1
|
Yang K, Nizami S, Hu S, Zou L, Deng H, Xie J, Guo Q, Edwards KM, Dhanasekaran V, Yen HL, Wu J. Genetic diversity of highly pathogenic avian influenza H5N6 and H5N8 viruses in poultry markets in Guangdong, China, 2020-2022. J Virol 2025; 99:e0114524. [PMID: 39629997 PMCID: PMC11784294 DOI: 10.1128/jvi.01145-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/30/2024] [Indexed: 02/01/2025] Open
Abstract
H5 highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/96 (Gs/Gd) lineage continue to evolve and cause outbreaks in domestic poultry and wild birds, with sporadic spillover infections in mammals. The global spread of clade 2.3.4.4b viruses via migratory birds since 2020 has facilitated the introduction of novel reassortants to China, where avian influenza of various subtypes have been epizootic or enzootic among domestic birds. To determine the impact of clade 2.3.4.4b re-introduction on local HPAI dynamics, we analyzed the genetic diversity of H5N6 and H5N8 detected from monthly poultry market surveillance in Guangdong, China, between 2020 and 2022. Our findings reveal that H5N6 viruses clustered in clades 2.3.4.4b and 2.3.4.4h, while H5N8 viruses were exclusively clustered in clade 2.3.4.4b. After 2020, the re-introduced clade 2.3.4.4b viruses replaced the clade 2.3.4.4h viruses detected in 2020. The N6 genes were divided into two clusters, distinguished by an 11 amino acid deletion in the stalk region, while the N8 genes clustered with clade 2.3.4.4 H5N8 viruses circulating among wild birds. Genomic analysis identified 10 transient genotypes. H5N6, which was more prevalently detected, was also clustered into more genotypes than H5N8. Specifically, H5N6 isolates contained genes derived from HPAI H5Nx viruses and low pathogenic avian influenza in China, while the H5N8 isolates contained genes derived from HPAI A(H5N8) 2.3.4.4b and A(H5N1) 2.3.2.1c. No positive selection on amino acid residues associated with mammalian adaptation was found. Our results suggest expanded genetic diversity of H5Nx viruses in China since 2021 with increasing challenges for pandemic preparedness.IMPORTANCESince 2016/2017, clade 2.3.4.4b H5Nx viruses have spread via migratory birds to all continents except Oceania. Here, we evaluated the impact of the re-introduction of clade of 2.3.4.4b on highly pathogenic avian influenza (HPAI) virus genetic diversity in China. Twenty-two H5N6 and H5N8 HPAI isolated from monthly surveillance in two poultry markets in Guangdong between 2020 and 2022 were characterized. Our findings showed that clade 2.3.4.4h, detected in 2020, was replaced by clade 2.3.4.4b in 2021-2022. H5N6 (n = 18) were clustered into more genotypes than H5N8 (n = 4), suggesting that H5N6 may possess better replication fitness in poultry. Conversely, the H5N8 genotypes are largely derived from the clade 2.3.4.4b wild bird isolates. As clade 2.3.4.4b continues to spread via migratory birds, it is anticipated that the genetic diversity of H5N6 viruses circulating in China may continue to expand in the coming years. Continuous efforts in surveillance, genetic analysis, and risk assessment are therefore crucial for pandemic preparedness.
Collapse
Affiliation(s)
- Kang Yang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
- School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Sarea Nizami
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Shu Hu
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Lirong Zou
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Huishi Deng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Jiamin Xie
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Qianfang Guo
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Kimberly M. Edwards
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Vijaykrishna Dhanasekaran
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jie Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Falchieri M, Reid SM, Dastderji A, Cracknell J, Warren CJ, Mollett BC, Peers-Dent J, Schlachter ALD, Mcginn N, Hepple R, Thomas S, Ridout S, Quayle J, Pizzi R, Núñez A, Byrne AMP, James J, Banyard AC. Rapid mortality in captive bush dogs ( Speothos venaticus) caused by influenza A of avian origin (H5N1) at a wildlife collection in the United Kingdom. Emerg Microbes Infect 2024; 13:2361792. [PMID: 38828793 PMCID: PMC11155434 DOI: 10.1080/22221751.2024.2361792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Europe has suffered unprecedented epizootics of high pathogenicity avian influenza (HPAI) clade 2.3.4.4b H5N1 since Autumn 2021. As well as impacting upon commercial and wild avian species, the virus has also infected mammalian species more than ever observed previously. Mammalian species involved in spill over events have primarily been scavenging terrestrial carnivores and farmed mammalian species although marine mammals have also been affected. Alongside reports of detections of mammalian species found dead through different surveillance schemes, several mass mortality events have been reported in farmed and wild animals. In November 2022, an unusual mortality event was reported in captive bush dogs (Speothos venaticus) with clade 2.3.4.4b H5N1 HPAIV of avian origin being the causative agent. The event involved an enclosure of 15 bush dogs, 10 of which succumbed during a nine-day period with some dogs exhibiting neurological disease. Ingestion of infected meat is proposed as the most likely infection route.
Collapse
Affiliation(s)
- Marco Falchieri
- Influenza and Avian Virology Team, Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, UK
| | - Scott M. Reid
- Influenza and Avian Virology Team, Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, UK
| | - Akbar Dastderji
- Mammalian Virology Investigation Unit, Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, UK
| | | | - Caroline J. Warren
- Influenza and Avian Virology Team, Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, UK
| | - Benjamin C. Mollett
- Influenza and Avian Virology Team, Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, UK
| | - Jacob Peers-Dent
- Influenza and Avian Virology Team, Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, UK
| | - Audra-Lynne D. Schlachter
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, UK
| | - Natalie Mcginn
- Influenza and Avian Virology Team, Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, UK
| | - Richard Hepple
- APHA Field Epidemiology Team, APHA Bridgwater, Rivers House, East Quay, Bridgwater, UK
| | - Saumya Thomas
- Influenza and Avian Virology Team, Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, UK
| | - Susan Ridout
- APHA Field Epidemiology Team, APHA Hornbeam House, Electra Way, Crewe, Cheshire, UK
| | | | | | - Alejandro Núñez
- Department of Pathology and Animal Sciences, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, UK
| | - Alexander M. P. Byrne
- Influenza and Avian Virology Team, Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, UK
- Worldwide Influenza Centre, The Francis Crick Institute, London, UK
| | - Joe James
- Influenza and Avian Virology Team, Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, UK
| | - Ashley C. Banyard
- Influenza and Avian Virology Team, Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, UK
| |
Collapse
|
3
|
Saad N, Esaki M, Kojima I, Khalil AM, Osuga S, Shahein MA, Okuya K, Ozawa M, Alhatlani BY. Phylogenetic Characterization of Novel Reassortant 2.3.4.4b H5N8 Highly Pathogenic Avian Influenza Viruses Isolated from Domestic Ducks in Egypt During the Winter Season 2021-2022. Viruses 2024; 16:1655. [PMID: 39599770 PMCID: PMC11599000 DOI: 10.3390/v16111655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/29/2024] Open
Abstract
Avian influenza (AI) is an extremely contagious viral disease of domestic and wild birds that can spread rapidly among bird populations, inducing serious economic losses in the poultry industry. During the winter season 2021-2022, we isolated seventeen highly pathogenic avian influenza (HPAI) H5N8 viruses from outbreaks involving ducks in Egypt, occurring in both backyard and farm settings. The aim of this study was to pinpoint genetic key substitutions (KSs) that could heighten the risk of a human pandemic by influencing the virus's virulence, replication ability, host specificity, susceptibility to drugs, or transmissibility. To understand their evolution, origin, and potential risks for a human pandemic, whole-genome sequencing and phylogenetic analysis were conducted. Our analysis identified numerous distinctive mutations in the Egyptian H5N8 viruses, suggesting potential enhancements in virulence, resistance to antiviral drugs, and facilitation of transmission in mammals. In this study, at least five genotypes within one genome constellation of H5N8 viruses were identified, raising concerns about the potential emergence of novel viruses with altered characteristics through reassortment between different genotypes and distinct groups. These findings underscore the role of ducks in the virus's evolutionary process and emphasize the urgent need for enhanced biosecurity measures in domestic duck farms to mitigate pandemic risk.
