1
|
Casado-Martín L, Hernández M, Yeramian N, Pérez D, Eiros JM, Valero A, Rodríguez-Lázaro D. The Impact of the Variability of RT-qPCR Standard Curves on Reliable Viral Detection in Wastewater Surveillance. Microorganisms 2025; 13:776. [PMID: 40284614 PMCID: PMC12029521 DOI: 10.3390/microorganisms13040776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Quantitative Polymerase Chain Reaction (qPCR) is a molecular technique that has become a gold standard in various disciplines, including environmental microbiology, due to its high sensitivity and specificity. In recent years, it has been extensively used in wastewater-based epidemiology to monitor the prevalence of different viruses in the population. In this study, we evaluated whether the no inclusion of a standard curve in each single experiment to reduce time and costs could have an impact on the accuracy of the results. Thirty independent RT-qPCR standard curve experiments using quantitative synthetic RNA material were conducted for seven different viruses, which include two targets of the novel SARS-CoV-2, hepatitis A and E, noroviruses genogroups I and II, human astrovirus, and rotavirus. Results showed that although all the viruses presented adequate efficiency rates (>90%), variability was also observed between them, independently of the viral concentration tested. NoVGII was the virus that presented the higher inter-assay variability in terms of efficiency while showing better sensitivity. In terms of heterogeneity in results, the two targets of SARS-CoV-2 showed the highest rates, being N2 the gene that presented the largest variability (CV 4.38-4.99%) and the lowest efficiency (90.97%). These findings indicate that including a standard curve in every experiment is recommended to obtain reliable results.
Collapse
Affiliation(s)
- Lorena Casado-Martín
- Microbiology Area, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (L.C.-M.); (N.Y.); (D.P.)
- Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Marta Hernández
- Microbiology Area, Faculty of Medicine, University of Valladolid, 47002 Valladolid, Spain; (M.H.); (J.M.E.)
| | - Nadine Yeramian
- Microbiology Area, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (L.C.-M.); (N.Y.); (D.P.)
- Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - Daniel Pérez
- Microbiology Area, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (L.C.-M.); (N.Y.); (D.P.)
- Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| | - José M. Eiros
- Microbiology Area, Faculty of Medicine, University of Valladolid, 47002 Valladolid, Spain; (M.H.); (J.M.E.)
| | - Antonio Valero
- Department of Food Science and Technology, Faculty of Veterinary, Agrifood Campus of International Excellence (ceiA3), University of Cordoba, 14014 Córdoba, Spain;
| | - David Rodríguez-Lázaro
- Microbiology Area, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (L.C.-M.); (N.Y.); (D.P.)
- Centre for Emerging Pathogens and Global Health, University of Burgos, 09001 Burgos, Spain
| |
Collapse
|
2
|
Graf S, Engelmann L, Jeleff Wölfler O, Albrecht I, Schloderer M, Kramer A, Klankermayer L, Gebhardt F, Chaker AM, Spinner CD, Schwab R, Wollenberg B, Protzer U, Hoffmann D. Reopening the Bavarian State Opera Safely: Hygiene Strategies and Incidence of COVID-19 in Artistic Staff During Theater Season 2020/2021. J Voice 2024; 38:798.e7-798.e20. [PMID: 34906415 PMCID: PMC8627642 DOI: 10.1016/j.jvoice.2021.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/16/2023]
Abstract
Due to the drastically rising coronavirus disease (COVID-19) incidence since March 2020, social life was shut down across the globe, and most opera houses were closed. As a result, there are limited data on SARS-CoV-2 infections among artists. The Bavarian State Opera has been reopened in September 2020. This study aimed to identify the incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among employees in the Bavarian State Opera. In addition, the various hygiene strategies for the work groups within the institution are described. During the study period from September 1, 2020 to July 31, 2021, 10,061 nasopharyngeal swabs were obtained from 1,460 artistic staff members in a rolling system. During the entire study period, 61 individuals tested positive for SARS-CoV-2. None of the patients had a severe disease course. Compared to the seven-day-incidence per 100,000 German inhabitants, the estimated corresponding incidence among employees was lower at 37 weeks and higher or equal at 9 weeks. Among the infected individuals, 58.3% were symptomatic, 23.3% were presymptomatic, and 18.3% were asymptomatic. Forty-five percent of employees reported that they had been infected in their private environment, 41.7% suspected that their colleagues were the main contact, and 13.3% were unsure about the origin of their infection. Twenty-four diseased employees were ballet dancers, eight from the orchestra, seven from the administration, seven from the choir singers, six from the costume department, 10 from technical support, and one guest solo singer. In the 2020/2021 theater season, increased SARS-CoV-2 infections and large disease outbreaks were avoided at the Bavarian State Opera. Hygiene strategies, that existed since the beginning, was specifically designed for various work areas in the opera. Regular, mandatory PCR testing and follow-up of positive cases with the issuance of quarantine were performed. Using this disease management approach, artistic work at and reopening of the Bavarian State Opera was feasible with a well-controlled risk.
Collapse
Affiliation(s)
- Simone Graf
- Technical University of Munich, School of Medicine, Munich, University hospital rechts der Isar, Department of Otorhinolaryngology, Germany.
| | - Luca Engelmann
- Technical University of Munich, School of Medicine, Munich, University hospital rechts der Isar, Department of Otorhinolaryngology, Germany
| | - Olivia Jeleff Wölfler
- Technical University of Munich, School of Medicine, Munich, University hospital rechts der Isar, Department of Otorhinolaryngology, Germany
| | | | | | | | - Lucia Klankermayer
- Technical University of Munich, School of Medicine, Munich, University hospital rechts der Isar, Department of Otorhinolaryngology, Germany
| | - Friedemann Gebhardt
- Technical University of Munich /Helmholtz Center, School of Medicine, Munich, Institute for Medical Microbiology, Immunology and Hygiene, Germany
| | - Adam M Chaker
- Technical University of Munich, School of Medicine, Munich, University hospital rechts der Isar, Department of Otorhinolaryngology, Germany; Technical University of Munich, School of Medicine, Munich, University hospital rechts der Isar, Center of Allergy and Environment (ZAUM)
| | - Christoph D Spinner
- Technical University of Munich, School of Medicine, Munich, University hospital rechts der Isar, Department of Internal Medicine II, Germany
| | | | - Barbara Wollenberg
- Technical University of Munich, School of Medicine, Munich, University hospital rechts der Isar, Department of Otorhinolaryngology, Germany
| | - Ulrike Protzer
- Technical University of Munich /Helmholtz Center, School of Medicine, Munich, Institute of Virology, Germany
| | - Dieter Hoffmann
- Technical University of Munich /Helmholtz Center, School of Medicine, Munich, Institute of Virology, Germany
| |
Collapse
|
3
|
Barberá-Riera M, Barneo-Muñoz M, Gascó-Laborda JC, Bellido Blasco J, Porru S, Alfaro C, Esteve Cano V, Carrasco P, Rebagliato M, de Llanos R, Delgado-Saborit JM. Detection of SARS-CoV-2 in aerosols in long term care facilities and other indoor spaces with known COVID-19 outbreaks. ENVIRONMENTAL RESEARCH 2024; 242:117730. [PMID: 38000631 DOI: 10.1016/j.envres.2023.117730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Coronavirus outbreaks are likely to occur in crowded and congregate indoor spaces, and their effects are most severe in vulnerable long term care facilities (LTCFs) residents. Public health officers benefit from tools that allow them to control COVID-19 outbreaks in vulnerable settings such as LTCFs, but which could be translated in the future to control other known and future virus outbreaks. This study aims to develop and test a methodology based on detection of SARS-CoV-2 in aerosol samples collected with personal pumps that could be easily implemented by public health officers. The proposed methodology was used to investigate the levels of SARS-CoV-2 in aerosol in indoor settings, mainly focusing on LTCFs, suffering COVID-19 outbreaks, or in the presence of known COVID-19 cases, and targeting the initial days after diagnosis. Aerosol samples (N = 18) were collected between November 2020 and March 2022 in Castelló (Spain) from LTCFs, merchant ships and a private home with recently infected COVID-19 cases. Sampling was performed for 24-h, onto 47 mm polytetrafluoroethylene (PTFE) and quartz filters, connected to personal pumps at 2 and 4 L/min respectively. RNA from filters was extracted and SARS-CoV-2 was determined by detection of regions N1 and N2 of the nucleocapsid gene alongside the E gene using RT-PCR technique. SARS-CoV-2 genetic material was detected in 87.5% samples. Concentrations ranged ND-19,525 gc/m3 (gene E). No genetic traces were detected in rooms from contacts that were isolated as a preventative measure. Very high levels were also measured at locations with poor ventilation. Aerosol measurement conducted with the proposed methodology provided useful information to public health officers and contributed to manage and control 12 different COVID-19 outbreaks. SARS-CoV-2 was detected in aerosol samples collected during outbreaks in congregate spaces. Indoor aerosol sampling is a useful tool in the early detection and management of COVID-19 outbreaks and supports epidemiological investigations.
Collapse
Affiliation(s)
- M Barberá-Riera
- Department of Medicine, Faculty of Health Sciences, Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - M Barneo-Muñoz
- Department of Medicine, Faculty of Health Sciences, Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - J C Gascó-Laborda
- Epidemiology Division, Public Health Center, Castelló de la Plana, Spain
| | - J Bellido Blasco
- Department of Medicine, Faculty of Health Sciences, Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain; Epidemiology Division, Public Health Center, Castelló de la Plana, Spain; Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - S Porru
- Department of Medicine, Faculty of Health Sciences, Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - C Alfaro
- Department of Medicine, Faculty of Health Sciences, Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - V Esteve Cano
- Department of Inorganic and Organic Chemistry, Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - P Carrasco
- Department of Medicine, Faculty of Health Sciences, Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain; Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020, Valencia, Spain
| | - M Rebagliato
- Department of Medicine, Faculty of Health Sciences, Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain; Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - R de Llanos
- Department of Medicine, Faculty of Health Sciences, Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain.
| | - J M Delgado-Saborit
- Department of Medicine, Faculty of Health Sciences, Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain; Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO-Universitat Jaume I-Universitat de València, Av. Catalunya 21, 46020, Valencia, Spain.
| |
Collapse
|
4
|
Wilhelm A, Schoth J, Meinert-Berning C, Bastian D, Blum H, Elsinga G, Graf A, Heijnen L, Ho J, Kluge M, Krebs S, Stange C, Uchaikina A, Dolny R, Wurzbacher C, Drewes JE, Medema G, Tiehm A, Ciesek S, Teichgräber B, Wintgens T, Weber FA, Widera M. Interlaboratory comparison using inactivated SARS-CoV-2 variants as a feasible tool for quality control in COVID-19 wastewater monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166540. [PMID: 37634730 DOI: 10.1016/j.scitotenv.2023.166540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Wastewater-based SARS-CoV-2 epidemiology (WBE) has proven as an excellent tool to monitor pandemic dynamics supporting individual testing strategies. WBE can also be used as an early warning system for monitoring the emergence of novel pathogens or viral variants. However, for a timely transmission of results, sophisticated sample logistics and analytics performed in decentralized laboratories close to the sampling sites are required. Since multiple decentralized laboratories commonly use custom in-house workflows for sample purification and PCR-analysis, comparative quality control of the analytical procedures is essential to report reliable and comparable results. In this study, we performed an interlaboratory comparison at laboratories specialized for PCR and high-throughput-sequencing (HTS)-based WBE analysis. Frozen reserve samples from low COVID-19 incidence periods were spiked with different inactivated authentic SARS-CoV-2 variants in graduated concentrations and ratios. Samples were sent to the participating laboratories for analysis using laboratory specific methods and the reported viral genome copy numbers and the detection of viral variants were compared with the expected values. All PCR-laboratories reported SARS-CoV-2 genome copy equivalents (GCE) for all spiked samples with a mean intra- and inter-laboratory variability of 19 % and 104 %, respectively, largely reproducing the spike-in scheme. PCR-based genotyping was, in dependence of the underlying PCR-assay performance, able to predict the relative amount of variant specific substitutions even in samples with low spike-in amount. The identification of variants by HTS, however, required >100 copies/ml wastewater and had limited predictive value when analyzing at a genome coverage below 60 %. This interlaboratory test demonstrates that despite highly heterogeneous isolation and analysis procedures, overall SARS-CoV-2 GCE and mutations were determined accurately. Hence, decentralized SARS-CoV-2 wastewater monitoring is feasible to generate comparable analysis results. However, since not all assays detected the correct variant, prior evaluation of PCR and sequencing workflows as well as sustained quality control such as interlaboratory comparisons are mandatory for correct variant detection.
Collapse
Affiliation(s)
- Alexander Wilhelm
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-Str. 40, D-60596 Frankfurt, Germany
| | - Jens Schoth
- Emschergenossenschaft/Lippeverband, Kronprinzenstraße 24, D-45128 Essen, Germany
| | | | - Daniel Bastian
- FiW e.V., Research Institute for Water Management and Climate Future at RWTH Aachen University, Kackertstraße 15-17, D-52056 Aachen, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Feodor-Lynen-Straße 25, D-81377 Munich, Germany
| | - Goffe Elsinga
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Feodor-Lynen-Straße 25, D-81377 Munich, Germany
| | - Leo Heijnen
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Johannes Ho
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Mariana Kluge
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, D-85748 Garching, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Feodor-Lynen-Straße 25, D-81377 Munich, Germany
| | - Claudia Stange
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Anna Uchaikina
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, D-85748 Garching, Germany
| | - Regina Dolny
- Institute of Environmental Engineering, RWTH Aachen University, Mies-van-der-Rohe-Strasse 1, D-52074 Aachen, Germany
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, D-85748 Garching, Germany
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, D-85748 Garching, Germany
| | - Gertjan Medema
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Andreas Tiehm
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Sandra Ciesek
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-Str. 40, D-60596 Frankfurt, Germany; German Center for Infection Research (DZIF), 38124 Braunschweig, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D 60595 Frankfurt am Main, Germany
| | - Burkhard Teichgräber
- Emschergenossenschaft/Lippeverband, Kronprinzenstraße 24, D-45128 Essen, Germany
| | - Thomas Wintgens
- Institute of Environmental Engineering, RWTH Aachen University, Mies-van-der-Rohe-Strasse 1, D-52074 Aachen, Germany
| | - Frank-Andreas Weber
- FiW e.V., Research Institute for Water Management and Climate Future at RWTH Aachen University, Kackertstraße 15-17, D-52056 Aachen, Germany
| | - Marek Widera
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Paul-Ehrlich-Str. 40, D-60596 Frankfurt, Germany.
| |
Collapse
|
5
|
Galperine T, Choi Y, Pagani JL, Kritikos A, Papadimitriou-Olivgeris M, Méan M, Scherz V, Opota O, Greub G, Guery B, Bertelli C. Temporal changes in fecal microbiota of patients infected with COVID-19: a longitudinal cohort. BMC Infect Dis 2023; 23:537. [PMID: 37596518 PMCID: PMC10436399 DOI: 10.1186/s12879-023-08511-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a multifaceted disease potentially responsible for various clinical manifestations including gastro-intestinal symptoms. Several evidences suggest that the intestine is a critical site of immune cell development, gut microbiota could therefore play a key role in lung immune response. We designed a monocentric longitudinal observational study to describe the gut microbiota profile in COVID-19 patients and compare it to a pre-existing cohort of ventilated non-COVID-19 patients. METHODS From March to December 2020, we included patients admitted for COVID-19 in medicine (43 not ventilated) or intensive care unit (ICU) (14 ventilated) with a positive SARS-CoV-2 RT-PCR assay in a respiratory tract sample. 16S metagenomics was performed on rectal swabs from these 57 COVID-19 patients, 35 with one and 22 with multiple stool collections. Nineteen non-COVID-19 ICU controls were also enrolled, among which 14 developed ventilator-associated pneumonia (pneumonia group) and five remained without infection (control group). SARS-CoV-2 viral loads in fecal samples were measured by qPCR. RESULTS Although similar at inclusion, Shannon alpha diversity appeared significantly lower in COVID-19 and pneumonia groups than in the control group at day 7. Furthermore, the microbiota composition became distinct between COVID-19 and non-COVID-19 groups. The fecal microbiota of COVID-19 patients was characterized by increased Bacteroides and the pneumonia group by Prevotella. In a distance-based redundancy analysis, only COVID-19 presented significant effects on the microbiota composition. Moreover, patients in ICU harbored increased Campylobacter and decreased butyrate-producing bacteria, such as Lachnospiraceae, Roseburia and Faecalibacterium as compared to patients in medicine. Both the stay in ICU and patient were significant factors affecting the microbiota composition. SARS-CoV-2 viral loads were higher in ICU than in non-ICU patients. CONCLUSIONS Overall, we identified distinct characteristics of the gut microbiota in COVID-19 patients compared to control groups. COVID-19 patients were primarily characterized by increased Bacteroides and decreased Prevotella. Moreover, disease severity showed a negative correlation with butyrate-producing bacteria. These features could offer valuable insights into potential targets for modulating the host response through the microbiota and contribute to a better understanding of the disease's pathophysiology. TRIAL REGISTRATION CER-VD 2020-00755 (05.05.2020) & 2017-01820 (08.06.2018).
