1
|
Cai L, Tozer DJ, Markus HS. Cerebral Microbleeds and Their Association With Inflammation and Blood-Brain Barrier Leakage in Small Vessel Disease. Stroke 2025; 56:427-436. [PMID: 39744850 PMCID: PMC11771357 DOI: 10.1161/strokeaha.124.048974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 11/15/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND How cerebral microbleeds (CMBs) are formed, and how they cause tissue damage is not fully understood, but it has been suggested they are associated with inflammation, and they could also be related to increased blood-brain barrier (BBB) leakage. We investigated the relationship of CMBs with inflammation and BBB leakage in cerebral small vessel disease, and in particular, whether these 2 processes were increased in the vicinity of CMBs. METHODS In 54 patients with sporadic cerebral small vessel disease presenting with lacunar stroke, we simultaneously assessed microglial activation using the positron emission tomography ligand [11C]PK11195 and BBB leakage using dynamic contrast enhanced magnetic resonance imaging, on a positron emission tomography-magnetic resonance imaging system. To assess local inflammation and BBB leakage, 3 one-voxel concentric shells were generated around each CMB on susceptibility-weighted imaging and resampled to positron emission tomography and T1 mapping images, respectively. In these 3 shells, we calculated the mean of PK11195 nondisplaceable binding potential (BPND) as a marker of microglial activation, as well as the mean influx rate as a marker of BBB leakage. In addition, 93 blood biomarkers related to cardiovascular disease, inflammation, and endothelial activation were measured to quantify systemic inflammation. RESULTS No significant associations were found between the number of CMBs and the measures for microglial activation (β=2.6×10-5, P=0.050) and BBB leakage (β=-0.0001, P=0.400) in the white matter. There was no difference in measures of microglial activation (P=0.403) or BBB leakage (P=0.423) across the 3 shells surrounding the CMBs. Furthermore, after correcting for multiple comparisons, no associations were observed between systemic inflammation biomarkers and the number of CMBs. CONCLUSIONS We found no evidence that CMBs are associated with either microglial activation assessed by [11]CPK11195 positron emission tomography or BBB leakage assessed by dynamic contrast enhanced magnetic resonance imaging, either globally or locally, in sporadic cerebral small vessel disease. There was also no association with markers of systemic inflammation.
Collapse
Affiliation(s)
- Lupei Cai
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Daniel J. Tozer
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| | - Hugh S. Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, United Kingdom
| |
Collapse
|
2
|
Jolly AA, Brown RB, Tozer DJ, Hong YT, Fryer TD, Aigbirhio FI, O’Brien JT, Markus HS. Are central and systemic inflammation associated with fatigue in cerebral small vessel disease? Int J Stroke 2024; 19:705-713. [PMID: 38533609 PMCID: PMC11292988 DOI: 10.1177/17474930241245613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Fatigue is a common symptom in cerebral small vessel disease (SVD), but its pathogenesis is poorly understood. It has been suggested that inflammation may play a role. We determined whether central (neuro) inflammation and peripheral inflammation were associated with fatigue in SVD. METHODS Notably, 36 patients with moderate-to-severe SVD underwent neuropsychometric testing, combined positron emission tomography and magnetic resonance imaging (PET-MRI) scan, and blood draw for the analysis of inflammatory blood biomarkers. Microglial signal was taken as a proxy for neuroinflammation, assessed with radioligand 11C-PK11195. Of these, 30 subjects had full PET datasets for analysis. We assessed global 11C-PK11195 binding and hotspots of 11C-PK11195 binding in the normal-appearing white matter, lesioned tissue, and combined total white matter. Peripheral inflammation was assessed with serum C-reactive protein (CRP) and using the Olink cardiovascular III proteomic panel comprising 92 biomarkers of cardiovascular inflammation and endothelial activation. Fatigue was assessed using the fatigue severity scale (FSS), the visual analog fatigue scale, and a subscale of the Geriatric Depression Scale. RESULTS Mean (SD) age was 68.7 (11.2) years, and 63.9% were male. Of these, 55.6% showed fatigue on the FSS. Fatigued participants had higher disability scores (p = 0.02), higher total GDS scores (p = 0.02), and more commonly reported a history of depression (p = 0.04). 11C-PK11195 ligand binding in the white matter was not associated with any measure of fatigue. Serum CRP was significantly associated with average fatigue score on FSS (ρ = 0.48, p = 0.004); this association persisted when controlling for age, sex, disability score, and depression (β = 0.49, 95% CI (0.17, 2.26), p = 0.03). Blood biomarkers from the Olink panel showed no association with fatigue. CONCLUSION In symptomatic SVD patients, neuroinflammation, assessed with microglial marker 11C-PK11195, was not associated with fatigue. We found some evidence for a role of systematic inflammation, evidenced by an association between fatigue severity and raised CRP, but further studies are required to understand this relationship and inform whether it could be therapeutically modified to reduce fatigue severity. DATA ACCESS STATEMENT Data for this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Amy A Jolly
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Robin B Brown
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Daniel J Tozer
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Young T Hong
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Franklin I Aigbirhio
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John T O’Brien
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Hugh S Markus
- Stroke Research Group, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Brown RB, Tozer DJ, Loubière L, Harshfield EL, Hong YT, Fryer TD, Williams GB, Graves MJ, Aigbirhio FI, O'Brien JT, Markus HS. MINocyclinE to Reduce inflammation and blood-brain barrier leakage in small Vessel diseAse (MINERVA): A phase II, randomized, double-blind, placebo-controlled experimental medicine trial. Alzheimers Dement 2024; 20:3852-3863. [PMID: 38629936 PMCID: PMC11180856 DOI: 10.1002/alz.13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/13/2024] [Accepted: 03/16/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Cerebral small vessel disease (SVD) is a common cause of stroke/vascular dementia with few effective treatments. Neuroinflammation and increased blood-brain barrier (BBB) permeability may influence pathogenesis. In rodent models, minocycline reduced inflammation/BBB permeability. We determined whether minocycline had a similar effect in patients with SVD. METHODS MINERVA was a single-center, phase II, randomized, double-blind, placebo-controlled trial. Forty-four participants with moderate-to-severe SVD took minocycline or placebo for 3 months. Co-primary outcomes were microglial signal (determined using 11C-PK11195 positron emission tomography) and BBB permeability (using dynamic contrast-enhanced MRI). RESULTS Forty-four participants were recruited between September 2019 and June 2022. Minocycline had no effect on 11C-PK11195 binding (relative risk [RR] 1.01, 95% confidence interval [CI] 0.98-1.04), or BBB permeability (RR 0.97, 95% CI 0.91-1.03). Serum inflammatory markers were not affected. DISCUSSION 11C-PK11195 binding and increased BBB permeability are present in SVD; minocycline did not reduce either process. Whether these pathophysiological mechanisms are disease-causing remains unclear. INTERNATIONAL CLINICAL TRIALS REGISTRY PORTAL IDENTIFIER ISRCTN15483452 HIGHLIGHTS: We found focal areas of increased microglial signal and increased blood-brain barrier permeability in patients with small vessel disease. Minocycline treatment was not associated with a change in these processes measured using advanced neuroimaging. Blood-brain barrier permeability was dynamic but MRI-derived measurements correlated well with CSF/serum albumin ratio. Advanced neuroimaging is a feasible outcome measure for mechanistic clinical trials.
Collapse
Affiliation(s)
- Robin B. Brown
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Daniel J. Tozer
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Laurence Loubière
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | | | - Young T. Hong
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUK
| | - Tim D. Fryer
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUK
| | - Guy B. Williams
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUK
| | - Martin J. Graves
- Department of RadiologyUniversity of CambridgeCambridgeCambridgeUK
| | - Franklin I. Aigbirhio
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUK
| | | | - Hugh S. Markus
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
4
|
Cousins O, Schubert JJ, Chandra A, Veronese M, Valkimadi P, Creese B, Khan Z, Arathimos R, Hampshire A, Rosenzweig I, Ballard C, Corbett A, Aasland D, Velayudhan L, O'Neill M, Collier D, Awais R, Sander K, Årstad E, Howes O, Turkheimer F, Hodges A. Microglial activation, tau and amyloid deposition in TREM2 p.R47H carriers and mild cognitive impairment patients: a multi-modal/multi-tracer PET/MRI imaging study with influenza vaccine immune challenge. J Neuroinflammation 2023; 20:272. [PMID: 37990275 PMCID: PMC10664604 DOI: 10.1186/s12974-023-02945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Microglia are increasingly understood to play an important role in the pathogenesis of Alzheimer's disease. The rs75932628 (p.R47H) TREM2 variant is a well-established risk factor for Alzheimer's disease. TREM2 is a microglial cell surface receptor. In this multi-modal/multi-tracer PET/MRI study we investigated the effect of TREM2 p.R47H carrier status on microglial activation, tau and amyloid deposition, brain structure and cognitive profile. METHODS We compared TREM2 p.R47H carriers (n = 8; median age = 62.3) and participants with mild cognitive impairment (n = 8; median age = 70.7). Participants underwent two [18F]DPA-714 PET/MRI scans to assess TSPO signal, indicative of microglial activation, before and after receiving the seasonal influenza vaccination, which was used as an immune stimulant. Participants also underwent [18F]florbetapir and [18F]AV1451 PET scans to assess amyloid and tau burden, respectively. Regional tau and TSPO signal were calculated for regions of interest linked to Braak stage. An additional comparison imaging healthy control group (n = 8; median age = 45.5) had a single [18F]DPA-714 PET/MRI. An expanded group of participants underwent neuropsychological testing, to determine if TREM2 status influenced clinical phenotype. RESULTS Compared to participants with mild cognitive impairment, TREM2 carriers had lower TSPO signal in Braak II (P = 0.04) and Braak III (P = 0.046) regions, despite having a similar burden of tau and amyloid. There were trends to suggest reduced microglial activation following influenza vaccine in TREM2 carriers. Tau deposition in the Braak VI region was higher in TREM2 carriers (P = 0.04). Furthermore, compared to healthy controls TREM2 carriers had smaller caudate (P = 0.02), total brain (P = 0.049) and white matter volumes (P = 0.02); and neuropsychological assessment revealed worse ADAS-Cog13 (P = 0.03) and Delayed Matching to Sample (P = 0.007) scores. CONCLUSIONS TREM2 p.R47H carriers had reduced levels of microglial activation in brain regions affected early in the Alzheimer's disease course and differences in brain structure and cognition. Changes in microglial response may underlie the increased Alzheimer's disease risk in TREM2 p.R47H carriers. Future therapeutic agents in Alzheimer's disease should aim to enhance protective microglial actions.
Collapse
Affiliation(s)
- Oliver Cousins
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Julia J Schubert
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Avinash Chandra
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Mattia Veronese
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
- Department of Information Engineering, University of Padua, 35131, Padua, Italy
| | - Polena Valkimadi
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Byron Creese
- College of Medicine and Health, University of Exeter, Exeter, EX1 2HZ, UK
- Division of Psychology, Department of Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Zunera Khan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Ryan Arathimos
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Adam Hampshire
- Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Ivana Rosenzweig
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, EX1 2HZ, UK
| | - Anne Corbett
- College of Medicine and Health, University of Exeter, Exeter, EX1 2HZ, UK
| | - Dag Aasland
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Latha Velayudhan
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | | | | | - Ramla Awais
- Centre for Radiopharmaceutical Chemistry, University College London, London, WC1E 6BS, UK
| | - Kerstin Sander
- Centre for Radiopharmaceutical Chemistry, University College London, London, WC1E 6BS, UK
| | - Erik Årstad
- Centre for Radiopharmaceutical Chemistry, University College London, London, WC1E 6BS, UK
| | - Oliver Howes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Federico Turkheimer
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK
| | - Angela Hodges
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RT, UK.
| |
Collapse
|
5
|
Ayton S, Janelidze S, Kalinowski P, Palmqvist S, Belaidi AA, Stomrud E, Roberts A, Roberts B, Hansson O, Bush AI. CSF ferritin in the clinicopathological progression of Alzheimer's disease and associations with APOE and inflammation biomarkers. J Neurol Neurosurg Psychiatry 2023; 94:211-219. [PMID: 36357168 PMCID: PMC9992756 DOI: 10.1136/jnnp-2022-330052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND A putative role for iron in driving Alzheimer's disease (AD) progression is complicated by previously reported associations with neuroinflammation, apolipoprotein E and AD proteinopathy. To establish how iron interacts with clinicopathological features of AD and at what disease stage iron influences cognitive outcomes, we investigated the association of cerebrospinal fluid (CSF) biomarkers of iron (ferritin), inflammation (acute phase response proteins) and apolipoproteins with pathological biomarkers (CSF Aβ42/t-tau, p-tau181), clinical staging and longitudinal cognitive deterioration in subjects from the BioFINDER cohort, with replication of key results in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. METHODS Ferritin, acute phase response proteins (n=9) and apolipoproteins (n=6) were measured in CSF samples from BioFINDER (n=1239; 4 years cognitive follow-up) participants stratified by cognitive status (cognitively unimpaired, mild cognitive impairment, AD) and for the presence of amyloid and tangle pathology using CSF Aβ42/t-tau (A+) and p-tau181 (T+). The ferritin and apolipoprotein E associations were replicated in the ADNI (n=264) cohort. RESULTS In both cohorts, ferritin and apoE were elevated in A-T+ and A+T+ subjects (16%-40%), but not clinical diagnosis. Other apolipoproteins and acute phase response proteins increased with clinical diagnosis, not pathology. CSF ferritin was positively associated with p-tau181, which was mediated by apolipoprotein E. An optimised threshold of ferritin predicted cognitive deterioration in mild cognitive impairment subjects in the BioFINDER cohort, especially those people classified as A-T- and A+T-. CONCLUSIONS CSF markers of iron and neuroinflammation have distinct associations with disease stages, while iron may be more intimately associated with apolipoprotein E and tau pathology.
