osornio M, Rubio C. Unraveling the ozone impact and oxidative stress on the nervous system. Toxicology 2024; 509:153973. [PMID: 39423999 DOI: 10.1016/j.tox.2024.153973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Ozone (O₃), a potent oxidant, can penetrate the body through breathing, generating reactive oxygen species (ROS) and triggering inflammatory processes. Oxidative stress, an imbalance between the production of ROS and the body's antioxidant capacity, plays a crucial role in the pathophysiology of various neurodegenerative diseases. This phenomenon can negatively impact the Central Nervous System (CNS), inducing structural and functional alterations that contribute to the development of neurological pathologies. This review examines how O₃-induced oxidative stress affects the nervous system by analyzing existing literature on the involved molecular mechanisms and potential antioxidant systems to mitigate its effects. Through a comprehensive review of experimental studies, our objective is to shed light on the interaction between O₃ and the nervous system, as well as its signaling pathways and altered genes, providing a foundation for future research in this field. Several studies have demonstrated that prolonged exposure to O₃ leads to increased expression of reactive oxygen species, causing alterations in the blood-brain barrier and damage to astrocytes and microglia. These effects can lead to an increase in the production of proinflammatory cytokines, neurotoxins, and genes, exacerbating neuronal damage and accelerating the progression of neurodegenerative diseases such as Alzheimer's, Parkinson's, and other neurological disorders. The results of this review suggest that exposure to O₃ may induce oxidative damage to the nervous system, which could have significant implications for public health.
Collapse
Affiliation(s)
- Paola Rodriguez
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico
| | - Alejandro López-Landa
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico; Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Héctor Romo-Parra
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico; Psychology Department, Universidad Iberoamericana, Mexico, Mexico
| | - Moisés Rubio-Osornio
- Neurochemistry Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico
| | - Carmen Rubio
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico.
| |
Collapse
|
5
|
Ejaz Z, Masood F, Nadeem A, Ahmed A, Ahmad E, Chaudhry M. Blurred vision: The ophthalmological effect of smog in Pakistan. DIALOGUES IN HEALTH 2024; 5:100199. [PMID: 39669440 PMCID: PMC11635701 DOI: 10.1016/j.dialog.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
This article discusses the growing burden of smog in Pakistan, tracing its origins to vehicular emissions, industrial pollutants, and agricultural practices. It highlights current national initiatives and advocates for enhanced government interventions to mitigate smog's adverse effects on ocular health. It also emphasizes the need for collective action to safeguard ocular health amid rising smog pollution in Pakistan.
Collapse
Affiliation(s)
- Zoya Ejaz
- Department of Medicine, Allama Iqbal Medical College, Lahore, Punjab, Pakistan
| | - Faizan Masood
- Department of Medicine, Allama Iqbal Medical College, Lahore, Punjab, Pakistan
| | - Arsalan Nadeem
- Department of Medicine, Allama Iqbal Medical College, Lahore, Punjab, Pakistan
| | - Abdullah Ahmed
- Department of Medicine, Allama Iqbal Medical College, Lahore, Punjab, Pakistan
| | - Eeman Ahmad
- FMH College of Medicine and Dentistry, Lahore, Pakistan
| | - Mahrukh Chaudhry
- Department of Medicine, Allama Iqbal Medical College, Lahore, Punjab, Pakistan
| |
Collapse
|
6
|
Sun M, Gao M, Luo M, Wang T, Ruan X, Chen Q, Qin J. Causal relationship between air pollution and chronic obstructive pulmonary disease in European and East Asian populations: a Mendelian randomization study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3944-3959. [PMID: 38563461 DOI: 10.1080/09603123.2024.2334781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Epidemiologic studies have suggested a possible association between air pollution and chronic obstructive pulmonary disease (COPD), but it is controversial and difficult to draw causal inferences. Five methods were adopted to evaluate the causal relationship between air pollution and COPD in European and East Asian populations by using MR Analysis. A statistically significant causal relationship between PM2.5 and COPD was observed in the European population (OR: 2.34; 95% CI: 1.06-5.05; p = 0.033). Statistical significance remained after adjustment for confounding factors (adjusted OR: 2.28; 95% CI: 1.01-5.20; p = 0.048). In East Asian populations, PM2.5 absorbance, a proxy for black carbon, was statistically associated with COPD (OR: 1.41; 95% CI: 1.09-1.81; p = 0.007). We did not adjust for confounders in East Asian populations, as the association was independent of known confounders (e.g. smoking, respiratory tract infections, etc.). In conclusion, increased concentrations of PM2.5 and PM2.5 absorbance were associated with an increased risk of COPD.
Collapse
Affiliation(s)
- Mengting Sun
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ming Gao
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manjun Luo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Tingting Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Xiaorui Ruan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Qian Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| |
Collapse
|
7
|
Fazakas E, Neamtiu IA, Gurzau ES. Health effects of air pollutant mixtures (volatile organic compounds, particulate matter, sulfur and nitrogen oxides) - a review of the literature. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:459-478. [PMID: 36932657 DOI: 10.1515/reveh-2022-0252] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The health risks associated with individual air pollutant exposures have been studied and documented, but in real-life, the population is exposed to a multitude of different substances, designated as mixtures. A body of literature on air pollutants indicated that the next step in air pollution research is investigating pollutant mixtures and their potential impacts on health, as a risk assessment of individual air pollutants may actually underestimate the overall risks. This review aims to synthesize the health effects related to air pollutant mixtures containing selected pollutants such as: volatile organic compounds, particulate matter, sulfur and nitrogen oxides. For this review, the PubMed database was used to search for articles published within the last decade, and we included studies assessing the associations between air pollutant mixtures and health effects. The literature search was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A number of 110 studies were included in the review from which data on pollutant mixtures, health effects, methods used, and primary results were extracted. Our review emphasized that there are a relatively small number of studies addressing the health effects of air pollutants as mixtures and there is a gap in knowledge regarding the health effects associated with these mixtures. Studying the health effects of air pollutant mixtures is challenging due to the complexity of components that mixtures may contain, and the possible interactions these different components may have.
Collapse
Affiliation(s)
- Emese Fazakas
- Health Department, Environmental Health Center, Cluj-Napoca, Romania
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Iulia A Neamtiu
- Health Department, Environmental Health Center, Cluj-Napoca, Romania
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Eugen S Gurzau
- Health Department, Environmental Health Center, Cluj-Napoca, Romania
- Research Center for functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Zhao B, Li B, Guo H, Zhao Q, Zhang X, Zhao H, Xue W, Li W, Duan G, Xu S. The correlation between KRAS and TP53 gene mutations and early growth of pulmonary nodules. J Cardiothorac Surg 2024; 19:376. [PMID: 38926874 PMCID: PMC11200870 DOI: 10.1186/s13019-024-02927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE The purpose of this study is to investigate whether gene mutations can lead to the growth of malignant pulmonary nodules. METHODS Retrospective analysis was conducted on patients with pulmonary nodules at Hebei Provincial People's Hospital, collecting basic clinical information such as gender, age, BMI, and hematological indicators. According to the inclusion and exclusion criteria, 85 patients with malignant pulmonary nodules were selected for screening, and gene mutation testing was performed on all patient tissues to explore the relationship between gene mutations and the growth of malignant pulmonary nodules. RESULTS There is a correlation between KRAS and TP53 gene mutations and the growth of pulmonary nodules (P < 0.05), while there is a correlation between KRAS and TP53 gene mutations and the growth of pulmonary nodules in the subgroup of invasive malignant pulmonary nodules (P < 0.05). CONCLUSION Mutations in the TP53 gene can lead to the growth of malignant pulmonary nodules and are correlated with the degree of invasion of malignant pulmonary nodules.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, 050057, People's Republic of China
- Graduate School, Hebei Medical University, Shijiazhuang, 050011, People's Republic of China
| | - Bin Li
- Hebei Bio-High Technology Development CO., LTD, Shijiazhuang, 050011, People's Republic of China
| | - Haoxin Guo
- Graduate School, Hebei Medical University, Shijiazhuang, 050011, People's Republic of China
| | - Qingtao Zhao
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, 050057, People's Republic of China
| | - Xiaopeng Zhang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, 050057, People's Republic of China
| | - Huanfen Zhao
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, 050057, People's Republic of China
| | - Wenfei Xue
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, 050057, People's Republic of China
| | - Wei Li
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, 050057, People's Republic of China
| | - Guochen Duan
- Department of Thoracic Surgery, Children's Hospital of Hebei Province, Shijiazhuang, 050000, People's Republic of China.