Collapse
Affiliation(s)
- Tatiana Galperine
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, BH10-553, 1011, Lausanne, Switzerland
| | - Yangji Choi
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Luc Pagani
- Service of Intensive Care, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Antonios Kritikos
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, BH10-553, 1011, Lausanne, Switzerland
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Matthaios Papadimitriou-Olivgeris
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, BH10-553, 1011, Lausanne, Switzerland
| | - Marie Méan
- Division of Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Valentin Scherz
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Onya Opota
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Benoit Guery
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, BH10-553, 1011, Lausanne, Switzerland.
| | - Claire Bertelli
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Malaga JL, Pajuelo MJ, Okamoto M, Tsinda EK, Otani K, Tsukayama P, Mascaro L, Cuicapuza D, Katsumi M, Kawamura K, Nishimura H, Sakagami A, Ueki Y, Omiya S, Okamoto S, Nakayama A, Fujimaki SI, Yu C, Azam S, Kodama E, Dapat C, Oshitani H, Saito M. Rapid Detection of SARS-CoV-2 RNA Using Reverse Transcription Recombinase Polymerase Amplification (RT-RPA) with Lateral Flow for N-Protein Gene and Variant-Specific Deletion-Insertion Mutation in S-Protein Gene. Viruses 2023; 15:1254. [PMID: 37376555 DOI: 10.3390/v15061254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Rapid molecular testing for severe acute respiratory coronavirus 2 (SARS-CoV-2) variants may contribute to the development of public health measures, particularly in resource-limited areas. Reverse transcription recombinase polymerase amplification using a lateral flow assay (RT-RPA-LF) allows rapid RNA detection without thermal cyclers. In this study, we developed two assays to detect SARS-CoV-2 nucleocapsid (N) gene and Omicron BA.1 spike (S) gene-specific deletion-insertion mutations (del211/ins214). Both tests had a detection limit of 10 copies/µL in vitro and the detection time was approximately 35 min from incubation to detection. The sensitivities of SARS-CoV-2 (N) RT-RPA-LF by viral load categories were 100% for clinical samples with high (>9015.7 copies/µL, cycle quantification (Cq): < 25) and moderate (385.5-9015.7 copies/µL, Cq: 25-29.9) viral load, 83.3% for low (16.5-385.5 copies/µL, Cq: 30-34.9), and 14.3% for very low (<16.5 copies/µL, Cq: 35-40). The sensitivities of the Omicron BA.1 (S) RT-RPA-LF were 94.9%, 78%, 23.8%, and 0%, respectively, and the specificity against non-BA.1 SARS-CoV-2-positive samples was 96%. The assays seemed more sensitive than rapid antigen detection in moderate viral load samples. Although implementation in resource-limited settings requires additional improvements, deletion-insertion mutations were successfully detected by the RT-RPA-LF technique.
Collapse
Affiliation(s)
- Jose L Malaga
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Monica J Pajuelo
- Laboratorio Microbiología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Michiko Okamoto
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Emmanuel Kagning Tsinda
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Center for Biomedical Innovation, Sinskey Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kanako Otani
- National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Pablo Tsukayama
- Laboratorio de Genómica Microbiana, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Lucero Mascaro
- Laboratorio Microbiología Molecular, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Diego Cuicapuza
- Laboratorio de Genómica Microbiana, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Masamichi Katsumi
- Sendai City Institute of Health, Sendai 984-0002, Japan
- Sendai Shirayuri Women's College, Sendai 981-3107, Japan
| | | | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan
| | - Akie Sakagami
- Department of Microbiology, Miyagi Prefectural Institute of Public Health and Environment, Sendai 983-0836, Japan
| | - Yo Ueki
- Department of Microbiology, Miyagi Prefectural Institute of Public Health and Environment, Sendai 983-0836, Japan
| | - Suguru Omiya
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan
| | - Satoshi Okamoto
- Department of Clinical Laboratory, Tohoku Kosai Hospital, Sendai 980-0803, Japan
| | - Asami Nakayama
- Department of Laboratory Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Shin-Ichi Fujimaki
- Department of Laboratory Medicine, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Chuyao Yu
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sikandar Azam
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Eiichi Kodama
- International Research Institute of Disaster Science, Tohoku University, Sendai 980-8572, Japan
| | - Clyde Dapat
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
7
|
Jang WS, Jee H, Lee JM, Lim CS, Kim J. Performance Evaluation of a BZ COVID-19 NALF Assay for Rapid Diagnosis of SARS-CoV-2. Diagnostics (Basel) 2023; 13:diagnostics13061118. [PMID: 36980425 PMCID: PMC10047401 DOI: 10.3390/diagnostics13061118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Coronavirus disease (COVID-19) caused by SARS-CoV-2 infection has been a global pandemic for more than two years, and it is important to quickly and accurately diagnose and isolate patients with SARS-CoV-2 infection. The BZ COVID-19 NALF Assay could sensitively detect SARS-CoV-2 from a nasopharyngeal swab because it adopts both a loop-mediated isothermal amplification and lateral flow immunochromatography technology. In this study, a total of 389 nasopharyngeal swab samples, of which 182 were SARS-CoV-2 PCR positive and 207 were negative samples, were recruited. Compared to the Allplex™ SARS-CoV-2 Assay, the BZ COVID-19 NALF Assay showed 95.05% sensitivity and 99.03% specificity for detecting SARS-CoV-2. The concordance rate between the BZ COVID-19 NALF Assay and Allplex™ SARS-CoV-2 Assay was 97.69%. The turnaround time of the BZ COVID-19 NALF Assay is only about 40~55 min. The BZ COVID-19 NALF Assay is an accurate, easy, and quick molecular diagnostic test compared to the conventional PCR test for detection of SARS-CoV-2. In addition, the BZ COVID-19 NALF Assay is thought to be very useful in small size medical facilities or developing countries where it is difficult to operate a clinical laboratory.
Collapse
Affiliation(s)
- Woong Sik Jang
- Emergency Medicine, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Hyunseul Jee
- Departments of Laboratory Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Joon Min Lee
- Departments of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Chae Seung Lim
- Departments of Laboratory Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Departments of Laboratory Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Jeeyong Kim
- Departments of Laboratory Medicine, College of Medicine, Korea University, Seoul 02841, Republic of Korea
- Correspondence: ; Tel.: +82-31-412-5304
| |
Collapse
|
8
|
Zambry NS, Awang MS, Beh KK, Hamzah HH, Bustami Y, Obande GA, Khalid MF, Ozsoz M, Manaf AA, Aziah I. A label-free electrochemical DNA biosensor used a printed circuit board gold electrode (PCBGE) to detect SARS-CoV-2 without amplification. LAB ON A CHIP 2023; 23:1622-1636. [PMID: 36786757 DOI: 10.1039/d2lc01159j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The emergence of coronavirus disease 2019 (COVID-19) motivates continuous efforts to develop robust and accurate diagnostic tests to detect severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Detection of viral nucleic acids provides the highest sensitivity and selectivity for diagnosing early and asymptomatic infection because the human immune system may not be active at this stage. Therefore, this work aims to develop a label-free electrochemical DNA biosensor for SARS-CoV-2 detection using a printed circuit board-based gold substrate (PCBGE). The developed sensor used the nucleocapsid phosphoprotein (N) gene as a biomarker. The DNA sensor-based PCBGE was fabricated by self-assembling a thiolated single-stranded DNA (ssDNA) probe onto an Au surface, which performed as the working electrode (WE). The Au surface was then treated with 6-mercapto-1-hexanol (MCH) before detecting the target N gene to produce a well-oriented arrangement of the immobilized ssDNA chains. The successful fabrication of the biosensor was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM). The DNA biosensor performances were evaluated using a synthetic SARS-CoV-2 genome and 20 clinical RNA samples from healthy and infected individuals through EIS. The developed DNA biosensor can detect as low as 1 copy per μL of the N gene within 5 minutes with a LOD of 0.50 μM. Interestingly, the proposed DNA sensor could distinguish the expression of SARS-CoV-2 RNA in a patient diagnosed with COVID-19 without any amplification technique. We believe that the proposed DNA sensor platform is a promising point-of-care (POC) device for COVID-19 viral infection since it offers a rapid detection time with a simple design and workflow detection system, as well as an affordable diagnostic assay.
Collapse
Affiliation(s)
- Nor Syafirah Zambry
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Mohd Syafiq Awang
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia.
| | - Khi Khim Beh
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia.
| | - Hairul Hisham Hamzah
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia.
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Godwin Attah Obande
- Department of Medical Microbiology and Parasitology, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- Department of Microbiology, Faculty of Science, Federal University of Lafia, Lafia, Nasarawa State, Nigeria
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Mehmet Ozsoz
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Turkey
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia.
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
9
|
Burnet JB, Cauchie HM, Walczak C, Goeders N, Ogorzaly L. Persistence of endogenous RNA biomarkers of SARS-CoV-2 and PMMoV in raw wastewater: Impact of temperature and implications for wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159401. [PMID: 36240930 PMCID: PMC9554201 DOI: 10.1016/j.scitotenv.2022.159401] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 05/28/2023]
Abstract
Understanding the persistence of SARS-CoV-2 biomarkers in wastewater should guide wastewater-based epidemiology users in selecting best RNA biomarkers for reliable detection of the virus during current and future waves of the pandemic. In the present study, the persistence of endogenous SARS-CoV-2 were assessed during one month for six different RNA biomarkers and for the pepper mild mottle virus (PMMoV) at three different temperatures (4, 12 and 20 °C) in one wastewater sample. All SARS-CoV-2 RNA biomarkers were consistently detected during 6 days at 4° and differences in signal persistence among RNA biomarkers were mostly observed at 20 °C with N biomarkers being globally more persistent than RdRP, E and ORF1ab ones. SARS-CoV-2 signal persistence further decreased in a temperature dependent manner. At 12 and 20 °C, RNA biomarker losses of 1-log10 occurred on average after 6 and 4 days, and led to a complete signal loss after 13 and 6 days, respectively. Besides the effect of temperature, SARS-CoV-2 RNA signals were more persistent in the particulate phase compared to the aqueous one. Finally, PMMoV RNA signal was highly persistent in both phases and significantly differed from that of SARS-CoV-2 biomarkers. We further provide a detailed overview of the latest literature on SARS-CoV-2 and PMMoV decay rates in sewage matrices.
Collapse
Affiliation(s)
- Jean-Baptiste Burnet
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Henry-Michel Cauchie
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Cécile Walczak
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Nathalie Goeders
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Leslie Ogorzaly
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg.
| |
Collapse
|
10
|
Wratil PR, Kotter K, Bischof ML, Hollerbach S, Apak E, Kalteis AL, Nayeli-Pflantz T, Kaderali L, Adorjan K, Keppler OT. Vaccine-hesitant individuals accumulate additional COVID-19 risk due to divergent perception and behaviors related to SARS-CoV-2 testing: a population-based, cross-sectional study. Infection 2022:10.1007/s15010-022-01947-z. [PMID: 36355269 PMCID: PMC9647754 DOI: 10.1007/s15010-022-01947-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Purpose To investigate the perception of SARS-CoV-2 detection methods, information sources, and opinions on appropriate behavior after receiving negative or positive test results. Methods In a questionnaire-based, cross-sectional study conducted between September 1 and November 17, 2021, epidemiological, behavioral, and COVID-19-related data were acquired from the public in Munich, Germany. Results Most of the 1388 participants obtained information from online media (82.8%) as well as state and federal authorities (80.3%). 93.4% believed in the accuracy of SARS-CoV-2 PCR testing and 41.2% in the accuracy of rapid antigen tests (RATs). However, RATs were preferred for testing (59.1%) over PCR (51.1%). 24.0% of all individuals were willing to ignore hygiene measures and 76.9% were less afraid of SARS-CoV-2 transmission after receiving a negative PCR test (5.9% and 48.8% in case of a negative RAT). 28.8% reported not to self-isolate after receiving a positive RAT. Multivariate analyses revealed that non-vaccinated individuals relied less on information from governmental authorities (p = 0.0004) and more on social media (p = 0.0216), disbelieved in the accuracy of the PCR test (p ≤ 0.0001) while displaying strong preference towards using RATs (p ≤ 0.0001), were more willing to abandon pandemic-related hygiene measures (p ≤ 0.0001), less afraid of transmitting SARS-CoV-2 after a negative RAT (p ≤ 0.0001), and less likely to isolate after a positive RAT (p ≤ 0.0001). Conclusion Insights into preferred information sources as well as perception, preferences, and behavior related to SARS-CoV-2 testing and hygiene measures are key to refining public health information and surveillance campaigns. Non-vaccinated individuals’ divergent believes and behaviors possibly increase their COVID-19 risk. Supplementary Information The online version contains supplementary material available at 10.1007/s15010-022-01947-z .
Collapse
Affiliation(s)
- Paul R Wratil
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
- Max von Pettenkofer Institute and Gene Center, Virology, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany.
| | - Katharina Kotter
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Marie L Bischof
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Sophie Hollerbach
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Elif Apak
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Anna-Lena Kalteis
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Tamara Nayeli-Pflantz
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Kristina Adorjan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU München, Nußbaumstraße 7, 80336, Munich, Germany.
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
- Faculty of Medicine, Max von Pettenkofer Institute and Gene Center, Virology, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany.
| |
Collapse
|
11
|
Oksanen LAH, Virtanen J, Sanmark E, Rantanen N, Venkat V, Sofieva S, Aaltonen K, Kivistö I, Svirskaite J, Pérez AD, Kuula J, Levanov L, Hyvärinen A, Maunula L, Atanasova NS, Laitinen S, Anttila V, Lehtonen L, Lappalainen M, Geneid A, Sironen T. SARS-CoV-2 indoor environment contamination with epidemiological and experimental investigations. INDOOR AIR 2022; 32:e13118. [PMID: 36305066 PMCID: PMC9828560 DOI: 10.1111/ina.13118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 05/02/2023]
Abstract
SARS-CoV-2 has been detected both in air and on surfaces, but questions remain about the patient-specific and environmental factors affecting virus transmission. Additionally, more detailed information on viral sampling of the air is needed. This prospective cohort study (N = 56) presents results from 258 air and 252 surface samples from the surroundings of 23 hospitalized and eight home-treated COVID-19 index patients between July 2020 and March 2021 and compares the results between the measured environments and patient factors. Additionally, epidemiological and experimental investigations were performed. The proportions of qRT-PCR-positive air (10.7% hospital/17.6% homes) and surface samples (8.8%/12.9%) showed statistical similarity in hospital and homes. Significant SARS-CoV-2 air contamination was observed in a large (655.25 m3 ) mechanically ventilated (1.67 air changes per hour, 32.4-421 L/s/patient) patient hall even with only two patients present. All positive air samples were obtained in the absence of aerosol-generating procedures. In four cases, positive environmental samples were detected after the patients had developed a neutralizing IgG response. SARS-CoV-2 RNA was detected in the following particle sizes: 0.65-4.7 μm, 7.0-12.0 μm, >10 μm, and <100 μm. Appropriate infection control against airborne and surface transmission routes is needed in both environments, even after antibody production has begun.
