1
|
Khoshnam SE, Sarkaki A, Farbood Y, Keshavarz Zarjani A, Ghasemi Dehcheshmeh M, Moradi Vastegani S. Anethole Ameliorates Scopolamine-Induced Memory Deficits and Neuronal Damage Through Antioxidant, Anti-Inflammatory, and Anticholinesterase Activities in Rats. Neurochem Res 2025; 50:165. [PMID: 40366448 DOI: 10.1007/s11064-025-04417-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Scopolamine-induced memory impairment is a well-established model for studying the therapeutic potential of novel compounds in the pathogenesis of Alzheimer's disease (AD). This study aimed to evaluate the protective effects and underlying mechanisms of anethole against scopolamine-induced memory and cognitive disorders. Rats were treated with scopolamine (0.7 mg/kg, i.p.) for 14 consecutive days. Anethole (125, 250, and 500 mg/kg, i.g.) was administered one hour prior to scopolamine injection. Memory and cognitive performance were assessed using the Passive Avoidance Test (PAT) and the Novel Object Recognition Test (NORT). In addition, blood-brain barrier (BBB) permeability, brain water content (BWC), and hippocampal levels of oxidative stress markers, inflammatory cytokines, acetylcholine (ACh), and acetylcholinesterase (AChE) were evaluated following the behavioral tests. Histological changes in the hippocampus were examined using hematoxylin and eosin (H&E) staining. Anethole treatment significantly improved scopolamine-induced memory deficits in both NORT and PAT. Furthermore, anethole reduced BBB permeability and BWC in the AD rat model. Hippocampal levels of oxidative stress and inflammation were also attenuated following anethole administration. Additionally, anethole exerted cholinergic effects by inhibiting AChE and increasing ACh levels in the scopolamine-induced AD model. The neuroprotective effects of anethole were further confirmed by H&E staining. Our findings demonstrate that anethole effectively reverses scopolamine-induced memory and cognitive impairments through antioxidant, anti-inflammatory, and anticholinesterase mechanisms in rats. Therefore, anethole may be considered a promising therapeutic candidate for alleviating symptoms of AD and warrants further investigation in future studies.
Collapse
Affiliation(s)
- Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amirhesam Keshavarz Zarjani
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Lee NK, Lee Y, Hwang J, Park E, Paik HD. Heat-Killed Leuconostoc mesenteroides H40 Alleviates Cognitive Impairment by Anti-Inflammation and Antioxidant Effects in a Scopolamine-Induced Mouse Model. J Microbiol Biotechnol 2025; 35:e2411013. [PMID: 40016149 PMCID: PMC11896796 DOI: 10.4014/jmb.2411.11013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 03/01/2025]
Abstract
Leuconostoc mesenteroides H40 (H40), originally isolated from kimchi, has been shown to exhibit probiotic characteristics and a neuroprotective effect in SH-SY5Y cells. In this study, we investigated the modulatory effects of heat-killed H40 (H-H40) in a scopolamine-induced (1 mg/kg/day) mouse model of cognitive impairment. H-H40 at either 1 × 108 or 1 × 109 CFU/day alleviated scopolamine-induced cognitive impairment in the novel object recognition and Y-maze tests. Neuroinflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, inducible NO synthase (iNOS), and cyclooxygenase (COX)-2 were all found to be decreased by H-H40 treatment. Moreover, changes in neurotransmitter levels and synaptic plasticity were further confirmed through measurement of acetylcholinesterase, acetylcholine, choline acetyltransferase, and brain-derived neurotrophic factor (BDNF) levels. H-H40 increased β-secretase levels, but decreased amyloid-β levels. In addition, the antioxidant effects of catalase and GPx were demonstrated. Overall, our results showed that H-H40 exerts positive cognitive effects by anti-inflammatory and antioxidant activities in a mouse model of scopolamine-induced cognitive impairment. H-H40 could be used as a prophylactic functional food for improving cognition.
Collapse
Affiliation(s)
- Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Yunjung Lee
- Department of Food and Nutrition, Kyungnam University, Changwon 51767, Republic of Korea
| | - Jiyoung Hwang
- Department of Food and Nutrition, Kyungnam University, Changwon 51767, Republic of Korea
| | - Eunju Park
- Department of Food and Nutrition, Kyungnam University, Changwon 51767, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
- View of Creativity, GHBio Co., Ltd., Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Martínez-Orozco H, Bencomo-Martínez A, Maya-Arteaga JP, Rubio-De Anda PF, Sanabria-Romero F, Casas ZGM, Rodríguez-Vargas I, Hernández-Puga AG, Sablón-Carrazana M, Menéndez-Soto del Valle R, Rodríguez-Tanty C, Díaz-Cintra S. CNEURO-201, an Anti-amyloidogenic Agent and σ1-Receptor Agonist, Improves Cognition in the 3xTg Mouse Model of Alzheimer's Disease by Multiple Actions in the Pathology. Int J Mol Sci 2025; 26:1301. [PMID: 39941068 PMCID: PMC11818425 DOI: 10.3390/ijms26031301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
The complexity of Alzheimer's disease (AD) pathophysiology represents a significant challenge in the development of effective therapeutic agents for its treatment. CNEURO-201 (CN, also Amylovis-201) is a novel pharmaceutical agent with dual activity as an anti-amyloid-β (Aβ) agent and σ1 receptor agonist. CN exhibits great efficacy at very low doses, delaying cognitive impairment and alleviating Aβ load in animal models of AD. However, CN functions on other remains related to this pathology remain to be investigated. The present study sought to evaluate the effects of CN treatment at a dosage of 0.1 mg kg-1 (p.o) over an eight-week period in the 3xTg-AD mouse model. In silico studies, as well as biochemical and immunofluorescence assays, were conducted on brain tissue to investigate the CN effects on acetylcholine metabolism, redox system, and glial cell activation-related biomarkers in brain regions that are relevant for memory. The results demonstrated that CN effectively rescues cognitive impairment of 3xTg-AD mice by influencing glial activity to reduce existing Aβ plaques but also modulating acetylcholine metabolism and the enzymatic response of proteins involved in the redox system. Our outcomes reinforced the potential of CN in treating AD by acting on multiple pathways altered in this disease.
Collapse
Affiliation(s)
- Humberto Martínez-Orozco
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| | - Alberto Bencomo-Martínez
- Departamento de Farmacología, Centro de Neurociencias de Cuba, Avenida Independencia 8126, La Habana 11600, Cuba; (A.B.-M.); (M.S.-C.); (R.M.-S.d.V.); (C.R.-T.)
| | - Juan Pablo Maya-Arteaga
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| | - Pedro Francisco Rubio-De Anda
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| | - Fausto Sanabria-Romero
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| | - Zyanya Gloria Mena Casas
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| | - Isaac Rodríguez-Vargas
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| | - Ana Gabriela Hernández-Puga
- Centro de Investigación Biomédica Avanzada, Facultad de Medicina, Universidad Autónoma de Querétaro, Carretera a Chichimequillas S/N, Santiago de Querétaro 76140, Querétaro, Mexico;
| | - Marquiza Sablón-Carrazana
- Departamento de Farmacología, Centro de Neurociencias de Cuba, Avenida Independencia 8126, La Habana 11600, Cuba; (A.B.-M.); (M.S.-C.); (R.M.-S.d.V.); (C.R.-T.)
| | - Roberto Menéndez-Soto del Valle
- Departamento de Farmacología, Centro de Neurociencias de Cuba, Avenida Independencia 8126, La Habana 11600, Cuba; (A.B.-M.); (M.S.-C.); (R.M.-S.d.V.); (C.R.-T.)
| | - Chryslaine Rodríguez-Tanty
- Departamento de Farmacología, Centro de Neurociencias de Cuba, Avenida Independencia 8126, La Habana 11600, Cuba; (A.B.-M.); (M.S.-C.); (R.M.-S.d.V.); (C.R.-T.)
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología-UNAM Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla 76230, Querétaro, Mexico; (H.M.-O.); (J.P.M.-A.); (P.F.R.-D.A.); (F.S.-R.); (Z.G.M.C.); (I.R.-V.)
| |
Collapse
|
4
|
Kanwal M, Sarwar S, Nadeem H, Alghamdi SA, Alamro AA, Malik S, Maqsood S, Alghamdi AA, Tariq MJ, Malik I, Khan AU, Muskan A. Pyrazolone-nicotinic acid derivative (4Z)-4-(2-hydroxybenzylidine)-5-methyl-2-(pyridine-3-ylcarbonyl)-2, 4-dihydro-3H-pyrazole-3-one (IIc) as multitarget inhibitor of neurodegeneration and behavioural impairment in Dementia. J Pharm Pharmacol 2025; 77:275-290. [PMID: 39403847 DOI: 10.1093/jpp/rgae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/29/2024] [Indexed: 02/04/2025]
Abstract
OBJECTIVE The study was aimed at the synthesis and pharmacological investigation of (4Z)-4-(2-hydroxybenzylidine)-5-methyl-2-(pyridine-3-ylcarbonyl)-2, 4-dihydro-3H-pyrazole-3-one (IIc) in mice model of scopolamine-induced neurodegeneration and cognition impairment. METHODS The behavioural studies included Y-Maze Test, Water Morris Test, and Novel Object Recognition Test in Albino mice (20-25 g). Scopalamine was used as an inducing agent. The acetylcholinesterase (AChE) inhibitory assay was used to assess the role of the test compounds in vitro. The Crystal Violet Staining (Nissl staining) was used to assess the neuroprotective and antiapoptotic effect through quantifying the number of neurons and viability. The expression of the anti-inflammatory enzyme cyclooxygenase-2 (COX-2), cytokine tumour necrotic factor (TNF-α), key transcription factor producing pro-inflammatory signals nuclear factor kappa B (P-NFkB), and apoptosis marker p-JNK was validated through enzyme-linked immunosorbent assay (ELISA) and immunohistochemical (IHC) analysis. The tested compound reverted cognitive and behavioural impairment through inhibiting scopolamine-induced inflammation and oxidative stress. KEY FINDINGS We found that the compound IIc improved the short-term memory and learning behaviour of the experimental animals. Further investigation into molecular mechanisms showed that this effect was the manifestation of immunomodulatory, antioxidant, and consequently, of downsizing of inflammatory cytokines. These results were further validated through docking analysis. CONCLUSION Finally, we conclude that the pyrazolone-nicotinic acid derivative IIc reversed the scopolamine-induced cognitive and behavioural deficits, attributed to acetylcholinesterase inhibition, neuronal recovery, antioxidant potential, and through downregulating the neuroinflammatory mediators p-NF-kB, cytokine TNF-α, and anti-inflammatory enzyme COX-2.
Collapse
Affiliation(s)
- Madiha Kanwal
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Sadia Sarwar
- Cell Culture Lab, Department of Pharmacognosy, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abir Abdullah Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sumra Malik
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Saima Maqsood
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Amani A Alghamdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Junaid Tariq
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Imran Malik
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Arif Ullah Khan
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Aleena Muskan
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| |
Collapse
|
5
|
Popovici LF, Brinza I, Gatea F, Badea GI, Vamanu E, Oancea S, Hritcu L. Enhancement of Cognitive Benefits and Anti-Anxiety Effects of Phytolacca americana Fruits in a Zebrafish ( Danio rerio) Model of Scopolamine-Induced Memory Impairment. Antioxidants (Basel) 2025; 14:97. [PMID: 39857431 PMCID: PMC11762548 DOI: 10.3390/antiox14010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/04/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Phytolacca americana fruits exhibit a wide range of biological activities, including antimicrobial, anti-inflammatory, and anticancer properties. This study aims to investigate the phenolic profile of hydroethanolic extracts from both fresh (PEC) and dried (PEU) fruits of P. americana using high-performance liquid chromatography (HPLC) and to evaluate their impact on anxiety-like behavior, memory, oxidative stress, and cholinergic status in zebrafish (Danio rerio, Tübingen strain) treated with scopolamine (SCO, 100 μM). Acute administration of PEC and PEU (0.1, 0.5, and 1 mg/L) was conducted for one hour per day. In silico analyses were performed to evaluate the pharmacokinetic characteristics of the phenolic compounds discerned in the two extracts, using platforms such as SwissAdme, Molinspiration, ProToX-III, AdmetLab 3.0, PKCSM, and PASS. Anxiety-like behavior and memory performance were assessed through specific behavioral assays, including the novel tank test (NTT), light/dark test (LD), novel approach test (NAT), Y-maze, and novel object recognition (NOR). Subsequently, the activity of acetylcholinesterase (AChE) and the extent of oxidative stress in the zebrafish brain were investigated. Our findings suggest that both PEC and PEU possess anxiolytic effects, alleviating SCO-induced anxiety and enhancing cognitive performance in amnesic zebrafish. Furthermore, these extracts demonstrated the ability to mitigate cholinergic deficits by inhibiting AChE activity and supporting antioxidant defense mechanisms through increased activity of antioxidant enzymes and reduced lipid and protein peroxidation. These results highlight the potential use of P. americana fruit extracts in managing anxiety and cognitive impairments related to dementia conditions.
Collapse
Affiliation(s)
- Lucia-Florina Popovici
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, 7–9 Ion Ratiu Street, 550024 Sibiu, Romania;
| | - Ion Brinza
- Faculty of Sciences, “Lucian Blaga” University of Sibiu, 7–9 Ion Ratiu Street, 550024 Sibiu, Romania;
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania;
| | - Florentina Gatea
- Centre of Bioanalysis, National Institute for Biological Sciences, 296 Spl. Independentei, 060031 Bucharest, Romania; (F.G.); (G.I.B.)
| | - Georgiana Ileana Badea
- Centre of Bioanalysis, National Institute for Biological Sciences, 296 Spl. Independentei, 060031 Bucharest, Romania; (F.G.); (G.I.B.)