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110000, People's Republic of China
| |
Collapse
|
9
|
Paulus N, Lemort V. Experimental assessment of pollutant emissions from residential fuel cells and comparative benchmark analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121017. [PMID: 38718602 DOI: 10.1016/j.jenvman.2024.121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/22/2024]
Abstract
Energy transition currently brings focus on fuel cell micro-combined heat and power (mCHP) systems for residential uses. The two main technologies already commercialized are the Proton Exchange Membrane Fuel Cells (PEMFCs) and Solid Oxide Fuel Cells (SOFCs). The pollutant emissions of one system of each technology have been tested with a portable probe both in laboratory and field-test configurations. In this paper, the nitrogen oxides (NOx), sulphur dioxide (SO2), and carbon monoxide (CO) emission levels are compared to other combustion technologies such as a recent Euro 6 diesel automotive vehicle, a classical gas condensing boiler, and a gas absorption heat pump. At last, a method of converting the concentration of pollutants (in ppm) measured by the sensors into pollutant intensity per unit of energy (in mg/kWh) is documented and reported. This allows for comparing the pollutant emissions levels with relevant literature, especially other studies conducted with other measuring sensors. Both tested residential fuel cell technologies fed by natural gas can be considered clean regarding SO2 and NOx emissions. The CO emissions can be considered quite low for the tested SOFC and even nil for the tested PEMFC. The biggest issue of natural gas fuel cell technologies still lies in the carbon dioxide (CO2) emissions associated with the fossil fuel they consume. The gas absorption heat pump however shows worse NOx and CO levels than the classical gas condensing boiler. At last, this study illustrates that the high level of hybridization between a fuel cell and a gas boiler may be responsible for unexpected ON/OFF cycling behaviours and therefore prevent both sub-systems from operating as optimally and reliably as they would have as standalone units.
Collapse
Affiliation(s)
- N Paulus
- Department of Electromechanics, Industrial Engineering Higher Education Institution of the Province of Liège (HEPL), Liège, 4000, Belgium; Department of Aerospace and Mechanics, University of Liège, Liège, 4000, Belgium.
| | - V Lemort
- Department of Aerospace and Mechanics, University of Liège, Liège, 4000, Belgium
| |
Collapse
|
10
|
Cheng P, Chen Y, Wang J, Han Z, Hao D, Li Y, Feng F, Duan X, Chen H. PM 2.5 induces a senescent state in mouse AT2 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123686. [PMID: 38431248 DOI: 10.1016/j.envpol.2024.123686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
PM2.5 is known to induce lung injury, but its toxic effects on lung regenerative machinery and the underlying mechanisms remain unknown. In this study, primary mouse alveolar type 2 (AT2) cells, considered stem cells in the gas-exchange barrier, were sorted using fluorescence-activated cell sorting. By developing microfluidic technology with constricted microchannels, we observed that both passage time and impedance opacities of mouse AT2 cells were reduced after PM2.5, indicating that PM2.5 induced a more deformable mechanical property and a higher membrane permeability. In vitro organoid cultures of primary mouse AT2 cells indicated that PM2.5 is able to impair the proliferative potential and self-renewal capacity of AT2 cells but does not affect AT1 differentiation. Furthermore, cell senescence biomarkers, p53 and γ-H2A.X at protein levels, P16ink4a and P21 at mRNA levels were increased in primary mouse AT2 cells after PM2.5 stimulations as shown by immunofluorescent staining and quantitative PCR analysis. Using several advanced single-cell technologies, this study sheds light on new mechanisms of the cytotoxic effects of atmospheric fine particulate matter on lung stem cell behavior.
Collapse
Affiliation(s)
- Peiyong Cheng
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| | - Yongqi Chen
- State Key Laboratory of Precision Measuring Technology and Instrument, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Jianhai Wang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China; Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China
| | - Ziyu Han
- State Key Laboratory of Precision Measuring Technology and Instrument, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - De Hao
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| | - Yu Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China; Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China
| | - Feifei Feng
- Department of Toxicology, Zhengzhou University School of Public Health, Zhengzhou, Henan Province, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instrument, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China; Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China; Tianjin Key Laboratory of Lung Regenerative Tianjin University Medicine, Tianjin, 300350, China; College of Pulmonary and Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, 100091, China.
| |
Collapse
|
11
|
Trentalange A, Renzi M, Michelozzi P, Guizzi M, Solimini AG. Association between air pollution and emergency room admission for eye diseases in Rome, Italy: A time-series analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123279. [PMID: 38160774 DOI: 10.1016/j.envpol.2023.123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Eye diseases impose a significant burden on health services due to high case numbers. However, exposure to outdoor air pollution is seldom mentioned as potential harmful factor. We conducted a time-series analysis in Rome, Italy, to estimate the association between daily mean concentration of NO2, PM10 and PM2.5 and daily number of emergency room (ER) admissions for a selected cluster of eye diseases from 2006 to 2016. We used Poisson regression adjusted for time trend, population decrease during summer vacations and holidays, day of week, apparent temperature (hot and cold) and daily concentration of nine pollen species. We observed 581,868 ER admissions during the study period. 44.74% of cases were observed in subjects with less than 20 years, 19.50% in 51-65 age category and 13.4% among children (0-14 years). No differences between sexes were recorded. Mean values of pollutant concentrations were 54.75, 31.01 and 18.14 μg/m3 for NO2, PM10 and PM2.5 respectively. The air temperature ranged from -1 °C to 32.5 °C, with a mean value of 16 °C (SD = 6.88). The apparent temperature spaced from -3.58 °C to 34.08 °C (mean = 15.61 °C, SD = 8.5). The highest percent risk increases for 10 μg/m3 increases of the three pollutants were observed at lag0-1 day (1.3%, 0.63-1.98 for PM2.5; 1.03%, 0.56-1.51 for PM10 and 0.6%, 0.13-1.07 for NO2). Risk increased significantly also at lag0 and lag0-5 day for each pollutant. Secondary analyses showed higher effects in the elderly compared to younger subjects. No differences emerged between sexes. The dose response analysis suggested of possible effects on ER admission risk also at low-level concentrations of PM2.5. A strong confounding effect of pollen was not detected. RESULTS: of this study are coherent with previous analyses. Speculation can be done about the biological mechanisms that link air pollution to eye damage.