Collapse
Affiliation(s)
- Scott Ayton
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
| | - Pawel Kalinowski
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Abdel A. Belaidi
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Anne Roberts
- Department of Biochemistry, Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Blaine Roberts
- Department of Biochemistry, Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Ashley I. Bush
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | | | | |
Collapse
|
6
|
Tozer DJ, Brown RB, Walsh J, Hong YT, Williams GB, O’Brien JT, Aigbirhio FI, Fryer TD, Markus HS. Do Regions of Increased Inflammation Progress to New White Matter Hyperintensities?: A Longitudinal Positron Emission Tomography-Magnetic Resonance Imaging Study. Stroke 2023; 54:549-557. [PMID: 36621823 PMCID: PMC9855729 DOI: 10.1161/strokeaha.122.039517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/06/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Recent studies have demonstrated increased microglial activation using 11C-PK11195 positron emission tomography imaging, indicating central nervous system inflammation, in cerebral small vessel disease. However, whether such areas of neuroinflammation progress to tissue damage is uncertain. We determined whether white matter destined to become white matter hyperintensities (WMH) at 1 year had evidence of altered inflammation at baseline. METHODS Forty subjects with small vessel disease (20 sporadic and 20 cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) and 20 controls were recruited to this case-control observational study from in- and out-patient clinics at Addenbrooke's Hospital, Cambridge, UK and imaged at baseline with both 11C-PK11195 positron emission tomography and magnetic resonance imaging; and magnetic resonance imaging including diffusion tensor imaging was repeated at 1 year. WMH were segmented at baseline and 1 year, and areas of new lesion identified. Baseline 11C-PK11195 binding potential and diffusion tensor imaging parameters in these voxels, and normal appearing white matter, was measured. RESULTS Complete positron emission tomography-magnetic resonance imaging data was available for 17 controls, 16 sporadic small vessel disease, and 14 cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy participants. 11C-PK11195 binding in voxels destined to become new WMH was lower than in normal appearing white matter, which did not progress to WMH (-0.133[±0.081] versus -0.045 [±0.044]; P<0.001). Mean diffusivity was higher and mean fractional anisotropy lower in new WMH voxels than in normal appearing white matter (900 [±80]×10-6 versus 1045 [±149]×10-6 mm2/s and 0.37±0.05 versus 0.29±0.06, both P<0.001) consistent with new WMH showing tissue damage on diffusion tensor imaging a year prior to developing into new WMH; similar results were seen across the 3 groups. CONCLUSIONS White matter tissue destined to develop into new WMH over the subsequent year is associated with both lower neuroinflammation, and white matter ultrastructural damage at baseline. Our results suggest that this tissue is already damaged 1 year prior to lesion formation. This may reflect that the role of neuroinflammation in the lesion development process occurs at an early stage, although more studies over a longer period would be needed to investigate this further.
Collapse
Affiliation(s)
- Daniel J. Tozer
- Stroke Research Group (D.J.T., R.B.B., J.W., H.S.M.), University of Cambridge, United Kingdom
| | - Robin B. Brown
- Stroke Research Group (D.J.T., R.B.B., J.W., H.S.M.), University of Cambridge, United Kingdom
| | - Jessica Walsh
- Stroke Research Group (D.J.T., R.B.B., J.W., H.S.M.), University of Cambridge, United Kingdom
| | - Young T. Hong
- Wolfson Brain Imaging Center (Y.T.H., G.B.W., F.I.A., T.D.F.), University of Cambridge, United Kingdom
| | - Guy B. Williams
- Wolfson Brain Imaging Center (Y.T.H., G.B.W., F.I.A., T.D.F.), University of Cambridge, United Kingdom
| | - John T. O’Brien
- Department of Clinical Neurosciences, and Department of Psychiatry (J.T.O.B.), University of Cambridge, United Kingdom
| | - Franklin I. Aigbirhio
- Wolfson Brain Imaging Center (Y.T.H., G.B.W., F.I.A., T.D.F.), University of Cambridge, United Kingdom
| | - Tim D. Fryer
- Wolfson Brain Imaging Center (Y.T.H., G.B.W., F.I.A., T.D.F.), University of Cambridge, United Kingdom
| | - Hugh S. Markus
- Stroke Research Group (D.J.T., R.B.B., J.W., H.S.M.), University of Cambridge, United Kingdom
| |
Collapse
|
7
|
Brown RB, Tozer DJ, Loubière L, Hong YT, Fryer TD, Williams GB, Graves MJ, Aigbirhio FI, O’Brien JT, Markus HS. MINocyclinE to Reduce inflammation and blood brain barrier leakage in small Vessel diseAse (MINERVA) trial study protocol. Eur Stroke J 2022; 7:323-330. [PMID: 36082255 PMCID: PMC9445404 DOI: 10.1177/23969873221100338] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Cerebral small vessel disease (SVD) is a common cause of stroke and cognitive impairment. Recent data has implicated neuroinflammation and increased blood-brain barrier (BBB) permeability in its pathogenesis, but whether such processes are causal and can be therapeutically modified is uncertain. In a rodent model of SVD, minocycline was associated with reduced white matter lesions, inflammation and BBB permeability. Aims: To determine whether blood-brain barrier permeability (measured using dynamic contrast-enhanced MRI) and microglial activation (measured by positron emission tomography using the radioligand 11C-PK11195) can be modified in SVD. Design: Phase II randomised double blind, placebo-controlled trial of minocycline 100 mg twice daily for 3 months in 44 participants with moderate to severe SVD defined as a clinical lacunar stroke and confluent white matter hyperintensities. Outcomes: Primary outcome measures are volume and intensity of focal increases of blood-brain barrier permeability and microglial activation determined using PET-MRI imaging. Secondary outcome measures include inflammatory biomarkers in serum, and change in conventional MRI markers and cognitive performance over 1 year follow up. Discussion: The MINERVA trial aims to test whether minocycline can influence novel pathological processes thought to be involved in SVD progression, and will provide insights into whether central nervous system inflammation in SVD can be therapeutically modulated.
Collapse
Affiliation(s)
- Robin B Brown
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Daniel J Tozer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Laurence Loubière
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Young T Hong
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Martin J Graves
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Franklin I Aigbirhio
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - John T O’Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Hugh S Markus
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Gouilly D, Saint-Aubert L, Ribeiro MJ, Salabert AS, Tauber C, Péran P, Arlicot N, Pariente J, Payoux P. Neuroinflammation PET imaging of the translocator protein (TSPO) in Alzheimer's disease: an update. Eur J Neurosci 2022; 55:1322-1343. [PMID: 35083791 DOI: 10.1111/ejn.15613] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
Abstract
Neuroinflammation is a significant contributor to Alzheimer's disease (AD). Until now, PET imaging of the translocator protein (TSPO) has been widely used to depict the neuroimmune endophenotype of AD. The aim of this review was to provide an update to the results from 2018 and to advance the characterization of the biological basis of TSPO imaging in AD by re-examining TSPO function and expression and the methodological aspects of interest. Although the biological basis of the TSPO PET signal is obviously related to microglia and astrocytes in AD, the observed process remains uncertain and might not be directly related to neuroinflammation. Further studies are required to re-examine the cellular significance underlying a variation in the PET signal in AD and how it can be impacted by a disease-modifying treatment.
Collapse
Affiliation(s)
- Dominique Gouilly
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Laure Saint-Aubert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Maria-Joao Ribeiro
- Department of Nuclear Medicine, CHU, Tours, France.,UMR 1253, iBrain, Université de Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Nuclear Medicine, CHU, Toulouse, France
| | | | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, France.,Inserm CIC 1415, CHRU, Tours, France
| | - Jérémie Pariente
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU, Toulouse, France.,Center of Clinical Investigations (CIC1436), CHU, Toulouse, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Nuclear Medicine, CHU, Toulouse, France
| |
Collapse
|
9
|
Delage C, Vignal N, Guerin C, Taib T, Barboteau C, Mamma C, Khacef K, Margaill I, Sarda-Mantel L, Rizzo-Padoin N, Hontonnou F, Marchand-Leroux C, Lerouet D, Hosten B, Besson V. From positron emission tomography to cell analysis of the 18-kDa Translocator Protein in mild traumatic brain injury. Sci Rep 2021; 11:24009. [PMID: 34907268 PMCID: PMC8671393 DOI: 10.1038/s41598-021-03416-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 11/17/2021] [Indexed: 11/24/2022] Open
Abstract
Traumatic brain injury (TBI) leads to a deleterious neuroinflammation, originating from microglial activation. Monitoring microglial activation is an indispensable step to develop therapeutic strategies for TBI. In this study, we evaluated the use of the 18-kDa translocator protein (TSPO) in positron emission tomography (PET) and cellular analysis to monitor microglial activation in a mild TBI mouse model. TBI was induced on male Swiss mice. PET imaging analysis with [18F]FEPPA, a TSPO radiotracer, was performed at 1, 3 and 7 days post-TBI and flow cytometry analysis on brain at 1 and 3 days post-TBI. PET analysis showed no difference in TSPO expression between non-operated, sham-operated and TBI mice. Flow cytometry analysis demonstrated an increase in TSPO expression in ipsilateral brain 3 days post-TBI, especially in microglia, macrophages, lymphocytes and neutrophils. Moreover, microglia represent only 58.3% of TSPO+ cells in the brain. Our results raise the question of the use of TSPO radiotracer to monitor microglial activation after TBI. More broadly, flow cytometry results point the lack of specificity of TSPO for microglia and imply that microglia contribute to the overall increase in TSPO in the brain after TBI, but is not its only contributor.
Collapse
Affiliation(s)
- Clément Delage
- Faculté de Pharmacie de Paris, Université Paris Descartes, EA4475 - Pharmacologie de la circulation cérébrale, Paris, France.
- Faculté de Pharmacie de Paris, Université de Paris, Inserm UMR-S 1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, 75006, Paris, France.
| | - Nicolas Vignal
- Faculté de Pharmacie de Paris, Université de Paris, Inserm UMR-S 1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, 75006, Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Médecine Nucléaire, Hôpital Lariboisière, Paris, France
- Université de Paris, Institut de Recherche Saint-Louis, Unité Claude Kellershohn, Paris, France
| | - Coralie Guerin
- Université de Paris, Innovative Therapies in Haemostasis, Inserm, 75006, Paris, France
- Institut Curie, Cytometry Core, 75005, Paris, France
- Université de Paris, Inserm UMS 3612 CNRS - US25 Inserm -Faculté de Pharmacie de Paris, Paris, France
| | - Toufik Taib
- Faculté de Pharmacie de Paris, Université Paris Descartes, EA4475 - Pharmacologie de la circulation cérébrale, Paris, France
| | - Clément Barboteau
- Faculté de Pharmacie de Paris, Université de Paris, Inserm UMR-S 1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Célia Mamma
- Faculté de Pharmacie de Paris, Université Paris Descartes, EA4475 - Pharmacologie de la circulation cérébrale, Paris, France
| | - Kahina Khacef
- Faculté de Pharmacie de Paris, Université Paris Descartes, EA4475 - Pharmacologie de la circulation cérébrale, Paris, France
| | - Isabelle Margaill
- Faculté de Pharmacie de Paris, Université Paris Descartes, EA4475 - Pharmacologie de la circulation cérébrale, Paris, France
- Faculté de Pharmacie de Paris, Université de Paris, Inserm UMR-S 1140, Paris, France
| | - Laure Sarda-Mantel
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Médecine Nucléaire, Hôpital Lariboisière, Paris, France
- Université de Paris, Institut de Recherche Saint-Louis, Unité Claude Kellershohn, Paris, France
| | - Nathalie Rizzo-Padoin
- Université de Paris, Institut de Recherche Saint-Louis, Unité Claude Kellershohn, Paris, France
- CHU de Martinique, Service Pharmacie, Hôpital Pierre Zobda-Quitman, Fort-de-France, France
| | - Fortune Hontonnou
- Université de Paris, Institut de Recherche Saint-Louis, Unité Claude Kellershohn, Paris, France
- Université de Paris, Inserm UMR-S 942, Hôpital Lariboisière, Paris, France
| | - Catherine Marchand-Leroux
- Faculté de Pharmacie de Paris, Université Paris Descartes, EA4475 - Pharmacologie de la circulation cérébrale, Paris, France
- Faculté de Pharmacie de Paris, Université de Paris, Inserm UMR-S 1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Dominique Lerouet
- Faculté de Pharmacie de Paris, Université Paris Descartes, EA4475 - Pharmacologie de la circulation cérébrale, Paris, France
- Faculté de Pharmacie de Paris, Université de Paris, Inserm UMR-S 1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Benoit Hosten
- Faculté de Pharmacie de Paris, Université de Paris, Inserm UMR-S 1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, 75006, Paris, France
- Université de Paris, Institut de Recherche Saint-Louis, Unité Claude Kellershohn, Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Service Pharmacie, Hôpital Saint-Louis, Paris, France
| | - Valérie Besson
- Faculté de Pharmacie de Paris, Université Paris Descartes, EA4475 - Pharmacologie de la circulation cérébrale, Paris, France
- Faculté de Pharmacie de Paris, Université de Paris, Inserm UMR-S 1144 - Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, 75006, Paris, France
| |
Collapse
|
10
|
Wimberley C, Lavisse S, Hillmer A, Hinz R, Turkheimer F, Zanotti-Fregonara P. Kinetic modeling and parameter estimation of TSPO PET imaging in the human brain. Eur J Nucl Med Mol Imaging 2021; 49:246-256. [PMID: 33693967 PMCID: PMC8712306 DOI: 10.1007/s00259-021-05248-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/07/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET) is widely used in research studies of brain diseases that have a neuro-immune component. Quantification of TSPO PET images, however, is associated with several challenges, such as the lack of a reference region, a genetic polymorphism affecting the affinity of the ligand for TSPO, and a strong TSPO signal in the endothelium of the brain vessels. These challenges have created an ongoing debate in the field about which type of quantification is most useful and whether there is an appropriate simplified model. METHODS This review focuses on the quantification of TSPO radioligands in the human brain. The various methods of quantification are summarized, including the gold standard of compartmental modeling with metabolite-corrected input function as well as various alternative models and non-invasive approaches. Their advantages and drawbacks are critically assessed. RESULTS AND CONCLUSIONS Researchers employing quantification methods for TSPO should understand the advantages and limitations associated with each method. Suggestions are given to help researchers choose between these viable alternative methods.