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti blvd, 011464 Bucharest, Romania;
| | - Simona Oancea
- Department of Agricultural Sciences and Food Engineering, “Lucian Blaga” University of Sibiu, 7–9 Ion Ratiu Street, 550024 Sibiu, Romania;
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania;
| |
Collapse
|
6
|
Vishnumurthy RH, Priya MGR, Tiwari P, Solomon VR. In-silico Studies and Antioxidant and Neuroprotective Assessment of Microencapsulated Celecoxib against Scopolamine-induced Alzheimer's Disease. Curr Pharm Des 2025; 31:320-329. [PMID: 39206485 DOI: 10.2174/0113816128298289240723103828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND OBJECTIVE Alzheimer's disease (AD) is an enervating and chronic progressive neurodegenerative disorder. Celecoxib (CXB) possesses efficacious antioxidants and has neuroprotective, anti-inflammatory, and immunomodulatory properties. However, the poor bioavailability of CXB limits its therapeutic utility. Thus, this study aimed to evaluate the microencapsulated celecoxib MCXB for neuroprotection. METHODOLOGY CXB was screened by molecular docking study using AutoDock (version 5.2), and the following proteins, such as 4EY7, 2HM1, 2Z5X, and 1PBQ were selected for predicting its neuroprotective effect. Scopolamine 20 mg/kg/day for approximately 7 days was administered to albino rats. Pure CXB 100 mg/kg/- day and 200 mg/kg/day, and MCXB 100 mg/kg/day and 200 mg/kg/day were administered, respectively. Further, to assess the oxidative stress, the nitric oxide (NO), superoxide dismutase (SOD), catalase, and lipid peroxidation (LPO) were evaluated using chemical methods. The neurochemical biomarkers like AChE, glutamate, and dopamine were evaluated using the ELISA method. Further, the histopathology of brain cells was carried out to assess the neuro-regeneration and neurodegeneration of the neurons. RESULTS There was a significant binding interaction of CXB (score -6.3, -6.5, -5.1, -9.1) and donepezil (score- 5.5, -7.6, -7.0, and -8.6) with AchE (4EY7), β-secretase (2HM1, monoamine oxidase (2Z5X), and glutamate (1PBQ), respectively. MCXB-treated rats (100 mg/kg/day, 200 mg/kg/day) showed increased SOD levels (p < 0.001), whereas NO, catalase, and LPO levels were significantly (p < 0.001) decreased as compared to scopolamine-treated rats. Further, MCXB-treated rats showed a modulatory effect in the level of dopamine and AchE. However, the glutamate level was significantly (p < 0.001) decreased. CONCLUSION In addition to that, histopathological examination of the hippocampus part showed remarkable improvement in brain cells. So, the findings of the results revealed that MCXB, in a dose-dependent manner, showed a neuroprotective effect against scopolamine-induced AD. This effect may be attributed to the activation of cholinergic pathways.
Collapse
Affiliation(s)
| | - M Gnana Ruba Priya
- College of Pharmaceutical Sciences, Dayananda Sagar University, Bengaluru, Karnataka 560111, India
| | - Prashant Tiwari
- College of Pharmaceutical Sciences, Dayananda Sagar University, Bengaluru, Karnataka 560111, India
| | - Viswas Raja Solomon
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy 502 294, India
| |
Collapse
|
7
|
Mishra E, Thakur MK. Tat-Beclin-1 Ameliorates Memory by Improving Neuronal Cytoarchitecture and Mitigating Mitochondrial Dysfunction in Scopolamine-Induced Amnesic Male Mice. ACS Pharmacol Transl Sci 2024; 7:3462-3475. [PMID: 39539255 PMCID: PMC11555511 DOI: 10.1021/acsptsci.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Mitophagy, the targeted breakdown of damaged mitochondria, plays a vital role in maintaining cellular homeostasis. As impairment of mitophagy leads to neurodegeneration and memory decline, the current study explores the therapeutic potential of an autophagy inducer Tat-Beclin-1 during scopolamine-induced amnesia. Tat-Beclin-1 improved contextual and recognition memory and also mitochondrial ultrastructure by restoring mitochondrial length and area and reducing the number of fragmented mitochondria. Tat-Beclin-1 upregulated the expression of genes associated with mitophagy (PTEN-induced kinase 1, Parkin, Lamp2, and LC3), mitochondrial fusion (Mfn1, Mfn2, and optic atrophy1), and fission (dynamin-related protein 1 and Fis1) in amnesic mice. Subsequently, these results were supported by a decreased level of p-Drp1 (S616) and Drp 1 ratios and an increased level of Mfn2, LC3BI, and BII in Tat-Beclin-1-treated mice. Moreover, Tat-Beclin-1 maintained mitochondrial membrane potential and complex I/V activity in amnesic mice. Tat-Beclin-1 enhanced myelination and diminished the activity of acetylcholinesterase and caspase-3 activity. Sholl analysis revealed augmented dendritic branching and length, elevated dendritic spine density, and upregulated the expression of synaptophysin and PSD95 proteins, indicating neuronal plasticity enhancement by Tat-Beclin-1. Thus, these findings provide valuable insights into the therapeutic potential of Tat-Beclin-1, addressing mitochondrial dysfunction to mitigate cognitive impairment associated with amnesic conditions.
Collapse
Affiliation(s)
- Ela Mishra
- Biochemistry and Molecular Biology
Laboratory, Centre of Advanced Study, Department of Zoology, Institute
of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology
Laboratory, Centre of Advanced Study, Department of Zoology, Institute
of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
8
|
Park HJ, Nam MH, Park JH, Lee JM, Hong HS, Kim TW, Lee IH, Shin CH, Lee SH, Seo YK. Comparison of Malondialdehyde, Acetylcholinesterase, and Apoptosis-Related Markers in the Cortex and Hippocampus of Cognitively Dysfunctional Mice Induced by Scopolamine. Biomedicines 2024; 12:2475. [PMID: 39595042 PMCID: PMC11592181 DOI: 10.3390/biomedicines12112475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Objectives: Until now, many researchers have conducted evaluations on hippocampi for analyses of cognitive dysfunction models using scopolamine. However, depending on the purposes of these analyses, there are differences in the experimental results for the hippocampi and cortexes. Therefore, this study intends to compare various analyses of cognitive dysfunction after scopolamine administration with each other in hippocampi and cortexes. Methods: Scopolamine was administered at three dosages in mice: 0.5, 1, and 3 mg/kg. And this study evaluates the differences in cognitive function and the expression of malondialdehyde (MDA), acetylcholinesterase (AChE), and brain-derived neurotrophic factor (BDNF) in mice's hippocampi and cortexes based on scopolamine dosages. Results: The Morris water maze test was conducted between 1 and 3 h after scopolamine injection to assess its duration. A significant decrease in behavioral ability was evaluated at 1 h, and we observed a similar recovery to the normal group at 3 h. And the Morris water maze escape latency showed differences depending on scopolamine concentration. While the escape waiting time in the control group and scop 0.5 administration group remained similar to that seen before administration, the administration of scop 1 and 3 increased it. In the experimental group administered scop 1 and 3, cerebral MDA levels in the cerebral cortex significantly increased. In the hippocampus, the MDA level in the scopolamine-administered groups slightly increased compared to the cortex. A Western blotting assay shows that Bax and Bcl-xl showed a tendency to increase or decrease depending on the concentration, but BDNF increased in scop 0.5, and scop 1 and 3 did not show a significant decrease compared to the control at the cerebral cortex. In the hippocampus, BDNF showed a concentration-dependent decrease in expression. Conclusions: This study's findings indicate that chemical analyses for MDA and AChE can be performed in the cerebral cortex, while the hippocampus is better suited for protein analysis of apoptosis and BDNF.
Collapse
Affiliation(s)
- Hee-Jung Park
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Myeong-Hyun Nam
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Ji-Hoon Park
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Ji-Min Lee
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Hye-Sun Hong
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Tae-Woo Kim
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - In-Ho Lee
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Chang-Ho Shin
- Department of AI Convergence Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
- AriBio Co., Ltd., Seongnam-si 13535, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Young-Kwon Seo
- Department of Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
- Department of AI Convergence Biomedical Engineering, Dongguk University, Goyang-si 10326, Republic of Korea
| |
Collapse
|
9
|
Myint SLL, Rodsiri R, Benya-Aphikul H, Rojanaratha T, Ritthidej G, Islamie R. Nasal Delivery of Asiatic Acid Ameliorates Scopolamine-Induced Memory Dysfunction in Mice. Adv Pharmacol Pharm Sci 2024; 2024:9941034. [PMID: 39286638 PMCID: PMC11405110 DOI: 10.1155/2024/9941034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Asiatic acid (AA) has previously shown its neuroprotective effects, but low oral bioavailability limits its penetration into the brain. This study aimed to investigate the effect of intranasal AA administration in mice with memory dysfunction induced by scopolamine. Mice received either intranasal AA (INAA), oral AA (POAA3 or POAA30), or donepezil, followed by scopolamine for 10 days. Morris water maze (MWM) was performed on days 0-5, 30 min after treatment. Locomotor activity was conducted on day 6 followed by brain collection. In MWM, INAA treatment had significantly reduced escape latency on days 2-4, while POAA3 decreased escape latency on day 3 and POAA30 and donepezil decreased escape latency on day 4. INAA inhibited acetylcholinesterase activity, increased catalase protein expression, and decreased malondialdehyde levels in the brain tissue. Therefore, intranasal administration of AA produced a rapid onset in the protection of learning and memory deficits induced by scopolamine through acetylcholinesterase inhibition and antioxidant effect.
Collapse
Affiliation(s)
- Su Lwin Lwin Myint
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
| | - Ratchanee Rodsiri
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit Chulalongkorn University, Bangkok 10330, Thailand
| | - Hattaya Benya-Aphikul
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit Chulalongkorn University, Bangkok 10330, Thailand
| | - Tissana Rojanaratha
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
| | - Garnpimol Ritthidej
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Queen Saovabha Memorial Institute The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Ridho Islamie
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical and Community Pharmacy Faculty of Pharmacy University of Surabaya, Surabaya 60293, Indonesia
| |
Collapse
|
10
|
Thongrong S, Promsrisuk T, Sriraksa N, Surapinit S, Jittiwat J, Kongsui R. Alleviative effect of scopolamine‑induced memory deficit via enhancing antioxidant and cholinergic function in rats by pinostrobin from Boesenbergia rotunda (L.). Biomed Rep 2024; 21:130. [PMID: 39070112 PMCID: PMC11273195 DOI: 10.3892/br.2024.1818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Pinostrobin, a key bioactive compound found in the medicinal plant Boesenbergia rotunda (L.), has been noted for its beneficial biological properties including antioxidant, anti-inflammation, anti-cancer and anti-amnesia activities. In view of this, the present study purposed to evaluate the neuroprotective potential of pinostrobin in reversing scopolamine-induced cognitive impairment involving oxidative stress and cholinergic function in rats. A total of 30 male Wistar rats were randomly divided into five groups (n=6): Group 1 received vehicle as a control, group 2 received vehicle + scopolamine (3 mg/kg, i.p.), group 3 received pinostrobin (20 mg/kg, p.o.) + scopolamine, group 4 received pinostrobin (40 mg/kg, p.o.) + scopolamine and group 5 received donepezil (5 mg/kg, p.o.) + scopolamine. Treatments were administered orally to the rats for 14 days. During the final 7 days of treatment, a daily injection of scopolamine was administered. Scopolamine impaired learning and memory performance, as measured by the novel object recognition test and the Y-maze test. Additionally, oxidative stress marker levels, acetylcholinesterase (AChE) activity, choline acetyltransferase (ChAT) and glutamate receptor 1 (GluR1) expression were determined. Consequently, the findings demonstrated that the administration of pinostrobin (20 and 40 mg/kg) markedly improved cognitive function as indicated by an increase in recognition index and by spontaneous alternation behaviour. Pinostrobin also modulated the levels of oxidative stress by causing a decrease in malondialdehyde levels accompanied by increases in superoxide dismutase and glutathione activities. Similarly, pinostrobin markedly enhanced cholinergic function by decreasing AChE activity and promoting ChAT immunoreactivity in the hippocampus. Additionally, the reduction in GluR1 expression due to scopolamine was diminished by treatment with pinostrobin. The findings indicated that pinostrobin exhibited a significant restoration of scopolamine-induced memory impairment by regulating oxidative stress and cholinergic system function. Thus, pinostrobin could serve as a potential therapeutic agent for the management of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Sitthisak Thongrong
- Division of Anatomy, School of Medical Sciences, University of Phayao, Muang Phayao, Phayao 56000, Thailand
| | - Tichanon Promsrisuk
- Division of Physiology, School of Medical Sciences, University of Phayao, Muang Phayao, Phayao 56000, Thailand
| | - Napatr Sriraksa
- Division of Physiology, School of Medical Sciences, University of Phayao, Muang Phayao, Phayao 56000, Thailand
| | - Serm Surapinit
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Muang Phayao, Phayao 56000, Thailand
| | - Jinatta Jittiwat
- Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand
| | - Ratchaniporn Kongsui
- Division of Physiology, School of Medical Sciences, University of Phayao, Muang Phayao, Phayao 56000, Thailand
| |
Collapse
|
11
|
Kim Y, Cho M, Lee JS, Oh J, Lim J. Protocatechuic Acid from Euonymus alatus Mitigates Scopolamine-Induced Memory Impairment in Mice. Foods 2024; 13:2664. [PMID: 39272430 PMCID: PMC11394611 DOI: 10.3390/foods13172664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The increasing prevalence of age-related neurodegenerative disorders owing to the aging population worldwide poses substantial challenges. This study investigated the neuroprotective effects of protocatechuic acid (PCA), a compound found in various fruits, vegetables, and grains, using a scopolamine-induced hypomnesia mouse model. Six-week-old male C57BL/6J mice were orally administered PCA at doses of 10 and 100 mg/kg body weight per day for two weeks, along with intraperitoneal injections of scopolamine. Learning and memory abilities were assessed using the passive avoidance, Morris water maze, and Y-maze behavioral assays. Biochemical analyses evaluated the levels of oxidative stress markers, including 8-hydroxydeoxyguanosine (8-OHdG) in the blood and malondialdehyde (MDA) in the brain, as well as phase II antioxidant proteins in the hippocampus. Histological examination was conducted to determine hippocampal integrity. Our results demonstrated that PCA administration at 10 mg/kg body weight per day or higher for two weeks (i) significantly ameliorated scopolamine-induced learning and memory impairments, as evidenced by improved performance in behavioral tasks, (ii) reduced plasma 8-OHdG levels and cerebral MDA levels in a dose-dependent manner, (iii) increased antioxidant protein expressions in the hippocampal tissue, and (iv) mitigated histological damage in the hippocampal region of the brain. These findings suggest that oral administration of PCA provides neuroprotective effects against oxidative stress-induced learning and memory impairments, possibly through upregulating antioxidant machinery. Therefore, PCA may serve as a promising dietary supplement for mitigating cognitive deficits associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoonsu Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minjung Cho
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeong Soon Lee
- Forest Environment Research Institute of Gyeongsangbuk-do, Gyeongju 38174, Republic of Korea
| | - Jisun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jinkyu Lim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
12
|
Wei W, Wu Q, Wang S, Dong C, Shao S, Zhang Z, Zhang X, Zhang X, Kan J, Liu F. Treatment with walnut peptide ameliorates memory impairment in zebrafish and rats: promoting the expression of neurotrophic factors and suppressing oxidative stress. Food Funct 2024; 15:8043-8052. [PMID: 38988249 DOI: 10.1039/d4fo00074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Walnut peptide, a low molecular weight peptide separated from walnuts by enzymatic hydrolysis, is considered as a potential nutraceutical with a variety of biological activities. In this study, we characterized the walnut peptide prepared by alkaline protease hydrolysis and evaluated its neuroprotective effect in zebrafish and rat models of memory disorders. Series of concentrations of the walnut peptide were orally administered to zebrafish and rats to examine its impact on the behavior and biochemical indicators. The results showed that the oral administration of walnut peptide significantly ameliorated the behavioral performance in zebrafish exposed to bisphenol AF (1 μg mL-1) and rats exposed to alcohol (30% ethanol, 10 mL kg-1). Furthermore, the walnut peptide upregulated the expression of neurotrophic-related molecules in zebrafish, such as the brain-derived neurotrophic factor (BDNF) and the glial cell-derived neurotrophic factor (GDNF). In the rat brain, the walnut peptide increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), while dramatically reduced malondialdehyde (MDA) level. Together, these findings elucidated that the walnut peptide might partially offset the declarative memory deficits via regulation of neurotrophic-related molecule expression and promotion of the antioxidant defense ability. Therefore, walnut peptide holds the potential for development into functional foods as a nutritional supplement for the management of certain neurodegenerative disorders.
