1
|
Zhang X, Lin Z, Feng Y, Kang F, Wang J, Lan X. Melanin-Targeting Radiotracers and Their Preclinical, Translational, and Clinical Status: From Past to Future. J Nucl Med 2024; 65:19S-28S. [PMID: 38719238 DOI: 10.2967/jnumed.123.266945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
Melanin is one of the representative biomarkers of malignant melanoma and a potential target for diagnosis and therapy. With advancements in chemistry and radiolabeling technologies, promising strides have been made to synthesize radiolabeled melanin-binding molecules for various applications. We present an overview of melanin-targeted radiolabeled molecules and compare their features reported in preclinical studies. Clinical practice and trials are also discussed to elaborate on the safety and validity of the probes, and expanded applications beyond melanoma are reviewed. Melanin-targeted imaging holds potential value in the diagnosis, staging, and prognostic assessment of melanoma and other applications. Melanin-targeted radionuclide therapy possesses immense potential but requires more clinical validation. Furthermore, an intriguing avenue for future research involves expanding the application scope of melanin-targeted probes and exploring their value.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Zhaoguo Lin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Yuan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| |
Collapse
|
2
|
Lu Q, Long Y, Gai Y, Liu Q, Jiang D, Lan X. [ 177Lu]Lu-PSMA-617 theranostic probe for hepatocellular carcinoma imaging and therapy. Eur J Nucl Med Mol Imaging 2023; 50:2342-2352. [PMID: 36877233 DOI: 10.1007/s00259-023-06155-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/13/2023] [Indexed: 03/07/2023]
Abstract
PURPOSE This study aimed to explore the feasibility of using [177Lu]Lu-prostate-specific membrane antigen (PSMA)-617 and [177Lu]Lu-Evans blue (EB)-PSMA-617 for in vivo radioligand therapy by single-dose administration in a PSMA-positive hepatocellular carcinoma (HCC) xenograft mouse model. METHODS [177Lu]Lu-PSMA-617 and [177Lu]Lu-EB-PSMA-617 were prepared, and labelling efficiency and radiochemical purity were determined. A HepG2 human HCC subcutaneous xenograft mouse model was established. After intravenous injection of [177Lu]Lu-PSMA-617 or [177Lu]Lu-EB-PSMA-617 (37 MBq) into the mouse model, single-photon emission computed tomography/computed tomography (SPECT/CT) was performed. Biodistribution studies were conducted to verify targeting specificity and pharmacokinetics. In the radioligand therapy study, mice were randomized into 4 groups: 37 MBq [177Lu]Lu-PSMA-617, 18.5 MBq [177Lu]Lu-PSMA-617, 7.4 MBq [177Lu]Lu-EB-PSMA-617, and saline (control). A single-dose administration was applied at the beginning of therapy studies. Tumor volume, body weight, and survival were monitored every 2 days. After the end of therapy, mice were euthanized. Tumors were then weighed, and systemic toxicity was evaluated via blood testing and histological examination of healthy organs. RESULTS [177Lu]Lu-PSMA-617 and [177Lu]Lu-EB-PSMA-617 were successfully prepared with high purity and stability. SPECT/CT and biodistribution showed that tumor uptake was higher and persisted longer for [177Lu]Lu-EB-PSMA-617 compared with [177Lu]Lu-PSMA-617. [177Lu]Lu-PSMA-617 was rapidly cleared from the blood, while [177Lu]Lu-EB-PSMA-617 persisted for significantly longer. In radioligand therapy studies, tumor growth was significantly suppressed in the 37 MBq [177Lu]Lu-PSMA-617, 18.5 MBq [177Lu]Lu-PSMA-617, and 7.4 MBq [177Lu]Lu-EB-PSMA-617 groups compared to the saline group. Median survival was 40, 44, 43, and 30 days, respectively. No healthy organ toxicity was observed in safety and tolerability evaluation. CONCLUSIONS Radioligand therapy using [177Lu]Lu-PSMA-617 and [177Lu]Lu-EB-PSMA-617 significantly suppressed tumor growth and prolonged survival time in PSMA-positive HCC xenograft mice without obvious toxicity. These radioligands appear promising for clinical use in humans, and future studies are warranted.
Collapse
Affiliation(s)
- Qiaomiao Lu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, Hubei, 430022, China.
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
3
|
Lepareur N, Ramée B, Mougin-Degraef M, Bourgeois M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1733. [PMID: 37376181 DOI: 10.3390/pharmaceutics15061733] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Targeted radionuclide therapy has become increasingly prominent as a nuclear medicine subspecialty. For many decades, treatment with radionuclides has been mainly restricted to the use of iodine-131 in thyroid disorders. Currently, radiopharmaceuticals, consisting of a radionuclide coupled to a vector that binds to a desired biological target with high specificity, are being developed. The objective is to be as selective as possible at the tumor level, while limiting the dose received at the healthy tissue level. In recent years, a better understanding of molecular mechanisms of cancer, as well as the appearance of innovative targeting agents (antibodies, peptides, and small molecules) and the availability of new radioisotopes, have enabled considerable advances in the field of vectorized internal radiotherapy with a better therapeutic efficacy, radiation safety and personalized treatments. For instance, targeting the tumor microenvironment, instead of the cancer cells, now appears particularly attractive. Several radiopharmaceuticals for therapeutic targeting have shown clinical value in several types of tumors and have been or will soon be approved and authorized for clinical use. Following their clinical and commercial success, research in that domain is particularly growing, with the clinical pipeline appearing as a promising target. This review aims to provide an overview of current research on targeting radionuclide therapy.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, 35000 Rennes, France
- Inserm, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR 1317, Univ Rennes, 35000 Rennes, France
| | - Barthélémy Ramée
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
| | - Marie Mougin-Degraef
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
- Groupement d'Intérêt Public ARRONAX, 1 Rue Aronnax, 44817 Saint Herblain, France
| |
Collapse
|
4
|
Wang T, Xu P, Fang J, Li C, Zeng X, Liu J, Meng L, Zhuang R, Zhang X, Su X, Guo Z. Synthesis and Preclinical Evaluation of a 68Ga-Labeled Pyridine-Based Benzamide Dimer for Malignant Melanoma Imaging. Mol Pharm 2023; 20:1015-1024. [PMID: 36562303 DOI: 10.1021/acs.molpharmaceut.2c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Benzamide (BZA), a small molecule that can freely cross cell membranes and bind to melanin, has served as an effective targeting group for melanoma theranostics. In this study, a novel pyridine-based BZA dimer (denoted as H-2) was labeled with 68Ga ([68Ga]Ga-H-2) for positron emission tomography (PET) imaging of malignant melanomas. [68Ga]Ga-H-2 was obtained with high radiochemical yield (98.0 ± 2.0%) and satisfactory radiochemical purity (>95.0%). The specificity and affinity of [68Ga]Ga-H-2 were confirmed in melanoma B16F10 cells and in vivo PET imaging of multiple tumor models (B16F10 tumors, A375 melanoma, and lung metastases). Monomeric [68Ga]Ga-H-1 was prepared as a control radiotracer to verify the effects of the molecular structure on pharmacokinetics. The values of the lipid-water partition coefficient of [68Ga]Ga-H-2 and [68Ga]Ga-H-1 demonstrated hydrophilicity with log P = -2.37 ± 0.07 and -2.02 ± 0.09, respectively. PET imaging and biodistribution showed a higher uptake of [68Ga]Ga-H-2 in B16F10 primary and metastatic melanomas than that in A375 melanomas. However, the relatively low uptake of monomeric [68Ga]Ga-H-1 in B16F10 tumors and high accumulation in nontarget organs resulted in poor PET imaging quality. This study demonstrates the synthesis and preclinical evaluation of the novel pyridine-based BZA dimer [68Ga]Ga-H-2 and indicates that the dimer tracer has promising applications in malignant melanoma-specific PET imaging because of its high uptake and long-time retention in malignant melanoma.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Nuclear Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China.,PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Pengfei Xu
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Jianyang Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Cijuan Li
- Department of Nuclear Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Xinying Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Jia Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Lingxin Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xinhui Su
- Department of Nuclear Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China.,PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| |
Collapse
|
5
|
Targeting Melanin in Melanoma with Radionuclide Therapy. Int J Mol Sci 2022; 23:ijms23179520. [PMID: 36076924 PMCID: PMC9455397 DOI: 10.3390/ijms23179520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/13/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Nearly 100,000 individuals are expected to be diagnosed with melanoma in the United States in 2022. Treatment options for late-stage metastatic disease up until the 2010s were few and offered only slight improvement to the overall survival. The introduction of B-RAF inhibitors and anti-CTLA4 and anti-PD-1/PD-L1 immunotherapies into standard of care brought measurable increases in the overall survival across all stages of melanoma. Despite the improvement in the survival statistics, patients treated with targeted therapies and immunotherapies are subject to very serious side effects, the development of drug resistance, and the high costs of treatment. This leaves room for the development of novel approaches as well as for the exploration of novel combination therapies for the treatment of metastatic melanoma. One such approach is targeting melanin pigment with radionuclide therapy. Advances in melanin-targeting radionuclide therapy of melanoma can be viewed from two spheres: (1) radioimmunotherapy (RIT) and (2) radiolabeled small molecules. The investigation of mechanisms of the action and efficacy of targeting melanin in melanoma treatment by RIT points to the involvement of the immune system such as complement dependent cytotoxicity. The combination of RIT with immunotherapy presents synergistic killing in mouse melanoma models. The field of radiolabeled small molecules is focused on radioiodinated compounds that have the ability to cross the cellular membranes to access intracellular melanin and can be applied in both therapy and imaging as theranostics. Clinical applications of targeting melanin with radionuclide therapies have produced encouraging results and clinical work is on-going. Continued work on targeting melanin with radionuclide therapy as a monotherapy, or possibly in combination with standard of care agents, has the potential to strengthen the current treatment options for melanoma patients.