Collapse
Affiliation(s)
- Lotta‐Maria A. H. Oksanen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
| | - Jenni Virtanen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Enni Sanmark
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
| | - Noora Rantanen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
| | - Vinaya Venkat
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Svetlana Sofieva
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Finnish Meteorological InstituteHelsinkiFinland
| | - Kirsi Aaltonen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Ilkka Kivistö
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Julija Svirskaite
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | | | - Joel Kuula
- Finnish Meteorological InstituteHelsinkiFinland
| | - Lev Levanov
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | | | - Leena Maunula
- Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| | - Nina S. Atanasova
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Finnish Meteorological InstituteHelsinkiFinland
| | | | - Veli‐Jukka Anttila
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- HUS Inflammation CenterHelsinki University HospitalHelsinkiFinland
| | - Lasse Lehtonen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- HUS Diagnostic Center, HUSLABHelsinki University HospitalHelsinkiFinland
| | - Maija Lappalainen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- HUS Diagnostic Center, HUSLABHelsinki University HospitalHelsinkiFinland
| | - Ahmed Geneid
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Otorhinolaryngology and Phoniatrics – Head and Neck SurgeryHelsinki University HospitalHelsinkiFinland
| | - Tarja Sironen
- Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Faculty of Veterinary MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
12
|
Khatamzas E, Antwerpen MH, Rehn A, Graf A, Hellmuth JC, Hollaus A, Mohr AW, Gaitzsch E, Weiglein T, Georgi E, Scherer C, Stecher SS, Gruetzner S, Blum H, Krebs S, Reischer A, Leutbecher A, Subklewe M, Dick A, Zange S, Girl P, Müller K, Weigert O, Hopfner KP, Stemmler HJ, von Bergwelt-Baildon M, Keppler OT, Wölfel R, Muenchhoff M, Moosmann A. Accumulation of mutations in antibody and CD8 T cell epitopes in a B cell depleted lymphoma patient with chronic SARS-CoV-2 infection. Nat Commun 2022; 13:5586. [PMID: 36151076 PMCID: PMC9508331 DOI: 10.1038/s41467-022-32772-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Antibodies against the spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can drive adaptive evolution in immunocompromised patients with chronic infection. Here we longitudinally analyze SARS-CoV-2 sequences in a B cell-depleted, lymphoma patient with chronic, ultimately fatal infection, and identify three mutations in the spike protein that dampen convalescent plasma-mediated neutralization of SARS-CoV-2. Additionally, four mutations emerge in non-spike regions encoding three CD8 T cell epitopes, including one nucleoprotein epitope affected by two mutations. Recognition of each mutant peptide by CD8 T cells from convalescent donors is reduced compared to its ancestral peptide, with additive effects resulting from double mutations. Querying public SARS-CoV-2 sequences shows that these mutations have independently emerged as homoplasies in circulating lineages. Our data thus suggest that potential impacts of CD8 T cells on SARS-CoV-2 mutations, at least in those with humoral immunodeficiency, warrant further investigation to inform on vaccine design.
Collapse
Affiliation(s)
- Elham Khatamzas
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany.
- Division of Infectious Diseases and Tropical Medicine, Center for Infectious Diseases, Heidelberg Hospital, Heidelberg, Germany.
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany.
| | - Markus H Antwerpen
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Alexandra Rehn
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Johannes Christian Hellmuth
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Alexandra Hollaus
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Anne-Wiebe Mohr
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Erik Gaitzsch
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Tobias Weiglein
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Enrico Georgi
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Clemens Scherer
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Stephanie-Susanne Stecher
- Department of Medicine II, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Stefanie Gruetzner
- Institute for Transfusion Medicine and Haemostasis, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Anna Reischer
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Alexandra Leutbecher
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Andrea Dick
- Laboratory for Immunogenetics, University of Munich, LMU, Munich, Germany
| | - Sabine Zange
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Philipp Girl
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Katharina Müller
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Oliver Weigert
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hans-Joachim Stemmler
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Oliver T Keppler
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Roman Wölfel
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Maximilian Muenchhoff
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Andreas Moosmann
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| |
Collapse
|
13
|
McHenry A, Iyer K, Wang J, Liu C, Harigopal M. Detection of SARS-CoV-2 in tissue: the comparative roles of RT-qPCR, in situ RNA hybridization, and immunohistochemistry. Expert Rev Mol Diagn 2022; 22:559-574. [PMID: 35658709 DOI: 10.1080/14737159.2022.2085508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The emergence of SARS-CoV-2, the causative agent the COVID-19 pandemic, has led to a rapidly expanding arsenal of molecular diagnostic assays for the detection of viral material in tissue specimens. AREAS COVERED We review the value and shortcomings of available tissue-based assays for SARS-CoV-2 detection in formalin-fixed paraffin-embedded (FFPE) tissue, including immunohistochemistry, in situ hybridization, and quantitative reverse transcription PCR (RT-qPCR). The validation, accuracy, and comparative utility of each method is discussed. Subsequently, we identify commercially available antibodies which render the greatest specificity and reproducibility of staining in FFPE specimens. EXPERT OPINION We offer expert opinion on the efficacy of such techniques and guidance for future implementation, both clinical and experimental.
Collapse
Affiliation(s)
- Austin McHenry
- Yale University School of Medicine, Department of Pathology, New Haven, CT, 06520, United States
| | - Krishna Iyer
- Yale University School of Medicine, Department of Pathology, New Haven, CT, 06520, United States
| | - Jianhi Wang
- Yale University School of Medicine, Department of Pathology, New Haven, CT, 06520, United States
| | - Chen Liu
- Yale University School of Medicine, Department of Pathology, New Haven, CT, 06520, United States
| | - Malini Harigopal
- Yale University School of Medicine, Department of Pathology, New Haven, CT, 06520, United States
| |
Collapse
|
14
|
2D MXenes for combatting COVID-19 Pandemic: A perspective on latest developments and innovations. FLATCHEM 2022; 33. [PMCID: PMC9055790 DOI: 10.1016/j.flatc.2022.100377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The COVID-19 pandemic has adversely affected the world, causing enormous loss of lives. A greater impact on the economy was also observed worldwide. During the pandemic, the antimicrobial aprons, face masks, sterilizers, sensor processed touch-free sanitizers, and highly effective diagnostic devices having greater sensitivity and selectivity helped to foster the healthcare facilities. Furthermore, the research and development sectors are tackling this emergency with the rapid invention of vaccines and medicines. In this regard, two-dimensional (2D) nanomaterials are greatly explored to combat the extreme severity of the pandemic. Among the nanomaterials, the 2D MXene is a prospective element due to its unique properties like greater surface functionalities, enhanced conductivity, superior hydrophilicity, and excellent photocatalytic and/or photothermal properties. These unique properties of MXene can be utilized to fabricate face masks, PPE kits, face shields, and biomedical instruments like efficient biosensors having greater antiviral activities. MXenes can also cure comorbidities in COVID-19 patients and have high drug loading as well as controlled drug release capacity. Moreover, the remarkable biocompatibility of MXene adds a feather in its cap for diverse biomedical applications. This review briefly explains the different synthesis processes of 2D MXenes, their biocompatibility, cytotoxicity and antiviral features. In addition, this review also discusses the viral cycle of SARS-CoV-2 and its inactivation mechanism using MXene. Finally, various applications of MXene for combatting the COVID-19 pandemic and their future perspectives are discussed.
Collapse
|
15
|
Ahmed W, Bivins A, Metcalfe S, Smith WJM, Verbyla ME, Symonds EM, Simpson SL. Evaluation of process limit of detection and quantification variation of SARS-CoV-2 RT-qPCR and RT-dPCR assays for wastewater surveillance. WATER RESEARCH 2022; 213:118132. [PMID: 35152136 PMCID: PMC8812148 DOI: 10.1016/j.watres.2022.118132] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 05/21/2023]
Abstract
Effective wastewater surveillance of SARS-CoV-2 RNA requires the rigorous characterization of the limit of detection resulting from the entire sampling process - the process limit of detection (PLOD). Yet to date, no studies have gone beyond quantifying the assay limit of detection (ALOD) for RT-qPCR or RT-dPCR assays. While the ALOD is the lowest number of gene copies (GC) associated with a 95% probability of detection in a single PCR reaction, the PLOD represents the sensitivity of the method after considering the efficiency of all processing steps (e.g., sample handling, concentration, nucleic acid extraction, and PCR assays) to determine the number of GC in the wastewater sample matrix with a specific probability of detection. The primary objective of this study was to estimate the PLOD resulting from the combination of primary concentration and extraction with six SARS-CoV-2 assays: five RT-qPCR assays (US CDC N1 and N2, China CDC N and ORF1ab (CCDC N and CCDC ORF1ab), and E_Sarbeco RT-qPCR, and one RT-dPCR assay (US CDC N1 RT-dPCR) using two models (exponential survival and cumulative Gaussian). An adsorption extraction (AE) concentration method (i.e., virus adsorption on membrane and the RNA extraction from the membrane) was used to concentrate gamma-irradiated SARS-CoV-2 seeded into 36 wastewater samples. Overall, the US CDC N1 RT-dPCR and RT-qPCR assays had the lowest ALODs (< 10 GC/reaction) and PLODs (<3,954 GC/50 mL; 95% probability of detection) regardless of the seeding level and model used. Nevertheless, consistent amplification and detection rates decreased when seeding levels were < 2.32 × 103 GC/50 mL even for US CDC N1 RT-qPCR and RT-dPCR assays. Consequently, when SARS-CoV-2 RNA concentrations are expected to be low, it may be necessary to improve the positive detection rates of wastewater surveillance by analyzing additional field and RT-PCR replicates. To the best of our knowledge, this is the first study to assess the SARS-CoV-2 PLOD for wastewater and provides important insights on the analytical limitations for trace detection of SARS-CoV-2 RNA in wastewater.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Aaron Bivins
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN, 46556, USA
| | - Suzanne Metcalfe
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy J M Smith
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Matthew E Verbyla
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, CA, USA
| | - Erin M Symonds
- Department of Anthropology, Southern Methodist University, Dallas, Texas, USA
| | | |
Collapse
|
16
|
Should routine risk reduction procedures for the prevention and control of pandemics become a standard in all oncological outpatient clinics? The prospective COVID-19 cohort study: protect-CoV. Med Oncol 2022; 39:104. [PMID: 35397689 PMCID: PMC8994860 DOI: 10.1007/s12032-022-01700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/01/2022] [Indexed: 11/17/2022]
Abstract
Limited knowledge exists on the effectiveness of preventive preparedness plans for the care of outpatient cancer patients during epidemics or pandemics. To ensure adequate, timely and continuous clinical care for this highly vulnerable population, we propose the establishment of preventive standard safety protocols providing effective early phase identification of outbreaks at outpatient cancer facilities and communicating adapted standards of care. The prospective cohort study Protect-CoV conducted at the LMU Klinikum from mid-March to June 2020 investigated the effectiveness of a rapid, proactive and methodical response to protect patients and interrupt SARS-CoV-2 transmission chains during the first pandemic wave. The implemented measures reduced the risk of infection of individual cancer patients and ensured safe adjunctive infusion therapy in an outpatient setting during the early COVID-19 pandemic. In addition to the immediate implementation of standard hygiene procedures, our results underscore the importance of routine PCR testing for the identification of asymptomatic or pre-symptomatic COVID-19 cases and immediate tracing of positive cases and their contacts. While more prospective controlled studies are needed to confirm these results, our study illustrates the importance of including preventative testing and tracing measures in the standard risk reduction procedures at all out patient cancer centers.
Collapse
|
17
|
Paul T, Ledderose S, Bartsch H, Sun N, Soliman S, Märkl B, Ruf V, Herms J, Stern M, Keppler OT, Delbridge C, Müller S, Piontek G, Kimoto YS, Schreiber F, Williams TA, Neumann J, Knösel T, Schulz H, Spallek R, Graw M, Kirchner T, Walch A, Rudelius M. Adrenal tropism of SARS-CoV-2 and adrenal findings in a post-mortem case series of patients with severe fatal COVID-19. Nat Commun 2022; 13:1589. [PMID: 35332140 PMCID: PMC8948269 DOI: 10.1038/s41467-022-29145-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
Progressive respiratory failure and hyperinflammatory response is the primary cause of death in the coronavirus disease 2019 (COVID-19) pandemic. Despite mounting evidence of disruption of the hypothalamus-pituitary-adrenal axis in COVID-19, relatively little is known about the tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to adrenal glands and associated changes. Here we demonstrate adrenal viral tropism and replication in COVID-19 patients. Adrenal glands showed inflammation accompanied by inflammatory cell death. Histopathologic analysis revealed widespread microthrombosis and severe adrenal injury. In addition, activation of the glycerophospholipid metabolism and reduction of cortisone intensities were characteristic for COVID-19 specimens. In conclusion, our autopsy series suggests that SARS-CoV-2 facilitates the induction of adrenalitis. Given the central role of adrenal glands in immunoregulation and taking into account the significant adrenal injury observed, monitoring of developing adrenal insufficiency might be essential in acute SARS-CoV-2 infection and during recovery.
Collapse
Affiliation(s)
- Tanja Paul
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Stephan Ledderose
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Harald Bartsch
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Na Sun
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Munich, Germany
| | - Sarah Soliman
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Bruno Märkl
- Institute of Pathology, University of Augsburg, Augsburg, Germany
| | - Viktoria Ruf
- Institute of Neuropathology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Jochen Herms
- Institute of Neuropathology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Marcel Stern
- Max von Pettenkofer Institut, Ludwig-Maximilians University Munich, Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institut, Ludwig-Maximilians University Munich, Munich, Germany
| | - Claire Delbridge
- Institute of Pathology, Division of Neuropathology, TUM School of Medicine, Technical University Munich, Munich, Germany
| | - Susanna Müller
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Guido Piontek
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Yuki Schneider Kimoto
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Franziska Schreiber
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der University Munich, Munich, Germany
| | - Jens Neumann
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Heiko Schulz
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Ria Spallek
- Medizinische Klinik und Poliklinik III, Technical University Munich, Munich, Germany
| | - Matthias Graw
- Institute of Forensic Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians University Munich, Munich, Germany.
| |
Collapse
|
18
|
Li J, Lin W, Du P, Liu W, Liu X, Yang C, Jia R, Wang Y, Chen Y, Jia L, Han L, Tan W, Liu N, Du J, Ke Y, Wang C. Comparison of reverse-transcription qPCR and droplet digital PCR for the detection of SARS-CoV-2 in clinical specimens of hospitalized patients. Diagn Microbiol Infect Dis 2022; 103:115677. [PMID: 35417835 PMCID: PMC8933867 DOI: 10.1016/j.diagmicrobio.2022.115677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/19/2022] [Accepted: 02/27/2022] [Indexed: 12/23/2022]
Abstract
Accurate detection of severe acute respiratory syndrome coronavirus 2 is not only necessary for viral load monitoring to optimize treatment in hospitalized coronavirus disease 2019 patients, but also critical for deciding whether the patient could be discharged without any risk of viral shedding. Digital droplet PCR (ddPCR) is more sensitive than reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and is usually considered the superior choice. In the current study, we compared the clinical performance of RT-qPCR and ddPCR using oropharyngeal swab samples from patients hospitalized in the temporary Huoshenshan Hospital, Wuhan, Hubei, China. Results demonstrated that ddPCR was indeed more sensitive than RT-qPCR. Negative results might be caused by poor sampling technique or recovered patients, as the range of viral load in these patients varied significantly. In addition, both methods were highly correlated in terms of their ability to detect all three target genes as well as the ratio of copies of viral genes to that of the IC gene. Furthermore, our results evidenced that both methods detected the N gene more easily than the ORF gene. Taken together, these findings imply that the use of ddPCR, as an alternative to RT-qPCR, is necessary for the accurate diagnosis of hospitalized coronavirus disease 2019 patients.
Collapse
|
19
|
Chen WY, Lin H, Barui AK, Gomez AMU, Wendt MK, Stanciu LA. DNA-Functionalized Ti 3C 2T x MXenes for Selective and Rapid Detection of SARS-CoV-2 Nucleocapsid Gene. ACS APPLIED NANO MATERIALS 2022; 5:1902-1910. [PMID: 37556277 PMCID: PMC8751632 DOI: 10.1021/acsanm.1c03520] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/16/2021] [Indexed: 05/04/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an emerging human infectious disease caused by severe acute respiratory syndrome 2 (SARS-CoV-2, initially called novel coronavirus 2019-nCoV) virus. Thus, an accurate and specific diagnosis of COVID-19 is urgently needed for effective point-of-care detection and disease management. The reported promise of two-dimensional (2D) transition-metal carbides (Ti3C2Tx MXene) for biosensing owing to a very high surface area, high electrical conductivity, and hydrophilicity informed their selection for inclusion in functional electrodes for SARS-CoV-2 detection. Here, we demonstrate a new and facile functionalization strategy for Ti3C2Tx with probe DNA molecules through noncovalent adsorption, which eliminates expensive labeling steps and achieves sequence-specific recognition. The 2D Ti3C2Tx functionalized with complementary DNA probes shows a sensitive and selective detection of nucleocapsid (N) gene from SARS-CoV-2 through nucleic acid hybridization and chemoresistive transduction. The fabricated sensors are able to detect the SARS-CoV-2 N gene with sensitive and rapid response, a detection limit below 105 copies/mL in saliva, and high specificity when tested against SARS-CoV-1 and MERS. We hypothesize that the MXenes' interlayer spacing can serve as molecular sieving channels for hosting organic molecules and ions, which is a key advantage to their use in biomolecular sensing.