Collapse
Affiliation(s)
- Wei Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, Shandong, 274108, PR China
| | - Qiming Wu
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai, 201203, PR China.
| | - Shuai Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Chuanmin Dong
- Institute of Scientific and Technical Information of Heze, Heze, Shandong, 274005, PR China
| | - Shujuan Shao
- Heze Administrative Examination and Approval Service Bureau, Heze, Shandong, 274000, PR China
| | - Zhao Zhang
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, Shandong, 274108, PR China
| | - Xiping Zhang
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, Shandong, 274108, PR China
| | - Xuejun Zhang
- Zhong Shi Du Qing (Shandong) Biotechnology Company, Heze, Shandong, 274108, PR China
| | - Juntao Kan
- Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai, 201203, PR China.
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
13
|
Lee NK, Lee Y, Park JY, Park E, Paik HD. Heat-Killed Lactococcus Lactis KC24 Ameliorates Scopolamine-Induced Memory Impairment in ICR Mice. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10268-6. [PMID: 38896221 DOI: 10.1007/s12602-024-10268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 06/21/2024]
Abstract
Heat-killed Lactococcus lactis KC24 (H-KC24) has been examined for its neuroprotective effects in SH-SY5Y cells. We hypothesized that H-KC24 could alleviate memory impairment through the gut-brain axis. Scopolamine (1 mg/kg/day) was administered to ICR mice to induce memory impairment. Low- and high-dose H-KC24 cells (1 × 109 and 2 × 109 CFU/day, respectively) or donepezil (DO, 2 mg/kg) were administered for 14 days. H-KC24 treatment alleviated the deleterious scopolamine-induced memory effects on the recognition index and object recognition ability in the novel object recognition test and the Y-maze test. Changes in neurotransmitters and synaptic plasticity were confirmed by measuring acetylcholine, acetylcholinesterase, choline acetyltransferase, brain-derived neurotrophic factor, cyclic AMP response element-binding protein, and phosphorylated cyclic AMP response element-binding protein expression in brain tissues. In the H-KC24 and DO groups, β-secretase levels increased, whereas amyloid β levels decreased, demonstrating that H-KC24 can improve memory impairment caused by oxidative stress. This study demonstrated the positive effects of H-KC24 in a scopolamine-induced memory impairment mouse model.
Collapse
Affiliation(s)
- Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Korea
| | - Yunjung Lee
- Department of Food and Nutrition, Kyungnam University, Changwon, 51767, Korea
| | - Ji Ye Park
- Department of Food and Nutrition, Kyungnam University, Changwon, 51767, Korea
| | - Eunju Park
- Department of Food and Nutrition, Kyungnam University, Changwon, 51767, Korea.
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
14
|
Di Micco S, Ciaglia T, Salviati E, Michela P, Kostrzewa M, Musella S, Schiano Moriello A, Di Sarno V, Smaldone G, Di Matteo F, Capolupo I, Infantino R, Bifulco G, Pepe G, Sommella EM, Kumar P, Basilicata MG, Allarà M, Sánchez-Fernández N, Aso E, Gomez-Monterrey IM, Campiglia P, Ostacolo C, Maione S, Ligresti A, Bertamino A. Novel pyrrole based CB2 agonists: New insights on CB2 receptor role in regulating neurotransmitters' tone. Eur J Med Chem 2024; 269:116298. [PMID: 38493727 DOI: 10.1016/j.ejmech.2024.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
The cannabinoid system is one of the most investigated neuromodulatory systems because of its involvement in multiple pathologies such as cancer, inflammation, and psychiatric diseases. Recently, the CB2 receptor has gained increased attention considering its crucial role in modulating neuroinflammation in several pathological conditions like neurodegenerative diseases. Here we describe the rational design of pyrrole-based analogues, which led to a potent and pharmacokinetically suitable CB2 full agonist particularly effective in improving cognitive functions in a scopolamine-induced amnesia murine model. Therefore, we extended our study by investigating the interconnection between CB2 activation and neurotransmission in this experimental paradigm. To this purpose, we performed a MALDI imaging analysis on mice brains, observing that the administration of our lead compound was able to revert the effect of scopolamine on different neurotransmitter tones, such as acetylcholine, serotonin, and GABA, shedding light on important networks not fully explored, so far.
Collapse
Affiliation(s)
- Simone Di Micco
- European Biomedical Research Institute (EBRIS), Via S. De Renzi 50, 84125, Salerno, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Perrone Michela
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Magdalena Kostrzewa
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Aniello Schiano Moriello
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Gerardina Smaldone
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Francesca Di Matteo
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Ilaria Capolupo
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Rosmara Infantino
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Eduardo M Sommella
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Poulami Kumar
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | | | - Marco Allarà
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Nuria Sánchez-Fernández
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131, Naples, Italy; Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
| | - Ester Aso
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131, Naples, Italy; Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
| | - Isabel M Gomez-Monterrey
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Alessia Ligresti
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain.
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, 84084, Fisciano, Salerno, Italy.
| |
Collapse
|
15
|
Sadeghi G, Dinani MS, Rabbani M. Effects of extracts and manna of Echinops cephalotes on impaired cognitive function induced by scopolamine in mice. Res Pharm Sci 2024; 19:167-177. [PMID: 39035579 PMCID: PMC11257209 DOI: 10.4103/rps.rps_27_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/16/2023] [Accepted: 03/05/2024] [Indexed: 07/23/2024] Open
Abstract
Background and purpose Alzheimer's disease (AD) is a neurodegenerative disease specified by chronic and irreversible destruction of neurons. This study aimed to evaluate the effects of different extracts (aqueous, hydroalcoholic, hexane, and ethyl acetate) and manna of Echinops cephalotes (EC) on impaired cognitive function induced by scopolamine in mice. EC is shown to have anti-cholinesterase-butyrylcholinesterase activities. Experimental approach In this study, aqueous and hydroalcoholic extracts, hexane and ethyl acetate fractions of EC (25, 50, 100 mg/kg, i.p.), and the manna (25, 50, 100 mg/kg, gavage) were administered for 14 days alongside scopolamine (0.7 mg/kg, i.p.). Rivastigmine (reference drug) was administered for 2 weeks i.p. Mice were tested for their memory function using two behavioral models, object recognition test (ORT) and passive avoidance test (PAT). Findings/Results Administration of scopolamine significantly impaired memory function in both behavioral models. In the PAT model, all extracts at 50 and 100 mg/kg significantly reversed the effect of memory destruction caused by scopolamine. At a lower dose of 25 mg/kg, however, none of the extracts were able to significantly change the step-through latency time. In the ORT model, however, administration of all extracts at 50 and 100 mg/kg, significantly increased the recognition index. Only the manna and the aqueous extract at 25 mg/kg were able to reverse scopolamine-induced memory impairment. Conclusions and implications These results suggest that all forms of EC extracts improve memory impairment induced by scopolamine comparably to rivastigmine. Whether the effects are sustained over a longer period remains to be tested in future work.
Collapse
Affiliation(s)
- Giti Sadeghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Sadeghi Dinani
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rabbani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
da Costa Rodrigues K, da Silva Neto MR, Dos Santos Barboza V, Hass SE, de Almeida Vaucher R, Giongo JL, Schumacher RF, Wilhelm EA, Luchese C. New curcumin-loaded nanocapsules as a therapeutic alternative in an amnesia model. Metab Brain Dis 2024; 39:589-609. [PMID: 38351421 DOI: 10.1007/s11011-023-01329-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/22/2023] [Indexed: 04/23/2024]
Abstract
This study aimed to investigate the action of two different formulations of curcumin (Cur)-loaded nanocapsules (Nc) (Eudragit [EUD] and poly (ɛ-caprolactone) [PCL]) in an amnesia mice model. We also investigated the formulations' effects on scopolamine-induced (SCO) depressive- and anxiety-like comorbidities, the cholinergic system, oxidative parameters, and inflammatory markers. Male Swiss mice were randomly divided into five groups (n = 8): group I (control), group II (Cur PCL Nc 10 mg/kg), group III (Cur EUD Nc 10 mg/kg), group IV (free Cur 10 mg/kg), and group V (SCO). Treatments with Nc or Cur (free) were performed daily or on alternate days. After 30 min of treatment, the animals received the SCO and were subjected to behavioral tests 30 min later (Barnes maze, open-field, object recognition, elevated plus maze, tail suspension tests, and step-down inhibitory avoidance tasks). The animals were then euthanized and tissue was removed for biochemical assays. Our results demonstrated that Cur treatment (Nc or free) protected against SCO-induced amnesia and depressive-like behavior. The ex vivo assays revealed lower acetylcholinesterase (AChE) and catalase (CAT) activity, reduced thiobarbituric species (TBARS), reactive species (RS), and non-protein thiols (NSPH) levels, and reduced interleukin-6 (IL-6) and tumor necrosis factor (TNF) expression. The treatments did not change hepatic markers in the plasma of mice. After treatments on alternate days, Cur Nc had a more significant effect than the free Cur protocol, implying that Cur may have prolonged action in Nc. This finding supports the concept that it is possible to achieve beneficial effects in nanoformulations, and treatment on alternate days differs from the free Cur protocol regarding anti-amnesic effects in mice.
Collapse
Affiliation(s)
- Karline da Costa Rodrigues
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Manoel Rodrigues da Silva Neto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, Uruguaiana, RS, 97500-970, Brazil
| | - Victor Dos Santos Barboza
- Laboratório de Pesquisa em Bioquímica e Biologia Molecular de Micro-organismos (LaPeBBioM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Sandra Elisa Hass
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, Uruguaiana, RS, 97500-970, Brazil
| | - Rodrigo de Almeida Vaucher
- Laboratório de Pesquisa em Bioquímica e Biologia Molecular de Micro-organismos (LaPeBBioM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Janice Luehring Giongo
- Laboratório de Pesquisa em Bioquímica e Biologia Molecular de Micro-organismos (LaPeBBioM), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | | | - Ethel Antunes Wilhelm
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
17
|
Lutfy RH, Essawy AE, Mohammed HS, Shakweer MM, Salam SA. Transcranial Irradiation Mitigates Paradoxical Sleep Deprivation Effect in an Age-Dependent Manner: Role of BDNF and GLP-1. Neurochem Res 2024; 49:919-934. [PMID: 38114728 PMCID: PMC10902205 DOI: 10.1007/s11064-023-04071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
The growing prevalence of aged sleep-deprived nations is turning into a pandemic state. Acute sleep deprivation (SD) accompanies aging, changing the hippocampal cellular pattern, neurogenesis pathway expression, and aggravating cognitive deterioration. The present study investigated the ability of Near Infra Red (NIR) light laser to ameliorate cognitive impairment induced by SD in young and senile rats. Wistar rats ≤ 2 months (young) and ≥ 14 months (senile) were sleep-deprived for 72 h with or without transcranial administration of NIR laser of 830 nm. Our results showed that NIR photobiomodulation (PBM) attenuated cognitive deterioration made by SD in young, but not senile rats, while both sleep-deprived young and senile rats exhibited decreased anxiety (mania)-like behavior in response to PBM. NIR PBM had an inhibitory effect on AChE, enhanced the production of ACh, attenuated ROS, and regulated cell apoptosis factors such as Bax and Bcl-2. NIR increased mRNA expression of BDNF and GLP-1 in senile rats, thus facilitating neuronal survival and differentiation. The present findings also revealed that age exerts an additive factor to the cellular assaults produced by SD where hippocampal damages made in 2-month rats were less severe than those of the aged one. In conclusion, NIR PBM seems to promote cellular longevity of senile hippocampal cells by combating ROS, elevating neurotrophic factors, thus improving cognitive performance. The present findings provide NIR as a possible candidate for hippocampal neuronal insults accompanying aging and SD.