Collapse
Affiliation(s)
- Noha Saad
- Animal Health Research Institute, Agricultural Research Center, Giza 12618, Egypt;
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Ministry of Agriculture, Giza 12618, Egypt
| | - Mana Esaki
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.); (I.K.); (A.M.K.); (S.O.); (K.O.); (M.O.)
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Isshu Kojima
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.); (I.K.); (A.M.K.); (S.O.); (K.O.); (M.O.)
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Ahmed Magdy Khalil
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.); (I.K.); (A.M.K.); (S.O.); (K.O.); (M.O.)
- Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Shiori Osuga
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.); (I.K.); (A.M.K.); (S.O.); (K.O.); (M.O.)
| | - Momtaz A. Shahein
- Animal Health Research Institute, Agricultural Research Center, Giza 12618, Egypt;
- National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Ministry of Agriculture, Giza 12618, Egypt
| | - Kosuke Okuya
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.); (I.K.); (A.M.K.); (S.O.); (K.O.); (M.O.)
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Makoto Ozawa
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.); (I.K.); (A.M.K.); (S.O.); (K.O.); (M.O.)
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Bader Y. Alhatlani
- Unit of Scientific Research, Applied College, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
4
|
King J, Pohlmann A, Bange A, Horn E, Hälterlein B, Breithaupt A, Globig A, Günther A, Kelm A, Wiedemann C, Grund C, Haecker K, Garthe S, Harder T, Beer M, Schwemmer P. Red knots in Europe: a dead end host species or a new niche for highly pathogenic avian influenza? J Gen Virol 2024; 105:002003. [PMID: 38975739 PMCID: PMC11316594 DOI: 10.1099/jgv.0.002003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The 2020/2021 epidemic in Europe of highly pathogenic avian influenza virus (HPAIV) of subtype H5 surpassed all previously recorded European outbreaks in size, genotype constellations and reassortment frequency and continued into 2022 and 2023. The causative 2.3.4.4b viral lineage proved to be highly proficient with respect to reassortment with cocirculating low pathogenic avian influenza viruses and seems to establish an endemic status in northern Europe. A specific HPAIV reassortant of the subtype H5N3 was detected almost exclusively in red knots (Calidris canutus islandica) in December 2020. It caused systemic and rapidly fatal disease leading to a singular and self-limiting mass mortality affecting about 3500 birds in the German Wadden Sea, roughly 1 % of the entire flyway population of islandica red knots. Phylogenetic analyses revealed that the H5N3 reassortant very likely had formed in red knots and remained confined to this species. While mechanisms of virus circulation in potential reservoir species, dynamics of spill-over and reassortment events and the roles of environmental virus sources remain to be identified, the year-round infection pressure poses severe threats to endangered avian species and prompts adaptation of habitat and species conservation practices.
Collapse
Affiliation(s)
- Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Andreas Bange
- Research and Technology Centre (FTZ), University of Kiel, Hafentörn 1, 25761 Büsum, Germany
| | - Elisabeth Horn
- Research and Technology Centre (FTZ), University of Kiel, Hafentörn 1, 25761 Büsum, Germany
| | - Bernd Hälterlein
- National Park Authority Schleswig-Holstein Wadden Sea, Schlossgarten 1, 25832 Tönning, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Anja Globig
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Anne Günther
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Angie Kelm
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Christian Wiedemann
- National Park Authority Schleswig-Holstein Wadden Sea, Schlossgarten 1, 25832 Tönning, Germany
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Karena Haecker
- Research and Technology Centre (FTZ), University of Kiel, Hafentörn 1, 25761 Büsum, Germany
| | - Stefan Garthe
- Research and Technology Centre (FTZ), University of Kiel, Hafentörn 1, 25761 Büsum, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Philipp Schwemmer
- Research and Technology Centre (FTZ), University of Kiel, Hafentörn 1, 25761 Büsum, Germany
| |
Collapse
|
5
|
Graziosi G, Lupini C, Catelli E, Carnaccini S. Highly Pathogenic Avian Influenza (HPAI) H5 Clade 2.3.4.4b Virus Infection in Birds and Mammals. Animals (Basel) 2024; 14:1372. [PMID: 38731377 PMCID: PMC11083745 DOI: 10.3390/ani14091372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Avian influenza viruses (AIVs) are highly contagious respiratory viruses of birds, leading to significant morbidity and mortality globally and causing substantial economic losses to the poultry industry and agriculture. Since their first isolation in 2013-2014, the Asian-origin H5 highly pathogenic avian influenza viruses (HPAI) of clade 2.3.4.4b have undergone unprecedented evolution and reassortment of internal gene segments. In just a few years, it supplanted other AIV clades, and now it is widespread in the wild migratory waterfowl, spreading to Asia, Europe, Africa, and the Americas. Wild waterfowl, the natural reservoir of LPAIVs and generally more resistant to the disease, also manifested high morbidity and mortality with HPAIV clade 2.3.4.4b. This clade also caused overt clinical signs and mass mortality in a variety of avian and mammalian species never reported before, such as raptors, seabirds, sealions, foxes, and others. Most notably, the recent outbreaks in dairy cattle were associated with the emergence of a few critical mutations related to mammalian adaptation, raising concerns about the possibility of jumping species and acquisition of sustained human-to-human transmission. The main clinical signs and anatomopathological findings associated with clade 2.3.4.4b virus infection in birds and non-human mammals are hereby summarized.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (G.G.); (C.L.); (E.C.)