Collapse
Affiliation(s)
| | - Sonia Lavisse
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, 92265, Fontenay-aux-Roses, France
| | - Ansel Hillmer
- Departments of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Departments of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Yale PET Center, Yale School of Medicine, New Haven, CT, USA
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, M20 3LJ, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Centre for Neuroimaging Sciences, King's College London, De Crespigny Park, London, SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Paolo Zanotti-Fregonara
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Ji B, Ono M, Yamasaki T, Fujinaga M, Zhang MR, Seki C, Aoki I, Kito S, Sawada M, Suhara T, Sahara N, Higuchi M. Detection of Alzheimer's disease-related neuroinflammation by a PET ligand selective for glial versus vascular translocator protein. J Cereb Blood Flow Metab 2021; 41:2076-2089. [PMID: 33557690 PMCID: PMC8327108 DOI: 10.1177/0271678x21992457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A substantial and constitutive expression of translocator protein (TSPO) in cerebral blood vessels hampers the sensitive detection of neuroinflammation characterized by greatly induced TSPO expression in activated glia. Here, we conducted in vivo positron emission tomography (PET) and in vitro autoradiographic imaging of normal and TSPO-deficient mouse brains to compare the binding properties of 18F-FEBMP, a relatively novel TSPO radioligand developed for human studies based on its insensitivity to a common polymorphism, with 11C-PK11195, as well as other commonly used TSPO radioligands including 11C-PBR28, 11C-Ac5216 and 18F-FEDAA1106. TSPO in cerebral vessels of normal mice was found to provide a major binding site for 11C-PK11195, 11C-PBR28 and 18F-FEDAA1106, in contrast to no overt specific binding of 18F-FEBMP and 11C-Ac5216 to this vascular component. In addition, 18F-FEBMP yielded PET images of microglial TSPO with a higher contrast than 11C-PK11195 in a tau transgenic mouse modeling Alzheimer's disease (AD) and allied neurodegenerative tauopathies. Moreover, TSPO expression examined by immunoblotting was significantly increased in AD brains compared with healthy controls, and was well correlated with the autoradiographic binding of 18F-FEBMP but not 11C-PK11195. Our findings support the potential advantage of comparatively glial TSPO-selective radioligands such as 18F-FEBMP for PET imaging of inflammatory glial cells.
Collapse
Affiliation(s)
- Bin Ji
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Chie Seki
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Seiji Kito
- Research, Development and Support Center, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Makoto Sawada
- Department of Brain Function, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Naruhiko Sahara
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
12
|
Walsh J, Tozer DJ, Sari H, Hong YT, Drazyk A, Williams G, Shah NJ, O’Brien JT, Aigbirhio FI, Rosenberg G, Fryer TD, Markus HS. Microglial activation and blood-brain barrier permeability in cerebral small vessel disease. Brain 2021; 144:1361-1371. [PMID: 34000009 PMCID: PMC8874873 DOI: 10.1093/brain/awab003] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 11/28/2022] Open
Abstract
Cerebral small vessel disease (SVD) is a major cause of stroke and dementia. The underlying pathogenesis is poorly understood, but both neuroinflammation and increased blood-brain barrier permeability have been hypothesized to play a role, and preclinical studies suggest the two processes may be linked. We used PET magnetic resonance to simultaneously measure microglial activation using the translocator protein radioligand 11C-PK11195, and blood-brain barrier permeability using dynamic contrast enhanced MRI. A case control design was used with two disease groups with sporadic SVD (n = 20), monogenic SVD (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, CADASIL), and normal controls (n = 20) were studied. Hotspots of increased glial activation and blood-brain barrier permeability were identified as values greater than the 95th percentile of the distribution in controls. In sporadic SVD there was an increase in the volume of hotspots of both 11C-PK11195 binding (P = 0.003) and blood-brain barrier permeability (P = 0.007) in the normal appearing white matter, in addition to increased mean blood-brain barrier permeability (P < 0.001). In CADASIL no increase in blood-brain barrier permeability was detected; there was a non-significant trend to increased 11C-PK11195 binding (P = 0.073). Hotspots of 11C-PK11195 binding and blood-brain barrier permeability were not spatially related. A panel of 93 blood biomarkers relating to cardiovascular disease, inflammation and endothelial activation were measured in each participant; principal component analysis was performed and the first component related to blood-brain barrier permeability and microglial activation. Within the sporadic SVD group both hotspot and mean volume blood-brain barrier permeability values in the normal appearing white matter were associated with dimension 1 (β = 0.829, P = 0.017, and β = 0.976, P = 0.003, respectively). There was no association with 11C-PK11195 binding. No associations with blood markers were found in the CADASIL group. In conclusion, in sporadic SVD both microglial activation and increased blood-brain barrier permeability occur, but these are spatially distinct processes. No evidence of increased blood-brain barrier permeability was found in CADASIL.
Collapse
Affiliation(s)
- Jessica Walsh
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Dan J Tozer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Hasan Sari
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Young T Hong
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anna Drazyk
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Guy Williams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - N Jon Shah
- Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany
- JARA–BRAIN–Translational Medicine, Aachen, and Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - John T O’Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Gary Rosenberg
- UNM Health Sciences Center, University of New Mexico, Albuquerque, NM 87106, USA
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Hugh S Markus
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
van den Ameele J, Hong YT, Manavaki R, Kouli A, Biggs H, MacIntyre Z, Horvath R, Yu-Wai-Man P, Reid E, Williams-Gray CH, Bullmore ET, Aigbirhio FI, Fryer TD, Chinnery PF. [ 11C]PK11195-PET Brain Imaging of the Mitochondrial Translocator Protein in Mitochondrial Disease. Neurology 2021; 96:e2761-e2773. [PMID: 33883237 PMCID: PMC8205464 DOI: 10.1212/wnl.0000000000012033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/04/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To explore the possibilities of radioligands against the mitochondrial outer membrane translocator protein (TSPO) as biomarkers for mitochondrial disease, we performed brain PET-MRI with [11C]PK11195 in 14 patients with genetically confirmed mitochondrial disease and 33 matched controls. METHODS Case-control study of brain PET-MRI with the TSPO radioligand [11C]PK11195. RESULTS Forty-six percent of symptomatic patients had volumes of abnormal radiotracer binding greater than the 95th percentile in controls. [11C]PK11195 binding was generally greater in gray matter and significantly decreased in white matter. This was most striking in patients with nuclear TYMP or mitochondrial m.3243A>G MT-TL1 mutations, in keeping with differences in mitochondrial density seen postmortem. Some regional binding patterns corresponded to clinical presentation and underlying mutation, even in the absence of structural changes on MRI. This was most obvious for the cerebellum, where patients with ataxia had decreased binding in the cerebellar cortex, but not necessarily volume loss. Overall, there was a positive correlation between aberrant [11C]PK11195 binding and clinical severity. CONCLUSION These findings endorse the use of PET imaging with TSPO radioligands as a noninvasive in vivo biomarker of mitochondrial pathology. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that brain PET-MRI with TSPO radioligands identifies mitochondrial pathology.
Collapse
Affiliation(s)
- Jelle van den Ameele
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Young T Hong
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Roido Manavaki
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Antonina Kouli
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Heather Biggs
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Zoe MacIntyre
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Rita Horvath
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Patrick Yu-Wai-Man
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Evan Reid
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Caroline H Williams-Gray
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Ed T Bullmore
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Franklin I Aigbirhio
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Tim D Fryer
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK
| | - Patrick F Chinnery
- From the Departments of Clinical Neurosciences (J.v.d.A., Y.T.H., A.K., H.B., Z.M., R.H., P.Y.-W.M., C.H.W.-G., F.I.A., T.D.F., P.F.C.), Radiology (R.M.), Medical Genetics (E.R.), and Psychiatry (E.T.B.), Cambridge Institute for Medical Research (E.R.), Cambridge Biomedical Campus, and MRC Mitochondrial Biology Unit (J.v.d.A., P.F.C.), University of Cambridge; Moorfields Eye Hospital NHS Foundation Trust (P.Y.-W.M.); and Institute of Ophthalmology (P.Y.-W.M.), University College London, UK.
| |
Collapse
|
14
|
Jorge L, Martins R, Canário N, Xavier C, Abrunhosa A, Santana I, Castelo-Branco M. Investigating the Spatial Associations Between Amyloid-β Deposition, Grey Matter Volume, and Neuroinflammation in Alzheimer's Disease. J Alzheimers Dis 2021; 80:113-132. [PMID: 33523050 PMCID: PMC8075404 DOI: 10.3233/jad-200840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: It has been proposed that amyloid-β (Aβ) plays a causal role in Alzheimer’s disease (AD) by triggering a series of pathologic events—possibly including neuroinflammation—which culminate in progressive brain atrophy. However, the interplay between the two pathological molecular events and how both are associated with neurodegeneration is still unclear. Objective: We aimed to estimate the spatial inter-relationship between neurodegeneration, neuroinflammation and Aβ deposition in a cohort of 20 mild AD patients and 17 healthy controls (HC). Methods: We resorted to magnetic resonance imaging to measure cortical atrophy, using the radiotracer 11C-PK11195 PET to measure neuroinflammation levels and 11C-PiB PET to assess Aβ levels. Between-group comparisons were computed to explore AD-related changes in the three types of markers. To examine the effects of each one of the molecular pathologic mechanisms on neurodegeneration we computed: 1) ANCOVAs with the anatomic data, controlling for radiotracer uptake differences between groups and 2) voxel-based multiple regression analysis between-modalities. In addition, associations in anatomically defined regions of interests were also investigated. Results: We found significant differences between AD and controls in the levels of atrophy, neuroinflammation, and Aβ deposition. Associations between Aβ aggregation and brain atrophy were detected in AD in a widely distributed pattern, whereas associations between microglia activation and structural measures of neurodegeneration were restricted to few anatomically regions. Conclusion: In summary, Aβ deposition, as opposed to neuroinflammation, was more associated with cortical atrophy, suggesting a prominent role of Aβ in neurodegeneration at a mild stage of the AD.