Collapse
|
6
|
Thivat E, Rouanet J, Auzeloux P, Sas N, Jouberton E, Levesque S, Billoux T, Mansard S, Molnar I, Chanchou M, Fois G, Maigne L, Chezal JM, Miot-Noirault E, D’Incan M, Durando X, Cachin F. Phase I study of [131I] ICF01012, a targeted radionuclide therapy, in metastatic melanoma: MELRIV-1 protocol. BMC Cancer 2022; 22:417. [PMID: 35428211 PMCID: PMC9013026 DOI: 10.1186/s12885-022-09495-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/06/2022] [Indexed: 11/12/2022] Open
Abstract
Background Benzamide-based radioligands targeting melanin were first developed for imaging melanoma and then for therapeutic purpose with targeted radionuclide therapy (TRT). [131I]ICF01012 presents a highly favorable pharmacokinetics profile in vivo for therapy. Tumour growth reduction and increase survival have been established in preclinical models of melanoma. According the these preclinical results, we initiate a first-in-human study aimed to determine the recommended dose of [131I]ICF01012 to administer for the treatment of patients with pigmented metastatic melanoma. Methods The MELRIV-1 trial is an open-label, multicentric, dose-escalation phase I trial. The study is divided in 2 steps, a selection part with an IV injection of low activity of [131I]ICF01012 (185 MBq at D0) to select patients who might benefit from [131I]ICF01012 TRT in therapeutic part, i.e. patient presenting at least one tumour lesion with [131I]ICF01012 uptake and an acceptable personalized dosimetry to critical organs (liver, kidney, lung and retina). According to dose escalation scheme driven by a Continual Reassessment Method (CRM) design, a single therapeutic injection of 800 MBq/m2, or 1600 MBq/m2, or 2700 MBq/m2 or 4000 MBq/m2 of [131I]ICF01012 will be administered at D11 (± 4 days). The primary endpoint is the recommended therapeutic dose of [131I]ICF01012, with DLT defined as any grade 3-4 NCI-CT toxicity during the 6 weeks following therapeutic dose. Safety, pharmacokinetic, biodistribution (using planar whole body and SPECT-CT acquisitions), sensitivity / specificity of [131I]ICF01012, and therapeutic efficacy will be assessed as secondary objectives. Patients who received therapeutic injection will be followed until 3 months after TRT. Since 6 to 18 patients are needed for the therapeutic part, up to 36 patients will be enrolled in the selection part. Discussion This study is a first-in-human trial evaluating the [131I]ICF01012 TRT in metastatic malignant melanomas with a diagnostic dose of the [131I]ICF01012 to select the patients who may benefit from a therapeutic dose of [131I]ICF01012, with at least one tumor lesion with [131I]ICF01012 uptake and an acceptable AD to healthy organ. Trial registration Clinicaltrials.gov: NCT03784625. Registered on December 24, 2018. Identifier in French National Agency for the Safety of Medicines and Health Products (ANSM): N°EudraCT 2016-002444-17.
Collapse
|
7
|
Abstract
Abstract
Theragnostics in nuclear medicine constitute an essential element of precision medicine. This notion integrates radionuclide diagnostics procedures and radionuclide therapies using appropriate radiopharmaceutics and treatment targeting specific biological pathways or receptors. The term theragnostics should also include another aspect of treatment: not only whether a given radioisotopic drug can be used, but also in what dose it ought to be used. Theragnostic procedures also allow predicting the effects of treatment based on the assessment of specific receptor density or the metabolic profile of neoplastic cells. The future of theragnostics depends not only on the use of new radiopharmaceuticals, but also on new gamma cameras. Modern theragnostics already require unambiguous pharmacokinetic and pharmacodynamic measurements based on absolute values. Only dynamic studies provide such a possibility. The introduction of the dynamic total-body PET-CT will enable this type of measurements characterizing metabolic processes and receptor expression on the basis of Patlak plot.
Collapse
Affiliation(s)
- Leszek Królicki
- Department of Nuclear Medicine , Medical University of Warsaw , Warszawa , Poland
| | - Jolanta Kunikowska
- Department of Nuclear Medicine , Medical University of Warsaw , Warszawa , Poland
| |
Collapse
|
8
|
Akil H, Quintana M, Raymond JH, Billoux T, Benboubker V, Besse S, Auzeloux P, Delmas V, Petit V, Larue L, D’Incan M, Degoul F, Rouanet J. Efficacy of Targeted Radionuclide Therapy Using [ 131I]ICF01012 in 3D Pigmented BRAF- and NRAS-Mutant Melanoma Models and In Vivo NRAS-Mutant Melanoma. Cancers (Basel) 2021; 13:cancers13061421. [PMID: 33804655 PMCID: PMC8003594 DOI: 10.3390/cancers13061421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Targeted radionuclide therapy (TRT) aims to selectively deliver radioactive molecules to tumor cells. For this purpose, we deliver iodine-131 ([131I]) to melanoma cells by using our laboratory-developed melanin specific radiotracer, the ICF01012. Approximately 50% and 20%–30% of human melanomas have activating mutation in BRAF or NRAS genes, respectively. These mutations lead to a constitutive activation of the MAPK/ERK pathway, which is known to be involved in tumor cells’ radioresistance. In this work, we showed using 3D in vitro tumor models, an additive efficiency of combining [131I]ICF01012-TRT and MAPK/ERK inhibitors in BRAF- and NRAS-mutant melanoma cells. In mice bearing NRASQ61K-mutated melanoma, TRT induced an impressive decrease in tumor growth, as well as a highly extended survival. Additionally, we showed that TRT reduces the metastatic capacity of melanoma, especially through lymph-node dissemination. These results are therefore of great interest, especially for patients with NRAS-mutant metastatic melanoma who currently lack specific efficient therapies. Abstract Purpose: To assess the efficiency of targeted radionuclide therapy (TRT), alone or in combination with MEK inhibitors (MEKi), in melanomas harboring constitutive MAPK/ERK activation responsible for tumor radioresistance. Methods: For TRT, we used a melanin radiotracer ([131I]ICF01012) currently in phase 1 clinical trial (NCT03784625). TRT alone or combined with MEKi was evaluated in three-dimensional melanoma spheroid models of human BRAFV600E SK-MEL-3, murine NRASQ61K 1007, and WT B16F10 melanomas. TRT in vivo biodistribution, dosimetry, efficiency, and molecular mechanisms were studied using the C57BL/6J-NRASQ61K 1007 syngeneic model. Results: TRT cooperated with MEKi to increase apoptosis in both BRAF- and NRAS-mutant spheroids. NRASQ61K spheroids were highly radiosensitive towards [131I]ICF01012-TRT. In mice bearing NRASQ61K 1007 melanoma, [131I]ICF01012 induced a significant extended survival (92 vs. 44 days, p < 0.0001), associated with a 93-Gy tumor deposit, and reduced lymph-node metastases. Comparative transcriptomic analyses confirmed a decrease in mitosis, proliferation, and metastasis signatures in TRT-treated vs. control tumors and suggest that TRT acts through an increase in oxidation and inflammation and P53 activation. Conclusion: Our data suggest that [131I]ICF01012-TRT and MEKi combination could be of benefit for advanced pigmented BRAF-mutant melanoma care and that [131I]ICF01012 alone could constitute a new potential NRAS-mutant melanoma treatment.
Collapse
Affiliation(s)
- Hussein Akil
- INSERM U1240, University of Clermont Auvergne, 58 rue Montalembert, 63000 Clermont-Ferrand, France; (H.A.); (M.Q.); (V.B.); (S.B.); (P.A.); (M.D.); (F.D.)
- CNRS 7276, INSERM U1262, 2 rue du Pr Descottes, 87025 Limoges, France
| | - Mercedes Quintana
- INSERM U1240, University of Clermont Auvergne, 58 rue Montalembert, 63000 Clermont-Ferrand, France; (H.A.); (M.Q.); (V.B.); (S.B.); (P.A.); (M.D.); (F.D.)
| | - Jérémy H. Raymond
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Campus Universitaire, 91898 Orsay, France; (J.H.R.); (V.D.); (V.P.); (L.L.)