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
Dziadek K, Świętoń E, Kozak E, Wyrostek K, Tarasiuk K, Styś-Fijoł N, Śmietanka K. Phylogenetic and Molecular Characteristics of Wild Bird-Origin Avian Influenza Viruses Circulating in Poland in 2018-2022: Reassortment, Multiple Introductions, and Wild Bird-Poultry Epidemiological Links. Transbound Emerg Dis 2024; 2024:6661672. [PMID: 40303090 PMCID: PMC12017110 DOI: 10.1155/2024/6661672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2025]
Abstract
Since 2020, a significant increase in the severity of H5Nx highly pathogenic avian influenza (HPAI) epidemics in poultry and wild birds has been observed in Poland. To further investigate the genetic diversity of HPAI H5Nx viruses of clade 2.3.4.4b, HPAIV-positive samples collected from dead wild birds in 2020-2022 were phylogenetically characterized. In addition, zoonotic potential and possible reassortment between HPAIVs and LPAIVs circulating in the wild avifauna in Poland have been examined. The genome-wide phylogenetic analysis revealed the presence of three different avian influenza virus (AIV) subtypes (H5N8, H5N5, and H5N1) during the HPAI 2020/2021 season, while in the next HPAI 2021/2022 epidemic only one H5N1 subtype encompassing seven various genotypes (G1-G7) was confirmed. No reassortment events between LPAIVs (detected in the framework of active surveillance) and HPAIVs circulating in Poland have been captured, but instead, epidemiological links between wild birds and poultry due to bidirectional, i.e., wild bird-to-poultry and poultry-to-wild bird HPAIV transmission were evident. Furthermore, at least five independent H5N8 HPAIV introductions into the Baltic Sea region related to unprecedented mass mortality among swans in February-March 2021 in Poland, as well as a general tendency of current H5Nx viruses to accumulate specific mutations associated with the ability to break the interspecies barrier were identified. These results highlight the importance of continuous active and passive surveillance for AI to allow a rapid response to emerging viruses.
Collapse
Affiliation(s)
- Kamila Dziadek
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy 24-100, Poland
| | - Edyta Świętoń
- Department of Omic Analyses, National Veterinary Research Institute, Pulawy 24-100, Poland
| | - Edyta Kozak
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy 24-100, Poland
| | - Krzysztof Wyrostek
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy 24-100, Poland
| | - Karolina Tarasiuk
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy 24-100, Poland
| | - Natalia Styś-Fijoł
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy 24-100, Poland
| | - Krzysztof Śmietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy 24-100, Poland
| |
Collapse
|
7
|
Charostad J, Rezaei Zadeh Rukerd M, Mahmoudvand S, Bashash D, Hashemi SMA, Nakhaie M, Zandi K. A comprehensive review of highly pathogenic avian influenza (HPAI) H5N1: An imminent threat at doorstep. Travel Med Infect Dis 2023; 55:102638. [PMID: 37652253 DOI: 10.1016/j.tmaid.2023.102638] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/13/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Avian influenza viruses (AIVs) are globally challenging due to widespread circulation and high mortality rates. Highly pathogenic avian influenza (HPAI) strains like H5N1 have caused significant outbreaks in birds. Since 2003 to 14 July 2023, the World Health Organization (WHO) has documented 878 cases of HPAI H5N1 infection in humans and 458 (52.16%) fatalities in 23 countries. Recent outbreaks in wild birds, domestic birds, sea lions, minks, and etc., and the occurrence of genetic variations among HPAI H5N1 strains raise concerns about potential transmission and public health risks. This paper aims to provide a comprehensive overview of the current understanding and new insights into HPAI H5N1. It begins with an introduction to the significance of studying this virus and highlighting the need for updated knowledge. The origin and evaluation of HPAI H5N1 are examined, shedding light on its emergence, and spread across different geographic regions. The genome organization and structural biology of the H5N1 virus are explored, providing insights into its molecular composition and key structural features. This manuscript also delves into the phylogeny, evolution, mutational trends, reservoirs, and transmission routes of HPAI H5N1. The immune response against HPAI H5N1 and its implications for vaccine development are analyzed, along with an exploration of the pathogenesis and clinical manifestations of HPAI H5N1 in human cases. Furthermore, diagnostic tools and preventive and therapeutic strategies are discussed, highlighting the current approaches and potential future directions for better management of the potential pandemic.
Collapse
Affiliation(s)
- Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoghi University of Medical Science, Yazd, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shahab Mahmoudvand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Virology, School of Medicine, Hamadan University of Medical Science, Hamadan, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Hashemi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Nakhaie
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Keivan Zandi
- Arrowhead Pharmaceuticals, San Diego, CA, USA; Tropical Infectious Diseases Research and Education Center (TIDREC), University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Byrne AMP, James J, Mollett BC, Meyer SM, Lewis T, Czepiel M, Seekings AH, Mahmood S, Thomas SS, Ross CS, Byrne DJF, McMenamy MJ, Bailie V, Lemon K, Hansen RDE, Falchieri M, Lewis NS, Reid SM, Brown IH, Banyard AC. Investigating the Genetic Diversity of H5 Avian Influenza Viruses in the United Kingdom from 2020-2022. Microbiol Spectr 2023; 11:e0477622. [PMID: 37358418 PMCID: PMC10433820 DOI: 10.1128/spectrum.04776-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/27/2023] [Indexed: 06/27/2023] Open
Abstract
Since 2020, the United Kingdom and Europe have experienced annual epizootics of high-pathogenicity avian influenza virus (HPAIV). The first epizootic, during the autumn/winter of 2020-2021, involved six H5Nx subtypes, although H5N8 HPAIV dominated in the United Kingdom. While genetic assessments of the H5N8 HPAIVs within the United Kingdom demonstrated relative homogeneity, there was a background of other genotypes circulating at a lower degree with different neuraminidase and internal genes. Following a small number of detections of H5N1 in wild birds over the summer of 2021, the autumn/winter of 2021-2022 saw another European H5 HPAIV epizootic that dwarfed the prior epizootic. This second epizootic was dominated almost exclusively by H5N1 HPAIV, although six distinct genotypes were defined. We have used genetic analysis to evaluate the emergence of different genotypes and proposed reassortment events that have been observed. The existing data suggest that the H5N1 viruses circulating in Europe during late 2020 continued to circulate in wild birds throughout 2021, with minimal adaptation, but then went on to reassort with AIVs in the wild bird population. We have undertaken an in-depth genetic assessment of H5 HPAIVs detected in the United Kingdom over two winter seasons and demonstrate the utility of in-depth genetic analyses in defining the diversity of H5 HPAIVs circulating in avian species, the potential for zoonotic risk, and whether incidents of lateral spread can be defined over independent incursions of infections from wild birds. This provides key supporting data for mitigation activities. IMPORTANCE High-pathogenicity avian influenza virus (HPAIV) outbreaks devastate avian species across all sectors, having both economic and ecological impacts through mortalities in poultry and wild birds, respectively. These viruses can also represent a significant zoonotic risk. Since 2020, the United Kingdom has experienced two successive outbreaks of H5 HPAIV. While H5N8 HPAIV was predominant during the 2020-2021 outbreak, other H5 subtypes were also detected. The following year, there was a shift in the subtype dominance to H5N1 HPAIV, but multiple H5N1 genotypes were detected. Through the thorough utilization of whole-genome sequencing, it was possible to track and characterize the genetic evolution of these H5 HPAIVs in United Kingdom poultry and wild birds. This enabled us to assess the risk posed by these viruses at the poultry-wild bird and the avian-human interfaces and to investigate the potential lateral spread between infected premises, a key factor in understanding the threat to the commercial sector.