Collapse
Affiliation(s)
- Lília Jorge
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Ricardo Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Nádia Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carolina Xavier
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Antero Abrunhosa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Department of Neurology, Coimbra University Hospital, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
15
|
Abstract
This article presents an overview of imaging agents for PET that have been applied for research and diagnostic purposes in patients affected by dementia. Classified by the target which the agents visualize, seven groups of tracers can be distinguished, namely radiopharmaceuticals for: (1) Misfolded proteins (ß-amyloid, tau, α-synuclein), (2) Neuroinflammation (overexpression of translocator protein), (3) Elements of the cholinergic system, (4) Elements of monoamine neurotransmitter systems, (5) Synaptic density, (6) Cerebral energy metabolism (glucose transport/ hexokinase), and (7) Various other proteins. This last category contains proteins involved in mechanisms underlying neuroinflammation or cognitive impairment, which may also be potential therapeutic targets. Many receptors belong to this category: AMPA, cannabinoid, colony stimulating factor 1, metabotropic glutamate receptor 1 and 5 (mGluR1, mGluR5), opioid (kappa, mu), purinergic (P2X7, P2Y12), sigma-1, sigma-2, receptor for advanced glycation endproducts, and triggering receptor expressed on myeloid cells-1, besides several enzymes: cyclooxygenase-1 and 2 (COX-1, COX-2), phosphodiesterase-5 and 10 (PDE5, PDE10), and tropomyosin receptor kinase. Significant advances in neuroimaging have been made in the last 15 years. The use of 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) for quantification of regional cerebral glucose metabolism is well-established. Three tracers for ß-amyloid plaques have been approved by the Food and Drug Administration and European Medicines Agency. Several tracers for tau neurofibrillary tangles are already applied in clinical research. Since many novel agents are in the preclinical or experimental stage of development, further advances in nuclear medicine imaging can be expected in the near future. PET studies with established tracers and tracers for novel targets may result in early diagnosis and better classification of neurodegenerative disorders and in accurate monitoring of therapy trials which involve these targets. PET data have prognostic value and may be used to assess the response of the human brain to interventions, or to select the appropriate treatment strategy for an individual patient.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands.
| | - Sofia Marcolini
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, the Netherlands
| | - Peter Paul de Deyn
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, the Netherlands; University of Antwerp, Born-Bunge Institute, Neurochemistry and Behavior, Campus Drie Eiken, Wilrijk, Belgium
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands; Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Nutma E, Stephenson JA, Gorter RP, de Bruin J, Boucherie DM, Donat CK, Breur M, van der Valk P, Matthews PM, Owen DR, Amor S. A quantitative neuropathological assessment of translocator protein expression in multiple sclerosis. Brain 2020; 142:3440-3455. [PMID: 31578541 PMCID: PMC6821167 DOI: 10.1093/brain/awz287] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/11/2019] [Accepted: 07/25/2019] [Indexed: 01/09/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) is increasingly used to study brain and spinal cord inflammation in degenerative diseases of the CNS such as multiple sclerosis. The enhanced TSPO PET signal that arises during disease is widely considered to reflect activated pathogenic microglia, although quantitative neuropathological data to support this interpretation have not been available. With the increasing interest in the role of chronic microglial activation in multiple sclerosis, characterising the cellular neuropathology associated with TSPO expression is of clear importance for understanding the cellular and pathological processes on which TSPO PET imaging is reporting. Here we have studied the cellular expression of TSPO and specific binding of two TSPO targeting radioligands (3H-PK11195 and 3H-PBR28) in tissue sections from 42 multiple sclerosis cases and 12 age-matched controls. Markers of homeostatic and reactive microglia, astrocytes, and lymphocytes were used to investigate the phenotypes of cells expressing TSPO. There was an approximate 20-fold increase in cells double positive for TSPO and HLA-DR in active lesions and in the rim of chronic active lesion, relative to normal appearing white matter. TSPO was uniformly expressed across myeloid cells irrespective of their phenotype, rather than being preferentially associated with pro-inflammatory microglia or macrophages. TSPO+ astrocytes were increased up to 7-fold compared to normal-appearing white matter across all lesion subtypes and accounted for 25% of the TSPO+ cells in these lesions. To relate TSPO protein expression to ligand binding, specific binding of the TSPO ligands 3H-PK11195 and 3H-PBR28 was determined in the same lesions. TSPO radioligand binding was increased up to seven times for 3H-PBR28 and up to two times for 3H-PK11195 in active lesions and the centre of chronic active lesions and a strong correlation was found between the radioligand binding signal for both tracers and the number of TSPO+ cells across all of the tissues examined. In summary, in multiple sclerosis, TSPO expression arises from microglia of different phenotypes, rather than being restricted to microglia which express classical pro-inflammatory markers. While the majority of cells expressing TSPO in active lesions or chronic active rims are microglia/macrophages, our findings also emphasize the significant contribution of activated astrocytes, as well as smaller contributions from endothelial cells. These observations establish a quantitative framework for interpretation of TSPO in multiple sclerosis and highlight the need for neuropathological characterization of TSPO expression for the interpretation of TSPO PET in other neurodegenerative disorders.
Collapse
Affiliation(s)
- Erik Nutma
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Jodie A Stephenson
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Rianne P Gorter
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Joy de Bruin
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | | | | | - Marjolein Breur
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Paul van der Valk
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, UK.,UK Dementia Research Institute, Imperial College London, UK
| | - David R Owen
- Department of Brain Sciences, Imperial College London, UK
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
17
|
Lindgren N, Tuisku J, Vuoksimaa E, Helin S, Karrasch M, Marjamäki P, Kaprio J, Rinne JO. Association of neuroinflammation with episodic memory: a [ 11C]PBR28 PET study in cognitively discordant twin pairs. Brain Commun 2020; 2:fcaa024. [PMID: 32954285 PMCID: PMC7425350 DOI: 10.1093/braincomms/fcaa024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/18/2019] [Accepted: 01/29/2020] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease is associated with chronic response of innate immune system, referred as neuroinflammation. PET radioligands binding to the 18 kDa translocator protein are potential biomarkers of neuroinflammation. Translocator protein PET studies in mild cognitive impairment and Alzheimer's disease have indicated controversial results, possibly reflecting interindividual variation and heterogeneity of study populations. We controlled for genetic and environmental effects by studying twin pairs discordant for episodic memory performance. Episodic memory impairment is a well-known cognitive hallmark of early Alzheimer's disease process. Eleven same-sex twin pairs (four monozygotic pairs, six female pairs, age 72-77 years) underwent [11C]N-acetyl-N-(2-methoxybenzyl)-2-phenoxy-5-pyridinamine ([11C]PBR28) PET imaging, structural magnetic resonance imaging and neuropsychological testing in 2014-17. Main PET outcome was the volume-weighted average standardized uptake value of cortical regions vulnerable to Alzheimer's disease pathology. Ten pairs were discordant for episodic memory performance. In the eight pairs with identical translocator protein genotype, twins with poorer episodic memory had ∼20% higher cortical [11C]PBR28 binding compared with their better-performing co-twins (mean intra-pair difference 0.21 standardized uptake value, 95% confidence interval 0.05-0.37, P = 0.017). The result remained the same when including all discordant pairs and controlling for translocator protein genotype. Increased translocator protein PET signal suggests that increased microglial activation is associated with poorer episodic memory performance. Twins with worse episodic memory performance compared with their co-twins had on average 20% higher uptake of the neuroinflammatory marker translocator protein PET tracer 11[11C]PBR28. The findings support a negative association between neuroinflammation and episodic memory and the use of translocator protein positron emission tomography as a useful indicator of Alzheimer's disease process.
Collapse
Affiliation(s)
- Noora Lindgren
- Turku PET Centre, University of Turku, Turku 20521, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku, Turku 20521, Finland
| | - Eero Vuoksimaa
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Semi Helin
- Turku PET Centre, University of Turku, Turku 20521, Finland
| | - Mira Karrasch
- Department of Psychology, Åbo Akademi University, Turku 20500, Finland
| | | | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki 00014, Finland.,Department of Public Health, University of Helsinki, Helsinki 00014, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku, Turku 20521, Finland.,Division of Clinical Neurosciences, Turku University Hospital, Turku 20521, Finland
| |
Collapse
|
18
|
Kubota K, Ogawa M, Ji B, Watabe T, Zhang MR, Suzuki H, Sawada M, Nishi K, Kudo T. Basic Science of PET Imaging for Inflammatory Diseases. PET/CT FOR INFLAMMATORY DISEASES 2020. [PMCID: PMC7418531 DOI: 10.1007/978-981-15-0810-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
FDG-PET/CT has recently emerged as a useful tool for the evaluation of inflammatory diseases too, in addition to that of malignant diseases. The imaging is based on active glucose utilization by inflammatory tissue. Autoradiography studies have demonstrated high FDG uptake in macrophages, granulocytes, fibroblasts, and granulation tissue. Especially, activated macrophages are responsible for the elevated FDG uptake in some types of inflammation. According to one study, after activation by lipopolysaccharide of cultured macrophages, the [14C]2DG uptake by the cells doubled, reaching the level seen in glioblastoma cells. In activated macrophages, increase in the expression of total GLUT1 and redistributions from the intracellular compartments toward the cell surface have been reported. In one rheumatoid arthritis model, following stimulation by hypoxia or TNF-α, the highest elevation of the [3H]FDG uptake was observed in the fibroblasts, followed by that in macrophages and neutrophils. As the fundamental mechanism of elevated glucose uptake in both cancer cells and inflammatory cells, activation of glucose metabolism as an adaptive response to a hypoxic environment has been reported, with transcription factor HIF-1α playing a key role. Inflammatory cells and cancer cells seem to share the same molecular mechanism of elevated glucose metabolism, lending support to the notion of usefulness of FDGPET/CT for the evaluation of inflammatory diseases, besides cancer.
Collapse
|
19
|
Gui Y, Marks JD, Das S, Hyman BT, Serrano-Pozo A. Characterization of the 18 kDa translocator protein (TSPO) expression in post-mortem normal and Alzheimer's disease brains. Brain Pathol 2019; 30:151-164. [PMID: 31276244 PMCID: PMC6904423 DOI: 10.1111/bpa.12763] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) is a widely used target for microglial PET imaging radioligands, but its expression in post-mortem normal and diseased human brain is not well described. We aimed at characterizing the TSPO expression in human control (CTRL) and Alzheimer's disease (AD) brains. Specifically, we sought to: (1) define the cell type(s) expressing TSPO; (2) compare tspo mRNA and TSPO levels between AD and CTRL brains; (3) correlate TSPO levels with quantitative neuropathological measures of reactive glia and AD neuropathological changes; and (4) investigate the effects of the TSPO rs6971 SNP on tspo mRNA and TSPO levels, glial responses and AD neuropathological changes. We performed quantitative immunohistochemistry and Western blot in post-mortem brain samples from CTRL and AD subjects, as well as analysis of publicly available mouse and human brain RNA-Seq datasets. We found that: (1) TSPO is expressed not just in microglia, but also in astrocytes, endothelial cells and vascular smooth muscle cells; (2) there is substantial overlap of tspo mRNA and TSPO levels between AD and CTRL subjects and in TSPO levels between temporal neocortex and white matter in both groups; (3) TSPO cortical burden does not correlate with the burden of activated microglia or reactive astrocytes, Aβ plaques or neurofibrillary tangles, or the cortical thickness; (4) the TSPO rs6971 SNP does not significantly impact tspo mRNA or TSPO levels, the magnitude of glial responses, the cortical thickness, or the burden of AD neuropathological changes. These results could inform ongoing efforts toward the development of reactive glia-specific PET radioligands.
Collapse
Affiliation(s)
- Yaxing Gui
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Department of Neurology, Sir Run Run Shaw Hospital of Zhejiang University, Zhejiang, China
| | - Jordan D Marks
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Rizzo G, Veronese M, Tonietto M, Bodini B, Stankoff B, Wimberley C, Lavisse S, Bottlaender M, Bloomfield PS, Howes O, Zanotti-Fregonara P, Turkheimer FE, Bertoldo A. Generalization of endothelial modelling of TSPO PET imaging: Considerations on tracer affinities. J Cereb Blood Flow Metab 2019; 39:874-885. [PMID: 29135382 PMCID: PMC6501510 DOI: 10.1177/0271678x17742004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a marker of microglia activation and the main target of positron emission tomography (PET) ligands for neuroinflammation. Previous works showed that accounting for TSPO endothelial binding improves PET quantification for [11C]PBR28, [18F]DPA714 and [11C]-R-PK11195. It is still unclear, however, whether the vascular signal is tracer-dependent. This work aims to explore the relationship between the TSPO vascular and tissue components for PET tracers with varying affinity, also assessing the impact of affinity towards the differentiability amongst kinetics and the ensuing ligand amenability to cluster analysis for the extraction of a reference region. First, we applied the compartmental model accounting for vascular binding to [11C]-R-PK11195 data from six healthy subjects. Then, we compared the [11C]-R-PK11195 vascular binding estimates with previously published values for [18F]DPA714 and [11C]PBR28. Finally, we determined the suitability for reference region extraction by calculating the angle between grey and white matter kinetics. Our results showed that endothelial binding is common to all TSPO tracers and proportional to their affinity. By consequence, grey and white matter kinetics were most similar for the radioligand with the highest affinity (i.e. [11C]PBR28), hence poorly suited for the extraction of a reference region using supervised clustering.