- Campus Universitaire, University Paris-Sud, University Paris-Saclay, CNRS UMR3347, 91898 Orsay, France
- Equipes Labellisées-Ligue Contre le Cancer, Campus Universitaire, 91898 Orsay, France
| | - Tommy Billoux
- Cirmen, Centre Jean Perrin, 58 rue Montalembert, 63000 Clermont-Ferrand, France;
| | - Valentin Benboubker
- INSERM U1240, University of Clermont Auvergne, 58 rue Montalembert, 63000 Clermont-Ferrand, France; (H.A.); (M.Q.); (V.B.); (S.B.); (P.A.); (M.D.); (F.D.)
| | - Sophie Besse
- INSERM U1240, University of Clermont Auvergne, 58 rue Montalembert, 63000 Clermont-Ferrand, France; (H.A.); (M.Q.); (V.B.); (S.B.); (P.A.); (M.D.); (F.D.)
| | - Philippe Auzeloux
- INSERM U1240, University of Clermont Auvergne, 58 rue Montalembert, 63000 Clermont-Ferrand, France; (H.A.); (M.Q.); (V.B.); (S.B.); (P.A.); (M.D.); (F.D.)
| | - Véronique Delmas
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Campus Universitaire, 91898 Orsay, France; (J.H.R.); (V.D.); (V.P.); (L.L.)
- Campus Universitaire, University Paris-Sud, University Paris-Saclay, CNRS UMR3347, 91898 Orsay, France
- Equipes Labellisées-Ligue Contre le Cancer, Campus Universitaire, 91898 Orsay, France
| | - Valérie Petit
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Campus Universitaire, 91898 Orsay, France; (J.H.R.); (V.D.); (V.P.); (L.L.)
- Campus Universitaire, University Paris-Sud, University Paris-Saclay, CNRS UMR3347, 91898 Orsay, France
- Equipes Labellisées-Ligue Contre le Cancer, Campus Universitaire, 91898 Orsay, France
| | - Lionel Larue
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Campus Universitaire, 91898 Orsay, France; (J.H.R.); (V.D.); (V.P.); (L.L.)
- Campus Universitaire, University Paris-Sud, University Paris-Saclay, CNRS UMR3347, 91898 Orsay, France
- Equipes Labellisées-Ligue Contre le Cancer, Campus Universitaire, 91898 Orsay, France
| | - Michel D’Incan
- INSERM U1240, University of Clermont Auvergne, 58 rue Montalembert, 63000 Clermont-Ferrand, France; (H.A.); (M.Q.); (V.B.); (S.B.); (P.A.); (M.D.); (F.D.)
- Department of Dermatology and Oncodermatology, CHU Estaing, 1 Place Aubrac, 63000 Clermont-Ferrand, France
| | - Françoise Degoul
- INSERM U1240, University of Clermont Auvergne, 58 rue Montalembert, 63000 Clermont-Ferrand, France; (H.A.); (M.Q.); (V.B.); (S.B.); (P.A.); (M.D.); (F.D.)
- CNRS 6293 INSERM U1103, University of Clermont Auvergne, 28, Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Jacques Rouanet
- INSERM U1240, University of Clermont Auvergne, 58 rue Montalembert, 63000 Clermont-Ferrand, France; (H.A.); (M.Q.); (V.B.); (S.B.); (P.A.); (M.D.); (F.D.)
- Department of Dermatology and Oncodermatology, CHU Estaing, 1 Place Aubrac, 63000 Clermont-Ferrand, France
- Correspondence:
| |
Collapse
|
9
|
Rouanet J, Quintana M, Auzeloux P, Cachin F, Degoul F. Benzamide derivative radiotracers targeting melanin for melanoma imaging and therapy: Preclinical/clinical development and combination with other treatments. Pharmacol Ther 2021; 224:107829. [PMID: 33662452 DOI: 10.1016/j.pharmthera.2021.107829] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/16/2022]
Abstract
Cutaneous melanoma arises from proliferating melanocytes, cells specialized in the production of melanin. This property means melanin can be considered as a target for monitoring melanoma patients using nuclear imaging or targeted radionuclide therapy (TRT). Since the 1970s, many researchers have shown that specific molecules can interfere with melanin. This paper reviews some such molecules: benzamide structures improved to increase their pharmacokinetics for imaging or TRT. We first describe the characteristics and biosynthesis of melanin, and the main features of melanin tracers. The second part summarizes the preclinical and corresponding clinical studies on imaging. The last section presents TRT results from ongoing protocols and discusses combinations with other therapies as an opportunity for melanoma non-responders or patients resistant to treatments.
Collapse
Affiliation(s)
- Jacques Rouanet
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France; Department of Dermatology and Oncodermatology, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63000 Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand F-63011, France.
| | - Mercedes Quintana
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| | - Philippe Auzeloux
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| | - Florent Cachin
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France; Centre Jean Perrin, Clermont-Ferrand F-63011, France.
| | - Françoise Degoul
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| |
Collapse
|
10
|
Gallyamov M, Meyrick D, Barley J, Lenzo N. Renal outcomes of radioligand therapy: experience of 177lutetium-prostate-specific membrane antigen ligand therapy in metastatic castrate-resistant prostate cancer. Clin Kidney J 2020; 13:1049-1055. [PMID: 33391748 PMCID: PMC7769531 DOI: 10.1093/ckj/sfz101] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/09/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Radioligand therapy (RLT) with 177lutetium (Lu)-labelled prostate-specific membrane antigen (PSMA) ligands has been increasingly used in recent years for therapy of metastatic castrate-resistant prostate cancer (mCRPC). Studies have revealed that 177Lu-PSMA ligand therapy is well tolerated and appears to cause fewer adverse effects than current standard of care third-line treatments. Notably, since 177Lu-PSMA agents are predominantly excreted by kidneys, there are concerns relating to their potential nephrotoxicity and renal outcomes. Although many recent studies have focused on mostly nephrotoxic adverse reactions at up to 3-month follow-up, assessment of renal outcomes after 177Lu-PSMA RLT in longer term follow-up is lacking. The aim of this study was to assess the influence of 177Lu-PSMA RLT on renal function in patients treated for mCRPC at >3 months post-therapy. METHODS In this retrospective cohort study, we assessed 195 men with progressive mCRPC who had received therapy with 177Lu-PSMA as second- or third-line after standard therapeutic interventions. Patients underwent investigations with 68Ga-PSMA-ligand positron emission tomography/computed tomography scan to confirm PSMA-expressing mCRPC. Eligible patients were required to have estimated glomerular filtration rate (eGFR) >30 mL/min/1.73 m2, an Eastern Cooperative Oncology Group performance status score <3, no severe liver injury (as characterized by liver function tests) and no significant bone marrow dysfunction. Enrolled patients received two to five cycles of intravenous 177Lu-PSMA I&T or 177Lu-PSMA-617, at 6- to 10-week intervals. Renal outcomes were assessed according to Kidney Disease: Improving Global Outcomes guidelines as incidence of acute kidney injury (AKI), acute kidney disease (AKD) or chronic kidney disease (CKD). All assessments and tests were undertaken between therapy cycles and at follow-up of at least 3 months. RESULTS Of 195 assessed men with mCRPC, 110 patients aged [mean ± SD (range)] 70 ± 8 (53-92) years were recruited into this study with median follow-up of 8 (interquartile range 5-12, minimum 3, maximum 29) months and mean baseline eGFR 81 ± 13 mL/min/1.73 m2. Pre-existing CKD was identified in 12% of patients. None of the patients experienced an AKI during RLT. Two AKD and three CKD G3a cases were identified. Analysis of possible impact of prior CKD and major risk factors (hypertension, diabetes, history of AKI) on incidence of AKD or CKD demonstrated relative risk 4.2 [95% confidence interval (CI) 1.23-14.29] and 1.91 (95% CI 1.14-3.12), respectively. However, Fisher's exact test did not reveal statistical significance of the impact of both conditions. CONCLUSIONS Current Lu-PSMA RLT protocols appear to carry a mild nephrotoxic risk with the rate of about 4.5%. Prior CKD is potentially the most significant risk factor of post-RLT renal dysfunction.