Collapse
Affiliation(s)
- Alexander M. P. Byrne
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Joe James
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- WOAH/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, United Kingdom
| | - Benjamin C. Mollett
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Stephanie M. Meyer
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- WOAH/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, United Kingdom
| | - Thomas Lewis
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- WOAH/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, United Kingdom
| | - Magdalena Czepiel
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- WOAH/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, United Kingdom
| | - Amanda H. Seekings
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Sahar Mahmood
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Saumya S. Thomas
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Craig S. Ross
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Dominic J. F. Byrne
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | | | - Valerie Bailie
- Agri-Food and Bioscience Institute, Belfast, United Kingdom
| | - Ken Lemon
- Agri-Food and Bioscience Institute, Belfast, United Kingdom
| | - Rowena D. E. Hansen
- Veterinary Exotics and Notifiable Disease Unit, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Marco Falchieri
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Nicola S. Lewis
- Department of Pathology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, United Kingdom
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Scott M. Reid
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
| | - Ian H. Brown
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- WOAH/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, United Kingdom
| | - Ashley C. Banyard
- Virology Department, Animal and Plant Health Agency, Addlestone, Surrey, United Kingdom
- WOAH/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency (APHA-Weybridge), Addlestone, Surrey, United Kingdom
| |
Collapse
|
9
|
Lee S, Kang S, Heo J, Hong Y, Vu TH, Truong AD, Lillehoj HS, Hong YH. MicroRNA expression profiling in the lungs of genetically different Ri chicken lines against the highly pathogenic avian influenza H5N1 virus. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:838-855. [PMID: 37970505 PMCID: PMC10640957 DOI: 10.5187/jast.2022.e127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 11/17/2023]
Abstract
The highly pathogenic avian influenza (HPAI) virus triggers infectious diseases, resulting in pulmonary damage and high mortality in domestic poultry worldwide. This study aimed to analyze miRNA expression profiles after infection with the HPAI H5N1 virus in resistant and susceptible lines of Ri chickens.For this purpose, resistant and susceptible lines of Vietnamese Ri chicken were used based on the A/G allele of Mx and BF2 genes. These genes are responsible for innate antiviral activity and were selected to determine differentially expressed (DE) miRNAs in HPAI-infected chicken lines using small RNA sequencing. A total of 44 miRNAs were DE after 3 days of infection with the H5N1 virus. Computational program analysis indicated the candidate target genes for DE miRNAs to possess significant functions related to cytokines, chemokines, MAPK signaling pathway, ErBb signaling pathway, and Wnt signaling pathway. Several DE miRNA-mRNA matches were suggested to play crucial roles in mediating immune functions against viral evasion. These results revealed the potential regulatory roles of miRNAs in the immune response of the two Ri chicken lines against HPAI H5N1 virus infection in the lungs.
Collapse
Affiliation(s)
- Sooyeon Lee
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Suyeon Kang
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jubi Heo
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Yeojin Hong
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Thi Hao Vu
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Anh Duc Truong
- Department of Biochemistry and Immunology,
National Institute of Veterinary Research, Hanoi 100000, Viet
Nam
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology
Laboratory, Agricultural Research Services, United States Department of
Agriculture, Beltsville, MD 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
10
|
James J, Billington E, Warren CJ, De Sliva D, Di Genova C, Airey M, Meyer SM, Lewis T, Peers-Dent J, Thomas SS, Lofts A, Furman N, Nunez A, Slomka MJ, Brown IH, Banyard AC. Clade 2.3.4.4b H5N1 high pathogenicity avian influenza virus (HPAIV) from the 2021/22 epizootic is highly duck adapted and poorly adapted to chickens. J Gen Virol 2023; 104. [PMID: 37167079 DOI: 10.1099/jgv.0.001852] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
The 2021/2022 epizootic of high pathogenicity avian influenza (HPAIV) remains one of the largest ever in the UK, being caused by a clade 2.3.4.4b H5N1 HPAIV. This epizootic affected more than 145 poultry premises, most likely through independent incursion from infected wild birds, supported by more than 1700 individual detections of H5N1 from wild bird mortalities. Here an H5N1 HPAIV, representative of this epizootic (H5N1-21), was used to investigate its virulence, pathogenesis and transmission in layer chickens and Pekin ducks, two species of epidemiological importance. We inoculated both avian species with decreasing H5N1-21 doses. The virus was highly infectious in ducks, with high infection levels and accompanying shedding of viral RNA, even in ducks inoculated with the lowest dose, reflecting the strong waterfowl adaptation of the clade 2.3.4.4 HPAIVs. Duck-to-duck transmission was very efficient, coupled with high environmental contamination. H5N1-21 was frequently detected in water sources, serving as likely sources of infection for ducks, but inhalable dust and aerosols represented low transmission risks. In contrast, chickens inoculated with the highest dose exhibited lower rates of infection compared to ducks. There was no evidence for experimental H5N1-21 transmission to any naive chickens, in two stocking density scenarios, coupled with minimal and infrequent contamination being detected in the chicken environment. Systemic viral dissemination to multiple organs reflected the pathogenesis and high mortalities in both species. In summary, the H5N1-21 virus is highly infectious and transmissible in anseriformes, yet comparatively poorly adapted to galliformes, supporting strong host preferences for wild waterfowl. Key environmental matrices were also identified as being important in the epidemiological spread of this virus during the continuing epizootic.
Collapse
Affiliation(s)
- Joe James
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Elizabeth Billington
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Caroline J Warren
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Dilhani De Sliva
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Cecilia Di Genova
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Maisie Airey
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Stephanie M Meyer
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Thomas Lewis
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Jacob Peers-Dent
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Saumya S Thomas
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Abigail Lofts
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Natalia Furman
- Pathology and Animal Sciences Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Alejandro Nunez
- Pathology and Animal Sciences Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Marek J Slomka
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Ian H Brown
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Ashley C Banyard
- Department of Virology, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
- WOAH/FAO International Reference Laboratory for Avian Influenza, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| |
Collapse
|
11
|
Comparative Analysis of Different Inbred Chicken Lines Highlights How a Hereditary Inflammatory State Affects Susceptibility to Avian Influenza Virus. Viruses 2023; 15:v15030591. [PMID: 36992300 PMCID: PMC10052641 DOI: 10.3390/v15030591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Evidence suggests that susceptibility to avian influenza A virus in chickens is influenced by host genetics, but the mechanisms are poorly understood. A previous study demonstrated that inbred line 0 chickens are more resistant to low-pathogenicity avian influenza (LPAI) infection than line CB.12 birds based on viral shedding, but the resistance was not associated with higher AIV-specific IFNγ responses or antibody titres. In this study, we investigated the proportions and cytotoxic capacity of T-cell subpopulations in the spleen and the early immune responses in the respiratory tract, analysing the innate immune transcriptome of lung-derived macrophages following in vitro stimulation with LPAI H7N1 or the TLR7 agonist R848. The more susceptible C.B12 line had a higher proportion of CD8αβ+ γδ and CD4+CD8αα+ αVβ1 T cells, and a significantly higher proportion of the CD8αβ+ γδ and CD8αβ+ αVβ1 T cells expressed CD107a, a surrogate marker of degranulation. Lung macrophages isolated from line C.B12 birds expressed higher levels of the negative regulator genes TRIM29 and IL17REL, whereas macrophages from line 0 birds expressed higher levels of antiviral genes including IRF10 and IRG1. After stimulation with R848, the macrophages from line 0 birds mounted a higher response compared to line C.B12 cells. Together, the higher proportion of unconventional T cells, the higher level of cytotoxic cell degranulation ex vivo and post-stimulation and the lower levels of antiviral gene expression suggest a potential role of immunopathology in mediating susceptibility in C.B12 birds.