Collapse
Affiliation(s)
- Radwa H Lutfy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Amina E Essawy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Haitham S Mohammed
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa M Shakweer
- Department of Pathology, Faculty of Medicine, Badr University in Cairo (BUC), Cairo, Egypt
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
18
|
Sanfeliu C, Bartra C, Suñol C, Rodríguez-Farré E. New insights in animal models of neurotoxicity-induced neurodegeneration. Front Neurosci 2024; 17:1248727. [PMID: 38260026 PMCID: PMC10800989 DOI: 10.3389/fnins.2023.1248727] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
The high prevalence of neurodegenerative diseases is an unintended consequence of the high longevity of the population, together with the lack of effective preventive and therapeutic options. There is great pressure on preclinical research, and both old and new models of neurodegenerative diseases are required to increase the pipeline of new drugs for clinical testing. We review here the main models of neurotoxicity-based animal models leading to central neurodegeneration. Our main focus was on studying how changes in neurotransmission and neuroinflammation, mainly in rodent models, contribute to harmful processes linked to neurodegeneration. The majority of the models currently in use mimic Parkinson's disease (PD) and Alzheimer's disease (AD), which are the most common neurodegenerative conditions in older adults. AD is the most common age-related dementia, whereas PD is the most common movement disorder with also cases of dementia. Several natural toxins and xenobiotic agents induce dopaminergic neurodegeneration and can reproduce neuropathological traits of PD. The literature analysis of MPTP, 6-OH-dopamine, and rotenone models suggested the latter as a useful model when specific doses of rotenone were administrated systemically to C57BL/6 mice. Cholinergic neurodegeneration is mainly modelled with the toxin scopolamine, which is a useful rodent model for the screening of protective drugs against cognitive decline and AD. Several agents have been used to model neuroinflammation-based neurodegeneration and dementia in AD, including lipopolysaccharide (LPS), streptozotocin, and monomeric C-reactive protein. The bacterial agent LPS makes a useful rodent model for testing anti-inflammatory therapies to halt the development and severity of AD. However, neurotoxin models might be more useful than genetic models for drug discovery in PD but that is not the case in AD where they cannot beat the new developments in transgenic mouse models. Overall, we should work using all available models, either in vivo, in vitro, or in silico, considering the seriousness of the moment and urgency of developing effective drugs.
Collapse
Affiliation(s)
- Coral Sanfeliu
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Clara Bartra
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- PhD Program in Biotechnology, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Cristina Suñol
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eduard Rodríguez-Farré
- Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
19
|
Sandeep Ganesh G, Konduri P, Kolusu AS, Namburi SV, Chunduru BTC, Nemmani KVS, Samudrala PK. Neuroprotective Effect of Saroglitazar on Scopolamine-Induced Alzheimer's in Rats: Insights into the Underlying Mechanisms. ACS Chem Neurosci 2023; 14:3444-3459. [PMID: 37669120 DOI: 10.1021/acschemneuro.3c00320] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent and progressive neurodegenerative disorders, hallmarked by increased amyloid-β deposition and enhanced oxidative load in the brain, ensuing cognitive decline. The present study is aimed at elucidating the neuroprotective effect of saroglitazar, a dual peroxisome-proliferator-activated receptor (PPARα/γ) agonist used in the treatment of diabetic dyslipidemia, against memory impairment induced by intraperitoneal scopolamine injection. 30 male Wistar rats were randomly divided into the following five groups: (A) Veh + Veh, (B) SGZ + Veh, (C) Veh + SCOP, (D) DPZ + SCOP, and (E) SGZ + SCOP. Rats of the respective groups were pretreated with saroglitazar (10 mg/kg, p.o.) and donepezil (3 mg/kg, p.o.) once daily for 16 days. During the final 9 days of the study, a daily injection of scopolamine (3 mg/kg, i.p.) was administered to the respective groups. Adjacent to the scopolamine injection, behavioral tests such as the open field, Y maze, novel object recognition test, and Morris water maze were conducted to assess learning and memory. Additionally, biochemical parameters such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), nitric oxide (NO), malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), brain-derived neurotrophic factor (BDNF), β-amyloid levels, and NF-κB were measured in the hippocampus. The rats that received scopolamine injections showed significantly impaired short-term spatial and learning memory. This was associated with an increase in β-amyloid, iNOS, nitric oxide (NO), malondialdehyde, NF-κB, and TNF-α levels in the hippocampus of AD rats. On the other hand, saroglitazar has provided promising data on its protective role in cognition by protecting the BDNF, SOD, and GSH decline. As a result, saroglitazar was found to be a promising therapy in AD by upregulating the antioxidant status and cholinergic activity and preventing memory loss. Collectively, findings in the present study revealed that saroglitazar protected AD by suppressing scopolamine-mediated learning and memory deficits, oxidative stress, and cholinergic damage. Studying these mechanisms may conclude the protective role of saroglitazar against AD. However, further studies in transgenic animals will provide numerous insights into treatment mechanisms and contribute to developing a therapeutic intervention for AD.
Collapse
Affiliation(s)
- Grandhi Sandeep Ganesh
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Bhimavaram, Andhra Pradesh 534202, India
| | - Prasad Konduri
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Bhimavaram, Andhra Pradesh 534202, India
| | - Aravinda Sai Kolusu
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Bhimavaram, Andhra Pradesh 534202, India
| | - Srihari Vandana Namburi
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Bhimavaram, Andhra Pradesh 534202, India
| | - Bala Tejo Chandra Chunduru
- Clinical Data Manager, STATMINDS LLC, 501 Allendale Rd Suite 202, King of Prussia, Pennsylvania 19406, United States
| | - Kumar V S Nemmani
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Bhimavaram, Andhra Pradesh 534202, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology, Shri Vishnu College of Pharmacy, Bhimavaram, Andhra Pradesh 534202, India
| |
Collapse
|
20
|
Maina M, Mbaria J, Kamanja I, Moriasi G. Acute oral toxicity, cognitive-enhancing and anti-lipid peroxidation efficacy, and qualitative phytochemistry of the aqueous aerial part extract of Launaea cornuta (Hochst. ex. Oliv. &Hiern) C. Jeffrey. Heliyon 2023; 9:e15487. [PMID: 37123958 PMCID: PMC10131077 DOI: 10.1016/j.heliyon.2023.e15487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
At present, there is no cure for dementia or its related cognitive impairments. Available treatments only provide symptomatic relief and do not alter the disease's progression and they suffer serious drawbacks limiting their clinical use, hence the need for alternative therapies. Although Launaea cornuta has been used traditionally to treat cognitive deficits, its pharmacological efficacy and safety have not been empirically validated, prompting this study. Acute oral toxicity of the extract was examined in Swiss albino mice using the up-and-down procedure described by the Organisation for Economic Cooperation and Development guideline number 425. The Morris water maze technique was adopted in assessing cognitive-enhancing effects of the extract in ketamine-induced cognitive-impaired mice. The malondialdehyde concentrations in the whole brain of experimental mice involved in the MWM experiment were measured to determine the extract's anti-lipid peroxidation efficacy. Qualitative phytochemical screening of the extract was performed using standard procedures. Our results showed that the test extract was safe and did not cause any clinical signs of acute oral toxicity in mice at all doses (LD50 > 2000 mg/kg BW). Moreover, the extract significantly improved cognitive function in ketamine-induced cognitive-impaired mice in a dose-dependent manner, as indicated by reduced escape latency, navigation distance, and longer latency in the target quadrant during the probe trial. The extract also significantly reduced malondialdehyde concentrations in mice in a dose-dependent manner, demonstrating its antioxidative stress efficacy. The studied extract contained various phytochemicals associated with cognitive enhancement and antioxidant efficacy, among other pharmacologic effects. Further empirical studies are needed to determine and characterise the extract's specific cognitive-enhancing compounds, specific mechanisms of action, and complete toxicity profiles.
Collapse
Affiliation(s)
- Mercy Maina
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, PO BOX 29053-00625, Nairobi, Kenya
- Corresponding author. Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, PO BOX 29053-00625, Nairobi, Kenya.
| | - James Mbaria
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, PO BOX 29053-00625, Nairobi, Kenya
| | - Irene Kamanja
- Department of Public Health, Pharmacology, and Toxicology, Egerton University, PO BOX 13357 - 20100, Nakuru, Kenya
| | - Gervason Moriasi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, PO BOX 43844-00100-GPO, Nairobi, Kenya
- Department of Medical Biochemistry, Mount Kenya University, PO BOX 342-01000, Thika, Kenya
- Corresponding author. Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, PO BOX 43844-00100-GPO, Nairobi, Kenya.
| |
Collapse
|
21
|
de Campos DL, Queiroz LY, Fontes-Junior EA, Pinheiro BG, da Silva JKR, Maia CSF, Maia JGS. Aniba canelilla (Kunth) Mez essential oil and its primary constituent, 1-nitro-2-phenylethane, inhibits acetylcholinesterase and reverse memory impairment in rodents. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116036. [PMID: 36493997 DOI: 10.1016/j.jep.2022.116036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aniba canelilla, distributed in the Amazon region, stands out for its diverse economic and medicinal applications. Studies of the A. canelilla essential oil and its primary constituent, 1-nitro-2-phenylethane, have confirmed its anti-inflammatory, antinociceptive, anti-hypertensive potential, and anticholinesterase, among other therapeutic activities. AIM OF THE STUDY In addition, the present work aims to evaluate the potential of oil and NPE in the learning and memory of rodents. MATERIAL AND METHODS The oil was hydrodistilled and analyzed by GC and GC-MS. The learning and memory action in mice was evaluated through the scopolamine-induced cognitive deficit model, followed by behavioral analysis using Morris's water maze paradigm. RESULTS Oil provided a yield of 0.5%, and in its chemical composition, 1-nitro-2-phenylethane (NPE) (76.2%) and methyleugenol (19.6%) were identified as primary constituents. Oil fractionation furnished NPE with 99.4%, which was used to evaluate its effects in animal models. Wistar rats were submitted to the mnemonic impairment-scopolamine-induced protocol for 7 days. The oil, NPE, and the positive control donepezil were administered from the 8th to 12th days. Morris water maze results demonstrated that oil and NPE reversed spatial learning and long-term memory similarly induced by muscarinic antagonist scopolamine to donepezil, the positive control. CONCLUSION These beneficial effects have led the work to further investigations of the oil and NPE to elucidate their pharmacological mechanism, focusing on the cholinergic pathway of the central nervous system and opening up to the knowledge of other adjacent mechanisms, whose results are still under analysis.
Collapse
Affiliation(s)
- Daniele L de Campos
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil.
| | - Letícia Y Queiroz
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil.
| | - Enéas A Fontes-Junior
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil.
| | - Bruno G Pinheiro
- Centro de Ciências Biológicas, Universidade do Estado do Pará, 66087-662, Belém, PA, Brazil.
| | - Joyce Kelly R da Silva
- Programa de Pós-Graduação em Química, Universidade Federal do Pará, 66075-900, Belém, PA, Brazil.
| | - Cristiane Socorro F Maia
- Laboratório de Farmacologia da Inflamação e Comportamento, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil.
| | - José Guilherme S Maia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil; Programa de Pós-Graduação em Química, Universidade Federal do Maranhão, 65080-040, São Luís, MA, Brazil.
| |
Collapse
|
22
|
Topcu A, Saral S, Ozturk A, Saral O, Kaya AK. The effect of the calcium channel blocker nimodipine on hippocampal BDNF/Ach levels in rats with experimental cognitive impairment. Neurol Res 2023; 45:544-553. [PMID: 36598971 DOI: 10.1080/01616412.2022.2164452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Alzheimer's disease (AD) occurs in approximately 10% to 30% of individuals aged 65 or older worldwide. Novel therapeutic agents therefore need to be discovered in addition to traditional medications. Nimodipine appears to possess the potential to reverse cognitive impairment-induced dysfunction in learning and memory through its regulatory effect on the brain-derived neurotrophic factor (BDNF), acetylcholine (Ach), and acetylcholinesterase (AChE) pathway in the hippocampus and prefrontal cortex. METHODS Twenty-four male Sprague Dawley rats weighing 380 ± 10 g were used for behavioral and biochemical analyses. These were randomly and equally assigned into one of three groups. Group 1 received saline solution alone via the intraperitoneal (i.p) route, and Group 2 received 1 mg/kg/day i.p. scopolamine once a day for three weeks for induction of learning and memory impairments. In Group 3, 10 mg/kg/day nimodipine was prepared in tap water and administered orally every day for three weeks, followed after 30 min by 1 mg/kg/day scopolamine i.p. Behavior was evaluated using the Morris Water Maze test. BDNF, ACh, and AChE levels were determined using the ELISA test in line with the manufacturer's instructions. RESULTS Nimodipine treatment significantly increased the time spent in the target quadrant and the number of entries into the target quadrant compared to the scopolamine group alone. Additionally, BDNF and ACh levels in the hippocampus and prefrontal cortex decreased following 20-day scopolamine administration, while AChE activation increased. CONCLUSION Nimodipine exhibited potentially beneficial effects by ameliorating cognitive decline following scopolamine administration in the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Atilla Topcu
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Sinan Saral
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Aykut Ozturk
- Department of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Ozlem Saral
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Ali Koray Kaya
- Department of Physiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Türkiye
| |
Collapse
|
23
|
Patel P, Shah J. Vitamin D 3 supplementation ameliorates cognitive impairment and alters neurodegenerative and inflammatory markers in scopolamine induced rat model. Metab Brain Dis 2022; 37:2653-2667. [PMID: 36156759 DOI: 10.1007/s11011-022-01086-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
A multifaceted approach can be effective for the treatment of dementia including the most common form, Alzheimer's disease (AD). However, currently, it involves only symptomatic treatment with cholinergic drugs. Beneficial effects of high Vitamin D3 levels or its intake in the prevention and treatment of cognitive disorders have been reported. Thus, the present study examined the preventive effect of Vitamin D3 (Calcitriol) supplementation on cognitive impairment and evaluated its impact on the accumulation or degradation of Aβ plaques. A single intraperitoneal injection of scopolamine was used to induce cognitive impairment in rats. Treatment of Vitamin D3 was provided for 21 days after the injection. Various behavioral parameters like learning, spatial memory and exploratory behavior, biochemical alterations in the brain homogenate and histology of the hippocampus were investigated. Our results indicated that scopolamine-induced rats depicted cognitive deficits with high Aβ levels and hyperphosphorylated tau proteins in the brain tissue, while Vitamin D supplementation could significantly improve the cognitive status and lower these protein levels. These results were supported by the histopathological and immunohistochemical staining of the hippocampal brain region. Furthermore, mechanistic analysis depicted that Vitamin D supplementation improved the Aβ protein clearance by increasing the neprilysin levels. It also reduced the accumulation of Aβ plaques by lowering neuroinflammation as well as oxidative stress. The present findings indicate that Vitamin D3 supplementation can ameliorate cognitive deficits and thereby delay AD progression by increasing Aβ plaque degradation, reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Parmi Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 381 481, India
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 381 481, India.