Collapse
Affiliation(s)
- Marat Gallyamov
- GenesisCare Theranostics, East Fremantle, Western Australia, Australia
| | - Danielle Meyrick
- GenesisCare Theranostics, East Fremantle, Western Australia, Australia
| | - Jerome Barley
- GenesisCare Theranostics, East Fremantle, Western Australia, Australia
| | - Nat Lenzo
- GenesisCare Theranostics, East Fremantle, Western Australia, Australia
- School of Medicine, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
11
|
Catalano M, Bassi G, Rotondi G, Khettabi L, Dichiara M, Murer P, Scheuermann J, Soler-Lopez M, Neri D. Discovery, affinity maturation and multimerization of small molecule ligands against human tyrosinase and tyrosinase-related protein 1. RSC Med Chem 2020; 12:363-369. [PMID: 34041485 PMCID: PMC8130610 DOI: 10.1039/d0md00310g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human tyrosinase (hTYR) and tyrosinase-related protein 1 (hTYRP1) are closely-related enzymes involved in the synthesis of melanin, which are selectively expressed in melanocytes and, in a pathological context, in melanoma lesions. We used a previously described tyrosinase inhibitor (Thiamidol™) and DNA-encoded library technology for the discovery of novel hTYR and hTYRP1 ligands, that could be used as vehicles for melanoma targeting. Performing de novo selections with DNA-encoded libraries, we discovered novel ligands capable of binding to both hTYR and hTYRP1. More potent ligands were obtained by multimerizing Thiamidol™ moieties, leading to homotetrameric structures that avidly bound to melanoma cells, as revealed by flow cytometry. These findings suggest that melanoma lesions may, in the future, be targeted not only by monoclonal antibody reagents but also by small organic ligands. A series of different strategies were oriented toward the discovery of small molecule ligands binding to the human version of tyrosinase (hTYR) and tyrosinase-related protein 1 (hTYRP1), which may represent the basis for novel treatments of melanoma.![]()
Collapse
Affiliation(s)
- Marco Catalano
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Giulia Rotondi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland .,Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Lyna Khettabi
- Structural Biology Group, European Synchrotron Radiation Facility 71 Avenue des Martyrs 38000 Grenoble France.,CNRS, DCM, Université Grenoble Alpes 38000 Grenoble France
| | - Maria Dichiara
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Patrizia Murer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility 71 Avenue des Martyrs 38000 Grenoble France
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| |
Collapse
|
12
|
Tan HY, Yeong CH, Wong YH, McKenzie M, Kasbollah A, Md Shah MN, Perkins AC. Neutron-activated theranostic radionuclides for nuclear medicine. Nucl Med Biol 2020; 90-91:55-68. [PMID: 33039974 DOI: 10.1016/j.nucmedbio.2020.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Theranostics in nuclear medicine refers to personalized patient management that involves targeted therapy and diagnostic imaging using a single or combination of radionuclide (s). The radionuclides emit both alpha (α) or beta (β-) particles and gamma (γ) rays which possess therapeutic and diagnostic capabilities, respectively. However, the production of these radionuclides often faces difficulties due to high cost, complexity of preparation methods and that the products are often sourced far from the healthcare facilities, hence losing activity due to radioactive decay during transportation. Subject to the availability of a nuclear reactor within an accessible distance from healthcare facilities, neutron activation is the most practical and cost-effective route to produce radionuclides suitable for theranostic purposes. Holmium-166 (166Ho), Lutetium-177 (177Lu), Rhenium-186 (186Re), Rhenium-188 (188Re) and Samarium-153 (153Sm) are some of the most promising neutron-activated radionuclides that are currently in clinical practice and undergoing clinical research for theranostic applications. The aim of this paper is to review the physical characteristics, current clinical applications and future prospects of these neutron activated radionuclides in theranostics. The production, physical properties, validated clinical applications and clinical studies for each neutron-activated radionuclide suitable for theranostic use in nuclear medicine are reviewed in this paper.
Collapse
Affiliation(s)
- Hun Yee Tan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Yin How Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Molly McKenzie
- School of Life Sciences, University of Dundee, DD1 4HN, United Kingdom
| | - Azahari Kasbollah
- Medical Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia
| | - Mohamad Nazri Md Shah
- Department of Biomedical Imaging, University of Malaya Medical Centre, 59100 Kuala Lumpur, Malaysia
| | - Alan Christopher Perkins
- Radiological Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
13
|
Zhou H, Zhang Q, Cheng Y, Xiang L, Shen G, Wu X, Cai H, Li D, Zhu H, Zhang R, Li L, Cheng Z. 64Cu-labeled melanin nanoparticles for PET/CT and radionuclide therapy of tumor. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102248. [PMID: 32574686 DOI: 10.1016/j.nano.2020.102248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Melanin is a group of natural pigments found in living organism. It can be used for positron emission tomography (PET) imaging due to its inherent chelating ability to radioactive cupric ion. This study was to prepare 64Cu-labeled PEGylated melanin nanoparticles (64Cu-PEG-MNPs), and to further take advantage of the enhanced permeability and retention (EPR) effect of radiolabeled nanoparticles to realize the integration of tumor diagnosis and treatment. We successfully synthesized PEG-MNPs. Saline and serum stability experiments demonstrated good stability. PET/CT showed high tumor aggregation. Moreover, 64Cu-PEG-MNPs resulted in a therapeutic effect on the A431 tumor-bearing mice in the treatment group. The pathological results further confirmed that the therapeutic doses of 64Cu-PEG-MNPs cause pathological changes of tumor tissues while showing minimal toxicity to normal tissues. Our data successfully demonstrate the good imaging performance of 64Cu-PEG-MNPs on A431 tumors and further proved its therapeutic effect, highlighting a great potential in targeted radionuclide therapy.
Collapse
Affiliation(s)
- Huijun Zhou
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Qing Zhang
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA, USA; Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yan Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Lili Xiang
- Department of Gastrointestinal Surgery, West China Forth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guohua Shen
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huawei Cai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Daifeng Li
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA, USA; Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Zhu
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ruiping Zhang
- The Affiliated Shanxi Bethune Hospital of Shanxi Medical University; The Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China.
| | - Lin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
14
|
Zhang X, Chen F, Turker MZ, Ma K, Zanzonico P, Gallazzi F, Shah MA, Prater AR, Wiesner U, Bradbury MS, McDevitt MR, Quinn TP. Targeted melanoma radiotherapy using ultrasmall 177Lu-labeled α-melanocyte stimulating hormone-functionalized core-shell silica nanoparticles. Biomaterials 2020; 241:119858. [PMID: 32120314 DOI: 10.1016/j.biomaterials.2020.119858] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
Lutetium-177 (177Lu) radiolabeled ultrasmall (~6 nm dia.) fluorescent core-shell silica nanoparticles (Cornell prime dots or C' dots) were developed for improving efficacy of targeted radiotherapy in melanoma models. PEGylated C' dots were surface engineered to display 10-15 alpha melanocyte stimulating hormone (αMSH) cyclic peptide analogs for targeting the melanocortin-1 receptor (MC1-R) over-expressed on melanoma tumor cells. The 177Lu-DOTA-αMSH-PEG-C' dot product was radiochemically stable, biologically active, and exhibited high affinity cellular binding properties and internalization. Selective tumor uptake and favorable biodistribution properties were also demonstrated, in addition to bulk renal clearance, in syngeneic B16F10 and human M21 xenografted models. Prolonged survival was observed in the treated cohorts relative to controls. Dosimetric analysis showed no excessively high absorbed dose among normal organs. Correlative histopathology of ex vivo treated tumor specimens revealed expected necrotic changes; no acute pathologic findings were noted in the liver or kidneys. Collectively, these results demonstrated that 177Lu-DOTA-αMSH-PEG-C' dot targeted melanoma therapy overcame the unfavorable biological properties and dose-limiting toxicities associated with existing mono-molecular treatments. The unique and tunable surface chemistries of this targeted ultrasmall radiotherapeutic, coupled with its favorable pharmacokinetic properties, substantially improved treatment efficacy and demonstrated a clear survival benefit in melanoma models, which supports its further clinical translation.
Collapse
Affiliation(s)
- Xiuli Zhang
- Harry S. Truman Veterans' Hospital, 800 Hospital Dr., Columbia, MO 65201, United States; Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
| | - Feng Chen
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, United States
| | - Melik Z Turker
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Kai Ma
- Elucida Oncology, New York, NY 10016, United States
| | - Pat Zanzonico
- Department of Medical Physics, Sloan Kettering Institute for Cancer Research, New York, NY 10065, United States
| | - Fabio Gallazzi
- Department of Chemistry and Research Core Facilities, University of Missouri, Columbia, MO 65211, United States
| | - Manankumar A Shah
- Harry S. Truman Veterans' Hospital, 800 Hospital Dr., Columbia, MO 65201, United States; Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
| | - Austin R Prater
- Harry S. Truman Veterans' Hospital, 800 Hospital Dr., Columbia, MO 65201, United States; Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
| | - Ulrich Wiesner
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Michelle S Bradbury
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, United States; Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, United States
| | - Michael R McDevitt
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, United States
| | - Thomas P Quinn
- Harry S. Truman Veterans' Hospital, 800 Hospital Dr., Columbia, MO 65201, United States; Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
15
|
Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch HJ, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Velikyan I, Eriksson O. Advances in GLP-1 receptor targeting radiolabeled agent development and prospective of theranostics. Theranostics 2020; 10:437-461. [PMID: 31903131 PMCID: PMC6929622 DOI: 10.7150/thno.38366] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
In the light of theranostics/radiotheranostics and prospective of personalized medicine in diabetes and oncology, this review presents prior and current advances in the development of radiolabeled imaging and radiotherapeutic exendin-based agents targeting glucagon-like peptide-1 receptor. The review covers chemistry, preclinical, and clinical evaluation. Such critical aspects as structure-activity-relationship, stability, physiological potency, kidney uptake, and dosimetry are discussed.