Collapse
Affiliation(s)
| | - Matteo Renzi
- Department of Epidemiology, Health Authority Service, ASL Rome 1, Rome, Italy
| | - Paola Michelozzi
- Department of Epidemiology, Health Authority Service, ASL Rome 1, Rome, Italy
| | - Marco Guizzi
- ASL RM5, UOC Oculistica, Ospedale San Giovanni Evangelista, Tivoli, (RM), Italy
| | - Angelo Giuseppe Solimini
- Department of Public Health and Infectious Diseases, University of Rome "La Sapienza", Rome, Italy
| |
Collapse
|
12
|
Bhattarai G, Shrestha SK, Sim HJ, Lee JC, Kook SH. Effects of fine particulate matter on bone marrow-conserved hematopoietic and mesenchymal stem cells: a systematic review. Exp Mol Med 2024; 56:118-128. [PMID: 38200155 PMCID: PMC10834576 DOI: 10.1038/s12276-023-01149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024] Open
Abstract
The harmful effects of fine particulate matter ≤2.5 µm in size (PM2.5) on human health have received considerable attention. However, while the impact of PM2.5 on the respiratory and cardiovascular systems has been well studied, less is known about the effects on stem cells in the bone marrow (BM). With an emphasis on the invasive characteristics of PM2.5, this review examines the current knowledge of the health effects of PM2.5 exposure on BM-residing stem cells. Recent studies have shown that PM2.5 enters the circulation and then travels to distant organs, including the BM, to induce oxidative stress, systemic inflammation and epigenetic changes, resulting in the reduction of BM-residing stem cell survival and function. Understanding the broader health effects of air pollution thus requires an understanding of the invasive characteristics of PM2.5 and its direct influence on stem cells in the BM. As noted in this review, further studies are needed to elucidate the underlying processes by which PM2.5 disturbs the BM microenvironment and inhibits stem cell functionality. Strategies to prevent or ameliorate the negative effects of PM2.5 exposure on BM-residing stem cells and to maintain the regenerative capacity of those cells must also be investigated. By focusing on the complex relationship between PM2.5 and BM-resident stem cells, this review highlights the importance of specific measures directed at safeguarding human health in the face of rising air pollution.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Saroj Kumar Shrestha
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun-Jaung Sim
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
13
|
Rekowska AK, Rola P, Kwiatkowska A, Wójcik-Superczyńska M, Gil M, Krawczyk P, Milanowski J. Abnormalities in the KRAS Gene and Treatment Options for NSCLC Patients with the G12C Mutation in This Gene-A Literature Review and Single-Center Experience. Biomedicines 2024; 12:325. [PMID: 38397927 PMCID: PMC10886466 DOI: 10.3390/biomedicines12020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Mutations in the KRAS gene are among the most common mutations observed in cancer cells, but they have only recently become an achievable goal for targeted therapies. Two KRAS inhibitors, sotorasib and adagrasib, have recently been approved for the treatment of patients with advanced non-small cell lung cancer with the KRAS G12C mutation, while studies on their efficacy are still ongoing. In this work, we comprehensively analyzed RAS gene mutations' molecular background, mutation testing, KRAS inhibitors' effectiveness with an emphasis on non-small cell lung cancer, the impact of KRAS mutations on immunotherapy outcomes, and drug resistance problems. We also summarized ongoing trials and analyzed emerging perspectives on targeting KRAS in cancer patients.
Collapse
Affiliation(s)
- Anna K. Rekowska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland (M.W.-S.); (M.G.); (J.M.)
| | | | | | | | | | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland (M.W.-S.); (M.G.); (J.M.)
| | | |
Collapse
|
14
|
Wright CY, Kapwata T, Naidoo N, Asante KP, Arku RE, Cissé G, Simane B, Atuyambe L, Berhane K. Climate Change and Human Health in Africa in Relation to Opportunities to Strengthen Mitigating Potential and Adaptive Capacity: Strategies to Inform an African "Brains Trust". Ann Glob Health 2024; 90:7. [PMID: 38312714 PMCID: PMC10836170 DOI: 10.5334/aogh.4260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024] Open
Abstract
Background Africa faces diverse and complex population/human health challenges due to climate change. Understanding the health impacts of climate change in Africa in all its complexity is essential for implementing effective strategies and policies to mitigate risks and protect vulnerable populations. This study aimed to outline the major climate change-related health impacts in Africa in the context of economic resilience and to seek solutions and provide strategies to prevent or reduce adverse effects of climate change on human health and well-being in Africa. Methods For this narrative review, a literature search was conducted in the Web of Science, Scopus, CAB Abstracts, MEDLINE and EMBASE electronic databases. We also searched the reference lists of retrieved articles for additional records as well as reports. We followed a conceptual framework to ensure all aspects of climate change and health impacts in Africa were identified. Results The average temperatures in all six eco-regions of Africa have risen since the early twentieth century, and heat exposure, extreme events, and sea level rise are projected to disproportionately affect Africa, resulting in a larger burden of health impacts than other continents. Given that climate change already poses substantial challenges to African health and well-being, this will necessitate significant effort, financial investment, and dedication to climate change mitigation and adaptation. This review offers African leaders and decision-makers data-driven and action-oriented strategies that will ensure a more resilient healthcare system and safe, healthy populations-in ways that contribute to economic resiliency. Conclusions The urgency of climate-health action integrated with sustainable development in Africa cannot be overstated, given the multiple economic gains from reducing current impacts and projected risks of climate change on the continent's population health and well-being. Climate action must be integrated into Africa's development plan to meet the Sustainable Development Goals, protect vulnerable populations from the detrimental effects of climate change, and promote economic development.
Collapse
Affiliation(s)
- Caradee Y. Wright
- Environment and Health Research Unit, South African Medical Research Council, Pretoria, South Africa
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South Africa
| | - Thandi Kapwata
- Environment and Health Research Unit, South African Medical Research Council, Pretoria, South Africa
- Department of Environmental Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Natasha Naidoo
- Environment and Health Research Unit, South African Medical Research Council, Durban, South Africa
| | | | - Raphael E. Arku
- School of Public Health & Health Sciences, University of Massachusetts Amherst, USA
| | - Guéladio Cissé
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Lynn Atuyambe
- Makerere University, School of Public Health, Uganda
| | | |
Collapse
|
15
|
Delavar MA, Jahani MA, Sepidarkish M, Alidoost S, Mehdinezhad H, Farhadi Z. Relationship between fine particulate matter (PM 2.5) concentration and risk of hospitalization due to chronic obstructive pulmonary disease: a systematic review and meta-analysis. BMC Public Health 2023; 23:2229. [PMID: 37953239 PMCID: PMC10641956 DOI: 10.1186/s12889-023-17093-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Short-term exposure to PM2.5 has been associated with human health risks. However, evidence on the association between short-term exposure to PM2.5 and the risk of chronic obstructive pulmonary disease (COPD) remains limited and controversial. This study aimed to specifically assess the relationship between exposure to PM2.5 and the risk of hospitalization due to COPD. METHODS A systematic search was conducted in PubMed, Web of Science, and Google Scholar databases from January 1, 2010 to May 1, 2022. The odds ratio (OR) statistic was calculated as a common measure of effect size. Publication bias was also examined in all eligible studies on COPD hospitalization using funnel plots and Egger's test, as well as trim-and-fill method for missing studies on COPD hospitalization. RESULTS A total of 19 studies were included in this meta-analysis. Random-effects models were plotted to calculate the pooled effect size by measuring OR (χ2 = 349.95; df = 18; I2 = 94.86%; P = 0.007; Z = 2.68; P < 0.001). A 10-mg/m3 daily increase in PM2.5 concentration was associated with a 1.6% (95% CI: 0.4-2.9%) increase in COPD hospitalization. There was no publication bias regarding the association between COPD hospitalization and PM2.5 (bias = 1.508; 95% CI: -1.475, 4.491; t = 1.066; P = 0.301). The subgroups of age ≥ 65 years and Asian countries were associated with an increased risk of COPD hospitalization. Besides, higher risks were estimated in the subgroups of studies performed in the warm season, case-crossover studies, studies with three lag days, and studies without adjustments for humidity and temperature confounders, with very small heterogeneity. CONCLUSION Evidence suggests that short-term exposure to PM2.5 increases COPD hospitalization. Further studies are needed to understand the mechanism of the association between PM2.5 and COPD for reducing air pollution, which can be beneficial for COPD patients.