Collapse
|
12
|
Nagy A, Stará M, Černíková L, Hofmannová L, Sedlák K. Genotype Diversity, Wild Bird-to-Poultry Transmissions, and Farm-to-Farm Carryover during the Spread of the Highly Pathogenic Avian Influenza H5N1 in the Czech Republic in 2021/2022. Viruses 2023; 15:293. [PMID: 36851507 PMCID: PMC9963064 DOI: 10.3390/v15020293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
In 2021/2022, the re-emergence of highly pathogenic avian influenza (HPAI) occurred in Europe. The outbreak was seeded from two sources: resident and reintroduced viruses, which is unprecedented in the recorded history of avian influenza. The dominant subtype was H5N1, which replaced the H5N8 subtype that had predominated in previous seasons. In this study, we present a whole genome sequence and a phylogenetic analysis of 57 H5N1 HPAI and two low pathogenic avian influenza (LPAI) H5N1 strains collected in the Czech Republic during 2021/2022. Phylogenetic analysis revealed close relationships between H5N1 genomes from poultry and wild birds and secondary transmission in commercial geese. The genotyping showed considerable genetic heterogeneity among Czech H5N1 viruses, with six different HPAI genotypes, three of which were apparently unique. In addition, second-order reassortment relationships were observed with the direct involvement of co-circulating H5N1 LPAI strains. The genetic distance between Czech H5N1 HPAI and the closest LPAI segments available in the database illustrates the profound gaps in our knowledge of circulating LPAI strains. The changing dynamics of HPAI in the wild may increase the likelihood of future HPAI outbreaks and present new challenges in poultry management, biosecurity, and surveillance.
Collapse
Affiliation(s)
| | - Martina Stará
- State Veterinary Institute Prague, Sídlištní 136/24, 165 03 Prague, Czech Republic
| | | | | | | |
Collapse
|
13
|
Isoda N, Onuma M, Hiono T, Sobolev I, Lim HY, Nabeshima K, Honjyo H, Yokoyama M, Shestopalov A, Sakoda Y. Detection of New H5N1 High Pathogenicity Avian Influenza Viruses in Winter 2021-2022 in the Far East, Which Are Genetically Close to Those in Europe. Viruses 2022; 14:v14102168. [PMID: 36298722 PMCID: PMC9606862 DOI: 10.3390/v14102168] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/06/2023] Open
Abstract
Many high pathogenicity avian influenza (HPAI) cases in wild birds due to H5N1 HPAI virus (HPAIV) infection were reported in northern Japan in the winter of 2021-2022. To investigate the epidemiology of HPAIVs brought to Japan from surrounding areas, a genetic analysis of H5 HPAIVs isolated in northern Japan was performed, and the pathogenicity of the HPAIV in chickens was assessed by experimental infection. Based on the genetic analysis of the hemagglutinin gene, pathogenic viruses detected in northern Japan as well as one in Sakhalin, the eastern part of Russia, were classified into the same subgroup as viruses prevalent in Europe in the same season but distinct from those circulating in Asia in winter 2020-2021. High identities of all eight segment sequences of A/crow/Hokkaido/0103B065/2022 (H5N1) (Crow/Hok), the representative isolates in northern Japan in 2022, to European isolates in the same season could also certify the unlikeliness of causing gene reassortment between H5 HPAIVs and viruses locally circulating in Asia. According to intranasal challenge results in six-week-old chickens, 50% of the chicken-lethal dose of Crow/Hok was calculated as 104.5 times of the 50% egg-infectious dose. These results demonstrated that the currently prevalent H5 HPAIVs could spread widely from certain origins throughout the Eurasian continent, including Europe and the Far East, and implied a possibility that contagious viruses are gathered in lakes in the northern territory via bird migration. Active monitoring of wild birds at the global level is essential to estimate the geographical source and spread dynamics of HPAIVs.
Collapse
Affiliation(s)
- Norikazu Isoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita 20, Nishi 11, Kita-ku, Sapporo 001-0020, Hokkaido, Japan
| | - Manabu Onuma
- Ecological Risk Assessment and Control Section for Environmental Biology and Ecosystem, Biology Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba 305-8506, Ibaraki, Japan
| | - Takahiro Hiono
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita 20, Nishi 11, Kita-ku, Sapporo 001-0020, Hokkaido, Japan
| | - Ivan Sobolev
- Institute of Virology of the Federal Research Center of Fundamental and Translational Medicine, Novosibirsk State University, Bild 2, Timakova St., Novosibirsk 630117, Russia
| | - Hew Yik Lim
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Hokkaido, Japan
| | - Kei Nabeshima
- Ecological Risk Assessment and Control Section for Environmental Biology and Ecosystem, Biology Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba 305-8506, Ibaraki, Japan
| | - Hisako Honjyo
- Ecological Risk Assessment and Control Section for Environmental Biology and Ecosystem, Biology Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba 305-8506, Ibaraki, Japan
| | - Misako Yokoyama
- Ecological Risk Assessment and Control Section for Environmental Biology and Ecosystem, Biology Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba 305-8506, Ibaraki, Japan
| | - Alexander Shestopalov
- Institute of Virology of the Federal Research Center of Fundamental and Translational Medicine, Novosibirsk State University, Bild 2, Timakova St., Novosibirsk 630117, Russia
- Correspondence: (A.S.); (Y.S.); Tel./Fax: +7-383-335-9405 (A.S.); Tel.: +81-11-706-5207 (Y.S.); Fax: +81-11-706-5273 (Y.S.)