Collapse
Affiliation(s)
- Irina Velikyan
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
An update on the unparalleled impact of FDG-PET imaging on the day-to-day practice of medicine with emphasis on management of infectious/inflammatory disorders. Eur J Nucl Med Mol Imaging 2019; 47:18-27. [PMID: 31482427 DOI: 10.1007/s00259-019-04490-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
|
18
|
Akil H, Rouanet J, Viallard C, Besse S, Auzeloux P, Chezal JM, Miot-Noirault E, Quintana M, Degoul F. Targeted Radionuclide Therapy Decreases Melanoma Lung Invasion by Modifying Epithelial-Mesenchymal Transition-Like Mechanisms. Transl Oncol 2019; 12:1442-1452. [PMID: 31421458 PMCID: PMC6704444 DOI: 10.1016/j.tranon.2019.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Melanin-radiolabeled molecules for targeted radionuclide therapy (TRT) provide a promising approach for the treatment of pigmented melanoma. Among these radiolabeled molecules, the iodinated melanin-specific binding molecule ([131I]ICF01012) has shown a significant antitumor effect on metastatic melanoma preclinical models. We report herein that [131I]ICF01012 decreases the epithelial-mesenshymal transition-like (EMT-like) markers in both in vivo and in vitro three-dimensional (3D) melanoma spheroid models. [131I]ICF01012 spheroids irradiation resulted in reduced clonogenic capacity of all pigmented spheroids accompanied by increased protein expression levels of phosphorylated H2A.X, p53 and its downstream target p21. In addition, [131I]ICF01012 treatment leads to a significant increase of cell pigmentation as demonstrated in SK-MEL3 human xenograft model. We also showed that [131I]ICF01012 decreases the size and the number of melanoma lung colonies in the syngeneic murine B16BL6 in vivo model assessing its potentiality to kill circulating tumor cells. Taken together, these results indicate that [131I]ICF01012 reduces metastatic capacity of melanoma cells presumably through EMT-like reduction and cell differentiation induction.
Collapse
Affiliation(s)
- Hussein Akil
- UMR 1240 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France.
| | - Jacques Rouanet
- UMR 1240 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France; Department of Dermatology and Oncodermatology, CHU Estaing, Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand, France.
| | - Claire Viallard
- UMR 1240 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France.
| | - Sophie Besse
- UMR 1240 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France.
| | - Philippe Auzeloux
- UMR 1240 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France.
| | - Jean-Michel Chezal
- UMR 1240 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France.
| | | | - Mercedes Quintana
- UMR 1240 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France.
| | - Françoise Degoul
- UMR 1240 INSERM, University of Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
19
|
Xu X, Yuan L, Gai Y, Liu Q, Yin L, Jiang Y, Wang Y, Zhang Y, Lan X. Targeted radiotherapy of pigmented melanoma with 131I-5-IPN. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:306. [PMID: 30537980 PMCID: PMC6288928 DOI: 10.1186/s13046-018-0983-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/26/2018] [Indexed: 12/25/2022]
Abstract
Purpose There has been no satisfactory treatment for advanced melanoma until now. Targeted radionuclide therapy (TRNT) may be a promising option for this heretofore lethal disease. Our goal in this study was to synthesize 131I-N-(2-(diethylamino)ethyl)-5-(iodo-131I)picolinamide (131I-5-IPN) and evaluate its therapeutic ability and toxicity as a radioiodinated melanin-targeting therapeutic agent. Methods The trimethylstannyl precursor was synthesized and labeled with 131I to obtain 131I-5-IPN. The pharmacokinetics of 131I-5-IPN was evaluated through SPECT imaging, and its biodistribution was assessed in B16F10 tumor models and in A375 human-to-mouse xenografts. For TRNT, B16F10 melanoma-bearing mice were randomly allocated to receive one of five treatments (n = 10 per group): group A (the control group) received 0.1 mL saline; group B was treated with an equimolar dose of unlabeled precursor; group C received 18.5 MBq of [131I]NaI; group D and E received one or two dose of 18.5 MBq 131I-5-IPN, respectively. TRNT efficacy was evaluated through tumor volume measurement and biology study. The toxic effects of 131I-5-IPN on vital organs were assessed with laboratory tests and histopathological examination. The radiation absorbed dose to vital organs was estimated based on biodistribution data. Results 131I-5-IPN was successfully prepared with a good radiochemistry yield (55% ± 5%, n = 5), and it exhibited a high uptake ratio in melanin-positive B16F10 cells which indicating high specificity. SPECT imaging and biodistribution of 131I-5-IPN showed lasting high tumor uptake in pigmented B16F10 models for 72 h. TRNT with 131I-5-IPN led to a significant anti-tumor effect and Groups D and E displayed an extended median survival compared to groups A, B, and C. The highest absorbed dose to a vital organ was 0.25 mSv/MBq to the liver; no obvious injury to the liver or kidneys was observed during treatment. 131I-5-IPN treatment was associated with reduction of expression of proliferating cell nuclear antigen (PCNA) and Ki67 and cell cycle blockage in G2/M phase in tumor tissues. Decreased vascular endothelial growth factor and CD31 expression, implying reduced tumor growth, was noted after TRNT. Conclusion We successfully synthesized 131I-5-IPN, which presents long-time retention in melanotic melanoma. TRNT with 131I-5-IPN has the potential to be a safe and effective strategy for management of pigmented melanoma.
Collapse
Affiliation(s)
- Xiaodong Xu
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lujie Yuan
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lianglan Yin
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yaqun Jiang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yichun Wang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China.,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, Hubei Province, China. .,Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
20
|
Al-Salahi R, Moustapha ME, Abuelizz HA, Alharthi AI, Alburikan KA, Ibrahim IT, Marzouk M, Motaleb MA. Radioiodination and biodistribution of newly synthesized 3-benzyl-2-([3-methoxybenzyl]thio)benzo[ g]quinazolin-4-(3 H)-one in tumor bearing mice. Saudi Pharm J 2018; 26:1120-1126. [PMID: 30532632 PMCID: PMC6260473 DOI: 10.1016/j.jsps.2018.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022] Open
Abstract
3-Benzyl-2-((3-methoxybenzyl)thio)benzo[g]quinazolin-4(3H)-one was previously synthesized and proved by physicochemical analyses (HRMS, 1H and 13C NMR). The target compound was examined for its radioactivity and the results showed that benzo[g]quinazoline was successfully labeled with radioactive iodine using NBS via an electrophilic substitution reaction. The reaction parameters that affected the labeling yield such as concentration, pH and time were studied to optimize the labeling conditions. The radiochemical yield was 91.2 ± 1.22% and the in vitro studies showed that the target compound was stable for up to 24 h. The thyroid was among the other organs in which the uptake of 125I-benzoquinazoline has increased significantly over the time up to 4.1%. The tumor uptake was 6.95%. Radiochemical and metabolic stability of the benzoquinazoline in vivo/in vitro and biodistribution studies provide some insights about the requirements for developing more potent radiopharmaceutical for targeting the tumor cells.
Collapse
Affiliation(s)
- Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Moustapha E. Moustapha
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box 83, Al Kharj 11942, Saudi Arabia
| | - Hatem A. Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I. Alharthi
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box 83, Al Kharj 11942, Saudi Arabia
| | - Khalid A. Alburikan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ismail T. Ibrahim
- Labeled Compound Department, Hot Laboratories Centre, Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| | - Mohamed Marzouk
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box 83, Al Kharj 11942, Saudi Arabia
- Chemistry of Natural Products Group, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Mohamed A. Motaleb
- Labeled Compound Department, Hot Laboratories Centre, Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| |
Collapse
|
21
|
Rahbar K, Afshar-Oromieh A, Jadvar H, Ahmadzadehfar H. PSMA Theranostics: Current Status and Future Directions. Mol Imaging 2018; 17:1536012118776068. [PMID: 29873291 PMCID: PMC5992796 DOI: 10.1177/1536012118776068] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) is a promising target for imaging diagnostics and targeted radionuclide therapy (theranostics) of prostate cancer and its metastases. There is increasing evidence of encouraging response rates and a low toxicity profile of radioligand therapy (RLT) of metastatic castration-resistant prostate cancer using 177Lu-labeled PSMA ligands. In this article, we review the current status of diagnostics and therapy using radiolabeled PSMA ligands. We also suggest protocols for patient selection criteria and conduct of PSMA-based RLT. Challenges and opportunities of PSMA theranostics are discussed.