Collapse
Affiliation(s)
- Gaia Rizzo
- 1 Department of Information Engineering, Padova University, Padova, Italy
| | - Mattia Veronese
- 2 Department of Neuroimaging, King's College London, London, UK
| | - Matteo Tonietto
- 3 UPMC, Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, Paris, France
| | - Benedetta Bodini
- 3 UPMC, Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, Paris, France.,4 Assistance Publique des Hopitaux de Paris, APHP, Hôpital Saint Antoine, Paris, France
| | - Bruno Stankoff
- 3 UPMC, Institut du Cerveau et de la Moelle épinière, Hôpital de la Pitié Salpêtrière, Sorbonne Universités, Paris, France.,4 Assistance Publique des Hopitaux de Paris, APHP, Hôpital Saint Antoine, Paris, France.,5 IMIV, Inserm, CEA, Paris-Sud Univ, Université Paris Saclay, Orsay, France
| | - Catriona Wimberley
- 5 IMIV, Inserm, CEA, Paris-Sud Univ, Université Paris Saclay, Orsay, France
| | - Sonia Lavisse
- 6 Département de Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), Fontenay-aux-Roses, France.,7 Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Michel Bottlaender
- 5 IMIV, Inserm, CEA, Paris-Sud Univ, Université Paris Saclay, Orsay, France.,8 Neurospin, CEA, Gif-sur-Yvette, France
| | | | - Oliver Howes
- 9 Institute of Clinical Sciences, Imperial College London, London, UK.,10 Department of Psychosis Studies, King's College London, London, UK
| | - Paolo Zanotti-Fregonara
- 11 Houston Methodist Hospital, PET Core Facility, Research Institute, Stanley H. Appel Department of Neurology, Houston, Texas, USA
| | | | - Alessandra Bertoldo
- 1 Department of Information Engineering, Padova University, Padova, Italy.,12 Padua Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
21
|
Bradburn S, Murgatroyd C, Ray N. Neuroinflammation in mild cognitive impairment and Alzheimer's disease: A meta-analysis. Ageing Res Rev 2019; 50:1-8. [PMID: 30610927 DOI: 10.1016/j.arr.2019.01.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/01/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Increasingly, evidence from brain imaging supports the role of neuroinflammation in dementia progression. Yet, it is not clear if there are patterns of spatial and temporal susceptibility to neuroinflammatory processes in the brain that may correspond to dementia staging or symptom expression. METHODS We searched literature databases for case-control studies examining levels of translocator protein (TSPO) levels using positron emission tomography, representing neuroinflammation, in regional analyses between healthy controls and mild cognitive impairment (MCI) or Alzheimer's disease (AD) subjects. Standardised mean differences (SMDs) were calculated and results meta-analysed using random-effects models. Quality assessments, sensitivity analysis, subgroup analysis and meta-regressions were also performed. RESULTS Twenty-eight studies comprising 755 (HC = 318, MCI = 168, AD = 269) participants and 37 brain regions were included. Compared to HCs, AD participants had increased TSPO levels throughout the brain (SMD range: 0.43-1.76), especially within fronto-temporal regions. MCI subjects also had increased TSPO levels, mainly within the neocortex, with more modest effects (SMD range: 0.46 - 0.90). Meta-regression analysis identified an inverse association between TSPO levels in the parietal region and Mini-Mental State Examination scores, a proxy for disease severity, in AD subjects (estimate: -0.11, 95% confidence interval: -0.21 to -0.02; P = 0.024). CONCLUSIONS Our findings support the association of increased neuroinflammation during the progression of MCI and AD, relative to HCs.
Collapse
|
22
|
Plavén-Sigray P, Matheson GJ, Cselényi Z, Jucaite A, Farde L, Cervenka S. Test-retest reliability and convergent validity of (R)-[ 11C]PK11195 outcome measures without arterial input function. EJNMMI Res 2018; 8:102. [PMID: 30498919 PMCID: PMC6265355 DOI: 10.1186/s13550-018-0455-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/02/2018] [Indexed: 12/29/2022] Open
Abstract
Purpose The PET radioligand (R)-[11C]PK11195 is used to quantify the 18-kDa translocator protein (TSPO), a marker for glial activation. Since there is no brain region devoid of TSPO, an arterial input function (AIF) is ideally required for quantification of binding. However, obtaining an AIF is experimentally demanding, is sometimes uncomfortable for participants, and can introduce additional measurement error during quantification. The objective of this study was to perform an evaluation of the test-retest reliability and convergent validity of techniques used for quantifying (R)-[11C]PK11195 binding without an AIF in clinical studies. Methods Data from six healthy individuals who participated in two PET examinations, 6 weeks apart, were analyzed. Regional non-displaceable binding potential (BPND) values were calculated using the simplified reference tissue model, with either cerebellum as reference region or a reference input derived using supervised cluster analysis (SVCA). Standardized uptake values (SUVs) were estimated for the time interval of 40–60 min. Results Test-retest reliability for BPND estimates were poor (80% of ICCs < 0.5). BPND estimates derived without an AIF were not correlated with BPND, total or specific distribution volume from the 2TCM using an AIF (all R2 < 12%). SUVs showed moderate reliability but no correlation to any other outcome measure. Conclusions Caution is warranted when interpreting patient-control comparisons employing (R)-[11C]PK11195 outcome measures obtained without an AIF. Electronic supplementary material The online version of this article (10.1186/s13550-018-0455-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pontus Plavén-Sigray
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden.
| | - Granville James Matheson
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden
| | - Zsolt Cselényi
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden.,PET Imaging Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Aurelija Jucaite
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden.,PET Imaging Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden.,PET Imaging Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76, Stockholm, Sweden
| |
Collapse
|
23
|
Chaney A, Williams SR, Boutin H. In vivo molecular imaging of neuroinflammation in Alzheimer's disease. J Neurochem 2018; 149:438-451. [PMID: 30339715 PMCID: PMC6563454 DOI: 10.1111/jnc.14615] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
It has become increasingly evident that neuroinflammation plays a critical role in the pathophysiology of Alzheimer's disease (AD) and other neurodegenerative disorders. Increased glial cell activation is consistently reported in both rodent models of AD and in AD patients. Moreover, recent genome wide association studies have revealed multiple genes associated with inflammation and immunity are significantly associated with an increased risk of AD development (e.g. TREM2). Non‐invasive in vivo detection and tracking of neuroinflammation is necessary to enhance our understanding of the contribution of neuroinflammation to the initiation and progression of AD. Importantly, accurate methods of quantifying neuroinflammation may aid early diagnosis and serve as an output for therapeutic monitoring and disease management. This review details current in vivo imaging biomarkers of neuroinflammation being explored and summarizes both pre‐clinical and clinical results from molecular imaging studies investigating the role of neuroinflammation in AD, with a focus on positron emission tomography and magnetic resonance spectroscopy (MRS). ![]()
Collapse
Affiliation(s)
- Aisling Chaney
- School of Health Sciences, Division of Informatics, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre University of Manchester, Manchester, UK.,Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Steve R Williams
- School of Health Sciences, Division of Informatics, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre University of Manchester, Manchester, UK
| | - Herve Boutin
- Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.,School of Biological Sciences, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Hagens MHJ, Golla SV, Wijburg MT, Yaqub M, Heijtel D, Steenwijk MD, Schober P, Brevé JJP, Schuit RC, Reekie TA, Kassiou M, van Dam AM, Windhorst AD, Killestein J, Barkhof F, van Berckel BNM, Lammertsma AA. In vivo assessment of neuroinflammation in progressive multiple sclerosis: a proof of concept study with [ 18F]DPA714 PET. J Neuroinflammation 2018; 15:314. [PMID: 30424780 PMCID: PMC6234549 DOI: 10.1186/s12974-018-1352-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Background Over the past decades, positron emission tomography (PET) imaging has become an increasingly useful research modality in the field of multiple sclerosis (MS) research, as PET can visualise molecular processes, such as neuroinflammation, in vivo. The second generation PET radioligand [18F]DPA714 binds with high affinity to the 18-kDa translocator-protein (TSPO), which is mainly expressed on activated microglia. The aim of this proof of concept study was to evaluate this in vivo marker of neuroinflammation in primary and secondary progressive MS. Methods All subjects were genotyped for the rs6971 polymorphism within the TSPO gene, and low-affinity binders were excluded from participation in this study. Eight patients with progressive MS and seven age and genetic binding status matched healthy controls underwent a 60 min dynamic PET scan using [18F]DPA714, including both continuous on-line and manual arterial blood sampling to obtain metabolite-corrected arterial plasma input functions. Results The optimal model for quantification of [18F]DPA714 kinetics was a reversible two-tissue compartment model with additional blood volume parameter. For genetic high-affinity binders, a clear increase in binding potential was observed in patients with MS compared with age-matched controls. For both high and medium affinity binders, a further increase in binding potential was observed in T2 white matter lesions compared with non-lesional white matter. Volume of distribution, however, did not differentiate patients from healthy controls, as the large non-displaceable compartment of [18F]DPA714 masks its relatively small specific signal. Conclusion The TSPO radioligand [18F]DPA714 can reliably identify increased focal and diffuse neuroinflammation in progressive MS when using plasma input-derived binding potential, but observed differences were predominantly visible in high-affinity binders. Electronic supplementary material The online version of this article (10.1186/s12974-018-1352-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marloes H J Hagens
- VUmc MS Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands. .,Department of Neurology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.
| | - Sandeep V Golla
- Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Martijn T Wijburg
- VUmc MS Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Department of Neurology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Maqsood Yaqub
- Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Dennis Heijtel
- Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Philips Healthcare, Best, the Netherlands, Veenpluis 4, 5684 PC, Best, the Netherlands
| | - Martijn D Steenwijk
- VUmc MS Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Department of Anatomy and Neurosciences, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Patrick Schober
- Department of Anaesthesiology, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - John J P Brevé
- Department of Anatomy and Neurosciences, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Robert C Schuit
- Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Tristan A Reekie
- School of Chemistry, University of Sydney, F11, Eastern Ave, Sydney, NSW, 2006, Australia
| | - Michael Kassiou
- School of Chemistry, University of Sydney, F11, Eastern Ave, Sydney, NSW, 2006, Australia
| | - Anne-Marie van Dam
- VUmc MS Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Department of Anatomy and Neurosciences, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Joep Killestein
- VUmc MS Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Department of Neurology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Frederik Barkhof
- VUmc MS Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands.,Institutes of Neurology and Healthcare Engineering, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology and Nuclear Medicine, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Betlazar C, Harrison-Brown M, Middleton RJ, Banati R, Liu GJ. Cellular Sources and Regional Variations in the Expression of the Neuroinflammatory Marker Translocator Protein (TSPO) in the Normal Brain. Int J Mol Sci 2018; 19:ijms19092707. [PMID: 30208620 PMCID: PMC6163555 DOI: 10.3390/ijms19092707] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/09/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023] Open
Abstract
The inducible expression of the mitochondrial translocator protein 18 kDa (TSPO) by activated microglia is a prominent, regular feature of acute and chronic-progressive brain pathology. This expression is also the rationale for the continual development of new TSPO binding molecules for the diagnosis of "neuroinflammation" by molecular imaging. However, there is in the normal brain an ill-defined, low-level constitutive expression of TSPO. Taking advantage of healthy TSPO knockout mouse brain tissue to validate TSPO antibody specificity, this study uses immunohistochemistry to determine the regional distribution and cellular sources of TSPO in the normal mouse brain. Fluorescence microscopy revealed punctate TSPO immunostaining in vascular endothelial cells throughout the brain. In the olfactory nerve layers and glomeruli of the olfactory bulb, choroid plexus and ependymal layers, we confirm constitutive TSPO expression levels similar to peripheral organs, while some low TSPO expression is present in regions of known neurogenesis, as well as cerebellar Purkinje cells. The distributed-sparse expression of TSPO in endothelial mitochondria throughout the normal brain can be expected to give rise to a low baseline signal in TSPO molecular imaging studies. Finally, our study emphasises the need for valid and methodologically robust verification of the selectivity of TSPO ligands through the use of TSPO knockout tissues.
Collapse
Affiliation(s)
- Calina Betlazar
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia.
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| | - Meredith Harrison-Brown
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia.
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| | - Ryan J Middleton
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia.
| | - Richard Banati
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia.
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia.
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| |
Collapse
|
26
|
TSPO in diverse CNS pathologies and psychiatric disease: A critical review and a way forward. Pharmacol Ther 2018; 194:44-58. [PMID: 30189290 DOI: 10.1016/j.pharmthera.2018.09.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The use of Translocator Protein 18 kDa (TSPO) as a clinical neuroimaging biomarker of brain injury and neuroinflammation has increased exponentially in the last decade. There has been a furious pace in the development of new radiotracers for TSPO positron emission tomography (PET) imaging and its use has now been extensively described in many neurological and mental disorders. This fast pace of research and the ever-increasing number of new laboratories entering the field often times lack an appreciation of the historical perspective of the field and introduce dogmatic, but unproven facts, related to the underlying neurobiology of the TSPO response to brain injury and neuroinflammation. Paradoxically, while in neurodegenerative disorders and in all types of CNS pathologies brain TSPO levels increase, a new observation in psychiatric disorders such as schizophrenia is decreased brain levels of TSPO measured by PET. The neurobiological bases for this new finding is currently not known, but rigorous experimental design using multiple experimental approaches and careful interpretation of results is critically important to provide the methodological and/or biological underpinnings to this new observation. This review provides a perspective of the early history of validating TSPO as a biomarker of brain injury and neuroinflammation and a critical analysis of controversial topics in the literature related to the cellular sources of the TSPO response. The latter is important in order to provide the correct interpretation of PET studies in neurodegenerative and psychiatric disorders. Furthermore, this review proposes some yet to be explored explanations to new findings in psychiatric disorders and new approaches to quantitatively assess the glial sources of the TSPO response in order to move the field forward.