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita 20, Nishi 11, Kita-ku, Sapporo 001-0020, Hokkaido, Japan
- Correspondence: (A.S.); (Y.S.); Tel./Fax: +7-383-335-9405 (A.S.); Tel.: +81-11-706-5207 (Y.S.); Fax: +81-11-706-5273 (Y.S.)
| |
Collapse
|
14
|
Pohlmann A, King J, Fusaro A, Zecchin B, Banyard AC, Brown IH, Byrne AMP, Beerens N, Liang Y, Heutink R, Harders F, James J, Reid SM, Hansen RDE, Lewis NS, Hjulsager C, Larsen LE, Zohari S, Anderson K, Bröjer C, Nagy A, Savič V, van Borm S, Steensels M, Briand FX, Swieton E, Smietanka K, Grund C, Beer M, Harder T. Has Epizootic Become Enzootic? Evidence for a Fundamental Change in the Infection Dynamics of Highly Pathogenic Avian Influenza in Europe, 2021. mBio 2022; 13:e0060922. [PMID: 35726917 PMCID: PMC9426456 DOI: 10.1128/mbio.00609-22] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phylogenetic evidence from the recent resurgence of high-pathogenicity avian influenza (HPAI) virus subtype H5N1, clade 2.3.4.4b, observed in European wild birds and poultry since October 2021, suggests at least two different and distinct reservoirs. We propose contrasting hypotheses for this emergence: (i) resident viruses have been maintained, presumably in wild birds, in northern Europe throughout the summer of 2021 to cause some of the outbreaks that are part of the most recent autumn/winter 2021 epizootic, or (ii) further virus variants were reintroduced by migratory birds, and these two sources of reintroduction have driven the HPAI resurgence. Viruses from these two principal sources can be distinguished by their hemagglutinin genes, which segregate into two distinct sublineages (termed B1 and B2) within clade 2.3.4.4b, as well as their different internal gene compositions. The evidence of enzootic HPAI virus circulation during the summer of 2021 indicates a possible paradigm shift in the epidemiology of HPAI in Europe.
Collapse
Affiliation(s)
- Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich Loeffler Institute, Greifswald-Insel Riems, Germany
| | - Jacqueline King
- Institute of Diagnostic Virology, Friedrich Loeffler Institute, Greifswald-Insel Riems, Germany
| | - Alice Fusaro
- European Union Reference Laboratory for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Bianca Zecchin
- European Union Reference Laboratory for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Padua, Italy
| | - Ashley C. Banyard
- Animal and Plant Health Agency—Weybridge, New Haw, Addlestone, Surrey, United Kingdom
- OIE/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency—Weybridge, Addlestone, Surrey, United Kingdom
| | - Ian H. Brown
- Animal and Plant Health Agency—Weybridge, New Haw, Addlestone, Surrey, United Kingdom
- OIE/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency—Weybridge, Addlestone, Surrey, United Kingdom
| | - Alexander M. P. Byrne
- Animal and Plant Health Agency—Weybridge, New Haw, Addlestone, Surrey, United Kingdom
| | - Nancy Beerens
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Yuan Liang
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rene Heutink
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Frank Harders
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Joe James
- Animal and Plant Health Agency—Weybridge, New Haw, Addlestone, Surrey, United Kingdom
- OIE/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency—Weybridge, Addlestone, Surrey, United Kingdom
| | - Scott M. Reid
- Animal and Plant Health Agency—Weybridge, New Haw, Addlestone, Surrey, United Kingdom
| | - Rowena D. E. Hansen
- Animal and Plant Health Agency—Weybridge, New Haw, Addlestone, Surrey, United Kingdom
| | - Nicola S. Lewis
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Charlotte Hjulsager
- Department for Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Lars E. Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute, SVA, Uppsala, Sweden
| | - Kristofer Anderson
- Department of Microbiology, National Veterinary Institute, SVA, Uppsala, Sweden
| | - Caroline Bröjer
- Department of Pathology, National Veterinary Institute, SVA, Uppsala, Sweden
| | - Alexander Nagy
- State Veterinary Institute Prague, Prague, Czech Republic
| | - Vladimir Savič
- Croatian Veterinary Institute, Poultry Centre, Zagreb, Croatia
| | - Steven van Borm
- Service of Avian Virology and Immunology, Sciensano, Brussels, Belgium
| | - Mieke Steensels
- Service of Avian Virology and Immunology, Sciensano, Brussels, Belgium
| | - Francois-Xavier Briand
- Agence Nationale de Sécurité Sanitaire, de l’Alimentation, de l’Environnement et du Travail, Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, Ploufragan, France
| | - Edyta Swieton
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Krzysztof Smietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Puławy, Poland
| | - Christian Grund
- Institute of Diagnostic Virology, Friedrich Loeffler Institute, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich Loeffler Institute, Greifswald-Insel Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich Loeffler Institute, Greifswald-Insel Riems, Germany
| |
Collapse
|
15
|
Alkie TN, Lopes S, Hisanaga T, Xu W, Suderman M, Koziuk J, Fisher M, Redford T, Lung O, Joseph T, Himsworth CG, Brown IH, Bowes V, Lewis NS, Berhane Y. A threat from both sides: Multiple introductions of genetically distinct H5 HPAI viruses into Canada via both East Asia-Australasia/Pacific and Atlantic flyways. Virus Evol 2022; 8:veac077. [PMID: 36105667 PMCID: PMC9463990 DOI: 10.1093/ve/veac077] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 08/14/2023] Open
Abstract
From 2016 to 2020, high pathogenicity avian influenza (HPAI) H5 viruses circulated in Asia, Europe, and Africa, causing waves of infections and the deaths of millions of wild and domestic birds and presenting a zoonotic risk. In late 2021, H5N1 HPAI viruses were isolated from poultry in Canada and also retrospectively from a great black-backed gull (Larus marinus), raising concerns that the spread of these viruses to North America was mediated by migratory wild bird populations. In February and April 2022, H5N1 HPAI viruses were isolated from a bald eagle (Haliaeetus leucocephalus) and broiler chickens in British Columbia, Canada. Phylogenetic analysis showed that the virus from bald eagle was genetically related to H5N1 HPAI virus isolated in Hokkaido, Japan, in January 2022. The virus identified from broiler chickens was a reassortant H5N1 HPAI virus with unique constellation genome segments containing PB2 and NP from North American lineage LPAI viruses, and the remaining gene segments were genetically related to the original Newfoundland-like H5N1 HPAI viruses detected in November and December 2021 in Canada. This is the first report of H5 HPAI viruses' introduction to North America from the Pacific and the North Atlantic-linked flyways and highlights the expanding risk of genetically distinct virus introductions from different geographical locations and the potential for local reassortment with both the American lineage LPAI viruses in wild birds and with both Asian-like and European-like H5 HPAI viruses. We also report the presence of some amino acid substitutions across each segment that might contribute to the replicative efficiency of these viruses in mammalian host, evade adaptive immunity, and pose a potential zoonotic risk.