Collapse
Affiliation(s)
- Winston Yenyu Chen
- School of Materials Engineering, Purdue
University, West Lafayette, Indiana 47907, United
States
- Birck Nanotechnology Center, Purdue
University, West Lafayette, Indiana 47907 United
States
| | - Hang Lin
- Department of Medicinal Chemistry and Molecular
Pharmacology, Purdue University, West Lafayette, Indiana 47907
United States
- Purdue Center for Cancer Research, Purdue
University, West Lafayette, Indiana 47907 United
States
| | - Amit Kumar Barui
- School of Materials Engineering, Purdue
University, West Lafayette, Indiana 47907, United
States
- Birck Nanotechnology Center, Purdue
University, West Lafayette, Indiana 47907 United
States
| | - Ana Maria Ulloa Gomez
- School of Materials Engineering, Purdue
University, West Lafayette, Indiana 47907, United
States
- Birck Nanotechnology Center, Purdue
University, West Lafayette, Indiana 47907 United
States
| | - Michael K. Wendt
- Department of Medicinal Chemistry and Molecular
Pharmacology, Purdue University, West Lafayette, Indiana 47907
United States
- Purdue Center for Cancer Research, Purdue
University, West Lafayette, Indiana 47907 United
States
| | - Lia A. Stanciu
- School of Materials Engineering, Purdue
University, West Lafayette, Indiana 47907, United
States
- Birck Nanotechnology Center, Purdue
University, West Lafayette, Indiana 47907 United
States
| |
Collapse
|
20
|
Ho J, Stange C, Suhrborg R, Wurzbacher C, Drewes JE, Tiehm A. SARS-CoV-2 wastewater surveillance in Germany: Long-term RT-digital droplet PCR monitoring, suitability of primer/probe combinations and biomarker stability. WATER RESEARCH 2022; 210:117977. [PMID: 34968879 DOI: 10.1101/2021.09.16.21263575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/16/2021] [Accepted: 12/11/2021] [Indexed: 05/26/2023]
Abstract
In recent months, wastewater-based epidemiology (WBE) has been shown to be an important tool for early detection of SARS-CoV-2 circulation in the population. In this study, a detection methodology for SARS-CoV-2 RNA (wildtype and variants of concern) in wastewater was developed based on the detection of different target genes (E and ORF1ab) by polyethylene glycol (PEG) precipitation and digital droplet PCR. This methodology was used to determine the SARS-CoV-2 concentration and the proportion of N501Y mutation in raw sewage of the wastewater treatment plant of the city of Karlsruhe in south-western Germany over a period of 1 year (June 2020 to July 2021). Comparison of SARS-CoV-2 concentrations with reported COVID-19 cases in the catchment area showed a significant correlation. As the clinical SARS-CoV-2 official case report chain takes time, viral RNA titre trends appeared more than 12 days earlier than clinical data, demonstrating the potential of wastewater-based epidemiology as an early warning system. Parallel PCR analysis using seven primer and probe systems revealed similar gene copy numbers with E, ORF, RdRP2 and NSP9 assays. RdPP1 and NSP3 generally resulted in lower copy numbers, and in particular for N1 there was low correlation with the other assays. The occurrence of the N501Y mutation in the wastewater of Karlsruhe was consistent with the occurrence of the alpha-variant (B.1.1.7) in the corresponding individual clinical tests. In batch experiments SARS-CoV-2 RNA was stable for several days under anaerobic conditions, but the copy numbers decreased rapidly in the presence of dissolved oxygen. Overall, this study shows that wastewater-based epidemiology is a sensitive and robust approach to detect trends in the spread of SARS-CoV-2 at an early stage, contributing to successful pandemic management.
Collapse
Affiliation(s)
- Johannes Ho
- TZW: DVGW-Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | - Claudia Stange
- TZW: DVGW-Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | - Rabea Suhrborg
- TZW: DVGW-Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | - Christian Wurzbacher
- Technical University of Munich, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany
| | - Jörg E Drewes
- Technical University of Munich, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany
| | - Andreas Tiehm
- TZW: DVGW-Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, 76139 Karlsruhe, Germany.
| |
Collapse
|
21
|
Ho J, Stange C, Suhrborg R, Wurzbacher C, Drewes JE, Tiehm A. SARS-CoV-2 wastewater surveillance in Germany: Long-term RT-digital droplet PCR monitoring, suitability of primer/probe combinations and biomarker stability. WATER RESEARCH 2022; 210:117977. [PMID: 34968879 PMCID: PMC8684593 DOI: 10.1016/j.watres.2021.117977] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/16/2021] [Accepted: 12/11/2021] [Indexed: 05/18/2023]
Abstract
In recent months, wastewater-based epidemiology (WBE) has been shown to be an important tool for early detection of SARS-CoV-2 circulation in the population. In this study, a detection methodology for SARS-CoV-2 RNA (wildtype and variants of concern) in wastewater was developed based on the detection of different target genes (E and ORF1ab) by polyethylene glycol (PEG) precipitation and digital droplet PCR. This methodology was used to determine the SARS-CoV-2 concentration and the proportion of N501Y mutation in raw sewage of the wastewater treatment plant of the city of Karlsruhe in south-western Germany over a period of 1 year (June 2020 to July 2021). Comparison of SARS-CoV-2 concentrations with reported COVID-19 cases in the catchment area showed a significant correlation. As the clinical SARS-CoV-2 official case report chain takes time, viral RNA titre trends appeared more than 12 days earlier than clinical data, demonstrating the potential of wastewater-based epidemiology as an early warning system. Parallel PCR analysis using seven primer and probe systems revealed similar gene copy numbers with E, ORF, RdRP2 and NSP9 assays. RdPP1 and NSP3 generally resulted in lower copy numbers, and in particular for N1 there was low correlation with the other assays. The occurrence of the N501Y mutation in the wastewater of Karlsruhe was consistent with the occurrence of the alpha-variant (B.1.1.7) in the corresponding individual clinical tests. In batch experiments SARS-CoV-2 RNA was stable for several days under anaerobic conditions, but the copy numbers decreased rapidly in the presence of dissolved oxygen. Overall, this study shows that wastewater-based epidemiology is a sensitive and robust approach to detect trends in the spread of SARS-CoV-2 at an early stage, contributing to successful pandemic management.
Collapse
Affiliation(s)
- Johannes Ho
- TZW: DVGW-Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | - Claudia Stange
- TZW: DVGW-Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | - Rabea Suhrborg
- TZW: DVGW-Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, 76139 Karlsruhe, Germany
| | - Christian Wurzbacher
- Technical University of Munich, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany
| | - Jörg E Drewes
- Technical University of Munich, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany
| | - Andreas Tiehm
- TZW: DVGW-Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, 76139 Karlsruhe, Germany.
| |
Collapse
|
22
|
Stolp B, Stern M, Ambiel I, Hofmann K, Morath K, Gallucci L, Cortese M, Bartenschlager R, Ruggieri A, Graw F, Rudelius M, Keppler OT, Fackler OT. SARS-CoV-2 variants of concern display enhanced intrinsic pathogenic properties and expanded organ tropism in mouse models. Cell Rep 2022; 38:110387. [PMID: 35134331 PMCID: PMC8795826 DOI: 10.1016/j.celrep.2022.110387] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 11/28/2022] Open
Abstract
SARS-CoV-2 variants of concern (VOCs) display enhanced transmissibility and resistance to antibody neutralization. Comparing the early 2020 isolate EU-1 to the VOCs Alpha, Beta, and Gamma in mice transgenic for human ACE2 reveals that VOCs induce a broadened scope of symptoms, expand systemic infection to the gastrointestinal tract, elicit the depletion of natural killer cells, and trigger variant-specific cytokine production patterns. Gamma infections result in accelerated disease progression associated with increased immune activation and inflammation. All four SARS-CoV-2 variants induce pDC depletion in the lungs, paralleled by reduced interferon responses. Remarkably, VOCs also use the murine ACE2 receptor for infection to replicate in the lungs of wild-type animals, which induce cellular and innate immune responses that apparently curtail the spread of overt disease. VOCs thus display distinct intrinsic pathogenic properties with broadened tissue and host range. The enhanced pathogenicity of VOCs and their potential for reverse zoonotic transmission pose challenges to clinical and pandemic management.
Collapse
Affiliation(s)
- Bettina Stolp
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany.
| | - Marcel Stern
- Max von Pettenkofer Institute and Gene Center, Virology, Faculty of Medicine, National Reference Center for Retroviruses, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Ina Ambiel
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Katharina Hofmann
- Max von Pettenkofer Institute and Gene Center, Virology, Faculty of Medicine, National Reference Center for Retroviruses, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Katharina Morath
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Lara Gallucci
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Mirko Cortese
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany
| | - Frederik Graw
- BioQuant-Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany
| | - Martina Rudelius
- Institute of Pathology, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Oliver Till Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, Faculty of Medicine, National Reference Center for Retroviruses, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; German Centre for Infection Research (DZIF), Partner Site München, 80336 Munich, Germany
| | - Oliver Till Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Dächert C, Muenchhoff M, Graf A, Autenrieth H, Bender S, Mairhofer H, Wratil PR, Thieme S, Krebs S, Grzimek-Koschewa N, Blum H, Keppler OT. Rapid and sensitive identification of omicron by variant-specific PCR and nanopore sequencing: paradigm for diagnostics of emerging SARS-CoV-2 variants. Med Microbiol Immunol 2022; 211:71-77. [PMID: 35061086 PMCID: PMC8780046 DOI: 10.1007/s00430-022-00728-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/19/2022]
Abstract
On November 26, 2021, the World Health Organization classified B.1.1.529 as a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VoC), named omicron. Spike-gene dropouts in conventional SARS-CoV-2 PCR systems have been reported over the last weeks as indirect diagnostic evidence for the identification of omicron. Here, we report the combination of PCRs specific for heavily mutated sites in the spike gene and nanopore-based full-length genome sequencing for the rapid and sensitive identification of the first four COVID-19 patients diagnosed in Germany to be infected with omicron on November 28, 2021. This study will assist the unambiguous laboratory-based diagnosis and global surveillance for this highly contagious VoC with an unprecedented degree of humoral immune escape. Moreover, we propose that specialized diagnostic laboratories should continuously update their assays for variant-specific PCRs in the spike gene of SARS-CoV-2 to readily detect and diagnose emerging variants of interest and VoCs. The combination with established nanopore sequencing procedures allows both the rapid confirmation by whole genome sequencing as well as the sensitive identification of newly emerging variants of this pandemic β-coronavirus in years to come.
Collapse
Affiliation(s)
- Christopher Dächert
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Alexander Graf
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Hanna Autenrieth
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Sabine Bender
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Helga Mairhofer
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Paul R Wratil
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany
| | - Susanne Thieme
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Natascha Grzimek-Koschewa
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany.
| |
Collapse
|
24
|
Wratil PR, Stern M, Priller A, Willmann A, Almanzar G, Vogel E, Feuerherd M, Cheng CC, Yazici S, Christa C, Jeske S, Lupoli G, Vogt T, Albanese M, Mejías-Pérez E, Bauernfried S, Graf N, Mijocevic H, Vu M, Tinnefeld K, Wettengel J, Hoffmann D, Muenchhoff M, Daechert C, Mairhofer H, Krebs S, Fingerle V, Graf A, Steininger P, Blum H, Hornung V, Liebl B, Überla K, Prelog M, Knolle P, Keppler OT, Protzer U. Three exposures to the spike protein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern. Nat Med 2022; 28:496-503. [PMID: 35090165 DOI: 10.1038/s41591-022-01715-4] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/25/2022] [Indexed: 11/09/2022]
Abstract
Infection-neutralizing antibody responses after SARS-CoV-2 infection or COVID-19 vaccination are an essential component of antiviral immunity. Antibody-mediated protection is challenged by the emergence of SARS-CoV-2 variants of concern (VoCs) with immune escape properties, such as omicron (B.1.1.529) that is rapidly spreading worldwide. Here, we report neutralizing antibody dynamics in a longitudinal cohort of COVID-19 convalescent and infection-naive individuals vaccinated with mRNA BNT162b2 by quantifying anti-SARS-CoV-2-spike antibodies and determining their avidity and neutralization capacity in serum. Using live-virus neutralization assays, we show that a superior infection-neutralizing capacity against all VoCs, including omicron, developed after either two vaccinations in convalescents or after a third vaccination or breakthrough infection of twice-vaccinated, naive individuals. These three consecutive spike antigen exposures resulted in an increasing neutralization capacity per anti-spike antibody unit and were paralleled by stepwise increases in antibody avidity. We conclude that an infection-plus-vaccination-induced hybrid immunity or a triple immunization can induce high-quality antibodies with superior neutralization capacity against VoCs, including omicron.
Collapse
Affiliation(s)
- Paul R Wratil
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Marcel Stern
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Alina Priller
- Institute of Molecular Immunology and Experimental Oncology, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, Munich, Germany
| | - Annika Willmann
- Institute of Virology, Helmholtz Center Munich, Technical University of Munich (TUM), School of Medicine, Munich, Germany
| | - Giovanni Almanzar
- Pediatric Rheumatology / Special Immunology, Pediatrics Department, University Hospital Würzburg, Würzburg, Germany
| | - Emanuel Vogel
- Institute of Virology, Helmholtz Center Munich, Technical University of Munich (TUM), School of Medicine, Munich, Germany
| | - Martin Feuerherd
- Institute of Virology, Helmholtz Center Munich, Technical University of Munich (TUM), School of Medicine, Munich, Germany
| | - Cho-Chin Cheng
- Institute of Virology, Helmholtz Center Munich, Technical University of Munich (TUM), School of Medicine, Munich, Germany
| | - Sarah Yazici
- Institute of Molecular Immunology and Experimental Oncology, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, Munich, Germany
| | - Catharina Christa
- Institute of Virology, Helmholtz Center Munich, Technical University of Munich (TUM), School of Medicine, Munich, Germany
| | - Samuel Jeske
- Institute of Virology, Helmholtz Center Munich, Technical University of Munich (TUM), School of Medicine, Munich, Germany
| | - Gaia Lupoli
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Tim Vogt
- Pediatric Rheumatology / Special Immunology, Pediatrics Department, University Hospital Würzburg, Würzburg, Germany
| | - Manuel Albanese
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany.,National Institute of Molecular Genetics (INGM), Milano, Italy
| | - Ernesto Mejías-Pérez
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Stefan Bauernfried
- Gene Center and Department of Biochemistry, LMU München, Munich, Germany
| | - Natalia Graf
- Institute of Virology, Helmholtz Center Munich, Technical University of Munich (TUM), School of Medicine, Munich, Germany
| | - Hrvoje Mijocevic
- Institute of Virology, Helmholtz Center Munich, Technical University of Munich (TUM), School of Medicine, Munich, Germany
| | - Martin Vu
- Institute of Virology, Helmholtz Center Munich, Technical University of Munich (TUM), School of Medicine, Munich, Germany
| | - Kathrin Tinnefeld
- Institute of Virology, Helmholtz Center Munich, Technical University of Munich (TUM), School of Medicine, Munich, Germany
| | - Jochen Wettengel
- German Centre for Infection Research (DZIF), Partner Site, Munich, Germany.,Institute of Virology, Helmholtz Center Munich, Technical University of Munich (TUM), School of Medicine, Munich, Germany
| | - Dieter Hoffmann
- German Centre for Infection Research (DZIF), Partner Site, Munich, Germany.,Institute of Virology, Helmholtz Center Munich, Technical University of Munich (TUM), School of Medicine, Munich, Germany
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Christopher Daechert
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Helga Mairhofer
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority (LGL (LGL), Oberschleißheim, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Philipp Steininger
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, LMU München, Munich, Germany
| | - Bernhard Liebl
- Bavarian Health and Food Safety Authority (LGL (LGL), Oberschleißheim, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martina Prelog
- Pediatric Rheumatology / Special Immunology, Pediatrics Department, University Hospital Würzburg, Würzburg, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, University Hospital rechts der Isar, Technical University of Munich (TUM), School of Medicine, Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany. .,German Centre for Infection Research (DZIF), Partner Site, Munich, Germany.
| | - Ulrike Protzer
- German Centre for Infection Research (DZIF), Partner Site, Munich, Germany. .,Institute of Virology, Helmholtz Center Munich, Technical University of Munich (TUM), School of Medicine, Munich, Germany.
| |
Collapse
|
25
|
Winklmeier S, Eisenhut K, Taskin D, Rübsamen H, Gerhards R, Schneider C, Wratil PR, Stern M, Eichhorn P, Keppler OT, Klein M, Mader S, Kümpfel T, Meinl E. Persistence of functional memory B cells recognizing SARS-CoV-2 variants despite loss of specific IgG. iScience 2022; 25:103659. [PMID: 34957380 PMCID: PMC8686444 DOI: 10.1016/j.isci.2021.103659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 01/22/2023] Open
Abstract
Although some COVID-19 patients maintain SARS-CoV-2-specific serum immunoglobulin G (IgG) for more than 6 months postinfection, others eventually lose IgG levels. We assessed the persistence of SARS-CoV-2-specific B cells in 17 patients, 5 of whom had lost specific IgGs after 5-8 months. Differentiation of blood-derived B cells in vitro revealed persistent SARS-CoV-2-specific IgG B cells in all patients, whereas IgA B cells were maintained in 11. Antibodies derived from cultured B cells blocked binding of viral receptor-binding domain (RBD) to the cellular receptor ACE-2, had neutralizing activity to authentic virus, and recognized the RBD of the variant of concern Alpha similarly to the wild type, whereas reactivity to Beta and Gamma were decreased. Thus, differentiation of memory B cells could be more sensitive for detecting previous infection than measuring serum antibodies. Understanding the persistence of SARS-CoV-2-specific B cells even in the absence of specific serum IgG will help to promote long-term immunity.