Collapse
Affiliation(s)
- Mouloud Agajani Delavar
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Ali Jahani
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Sepidarkish
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Saeide Alidoost
- National Center for Strategic Research in Medical Education, Tehran, Iran
| | - Hamed Mehdinezhad
- Department of Internal Medicine, School of Medicine, Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Zeynab Farhadi
- Social Determinants of Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
16
|
Barros B, Oliveira M, Morais S. Continent-based systematic review of the short-term health impacts of wildfire emissions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:387-415. [PMID: 37469022 DOI: 10.1080/10937404.2023.2236548] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
This review systematically gathers and provides an analysis of pollutants levels emitted from wildfire (WF) and their impact on short-term health effects of affected populations. The available literature was searched according to Population, Exposure, Comparator, Outcome, and Study design (PECOS) database defined by the World Health Organization (WHO) and a meta-analysis was conducted whenever possible. Data obtained through PECOS characterized information from the USA, Europe, Australia, and some Asian countries; South American countries were seldom characterized, and no data were available for Africa and Russia. Extremely high levels of pollutants, mostly of fine fraction of particulate matter (PM) and ozone, were associated with intense WF emissions in North America, Oceania, and Asia and reported to exceed several-fold the WHO guidelines. Adverse health outcomes include emergency department visits and hospital admissions for cardiorespiratory diseases as well as mortality. Despite the heterogeneity among exposure and health assessment methods, all-cause mortality, and specific-cause mortality were significantly associated with WF emissions in most of the reports. Globally, a significant association was found for all-cause respiratory outcomes including asthma, but mixed results were noted for cardiovascular-related effects. For the latter, estimates were only significant several days after WF emissions, suggesting a more delayed impact on the heart. Different research gaps are presented, including the need for the application of standardized protocols for assessment of both exposure and adverse health risks. Mitigation actions also need to be strengthened, including dedicated efforts to communicate with the affected populations, to engage them for adoption of protective behaviors and measures.
Collapse
Affiliation(s)
- Bela Barros
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| |
Collapse
|
17
|
Luo S, Chen M. Systematic Investigation of the Effect of Lactobacillus acidophilus TW01 on Potential Prevention of Particulate Matter (PM)2.5-Induced Damage Using a Novel In Vitro Platform. Foods 2023; 12:3278. [PMID: 37685213 PMCID: PMC10486722 DOI: 10.3390/foods12173278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Exposure to ambient particulate matter (PM) and cigarette smoking (CS) is a risk factor for respiratory/lung infections and metabolic disorders. Lung-gut axis disruption involving the upregulation of oxidative stress, systemic inflammation, and gut barrier dysfunction by PM is one of the potential mechanisms. Thus, we designed a novel in vitro platform for pre-selecting probiotics with potentially protective effects against PM-induced lung damage through the lung-gut axis to reduce animal usage. The results showed that a high dose of Lactobacillus acidophilus TW01 (1 × 108 CFU/mL) inhibited reactive oxygen species (ROS) production. This strain could also reduce respiratory epithelial cell death induced by cigarette smoke extraction (CSE), as well as promoting Caco-2 cell migration in 1 × 106 CFU/mL. Although further animal experiments are needed to validate the in vitro findings, L. acidophilus TW01 is a promising probiotic strain for the potential prevention of PM2.5-induced damage.
Collapse
Affiliation(s)
| | - Mingju Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan, China;
| |
Collapse
|
18
|
Grzesik-Gąsior J, Sawicki J, Pieczykolan A, Bień A. Content of selected heavy metals in the umbilical cord blood and anthropometric data of mothers and newborns in Poland: preliminary data. Sci Rep 2023; 13:14077. [PMID: 37640776 PMCID: PMC10462749 DOI: 10.1038/s41598-023-41249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
The ability to accumulate metals in organs and tissues leads to disturbances in the physiological functioning of the body, causing oxidative stress. This negatively affects the functioning of the placenta and may result in miscarriages, premature birth and fetal growth disorders. The aim of the study was to examine the relationship between the levels of selected heavy metals in umbilical cord blood and anthropometric parameters of mothers and the newborns. Content of elements in umbilical cord blood has been assessed by high-resolution inductively coupled plasma optical emission spectroscopy (ICP-OES). The study results were collected and statistically analyzed using IBM SPSS Statistics software (PS IMAGO). The Pearson correlation coefficient was used to test for associations between selected variables. Regression analysis was conducted to identify predictors of anthropometric parameters of studied women and newborns. The study group consisted of women aged 19-41, whose pregnancy was uncomplicated and were not exposed to heavy metals due to their work or smoking. The following metals were identified in all collected cord blood samples: lead (26.25 ± 9.32 µg/L), zinc (2025.24 ± 717.83 µg/L), copper (749.85 ± 203.86 µg/L), manganese (32.55 ± 13.58 µg/L), chromium (8.34 ± 2.16 µg/L) and selenium (158.46 ± 41.58 µg/L). The conducted statistical analysis indicated the relationship between the copper content in the umbilical cord blood and the weight gain of pregnant women. A significant relationship was observed between newborn head circumference and chromium content. In addition, significant positive correlations were found between the content of zinc and copper, manganese and lead, manganese and selenium, lead and selenium, and lead and chromium in umbilical cord blood. The ratio of zinc to copper concentrations was related to neonatal head circumference. Weight gain in pregnant women is positively correlated with the copper level in umbilical cord blood. There is an association between head circumference at birth and the chromium concentration in umbilical cord blood. Copper and zinc levels in umbilical cord blood are positively correlated with head circumference at birth.
Collapse
Affiliation(s)
| | - Jan Sawicki
- Department of Analytical Chemistry, Medical University of Lublin, 20-059, Lublin, Poland
| | - Agnieszka Pieczykolan
- Department of Coordinated Maternity Care, Faculty of Health Sciences, Medical University of Lublin, 20-059, Lublin, Poland
| | - Agnieszka Bień
- Department of Coordinated Maternity Care, Faculty of Health Sciences, Medical University of Lublin, 20-059, Lublin, Poland
| |
Collapse
|
19
|
Saleh WM, Ahmad MI, Yahya EB, H P S AK. Nanostructured Bioaerogels as a Potential Solution for Particulate Matter Pollution. Gels 2023; 9:575. [PMID: 37504454 PMCID: PMC10379271 DOI: 10.3390/gels9070575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023] Open
Abstract
Particulate matter (PM) pollution is a significant environmental and public health issue globally. Exposure to high levels of PM, especially fine particles, can have severe health consequences. These particles can come from a variety of sources, including natural events like dust storms and wildfires, as well as human activities such as industrial processes and transportation. Although an extensive development in air filtration techniques has been made in the past few years, fine particulate matter still poses a serios and dangerous threat to human health and to our environment. Conventional air filters are fabricated from non-biodegradable and non-ecofriendly materials which can cause further environmental pollution as a result of their excessive use. Nanostructured biopolymer aerogels have shown great promise in the field of particulate matter removal. Their unique properties, renewable nature, and potential for customization make them attractive materials for air pollution control. In the present review, we discuss the meaning, properties, and advantages of nanostructured aerogels and their potential in particulate matter removal. Particulate matter pollution, types and sources of particulate matter, health effect, environmental effect, and the challenges facing scientists in particulate matter removal are also discussed in the present review. Finally, we present the most recent advances in using nanostructured bioaerogels in the removal of different types of particulate matter and discuss the challenges that we face in these applications.
Collapse
Affiliation(s)
- Wafa Mustafa Saleh
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mardiana Idayu Ahmad
- Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Abdul Khalil H P S
- Green Biopolymer, Coatings and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
20
|
Torres-Anguiano E, Sánchez-López I, Garduno-Robles A, Rivas-Carrillo JD, Rivera-León EA, Sánchez-Enríquez S, Ornelas-Hernández LF, Zazueta León-Quintero F, Salazar León-Quintero EN, Juárez-López GE, Sánchez-Zubieta FA, Ochoa-Bru M, Zepeda-Moreno A. SARS-CoV-2: Air pollution highly correlated to the increase in mortality. The case of Guadalajara, Jalisco, México. Infect Dis Model 2023; 8:445-457. [PMID: 37131453 PMCID: PMC10116164 DOI: 10.1016/j.idm.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/05/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023] Open
Abstract
Objectives To determine whether air pollution or changes in SARS-CoV-2 lineages lead to an increase in mortality. Methods Descriptive statistics were used to calculate rates of infection (2020-2021). RT-PCR was used to compare viral loads from October 2020 to February 2021. Next-generation sequencing (NGS) (n = 92) was used to examine and phylogenetically map SARS-CoV-2 lineages. A correlative "air pollution/temperature" index (I) was developed using regression analysis. PM2.5, PM10, O3, NO2, SO2, and CO concentrations were analyzed and compared to the mortality. Results The mortality rate during the last year was ∼32%. Relative SARS-CoV-2 viral loads increased in December 2020 and January 2021. NGS revealed that approximately 80% of SARS-CoV-2 linages were B.1.243 (33.7%), B1.1.222 (11.2%), B.1.1 (9%), B.1 (7%), B.1.1.159 (7%), and B.1.2 (7%). Two periods were analyzed, the prehigh- and high-mortality periods and no significant lineage differences or new lineages were found. Positive correlations of air pollution/temperature index values with mortality were found for IPM2.5 and IPM10. INO2. ISO2, and ICO but not for O3. Using ICO, we developed a model to predict mortality with an estimated variation of ∼±5 deaths per day. Conclusion The mortality rate in the MZG was highly correlated with air pollution indices and not with SARS-CoV-2 lineage.