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382 481, India.
| |
Collapse
|
24
|
Ex Vivo Antioxidant and Cholinesterase Inhibiting Effects of a Novel Galantamine-Curcumin Hybrid on Scopolamine-Induced Neurotoxicity in Mice. Int J Mol Sci 2022; 23:ijms232314843. [PMID: 36499171 PMCID: PMC9737725 DOI: 10.3390/ijms232314843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Oxidative stress is an essential factor in the development and progression of Alzheimer's disease (AD). An excessive amount of reactive oxygen species (ROS) induces the peroxidation of lipid membranes, reduces the activity of antioxidant enzymes and causes neurotoxicity. In this study, we investigated the antioxidant and cholinesterase inhibitory potential of a novel galantamine-curcumin hybrid, named 4b, administered orally in two doses (2.5 mg/kg and 5 mg/kg) in scopolamine (SC)-induced neurotoxicity in mice. To evaluate the effects of 4b, we used galantamine (GAL) (3 mg/kg) and curcumin (CCN) (25 mg/kg) as positive controls. Ex vivo experiments on mouse brains showed that the higher dose of 4b (5 mg/kg) increased reduced glutathione (GSH) levels by 46%, catalase (CAT) and superoxide dismutase (SOD) activity by 57%, and glutathione peroxidase (GPx) activity by 108%, compared with the SC-treated group. At the same time, 4b (5 mg/kg) significantly reduced the brain malondialdehyde (MDA) level by 31% and acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities by 40% and 30%, respectively, relative to the SC-impaired group. The results showed that 4b acted as an antioxidant agent and brain protector, making it promising for further experimental research in the field of neurodegenerative diseases.
Collapse
|
25
|
Al-Hakim NA, Fidrianny I, Anggadiredja K, Mauludin R. Effect of Banana ( Musa sp.) Peels Extract in Nanoemulsion Dosage Forms for the Improvement of Memory: In Vitro & In Vivo Studies. Pharm Nanotechnol 2022; 10:299-309. [PMID: 35466890 PMCID: PMC9900702 DOI: 10.2174/2211738510666220422135519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Banana (Musa sp.) is a plant rich in phytochemical compounds, especially antioxidants, which are hypothesized to inhibit the activity of acetylcholinesterase, an enzyme associated with Alzheimer's Disease. OBJECTIVE This research aimed to study nanoemulsion preparations of Kepok banana (KEP-NE) and Tanduk banana (TAN-NE) peel extracts for their activities as antioxidants, acetylcholinesterase as well as tyrosinase inhibitors, and as agents to improve short-term memory. METHODS Nanoemulsion was prepared using a combination of high shear homogenization and ultrasonication. The antioxidant activity test was carried out using DPPH and ABTS methods. Meanwhile, memory improvement was studied in a mouse model with memory impairment induced by alloxan (120 mg/kg b.w) using the Y-maze apparatus. ELISA performed determination of acetylcholinesterase and tyrosinase inhibition. RESULTS Characterization of the nanoemulsion was performed to include particle size, antioxidant activity, acetylcholinesterase, and tyrosinase inhibition. The particle size and polydispersity index (PI) of KEP-NE and TAN-NE were 84.2 nm (PI: 0.280) and 94.1 nm (PI: 0.282), respectively. The antioxidant activity of DPPH showed that the respective IC50 values of KEP-NE and TAN-NE were 0.64 μg/mL and 1.97 μg/mL. At the same time, the values with the ABTS method were 1.10 μg/mL and 1.72 μg/mL, respectively. The IC50 of KEP-NE on acetylcholinesterase inhibition was 108.80 μg/mL, and that on tyrosinase inhibition was 251.47 μg/mL. The study of short-term memory in the Y-maze revealed that the groups Kepok peel extracts 100 and 300 mg/kg b.w and KEP-NE 100 and 300 mg/kg b.w significantly (P < 0.05) improved short-term memory. CONCLUSION This study suggests that the nanoemulsion dosage form of Kepok banana peel extract has antioxidant and acetylcholinesterase inhibition and tyrosinase inhibition activities and could potentially be an adjunct alternative treatment for memory disorders. Modifying the smaller drug particle size contributes to the delivery system. The nanoemulsion can increase pharmacological activity.
Collapse
Affiliation(s)
- Nur Achsan Al-Hakim
- School of Pharmacy, Bandung Institute of Technology, Bandung, 40132, Indonesia
| | - Irda Fidrianny
- School of Pharmacy, Bandung Institute of Technology, Bandung, 40132, Indonesia
| | | | - Rachmat Mauludin
- School of Pharmacy, Bandung Institute of Technology, Bandung, 40132, Indonesia,Address correspondence to this author at the School of Pharmacy, Bandung Institute of Technology, Ganesha 10 Bandung, 40132, Indonesia; Tel: +62-22 250 4852, E-mail:
| |
Collapse
|
26
|
Azam S, Kim YS, Jakaria M, Yu YJ, Ahn JY, Kim IS, Choi DK. Dioscorea nipponica Makino Rhizome Extract and Its Active Compound Dioscin Protect against Neuroinflammation and Scopolamine-Induced Memory Deficits. Int J Mol Sci 2022; 23:ijms23179923. [PMID: 36077321 PMCID: PMC9456145 DOI: 10.3390/ijms23179923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Activation of microglial cells by intrinsic or extrinsic insult causes neuroinflammation, a common phenomenon in neurodegenerative diseases. Prevention of neuroinflammation may ameliorate many neurodegenerative disease progressions. Dioscorea nipponica Makino (DN) extract can alleviate muscular atrophy and inflammatory diseases; however, the efficacy and mechanism of action in microglial cells remain unknown. The current study investigates the possible anti-inflammatory effects and mechanisms of Dioscorea nipponica Makino ethanol extract and its steroidal saponin dioscin. Our in vitro study shows that Dioscorea nipponica rhizome ethanol extract (DNRE) and dioscin protect against lipopolysaccharide (LPS)-activated inflammatory responses in BV-2 microglial cells by inhibiting phosphorylation and the nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), resulting in the downregulation of pro-inflammatory cytokines and enzymes. Consistent with our previous report of dioscin-mediated enhancement of neurotrophic factors in dopaminergic cells, here we found that dioscin upregulates brain-derived neurotrophic factor (BDNF) and cAMP-response element binding protein (CREB) phosphorylation (pCREB) in the cerebral cortex and hippocampus regions of the mouse brain. Scopolamine treatment increased pro-inflammatory enzyme levels and reduced the expression of BDNF and pCREB in the hippocampus and cortex regions, which led to impaired learning and referencing memory in mice. Pre-treatment of dioscin for 7 days substantially enhanced mice performances in maze studies, indicating amelioration in cognitive deficits. In conclusion, DNRE and its active compound dioscin protect against neurotoxicity most likely by suppressing NF-κB phosphorylation and upregulating neurotrophic factor BDNF.
Collapse
Affiliation(s)
- Shofiul Azam
- BK21 Program, Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Korea
| | - Yon-Suk Kim
- BKplus GLOCAL Education Program of Nutraceuticals Development, Konkuk University, Chungju 27478, Korea
| | - Md. Jakaria
- BK21 Program, Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Korea
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ye-Ji Yu
- BK21 Program, Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Korea
| | - Jae-Yong Ahn
- BK21 Program, Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Korea
| | - In-Su Kim
- BK21 Program, Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
| | - Dong-Kug Choi
- BK21 Program, Department of Applied Life Sciences, Graduate School, Konkuk University, Chungju 27478, Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
- Correspondence: ; Tel.: +82-43-840-3610; Fax: +82-43-840-3872
| |
Collapse
|
27
|
Wang ZX, Lian WW, He J, He XL, Wang YM, Pan CH, Li M, Zhang WK, Liu LQ, Xu JK. Cornuside ameliorates cognitive impairments in scopolamine induced AD mice: Involvement of neurotransmitter and oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115252. [PMID: 35405255 DOI: 10.1016/j.jep.2022.115252] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cornus officinalis Sieb. et Zucc., traditional Chinese medicine, has been widely used in the treatment of dementia. Cornel iridoid glycosides of Cornus officinalis is therapeutic to Alzheimer's disease (AD), while its pharmacodynamic material basis is not clear. Cornuside, an iridoid glycoside extracted from of Cornus officinalis Sieb. et Zucc, might be a potential anti-AD candidate. AIM OF THE STUDY Cornuside was evaluated for its effect on scopolamine induced AD mice, and its action mechanisms were explored. MATERIALS AND METHODS ICR mice were administered with 1 mg/kg scopolamine intraperitoneally to induce amnesia. The therapeutic effect of cornuside of cognitive function was evaluated via series of behavioral tests, including Morris water maze test, step-through test and step-down test. In addition, specific enzyme reaction tests were used to detect the content of acetylcholine (ACh) and malondialdehyde (MDA), as well as the activities of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), choline acetyltransferase (ChAT), superoxide dismutase (SOD), catalase (CAT), monoamine oxidase (MAO) in the brain. The levels of monoamine neurotransmitters were detected by high performance liquid chromatography-electrochemical detection (HPLC-ECD). RESULTS Cornuside ameliorated the spatial memory impairment in Morris water maze test and cognitive disruption in step-through and step-down test. Furthermore, cornuside improved the level of ACh by reducing the activities of AChE and BuChE, and increasing the activity of ChAT in hippocampus. Cornuside also increased the levels of monoamine neurotransmitters by inhibiting MAO activity in hippocampus and cortex. In addition, cornuside attenuated MDA by enhancing the activities of SOD and CAT in hippocampus and cortex. CONCLUSION Cornuside improved cognitive dysfunction induced by scopolamine in behavioral tests. The mechanisms of cornuside were further investigated from the aspects of neurotransmitters and oxidative stress. Cornuside could inhibit oxidative stress and neurotransmitter hydrolases, increase ACh and monoamine neurotransmitters, which finally contributed to its therapeutic effect on scopolamine induced amnesia.
Collapse
Affiliation(s)
- Ze-Xing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wen-Wen Lian
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Xiao-Li He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Yu-Ming Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Chen-Hao Pan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Mei Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Lian-Qi Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| | - Jie-Kun Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
28
|
Salimi A, Sabur M, Dadkhah M, Shabani M. Inhibition of scopolamine-induced memory and mitochondrial impairment by betanin. J Biochem Mol Toxicol 2022; 36:e23076. [PMID: 35411685 DOI: 10.1002/jbt.23076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/05/2022]
Abstract
Mitochondrial dysfunction and oxidative stress are identified to contribute to the mechanisms responsible for the pathogenesis of Alzheimer's disease (AD). Scopolamine (SCO) as a potent drug for inducing memory and learning impairment is associated with mitochondrial dysfunction and oxidative stress. In AD clinical trials molecules with antioxidant properties have shown modest benefit. Betanin as a multifunctional molecule with powerful antioxidative properties may be effective in the treatment of neurodegenerative. Hence, this study was designed to investigate the possible therapeutic effect of betanin against SCO-induced AD on Wistar rats. SCO (1 mg/kg) was administrated intraperitoneally to induce the AD in Wistar rats. The rats were treated with betanin doses (25 mg/kg and 50 mg/kg) intraperitoneally for 9 consecutive days. At the end of the 9th day, the animals were subjected to behavioral examination such as novel object recognition and passive avoidance tests and killed to study the mitochondrial and histological parameters. The results showed attenuation of SCO-induced memory and learning impairment by betanin at 50 mg/kg dose. Also, mitochondrial toxicity parameters such as mitochondrial membrane potential collapse, mitochondrial swelling, decreased activity of succinate dehydrogenase, and reactive oxygen species (ROS) production were reversed by betanin (50 mg/kg) compared to the SCO group. In addition, the ameliorative effect of betanin against SCO was demonstrated in histopathological results of hippocampus. The present investigation established that the betanin ameliorates the SCO-induced memory impairments, tissue injuries, and mitochondrial dysfunction by reducing mitochondrial ROS, which may be due to the potent antioxidant action of betanin.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Meysam Sabur
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Shabani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
29
|
Banhasasim-Tang Ameliorates Spatial Memory by Suppressing Oxidative Stress through Regulation of ERK/p38 Signaling in Hippocampus of Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6970578. [PMID: 34900088 PMCID: PMC8660254 DOI: 10.1155/2021/6970578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022]
Abstract
Since ancient times, Banhasasim-tang (BHS) has been used to treat functional dyspepsia in East Asia. Here, we aimed to determine the protective action of BHS on hippocampal neurons against oxidative stress. We investigated the functional effect of BHS on a scopolamine-induced mouse model, and molecular analysis was performed in glutamate-induced HT22 cells. We observed that BHS administration ameliorated memory dysfunction in scopolamine-treated mice. BHS administration also increased neuronal survival and acetylcholine activity and phosphorylation of extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) in the hippocampus of mice. In hippocampal cells, BHS treatment rescued glutamate-induced cytotoxicity, apoptosis, and oxidative stress. We observed an increase of HO-1 and a decrease of Nrf2 protein expression in glutamate-induced oxidative stress; however, the expression level of these proteins was significantly rescued by BHS treatment. BHS treatment also regulated phosphorylation of p38, p53, ERK, and CREB. Therefore, our data indicated that BHS may reduce oxidative stress through regulation of ERK-CREB and p38-p53 signaling in the hippocampus, resulting in decreased neuronal damage and improved memory in rodent models of neurodegenerative disease.
Collapse
|
30
|
Osuntokun OS, Olayiwola G, Adekomi DA, Oyeyipo IP, Ayoka AO. Proanthocyanidin from Vitis vinifera attenuates memory impairment due to convulsive status epilepticus. Epilepsy Behav 2021; 124:108333. [PMID: 34619539 DOI: 10.1016/j.yebeh.2021.108333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022]
Abstract
This study investigated the effects of proanthocyanidin-rich fraction (PRF) of Vitis vinifera seed extract on the markers of hippocampal-dependent memory in convulsive status epilepticus (CSE) rat model. One hundred juvenile Wistar rats were randomized into 6 groups. Group 1 (n = 10) received propylene glycol (PG 0.1 ml/100 g) intraperitoneally (i.p), while convulsion was induced in groups 2-6 (n = 18 each) using lithium (127 mg/kg i.p) and pilocarpine hydrochloride (40 mg/kg i.p). The established CSE rats in groups 2-6 received a daily treatment of PG (0.1 ml i.p), PRF (30 mg/kg i.p), PRF (20 mg/kg BW i.p), PRF (10 mg/kg BW i.p) or diazepam (5 mg/kg BW i.p) for seven days. Thereafter, they were kept untreated but with access to feed and water for 21 days. The control and CSE-treated rats were subjected to behavioral tests, while the biochemical and histomorphological evaluations of the hippocampus were done after the sacrifice. The results were presented as mean ± SEM in graphs or tables. The level of significance was considered when p < 0.05. There was significant decrease in the hippocampal-dependent memory, hippocampal weight and an increased malondialdehyde concentration following CSE. The activities of acetylcholinesterase decreased significantly in the PRF-treated CSE rats. The hippocampal glial cells and granule count increased significantly following CSE, with various neurodegenerative features in the CA1 of the hippocampus. These derangements were attenuated significantly following PRF treatment. Memory impairment following CSE may be attenuated with the administration of PRF from V. vinifera seed in rats.