Collapse
Affiliation(s)
- Stephan Winklmeier
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Martinsried, Germany
| | - Katharina Eisenhut
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Martinsried, Germany
| | - Damla Taskin
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Martinsried, Germany
| | - Heike Rübsamen
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Martinsried, Germany
| | - Ramona Gerhards
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Martinsried, Germany
| | - Celine Schneider
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Martinsried, Germany
| | - Paul R. Wratil
- Max von Pettenkofer Institute & GeneCenter, Virology, LMU Munich, 80336 Munich, Germany
| | - Marcel Stern
- Max von Pettenkofer Institute & GeneCenter, Virology, LMU Munich, 80336 Munich, Germany
| | - Peter Eichhorn
- Institute of Laboratory Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Oliver T. Keppler
- Max von Pettenkofer Institute & GeneCenter, Virology, LMU Munich, 80336 Munich, Germany
| | - Matthias Klein
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Simone Mader
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Martinsried, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Martinsried, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, 81377 Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Martinsried, Germany
- Corresponding author
| |
Collapse
|
26
|
Konka A, Lejawa M, Gaździcka J, Bochenek A, Fronczek M, Strzelczyk JK. RT-PCR Detection of SARS-CoV-2 among Individuals from the Upper Silesian Region-Analysis of 108,516 Tests. Diagnostics (Basel) 2021; 12:diagnostics12010007. [PMID: 35054172 PMCID: PMC8774892 DOI: 10.3390/diagnostics12010007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background: The COVID-19 pandemic triggered by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has left a huge mark on everyday lives, introducing restrictions and plunging the global economy. This study aimed to analyze the available epidemiological data from the register of one of the largest laboratories testing for SARS-CoV-2 in the Silesian voivodship of Poland. Methods: This analysis is based upon the epidemiological records collected between 30 March 2020, and 30 April 2021, by the Silesian Park of Medical Technology Kardio-Med Silesia (Zabrze, Poland). In addition, we performed SARS-CoV-2 variant detection in samples from patients reinfected with SARS-CoV-2. Results: Our results confirm that SARS-CoV-2 infections are more common in urban areas. Laboratory-confirmed COVID-19 cases represent 13.21% of all RT-PCR test results during the 13 months of our laboratory diagnostics for SARS-CoV-2 infections. Detection of SARS-CoV-2 variants in samples of potentially reinfected patients showed discrepancies in the results. Conclusions: Due to the higher risk of SARS-CoV-2 infection among the Upper Silesian population, the region is at greater risk of deteriorating economic situation and healthcare as compared to other areas of Poland. RT-PCR methods are inexpensive and suitable for large-scale screening, but they can be untrustworthy so detection of SARS-CoV-2 variants in samples should be confirmed by sequencing.
Collapse
Affiliation(s)
- Adam Konka
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland; (M.L.); (A.B.); (M.F.)
- Correspondence: ; Tel.: +48-32-705-03-05
| | - Mateusz Lejawa
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland; (M.L.); (A.B.); (M.F.)
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 38 Str., 41-808 Zabrze, Poland
| | - Jadwiga Gaździcka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808 Zabrze, Poland; (J.G.); (J.K.S.)
| | - Aneta Bochenek
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland; (M.L.); (A.B.); (M.F.)
| | - Martyna Fronczek
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C, 41-800 Zabrze, Poland; (M.L.); (A.B.); (M.F.)
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana 38 Str., 41-808 Zabrze, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19 Str., 41-808 Zabrze, Poland; (J.G.); (J.K.S.)
| |
Collapse
|
27
|
Cui Y, Wang J, Wang G, Xie X, Tian L. Prevalence and risk factors associated with repeat positive SARS-CoV-2 nucleic acid test results among discharged COVID-19 patients: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27933. [PMID: 35049197 PMCID: PMC9191328 DOI: 10.1097/md.0000000000027933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The COVID-19 (coronavirus disease 2019) pandemic continues to have an immense impact on the world at large. COVID-19 patients who meet the discharge criteria, may subsequently exhibit positive viral RNA test results upon subsequent evaluation. This phenomenon has been a major source of research and public health interest, and poses a major challenge to COVID-19 prevention, treatment, and standardized patient management. METHODS We will search the PubMed, MEDLINE, Embase, Cochrane Clinical Trials Database, China National Knowledge Infrastructure, Wanfang Database, Chinese Science Journal Database, and China Biology Medicine databases for all studies published as of November 2021. Data will be extracted independently by two researchers according to the eligibility criteria. Finally, RevMan 5.3.0 will be implemented for statistical analyses. RESULTS The results of this study will show the prevalence and risk factors associated with repeat positive SARS-CoV-2 nucleic acid test results among discharged COVID-19 patients. CONCLUSIONS This study will provide a reliable evidence-based for the prevalence and risk factors associated with repeat positive SARS-CoV-2 nucleic acid test results among discharged COVID-19 patients. TRIAL REGISTRATION NUMBER CRD42021272447.
Collapse
Affiliation(s)
- Yanru Cui
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jilin Wang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gaofeng Wang
- Department of Ophthalmology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiuguo Xie
- Linzi Traditional Chinese Medicine Hospital, Zibo, Shandong, China
| | - Lizhen Tian
- Department of Ophthalmology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
28
|
Rubio-Acero R, Beyerl J, Muenchhoff M, Roth MS, Castelletti N, Paunovic I, Radon K, Springer B, Nagel C, Boehm B, Böhmer MM, Graf A, Blum H, Krebs S, Keppler OT, Osterman A, Khan ZN, Hoelscher M, Wieser A. Spatially resolved qualified sewage spot sampling to track SARS-CoV-2 dynamics in Munich - One year of experience. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149031. [PMID: 34346361 PMCID: PMC8294104 DOI: 10.1016/j.scitotenv.2021.149031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 05/03/2023]
Abstract
Wastewater-based epidemiology (WBE) is a tool now increasingly proposed to monitor the SARS-CoV-2 burden in populations without the need for individual mass testing. It is especially interesting in metropolitan areas where spread can be very fast, and proper sewage systems are available for sampling with short flow times and thus little decay of the virus. We started in March 2020 to set up a once-a-week qualified spot sampling protocol in six different locations in Munich carefully chosen to contain primarily wastewater of permanent residential areas, rather than industry or hospitals. We used RT-PCR and sequencing to track the spread of SARS-CoV-2 in the Munich population with temporo-spatial resolution. The study became fully operational in mid-April 2020 and has been tracking SARS-CoV-2 RNA load weekly for one year. Sequencing of the isolated viral RNA was performed to obtain information about the presence and abundance of variants of concern in the Munich area over time. We demonstrate that the evolution of SARS-CoV-2 RNA loads (between <7.5 and 3874/ml) in these different areas within Munich correlates well with official seven day incidence notification data (between 0.0 and 327 per 100,000) obtained from the authorities within the respective region. Wastewater viral loads predicted the dynamic of SARS-CoV-2 local incidence about 3 weeks in advance of data based on respiratory swab analyses. Aligning with multiple different point-mutations characteristic for certain variants of concern, we could demonstrate the gradual increase of variant of concern B.1.1.7 in the Munich population beginning in January 2021, weeks before it became apparent in sequencing results of swabs samples taken from patients living in Munich. Overall, the study highlights the potential of WBE to monitor the SARS-CoV-2 pandemic, including the introduction of variants of concern in a local population.
Collapse
Affiliation(s)
- Raquel Rubio-Acero
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80802 Munich, Germany.
| | - Jessica Beyerl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80802 Munich, Germany.
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), partner site Munich, Germany.
| | | | - Noemi Castelletti
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80802 Munich, Germany.
| | - Ivana Paunovic
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80802 Munich, Germany.
| | - Katja Radon
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, 80336 Munich, Germany; Center for International Health, Ludwig-Maximilians-University, Munich, Germany.
| | - Bernd Springer
- Fire Department, Disaster Control, City of Munich, Germany.
| | | | | | - Merle M Böhmer
- Taskforce Infectiology, Department for Infectious Disease Epidemiology (TFI 2), Bavarian Health and Food Safety Authority, Oberschleissheim, Germany; Institute of Social Medicine and Health Systems Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilians University of Munich, Munich, Germany.
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilians University of Munich, Munich, Germany.
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilians University of Munich, Munich, Germany.
| | - Oliver T Keppler
- German Center for Infection Research (DZIF), partner site Munich, Germany; Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU Munich, 80336 Munich, Germany.
| | - Andreas Osterman
- German Center for Infection Research (DZIF), partner site Munich, Germany; Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, LMU Munich, 80336 Munich, Germany.
| | - Zohaib Nisar Khan
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80802 Munich, Germany.
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80802 Munich, Germany; Center for International Health, Ludwig-Maximilians-University, Munich, Germany; German Center for Infection Research (DZIF), partner site Munich, Germany.
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, 80802 Munich, Germany; German Center for Infection Research (DZIF), partner site Munich, Germany.
| |
Collapse
|
29
|
Bock S, Hoffmann B, Beer M, Wernike K. Saving Resources: SARS-CoV-2 Diagnostics by Real-Time RT-PCR Using Reduced Reaction Volumes. Diseases 2021; 9:84. [PMID: 34842648 PMCID: PMC8628695 DOI: 10.3390/diseases9040084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 01/12/2023] Open
Abstract
Since the beginning of 2020, the betacoronavirus SARS-CoV-2 is causing a global pandemic of an acute respiratory disease termed COVID-19. The diagnostics of the novel disease is primarily based on direct virus detection by RT-PCR; however, the availability of test kits may become a major bottleneck, when millions of tests are performed per week. To increase the flexibility of SARS-CoV-2 diagnostics, three real-time RT-PCR assays listed on the homepage of the World Health Organization were selected and investigated regarding their compatibility with three different RT-PCR kits. Furthermore, the reaction volume of the PCR chemistry was reduced up to half of the original protocol to make the individual reactions more cost- and resource-effective. When testing dilution series of culture-grown virus, nearly identical quantification cycle values (Cq) were obtained for all RT-PCR assay/chemistry combinations. Regarding the SARS-CoV-2 detection in clinical samples, agreeing results were obtained for all combinations for virus negative specimens and swabs containing high to medium viral genome loads. In cases of very low SARS-CoV-2 genome loads (Cq > 36), inconsistent results were observed, with some test runs scoring negative and some positive. However, no preference of a specific target within the viral genome (E, RdRp, or N) or of a certain chemistry was seen. In summary, a reduction of the reaction volume and the type of PCR chemistry did not influence the PCR sensitivity.
Collapse
Affiliation(s)
- Sabine Bock
- Berlin-Brandenburg State Laboratory, 15236 Frankfurt, Germany;
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany; (B.H.); (M.B.)
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany; (B.H.); (M.B.)
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany; (B.H.); (M.B.)
| |
Collapse
|
30
|
Muenchhoff M, Graf A, Krebs S, Quartucci C, Hasmann S, Hellmuth JC, Scherer C, Osterman A, Boehm S, Mandel C, Becker-Pennrich AS, Zoller M, Stubbe HC, Munker S, Munker D, Milger K, Gapp M, Schneider S, Ruhle A, Jocham L, Nicolai L, Pekayvaz K, Weinberger T, Mairhofer H, Khatamzas E, Hofmann K, Spaeth PM, Bender S, Kääb S, Zwissler B, Mayerle J, Behr J, von Bergwelt-Baildon M, Reincke M, Grabein B, Hinske CL, Blum H, Keppler OT. Genomic epidemiology reveals multiple introductions of SARS-CoV-2 followed by community and nosocomial spread, Germany, February to May 2020. ACTA ACUST UNITED AC 2021; 26. [PMID: 34713795 PMCID: PMC8555370 DOI: 10.2807/1560-7917.es.2021.26.43.2002066] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background In the SARS-CoV-2 pandemic, viral genomes are available at unprecedented speed, but spatio-temporal bias in genome sequence sampling precludes phylogeographical inference without additional contextual data. Aim We applied genomic epidemiology to trace SARS-CoV-2 spread on an international, national and local level, to illustrate how transmission chains can be resolved to the level of a single event and single person using integrated sequence data and spatio-temporal metadata. Methods We investigated 289 COVID-19 cases at a university hospital in Munich, Germany, between 29 February and 27 May 2020. Using the ARTIC protocol, we obtained near full-length viral genomes from 174 SARS-CoV-2-positive respiratory samples. Phylogenetic analyses using the Auspice software were employed in combination with anamnestic reporting of travel history, interpersonal interactions and perceived high-risk exposures among patients and healthcare workers to characterise cluster outbreaks and establish likely scenarios and timelines of transmission. Results We identified multiple independent introductions in the Munich Metropolitan Region during the first weeks of the first pandemic wave, mainly by travellers returning from popular skiing areas in the Alps. In these early weeks, the rate of presumable hospital-acquired infections among patients and in particular healthcare workers was high (9.6% and 54%, respectively) and we illustrated how transmission chains can be dissected at high resolution combining virus sequences and spatio-temporal networks of human interactions. Conclusions Early spread of SARS-CoV-2 in Europe was catalysed by superspreading events and regional hotspots during the winter holiday season. Genomic epidemiology can be employed to trace viral spread and inform effective containment strategies.