Collapse
Affiliation(s)
- Elizabeth Torres-Anguiano
- Onkogenetik/Mexicana de Investigación y Biotectogía S.A. de C.V, Guadalajara, Jalisco, Mexico
- Unidad de Biología Molecular, Investigación y Diagnóstico, Hospital San Javier, Guadalajara, Jalisco, Mexico
| | - Itzel Sánchez-López
- Onkogenetik/Mexicana de Investigación y Biotectogía S.A. de C.V, Guadalajara, Jalisco, Mexico
- Unidad de Biología Molecular, Investigación y Diagnóstico, Hospital San Javier, Guadalajara, Jalisco, Mexico
| | - Angeles Garduno-Robles
- Onkogenetik/Mexicana de Investigación y Biotectogía S.A. de C.V, Guadalajara, Jalisco, Mexico
| | - Jorge David Rivas-Carrillo
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Edgar Alfonso Rivera-León
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sergio Sánchez-Enríquez
- Departamento de Clínicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico
| | | | - Fernando Zazueta León-Quintero
- Onkogenetik/Mexicana de Investigación y Biotectogía S.A. de C.V, Guadalajara, Jalisco, Mexico
- Unidad de Biología Molecular, Investigación y Diagnóstico, Hospital San Javier, Guadalajara, Jalisco, Mexico
| | | | - Guillermo Enrique Juárez-López
- Onkogenetik/Mexicana de Investigación y Biotectogía S.A. de C.V, Guadalajara, Jalisco, Mexico
- Unidad de Biología Molecular, Investigación y Diagnóstico, Hospital San Javier, Guadalajara, Jalisco, Mexico
| | - Fernando Antonio Sánchez-Zubieta
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Servicio de Hemato-Oncología Pediátrica, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, Jalisco, Mexico
| | - Mariana Ochoa-Bru
- Onkogenetik/Mexicana de Investigación y Biotectogía S.A. de C.V, Guadalajara, Jalisco, Mexico
- Unidad de Biología Molecular, Investigación y Diagnóstico, Hospital San Javier, Guadalajara, Jalisco, Mexico
| | - Abraham Zepeda-Moreno
- Onkogenetik/Mexicana de Investigación y Biotectogía S.A. de C.V, Guadalajara, Jalisco, Mexico
- Unidad de Biología Molecular, Investigación y Diagnóstico, Hospital San Javier, Guadalajara, Jalisco, Mexico
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
21
|
Somayajulu M, McClellan SA, Wright R, Pitchaikannu A, Croniger B, Zhang K, Hazlett LD. Airborne Exposure of the Cornea to PM 10 Induces Oxidative Stress and Disrupts Nrf2 Mediated Anti-Oxidant Defenses. Int J Mol Sci 2023; 24:3911. [PMID: 36835320 PMCID: PMC9965133 DOI: 10.3390/ijms24043911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The purpose of this study is to test the effects of whole-body animal exposure to airborne particulate matter (PM) with an aerodynamic diameter of <10 μm (PM10) in the mouse cornea and in vitro. C57BL/6 mice were exposed to control or 500 µg/m3 PM10 for 2 weeks. In vivo, reduced glutathione (GSH) and malondialdehyde (MDA) were analyzed. RT-PCR and ELISA evaluated levels of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling and inflammatory markers. SKQ1, a novel mitochondrial antioxidant, was applied topically and GSH, MDA and Nrf2 levels were tested. In vitro, cells were treated with PM10 ± SKQ1 and cell viability, MDA, mitochondrial ROS, ATP and Nrf2 protein were tested. In vivo, PM10 vs. control exposure significantly reduced GSH, corneal thickness and increased MDA levels. PM10-exposed corneas showed significantly higher mRNA levels for downstream targets, pro-inflammatory molecules and reduced Nrf2 protein. In PM10-exposed corneas, SKQ1 restored GSH and Nrf2 levels and lowered MDA. In vitro, PM10 reduced cell viability, Nrf2 protein, and ATP, and increased MDA, and mitochondrial ROS; while SKQ1 reversed these effects. Whole-body PM10 exposure triggers oxidative stress, disrupting the Nrf2 pathway. SKQ1 reverses these deleterious effects in vivo and in vitro, suggesting applicability to humans.
Collapse
Affiliation(s)
- Mallika Somayajulu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Sharon A. McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Robert Wright
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Bridget Croniger
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | - Linda D. Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA
| |
Collapse
|
22
|
Pan L, Sui J, Xu Y, Zhao Q, Cai Y, Sun G, Xia H. Effect of Fine Particulate Matter Exposure on Liver Enzymes: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2803. [PMID: 36833499 PMCID: PMC9956188 DOI: 10.3390/ijerph20042803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 05/23/2023]
Abstract
Although previous studies have presented that fine particulate matter (PM2.5) regulates liver enzyme levels in the development of liver diseases, the evidence regarding the relationship between PM2.5 exposure and liver enzyme is not robust. We further aimed to conduct a systematic review and meta-analysis of observational studies to summarize the recent evidence on the effects of PM2.5 on liver enzyme in humans. In the meta-analysis, we retrieved online databases including PubMed and Web of Science database from 1982 up to 2022. A random-effects model was applied to evaluate the correlation between PM2.5 and liver enzyme level. A total of 10 studies fulfilled the inclusion criteria, including five prospective cohort studies, two cross-sectional studies, two longitudinal studies, and one time-series analysis. Each 10 μg/m3 increase in PM2.5 concentration was significantly correlated with a 4.45% increase in alanine aminotransferase (ALT) level (95% CI: 0.51-8.38%, p = 0.03), a 3.99% increase in aspartate transferase (AST) level (95% CI: 0.88-7.10%, p = 0.01), and a 2.91% increase in gamma-glutamyl transferase (GGT) level (95% CI: 1.18-4.64%, p < 0.001), but this significant association was not observed in alkaline phosphatase (ALP). Subgroup analysis revealed that PM2.5 has a significant correlation with ALT (5.07%, 95% CI: 0.81-9.33%), AST (4.11%, 95% CI: 0.74-7.48%), and GGT (2.74%, 95% CI: 1.09-4.38%) in Asia. Our meta-analysis showed that increments in PM2.5 exposure were significantly associated with a higher level of ALT, AST, and GGT. In addition, investigations into liver enzyme subtypes and specific chemical components of PM2.5 are important directions for future research.
Collapse
Affiliation(s)
- Ling Pan
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jing Sui
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Xu
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Qun Zhao
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yinyin Cai
- Institute of Atmospheric Environmental Economics, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
23
|
Kiss H, Örlős Z, Gellért Á, Megyesfalvi Z, Mikáczó A, Sárközi A, Vaskó A, Miklós Z, Horváth I. Exhaled Biomarkers for Point-of-Care Diagnosis: Recent Advances and New Challenges in Breathomics. MICROMACHINES 2023; 14:391. [PMID: 36838091 PMCID: PMC9964519 DOI: 10.3390/mi14020391] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Cancers, chronic diseases and respiratory infections are major causes of mortality and present diagnostic and therapeutic challenges for health care. There is an unmet medical need for non-invasive, easy-to-use biomarkers for the early diagnosis, phenotyping, predicting and monitoring of the therapeutic responses of these disorders. Exhaled breath sampling is an attractive choice that has gained attention in recent years. Exhaled nitric oxide measurement used as a predictive biomarker of the response to anti-eosinophil therapy in severe asthma has paved the way for other exhaled breath biomarkers. Advances in laser and nanosensor technologies and spectrometry together with widespread use of algorithms and artificial intelligence have facilitated research on volatile organic compounds and artificial olfaction systems to develop new exhaled biomarkers. We aim to provide an overview of the recent advances in and challenges of exhaled biomarker measurements with an emphasis on the applicability of their measurement as a non-invasive, point-of-care diagnostic and monitoring tool.