Collapse
Affiliation(s)
- Opeyemi Samson Osuntokun
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria; Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.
| | - Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | | | - Ibukun Peter Oyeyipo
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria
| | - Abiodun Oladele Ayoka
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| |
Collapse
|
31
|
Heydari M, Mokhtari-Zaer A, Amin F, Memarzia A, Saadat S, Hosseini M, Boskabady MH. The effect of Zataria multiflora hydroalcoholic extract on memory and lung changes induced by rats that inhaled paraquat. Nutr Neurosci 2021; 24:674-687. [PMID: 31583983 DOI: 10.1080/1028415x.2019.1668173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objectives: The effects of hydroalcoholic extract of Zataria multiflora (Z. multiflora) on memory changes, as well as lung injury due to inhaled paraqut (PQ) in rat, were examined.Method: Control group of rat with saline aerosol administration, PQ groups with PQ aerosol (27 and 54 mg/m3) administration, PQ groups treated with two doses of the extract (200 and 800 mg/kg/day) and dexamethasone (0.03 mg/kg/day) were studied. Shuttle box and Morris Water Maze (MWM) tests were carried out as well as oxidant, anti-oxidant markers, total and differential white blood cell (WBC) counts and cytokine levels in broncho-alveolar lavage (BALF).Results: Inhaled PQ significantly increased the escape latency and travelled distance in MWM test, but the time spent in the target quadrant on the probe day was significantly reduced (p < 0.05 to p < 0.001). The latency to enter the dark room at 3, 24, and 48 h after an electrical shock was reduced due to PQ (p < 0.05 to p < 0.001). Exposure to PQ significantly increased total WBC, neutrophil, eosinophil, lymphocyte, and monocyte counts, IL-10, interferon gama (INF-γ), nitrite (NO2), and malondialdehyde (MDA) levels, but catalase (CAT), superoxide dismutase (SOD), and thiol levels were decreased (p < 0.05 to p < 0.00). Z. multiflora and dexamethasone treatment significantly improved all behavioral as well as lung changes induced by inhaled PQ (p < 0.05 to p < 0.01).Conclusion: Z. multiflora treatment improved learning and memory impairment as well as lung inflammation and oxidative stress induced by inhaled PQ.
Collapse
Affiliation(s)
- Mahrokh Heydari
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mokhtari-Zaer
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Amin
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Arghavan Memarzia
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Das M, Jaya Balan D, Kasi PD. Mitigation of oxidative stress with dihydroactinidiolide, a natural product against scopolamine-induced amnesia in Swiss albino mice. Neurotoxicology 2021; 86:149-161. [PMID: 34371027 DOI: 10.1016/j.neuro.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
The present work describes the neuroprotective efficacy of DHAc under escalated oxidative stress condition in scopolamine-induced amnesic mice. During the toxicity test of DHAc in mice, the acute dose (LD50) is found to be 3.468 mg/kg bw and the sub-acute dose is 0.68 mg/kg bw. Improved cognitive and learning abilities are observed in Morris water maze and Y-maze test in 10 days DHAc (0.68 mg/kg bw) treated scopolamine-induced male Swiss albino mice. In the molecular level these changes are monitored as reduced oxidative load followed by significantly lower lipid peroxidation and protein carbonylation, increased superoxide dismutase, catalase, acetylcholinesterase, caspase-3 activity and glutathione content followed by higher expression of anti apoptotic protein bcl-2 in mice brain as compared to scopolamine (1 mg/kg bw) treated mice. Meanwhile real time PCR shows higher expression of brain derived neurotrophic factor (BDNF) and synaptophysin in DHAc pretreated scopolamine treated mice brain. HPLC analysis suggested its possible blood brain barrier crossing ability. Overall DHAc reversed behavioral anomalies in the scopolamine treated mice via oxidative stress quenching, enhancing antioxidative enzyme activity, enhancing BDNF and synaptophysin mRNA levels and reducing expression of apoptotic protein Bax.
Collapse
Affiliation(s)
- Mamali Das
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, 630003, TN, India
| | - Devasahayam Jaya Balan
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, 630003, TN, India
| | - Pandima Devi Kasi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi, 630003, TN, India.
| |
Collapse
|
33
|
Sajjad Haider M, Ashraf W, Javaid S, Fawad Rasool M, Muhammad Abdur Rahman H, Saleem H, Muhammad Muneeb Anjum S, Siddique F, Morales-Bayuelo A, Kaya S, Alqahtani F, Alasmari F, Imran I. Chemical characterization and evaluation of the neuroprotective potential of Indigofera sessiliflora through in-silico studies and behavioral tests in scopolamine-induced memory compromised rats. Saudi J Biol Sci 2021; 28:4384-4398. [PMID: 34354423 PMCID: PMC8325032 DOI: 10.1016/j.sjbs.2021.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 01/23/2023] Open
Abstract
In the current study, we investigated the phytochemical and neuropharmacological potential of Indigofera sessiliflora, an indigenous least characterized plant widely distributed in deserted areas of Pakistan. The crude extract of the whole plant Indigofera sessiliflora (IS.CR) was preliminary tested in-vitro for the existence of polyphenol content, antioxidant and anticholinesterase potential followed by detailed chemical characterization through UHPLC-MS. Rats administered with different doses of IS.CR (100-300 mg/kg) for the duration of 4-weeks were behaviorally tested for anxiety and cognition followed by biochemical evaluation of dissected brain. The in-silico studies were employed to predict the blood-brain barrier crossing tendencies of secondary metabolites with the elucidation of the target binding site. The in-vitro assays revealed ample phenols and flavonoids content in IS.CR with adequate anti-oxidant and anticholinesterase potential. The dose-dependent anxiolytic potential of IS.CR was demonstrated in open field (OFT), light/dark (L/D) and elevated plus maze (EPM) tests as animals spent more time in open, illuminated and elevated zones (P < 0.05). In the behavioral tests for learning/memory, the IS.CR reversed the scopolamine-induced cognitive deficits, as animals showed better (P < 0.05) spontaneous alternation and discrimination index in y-maze and novel object recognition (NOR) tests. Similarly, as compared to amnesic rats, the step-through latencies were increased (P < 0.05) and escape latencies were decreased (P < 0.05) in passive avoidance (PAT) and Morris water maze (MWM) tests, respectively. Biochemical analysis of rat brains showed significant reduction in malondialdehyde and acetylcholinesterase levels, alongwith preservation of glutathione peroxidase and superoxide dismutase activity. The docking studies further portrayed a possible interaction of detected phytoconstituents with acetylcholinesterase target. The results of the study show valuable therapeutic potential of phytoconstituents present in IS.CR to correct the neurological disarrays which might be through antioxidant activity or via modulation of GABAergic and cholinergic systems by artocommunol, 1,9-dideoxyforskolin and 6E,9E-octadecadienoic acid.
Collapse
Affiliation(s)
- Muhammad Sajjad Haider
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Hammad Saleem
- The Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | | | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Alejandro Morales-Bayuelo
- Facultad de Ingenierías, Centro de Investigación de Procesos del Tecnologico Comfenalco, (CIPTEC), Programa de Ingeniería Industrial, Fundacion Universitaria Tecnologico, Comfenalco -Cartagena, Bolívar, Colombia
| | - Savas Kaya
- Sivas Cumhuriyet University Health Services Vocational School, Department of Pharmacy, 8140 Sivas, Turkey
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
34
|
Karimani A, Ramezani N, Afkhami Goli A, Nazem Shirazi MH, Nourani H, Jafari AM. Subchronic neurotoxicity of diazinon in albino mice: Impact of oxidative stress, AChE activity, and gene expression disturbances in the cerebral cortex and hippocampus on mood, spatial learning, and memory function. Toxicol Rep 2021; 8:1280-1288. [PMID: 34277358 PMCID: PMC8261896 DOI: 10.1016/j.toxrep.2021.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 02/03/2023] Open
Abstract
Diazinon (DZN) with prominent neurotoxic effects perturbs CNS function via multiple mechanisms. This investigation intends to explore mood, spatial learning, and memory dysfunction, acetylcholine esterase (AChE) activity, and neurodegeneration-related gene expression in the cortex and hippocampus regions of mice exposed to DZN for 63 consecutive days (subchronic exposure). Adult male albino mice were orally given sublethal DZN (DZNL = 0.1 mg/kg, DZNM = 1 mg/kg and DZNH = 10 mg/kg). All mice in the DZNH group died within 3 weeks postexposure. DZNL and DZNM caused body and brain weight loss (p < 0.05). Completing 9 weeks of DZN exposure, a marked decline in AChE activity and oxidative stress level was indicated in both brain regions (p < 0.05). Also, synaptophysin, vesicular acetylcholine transferase, and glutamate decarboxylase gene expressions were affected in both brain regions (p < 0.05). Furthermore, the present study revealed that DZN administration increased anxiety and depressive-like behaviors (p < 0.0001). Spatial learning and short- and long-memory were severely affected by DZNL and DZNM treatments (p < 0.0001). Taken together, subchronic exposure to low and medium doses of DZN can cause AChE inhibition, oxidative damage, and neurotransmitter disturbances in brain cells and induce neurodegeneration. These changes would impair mood, spatial learning, and memory function.
Collapse
Key Words
- AChE, acetylcholine esterase
- AD, Alzheimer’s disease
- Ach, acetylcholine
- COX-2, cyclooxygenase-2
- CX, cerebral cortex
- Cerebral cortex
- DZN, diazinon
- DZO, diazoxon
- Diazinon
- FRAP, ferric reducing antioxidant power
- FST, forced swim test
- GABA, ϒ-aminobutyric acid
- GAD65, glutamate decarboxylase 65
- HP, hippocampus
- Hippocampus
- LD50, lethal dose 50
- MB, marble burying test
- MDA, malondialdehyde
- MWM, Morris water maze test
- Memory
- NOAEL, no-observed-adverse-effect level
- Neurodegenerative diseases
- Ops, organophosphates
- PD, Parkinson’s disease
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SEM, standard error of the mean
- SYP, synaptophysin
- Spatial learning
- VAChT, vesicular acetylcholine transferase
- qRT-PCR, quantitative reverse transcription-polymerase chain reaction
Collapse
Affiliation(s)
- Asieh Karimani
- Department of Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nasrin Ramezani
- Department of Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Afkhami Goli
- Department of Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Hosein Nourani
- Department of Pathology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Moghaddam Jafari
- Department of Toxicology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
35
|
Effects of the Hydroethanolic Extract of Lycopodium selago L. on Scopolamine-Induced Memory Deficits in Zebrafish. Pharmaceuticals (Basel) 2021; 14:ph14060568. [PMID: 34198639 PMCID: PMC8232138 DOI: 10.3390/ph14060568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
This scientific research focused on the production of hydroethanolic extract of the plant species Lycopodium selago L. (L. selago) by the ultrasound-assisted extraction (USAE) and the identification of biocompounds with high antioxidant activity is of interest for possible phytotherapeutic treatment against Alzheimer's disease (AD). The extract was phytochemically analyzed to investigate polyphenols, flavonoids, and identify the sesquiterpenoid alkaloid huperzine A (HupA), which is known in the literature for its great relevance in AD. Evaluation and comparison of the antioxidant activity of the extract were performed by four complementary spectrophotometric methods (DPPH, FRAP, ABTS, ORAC). In vitro tests of the extract showed an excellent reciprocal link between the concentration of polyphenols and the measurement of the antioxidant activity of the extract with the sesquiterpenoid HupA. To confirm the antioxidant activity, L. selago hydroethanolic extract was administered in vivo to zebrafish (Danio rerio) with a pattern of scopolamine-induced cognitive impairment. Moreover, this study explored a possible correlation between the expression of oxidative stress markers in the brain tissue with the behavior of the scopolamine zebrafish model. In vivo tests showed that this fern could be used as a nutritional supply and as a phytotherapeutic method to prevent or treat various neurodegenerative diseases that call for high-nutritive-value medications.
Collapse
|
36
|
Vig R, Bhadra F, Gupta SK, Sairam K, Vasundhara M. Neuroprotective effects of quercetin produced by an endophytic fungus Nigrospora oryzae isolated from Tinospora cordifolia. J Appl Microbiol 2021; 132:365-380. [PMID: 34091993 DOI: 10.1111/jam.15174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/23/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022]
Abstract
AIMS Alzheimer's disease is considered one of the most prevalent neurodegenerative disorders and dementia is the core symptom of this disease. This study was aimed to test the bioactive compounds produced by endophytic fungus for the inhibition of acetylcholinesterase (AChE) activity and to identify the compound responsible for this activity. METHODS AND RESULTS Endophytic fungi were isolated from the medicinal plant Tinospora cordifolia and screened for AChE inhibition and antioxidant activity. The extract of one of the isolates Nigrospora oryzae (GL15) showed maximum AChE inhibition as well as antioxidant activity. The compound responsible for AChE inhibition (fraction 3) was identified as quercetin based on UV, FTIR spectra, HPLC and ESI-MS analyses. Furthermore, the identification of quercetin in the extract of fraction 3 was confirmed by 1 H NMR analysis. This extract showed anti-dementia-like activity in scopolamine (SCO) model. The minimal effective dose of the extract of fraction 3 modulated the SCO-provoked cognitive deficits such as impairments in spatial recognition memory and latency period in Y-maze test and passive avoidance test, respectively. The SCO-induced modulation in cholinergic pathway was ameliorated by the extract of N. oryzae in hippocampus, resulting in decrease in AChE activity and restoration of cytoarchitecture of hippocampus. CONCLUSIONS The bioactive compound quercetin produced by N. oryzae may cure the learning and memory shortfalls via AChE-mediated mechanism in experimental mice. SIGNIFICANCE AND IMPACT OF THE STUDY The endophytic fungus N. oryzae serves as a potential source for the bioactive compound quercetin, which plays an important role in the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Rajat Vig
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Fatima Bhadra
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Sukesh Kumar Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Krishnamurthy Sairam
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Mondem Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
37
|
Pruthi S, Kaur K, Singh V, Shri R. Improvement of cognitive function in mice by Citrus reticulata var. kinnow via modulation of central cholinergic system and oxidative stress. Metab Brain Dis 2021; 36:901-910. [PMID: 33651274 DOI: 10.1007/s11011-021-00687-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022]
Abstract
Memory disorders are a result of a number of factors, of which elevated brain oxidative stress and acetylcholinesterase (AChE) activity are significant hallmarks. A number of Citrus species have cognition-enhancing capacity mediated by their antioxidant and anti-cholinesterase activities. This study was designed to assess the cognitive-enhancing, antioxidant and anticholinesterase potentials of Citrus reticulata var. kinnow (CR) leaf extracts. CR extracts were examined by bioactivity guided fractionation using in-vitro DPPH and Ellman assays to determine antioxidant and AChE inhibitory capacity. The most active component was further evaluated for memory improvement effects using mouse model of scopolamine induced amnesia. Passive shock avoidance test and elevated plus maze test were employed to determine cognitive functions while brain biochemical parameters were measured to establish the neuroprotective mechanism. The methanol extract (ME) showed marked AChE inhibitory and antioxidant activities, therefore, it was fractionated. Comparative analysis of all obtained fractions revealed that ethylacetate fraction (EAF) was most active. Both ME and EAF improved cognitive dysfunction caused by scopolamine in mice by reducing TBARS levels and brain AChE activity. TLC densitometric studies showed appreciable levels of naringenin in ME (0.32 % w/w) and EAF (1.14 % w/w). The observed memory enhancement effects of ME and EAF could be attributed to their ability to inhibit AChE activity and antioxidant effects due to presence of flavonoids.