Collapse
Affiliation(s)
- Maximilian Muenchhoff
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany.,German Center for Infection Research (DZIF), partner site Munich, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Caroline Quartucci
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sandra Hasmann
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.,Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Johannes C Hellmuth
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.,Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany
| | - Clemens Scherer
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Andreas Osterman
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Stephan Boehm
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Christopher Mandel
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.,Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Andrea Sabine Becker-Pennrich
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany.,Department of Medical Information Processing, Biometry and Epidemiology (IBE), LMU Munich, Munich, Germany
| | - Michael Zoller
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Hans Christian Stubbe
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Stefan Munker
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Dieter Munker
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Katrin Milger
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Madeleine Gapp
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Stephanie Schneider
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Adrian Ruhle
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Linda Jocham
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Leo Nicolai
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Kami Pekayvaz
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Tobias Weinberger
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Helga Mairhofer
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Elham Khatamzas
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.,Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany
| | - Katharina Hofmann
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Patricia M Spaeth
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Sabine Bender
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Stefan Kääb
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Bernhard Zwissler
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Juergen Behr
- Department of Medicine V, University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Michael von Bergwelt-Baildon
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.,Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany
| | - Martin Reincke
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.,Department of Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Beatrice Grabein
- Department of Clinical Microbiology and Hospital Hygiene, University Hospital, LMU Munich, Munich, Germany
| | - Christian Ludwig Hinske
- Department of Anesthesiology, University Hospital, LMU Munich, Munich, Germany.,Department of Medical Information Processing, Biometry and Epidemiology (IBE), LMU Munich, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany.,German Center for Infection Research (DZIF), partner site Munich, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
31
|
Dynamics of urinary and respiratory shedding of Severe acute respiratory syndrome virus 2 (SARS-CoV-2) RNA excludes urine as a relevant source of viral transmission. Infection 2021; 50:635-642. [PMID: 34716901 PMCID: PMC8556791 DOI: 10.1007/s15010-021-01724-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/17/2021] [Indexed: 10/27/2022]
Abstract
PURPOSE To investigate the expression of the receptor protein ACE-2 alongside the urinary tract, urinary shedding and urinary stability of SARS-CoV-2 RNA. METHODS Immunohistochemical staining was performed on tissue from urological surgery of 10 patients. Further, patients treated for coronavirus disease (COVID-19) at specialized care-units of a university hospital were assessed for detection of SARS-CoV-2 RNA in urinary samples via PCR, disease severity (WHO score), inflammatory response of patients. Finally, the stability of SARS-CoV-2 RNA in urine was analyzed. RESULTS High ACE-2 expression (3/3) was observed in the tubules of the kidney and prostate glands, moderate expression in urothelial cells of the bladder (0-2/3) and no expression in kidney glomeruli, muscularis of the bladder and stroma of the prostate (0/3). SARS-CoV-2 RNA was detected in 5/199 urine samples from 64 patients. Viral RNA was detected in the first urinary sample of sequential samples. Viral RNA load from other specimen as nasopharyngeal swabs (NPS) or endotracheal aspirates revealed higher levels than from urine. Detection of SARS-CoV-2 RNA in urine was not associated with impaired WHO score (median 5, range 3-8 vs median 4, range 1-8, p = 0.314), peak white blood cell count (median 24.1 × 1000/ml, range 5.19-48.1 versus median 11.9 × 1000/ml, range 2.9-60.3, p = 0.307), peak CRP (median 20.7 mg/dl, 4.2-40.2 versus median 11.9 mg/dl, range 0.1-51.9, p = 0.316) or peak IL-6 levels (median: 1442 ng/ml, range 26.7-3918 versus median 140 ng/ml, range 3.0-11,041, p = 0.099). SARS-CoV-2 RNA was stable under different storage conditions and after freeze-thaw cycles. CONCLUSIONS SARS-CoV-2 RNA in the urine of COVID-19 patients occurs infrequently. The viral RNA load and dynamics of SARS-CoV-2 RNA shedding suggest no relevant route of transmission through the urinary tract.
Collapse
|
32
|
Weber S, Hellmuth JC, Scherer C, Muenchhoff M, Mayerle J, Gerbes AL. Liver function test abnormalities at hospital admission are associated with severe course of SARS-CoV-2 infection: a prospective cohort study. Gut 2021; 70:1925-1932. [PMID: 33514597 PMCID: PMC7852072 DOI: 10.1136/gutjnl-2020-323800] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/11/2021] [Accepted: 01/17/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Liver injury has frequently been reported in COVID-19 patients. The clinical relevance of liver injury related to SARS-CoV-2 infection remains unclear with a need for prospective studies on the impact of liver function test (LFT) abnormalities at baseline. DESIGN Data of 217 patients without pre-existing liver disease prospectively included in the COVID-19 registry of the LMU university hospital were analysed in order to assess the association of abnormal LFT at admission and course of the disease. Severe course was defined as admission to the intensive care unit (ICU) or as COVID-19-related death. RESULTS Abnormal LFT at baseline was present in 58% of patients, with a predominant elevation of aspartate aminotransferase (AST) (42%), gamma-glutamyltransferase (GGT) (37%) and alanine aminotransferase (ALT) (27%), hypoalbuminaemia was observed in 33%. Elevation of ALT and GGT, as well as hypoalbuminaemia, was associated with higher proportions of patients requiring ICU treatment and mechanical ventilation. After adjusting for age, gender and comorbidities, hypoalbuminaemia combined with abnormal AST or GGT at hospital admission was a highly significant independent risk factor for ICU admission (OR 46.22 and 38.8, respectively) and for a composite endpoint of ICU admission and/or COVID-19-related death (OR 42.0 and 26.9, respectively). CONCLUSION Abnormal LFTs at hospital admission, in particular GGT and albumin, are associated with a severe course of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sabine Weber
- Department of Medicine II, University Hospital Munich, Munich, Bavaria, Germany
| | - Johannes C Hellmuth
- Department of Medicine III, University Hospital Munich, Munich, Bavaria, Germany
| | - Clemens Scherer
- Department of Medicine I, University Hospital Munich, Munich, Bavaria, Germany
| | - Maximilian Muenchhoff
- Virology, Ludwig Maximilians University of Munich, Munich, Bavaria, Germany
- German Centre for Infection Research (DZIF), partner site Munich, Munich, Bavaria, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital Munich, Munich, Bavaria, Germany
| | - Alexander L Gerbes
- Department of Medicine II, University Hospital Munich, Munich, Bavaria, Germany
| |
Collapse
|
33
|
Marchio A, Batejat C, Vanhomwegen J, Feher M, Grassin Q, Chazal M, Raulin O, Farges-Berth A, Reibel F, Estève V, Dejean A, Jouvenet N, Manuguerra JC, Pineau P. ddPCR increases detection of SARS-CoV-2 RNA in patients with low viral loads. Arch Virol 2021; 166:2529-2540. [PMID: 34251549 PMCID: PMC8273560 DOI: 10.1007/s00705-021-05149-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 01/16/2023]
Abstract
RT-qPCR detection of SARS-CoV-2 RNA still represents the method of reference to diagnose and monitor COVID-19. From the onset of the pandemic, however, doubts have been expressed concerning the sensitivity of this molecular diagnosis method. Droplet digital PCR (ddPCR) is a third-generation PCR technique that is particularly adapted to detecting low-abundance targets. We developed two-color ddPCR assays for the detection of four different regions of SARS-CoV-2 RNA, including non-structural (IP4-RdRP, helicase) and structural (E, N) protein-encoding sequences. We observed that N or E subgenomic RNAs are generally more abundant than IP4 and helicase RNA sequences in cells infected in vitro, suggesting that detection of the N gene, coding for the most abundant subgenomic RNA of SARS-CoV-2, increases the sensitivity of detection during the highly replicative phase of infection. We investigated 208 nasopharyngeal swabs sampled in March-April 2020 in different hospitals of Greater Paris. We found that 8.6% of informative samples (n = 16/185, P < 0.0001) initially scored as "non-positive" (undetermined or negative) by RT-qPCR were positive for SARS-CoV-2 RNA by ddPCR. Our work confirms that the use of ddPCR modestly, but significantly, increases the proportion of upper airway samples testing positive in the framework of first-line diagnosis of a French population.
Collapse
Affiliation(s)
- Agnès Marchio
- Unité "Organisation nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.
| | - Christophe Batejat
- Cellule d'Intervention Biologique d'Urgence, Institut Pasteur, Paris, France
| | - Jessica Vanhomwegen
- Cellule d'Intervention Biologique d'Urgence, Institut Pasteur, Paris, France
| | - Maxence Feher
- Cellule d'Intervention Biologique d'Urgence, Institut Pasteur, Paris, France
| | - Quentin Grassin
- Cellule d'Intervention Biologique d'Urgence, Institut Pasteur, Paris, France
| | - Maxime Chazal
- Département de Virologie, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3569, Institut Pasteur, Paris, France
| | - Olivia Raulin
- Laboratoire de Biologie Médicale, Centre Hospitalier Compiègne-Noyon, Compiègne, France
| | - Anne Farges-Berth
- Laboratoire de Biologie Médicale, Groupe Hospitalier Nord-Essonne, Site de Longjumeau, Longjumeau, France
| | - Florence Reibel
- Laboratoire de Biologie Médicale, Groupe Hospitalier Nord-Essonne, Site d'Orsay, Orsay, France
| | - Vincent Estève
- Laboratoire de Biologie Médicale, Groupe Hospitalier Nord-Essonne, Site de Longjumeau, Longjumeau, France
- Laboratoire de Biologie Médicale, Groupe Hospitalier Nord-Essonne, Site d'Orsay, Orsay, France
| | - Anne Dejean
- Unité "Organisation nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Nolwenn Jouvenet
- Département de Virologie, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 3569, Institut Pasteur, Paris, France
| | | | - Pascal Pineau
- Unité "Organisation nucléaire et Oncogenèse", INSERM U993, Institut Pasteur, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.
| |
Collapse
|
34
|
Zhang H, Yan Z, Wang X, Gaňová M, Chang H, Laššáková S, Korabecna M, Neuzil P. Determination of Advantages and Limitations of qPCR Duplexing in a Single Fluorescent Channel. ACS OMEGA 2021; 6:22292-22300. [PMID: 34497918 PMCID: PMC8412922 DOI: 10.1021/acsomega.1c02971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Real-time (quantitative) polymerase chain reaction (qPCR) has been widely applied in molecular diagnostics due to its immense sensitivity and specificity. qPCR multiplexing, based either on fluorescent probes or intercalating dyes, greatly expanded PCR capability due to the concurrent amplification of several deoxyribonucleic acid sequences. However, probe-based multiplexing requires multiple fluorescent channels, while intercalating dye-based multiplexing needs primers to be designed for amplicons having different melting temperatures. Here, we report a single fluorescent channel-based qPCR duplexing method on a model containing the sequence of chromosomes 21 (Chr21) and 18 (Chr18). We combined nonspecific intercalating dye EvaGreen with a 6-carboxyfluorescein (FAM) probe specific to either Chr21 or Chr18. The copy number (cn) of the target linked to the FAM probe could be determined in the entire tested range from the denaturation curve, while the cn of the other one was determined from the difference between the denaturation and elongation curves. We recorded the amplitude of fluorescence at the end of denaturation and elongation steps, thus getting statistical data set to determine the limit of the proposed method in detail in terms of detectable concentration ratios of both targets. The proposed method eliminated the fluorescence overspilling that happened in probe-based qPCR multiplexing and determined the specificity of the PCR product via melting curve analysis. Additionally, we performed and verified our method using a commercial thermal cycler instead of a self-developed system, making it more generally applicable for researchers. This quantitative single-channel duplexing method is an economical substitute for a conventional rather expensive probe-based qPCR requiring different color probes and hardware capable of processing these fluorescent signals.
Collapse
Affiliation(s)
- Haoqing Zhang
- School
of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
| | - Zhiqiang Yan
- School
of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
| | - Xinlu Wang
- School
of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
| | - Martina Gaňová
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Honglong Chang
- School
of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
| | - Soňa Laššáková
- Institute
of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital
in Prague, Albertov 4, 128 00 Prague, Czech Republic
| | - Marie Korabecna
- Institute
of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital
in Prague, Albertov 4, 128 00 Prague, Czech Republic
| | - Pavel Neuzil
- School
of Mechanical Engineering, Department of Microsystem Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an, Shaanxi 710072, P. R. China
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
- School
of Electrical Engineering and Computer Technology, Brno University of Technology, Technická 10, 612 00 Brno, Czech Republic
| |
Collapse
|
35
|
Osterman A, Iglhaut M, Lehner A, Späth P, Stern M, Autenrieth H, Muenchhoff M, Graf A, Krebs S, Blum H, Baiker A, Grzimek-Koschewa N, Protzer U, Kaderali L, Baldauf HM, Keppler OT. Comparison of four commercial, automated antigen tests to detect SARS-CoV-2 variants of concern. Med Microbiol Immunol 2021; 210:263-275. [PMID: 34415422 PMCID: PMC8377707 DOI: 10.1007/s00430-021-00719-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 12/23/2022]
Abstract
A versatile portfolio of diagnostic tests is essential for the containment of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic. Besides nucleic acid-based test systems and point-of-care (POCT) antigen (Ag) tests, quantitative, laboratory-based nucleocapsid Ag tests for SARS-CoV-2 have recently been launched. Here, we evaluated four commercial Ag tests on automated platforms and one POCT to detect SARS-CoV-2. We evaluated PCR-positive (n = 107) and PCR-negative (n = 303) respiratory swabs from asymptomatic and symptomatic patients at the end of the second pandemic wave in Germany (February–March 2021) as well as clinical isolates EU1 (B.1.117), variant of concern (VOC) Alpha (B.1.1.7) or Beta (B.1.351), which had been expanded in a biosafety level 3 laboratory. The specificities of automated SARS-CoV-2 Ag tests ranged between 97.0 and 99.7% (Lumipulse G SARS-CoV-2 Ag (Fujirebio): 97.03%, Elecsys SARS-CoV-2 Ag (Roche Diagnostics): 97.69%; LIAISON® SARS-CoV-2 Ag (Diasorin) and SARS-CoV-2 Ag ELISA (Euroimmun): 99.67%). In this study cohort of hospitalized patients, the clinical sensitivities of tests were low, ranging from 17.76 to 52.34%, and analytical sensitivities ranged from 420,000 to 25,000,000 Geq/ml. In comparison, the detection limit of the Roche Rapid Ag Test (RAT) was 9,300,000 Geq/ml, detecting 23.58% of respiratory samples. Receiver-operating-characteristics (ROCs) and Youden’s index analyses were performed to further characterize the assays’ overall performance and determine optimal assay cutoffs for sensitivity and specificity. VOCs carrying up to four amino acid mutations in nucleocapsid were detected by all five assays with characteristics comparable to non-VOCs. In summary, automated, quantitative SARS-CoV-2 Ag tests show variable performance and are not necessarily superior to a standard POCT. The efficacy of any alternative testing strategies to complement nucleic acid-based assays must be carefully evaluated by independent laboratories prior to widespread implementation.
Collapse
Affiliation(s)
- Andreas Osterman
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Maximilian Iglhaut
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Andreas Lehner
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Patricia Späth
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Marcel Stern
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Hanna Autenrieth
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Maximilian Muenchhoff
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU München, Munich, Germany
| | - Armin Baiker
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Natascha Grzimek-Koschewa
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Ulrike Protzer
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Hanna-Mari Baldauf
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany.
- Max Von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany.
| | - Oliver T Keppler
- Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site, Munich, Germany.
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.
- Max Von Pettenkofer Institute, Virology, National Reference Center for Retroviruses, LMU München, Pettenkoferstr. 9a, 80336, Munich, Germany.
| |
Collapse
|
36
|
Munker D, Veit T, Barton J, Mertsch P, Mümmler C, Osterman A, Khatamzas E, Barnikel M, Hellmuth JC, Münchhoff M, Walter J, Ghiani A, Munker S, Dinkel J, Behr J, Kneidinger N, Milger K. Pulmonary function impairment of asymptomatic and persistently symptomatic patients 4 months after COVID-19 according to disease severity. Infection 2021; 50:157-168. [PMID: 34322859 PMCID: PMC8318328 DOI: 10.1007/s15010-021-01669-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
Objective Evaluation of pulmonary function impairment after COVID-19 in persistently symptomatic and asymptomatic patients of all disease severities and characterisation of risk factors. Methods Patients with confirmed SARS-CoV-2 infection underwent prospective follow-up with pulmonary function testing and blood gas analysis during steady-state cycle exercise 4 months after acute illness. Pulmonary function impairment (PFI) was defined as reduction below 80% predicted of DLCOcSB, TLC, FVC, or FEV1. Clinical data were analyzed to identify risk factors for impaired pulmonary function. Results 76 patients were included, hereof 35 outpatients with mild disease and 41 patients hospitalized due to COVID-19. Sixteen patients had critical disease requiring mechanical ventilation, 25 patients had moderate–severe disease. After 4 months, 44 patients reported persisting respiratory symptoms. Significant PFI was prevalent in 40 patients (52.6%) occurring among all disease severities. The most common cause for PFI was reduced DLCOcSB (n = 39, 51.3%), followed by reduced TLC and FVC. The severity of PFI was significantly associated with mechanical ventilation (p < 0.001). Further risk factors for DLCO impairment were COPD (p < 0.001), SARS-CoV-2 antibody-Titer (p = 0.014) and in hospitalized patients CT score. A decrease of paO2 > 3 mmHg during cycle exercise occurred in 1/5 of patients after mild disease course. Conclusion We characterized pulmonary function impairment in asymptomatic and persistently symptomatic patients of different severity groups of COVID-19 and identified further risk factors associated with persistently decreased pulmonary function. Remarkably, gas exchange abnormalities were revealed upon cycle exercise in some patients with mild disease courses and no preexisting pulmonary condition. Supplementary Information The online version contains supplementary material available at 10.1007/s15010-021-01669-8.