Collapse
Affiliation(s)
- Kambiz Rahbar
- 1 Department of Nuclear Medicine, University Hospital Muenster, Muenster, Germany
| | | | - Hossein Jadvar
- 3 Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
22
|
Jouberton E, Perrot Y, Dirat B, Billoux T, Auzeloux P, Cachin F, Chezal J, Filaire M, Labarre P, Miot‐Noirault E, Millardet C, Valla C, Vidal A, Degoul F, Maigne L. Radiation dosimetry of [
131
I]ICF01012 in rabbits: Application to targeted radionuclide therapy for human melanoma treatment. Med Phys 2018; 45:5251-5262. [DOI: 10.1002/mp.13165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/24/2018] [Accepted: 08/06/2018] [Indexed: 01/28/2023] Open
Affiliation(s)
- Elodie Jouberton
- Centre Jean Perrin Clermont‐Ferrand F‐63011 France
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | - Yann Perrot
- Université Clermont Auvergne CNRS/IN2P3 Laboratoire de Physique de Clermont UMR6533 4 Avenue Blaise Pascal TSA 60026 CS 60026 63178 Aubière Cedex France
| | - Béatrice Dirat
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | | | - Philippe Auzeloux
- Centre Jean Perrin Clermont‐Ferrand F‐63011 France
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | - Florent Cachin
- Centre Jean Perrin Clermont‐Ferrand F‐63011 France
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | - Jean‐Michel Chezal
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | - Marc Filaire
- Centre Jean Perrin Clermont‐Ferrand F‐63011 France
| | - Pierre Labarre
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | - Elisabeth Miot‐Noirault
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | | | - Clémence Valla
- Centre Jean Perrin Clermont‐Ferrand F‐63011 France
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | - Aurélien Vidal
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | - Françoise Degoul
- Université Clermont Auvergne INSERM Imagerie Moléculaire et Stratégies Théranostiques UMR1240 58 Rue Montalembert 63 005 Clermont‐Ferrand CedexFrance
| | - Lydia Maigne
- Université Clermont Auvergne CNRS/IN2P3 Laboratoire de Physique de Clermont UMR6533 4 Avenue Blaise Pascal TSA 60026 CS 60026 63178 Aubière Cedex France
| |
Collapse
|
23
|
Melzig C, Golestaneh AF, Mier W, Schwager C, Das S, Schlegel J, Lasitschka F, Kauczor HU, Debus J, Haberkorn U, Abdollahi A. Combined external beam radiotherapy with carbon ions and tumor targeting endoradiotherapy. Oncotarget 2018; 9:29985-30004. [PMID: 30042828 PMCID: PMC6057461 DOI: 10.18632/oncotarget.25695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/04/2018] [Indexed: 01/05/2023] Open
Abstract
External beam radiotherapy (EBRT) with carbon ions and endoradiotherapy using radiolabeled tumor targeting agents are emerging concepts in precision cancer therapy. We report on combination effects of these two promising strategies. Tumor targeting 131I-labelled anti-EGFR-antibody (Cetuximab) was used in the prototypic EGFR-expressing A431 human squamous cell carcinoma xenograft model. A 131I-labelled melanin-binding benzamide derivative was utilized targeting B16F10 melanoma in an orthotopic syngeneic C57bl6 model. Fractionated EBRT was performed using carbon ions in direct comparison with conventional photon irradiation. Tumor uptake of 131I-Cetuximab and 131I-Benzamide was enhanced by fractionated EBRT as determined by biodistribution studies. This effect was independent of radiation quality and significant for the small molecule 131I-Benzamide, i.e., >30% more uptake in irradiated vs. non-irradiated melanoma was found (p<0.05). Compared to each monotherapy, dual combination with 131I-Cetuximab and EBRT was most effective in inhibiting A431 tumor growth. A similar trend was seen for 131I-Benzamide and EBRT in B16F10 melanoma model. Addition of 131I-Benzamide endoradiotherapy to EBRT altered expression of genes related to DNA-repair, cell cycle and cell death. In contrast, immune-response related pathways such as type 1 interferon response genes (ISG15, MX1) were predominantly upregulated after combined 131I-Cetuximab and EBRT. The beneficial effects of combined 131I-Cetuximab and EBRT was further attributed to a reduced microvascular density (CD31) and decreased proliferation index (Ki-67). Fractionated EBRT could be favorably combined with endoradiotherapy. 131I-Benzamide endoradiotherapy accelerated EBRT induced cytotoxic effects. Activation of immune-response by carbon ions markedly enhanced anti-EGFR based endoradiotherapy suggesting further evaluation of this novel and promising radioimmunotherapy concept.
Collapse
Affiliation(s)
- Claudius Melzig
- German Cancer Consortium, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Azadeh Fahim Golestaneh
- German Cancer Consortium, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Christian Schwager
- German Cancer Consortium, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Samayita Das
- German Cancer Consortium, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julian Schlegel
- German Cancer Consortium, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Lasitschka
- Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
24
|
Abstract
Radionuclide therapy, which until 15 years ago included only a few approved therapies, is gaining importance in the treatment of various malignancies. The future of oncology will not be limited to surgery, chemo-, antibody therapies or external radiation; it will include targeted therapy with radionuclides, which will become the standard of care for a variety of malignant diseases in combination or as an alternative to other therapies. Therefore there is a need to train Nuclear Oncologists, who are able to approach oncological diseases, promote development of radiopharmacy, understand the biology of radionuclide treatment, apply radionuclide treatments and be able to use molecular imaging such as PET/CT and SPECT/CT for treatment planning and dosimetry.
Collapse
|
25
|
Wei W, Ehlerding EB, Lan X, Luo Q, Cai W. PET and SPECT imaging of melanoma: the state of the art. Eur J Nucl Med Mol Imaging 2018; 45:132-150. [PMID: 29085965 PMCID: PMC5700861 DOI: 10.1007/s00259-017-3839-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Melanoma represents the most aggressive form of skin cancer, and its incidence continues to rise worldwide. 18F-FDG PET imaging has transformed diagnostic nuclear medicine and has become an essential component in the management of melanoma, but still has its drawbacks. With the rapid growth in the field of nuclear medicine and molecular imaging, a variety of promising probes that enable early diagnosis and detection of melanoma have been developed. The substantial preclinical success of melanin- and peptide-based probes has recently resulted in the translation of several radiotracers to clinical settings for noninvasive imaging and treatment of melanoma in humans. In this review, we focus on the latest developments in radiolabeled molecular imaging probes for melanoma in preclinical and clinical settings, and discuss the challenges and opportunities for future development.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China.
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
| |
Collapse
|
26
|
Viallard C, Chezal JM, Mishellany F, Ranchon-Cole I, Pereira B, Herbette A, Besse S, Boudhraa Z, Jacquemot N, Cayre A, Miot-Noirault E, Sun JS, Dutreix M, Degoul F. Targeting DNA repair by coDbait enhances melanoma targeted radionuclide therapy. Oncotarget 2017; 7:12927-36. [PMID: 26887045 PMCID: PMC4914332 DOI: 10.18632/oncotarget.7340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/24/2016] [Indexed: 01/15/2023] Open
Abstract
Radiolabelled melanin ligands offer an interesting strategy for the treatment of disseminated pigmented melanoma. One of these molecules, ICF01012 labelled with iodine 131, induced a significant slowing of melanoma growth. Here, we have explored the combination of [131I]ICF01012 with coDbait, a DNA repair inhibitor, to overcome melanoma radioresistance and increase targeted radionuclide therapy (TRT) efficacy. In human SK-Mel 3 melanoma xenograft, the addition of coDbait had a synergistic effect on tumor growth and median survival. The anti-tumor effect was additive in murine syngeneic B16Bl6 model whereas coDbait combination with [131I]ICF01012 did not increase TRT side effects in secondary pigmented tissues (e.g. hair follicles, eyes). Our results confirm that DNA lesions induced by TRT were not enhanced with coDbait association but, the presence of micronuclei and cell cycle blockade in tumor shows that coDbait acts by interrupting or delaying DNA repair. In this study, we demonstrate for the first time, the usefulness of DNA repair traps in the context of targeted radionuclide therapy.
Collapse
Affiliation(s)
- Claire Viallard
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Chezal
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Florence Mishellany
- Anatomopathology Department, Centre Jean Perrin, Comprehensive Cancer Center, 63011 Clermont-Ferrand, France
| | - Isabelle Ranchon-Cole
- Clermont Université, Université d'Auvergne, UFR Pharmacie Laboratoire de Biophysique Neurosensorielle, Inserm U 1107, F-63001 Clermont-Ferrand, France
| | | | - Aurélie Herbette
- CNRS-UMR3347, INSERMU1021, Institut Curie, Université Paris Sud, Bat 110, Centre Universitaire 91405 Orsay, Cedex, France
| | - Sophie Besse
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Zied Boudhraa
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,Inserm, U 990, F-63000 Clermont-Ferrand, France
| | - Nathalie Jacquemot
- Clermont Université, Université d'Auvergne, UFR Pharmacie Laboratoire de Biophysique Neurosensorielle, Inserm U 1107, F-63001 Clermont-Ferrand, France
| | - Anne Cayre
- Anatomopathology Department, Centre Jean Perrin, Comprehensive Cancer Center, 63011 Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,Inserm, U 990, F-63000 Clermont-Ferrand, France
| | | | - Marie Dutreix
- CNRS-UMR3347, INSERMU1021, Institut Curie, Université Paris Sud, Bat 110, Centre Universitaire 91405 Orsay, Cedex, France
| | - Françoise Degoul
- Clermont Université, Université d'Auvergne, Imagerie Moléculaire et Thérapie Vectorisée, BP 10448, F-63000 Clermont-Ferrand, France.,Inserm, U 990, F-63000 Clermont-Ferrand, France
| |
Collapse
|
27
|
Yordanova A, Eppard E, Kürpig S, Bundschuh RA, Schönberger S, Gonzalez-Carmona M, Feldmann G, Ahmadzadehfar H, Essler M. Theranostics in nuclear medicine practice. Onco Targets Ther 2017; 10:4821-4828. [PMID: 29042793 PMCID: PMC5633297 DOI: 10.2147/ott.s140671] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The importance of personalized medicine has been growing, mainly due to a more urgent need to avoid unnecessary and expensive treatments. In nuclear medicine, the theranostic approach is an established tool for specific molecular targeting, both for diagnostics and therapy. The visualization of potential targets can help predict if a patient will benefit from a particular treatment. Thanks to the quick development of radiopharmaceuticals and diagnostic techniques, the use of theranostic agents has been continually increasing. In this article, important milestones of nuclear therapies and diagnostics in the context of theranostics are highlighted. It begins with a well-known radioiodine therapy in patients with thyroid cancer and then progresses through various approaches for the treatment of advanced cancer with targeted therapies. The aim of this review was to provide a summary of background knowledge and current applications, and to identify the advantages of targeted therapies and imaging in nuclear medicine practices.