Collapse
Affiliation(s)
- Simran Pruthi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
- M M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Karanpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Richa Shri
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
38
|
Moriasi GA, Ireri AM, Nelson EM, Ngugi MP. In vivo anti-inflammatory, anti-nociceptive, and in vitro antioxidant efficacy, and acute oral toxicity effects of the aqueous and methanolic stem bark extracts of Lonchocarpus eriocalyx (Harms.). Heliyon 2021; 7:e07145. [PMID: 34136700 PMCID: PMC8178075 DOI: 10.1016/j.heliyon.2021.e07145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/10/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress causes and drives many agonising inflammatory conditions, which cause disability, financial burden, and emotional stress. The current anti-inflammatory, analgesic, and antioxidant agents are associated with adverse effects, inaccessibility, high costs, and low efficacies, thereby warranting the need for alternatives, especially from natural sources. Lonchocarpus eriocalyx plant is traditionally used in Kenyan communities to treat various inflammatory and oxidative stress-associated diseases; however, its pharmacologic efficacy and safety have not been empirically validated, hence this study. The in vivo antiinflamatory and antinociceptive efficacy of the aqueous and methanolic stem bark extracts of L. eriocalyx were determined using the xylene-induced ear oedema, and the acetic acid-induced writhing techniques, respectively, in experimental mice. Also, in vitro antioxidant activities of the studied plant extracts were investigated using the Thiobarbituric acid test for lipid peroxidation, 1, 1-diphenyl -2-picrylhydrazyl (DPPH), and Ferric reducing antioxidant power standard assay methods. Moreover, the studied extracts' acute oral toxicity effects were investigated according to the Organisation for Economic Corporation and Development (OECD) guidelines. The studied plant extracts showed significant dose-dependent inhibitions of oedema and writhing, depicting their anti-inflammatory and antinociceptive efficacy. Besides, the extracts revealed significant inhibitions of in vitro lipid peroxidation in varying degrees. Notably, the extracts demonstrated very strong DPPH radical scavenging and ferric-reducing antioxidant efficacies. Furthermore, the two studied plant extracts did not elicit acute oral toxicity, with LD50 values of >2000 mg/kg BW, hence were considered safe. The anti-inflammatory, antinociceptive, and in vitro antioxidant efficacies of these extracts were attributed to antioxidant phytocompounds with diverse pharmacologic effects, especially through the amelioration of oxidative stress. Further studies on the anti-inflammatory, antinociceptive and antioxidant mechanism(s) and isolation and characterisation of responsible compounds are encouraged to spur the development of affordable, accessible, safe, and efficacious drugs.
Collapse
Affiliation(s)
- Gervason Apiri Moriasi
- Mount Kenya University, Department of Medical Biochemistry, P.O BOX 342-01000, Thika, Kenya
- Kenyatta University, Department of Biochemistry, Microbiology, and Biotechnology, P.O BOX 43844-00100, Nairobi, Kenya
| | - Anthony Muriithi Ireri
- Kenyatta University, Department of Educational Psychology, P.O BOX 43844-00100, Nairobi, Kenya
| | - Elias Mandela Nelson
- Mount Kenya University, Department of Biological Sciences, P.O. BOX 342-01000, Thika, Kenya
| | - Mathew Piero Ngugi
- Kenyatta University, Department of Biochemistry, Microbiology, and Biotechnology, P.O BOX 43844-00100, Nairobi, Kenya
| |
Collapse
|
39
|
Cheon SY, Koo BN, Kim SY, Kam EH, Nam J, Kim EJ. Scopolamine promotes neuroinflammation and delirium-like neuropsychiatric disorder in mice. Sci Rep 2021; 11:8376. [PMID: 33863952 PMCID: PMC8052461 DOI: 10.1038/s41598-021-87790-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/05/2021] [Indexed: 01/13/2023] Open
Abstract
Postoperative delirium is a common neuropsychiatric syndrome resulting a high postsurgical mortality rate and decline in postdischarge function. Extensive research has been performed on both human and animal delirium-like models due to their clinical significance, focusing on systematic inflammation and consequent neuroinflammation playing a key role in the pathogenesis of postoperative cognitive dysfunctions. Since animal models are widely utilized for pathophysiological study of neuropsychiatric disorders, this study aimed at examining the validity of the scopolamine-induced delirium-like mice model with respect to the neuroinflammatory hypothesis of delirium. Male C57BL/6 mice were treated with intraperitoneal scopolamine (2 mg/kg). Neurobehavioral tests were performed to evaluate the changes in cognitive functions, including learning and memory, and the level of anxiety after surgery or scopolamine treatment. The levels of pro-inflammatory cytokines (IL-1β, IL-18, and TNF-α) and inflammasome components (NLRP3, ASC, and caspase-1) in different brain regions were measured. Gene expression profiles were also examined using whole-genome RNA sequencing analyses to compare gene expression patterns of different mice models. Scopolamine treatment showed significant increase in the level of anxiety and impairments in memory and cognitive function associated with increased level of pro-inflammatory cytokines and NLRP3 inflammasome components. Genetic analysis confirmed the different expression patterns of genes involved in immune response and inflammation and those related with the development of the nervous system in both surgery and scopolamine-induced mice models. The scopolamine-induced delirium-like mice model successfully showed that analogous neuropsychiatric changes coincides with the neuroinflammatory hypothesis for pathogenesis of delirium.
Collapse
Affiliation(s)
- So Yeong Cheon
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Bon-Nyeo Koo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eun Hee Kam
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junhyun Nam
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun Jung Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea. .,Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Yamagami H, Fuji T, Wako M, Hasegawa Y. Sulfated Polysaccharide Isolated from the Nacre of Pearl Oyster Improves Scopolamine-Induced Memory Impairment. Antioxidants (Basel) 2021; 10:505. [PMID: 33804892 PMCID: PMC8063846 DOI: 10.3390/antiox10040505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Pearl and nacre have been used in traditional medicines for treating brain dysfunctions, such as epilepsy, myopia, palpitations and convulsions. We previously showed that a pearl oyster nacre extract improves scopolamine-induced memory impairments using the Y-maze, Banes maze and object recognition tests. In this study, we aimed to isolate the memory-improving substance using ion-exchange column chromatography and reverse-phase column chromatography and elucidate the molecular mechanism underlying its memory-improving activity. The isolated substance was found to be a sulfated polysaccharide with a molecular weight of approximately 750 kDa. Monosaccharide composition analysis showed that it was rich in galactose, glucose, mannose and uronic acid. Furthermore, the mRNA expression levels of oxidative stress, inflammatory response and neuroprotective factors in the cerebral cortex were investigated. Treatment with the polysaccharide increased the expression levels of the antioxidant enzymes Cu, Zn -superoxide dismutase (SOD) and catalase and attenuated the scopolamine-mediated upregulation of the inflammatory cytokines interleukin-1 and interleukin-6. In addition, the polysaccharide suppressed the decrease in the expression levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). These findings strongly suggest that the polysaccharide in the nacre extract mediated its antiamnesic effects by preventing oxidative stress and inflammation and increasing the expression levels of BDNF and NGF.
Collapse
Affiliation(s)
| | | | | | - Yasushi Hasegawa
- College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan; (H.Y.); (T.F.); (M.W.)
| |
Collapse
|
41
|
Javaid U, Javaid S, Ashraf W, Rasool MF, Noman OM, Alqahtani AS, Majeed A, Shakeel W, Albekairi TH, Alqahtani F, Imran I. Chemical Profiling and Dose-Dependent Assessment of Fear Reducing and Memory-Enhancing Effects of Solanum virginianum in Rats. Dose Response 2021; 19:1559325821998486. [PMID: 33746655 PMCID: PMC7940748 DOI: 10.1177/1559325821998486] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/31/2022] Open
Abstract
The current study was planned to investigate the pharmacological basis of Solanum virginianum extract (SV.CR) pertaining to anxiolytic, antidepressant and memory-enhancing effects in rats. The SV.CR was analyzed in-vitro for phytoconstituents, antioxidant potential and anticholinesterase activity. The rats treated in a dose-dependent manner (25, 50 and 100 mg/kg of SV.CR) were subjected to behavioral tests for anxiety, depression and memory judgment followed by biochemical studies. A notable dose-dependent anxiolytic potential of SV.CR was observed in elevated plus maze and open field tests (P < 0.05). The decreased immobility time of the treated rats in the forced swim test (P < 0.01) unveiled the plant’s potential to reduce depression. Moreover, SV.CR treatment also reversed scopolamine-impaired cognition (P < 0.05) in various deployed memory and learning tasks. Biochemical studies of brain homogenates of SV.CR treated animals demonstrated decreased anticholinesterase activity and lipid peroxidation levels whereas increased levels of superoxide dismutase and glutathione peroxidase (P < 0.05 vs scopolamine group) were noted. The scientific validation of the study supported the use of Solanum virginianum in reducing anxiety, depression and amnesia in experimental models. Phytoconstituents in SV.CR such as oleanolic acid and caffeic acid might have played a significant neuroprotective role via modulation of oxidative stress and neurochemical aspects.
Collapse
Affiliation(s)
- Usman Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan.,Department of Pharmacy, The Women University, Multan, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Omar M Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Majeed
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Waleed Shakeel
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
42
|
Boiangiu RS, Mihasan M, Gorgan DL, Stache BA, Hritcu L. Anxiolytic, Promnesic, Anti-Acetylcholinesterase and Antioxidant Effects of Cotinine and 6-Hydroxy-L-Nicotine in Scopolamine-Induced Zebrafish ( Danio rerio) Model of Alzheimer's Disease. Antioxidants (Basel) 2021; 10:212. [PMID: 33535660 PMCID: PMC7912787 DOI: 10.3390/antiox10020212] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
Cotinine (COT) and 6-hydroxy-L-nicotine (6HLN) are two nicotinic derivatives that possess cognitive-improving abilities and antioxidant properties in different rodent models of Alzheimer's disease (AD), eluding the side-effects of nicotine (NIC), the parent molecule. In the current study, we evaluated the impact of COT and 6HLN on memory deterioration, anxiety, and oxidative stress in the scopolamine (SCOP)-induced zebrafish model of AD. For this, COT and 6HLN were acutely administered by immersion to zebrafish that were treated with SCOP before testing. The memory performances were assessed in Y-maze and object discrimination (NOR) tasks, while the anxiety-like behavior was evaluated in the novel tank diving test (NTT). The acetylcholinesterase (AChE) activity and oxidative stress were measured from brain samples. The RT-qPCR analysis was used to evaluate the npy, egr1, bdnf, and nrf2a gene expression. Our data indicated that both COT and 6HLN attenuated the SCOP-induced anxiety-like behavior and memory impairment and reduced the oxidative stress and AChE activity in the brain of zebrafish. Finally, RT-qPCR analysis indicated that COT and 6HLN increased the npy, egr1, bdnf, and nrf2a gene expression. Therefore, COT and 6HLN could be used as tools for improving AD conditions.
Collapse
Affiliation(s)
- Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (M.M.); (D.L.G.); (B.A.S.)
| | | | | | | | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (M.M.); (D.L.G.); (B.A.S.)
| |
Collapse
|
43
|
Kaur J, Nain P, Kumar S, Bhatia M. Enhancing cognitive performance with rejuvenation of brain antioxidant markers and acetylcholinesterase activity by ethanolic extract of Cucurbita pepo L. seeds in scopolamine-induced model of dementia in rats. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2021. [DOI: 10.4103/jrptps.jrptps_22_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
44
|
Pattanashetti LA, Patil BM, Hegde HV, Kangle RP. Potential ameliorative effect of Cynodon dactylon (L.) pers on scopolamine-induced amnesia in rats: Restoration of cholinergic and antioxidant pathways. Indian J Pharmacol 2021; 53:50-59. [PMID: 33975999 PMCID: PMC8216122 DOI: 10.4103/ijp.ijp_473_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
AIM: The present study explored Cynodon dactylon hydro-ethanolic extract (CDE) effect on scopolamine-induced amnesic rats. MATERIALS AND METHODS: C. dactylon extract was subjected to antioxidant (DPPH and H2O2) and acetylcholinesterase enzyme tests by in vitro methods. Scopolamine (1 mg/kg, i.p) was administered to rats except for normal control. Donepezil (3 mg/kg, p.o), CDE (100, 200, and 400 mg/kg p.o) were administered to treatment groups. Behavioral paradigm: Morris water maze (MWM), elevated plus maze (EPM), and passive avoidance test (PAT) were conducted. Later, rats were sacrificed and brain homogenate was tested for levels of acetylcholinesterase, glutathione, and lipid peroxidase. Histopathology examination of cortex and hippocampus of all the groups was done. STATISTICAL METHOD: The statistical methods used were ANOVA and Tukey's post hoc test. RESULTS: CDE antioxidant activity was demonstrated by decreasing DPPH and H2O2 levels confirmed through in vitro analysis. Treatment group rats reversed scopolamine induced amnesia by improvement in spatial memory, decreased transfer latency and increased step through latency significantly (P<0.001) in behavior models such as morris water maze, elevated plus maze and passive avoidance task respectively. CDE modulated acetylcholine transmission by decreased acetylcholinesterase enzyme level (P < 0.001) and scavenging scopolamine-induced oxidative stress by increased reduced glutathione levels and decreased lipid peroxidation levels in the rat brain. CDE and donepezil-treated rats showed mild neurodegeneration in comparison to scopolamine-induced severe neuronal damage on histopathology examination. CONCLUSION: C. dactylon extract provides evidence of anti-amnesic activity by the mechanism of decreased acetylcholinesterase enzyme level and increased antioxidant levels in scopolamine-induced amnesia in rats.