Collapse
Affiliation(s)
- Dieter Munker
- Department of Medicine V, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Center and LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Tobias Veit
- Department of Medicine V, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Center and LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jürgen Barton
- Department of Medicine V, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Center and LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Pontus Mertsch
- Department of Medicine V, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Center and LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Carlo Mümmler
- Department of Medicine V, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Center and LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andreas Osterman
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Elham Khatamzas
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Michaela Barnikel
- Department of Medicine V, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Center and LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Johannes C Hellmuth
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Maximilian Münchhoff
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Julia Walter
- Department of Medicine V, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Center and LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Alessandro Ghiani
- Department of Pulmonology and Respiratory Medicine, Schillerhoehe Lung Clinic (affiliated to the Robert-Bosch-Hospital GmbH, Stuttgart), Solitudestrasse 18, 70839, Gerlingen, Germany
| | - Stefan Munker
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Julien Dinkel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Center and LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Nikolaus Kneidinger
- Department of Medicine V, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Center and LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Katrin Milger
- Department of Medicine V, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany. .,Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Center and LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
37
|
Munker D, Osterman A, Stubbe H, Muenchhoff M, Veit T, Weinberger T, Barnikel M, Mumm JN, Milger K, Khatamzas E, Klauss S, Scherer C, Hellmuth JC, Giessen-Jung C, Zoller M, Herold T, Stecher S, de Toni EN, Schulz C, Kneidinger N, Keppler OT, Behr J, Mayerle J, Munker S. Dynamics of SARS-CoV-2 shedding in the respiratory tract depends on the severity of disease in COVID-19 patients. Eur Respir J 2021; 58:13993003.02724-2020. [PMID: 33602859 PMCID: PMC7898160 DOI: 10.1183/13993003.02724-2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023]
Abstract
A fraction of COVID-19 patients progress to a severe disease manifestation with respiratory failure and the necessity of mechanical ventilation. Identifying patients at risk is critical for optimised care and early therapeutic interventions. We investigated the dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shedding relative to disease severity. We analysed nasopharyngeal and tracheal shedding of SARS-CoV-2 in 92 patients with diagnosed COVID-19. Upon admission, standardised nasopharyngeal swab or sputum samples were collected. If patients were mechanically ventilated, endotracheal aspirate samples were additionally obtained. Viral shedding was quantified by real-time PCR detection of SARS-CoV-2 RNA. 45% (41 out of 92) of COVID-19 patients had a severe disease course with the need for mechanical ventilation (severe group). At week 1, the initial viral shedding determined from nasopharyngeal swabs showed no significant difference between nonsevere and severe cases. At week 2, a difference could be observed as the viral shedding remained elevated in severely ill patients. A time-course of C-reactive protein, interleukin-6 and procalcitonin revealed an even more protracted inflammatory response following the delayed drop of virus shedding load in severely ill patients. A significant proportion (47.8%) of patients showed evidence of prolonged viral shedding (>17 days), which was associated with severe disease courses (73.2%). We report that viral shedding does not differ significantly between severe and nonsevere COVID-19 cases upon admission to the hospital. Elevated SARS-CoV-2 shedding in the second week of hospitalisation, a systemic inflammatory reaction peaking between the second and third week, and prolonged viral shedding are associated with a more severe disease course. This work finds that elevated SARS-CoV-2 shedding in the second week of hospitalisation, a systemic inflammatory reaction peaking between the second and third week, and prolonged viral shedding are associated with a more severe COVID-19 disease coursehttps://bit.ly/3p544zr
Collapse
Affiliation(s)
- Dieter Munker
- Dept of Medicine 5, University Hospital, Ludwig Maximilian University of Munich, Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich, Munich, Germany.,These authors contributed equally to this work
| | - Andreas Osterman
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University, Munich, Germany.,German Center for Infection Research, Partner Site Munich and Associated Partner Site Munich, Munich, Germany.,These authors contributed equally to this work
| | - Hans Stubbe
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.,Dept of Medicine 2, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University, Munich, Germany.,German Center for Infection Research, Partner Site Munich and Associated Partner Site Munich, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Tobias Veit
- Dept of Medicine 5, University Hospital, Ludwig Maximilian University of Munich, Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich, Munich, Germany
| | - Tobias Weinberger
- Emergency Dept, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.,Dept of Medicine 1, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Michaela Barnikel
- Dept of Medicine 5, University Hospital, Ludwig Maximilian University of Munich, Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich, Munich, Germany
| | - Jan-Niclas Mumm
- Dept of Urology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katrin Milger
- Dept of Medicine 5, University Hospital, Ludwig Maximilian University of Munich, Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich, Munich, Germany
| | - Elham Khatamzas
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.,Dept of Medicine 3, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sarah Klauss
- Dept of Medicine 2, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Clemens Scherer
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.,Emergency Dept, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.,Dept of Medicine 1, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Johannes C Hellmuth
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.,Dept of Medicine 3, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Clemens Giessen-Jung
- Dept of Medicine 3, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Michael Zoller
- Dept of Anaesthesiology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Tobias Herold
- Dept of Medicine 3, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Stephanie Stecher
- Dept of Medicine 2, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Enrico N de Toni
- Dept of Medicine 2, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christian Schulz
- Dept of Medicine 2, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Nikolaus Kneidinger
- Dept of Medicine 5, University Hospital, Ludwig Maximilian University of Munich, Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich, Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig Maximilian University, Munich, Germany
| | - Jürgen Behr
- Dept of Medicine 5, University Hospital, Ludwig Maximilian University of Munich, Member of the German Center for Lung Research (DZL), Comprehensive Pneumology Center Munich, Munich, Germany
| | - Julia Mayerle
- Dept of Medicine 2, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Stefan Munker
- Dept of Medicine 2, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
38
|
COVID-19 in Patients Receiving CD20-depleting Immunochemotherapy for B-cell Lymphoma. Hemasphere 2021; 5:e603. [PMID: 34235400 PMCID: PMC8240782 DOI: 10.1097/hs9.0000000000000603] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023] Open
Abstract
The clinical and immunological impact of B-cell depletion in the context of coronavirus disease 2019 (COVID-19) is unclear. We conducted a prospectively planned analysis of COVID-19 in patients who received B-cell depleting anti-CD20 antibodies and chemotherapy for B-cell lymphomas. The control cohort consisted of age- and sex-matched patients without lymphoma who were hospitalized because of COVID-19. We performed detailed clinical analyses, in-depth cellular and molecular immune profiling, and comprehensive virological studies in 12 patients with available biospecimens. B-cell depleted lymphoma patients had more severe and protracted clinical course (median hospitalization 88 versus 17 d). All patients actively receiving immunochemotherapy (n = 5) required ICU support including long-term mechanical ventilation. Neutrophil recovery following granulocyte colony stimulating factor stimulation coincided with hyperinflammation and clinical deterioration in 4 of the 5 patients. Immune cell profiling and gene expression analysis of peripheral blood mononuclear cells revealed early activation of monocytes/macrophages, neutrophils, and the complement system in B-cell depleted lymphoma patients, with subsequent exacerbation of the inflammatory response and dysfunctional interferon signaling at the time of clinical deterioration of COVID-19. Longitudinal immune cell profiling and functional in vitro assays showed SARS-CoV-2-specific CD8+ and CD4+ T-effector cell responses. Finally, we observed long-term detection of SARS-CoV-2 in respiratory specimens (median 84 versus 12 d) and an inability to mount lasting SARS-CoV-2 antibody responses in B-cell depleted lymphoma patients. In summary, we identified clinically relevant particularities of COVID-19 in lymphoma patients receiving B-cell depleting immunochemotherapies.
Collapse
|
39
|
Marquis B, Opota O, Jaton K, Greub G. Impact of different SARS-CoV-2 assays on laboratory turnaround time. J Med Microbiol 2021; 70:001280. [PMID: 33956591 PMCID: PMC8289200 DOI: 10.1099/jmm.0.001280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction. Clinical microbiology laboratories have had to cope with an increase in the volume of tests due to the emergence of the SARS-CoV-2 virus. Short turnaround times (TATs) are important for case tracing and to help clinicians in patient management. In such a context, high-throughput systems are essential to process the bulk of the tests. Rapid tests are also required to ensure shorter TATs for urgent situations. In our laboratory, SARS-CoV-2 assays were initially implemented on our custom platform using a previously published method. The commercial cobas 6800 (Roche diagnostics) assay and the GeneXpert Xpress (Cepheid) SARS-CoV-2 assay were implemented on 24 March and 8 April 2020, respectively, as soon as available.Hypothesis/Gap Statement. Despite the abundant literature on SARS-CoV-2 assays, the articles focus mainly on the diagnostic performances. This is to our knowledge the first article that specifically studies the TAT of different assays.Aim. We aimed to describe the impact of various SARS-CoV-2 assays on the TAT at the beginning of the outbreak.Methodology. In this study, we retrospectively analysed the TAT of all SARS-CoV-2 assays performed in our centre between 24 February and 9 June, 2020.Results. We retrieved 33 900 analyses, with a median TAT of 6.25 h. TATs were highest (6.9 h) when only our custom platform was used (24 February to 24 March, 2020). They were reduced to 6.1 h when the cobas system was introduced (24 March to 8 April, 2020). The implementation of the GeneXpert further reduced the median TAT to 4.8 h (8 April to 9 June, 2020). The GeneXpert system had the shortest median TAT (1.9 h), followed by the cobas (5.5 h) and by our custom platform (6.9 h).Conclusion. This work shows that the combination of high-throughput systems and rapid tests allows the efficient processing of a large number of tests with a short TAT. In addition, the use of a custom platform allowed the quick implementation of an in-house test when commercial assays were not yet available.
Collapse
Affiliation(s)
- Bastian Marquis
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Onya Opota
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Katia Jaton
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
40
|
Evaluation of a laboratory-based high-throughput SARS-CoV-2 antigen assay for non-COVID-19 patient screening at hospital admission. Med Microbiol Immunol 2021; 210:165-171. [PMID: 33856557 PMCID: PMC8047582 DOI: 10.1007/s00430-021-00706-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/03/2021] [Indexed: 11/09/2022]
Abstract
Several rapid antigen tests (RATs) for the detection of SARS-CoV-2 were evaluated recently. However, reliable performance data for laboratory-based, high-throughput antigen tests are lacking. Therefore and in response to a short-term shortage of PCR reagents, we evaluated DiaSorin's LIAISON SARS-CoV-2 antigen test in comparison to RT-qPCR, and concerning the application of screening non-COVID-19 patients on hospital admission. Applying the manufacturer-recommended cut-off of 200 arbitrary units (AU/mL) the specificity of the LIAISON Test was 100%, the overall analytical sensitivity 40.2%. Lowering the cut-off to 100 AU/mL increased the sensitivity to 49.7% and decreased the specificity to 98.3%. Confining the analysis to samples with an RT-qPCR result < 25 Ct resulted in a sensitivity of 91.2%. The quality of the LIAISON test is very similar to that of good RATs described in the literature with the advantage of high throughput and the disadvantage of relatively long analysis time. It passes the WHO quality criteria for rapid antigen tests and is characterized by particularly high specificity. The LIAISON test can therefore be used for the same applications as recommended for RATs by the WHO. Due to limited sensitivity, the LIAISON test should only be used for screening, if PCR-based assays are not available.
Collapse
|
41
|
Agrawal S, Fanton A, Chandrasekaran SS, Charrez B, Escajeda AM, Son S, Mcintosh R, Bhuiya A, de León Derby MD, Switz NA, Armstrong M, Harris AR, Prywes N, Lukarska M, Biering SB, Smock DCJ, Mok A, Knott GJ, Dang Q, Van Dis E, Dugan E, Kim S, Liu TY, Harris E, Stanley SA, Lareau LF, Tan MX, Fletcher DA, Doudna JA, Savage DF, Hsu PD. Rapid, point-of-care molecular diagnostics with Cas13. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2020.12.14.20247874. [PMID: 33354689 PMCID: PMC7755151 DOI: 10.1101/2020.12.14.20247874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rapid nucleic acid testing is a critical component of a robust infrastructure for increased disease surveillance. Here, we report a microfluidic platform for point-of-care, CRISPR-based molecular diagnostics. We first developed a nucleic acid test which pairs distinct mechanisms of DNA and RNA amplification optimized for high sensitivity and rapid kinetics, linked to Cas13 detection for specificity. We combined this workflow with an extraction-free sample lysis protocol using shelf-stable reagents that are widely available at low cost, and a multiplexed human gene control for calling negative test results. As a proof-of-concept, we demonstrate sensitivity down to 40 copies/μL of SARS-CoV-2 in unextracted saliva within 35 minutes, and validated the test on total RNA extracted from patient nasal swabs with a range of qPCR Ct values from 13-35. To enable sample-to-answer testing, we integrated this diagnostic reaction with a single-use, gravity-driven microfluidic cartridge followed by real-time fluorescent detection in a compact companion instrument. We envision this approach for Diagnostics with Coronavirus Enzymatic Reporting (DISCoVER) will incentivize frequent, fast, and easy testing.
Collapse
Affiliation(s)
- Shreeya Agrawal
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Alison Fanton
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley—University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Sita S. Chandrasekaran
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley—University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Bérénice Charrez
- University of California, Berkeley—University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | | | - Sungmin Son
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | - Abdul Bhuiya
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley—University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - María Díaz de León Derby
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- University of California, Berkeley—University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - Neil A. Switz
- Department of Physics and Astronomy, San José State University, San José, CA, USA
| | - Maxim Armstrong
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew R. Harris
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Noam Prywes
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Maria Lukarska
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Scott B. Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Dylan C. J. Smock
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Amanda Mok
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Gavin J. Knott
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Qi Dang
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Erik Van Dis
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Eli Dugan
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Shin Kim
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Tina Y. Liu
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sarah A. Stanley
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- School of Public Health, University of California, Berkeley, CA, USA
| | - Liana F. Lareau
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | | | - Daniel A. Fletcher
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jennifer A. Doudna
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
| | - David F. Savage
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Patrick D. Hsu
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
42
|
de Kock R, Baselmans M, Scharnhorst V, Deiman B. Sensitive detection and quantification of SARS-CoV-2 by multiplex droplet digital RT-PCR. Eur J Clin Microbiol Infect Dis 2021; 40:807-813. [PMID: 33104899 PMCID: PMC7587514 DOI: 10.1007/s10096-020-04076-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/14/2020] [Indexed: 12/05/2022]
Abstract
The purpose of this study is to develop a one-step droplet digital RT-PCR (RT-ddPCR) multiplex assay that allows for sensitive quantification of SARS-CoV-2 RNA with respect to human-derived RNA and could be used for screening and monitoring of Covid-19 patients. A one-step RT-ddPCR multiplex assay was developed for simultaneous detection of SARS-CoV-2 E, RdRp and N viral RNA, and human Rpp30 DNA and GUSB mRNA, for internal nucleic acid (NA) extraction and RT-PCR control. Dilution series of viral RNA transcripts were prepared in water and total NA extract of Covid-19-negative patients. As reference assay, an E-GUSB duplex RT-PCR was used. GUSB mRNA detection was used to set validity criteria to assure viral RNA and RT-PCR assay quality and to enable quantification of SARS-CoV-2 RNA. In a background of at least 100 GUSB mRNA copies, 5 copies of viral RNA are reliably detectable and 10 copies viral RNA copies are reliably quantifiable. It was found that assay sensitivity of the RT-ddPCR was not affected by the total NA background while assay sensitivity of the gold standard RT-PCR assay is drastically decreased when SARS-CoV-2 copies were detected in a background of total NA extract compared with water. The present study describes a robust and sensitive one-step ddRT-PCR multiplex assay for reliable quantification of SARS-CoV-2 RNA. By determining the fractional abundance of viral RNA with respect to a human housekeeping gene, viral loads from different samples can be compared, what could be used to investigate the infectiveness and to monitor Covid-19 patients.