Collapse
Affiliation(s)
- Tamiru N Alkie
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba R3E 3M4, Canada
| | - Sara Lopes
- Department of Pathobiology and Population Sciences, Hawkshead Campus, The Royal Veterinary College Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Tamiko Hisanaga
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba R3E 3M4, Canada
| | - Wanhong Xu
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba R3E 3M4, Canada
| | - Matthew Suderman
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba R3E 3M4, Canada
| | - Janice Koziuk
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba R3E 3M4, Canada
| | - Mathew Fisher
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba R3E 3M4, Canada
| | - Tony Redford
- Animal Health Centre, BC Ministry of Agriculture and Food, 1767 Angus Campbell Road, Abbotsford, British Columbia V3G 2M3, Canada
| | - Oliver Lung
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba R3E 3M4, Canada
- Department of Biological Sciences, University of Manitoba, 50 Sifton Rd., Winnipeg, Manitoba R3T 2M5, Canada
| | - Tomy Joseph
- Animal Health Centre, BC Ministry of Agriculture and Food, 1767 Angus Campbell Road, Abbotsford, British Columbia V3G 2M3, Canada
| | - Chelsea G Himsworth
- Animal Health Centre, BC Ministry of Agriculture and Food, 1767 Angus Campbell Road, Abbotsford, British Columbia V3G 2M3, Canada
- Canadian Wildlife Health Cooperative British Columbia, 1767 Angus Campbell Road, Abbotsford, British Columbia V3G 2M3, Canada
- School of Population and Public Health, University of British Columbia, 2206 E Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Ian H Brown
- International Reference Laboratory for AI, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Victoria Bowes
- Animal Health Centre, BC Ministry of Agriculture and Food, 1767 Angus Campbell Road, Abbotsford, British Columbia V3G 2M3, Canada
| | - Nicola S Lewis
- Department of Pathobiology and Population Sciences, Hawkshead Campus, The Royal Veterinary College Hawkshead Lane, North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
- International Reference Laboratory for AI, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba R3E 3M4, Canada
- Department of Animal Science, University of Manitoba, Chancellors Cir, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr., Saskatoon, Saskatchewan S7N 5B4, Canada
| |
Collapse
|
16
|
Schreuder J, de Knegt HJ, Velkers FC, Elbers ARW, Stahl J, Slaterus R, Stegeman JA, de Boer WF. Wild Bird Densities and Landscape Variables Predict Spatial Patterns in HPAI Outbreak Risk across The Netherlands. Pathogens 2022; 11:pathogens11050549. [PMID: 35631070 PMCID: PMC9143584 DOI: 10.3390/pathogens11050549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Highly pathogenic avian influenza viruses’ (HPAIVs) transmission from wild birds to poultry occurs globally, threatening animal and public health. To predict the HPAI outbreak risk in relation to wild bird densities and land cover variables, we performed a case-control study of 26 HPAI outbreaks (cases) on Dutch poultry farms, each matched with four comparable controls. We trained machine learning classifiers to predict outbreak risk with predictors analyzed at different spatial scales. Of the 20 best explaining predictors, 17 consisted of densities of water-associated bird species, 2 of birds of prey, and 1 represented the surrounding landscape, i.e., agricultural cover. The spatial distribution of mallard (Anas platyrhynchos) contributed most to risk prediction, followed by mute swan (Cygnus olor), common kestrel (Falco tinnunculus) and brant goose (Branta bernicla). The model successfully distinguished cases from controls, with an area under the receiver operating characteristic curve of 0.92, indicating accurate prediction of HPAI outbreak risk despite the limited numbers of cases. Different classification algorithms led to similar predictions, demonstrating robustness of the risk maps. These analyses and risk maps facilitate insights into the role of wild bird species and support prioritization of areas for surveillance, biosecurity measures and establishments of new poultry farms to reduce HPAI outbreak risks.
Collapse
Affiliation(s)
- Janneke Schreuder
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (J.S.); (J.A.S.)
- Wildlife Ecology and Conservation Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (H.J.d.K.); (W.F.d.B.)
| | - Henrik J. de Knegt
- Wildlife Ecology and Conservation Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (H.J.d.K.); (W.F.d.B.)
| | - Francisca C. Velkers
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (J.S.); (J.A.S.)
- Correspondence: ; Tel.: +31-30-253-1248
| | - Armin R. W. Elbers
- Department of Epidemiology, Bioinformatics and Animal Models, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands;
| | - Julia Stahl
- Sovon, Dutch Centre for Field Ornithology, 6525 ED Nijmegen, The Netherlands; (J.S.); (R.S.)
| | - Roy Slaterus
- Sovon, Dutch Centre for Field Ornithology, 6525 ED Nijmegen, The Netherlands; (J.S.); (R.S.)
| | - J. Arjan Stegeman
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (J.S.); (J.A.S.)
| | - Willem F. de Boer
- Wildlife Ecology and Conservation Group, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (H.J.d.K.); (W.F.d.B.)
| |
Collapse
|
17
|
Sagong M, Lee YN, Song S, Cha RM, Lee EK, Kang YM, Cho HK, Kang HM, Lee YJ, Lee KN. Emergence of clade 2.3.4.4b novel reassortant H5N1 High Pathogenicity avian influenza virus in South Korea during late 2021. Transbound Emerg Dis 2022; 69:e3255-e3260. [PMID: 35413157 DOI: 10.1111/tbed.14551] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
High pathogenicity H5N1 avian influenza viruses pose a threat to both animal and human health worldwide. In late 2020, outbreaks of H5 high pathogenicity avian influenza viruses belonging to clade 2.3.4.4b emerged in Europe, following on from outbreaks in East Asia in earlier years. However, very recent studies show that clade 2.3.4.4b H5N1, rather than 2.3.4.4b H5N8, has become predominant in wild birds and has infected poultry in several countries. In this study, we describe isolation of a novel H5N1 virus from a captured mandarin duck in South Korea, and another H5N1 virus from a quail farm. We performed genetic analysis of these two viruses to identify their origin and to determine their relationship with the clade 2.3.4.4b H5N1 viruses currently circulating in Europe. Based on our results, it is presumed that the novel H5N1 virus isolated in Korea originated from an unknown reassortant between clade 2.3.4.4b H5N8 viruses circulating from 2020 and other Eurasian viruses, with additional reassortment of genes and point mutations that discriminate them from the recently reported H5N1 virus in Europe. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mingeun Sagong
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea
| | - Yu-Na Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea
| | - San Song
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea
| | - Ra Mi Cha
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea
| | - Eun-Kyoung Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea
| | - Yong-Myung Kang
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea
| | - Hyun-Kyu Cho
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea
| | - Hyun-Mi Kang
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea
| | - Youn-Jeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea
| | - Kwang-Nyeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Korea
| |
Collapse
|
18
|
European Food Safety Authority, European Centre for Disease Prevention and Control, European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Aznar I, Muñoz Guajardo I, Baldinelli F. Avian influenza overview December 2021 - March 2022. EFSA J 2022; 20:e07289. [PMID: 35386927 PMCID: PMC8978176 DOI: 10.2903/j.efsa.2022.7289] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Between 9 December 2021 and 15 March 2022, 2,653 highly pathogenic avian influenza (HPAI) virus detections were reported in 33 EU/EEA countries and the UK in poultry (1,030), in wild (1,489) and in captive birds (133). The outbreaks in poultry were mainly reported by France (609), where two spatiotemporal clusters have been identified since October 2021, followed by Italy (131), Hungary (73) and Poland (53); those reporting countries accounted together for 12.8 of the 17.5 million birds that were culled in the HPAI affected poultry establishments in this reporting period. The majority of the detections in wild birds were reported by Germany (767), the Netherlands (293), the UK (118) and Denmark (74). HPAI A(H5) was detected in a wide range of host species in wild birds, indicating an increasing and changing risk for virus incursion into poultry farms. The observed persistence and continuous circulation of HPAI viruses in migratory and resident wild birds will continue to pose a risk for the poultry industry in Europe for the coming months. This requires the definition and the rapid implementation of suitable and sustainable HPAI mitigation strategies such as appropriate biosecurity measures, surveillance plans and early detection measures in the different poultry production systems. The results of the genetic analysis indicate that the viruses currently circulating in Europe belong to clade 2.3.4.4b. Some of these viruses were also detected in wild mammal species in the Netherlands, Slovenia, Finland and Ireland showing genetic markers of adaptation to replication in mammals. Since the last report, the UK reported one human infection with A(H5N1), China 17 human infections with A(H5N6), and China and Cambodia 15 infections with A(H9N2) virus. The risk of infection for the general population in the EU/EEA is assessed as low, and for occupationally exposed people, low to medium.