Collapse
Affiliation(s)
- Laxmi A Pattanashetti
- Department of Pharmacology and Toxicology, KLE College of Pharmacy, Belagavi (A Constituent Unit of K. L. E Academy of Higher Education and Research), Belagavi, Karnataka, India
| | - Basanagouda M Patil
- Department of Pharmacology and Toxicology, KLE College of Pharmacy, Belagavi (A Constituent Unit of K. L. E Academy of Higher Education and Research), Belagavi, Karnataka, India
| | - Harsha V Hegde
- Department of Ethnomedicine and Medicinal Plants, ICMR- National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | - Ranjit P Kangle
- Department of Pathology, Jawaharlal Nehru Medical College, Belagavi, Karnataka, India
| |
Collapse
|
45
|
Yamaguchi K, Mitsunaga T, Yamauchi K. 6-Paradol and its glucoside improve memory disorder in mice. Food Funct 2020; 11:9892-9902. [PMID: 33094793 DOI: 10.1039/d0fo01975e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the effects of 6-paradol (6P) and 6-paradol-β-glucoside (6PG) on neuritogenesis were investigated using PC12 cells. Treatment with 200 μM 6P or 6PG and nerve growth factor (NGF) (5 ng mL-1) increased the number of elongated dendritic cells 8.7 and 5.4 times, respectively, compared to that with NGF (5 ng mL-1) treatment alone. 6P and 6PG did not stimulate the phosphorylation of extracellular regulated protein kinases (ERK)1/2 and cAMP response element-binding protein (CREB) in the tropomyosin receptor kinase A (TrkA) pathway as their activities were suppressed by the pathway inhibitor, k252a. 6P enhanced Ca2+ influx into the cells, whereas 6PG had no effect on Ca2+ influx, although it stimulated PC12 cell differentiation. High-performance liquid chromatography (HPLC) analysis of 6PG in PC12 culture medium suggested that 6PG was deglycosylated to generate 6P, which exhibited the effect. Furthermore, the bioactivities of 6P and 6PG were investigated in mice, and the results revealed that they ameliorated short-term memory loss in animals during behavioral testing.
Collapse
Affiliation(s)
- Kaho Yamaguchi
- Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido 501-1193, Gifu, Japan.
| | | | | |
Collapse
|
46
|
Smach MA, Zarrouk A, Hafsa J, Gaffrej H, Ben Abdallah J, Charfeddine B, Limem K. Maillard Reaction Products and Phenolic Compounds from Roasted Peanut Flour Extracts Prevent Scopolamine-Induced Amnesia Via Cholinergic Modulation and Antioxidative Effects in Mice. J Med Food 2020; 24:645-652. [PMID: 33035147 DOI: 10.1089/jmf.2020.0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Research on the beneficial effects of Maillard reaction products (MRPs) and phenolic compounds derived from roasted peanut flour on the nervous system remains insufficient. This study aimed to evaluate the effect of a 28-day oral administration of defatted peanut extract rich in MPRs and polyphenolic compounds on the cognitive impairments and oxidative injury induced by scopolamine in a mouse model. Light and dark extracts from peanut flour were prepared by heating peanuts at 187°C for two different times (8.6 and 12.7 min) and defatted using soxhlet apparatus. The mice were orally pretreated with either roasted defatted peanuts extracts (100 mg/kg) or donepezil (3 mg/kg) for 21 days. On day 19 and until day 28, mice were injected subcutaneously with water or scopolamine (1 mg/kg body weight) 15 min after roasted defatted peanuts extracts/water feeding. Mice were subsequently subjected to a battery of behavioral tests including open field locomotor activity assay, and Morris water maze test. Brain tissues were collected to measure acetylcholine, acetylcholinesterase, and oxidative parameters (glutathione and malondialdehyde). Roasted defatted peanuts (light and dark) (100 mg/kg) treatment significantly ameliorated cognitive performance and reversed the oxidative damage when compared with the scopolamine group. These data demonstrate the defatted peanuts extracts exert potent anti-amnesic effects via the modulation of cholinergic and antioxidant activities.
Collapse
Affiliation(s)
- Mohamed Ali Smach
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse, Sousse, Tunisia
| | - Amira Zarrouk
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse, Sousse, Tunisia.,Laboratory 'Nutrition, Functional Aliments and vascular Health', UR12ES05 Monastir University, Monastir, Tunisia
| | - Jawhar Hafsa
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse, Sousse, Tunisia.,AgroBiosciences Research Division, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Henda Gaffrej
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse, Sousse, Tunisia
| | - Jihen Ben Abdallah
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse, Sousse, Tunisia
| | - Bassem Charfeddine
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse, Sousse, Tunisia
| | - Khalifa Limem
- Department of Biochemistry, Faculty of Medicine Sousse, University of Sousse, Sousse, Tunisia
| |
Collapse
|
47
|
Moriasi G, Ireri A, Ngugi M. Cognitive-Enhancing, Ex Vivo Antilipid Peroxidation and Qualitative Phytochemical Evaluation of the Aqueous and Methanolic Stem Bark Extracts of Lonchocarpus eriocalyx (Harms.). Biochem Res Int 2020; 2020:8819045. [PMID: 33354371 PMCID: PMC7734602 DOI: 10.1155/2020/8819045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/04/2020] [Accepted: 09/16/2020] [Indexed: 01/04/2023] Open
Abstract
Over 50 million persons are living with cognitive deficits worldwide, with over 80% of these individuals living in the developing world. The number of affected persons is projected to go over 152 million by the year 2050. Current drugs used for cognitive impairment are debatably ineffective, costly, inaccessible, and associated with undesirable events that call for the search for alternative and complementary approaches. Plants are arguably affordable, accessible, and efficacious. However, despite the reported healing claims, scientific data validating these claims are lacking. L. eriocalyx is traditionally used for the management of various conditions, including cognitive impairment but has not been scientifically explored. In this study, the Morris Water Maze (MWM) method was used to evaluate in vivo cognitive-enhancing effects of studied extracts of L. eriocalyx. Furthermore, following MWM experiments, brains were dissected and processed, and malondialdehyde profiles were determined. Qualitative phytochemical profiles of the studied plant extracts were also determined. The results showed that mice that were treated with the studied plant extracts took significantly shorter transfer latencies, navigation distances, and significantly longer latencies in the target quadrant (NW) (p < 0.05) compared with the negative control mice, indicating cognitive-enhancing activities. Furthermore, cognitively impaired mice that received the studied plant extracts had significantly lower MDA profiles compared with the MDA profile of the negative control group mice (p < 0.05). The cognitive-enhancing and MDA profile lowering effects were attributed to the presence of antioxidant phytoconstituents that ought to have modulated the redox state, thereby attenuating brain damage. These extracts can be, therefore, used for the management of cognitive deficits. Further studies leading to isolation and characterization of active molecules for cognitive impairment are recommended. Furthermore, the precise mechanism(s) through which these extracts exert their pharmacologic activity should be established.
Collapse
Affiliation(s)
- Gervason Moriasi
- Kenyatta University, Department of Biochemistry Microbiology and Biotechnology, P.O. Box 43844-00100, Nairobi, Kenya
- Mount Kenya University, Department of Medical Biochemistry, P.O. Box 342-01000, Thika, Kenya
| | - Anthony Ireri
- Kenyatta University, Department of Educational Psychology, P.O. Box 43844-00100, Nairobi, Kenya
| | - Mathew Ngugi
- Kenyatta University, Department of Biochemistry Microbiology and Biotechnology, P.O. Box 43844-00100, Nairobi, Kenya
| |
Collapse
|
48
|
Kowalczyk J, Kurach Ł, Boguszewska-Czubara A, Skalicka-Woźniak K, Kruk-Słomka M, Kurzepa J, Wydrzynska-Kuźma M, Biała G, Skiba A, Budzyńska B. Bergapten Improves Scopolamine-Induced Memory Impairment in Mice via Cholinergic and Antioxidative Mechanisms. Front Neurosci 2020; 14:730. [PMID: 32903765 PMCID: PMC7438900 DOI: 10.3389/fnins.2020.00730] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/18/2020] [Indexed: 12/28/2022] Open
Abstract
Bergapten is a furanocoumarin naturally occurring in the Apiaceae family and it is a well-known photosensitizing agent used in photochemotherapy. In this study, we investigated the influence of bergapten on cognitive function and mechanism underlying these effects in scopolamine-induced memory impairment in male Swiss mice. The passive avoidance test was used to evaluate the efficiency of memory acquisition and consolidation. The results demonstrated that both single and repeated administration of bergapten improved not only the acquisition but also consolidation of memory. The behavioral tests showed that bergapten prevented memory impairment induced by administration of scopolamine. Observed effects may result from the inhibition of acetylcholinesterase activity in the hippocampus and prefrontal cortex. Also, bergapten caused significant anti-oxidative effects. These new findings provide pharmacological and biochemical support for the development of the coumarin’s potential in cognitive deficits.
Collapse
Affiliation(s)
- Joanna Kowalczyk
- Chair and Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland.,Independent Laboratory of Behavioral Studies, Medical University of Lublin, Lublin, Poland
| | - Łukasz Kurach
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Lublin, Poland
| | | | - Krystyna Skalicka-Woźniak
- Chair and Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Lublin, Poland
| | - Marta Kruk-Słomka
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin, Poland
| | - Jacek Kurzepa
- Chair and Department of Medicinal Chemistry, Medical University of Lublin, Lublin, Poland
| | | | - Grażyna Biała
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Lublin, Poland
| | - Adrianna Skiba
- Chair and Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Lublin, Poland
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
49
|
Moriasi GA, Ireri AM, Ngugi MP. In Vivo Cognitive-Enhancing, Ex Vivo Malondialdehyde-Lowering Activities and Phytochemical Profiles of Aqueous and Methanolic Stem Bark Extracts of Piliostigma thonningii (Schum.). Int J Alzheimers Dis 2020; 2020:1367075. [PMID: 32308992 PMCID: PMC7128055 DOI: 10.1155/2020/1367075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Cognitive impairment (CI) is among the leading causes of disability in humans. It is estimated that over 35.6 million people are suffering from Alzheimer's disease- (AD-) associated cognitive deficits globally with these statistics projected to rise over 115.4 million by the year 2050. There is no specific etiology for this cognitive impairment; however, various contributing factors including advancing age (>60 years old), oxidative stress, cerebral injuries, infections, neurologic disorders, and cancer have been implicated. Despite various attempts to manage CI, no curative medicines are yet available. The current drugs used to manage symptoms of AD-associated CI including Donepezil and Rivastigmine among others are only palliative rather than therapeutic. Furthermore, these agents have been associated with undesirable side effects. This calls for alternative and complementary approaches aimed at either preventing or reverting AD-related CI in a curative way without causing adverse events. It is estimated that over 80% of the world's population utilize herbal medicines for basic healthcare as it is considered safe, affordable, and easily accessible as opposed to conventional healthcare. Various parts of P. thonningii are used in traditional medicine to manage various conditions including CI. However, empirical and scientific data to validate these uses is lacking. In this study, the Morris water maze (MWM) experiment was adopted to evaluate the cognitive-enhancing effects of the studied plant extracts. The malondialdehyde (MDA) profiles in the brains of experimental mice were determined using the thiobarbituric acid reactive substances (TBARS) test. Moreover, qualitative phytochemical profiling of the studied plant extracts was performed using standard procedures. The results showed remarkable cognitive-enhancing activities which were reflected in significantly shorter transfer latencies, navigation distances, longer time spent in platform quadrant, and lower MDA levels compared with those recorded for the negative control mice (p < 0.05). Phytochemical screening of the studied plant extracts revealed the presence of antioxidant phytocompounds, which may have played key roles in the extracts' potency. Based on the findings herein, P. thonningii extracts, especially the aqueous ones have a promising potential for the management of AD-associated CI. Further studies aimed at isolating and characterizing specific active compounds for CI from P. thonningii are recommended. Additionally, specific mode(s) of action of active principles should be elucidated. Moreover, toxicity studies should be done on the studied plant extracts to ascertain their safety.
Collapse
Affiliation(s)
- Gervason Apiri Moriasi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O BOX 43844-00100 Nairobi, Kenya
| | - Anthony Muriithi Ireri
- Department of Educational Psychology, Kenyatta University, P.O BOX 43844-00100 Nairobi, Kenya
| | - Mathew Piero Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O BOX 43844-00100 Nairobi, Kenya
| |
Collapse
|
50
|
Alzoubi KH, Shatnawi AF, Al-Qudah MA, Alfaqih MA. Vitamin C attenuates memory loss induced by post-traumatic stress like behavior in a rat model. Behav Brain Res 2020; 379:112350. [PMID: 31711893 DOI: 10.1016/j.bbr.2019.112350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 01/01/2023]
Abstract
Oxidative stress is associated with neuronal damage in many brain regions including the hippocampus; an area in the brain responsible of memory processing. Oxidative stress is also linked with many psychiatric conditions including post-traumatic stress disorder (PTSD). PTSD is triggered by traumatic experience and many PTSD patients show signs of memory impairment. Vitamin C is a water-soluble vitamin with antioxidant properties. Herein, we hypothesized that memory impairment observed during PTSD could be a result of oxidative stress in hippocampal tissues and that prophylactic vitamin C administration may reduce oxidative stress in the hippocampus and prevent memory impairment. The above hypothesis was tested in a rat model where PTSD-like behavior was induced through single prolonged stress (SPS). Short and long-term memory was tested using a radial arm water maze (RAWM). We found that SPS induced a significant increase in the oxidized glutathione levels of the hippocampus. This reduction was accompanied with a significant decrease in glutathione peroxidase and catalase enzyme activity, and a significant increase in lipid peroxidation. Intriguingly, vitamin C administration successfully attenuated memory impairment and all of the changes observed in oxidative stress markers. Our findings demonstrate that vitamin C could prevent oxidative stress and memory impairment induced by SPS model of PTSD-like behavior in rat.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Alaa F Shatnawi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammad A Al-Qudah
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mahmoud A Alfaqih
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|