Collapse
|
27
|
Comparison of two different methods of image analysis for the assessment of microglial activation in patients with multiple sclerosis using (R)-[N-methyl-carbon-11]PK11195. PLoS One 2018; 13:e0201289. [PMID: 30091993 PMCID: PMC6084893 DOI: 10.1371/journal.pone.0201289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/12/2018] [Indexed: 11/28/2022] Open
Abstract
Chronic active multiple sclerosis (MS) lesions have a rim of activated microglia/macrophages (m/M) leading to ongoing tissue damage, and thus represent a potential treatment target. Activation of this innate immune response in MS has been visualized and quantified using PET imaging with [11C]-(R)-PK11195 (PK). Accurate identification of m/M activation in chronic MS lesions requires the sensitivity to detect lower levels of activity within a small tissue volume. We assessed the ability of kinetic modeling of PK PET data to detect m/M activity in different central nervous system (CNS) tissue regions of varying sizes and in chronic MS lesions. Ten patients with MS underwent a single brain MRI and two PK PET scans 2 hours apart. Volume of interest (VOI) masks were generated for the white matter (WM), cortical gray matter (CGM), and thalamus (TH). The distribution volume (VT) was calculated with the Logan graphical method (LGM-VT) utilizing an image-derived input function (IDIF). The binding potential (BPND) was calculated with the reference Logan graphical method (RLGM) utilizing a supervised clustering algorithm (SuperPK) to determine the non-specific binding region. Masks of varying volume were created in the CNS to assess the impact of region size on the various metrics among high and low uptake regions. Chronic MS lesions were also evaluated and individual lesion masks were generated. The highest PK uptake occurred the TH and lowest within the WM, as demonstrated by the mean time activity curves. In the TH, both reference and IDIF based methods resulted in estimates that did not significantly depend on VOI size. However, in the WM, the test-retest reliability of BPND was significantly lower in the smallest VOI, compared to the estimates of LGM-VT. These observations were consistent for all chronic MS lesions examined. In this study, we demonstrate that BPND and LGM-VT are both reliable for quantifying m/M activation in regions of high uptake, however with blood input function LGM-VT is preferred to assess longitudinal m/M activation in regions of relatively low uptake, such as chronic MS lesions.
Collapse
|
28
|
Edison P, Donat CK, Sastre M. In vivo Imaging of Glial Activation in Alzheimer's Disease. Front Neurol 2018; 9:625. [PMID: 30131755 PMCID: PMC6090997 DOI: 10.3389/fneur.2018.00625] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by memory loss and decline of cognitive function, associated with progressive neurodegeneration. While neuropathological processes like amyloid plaques and tau neurofibrillary tangles have been linked to neuronal death in AD, the precise role of glial activation on disease progression is still debated. It was suggested that neuroinflammation could occur well ahead of amyloid deposition and may be responsible for clearing amyloid, having a neuroprotective effect; however, later in the disease, glial activation could become deleterious, contributing to neuronal toxicity. Recent genetic and preclinical studies suggest that the different activation states of microglia and astrocytes are complex, not as polarized as previously thought, and that the heterogeneity in their phenotype can switch during disease progression. In the last few years, novel imaging techniques e.g., new radiotracers for assessing glia activation using positron emission tomography and advanced magnetic resonance imaging technologies have emerged, allowing the correlation of neuro-inflammatory markers with cognitive decline, brain function and brain pathology in vivo. Here we review all new imaging technology in AD patients and animal models that has the potential to serve for early diagnosis of the disease, to monitor disease progression and to test the efficacy and the most effective time window for potential anti-inflammatory treatments.
Collapse
Affiliation(s)
- Paul Edison
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Cornelius K Donat
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Magdalena Sastre
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Veronese M, Reis Marques T, Bloomfield PS, Rizzo G, Singh N, Jones D, Agushi E, Mosses D, Bertoldo A, Howes O, Roncaroli F, Turkheimer FE. Kinetic modelling of [ 11C]PBR28 for 18 kDa translocator protein PET data: A validation study of vascular modelling in the brain using XBD173 and tissue analysis. J Cereb Blood Flow Metab 2018; 38:1227-1242. [PMID: 28580888 PMCID: PMC6434448 DOI: 10.1177/0271678x17712388] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a marker of microglia activation in the central nervous system and represents the main target of radiotracers for the in vivo quantification of neuroinflammation with positron emission tomography (PET). TSPO PET is methodologically challenging given the heterogeneous distribution of TSPO in blood and brain. Our previous studies with the TSPO tracers [11C]PBR28 and [11C]PK11195 demonstrated that a model accounting for TSPO binding to the endothelium improves the quantification of PET data. Here, we performed a validation of the kinetic model with the additional endothelial compartment through a displacement study. Seven subjects with schizophrenia, all high-affinity binders, underwent two [11C]PBR28 PET scans before and after oral administration of 90 mg of the TSPO ligand XBD173. The addition of the endothelial component provided a signal compartmentalization much more consistent with the underlying biology, as only in this model, the blocking study produced the expected reduction in the tracer concentration of the specific tissue compartment, whereas the non-displaceable compartment remained unchanged. In addition, we also studied TSPO expression in vessels using 3D reconstructions of histological data of frontal lobe and cerebellum, demonstrating that TSPO positive vessels account for 30% of the vascular volume in cortical and white matter.
Collapse
Affiliation(s)
- Mattia Veronese
- Department of Neuroimaging, IoPPN,
King’s College London, London, UK
| | - Tiago Reis Marques
- Department of Psychosis Studies, IoPPN,
King’s College London, London, UK
- Institute of Clinical Sciences, Imperial
College London, London, UK
| | | | - Gaia Rizzo
- Department of Information Engineering,
Padova University, Padova, Italy
| | - Nisha Singh
- Department of Neuroimaging, IoPPN,
King’s College London, London, UK
| | - Deborah Jones
- Department of Cellular Pathology,
Salford Royal Foundation Trust, Salford, UK
| | - Erjon Agushi
- Division of Neuroscience and
Experimental Psychology, University of Manchester, UK
| | - Dominic Mosses
- Division of Neuroscience and
Experimental Psychology, University of Manchester, UK
| | - Alessandra Bertoldo
- Department of Information Engineering,
Padova University, Padova, Italy
- Padua Neuroscience Center, University of
Padova, Padova, Italy
| | - Oliver Howes
- Department of Psychosis Studies, IoPPN,
King’s College London, London, UK
- Institute of Clinical Sciences, Imperial
College London, London, UK
| | - Federico Roncaroli
- Division of Neuroscience and
Experimental Psychology, University of Manchester, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, IoPPN,
King’s College London, London, UK
- Federico E Turkheimer, Centre for
Neuroimaging Sciences, IoPPN, King’s College London, P089, De Crespigny Park,
Denmark Hill, London SE5 8AF, UK.
| |
Collapse
|
30
|
Airas L, Nylund M, Rissanen E. Evaluation of Microglial Activation in Multiple Sclerosis Patients Using Positron Emission Tomography. Front Neurol 2018; 9:181. [PMID: 29632509 PMCID: PMC5879102 DOI: 10.3389/fneur.2018.00181] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/08/2018] [Indexed: 01/24/2023] Open
Abstract
Understanding the mechanisms underlying progression in multiple sclerosis (MS) is one of the key elements contributing to the identification of appropriate therapeutic targets for this under-managed condition. In addition to plaque-related focal inflammatory pathology typical for relapsing remitting MS there are, in progressive MS, widespread diffuse alterations in brain areas outside the focal lesions. This diffuse pathology is tightly related to microglial activation and is co-localized with signs of neurodegeneration. Microglia are brain-resident cells of the innate immune system and overactivation of microglia is associated with several neurodegenerative diseases. Understanding the role of microglial activation in relation to developing neurodegeneration and disease progression may provide a key to developing therapies to target progressive MS. 18-kDa translocator protein (TSPO) is a mitochondrial molecule upregulated in microglia upon their activation. Positron emission tomography (PET) imaging using TSPO-binding radioligands provides a method to assess microglial activation in patients in vivo. In this mini-review, we summarize the current status of TSPO imaging in the field of MS. In addition, the review discusses new insights into the potential use of this method in treatment trials and in clinical assessment of progressive MS.
Collapse
Affiliation(s)
- Laura Airas
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Marjo Nylund
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Rissanen
- Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
31
|
Towards a Better Understanding of GABAergic Remodeling in Alzheimer's Disease. Int J Mol Sci 2017; 18:ijms18081813. [PMID: 28825683 PMCID: PMC5578199 DOI: 10.3390/ijms18081813] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the vertebrate brain. In the past, there has been a major research drive focused on the dysfunction of the glutamatergic and cholinergic neurotransmitter systems in Alzheimer’s disease (AD). However, there is now growing evidence in support of a GABAergic contribution to the pathogenesis of this neurodegenerative disease. Previous studies paint a complex, convoluted and often inconsistent picture of AD-associated GABAergic remodeling. Given the importance of the GABAergic system in neuronal function and homeostasis, in the maintenance of the excitatory/inhibitory balance, and in the processes of learning and memory, such changes in GABAergic function could be an important factor in both early and later stages of AD pathogenesis. Given the limited scope of currently available therapies in modifying the course of the disease, a better understanding of GABAergic remodeling in AD could open up innovative and novel therapeutic opportunities.
Collapse
|
32
|
Wimberley C, Lavisse S, Brulon V, Peyronneau MA, Leroy C, Bodini B, Remy P, Stankoff B, Buvat I, Bottlaender M. Impact of Endothelial 18-kDa Translocator Protein on the Quantification of 18F-DPA-714. J Nucl Med 2017; 59:307-314. [DOI: 10.2967/jnumed.117.195396] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/07/2017] [Indexed: 01/24/2023] Open
|
33
|
Lagarde J, Sarazin M, Bottlaender M. In vivo PET imaging of neuroinflammation in Alzheimer's disease. J Neural Transm (Vienna) 2017; 125:847-867. [PMID: 28516240 DOI: 10.1007/s00702-017-1731-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/01/2017] [Indexed: 12/15/2022]
Abstract
Increasing evidence suggests that neuroinflammation contributes to the pathophysiology of many neurodegenerative diseases, especially Alzheimer's disease (AD). Molecular imaging by PET may be a useful tool to assess neuroinflammation in vivo, thus helping to decipher the complex role of inflammatory processes in the pathophysiology of neurodegenerative diseases and providing a potential means of monitoring the effect of new therapeutic approaches. For this objective, the main target of PET studies is the 18 kDa translocator protein (TSPO), as it is overexpressed by activated microglia. In the present review, we describe the most widely used PET tracers targeting the TSPO, the methodological issues in tracer quantification and summarize the results obtained by TSPO PET imaging in AD, as well as in neurodegenerative disorders associated with AD, in psychiatric disorders and ageing. We also briefly describe alternative PET targets and imaging modalities to study neuroinflammation. Lastly, we question the meaning of PET imaging data in the context of a highly complex and multifaceted role of neuroinflammation in neurodegenerative diseases. This overview leads to the conclusion that PET imaging of neuroinflammation is a promising way of deciphering the enigma of the pathophysiology of AD and of monitoring the effect of new therapies.
Collapse
Affiliation(s)
- Julien Lagarde
- Unit of Neurology of Memory and Language, Centre de Psychiatrie et Neurosciences, INSERM UMR S894, Centre Hospitalier Sainte-Anne and Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - Marie Sarazin
- Unit of Neurology of Memory and Language, Centre de Psychiatrie et Neurosciences, INSERM UMR S894, Centre Hospitalier Sainte-Anne and Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - Michel Bottlaender
- UNIACT, NeuroSpin, Institut d'Imagerie Biomédicale, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, 91191, Gif-sur-Yvette, France. .,Laboratoire Imagerie Moléculaire in Vivo, UMR 1023, Service Hospitalier Frédéric Joliot, Institut d'Imagerie Biomédicale, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, 91400, Orsay, France.
| |
Collapse
|
34
|
Cerami C, Iaccarino L, Perani D. Molecular Imaging of Neuroinflammation in Neurodegenerative Dementias: The Role of In Vivo PET Imaging. Int J Mol Sci 2017; 18:ijms18050993. [PMID: 28475165 PMCID: PMC5454906 DOI: 10.3390/ijms18050993] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 11/16/2022] Open
Abstract
Neurodegeneration elicits neuroinflammatory responses to kill pathogens, clear debris and support tissue repair. Neuroinflammation is a dynamic biological response characterized by the recruitment of innate and adaptive immune system cells in the site of tissue damage. Resident microglia and infiltrating immune cells partake in the restoration of central nervous system homeostasis. Nevertheless, their activation may shift to chronic and aggressive responses, which jeopardize neuron survival and may contribute to the disease process itself. Positron Emission Tomography (PET) molecular imaging represents a unique tool contributing to in vivo investigating of neuroinflammatory processes in patients. In the present review, we first provide an overview on the molecular basis of neuroinflammation in neurodegenerative diseases with emphasis on microglia activation, astrocytosis and the molecular targets for PET imaging. Then, we review the state-of-the-art of in vivo PET imaging for neuroinflammation in dementia conditions associated with different proteinopathies, such as Alzheimer’s disease, frontotemporal lobar degeneration and Parkinsonian spectrum.
Collapse
Affiliation(s)
- Chiara Cerami
- Clinical Neuroscience Department, San Raffaele Turro Hospital, Milan 20121-20162, Italy.
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20121-20162, Italy.
| | - Leonardo Iaccarino
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20121-20162, Italy.
- Faculty of Psychology and Molecular Medicine Doctoral Course, Vita-Salute San Raffaele University, Milan 20121-20162, Italy.
| | - Daniela Perani
- Division of Neuroscience, San Raffaele Scientific Institute, Milan 20121-20162, Italy.
- Faculty of Psychology and Molecular Medicine Doctoral Course, Vita-Salute San Raffaele University, Milan 20121-20162, Italy.