Collapse
Affiliation(s)
- Anna Yordanova
- Department of Nuclear Medicine (Clinical Nuclear Medicine)
| | | | | | | | | | | | - Georg Feldmann
- Department of Medicine 3, University Hospital Bonn, Bonn, Germany
| | | | - Markus Essler
- Department of Nuclear Medicine (Clinical Nuclear Medicine)
| |
Collapse
|
28
|
Haberkorn U, Mier W, Kopka K, Herold-Mende C, Altmann A, Babich J. Identification of Ligands and Translation to Clinical Applications. J Nucl Med 2017; 58:27S-33S. [DOI: 10.2967/jnumed.116.186791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/15/2017] [Indexed: 12/16/2022] Open
|
29
|
Improving quality of life in patients with pancreatic neuroendocrine tumor following peptide receptor radionuclide therapy assessed by EORTC QLQ-C30. Eur J Nucl Med Mol Imaging 2017; 45:38-46. [DOI: 10.1007/s00259-017-3816-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/22/2017] [Indexed: 01/01/2023]
|
30
|
Miran T, Vogg ATJ, El Moussaoui L, Kaiser HJ, Drude N, von Felbert V, Mottaghy FM, Morgenroth A. Dual addressing of thymidine synthesis pathways for effective targeting of proliferating melanoma. Cancer Med 2017; 6:1639-1651. [PMID: 28608446 PMCID: PMC5504322 DOI: 10.1002/cam4.1113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/21/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
Here, we examined the potential of blocking the thymidine de novo synthesis pathways for sensitizing melanoma cells to the nucleoside salvage pathway targeting endogenous DNA irradiation. Expression of key nucleotide synthesis and proliferation enzymes thymidylate synthase (TS) and thymidine kinase 1 (TK1) was evaluated in differentiated (MITFhigh [microphthalmia‐associated transcription factor] IGR1) and invasive (MITFmediumIGR37) melanoma cells. For inhibition of de novo pathways cells were incubated either with an irreversible TS inhibitor 5‐fluoro‐2′‐deoxyuridine (FdUrd) or with a competitive dihydrofolate‐reductase (DHFR) inhibitor methotrexate (MTX). Salvage pathway was addressed by irradiation‐emitting thymidine analog [123/125I]‐5‐iodo‐4′‐thio‐2′‐deoxyuridine (123/125I‐ITdU). The in vivo targeting efficiency was visualized by single‐photon emission computed tomography. Pretreatment with FdUrd strongly increased the cellular uptake and the DNA incorporation of 125I‐ITdU into the mitotically active IGR37 cells. This effect was less pronounced in the differentiated IGR1 cells. In vivo, inhibition of TS led to a high and preferential accumulation of 123I‐ITdU in tumor tissue. This preclinical study presents profound rationale for development of therapeutic approach by highly efficient and selective radioactive targeting one of the crucial salvage pathways in melanomas.
Collapse
Affiliation(s)
- Tara Miran
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 30 Pauwelsstrasse, Aachen, 52074, Germany
| | - Andreas T J Vogg
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 30 Pauwelsstrasse, Aachen, 52074, Germany
| | - Laila El Moussaoui
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 30 Pauwelsstrasse, Aachen, 52074, Germany
| | - Hans-Jürgen Kaiser
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 30 Pauwelsstrasse, Aachen, 52074, Germany
| | - Natascha Drude
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 30 Pauwelsstrasse, Aachen, 52074, Germany
| | - Verena von Felbert
- Department of Dermatology and Allergology, University Hospital RWTH Aachen, 30 Pauwelsstrasse, Aachen, 52074, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 30 Pauwelsstrasse, Aachen, 52074, Germany.,Department of Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 30 Pauwelsstrasse, Aachen, 52074, Germany
| |
Collapse
|
31
|
Rbah-Vidal L, Vidal A, Billaud EMF, Besse S, Ranchon-Cole I, Mishellany F, Perrot Y, Maigne L, Moins N, Guerquin-Kern JL, Degoul F, Chezal JM, Auzeloux P, Miot-Noirault E. Theranostic Approach for Metastatic Pigmented Melanoma Using ICF15002, a Multimodal Radiotracer for Both PET Imaging and Targeted Radionuclide Therapy. Neoplasia 2016; 19:17-27. [PMID: 27987437 PMCID: PMC5157796 DOI: 10.1016/j.neo.2016.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/01/2016] [Indexed: 01/05/2023] Open
Abstract
PURPOSE: This work reports, in melanoma models, the theranostic potential of ICF15002 as a single fluorinated and iodinated melanin-targeting compound. METHODS: Studies were conducted in the murine syngeneic B16BL6 model and in the A375 and SK-MEL-3 human xenografts. ICF15002 was radiolabeled with fluorine-18 for positron emission tomography (PET) imaging and biodistribution, with iodine-125 for metabolism study, and iodine-131 for targeted radionuclide therapy (TRT). TRT efficacy was assessed by tumor volume measurement, with mechanistics and dosimetry parameters being determined in the B16BL6 model. Intracellular localization of ICF15002 was characterized by secondary ion mass spectrometry (SIMS). RESULTS: PET imaging with [18F]ICF15002 evidenced tumoral uptake of 14.33 ± 2.11%ID/g and 4.87 ± 0.93%ID/g in pigmented B16BL6 and SK-MEL-3 models, respectively, at 1 hour post inoculation. No accumulation was observed in the unpigmented A375 melanoma. SIMS demonstrated colocalization of ICF15002 signal with melanin polymers in melanosomes of the B16BL6 tumors. TRT with two doses of 20 MBq [131I]ICF15002 delivered an absorbed dose of 102.3 Gy to B16BL6 tumors, leading to a significant tumor growth inhibition [doubling time (DT) of 2.9 ± 0.5 days in treated vs 1.8 ± 0.3 in controls] and a prolonged median survival (27 days vs 21 in controls). P53S15 phosphorylation and P21 induction were associated with a G2/M blockage, suggesting mitotic catastrophe. In the human SK-MEL-3 model, three doses of 25 MBq led also to a DT increase (26.5 ± 7.8 days vs 11.0 ± 3.8 in controls) and improved median survival (111 days vs 74 in controls). CONCLUSION: Results demonstrate that ICF15002 fulfills suitable properties for bimodal imaging/TRT management of patients with pigmented melanoma.
Collapse
Affiliation(s)
- Latifa Rbah-Vidal
- UMR 990 INSERM/Université d'Auvergne, F-63005 Clermont-Ferrand, France; UMR 892 INSERM/6299 CNRS/Université de Nantes, F-44007 Nantes, France
| | - Aurélien Vidal
- UMR 990 INSERM/Université d'Auvergne, F-63005 Clermont-Ferrand, France; Arronax, CS 10112, F-44817 Saint Herblain Cedex, France
| | | | - Sophie Besse
- UMR 990 INSERM/Université d'Auvergne, F-63005 Clermont-Ferrand, France
| | - Isabelle Ranchon-Cole
- UMR 1107 INSERM/Université d'Auvergne, Equipe Biophysique Neurosensorielle, F-63000 Clermont-Ferrand, France
| | - Florence Mishellany
- Centre Jean Perrin, Laboratoire d'anatomo-pathologie, F-63011 Clermont-Ferrand, France
| | - Yann Perrot
- CNRS/IN2P3/Université Blaise Pascal, Laboratoire de Physique Corpusculaire, F-63000 Clermont-Ferrand, France
| | - Lydia Maigne
- CNRS/IN2P3/Université Blaise Pascal, Laboratoire de Physique Corpusculaire, F-63000 Clermont-Ferrand, France
| | - Nicole Moins
- UMR 990 INSERM/Université d'Auvergne, F-63005 Clermont-Ferrand, France
| | | | - Françoise Degoul
- UMR 990 INSERM/Université d'Auvergne, F-63005 Clermont-Ferrand, France
| | | | - Philippe Auzeloux
- UMR 990 INSERM/Université d'Auvergne, F-63005 Clermont-Ferrand, France
| | | |
Collapse
|
32
|
Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, Gropler RJ, Knuuti J, Schelbert HR, Travin MI. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol 2016; 23:1187-1226. [PMID: 27392702 DOI: 10.1007/s12350-016-0522-3] [Citation(s) in RCA: 432] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, South Greene Street, Rm N2W78, Baltimore, MD, 21201-1595, USA.
| | - Stephen L Bacharach
- Department of Radiology, University of California-San Francisco, San Francisco, CA, USA
| | - Rob S Beanlands
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | - Steven R Bergmann
- Pat and Jim Calhoun Cardiology Center, UConn Health, Farmington, CT, USA
| | - Dominique Delbeke
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sharmila Dorbala
- Division of Nuclear Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert J Gropler
- Division of Nuclear Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Heinrich R Schelbert
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Mark I Travin
- Department of Radiology, Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
33
|
Rathmann SM, Janzen N, Valliant JF. Synthesis, radiolabelling, and biodistribution studies of triazole derivatives for targeting melanoma. CAN J CHEM 2016. [DOI: 10.1139/cjc-2016-0239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Molecular probes that target specific markers expressed in solid tumours are in demand for cancer imaging and radionuclide therapy applications. The synthesis, characterization, and in vivo evaluation of radioiodinated triazoles designed as probes to target melanoma are described here. Compounds were prepared using a thermal click reaction between ethynylstannane and methyl 2-azidoacetate, resulting in preferential formation of the corresponding 1,4-tin triazole. The primary amine of various targeting vectors was then coupled to the resulting tin triazole methyl ester. These precursors were labelled with no carrier added 123I or 125I and purified by high performance liquid chromatography to give isolated radiochemical yields between 6% and 51% and radiochemical purities of >95% in all cases. Among the evaluated compounds, N-(2-diethylamino-ethyl)-2-(4-iodo-[1,2,3]triazol-1-yl)acetamide (7a) and N-(1-benzylpiperidin-4-yl)-2-(4-iodo-1H-1,2,3-triazol-1-yl)acetamide (7d) showed the most promising in vivo data, and their 123I-labelled forms were used in single photon emission computed tomography computed tomography (SPECT–CT) imaging studies. The imaging data showed excellent tumour visualization with a very high signal to noise ratio.