Collapse
Affiliation(s)
- Remco de Kock
- Clinical Laboratory, Catharina Hospital Eindhoven, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems and Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands.
| | - Mieke Baselmans
- Clinical Laboratory, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
| | - Volkher Scharnhorst
- Clinical Laboratory, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems and Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands
| | - Birgit Deiman
- Clinical Laboratory, Catharina Hospital Eindhoven, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems and Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
- Expert Center Clinical Chemistry Eindhoven, Eindhoven, The Netherlands
| |
Collapse
|
43
|
Niess H, Börner N, Muenchhoff M, Khatamzas E, Stangl M, Graf A, Girl P, Georgi E, Koliogiannis D, Denk G, Irlbeck M, Werner J, Guba M. Liver transplantation in a patient after COVID-19 - Rapid loss of antibodies and prolonged viral RNA shedding. Am J Transplant 2021; 21:1629-1632. [PMID: 33047475 PMCID: PMC7675727 DOI: 10.1111/ajt.16349] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 01/25/2023]
Abstract
To date, little is known about the duration and effectiveness of immunity as well as possible adverse late effects after an infection with SARS-CoV-2. Thus it is unclear, when and if liver transplantation can be safely offered to patients who suffered from COVID-19. Here, we report on a successful liver transplantation shortly after convalescence from COVID-19 with subsequent partial seroreversion as well as recurrence and prolonged shedding of viral RNA.
Collapse
Affiliation(s)
- Hanno Niess
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany,Correspondence Hanno Niess
| | - Nikolaus Börner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Maximilian Muenchhoff
- Virology, Max von Pettenkofer Institute, Ludwig-Maximilian-University, Munich, Germany,German Center for Infection Research (DZIF, Partner Site Munich, Munich, Germany
| | - Elham Khatamzas
- Department of Internal Medicine III, Ludwig-Maximilians-University, Munich, Germany
| | - Manfred Stangl
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Alex Graf
- Laboratory for Functional Genome Analysis, Gene-Center, Ludwig-Maximilians-University, Munich, Germany
| | - Philipp Girl
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Enrico Georgi
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Dionysios Koliogiannis
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Gerald Denk
- Department of Internal Medicine II, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Irlbeck
- Department of Anesthesiology, Ludwig-Maximilians-University, Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Markus Guba
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
44
|
Altamimi AM, Obeid DA, Alaifan TA, Taha MT, Alhothali MT, Alzahrani FA, Albarrag AM. Assessment of 12 qualitative RT-PCR commercial kits for the detection of SARS-CoV-2. J Med Virol 2021; 93:3219-3226. [PMID: 33629747 PMCID: PMC8014669 DOI: 10.1002/jmv.26900] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/05/2023]
Abstract
The emergence of the novel coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) in the late months of 2019 had the officials to declare a public health emergency leading to a global response. Public measurements rely on an accurate diagnosis of individuals infected with the virus by using real‐time reverse transcriptase‐polymerase chain reaction (RT‐PCR). The aim of our study is to relate the fundamental clinical and analytical performance of SARS‐CoV‐2 (RT‐PCR) commercial kits. A total of 94 clinical samples were selected. Generally, 400 µl of each respiratory specimen was subjected to extraction using ExiPrep 96 Viral RNA Kit. All kits master mix preparation, cycling protocol, thermocycler, and results interpretation were carried out according to the manufacturer's instructions of use and recommendations. The performance of the kits was comparable except for the LYRA kit as it was less sensitive (F = 67, p < .001). Overall, four kits scored a sensitivity of 100% including: BGI, IQ Real, Sansure, and RADI. For specificity, all the tested kits scored above 95%. The performance of these commercial kits by gene target showed no significant change in CT values which indicates that kits disparities are mainly linked to the oligonucleotide of the gene target. We believe that most of the commercially available RT‐PCR kits included in this study can be used for routine diagnosis of patients with SARS‐CoV‐2. We recommend including kits with multiple targets in order to monitor the virus changes over time. The aim of our study is to relate the fundamental clinical and analytical performance of SARS‐COV‐2 (RT‐PCR) commercial kits. Overall, four kits scored a sensitivity of 100% including: BGI, IQ Real, Sansure, and RADI. For specificity, all the tested kits scored above 95%. Whole‐genome sequencing was used to analysis the nucleotide and amino acid identity and the genetic diversity of G9P[8] RVAs in this study. The performance of these commercial kits by gene target showed no significant change in Ct values which indicates that kits disparities are mainly linked to the oligonucleotide of the gene target. We recommend including kits with multiple targets in order to monitor the virus changes over time.
Collapse
Affiliation(s)
- Asmaa M Altamimi
- Public Health Laboratories, Saudi Center for Disease Prevention and Control, Riyadh, Saudi Arabia
| | - Dalia A Obeid
- Public Health Laboratories, Saudi Center for Disease Prevention and Control, Riyadh, Saudi Arabia
| | - Taghreed A Alaifan
- Public Health Laboratories, Saudi Center for Disease Prevention and Control, Riyadh, Saudi Arabia
| | - Moroje T Taha
- Public Health Laboratories, Saudi Center for Disease Prevention and Control, Riyadh, Saudi Arabia
| | - Marwa T Alhothali
- Public Health Laboratories, Saudi Center for Disease Prevention and Control, Riyadh, Saudi Arabia
| | - Fahad A Alzahrani
- Public Health Laboratories, Saudi Center for Disease Prevention and Control, Riyadh, Saudi Arabia
| | - Ahmad M Albarrag
- Public Health Laboratories, Saudi Center for Disease Prevention and Control, Riyadh, Saudi Arabia.,Pathology Department, Medical Microbiology, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
45
|
Pérez-Cataluña A, Cuevas-Ferrando E, Randazzo W, Falcó I, Allende A, Sánchez G. Comparing analytical methods to detect SARS-CoV-2 in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143870. [PMID: 33338788 PMCID: PMC7722604 DOI: 10.1016/j.scitotenv.2020.143870] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 05/09/2023]
Abstract
Wastewater based epidemiology (WBE) has emerged as a reliable strategy to assess the coronavirus disease 2019 (COVID-19) pandemic. Recent publications suggest that SARS-CoV-2 detection in wastewater is technically feasible; however, many different protocols are available and most of the methods applied have not been properly validated. To this end, different procedures to concentrate and extract inactivated SARS-CoV-2 and surrogates were initially evaluated. Urban wastewater seeded with gamma-irradiated SARS-CoV-2, porcine epidemic diarrhea virus (PEDV), and mengovirus (MgV) was used to test the concentration efficiency of an aluminum-based adsorption-precipitation method and a polyethylene glycol (PEG) precipitation protocol. Moreover, two different RNA extraction methods were compared in this study: a commercial manual spin column centrifugation kit and an automated protocol based on magnetic silica beads. Overall, the evaluated concentration methods did not impact the recovery of gamma-irradiated SARS-CoV-2 nor MgV, while extraction methods showed significant differences for PEDV. Mean recovery rates of 42.9 ± 9.5%, 27.5 ± 14.3% and 9.0 ± 2.2% were obtained for gamma-irradiated SARS-CoV-2, PEDV and MgV, respectively. Limits of detection (LoD95%) for five genomic SARS-CoV-2 targets (N1, N2, gene E, IP2 and IP4) ranged from 1.56 log genome equivalents (ge)/mL (N1) to 2.22 log ge/mL (IP4) when automated system was used; while values ranging between 2.08 (N1) and 2.34 (E) log ge/mL were observed when using column-based extraction method. Different targets were also evaluated in naturally contaminated wastewater samples with 91.2%, 85.3%, 70.6%, 79.4% and 73.5% positivity, for N1, N2, E, IP2 and IP4, respectively. Our benchmarked comparison study suggests that the aluminum precipitation method coupled with the automated nucleic extraction represents a method of acceptable sensitivity to provide readily results of interest for SARS-CoV-2 WBE surveillance.
Collapse
Affiliation(s)
- Alba Pérez-Cataluña
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Enric Cuevas-Ferrando
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Walter Randazzo
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain; Department of Microbiology and Ecology, University of Valencia, Av. Dr. Moliner, 50, Burjassot, 46100, Valencia, Spain
| | - Irene Falcó
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain
| | - Ana Allende
- Research Group on Quality and Safety of Fruits and Vegetables, Department of Food Science and Technology, CEBAS-CSIC, Campus Universitario de Espinardo, 25, 30100 Murcia, Spain
| | - Gloria Sánchez
- Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
46
|
Bustin S, Mueller R, Shipley G, Nolan T. COVID-19 and Diagnostic Testing for SARS-CoV-2 by RT-qPCR-Facts and Fallacies. Int J Mol Sci 2021; 22:2459. [PMID: 33671091 PMCID: PMC7957603 DOI: 10.3390/ijms22052459] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022] Open
Abstract
Although molecular testing, and RT-qPCR in particular, has been an indispensable component in the scientific armoury targeting SARS-CoV-2, there are numerous falsehoods, misconceptions, assumptions and exaggerated expectations with regards to capability, performance and usefulness of the technology. It is essential that the true strengths and limitations, although publicised for at least twenty years, are restated in the context of the current COVID-19 epidemic. The main objective of this commentary is to address and help stop the unfounded and debilitating speculation surrounding its use.
Collapse
Affiliation(s)
- Stephen Bustin
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford CM1 1SQ, UK;
| | | | | | - Tania Nolan
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford CM1 1SQ, UK;
| |
Collapse
|
47
|
Bieber S, Kraechan A, Hellmuth JC, Muenchhoff M, Scherer C, Schroeder I, Irlbeck M, Kaeaeb S, Massberg S, Hausleiter J, Grabmaier U, Orban M, Weckbach LT. Left and right ventricular dysfunction in patients with COVID-19-associated myocardial injury. Infection 2021; 49:491-500. [PMID: 33515390 PMCID: PMC7846912 DOI: 10.1007/s15010-020-01572-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022]
Abstract
Purpose SARS-COV-2 infection can develop into a multi-organ disease. Although pathophysiological mechanisms of COVID-19-associated myocardial injury have been studied throughout the pandemic course in 2019, its morphological characterisation is still unclear. With this study, we aimed to characterise echocardiographic patterns of ventricular function in patients with COVID-19-associated myocardial injury. Methods We prospectively assessed 32 patients hospitalised with COVID-19 and presence or absence of elevated high sensitive troponin T (hsTNT+ vs. hsTNT-) by comprehensive three-dimensional (3D) and strain echocardiography. Results A minority (34.3%) of patients had normal ventricular function, whereas 65.7% had left and/or right ventricular dysfunction defined by impaired left and/or right ventricular ejection fraction and strain measurements. Concomitant biventricular dysfunction was common in hsTNT+ patients. We observed impaired left ventricular (LV) global longitudinal strain (GLS) in patients with myocardial injury (-13.9% vs. -17.7% for hsTNT+ vs. hsTNT-, p = 0.005) but preserved LV ejection fraction (52% vs. 59%, p = 0.074). Further, in these patients, right ventricular (RV) systolic function was impaired with lower RV ejection fraction (40% vs. 49%, p = 0.001) and reduced RV free wall strain (-18.5% vs. -28.3%, p = 0.003). Myocardial dysfunction partially recovered in hsTNT + patients after 52 days of follow-up. In particular, LV-GLS and RV-FWS significantly improved from baseline to follow-up (LV-GLS: -13.9% to -16.5%, p = 0.013; RV-FWS: -18.5% to -22.3%, p = 0.037). Conclusion In patients with COVID-19-associated myocardial injury, comprehensive 3D and strain echocardiography revealed LV dysfunction by GLS and RV dysfunction, which partially resolved at 2-month follow-up. Trial registration COVID-19 Registry of the LMU University Hospital Munich (CORKUM), WHO trial ID DRKS00021225. Supplementary Information The online version contains supplementary material available at 10.1007/s15010-020-01572-8.
Collapse
Affiliation(s)
- Stéphanie Bieber
- Medizinische Klinik und Poliklinik I, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University, Marchioninistraße 15, 81377, Munich, Germany. .,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.
| | - Angelina Kraechan
- Medizinische Klinik und Poliklinik I, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University, Marchioninistraße 15, 81377, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
| | - Johannes C Hellmuth
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.,Medizinische Klinik und Poliklinik III, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University, Munich, Germany
| | - Maximilian Muenchhoff
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.,Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU Muenchen, Munich, Germany.,DZIF (German Center for Infection Research), Partner Site, Munich, Germany
| | - Clemens Scherer
- Medizinische Klinik und Poliklinik I, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University, Marchioninistraße 15, 81377, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Munich, Germany
| | - Ines Schroeder
- Department of Anaesthesiology, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Irlbeck
- Department of Anaesthesiology, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan Kaeaeb
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University, Marchioninistraße 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Munich, Germany
| | - Joerg Hausleiter
- Medizinische Klinik und Poliklinik I, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University, Marchioninistraße 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Munich, Germany
| | - Ulrich Grabmaier
- Medizinische Klinik und Poliklinik I, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University, Marchioninistraße 15, 81377, Munich, Germany.,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Munich, Germany
| | - Mathias Orban
- Medizinische Klinik und Poliklinik I, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University, Marchioninistraße 15, 81377, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Munich, Germany
| | - Ludwig T Weckbach
- Medizinische Klinik und Poliklinik I, Klinikum der Universitaet Muenchen, Ludwig-Maximilians-University, Marchioninistraße 15, 81377, Munich, Germany. .,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site, Munich, Germany. .,Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-University, Planegg-Martinsried, Germany.
| |
Collapse
|
48
|
Evaluation of two rapid antigen tests to detect SARS-CoV-2 in a hospital setting. Med Microbiol Immunol 2021; 210:65-72. [PMID: 33452927 PMCID: PMC7811156 DOI: 10.1007/s00430-020-00698-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Successful containment strategies for the SARS-CoV-2 pandemic will depend on reliable diagnostic assays. Point-of-care antigen tests (POCT) may provide an alternative to time-consuming PCR tests to rapidly screen for acute infections on site. Here, we evaluated two SARS-CoV-2 antigen tests: the STANDARD™ F COVID-19 Ag FIA (FIA) and the SARS-CoV-2 Rapid Antigen Test (RAT). For diagnostic assessment, we used a large set of PCR-positive and PCR-negative respiratory swabs from asymptomatic and symptomatic patients and health care workers in the setting of two University Hospitals in Munich, Germany, i.e. emergency rooms, patient care units or employee test centers. For FIA, overall clinical sensitivity and specificity were 45.4% (n = 381) and 97.8% (n = 360), respectively, and for RAT, 50.3% (n = 445) and 97.7% (n = 386), respectively. For primary diagnosis of asymptomatic and symptomatic individuals, diagnostic sensitivities were 60.9% (FIA) (n = 189) and 64.5% (RAT) (n = 256). This questions these tests' utility for the reliable detection of acute SARS-CoV-2-infected individuals, in particular in high-risk settings. We support the proposal that convincing high-quality outcome data on the impact of false-negative and false-positive antigen test results need to be obtained in a POCT setting. Moreover, the efficacy of alternative testing strategies to complement PCR assays must be evaluated by independent laboratories, prior to widespread implementation in national and international test strategies.
Collapse
|
49
|
Rattan A, Ahmad H. WITHDRAWN: Can quantitative RT-PCR for SARS-coV-2 help in better management of patients and control of coronavirus disease 2019 pandemic. Indian J Med Microbiol 2020:S0255-0857(20)30019-0. [PMID: 33487476 PMCID: PMC7667399 DOI: 10.1016/j.ijmmb.2020.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Ashok Rattan
- All India Institute of Medical Sciences, Delhi, India; Pathkind Labs, Gurgaon, Haryana, India
| | - Hafiz Ahmad
- Department of Medical Microbiology and Immunology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, United Arab Emirates; RAK Hospital, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
50
|
Simon V, van Bakel H, Sordillo EM. Positive, again! What to make of "re-positive" SARS-CoV-2 molecular test results. EBioMedicine 2020; 60:103011. [PMID: 32977160 PMCID: PMC7506438 DOI: 10.1016/j.ebiom.2020.103011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/31/2022] Open
Affiliation(s)
- Viviana Simon
- Department of Microbiology, Division of Infectious Diseases, Department of Medicine and The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|