Collapse
Affiliation(s)
- Helga Kiss
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zoltán Örlős
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Áron Gellért
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Zsolt Megyesfalvi
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Angéla Mikáczó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Anna Sárközi
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Attila Vaskó
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| | - Zsuzsanna Miklós
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
| | - Ildikó Horváth
- National Koranyi Institute for Pulmonology, Koranyi F Street 1, 1121 Budapest, Hungary
- Department of Pulmonology, University of Debrecen, Nagyerdei krt 98, 4032 Debrecen, Hungary
| |
Collapse
|
24
|
Álvaro-Meca A, Sepúlveda-Crespo D, Resino R, Ryan P, Martínez I, Resino S. Neighborhood environmental factors linked to hospitalizations of older people for viral lower respiratory tract infections in Spain: a case-crossover study. Environ Health 2022; 21:107. [PMID: 36348411 PMCID: PMC9640778 DOI: 10.1186/s12940-022-00928-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Lower respiratory tract viral infection (LRTI) is a significant cause of morbidity-mortality in older people worldwide. We analyzed the association between short-term exposure to environmental factors (climatic factors and outdoor air pollution) and hospital admissions with a viral LRTI diagnosis in older adults. METHODS We conducted a bidirectional case-crossover study in 6367 patients over 65 years of age with viral LRTI and residential zip code in the Spanish Minimum Basic Data Set. Spain's State Meteorological Agency was the source of environmental data. Associations were assessed using conditional logistic regression. P-values were corrected for false discovery rate (q-values). RESULTS Almost all were hospital emergency admissions (98.13%), 18.64% were admitted to the intensive care unit (ICU), and 7.44% died. The most frequent clinical discharge diagnosis was influenza (90.25%). LRTI hospital admissions were more frequent when there were lower values of temperature and O3 and higher values of relative humidity and NO2. The regression analysis adjusted by temperatures and relative humidity showed higher concentrations at the hospital admission for NO2 [compared to the lag time of 1-week (q-value< 0.001) and 2-weeks (q-value< 0.001)] and O3 [compared to the lag time of 3-days (q-value< 0.001), 1-week (q-value< 0.001), and 2-weeks (q-value< 0.001)] were related to a higher odds of hospital admissions due to viral LRTI. Moreover, higher concentrations of PM10 at the lag time of 1-week (q-value = 0.023) and 2-weeks (q-value = 0.002), and CO at the lag time of 3-days (q-value = 0.023), 1-week (q-value< 0.001) and 2-weeks (q-value< 0.001)], compared to the day of hospitalization, were related to a higher chances of hospital admissions with viral LRTI. CONCLUSION Unfavorable environmental factors (low temperatures, high relative humidity, and high concentrations of NO2, O3, PM10, and CO) increased the odds of hospital admissions with viral LRTI among older people, indicating they are potentially vulnerable to these environmental factors.
Collapse
Affiliation(s)
- Alejandro Álvaro-Meca
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Sepúlveda-Crespo
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rosa Resino
- Departamento de Geografía, Facultad de Geografía e Historia, Universidad Complutense de Madrid, Madrid, Spain
| | - Pablo Ryan
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitario Infanta Leonor, Madrid, Spain
- Universidad Complutense de Madrid (UCM), Madrid, Spain
- Instituto de Investigaciones Sanitarias Gregorio Marañón (IiSGM), Madrid, Spain
| | - Isidoro Martínez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Salvador Resino
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
25
|
Álvaro-Meca A, Goez MDC, Resino R, Matías V, Sepúlveda-Crespo D, Martínez I, Resino S. Environmental factors linked to hospital admissions in young children due to acute viral lower respiratory infections: A bidirectional case-crossover study. ENVIRONMENTAL RESEARCH 2022; 212:113319. [PMID: 35447151 DOI: 10.1016/j.envres.2022.113319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/14/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE This study evaluated the association of the short-term exposure to environmental factors (relative humidity, temperature, NO2, SO2, O3, PM10, and CO) with hospital admissions due to acute viral lower respiratory infections (ALRI) in children under two years before the COVID-19 era. METHODS We performed a bidirectional case-crossover study in 30,445 children with ALRI under two years of age in the Spanish Minimum Basic Data Set (MBDS) from 2013 to 2015. Environmental data were obtained from Spain's State Meteorological Agency (AEMET). The association was assessed by conditional logistic regression. RESULTS Lower temperature one week before the day of the event (hospital admission) (q-value = 0.012) and higher relative humidity one week (q-value = 0.003) and two weeks (q-value<0.001) before the day of the event were related to a higher odds of hospital admissions. Higher NO2 levels two weeks before the event were associated with hospital admissions (q-value<0.001). Moreover, higher concentrations on the day of the event for SO2 (compared to lag time of 1-week (q-value = 0.026) and 2-weeks (q-value<0.001)), O3 (compared to lag time of 3-days (q-value<0.001), 1-week (q-value<0.001), and 2-weeks (q-value<0.001)), and PM10 (compared to lag time of 2-weeks (q-value<0.001)) were related to an increased odds of hospital admissions for viral ALRI. CONCLUSION Short-term exposure to environmental factors (climatic conditions and ambient air contaminants) was linked to a higher likelihood of hospital admissions due to ALRI. Our findings emphasize the importance of monitoring environmental factors to assess the odds of ALRI hospital admissions and plan public health resources.
Collapse
Affiliation(s)
- Alejandro Álvaro-Meca
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Ciencias de La Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Rosa Resino
- Departamento de Geografía Humana, Facultad de Geografía e Historia, Universidad Complutense de Madrid. Madrid, Spain
| | - Vanesa Matías
- Servicio de Pedíatría, Hospital Clínico Universitario, Valladolid, Spain
| | - Daniel Sepúlveda-Crespo
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid. Spain
| | - Isidoro Martínez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid. Spain
| | - Salvador Resino
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain; Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid. Spain.
| |
Collapse
|
26
|
Lyu Y, Zhou J, Li J, Li J, Hu G, Wang L, Wang L, Han J, Wang D. Alterations of IL-1beta and TNF-alpha expression in RAW264.7 cell damage induced by two samples of PM 2.5 with different compositions. Sci Prog 2022; 105:368504221113709. [PMID: 35833342 PMCID: PMC10450461 DOI: 10.1177/00368504221113709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fine particulate matter 2.5 (PM2.5) has been demonstrated by previous studies to be associated with cell damage. To explore the impact of the composition of PM2.5 on PM2.5-mediated inflammation, this study investigated the composition of PM2.5 collected during the wintertime indoor heating season and observed its inflammatory effect. Samples were collected during the heating season from December 5, 2017, to January 8, 2018, in Xi'an. Compositions of organic carbon (OC), elemental carbon (EC), and water-soluble ions were analysed. Two representative samples (sample 1 and 2) were selected with significant differences in compositions. They were configured into four concentrations (0.1 μg/mL, 1 μg/mL, 10 μg/mL, 20 μg/mL) and used as interventions on RAW264.7 cells for 4 h and 24 h separately. Cell viability was detected by CCK-8. Tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) gene and protein expression levels were detected by real-time quantitative real-time polymerase chain reaction (RT-qPCR) and western blotting. The results showed that the cell viability of sample 1 intervened cells at 4 h and 24 h was lower than that of sample 2. IL-1β gene in most PM2.5 intervention groups was lower than in the control group. Protein expression was higher at 4 h than at 24 h. In conclusion, PM2.5 components influence cell viability and expression of IL-1β and TNF-α, while high concentrations of NO3-, Cl-, Na+, K+, Mg2+, Ca2+, and others in the PM2.5 composition have a significant harmful effect.