Collapse
|
19
|
Śmietanka K, Świętoń E, Wyrostek K, Kozak E, Tarasiuk K, Styś-Fijoł N, Dziadek K, Niemczuk K. Highly Pathogenic Avian Influenza H5Nx in Poland in 2020/2021: a Descriptive Epidemiological Study of a Large-scale Epidemic. J Vet Res 2022; 66:1-7. [PMID: 35582478 PMCID: PMC8959680 DOI: 10.2478/jvetres-2022-0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction Highly pathogenic avian influenza (HPAI) outbreaks caused by the Gs/Gd lineage of H5Nx viruses occur in Poland with increased frequency. The article provides an update on the HPAI situation in the 2020/2021 season and studies the possible factors that caused the exceptionally fast spread of the virus. Material and Methods Samples from poultry and wild birds delivered for HPAI diagnosis were tested by real-time RT-PCR and a representative number of detected viruses were submitted for partial or full-genome characterisation. Information yielded by veterinary inspection was used for descriptive analysis of the epidemiological situation. Results The scale of the epidemic in the 2020/2021 season was unprecedented in terms of duration (November 2020-August 2021), number of outbreaks in poultry (n = 357), wild bird events (n = 92) and total number of affected domestic birds (approximately ~14 million). The major drivers of the virus spread were the harsh winter conditions in February 2020 followed by the introduction of the virus to high-density poultry areas in March 2021. All tested viruses belonged to H5 clade 2.3.4.4b with significant intra-clade diversity and in some cases clearly distinguished clusters. Conclusion The HPAI epidemic in 2020/2021 in Poland struck with unprecedented force. The conventional control measures may have limited effectiveness to break the transmission chain in areas with high concentrations of poultry.
Collapse
Affiliation(s)
| | - Edyta Świętoń
- Department of Poultry Diseases, 24-100Puławy, Poland
| | | | - Edyta Kozak
- Department of Poultry Diseases, 24-100Puławy, Poland
| | | | | | | | - Krzysztof Niemczuk
- Director General National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
20
|
Caliendo V, Leijten L, van de Bildt MWG, Fouchier RAM, Rijks JM, Kuiken T. Pathology and virology of natural highly pathogenic avian influenza H5N8 infection in wild Common buzzards (Buteo buteo). Sci Rep 2022; 12:920. [PMID: 35042929 PMCID: PMC8766517 DOI: 10.1038/s41598-022-04896-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) in wild birds is a major emerging disease, and a cause of increased mortality during outbreaks. The Common buzzard (Buteo buteo) has a considerable chance of acquiring the infection and therefore may function as bio-sentinel for the presence of virus in wildlife. This study aimed to determine the virus distribution and associated pathological changes in the tissues of Common buzzards that died with HPAI H5 virus infection during the 2020-2021 epizootic. Eleven freshly dead, HPAI H5 virus-positive Common buzzards were necropsied. Based on RT-PCR, all birds were systemically infected with HPAI H5N8 virus, as viral RNA was detected in cloacal and pharyngeal swabs and in all 10 selected tissues of the birds, with mean Ct values per tissue ranging from 22 for heart to 32 for jejunum. Based on histology and immunohistochemistry, the most common virus-associated pathological changes were necrotizing encephalitis (9/11 birds) and necrotizing myocarditis (7/11 birds). The proventriculus of two birds showed virus-associated necrosis, indicating tropism of this virus for the digestive tract. Our advice is to collect at least a miniset of samples including brain, heart, liver, and spleen, as these tissues were positive both by RT-PCR and for virus-antigen-associated lesions.
Collapse
Affiliation(s)
- Valentina Caliendo
- Department of Viroscience, Erasmus Medical Center, 3015 GE, Rotterdam, The Netherlands.
| | - Lonneke Leijten
- Department of Viroscience, Erasmus Medical Center, 3015 GE, Rotterdam, The Netherlands
| | | | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, 3015 GE, Rotterdam, The Netherlands
| | - Jolianne M Rijks
- Dutch Wildlife Health Center, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, 3015 GE, Rotterdam, The Netherlands
| |
Collapse
|
21
|
European Food Safety Authority, European Centre for Disease Prevention, Control, European Union Reference Laboratory for Avian Influenza, Adlhoch C, Fusaro A, Gonzales JL, Kuiken T, Marangon S, Niqueux É, Staubach C, Terregino C, Aznar I, Muñoz Guajardo I, Baldinelli F. Avian influenza overview September - December 2021. EFSA J 2021; 19:e07108. [PMID: 34987626 PMCID: PMC8698678 DOI: 10.2903/j.efsa.2021.7108] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Between 16 September and 8 December 2021, 867 highly pathogenic avian influenza (HPAI) virus detections were reported in 27 EU/EEA countries and the UK in poultry (316), in wild (523) and in captive birds (28). The detections in poultry were mainly reported by Italy (167) followed by Hungary and Poland (35 each). Tha majority of the detections in wild birds were reported by Germany (280), Netherlands (65) and United Kingdom (53). The observed persistence and continuous circulation of HPAI viruses in migratory and resident wild birds will continue to pose a risk for the poultry industry in Europe for the coming months. The frequent occurrence of HPAI A(H5) incursions in commercial farms (including poultry production types considered at low avian influenza risk) raises concern about the capacity of the applied biosecurity measures to prevent virus introduction. Short-term preparedness and medium- and long-term prevention strategies, including revising and reinforcing biosecurity measures, reduction of the density of commercial poultry farms and possible appropriate vaccination strategies, should be implemented. The results of the genetic analysis indicate that the viruses characterised during this reporting period belong to clade 2.3.4.4b. Some of the characterized HPAI A(H5N1) viruses detected in Sweden, Germany, Poland and United Kingdom are related to the viruses which have been circulating in Europe since October 2020; in North, Central, South and East Europe novel reassortant A(H5N1) virus has been introduced starting from October 2021. HPAI A(H5N1) was also detected in wild mammal species in Sweden, Estonia and Finland; some of these strains characterised so far present an adaptive marker that is associated with increased virulence and replication in mammals. Since the last report, 13 human infections due to HPAI A(H5N6) and two human cases due to LPAI A(H9N2) virus have been reported from China. Some of these A(H5N6) cases were caused by a reassortant virus of clade 2.3.4.4b, which possessed an HA gene closely related to the A(H5) viruses circulating in Europe. The risk of infection for the general population in the EU/EEA is assessed as low, and for occupationally exposed people, low to medium, with large uncertainty due to the high diversity of circulating viruses in the bird populations.
Collapse
|