- Nuclear Medicine Unit, San Raffaele Hospital, Milan 20121-20162, Italy.
| |
Collapse
|
35
|
Bao W, Jia H, Finnema S, Cai Z, Carson RE, Huang YH. PET Imaging for Early Detection of Alzheimer's Disease: From Pathologic to Physiologic Biomarkers. PET Clin 2017; 12:329-350. [PMID: 28576171 DOI: 10.1016/j.cpet.2017.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This article describes the application of various PET imaging agents in the investigation and diagnosis of Alzheimer's disease (AD), including radiotracers for pathologic biomarkers of AD such as β-amyloid deposits and tau protein aggregates, and the neuroinflammation biomarker 18 kDa translocator protein, as well as physiologic biomarkers, such as cholinergic receptors, glucose metabolism, and the synaptic density biomarker synaptic vesicle glycoprotein 2A. Potential of these biomarkers for early AD diagnosis is also assessed.
Collapse
Affiliation(s)
- Weiqi Bao
- PET Center, Huanshan Hospital, Fudan University, No. 518, East Wuzhong Road, Xuhui District, Shanghai 200235, China
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 10075, China
| | - Sjoerd Finnema
- Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, PO Box 208048, New Haven, CT 06520-8048, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, PO Box 208048, New Haven, CT 06520-8048, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, PO Box 208048, New Haven, CT 06520-8048, USA
| | - Yiyun Henry Huang
- Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, PO Box 208048, New Haven, CT 06520-8048, USA.
| |
Collapse
|
36
|
van der Doef TF, de Witte LD, Sutterland AL, Jobse E, Yaqub M, Boellaard R, de Haan L, Eriksson J, Lammertsma AA, Kahn RS, van Berckel BNM. In vivo (R)-[(11)C]PK11195 PET imaging of 18kDa translocator protein in recent onset psychosis. NPJ SCHIZOPHRENIA 2016; 2:16031. [PMID: 27602389 PMCID: PMC5007116 DOI: 10.1038/npjschz.2016.31] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 07/23/2016] [Accepted: 07/26/2016] [Indexed: 12/12/2022]
Abstract
Evidence is accumulating that immune dysfunction is involved in the pathophysiology of schizophrenia. It has been hypothesized that microglia activation is present in patients with schizophrenia. Various in vivo and post-mortem studies have investigated this hypothesis, but as yet with inconclusive results. Microglia activation is associated with elevations in 18 kDa translocator protein (TSPO) levels, which can be measured with the positron emission tomography (PET) tracer (R)-[11C]PK11195. The purpose of the present study was to investigate microglia activation in psychosis in vivo at an early stage of the disease. (R)-[11C]PK11195 binding potential (BPND) was measured in 19 patients with recent onset psychosis and 17 age and gender-matched healthy controls. Total gray matter, as well as five gray matter regions of interest (frontal cortex, temporal cortex, parietal cortex, striatum, and thalamus) were defined a priori. PET data were analysed using a reference tissue approach and a supervised cluster analysis algorithm to identify the reference region. No significant difference in (R)-[11C]PK11195 BPND between patients and controls was found in total gray matter, nor one of the regions of interest. These findings suggest that microglia activation is not present in recent onset psychosis or that it is a subtle phenomenon that could not be detected using the design of the present study.
Collapse
Affiliation(s)
- Thalia F van der Doef
- Department of Psychiatry, Rudolf Magnus Institute for Neurosciences, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Rudolf Magnus Institute for Neurosciences, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Arjen L Sutterland
- Department of Psychiatry, Academic Medical Center , Amsterdam, The Netherlands
| | - Ellen Jobse
- Department of Radiology & Nuclear Medicine, VU University Medical Center , Amsterdam, The Netherlands
| | - Maqsood Yaqub
- Department of Radiology & Nuclear Medicine, VU University Medical Center , Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology & Nuclear Medicine, VU University Medical Center , Amsterdam, The Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Academic Medical Center , Amsterdam, The Netherlands
| | - Jonas Eriksson
- Department of Radiology & Nuclear Medicine, VU University Medical Center , Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center , Amsterdam, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Rudolf Magnus Institute for Neurosciences, University Medical Center Utrecht , Utrecht, The Netherlands
| | - Bart N M van Berckel
- Department of Psychiatry, Rudolf Magnus Institute for Neurosciences, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Schilling LP, Zimmer ER, Shin M, Leuzy A, Pascoal TA, Benedet AL, Borelli WV, Palmini A, Gauthier S, Rosa-Neto P. Imaging Alzheimer's disease pathophysiology with PET. Dement Neuropsychol 2016; 10:79-90. [PMID: 29213438 PMCID: PMC5642398 DOI: 10.1590/s1980-5764-2016dn1002003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) has been reconceptualised as a dynamic pathophysiological process characterized by preclinical, mild cognitive impairment (MCI), and dementia stages. Positron emission tomography (PET) associated with various molecular imaging agents reveals numerous aspects of dementia pathophysiology, such as brain amyloidosis, tau accumulation, neuroreceptor changes, metabolism abnormalities and neuroinflammation in dementia patients. In the context of a growing shift toward presymptomatic early diagnosis and disease-modifying interventions, PET molecular imaging agents provide an unprecedented means of quantifying the AD pathophysiological process, monitoring disease progression, ascertaining whether therapies engage their respective brain molecular targets, as well as quantifying pharmacological responses. In the present study, we highlight the most important contributions of PET in describing brain molecular abnormalities in AD.
Collapse
Affiliation(s)
- Lucas Porcello Schilling
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada.,Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre RS, Brazil
| | - Eduardo R Zimmer
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada.,Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre RS, Brazil.,Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre RS, Brazil
| | - Monica Shin
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada
| | - Antoine Leuzy
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada.,Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada
| | - Andréa L Benedet
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada
| | - Wyllians Vendramini Borelli
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre RS, Brazil
| | - André Palmini
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre RS, Brazil
| | - Serge Gauthier
- Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada
| |
Collapse
|
38
|
Kong X, Luo S, Wu JR, Wu S, De Cecco CN, Schoepf UJ, Spandorfer AJ, Wang CY, Tian Y, Chen HJ, Lu GM, Yang GF, Zhang LJ. (18)F-DPA-714 PET Imaging for Detecting Neuroinflammation in Rats with Chronic Hepatic Encephalopathy. Am J Cancer Res 2016; 6:1220-31. [PMID: 27279913 PMCID: PMC4893647 DOI: 10.7150/thno.15362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/19/2016] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is considered to be the pathogenesis of hepatic encephalopathy (HE), and imaging neuroinflammation is implicated in HE management. 11C-PK11195, a typical translocator protein (TSPO) radiotracer, is used for imaging neuroinflammation. However, it has inherent limitations, such as short half-life and limited availability. The purpose of this study was to demonstrate the efficiency of new generation TSPO radiotracer, 18F-DPA-714, in detecting and monitoring neuroinflammation of chronic HE. This study was divided into two parts. The first part compared 18F-DPA-714 and 11C-PK11195 radiotracers in ten HE induced rats [bile duct ligation (BDL) and fed hyperammonemic diet (HD)] and 6 control rats. The animal subjects underwent dynamic positron emission tomography (PET) during 2-day intervals. The 11C-PK11195 PET study showed no differences in whole brain average percent injected dose per gram (%ID/g) values at all time points (all P>0.05), while the 18F-DPA-714 PET study showed higher whole brain average %ID/g values in HE rats compared to control group rats at 900 s to 3300 s after injecting radiotracer (all P<0.05). The second part of the study evaluated the effectiveness of ibuprofen (IBU) treatment to chronic HE. Forty rats were classified into six groups, including Sham+normal saline (NS), Sham+IBU, BDL+NS, BDL+HD+NS, BDL+IBU, and BDL+HD+IBU groups. 18F-DPA-714 PET was used to image neuroinflammation. Whole and regional brain average %ID/g values, neurological features, inflammatory factors and activated microglia showed better in the IBU groups than in the NS groups (all P<0.05) and no difference was seen in the Sham groups compared to IBU groups (all P>0.05). In conclusion, this study demonstrated that 18F-DPA-714 is an ideal TPSO radiotracer for imaging neuroinflammation and monitoring anti-neuroinflammation treatment efficacy of chronic HE.
Collapse
|
39
|
Calsolaro V, Edison P. Neuroinflammation in Alzheimer's disease: Current evidence and future directions. Alzheimers Dement 2016; 12:719-32. [DOI: 10.1016/j.jalz.2016.02.010] [Citation(s) in RCA: 738] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 02/14/2016] [Accepted: 02/25/2016] [Indexed: 01/19/2023]
Affiliation(s)
| | - Paul Edison
- Neurology Imaging Unit; Imperial College London; UK
| |
Collapse
|
40
|
Politis M, Lahiri N, Niccolini F, Su P, Wu K, Giannetti P, Scahill RI, Turkheimer FE, Tabrizi SJ, Piccini P. Increased central microglial activation associated with peripheral cytokine levels in premanifest Huntington's disease gene carriers. Neurobiol Dis 2015; 83:115-21. [PMID: 26297319 DOI: 10.1016/j.nbd.2015.08.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/19/2015] [Accepted: 08/12/2015] [Indexed: 01/27/2023] Open
Abstract
Previous studies have shown activation of the immune system and altered immune response in Huntington's disease (HD) gene carriers. Here, we hypothesized that peripheral and central immune responses could be concurrent pathophysiological events and represent a global innate immune response to the toxic effects of mutant huntingtin in HD gene carriers. We sought to investigate our hypothesis using [(11)C]PK11195 PET as a translocator protein (TSPO) marker of central microglial activation, together with assessment of peripheral plasma cytokine levels in a cohort of premanifest HD gene carriers who were more than a decade from predicted symptomatic conversion. Data were also compared to those from a group of healthy controls matched for age and gender. We found significantly increased peripheral plasma IL-1β levels in premanifest HD gene carriers compared to the group of normal controls (P=0.018). Premanifest HD gene carriers had increased TSPO levels in cortical, basal ganglia and thalamic brain regions (P<0.001). Increased microglial activation in somatosensory cortex correlated with higher plasma levels of IL-1β (rs=0.87, P=0.013), IL-6 (rs=0.85, P=0.013), IL-8 (rs=0.68, P=0.045) and TNF-α (rs=0.79; P=0.013). Our findings provide first in vivo evidence for an association between peripheral and central immune responses in premanifest HD gene carriers, and provide further supporting evidence for the role of immune dysfunction in the pathogenesis of HD.
Collapse
Affiliation(s)
- Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Nayana Lahiri
- Huntington's Disease Research Group, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Flavia Niccolini
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Paul Su
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Kit Wu
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Paolo Giannetti
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Rachael I Scahill
- Huntington's Disease Research Group, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sarah J Tabrizi
- Huntington's Disease Research Group, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Paola Piccini
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
41
|
Airas L, Rissanen E, Rinne JO. Imaging neuroinflammation in multiple sclerosis using TSPO-PET. Clin Transl Imaging 2015; 3:461-473. [PMID: 27331049 PMCID: PMC4887541 DOI: 10.1007/s40336-015-0147-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022]
Abstract
Conventional MR imaging (MRI) techniques form the cornerstone of multiple sclerosis (MS) diagnostics and clinical follow-up today. MRI is sensitive in demonstrating focal inflammatory lesions and diffuse atrophy. However, especially in progressive MS, there is increasingly widespread diffuse pathology also outside the plaques, often related to microglial activation and neurodegeneration. This cannot be detected using conventional MRI. Positron emission tomography (PET) imaging using 18-kDa translocator protein (TSPO) binding radioligands has recently shown promise as a tool to detect this diffuse pathology in vivo, and for the first time allows one to follow its development longitudinally. It is becoming evident that the more advanced the MS disease is, the more pronounced is microglial activation. PET imaging allows the detection of MS-related pathology at molecular level in vivo. It has potential to enable measurement of effects of new disease-modifying drugs aimed at reducing neurodegeneration and neuroinflammation. PET imaging could thus be included in the design of future clinical trials of progressive MS. There are still technical issues related to the quality of TSPO radioligands and post-processing methodology, and comparison of studies from different PET centres is challenging. In this review, we summarise the main evidence supporting the use of TSPO-PET as a tool to explore the diffuse inflammation in MS.
Collapse
Affiliation(s)
- Laura Airas
- Division of Clinical Neurosciences, Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Rissanen
- Division of Clinical Neurosciences, Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Juha O. Rinne
- Division of Clinical Neurosciences, Turku University Hospital, Kiinamyllynkatu 4-8, 20521 Turku, Finland
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
42
|
|
43
|
|
44
|
The methodology of TSPO imaging with positron emission tomography. Biochem Soc Trans 2015; 43:586-92. [PMID: 26551697 PMCID: PMC4613512 DOI: 10.1042/bst20150058] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Indexed: 11/17/2022]
Abstract
The 18-kDA translocator protein (TSPO) is consistently elevated in activated microglia of the central nervous system (CNS) in response to a variety of insults as well as neurodegenerative and psychiatric conditions. It is therefore a target of interest for molecular strategies aimed at imaging neuroinflammation in vivo. For more than 20 years, positron emission tomography (PET) has allowed the imaging of TSPO density in brain using [11C]-(R)-PK11195, a radiolabelled-specific antagonist of the TSPO that has demonstrated microglial activation in a large number pathological cohorts. The significant clinical interest in brain immunity as a primary or comorbid factor in illness has sparked great interest in the TSPO as a biomarker and a surprising number of second generation TSPO radiotracers have been developed aimed at improving the quality of TSPO imaging through novel radioligands with higher affinity. However, such major investment has not yet resulted in the expected improvement in image quality. We here review the main methodological aspects of TSPO PET imaging with particular attention to TSPO genetics, cellular heterogeneity of TSPO in brain tissue and TSPO distribution in blood and plasma that need to be considered in the quantification of PET data to avoid spurious results as well as ineffective development and use of these radiotracers.