Collapse
Affiliation(s)
- Yizhen Lyu
- School of Public Health, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Jieting Zhou
- Shaanxi Provincial Academy of Environmental Science, Xi’an, Shaanxi, P. R. China
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, Shaanxi, P. R. China
| | - Jin Li
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, Shaanxi, P. R. China
| | - Guocheng Hu
- Ministry of Environmental Protection, South China Institute of Environmental Science, Guangzhou, Guangdong, P. R. China
| | - Liyun Wang
- School of Public Health, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Liang Wang
- School of Public Health, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Jing Han
- School of Public Health, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Dong Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, Hainan, P. R. China
| |
Collapse
|
27
|
Recent Insights into Particulate Matter (PM 2.5)-Mediated Toxicity in Humans: An Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127511. [PMID: 35742761 PMCID: PMC9223652 DOI: 10.3390/ijerph19127511] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022]
Abstract
Several epidemiologic and toxicological studies have commonly viewed ambient fine particulate matter (PM2.5), defined as particles having an aerodynamic diameter of less than 2.5 µm, as a significant potential danger to human health. PM2.5 is mostly absorbed through the respiratory system, where it can infiltrate the lung alveoli and reach the bloodstream. In the respiratory system, reactive oxygen or nitrogen species (ROS, RNS) and oxidative stress stimulate the generation of mediators of pulmonary inflammation and begin or promote numerous illnesses. According to the most recent data, fine particulate matter, or PM2.5, is responsible for nearly 4 million deaths globally from cardiopulmonary illnesses such as heart disease, respiratory infections, chronic lung disease, cancers, preterm births, and other illnesses. There has been increased worry in recent years about the negative impacts of this worldwide danger. The causal associations between PM2.5 and human health, the toxic effects and potential mechanisms of PM2.5, and molecular pathways have been described in this review.
Collapse
|
28
|
Zhou X, Gao Y, Wang D, Chen W, Zhang X. Association Between Sulfur Dioxide and Daily Inpatient Visits With Respiratory Diseases in Ganzhou, China: A Time Series Study Based on Hospital Data. Front Public Health 2022; 10:854922. [PMID: 35433609 PMCID: PMC9008542 DOI: 10.3389/fpubh.2022.854922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Background Sulfur dioxide (SO2) has been reported to be related to the mortality of respiratory diseases, but the relationship between SO2 and hospital inpatient visits with respiratory diseases and the potential impact of different seasons on this relationship is still unclear. Methods The daily average concentrations of air pollutants, including SO2 and meteorological data in Ganzhou, China, from 2017 to 2019 were collected. The data on daily hospitalization for respiratory diseases from the biggest hospital in the city were extracted. The generalized additive models (GAM) and the distributed lag non-linear model (DLNM) were employed to evaluate the association between ambient SO2 and daily inpatient visits for respiratory diseases. Stratified analyses by gender, age, and season were performed to find their potential effects on this association. Results There is a positive exposure-response relationship between SO2 concentration and relative risk of respiratory inpatient visits. Every 10 μg/m3 increase in SO2 was related to a 3.2% (95% CI: 0.6–6.7%) exaltation in daily respiratory inpatient visits at lag3. In addition, SO2 had a stronger association with respiratory inpatient visits in women, older adults (≥65 years), and warmer season (May-Oct) subgroups. The relationship between SO2 and inpatient visits for respiratory diseases was robust after adjusting for other air pollutants, including PM10, NO2, O3, and CO. Conclusion This time-series study showed that there is a positive association between short-term SO2 exposure and daily respiratory inpatient visits. These results are important for local administrators to formulate environmental public health policies.
Collapse
Affiliation(s)
- Xingye Zhou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yanfang Gao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Ministry of Education, Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Environment and Health, Ministry of Education, Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaokang Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| |
Collapse
|
29
|
Huo S, Liu Y, Sun A, Zhang B. Environmental and social determinants of thyroid cancer: A spatial analysis based on the Geographical Detector. Front Endocrinol (Lausanne) 2022; 13:1052606. [PMID: 36523594 PMCID: PMC9745063 DOI: 10.3389/fendo.2022.1052606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Thyroid cancer has increased sharply in China in recent years. This change may be attributable to multiple factors. The current study aimed to explore the environmental and social determinants of thyroid cancer. METHODS Incidence data from 487 cancer registries in 2016 were collected. Eight factors were considered, namely, air pollution, green space, ambient temperature, ultraviolet radiation, altitude, economic status, healthcare, and education level. A geographical detector (measured by q statistic) was used to evaluate the independent and interactive impact of the eight factors on thyroid cancer. RESULTS Social factors, especially economic status and healthcare level (q > 0.2), were most influential on thyroid cancer.Ultraviolet radiation, air pollution, and temperature had more impact on women, while green space and altitude had more influence on men. Enhanced effects were observed when two factors interacted. Spatially, economic status, healthcare, and air pollution were positively associated with thyroid cancer, while education level, green space, and altitude were negatively related to thyroid cancer. CONCLUSION The socio-environmental determinants and spatial heterogeneity of thyroid cancer were observed in this study. These findings may improve our understanding of thyroid cancer epidemiology and help guide public health interventions.
Collapse
Affiliation(s)
- Shirui Huo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Anyi Sun
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Zhang
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Bo Zhang,
| |
Collapse
|
30
|
Chen H, Liu X, Gao X, Lv Y, Zhou L, Shi J, Wei W, Huang J, Deng L, Wang Z, Jin Y, Yu W. Epidemiological evidence relating risk factors to chronic obstructive pulmonary disease in China: A systematic review and meta-analysis. PLoS One 2021; 16:e0261692. [PMID: 34962941 PMCID: PMC8714110 DOI: 10.1371/journal.pone.0261692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD), the most common chronic respiratory disease worldwide, not only leads to the decline of pulmonary function and quality of life consecutively, but also has become a major economic burden on individuals, families, and society in China. The purpose of this meta-analysis was to explore the risk factors for developing COPD in the Chinese population that resides in China and to provide a theoretical basis for the early prevention of COPD. METHODS A total of 2457 cross-sectional, case-control, and cohort studies published related to risk factors for COPD in China were searched. Based on the inclusion and exclusion criteria, 20 articles were selected. Stata 11.0 was used for meta-analysis. After merging the data, the pooled effect and 95% confidence intervals (CIs) were calculated to assess the association between risk factors and COPD. Heterogeneity between studies was assessed using I2 and Cochran's Q tests. Begg's test was used to assess publication bias. RESULTS Exposure to particulate matter less than 2.5 μm in diameter (PM2.5) (pooled effect = 1.73; 95%CI: 1.16~2.58; P <0.01), smoking history (pooled effect = 2.58; 95%CI: 2.00~3.32; P <0.01), passive smoking history (pooled effect = 1.39; 95%CI: 1.03~1.87; P = 0.03), male sex(pooled effect = 1.70; 95%CI: 1.31~2.22; P <0.01), body mass index (BMI) <18.5 kg/m2 (pooled effect = 1.73; 95%CI: 1.32~2.25; P <0.01), exposure to biomass burning emissions (pooled effect = 1.65; 95%CI: 1.32~2.06; P <0.01), childhood respiratory infections (pooled effect = 3.44; 95%CI: 1.33~8.90; P = 0.01), residence (pooled effect = 1.24; 95%CI: 1.09~1.42; P <0.01), and a family history of respiratory diseases (pooled effect = 2.04; 95%CI: 1.53~2.71; P <0.01) were risk factors for COPD in the Chinese population. CONCLUSION Early prevention of COPD could be accomplished by quitting smoking, reducing exposure to air pollutants and biomass burning emissions, maintaining body mass index between 18.5 kg/m2 and 28 kg/m2, protecting children from respiratory infections, adopting active treatments to children with respiratory diseases, and conducting regular screening for those with family history of respiratory diseases.