Collapse
|
45
|
Matthews PM, Datta G. Positron-emission tomography molecular imaging of glia and myelin in drug discovery for multiple sclerosis. Expert Opin Drug Discov 2015; 10:557-70. [PMID: 25843125 DOI: 10.1517/17460441.2015.1032240] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Therapies acting on glial cells are being explored for new drug development for multiple sclerosis. Molecular imaging using positron-emission tomography (PET) could address relevant questions in early phase clinical trials. AREAS COVERED In this article, the authors critically review human PET methods that can be applied in specialised centres for imaging activated microglia and astrocytes and myelin. EXPERT OPINION Strengths of PET lie in the molecular selectivity, sensitivity and potential for absolute quantitation. Even now, translocator protein PET radioligands could be used in exploratory studies for interventions targeting brain microglial activation. The clinical and neuropathological meaningfulness of signal from PET radioligands reporting on astrocyte activation through cellular expression of either monoamine oxidase B or the I2-imidazoline receptor or metabolism of [(11)C]acetate can now explored. [(11)C] N-methyl-4,4'-diaminostilbene, a PET marker for myelin, could soon enter first human trials. However, use of any of these PET glial markers demands a well-focused hypothesis and a commitment to validation in the context of use. Enhanced access to these radioligands, standardisation of analyses and lowering the costs of using them are needed if their full promise is to be realised.
Collapse
Affiliation(s)
- Paul M Matthews
- Imperial College London, Division of Brain Sciences, Department of Medicine , E515, Burlington Danes Building, Du Cane Road, W12 0NN London , UK +44 02075942612 ; +44 02075946548 ;
| | | |
Collapse
|
46
|
Su Z, Roncaroli F, Durrenberger PF, Coope DJ, Karabatsou K, Hinz R, Thompson G, Turkheimer FE, Janczar K, Du Plessis D, Brodbelt A, Jackson A, Gerhard A, Herholz K. The 18-kDa mitochondrial translocator protein in human gliomas: an 11C-(R)PK11195 PET imaging and neuropathology study. J Nucl Med 2015; 56:512-7. [PMID: 25722450 DOI: 10.2967/jnumed.114.151621] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/06/2015] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED The 18-kDa mitochondrial translocator protein (TSPO) is upregulated in high-grade astrocytomas and can be imaged by PET using the selective radiotracer (11)C-(R)PK11195. We investigated (11)C-(R)PK11195 binding in human gliomas and its relationship with TSPO expression in tumor tissue and glioma-associated microglia/macrophages (GAMs) within the tumors. METHODS Twenty-two glioma patients underwent dynamic (11)C-(R)PK11195 PET scans and perfusion MR imaging acquisition. Parametric maps of (11)C-(R)PK11195 binding potential (BPND) were generated. Coregistered MR/PET images were used to guide tumor biopsy. The tumor tissue was quantitatively assessed for TSPO expression and infiltration of GAMs using immunohistochemistry and double immunofluorescence. The imaging and histopathologic parameters were compared among different histotypes and grades and correlated with each other. RESULTS BPND of (11)C-(R)PK11195 in high-grade gliomas was significantly higher than in low-grade astrocytomas and low-grade oligodendrogliomas. TSPO in gliomas was expressed predominantly by neoplastic cells, and its expression correlated positively with BPND in the tumors. GAMs only partially contributed to the overall TSPO expression within the tumors, and TSPO expression in GAMs did not correlate with tumor BPND. CONCLUSION PET with (11)C-(R)PK11195 in human gliomas predominantly reflects TSPO expression in tumor cells. It therefore has the potential to effectively stratify patients who are suitable for TSPO-targeted treatment.
Collapse
Affiliation(s)
- Zhangjie Su
- Wolfson Molecular Imaging Center, University of Manchester, Manchester, United Kingdom
| | - Federico Roncaroli
- Division of Brain Science, Imperial College London, London, United Kingdom
| | | | - David J Coope
- Wolfson Molecular Imaging Center, University of Manchester, Manchester, United Kingdom Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | | | - Rainer Hinz
- Wolfson Molecular Imaging Center, University of Manchester, Manchester, United Kingdom
| | - Gerard Thompson
- Wolfson Molecular Imaging Center, University of Manchester, Manchester, United Kingdom
| | - Federico E Turkheimer
- Center for Neuroimaging, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Karolina Janczar
- Division of Brain Science, Imperial College London, London, United Kingdom
| | - Daniel Du Plessis
- Neuropathology Unit, Salford Royal NHS Foundation Trust, Salford, United Kingdom; and
| | - Andrew Brodbelt
- Department of Neurosurgery, The Walton Center NHS Foundation Trust, Liverpool, United Kingdom
| | - Alan Jackson
- Wolfson Molecular Imaging Center, University of Manchester, Manchester, United Kingdom
| | - Alexander Gerhard
- Wolfson Molecular Imaging Center, University of Manchester, Manchester, United Kingdom
| | - Karl Herholz
- Wolfson Molecular Imaging Center, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
47
|
Automated reference region extraction and population-based input function for brain [(11)C]TMSX PET image analyses. J Cereb Blood Flow Metab 2015; 35:157-65. [PMID: 25370856 PMCID: PMC4294409 DOI: 10.1038/jcbfm.2014.194] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023]
Abstract
[(11)C]TMSX ([7-N-methyl-(11)C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine) is a selective adenosine A2A receptor (A2AR) radioligand. In the central nervous system (CNS), A2AR are linked to dopamine D2 receptor function in striatum, but they are also important modulators of inflammation. The golden standard for kinetic modeling of brain [(11)C]TMSX positron emission tomography (PET) is to obtain arterial input function via arterial blood sampling. However, this method is laborious, prone to errors and unpleasant for study subjects. The aim of this work was to evaluate alternative input function acquisition methods for brain [(11)C]TMSX PET imaging. First, a noninvasive, automated method for the extraction of gray matter reference region using supervised clustering (SCgm) was developed. Second, a method for obtaining a population-based arterial input function (PBIF) was implemented. These methods were created using data from 28 study subjects (7 healthy controls, 12 multiple sclerosis patients, and 9 patients with Parkinson's disease). The results with PBIF correlated well with original plasma input, and the SCgm yielded similar results compared with cerebellum as a reference region. The clustering method for extracting reference region and the population-based approach for acquiring input for dynamic [(11)C]TMSX brain PET image analyses appear to be feasible and robust methods, that can be applied in patients with CNS pathology.
Collapse
|
48
|
Mabrouk R, Rusjan PM, Mizrahi R, Jacobs MF, Koshimori Y, Houle S, Ko JH, Strafella AP. Image derived input function for [18F]-FEPPA: application to quantify translocator protein (18 kDa) in the human brain. PLoS One 2014; 9:e115768. [PMID: 25549260 PMCID: PMC4280118 DOI: 10.1371/journal.pone.0115768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/27/2014] [Indexed: 11/18/2022] Open
Abstract
In [18F]-FEPPA positron emission topography (PET) imaging, automatic blood sampling system (ABSS) is currently the gold standard to obtain the blood time activity curve (TAC) required to extract the input function (IF). Here, we compare the performance of two image-based methods of IF extraction to the ABSS gold standard method for the quantification of translocator protein (TSPO) in the human brain. The IFs were obtained from a direct delineation of the internal carotid signal (CS) and a new concept of independent component analysis (ICA). PET scans were obtained from 18 healthy volunteers. The estimated total distribution volume (V(T)) by CS-IF and ICA-IF were compared to the reference V(T) obtained by ABSS-IF in the frontal and temporal cortex, cerebellum, striatum and thalamus regions. The V(T) values estimated using ICA-IF were more reliable than CS-IF for all brain regions. Specifically, the slope regression in the frontal cortex with ICA-IF was r² = 0.91 (p<0.05), and r² = 0.71 (p<0.05) using CS-IF.
Collapse
Affiliation(s)
- Rostom Mabrouk
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- * E-mail:
| | - Pablo M. Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Mark F. Jacobs
- Division of Brain, Imaging and Behaviour, Systems Neuroscience, Toronto Western Research Institute, UHN, University of Toronto, Toronto, Ontario, Canada
| | - Yuko Koshimori
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Division of Brain, Imaging and Behaviour, Systems Neuroscience, Toronto Western Research Institute, UHN, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Antonio P. Strafella
- Research Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
- Morton and Gloria Shulman Movement Disorder Unit, E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Toronto, Canada
- Division of Brain, Imaging and Behaviour, Systems Neuroscience, Toronto Western Research Institute, UHN, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Yoder KK, Territo PR, Hutchins GD, Hannestad J, Morris ED, Gallezot JD, Normandin MD, Cosgrove KP. Comparison of standardized uptake values with volume of distribution for quantitation of [(11)C]PBR28 brain uptake. Nucl Med Biol 2014; 42:305-8. [PMID: 25487553 DOI: 10.1016/j.nucmedbio.2014.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/04/2014] [Accepted: 11/11/2014] [Indexed: 12/11/2022]
Abstract
INTRODUCTION [(11)C]PBR28 is a high-affinity ligand for the Translocator Protein 18 kDa (TSPO), which is considered to be a marker for microglial activation. Volume of distribution (VT) estimated with an arterial plasma input function is the gold standard for quantitation of [(11)C]PBR28 binding. However, arterial sampling is impractical at many PET sites for multiple reasons. Reference region modeling approaches are not ideal for TSPO tracers, as the existence of a true reference region cannot be assumed. Given that it would be desirable to have a non-invasive index of [(11)C]PBR28 binding, we elected to study the utility of the semi-quantitative metric, standardized uptake value (SUV) for use in brain [(11)C]PBR PET studies. The primary goal of this study was to determine the relationship between SUV and VT. METHODS We performed a retrospective analysis of data from sixteen [(11)C]PBR28 PET scans acquired in baboons at baseline and at multiple time points after IV injection of lipopolysaccharide, an endotoxin that transiently induces neuroinflammation. For each scan, data from 14 brain regions of interest were studied. VT was estimated with the Logan plot, using metabolite-corrected input functions. SUV was calculated with data from 30 to 60 minutes after [(11)C]PBR28 injection. RESULTS Within individual PET studies, SUV tended to correlate well with VT. Across studies, the relationship between SUV and VT was variable. CONCLUSIONS From study to study, there was variability in the degree of correlation between [(11)C]PBR28 VT and SUV. There are multiple physiological factors that may contribute to this variance. ADVANCES IN KNOWLEDGE As currently applied, the non-invasive measurement of SUV does not appear to be a reliable outcome variable for [(11)C]PBR28. Additional work is needed to discover the source of the discrepancy in SUV between [(11)C]PBR28 scans. IMPLICATIONS FOR PATIENT CARE There is a need to develop alternatives to arterial plasma input functions for TSPO ligands in order to facilitate multi-center trials.
Collapse
Affiliation(s)
- Karmen K Yoder
- Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis IN; Center for Neuroimaging, Indiana University School of Medicine, Indianapolis IN; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN.
| | - Paul R Territo
- Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis IN
| | - Gary D Hutchins
- Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis IN; Center for Neuroimaging, Indiana University School of Medicine, Indianapolis IN
| | - Jonas Hannestad
- Yale PET Center, Yale University School of Medicine, New Haven CT
| | - Evan D Morris
- Yale PET Center, Yale University School of Medicine, New Haven CT
| | | | - Marc D Normandin
- Center for Advanced Medical Imaging Sciences, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston MA
| | - Kelly P Cosgrove
- Yale PET Center, Yale University School of Medicine, New Haven CT
| |
Collapse
|
50
|
Schilling LP, Leuzy A, Zimmer ER, Gauthier S, Rosa-Neto P. Nonamyloid PET biomarkers and Alzheimer's disease: current and future perspectives. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Recent advances in neurobiology and PET have helped redefine Alzheimer's disease (AD) as a dynamic pathophysiological process, clinically characterized by preclinical, mild cognitive impairment due to AD and dementia stages. Though a majority of PET studies conducted within these populations have to date focused on β-amyloid, various ‘nonamyloid’ radiopharmaceuticals exist for evaluating neurodegeneration, neuroinflammation and perturbations in neurotransmission across the spectrum of AD. Importantly, findings using such tracers have been shown to correlate with various clinical, cognitive and behavioral measures. In the context of a growing shift toward early diagnosis and symptomatic and disease-modifying clinical trials, nonamyloid PET radiotracers will prove of use, and, potentially, contribute to improved therapeutic prospects for AD.
Collapse
Affiliation(s)
- Lucas Porcello Schilling
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
- Alzheimer's Disease Research Unit, McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Antoine Leuzy
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
- Alzheimer's Disease Research Unit, McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
| | - Eduardo Rigon Zimmer
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
- Alzheimer's Disease Research Unit, McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Serge Gauthier
- Alzheimer's Disease Research Unit, McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
- Alzheimer's Disease Research Unit, McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
| |
Collapse
|