Collapse
Affiliation(s)
- Hong Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Liu
- Department of Respiratory Disease, The 903 Hospital of PLA, Hangzhou, Zhejiang, China
| | - Xiang Gao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yipeng Lv
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Shi
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wei
- Department of general practice, Dapuqiao Community Health Service Center of Huangpu District, Shanghai, China
| | - Jiaoling Huang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lijia Deng
- School of informatics, The University of Leicester, Leicester, United Kingdom
| | - Zhaoxin Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jin
- Department of general practice, Dapuqiao Community Health Service Center of Huangpu District, Shanghai, China
- * E-mail: (WY); (YJ)
| | - Wenya Yu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (WY); (YJ)
| |
Collapse
|
31
|
Szyszkowicz M, de Angelis N. Ambient air pollution and emergency department visits in Toronto, Canada. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28789-28796. [PMID: 33548039 PMCID: PMC8164616 DOI: 10.1007/s11356-021-12519-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/13/2021] [Indexed: 05/31/2023]
Abstract
To investigate the acute impact of various air pollutants on various disease groups in the urban area of the city of Toronto, Canada. Statistical models were developed to estimate the relative risk of an emergency department visit associated with ambient air pollution concentration levels. These models were generated for 8 air pollutants (lagged from 0 to 14 days) and for 18 strata (based on sex, age group, and season). Twelve disease groups extracted from the International Classification of Diseases 10th Revision (ICD-10) were used as health classifications in the models. The qualitative results were collected in matrices composed of 18 rows (strata) and 15 columns (lags) for each air pollutant and the 12 health classifications. The matrix cells were assigned a value of 1 if the association was positively statistically significant; otherwise, they were assigned to a value of 0. The constructed matrices were totalized separately for each air pollutant. The resulting matrices show qualitative associations for grouped diseases, air pollutants, and their corresponding lagged concentrations and indicate the frequency of statistically significant positive associations. The results are presented in colour-gradient matrices with the number of associations for every combination of patient strata, pollutant, and lag in corresponding cells. The highest number of the associations was 8 (of 12 possible) obtained for the same day exposure to carbon monoxide, nitrogen dioxide, and days with elevated air quality health index (AQHI) values. For carbon monoxide, the number of the associations decreases with the increasing lags. For this air pollutant, there were almost no associations after 8 days of lag. In the case of nitrogen dioxide, the associations persist even for longer lags. The numerical values obtained from the models are provided for every pollutant. The constructed matrices are a useful tool to analyze the impact of ambient air pollution concentrations on public health.
Collapse
Affiliation(s)
| | - Nicholas de Angelis
- Biomedical Program, Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada
| |
Collapse
|
32
|
Qi H, Liu Y, Wang N, Xiao C. Lentinan Attenuated the PM2.5 Exposure-Induced Inflammatory Response, Epithelial-Mesenchymal Transition and Migration by Inhibiting the PVT1/miR-199a-5p/caveolin1 Pathway in Lung Cancer. DNA Cell Biol 2021; 40:683-693. [PMID: 33902331 DOI: 10.1089/dna.2020.6338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PM2.5 plays an important role in the physiological and pathological progression of lung cancer. Lentinan exerts antitumor activity in many kinds of human cancers. Plasmacytoma variant translocation 1 (PVT1) exerts antitumor activity in many kinds of human cancers. However, the role and underlying molecular mechanism of PVT1 in the role of lentinan in PM2.5-exposed lung cancer are still largely unknown. Our study confirmed that PM2.5 exposure induced the production of inflammatory factors, epithelial-mesenchymal transition (EMT) and migration of lung cancer cells. Lentinan exerted antitumor effects by inhibiting the production of inflammatory factors, EMT, and migration of lung cancer cells. Lentinan suppressed PM2.5 exposure-induced cellular progression by inhibiting the PM2.5 exposure-induced elevation of PVT1 expression. PVT1 absorbed miR-199a, and miR-199a inhibited caveolin1 expression and thus formed the PVT1/miR-199a/caveolin1 signaling pathway in lung cancer cells. Our study revealed that silencing of the PVT1/miR-199a/caveolin1 signaling pathway affected the role of lentinan in PM2.5-exposed lung cancer cells. Thus, this study first investigated the role of lentinan in PM2.5-exposed lung cancer cells and further displayed the underlying molecular mechanism, providing a potential treatment for PM2.5-exposed lung cancer.
Collapse
Affiliation(s)
- He Qi
- Liaoning University of Traditional Chinese Medicine, Graduate School, Shenyang, People's Republic of China.,Department of Medical Technology, Liaoning Vocational College of Medicine, Shenyang, People's Republic of China
| | - Ying Liu
- Department of Medical Technology, Liaoning Vocational College of Medicine, Shenyang, People's Republic of China
| | - Nan Wang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, People's Republic of China
| | - Chunling Xiao
- Liaoning University of Traditional Chinese Medicine, Graduate School, Shenyang, People's Republic of China.,Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, People's Republic of China
| |
Collapse
|
33
|
Domingo JL, Marquès M. The effects of some essential and toxic metals/metalloids in COVID-19: A review. Food Chem Toxicol 2021; 152:112161. [PMID: 33794307 PMCID: PMC8006493 DOI: 10.1016/j.fct.2021.112161] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022]
Abstract
Thousands of studies have been conducted in order to understand in depth the characteristics of the novel coronavirus SARS-CoV-2, its infectivity and ways of transmission, and very especially everything related to the clinical and severity of the COVID-19, as well as the potential treatments. In this sense, the role that essential and toxic metals/metalloids have in the development and course of this disease is being studied. Metals/metalloids such as arsenic, cadmium, lead, mercury or vanadium, are elements with known toxic effects in mammals, while trace elements such as cobalt, copper, iron, manganese, selenium and zinc are considered essential. Given the importance of metals/metalloids in nutrition and human health, the present review was aimed at assessing the relationship between various essential and toxic metals/metalloids and the health outcomes related with the COVID-19. We are in the position to conclude that particular attention must be paid to the load/levels of essential trace elements in COVID-19 patients, mainly zinc and selenium. On the other hand, the exposure to air pollutants in general, and toxic metal/metalloids in particular, should be avoided as much as possible to reduce the possibilities of viral infections, including SARS-CoV-2.
Collapse
Affiliation(s)
- Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorens 21, 43201, Reus, Catalonia, Spain.
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorens 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
34
|
Jarvis MC. Aerosol Transmission of SARS-CoV-2: Physical Principles and Implications. Front Public Health 2020; 8:590041. [PMID: 33330334 PMCID: PMC7719704 DOI: 10.3389/fpubh.2020.590041] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022] Open
Abstract
Evidence has emerged that SARS-CoV-2, the coronavirus that causes COVID-19, can be transmitted airborne in aerosol particles as well as in larger droplets or by surface deposits. This minireview outlines the underlying aerosol science, making links to aerosol research in other disciplines. SARS-CoV-2 is emitted in aerosol form during normal breathing by both asymptomatic and symptomatic people, remaining viable with a half-life of up to about an hour during which air movement can carry it considerable distances, although it simultaneously disperses. The proportion of the droplet size distribution within the aerosol range depends on the sites of origin within the respiratory tract and on whether the distribution is presented on a number or volume basis. Evaporation and fragmentation reduce the size of the droplets, whereas coalescence increases the mean droplet size. Aerosol particles containing SARS-CoV-2 can also coalesce with pollution particulates, and infection rates correlate with pollution. The operation of ventilation systems in public buildings and transportation can create infection hazards via aerosols, but provides opportunities for reducing the risk of transmission in ways as simple as switching from recirculated to outside air. There are also opportunities to inactivate SARS-CoV-2 in aerosol form with sunlight or UV lamps. The efficiency of masks for blocking aerosol transmission depends strongly on how well they fit. Research areas that urgently need further experimentation include the basis for variation in droplet size distribution and viral load, including droplets emitted by "superspreader" individuals; the evolution of droplet sizes after emission, their interaction with pollutant aerosols and their dispersal by turbulence, which gives a different basis for social distancing.
Collapse
|