Collapse
Affiliation(s)
- Stephanie M. Rathmann
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
| | - John F. Valliant
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
34
|
Chang CC, Chang CH, Lo YH, Lin MH, Shen CC, Liu RS, Wang HE, Chen CL. Preparation and characterization of a novel Al(18)F-NOTA-BZA conjugate for melanin-targeted imaging of malignant melanoma. Bioorg Med Chem Lett 2016; 26:4133-9. [PMID: 27445169 DOI: 10.1016/j.bmcl.2016.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 11/16/2022]
Abstract
Melanin is an attractive target for the diagnosis and treatment of malignant melanoma. Previous studies have demonstrated the specific binding ability of benzamide moiety to melanin. In this study, we developed a novel (18)F-labeled NOTA-benzamide conjugate, Al(18)F-NOTA-BZA, which can be synthesized in 30min with a radiochemical yield of 20-35% and a radiochemical purity of >95%. Al(18)F-NOTA-BZA is highly hydrophilic (logP=-1.96) and shows good in vitro stability. Intravenous administration of Al(18)F-NOTA-BZA in two melanoma-bearing mouse models revealed highly specific uptake in B16F0 melanotic melanoma (6.67±0.91 and 1.50±0.26%ID/g at 15 and 120min p.i., respectively), but not in A375 amelanotic melanoma (0.87±0.21 and 0.24±0.09%ID/g at 15 and 120min p.i., respectively). The clearance from most normal tissues was fast. A microPET scan of Al(18)F-NOTA-BZA-injected mice also displayed high-contrast tumor images as compared with normal organs. Owing to the favorable in vivo distribution of Al(18)F-NOTA-BZA after intravenous administration, the estimated absorption dose was low in all normal organs and tissues. The melanin-specific binding ability, sustained tumor retention, fast normal tissues clearance and thelow projected human dosimetry supported that Al(18)F-NOTA-BZA is a very promising melanin-specific PET probe for melanin-positive melanoma.
Collapse
Affiliation(s)
- Chih-Chao Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou, Taipei 11221, Taiwan
| | - Chih-Hsien Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou, Taipei 11221, Taiwan; Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Yi-Hsuan Lo
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou, Taipei 11221, Taiwan
| | - Ming-Hsien Lin
- Department of Nuclear Medicine, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan
| | - Chih-Chieh Shen
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Ren-Shyan Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou, Taipei 11221, Taiwan; Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan; National PET/Cyclotron Center and Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou, Taipei 11221, Taiwan.
| | - Chuan-Lin Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou, Taipei 11221, Taiwan.
| |
Collapse
|
35
|
Rylova SN, Waser B, Del Pozzo L, Tönnesmann R, Mansi R, Meyer PT, Reubi JC, Maecke HR. Approaches to Improve the Pharmacokinetics of Radiolabeled Glucagon-Like Peptide-1 Receptor Ligands Using Antagonistic Tracers. J Nucl Med 2016; 57:1282-8. [DOI: 10.2967/jnumed.115.168948] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/21/2016] [Indexed: 01/14/2023] Open
|
36
|
Chang CC, Chang CH, Shen CC, Chen CL, Liu RS, Lin MH, Wang HE. Synthesis and characterization of a novel radioiodinated phenylacetamide and its homolog as theranostic agents for malignant melanoma. Eur J Pharm Sci 2015; 81:201-9. [PMID: 26517961 DOI: 10.1016/j.ejps.2015.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/16/2015] [Accepted: 10/25/2015] [Indexed: 01/22/2023]
Abstract
Melanin is an attractive target for the diagnosis and treatment of malignant melanoma. This study reports the preparation and biological characterizations of N-(2-(diethylamino)ethyl)-2-(3-(123/131)I-iodo-4- hydroxyphenyl)acetamide and N-(2-(diethylamino)ethyl)-3-(3-(123/131)I-iodo-4-hydroxyphenyl)propanamide (123/131)I-IHPA and 123/131I-IHPP) as novel melanin-specific theranostic agents. These two tracers were hydrophilic, exhibited good serum stability and high binding affinity to melanin. In vitro and in vivo studies revealed rapid, high and tenacious uptakes of both 131I-IHPA and 131I-IHPP in melanotic B16F0 cell line and in C57BL/6 mice bearing B16F0 melanoma, but not in amelanonic A375 cell line and tumors. Small-animal SPECT imaging also clearly delineate B16F0 melanoma since 1 h postinjection of 123I-IHPA and 123I-IHPP in tumor-bearing mice. Owing to the favorable biodistribution of 131I-IHPA and 131I-IHPP after intravenous administration, the estimated absorption dose was low in most normal organs and relatively high in melanotic tumor. The melanin-specific binding ability, sustained tumor retention, fast normal tissues clearance and acceptable projected human dosimetry supported that these two tracers are promising theranostic agents for melanin-positive melanoma.
Collapse
Affiliation(s)
- Chih-Chao Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Hsien Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Chih-Chieh Shen
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Chuan-Lin Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ren-Shyan Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei, Taiwan; National PET/Cyclotron Center and Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Hsien Lin
- Department of Nuclear Medicine, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan.
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
37
|
Feng H, Xia X, Li C, Song Y, Qin C, Zhang Y, Lan X. TYR as a multifunctional reporter gene regulated by the Tet-on system for multimodality imaging: an in vitro study. Sci Rep 2015; 5:15502. [PMID: 26483258 PMCID: PMC4611178 DOI: 10.1038/srep15502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/24/2015] [Indexed: 12/04/2022] Open
Abstract
The human tyrosinase gene TYR is a multifunctional reporter gene with potential use in photoacoustic imaging (PAI), positron emission tomography (PET), and magnetic resonance imaging (MRI). We sought to establish and evaluate a reporter gene system using TYR under the control of the Tet-on gene expression system (gene expression induced by doxycycline [Dox]) as a multimodality imaging agent. We transfected TYR into human breast cancer cells (MDA-MB-231), naming the resulting cell line 231-TYR. Using non-transfected MDA-MB-231 cells as a control, we verified successful expression of TYR by 231-TYR after incubation with Dox using western blot, cellular tyrosinase activity, Masson-Fontana silver staining, and a cell immunofluorescence study, while the control cells and 231-TYR cells without Dox exposure revealed no TYR expression. Detected by its absorbance at 405 nm, increasing concentrations of melanin correlated positively with Dox concentration and incubation time. TYR expression by Dox-induced transfected cells shortened MRI T1 and T2 relaxation times. Photoacoustic signals were easily detected in these cells. (18)F-5-fluoro-N-(2-[diethylamino]ethyl)picolinamide ((18)F-5-FPN), which targets melanin, quickly accumulated in Dox-induced 231-TYR cells. These show that TYR induction of melanin production is regulated by the Tet-on system, and TYR-containing indicator cells may have utility in multimodality imaging.
Collapse
Affiliation(s)
- Hongyan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaotian Xia
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chongjiao Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yiling Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
38
|
Ahmadzadehfar H, Rahbar K, Kürpig S, Bögemann M, Claesener M, Eppard E, Gärtner F, Rogenhofer S, Schäfers M, Essler M. Early side effects and first results of radioligand therapy with (177)Lu-DKFZ-617 PSMA of castrate-resistant metastatic prostate cancer: a two-centre study. EJNMMI Res 2015; 5:114. [PMID: 26099227 PMCID: PMC4477007 DOI: 10.1186/s13550-015-0114-2] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/05/2015] [Indexed: 01/14/2023] Open
Abstract
Background Radioligand therapy (RLT) with 177Lu-DKFZ-617 PSMA (Lu-PSMA) (prostate-specific membrane antigen) is a novel targeted therapy of metastatic prostate cancer. We analysed retrospectively the early side effects and the response rate in the first patients, who received a therapy with Lu-PSMA in our departments. Methods RLT was performed in ten hormone- and/or chemo-refractory patients with distant metastases and progressive disease (mean age 73.5 years). 68Ga-PSMA HBED-CC PET/CT was performed in all patients prior to RLT. The median PSA level prior to the therapy was 298.5 ng/ml (range 5–853 ng/ml). All patients received CBC, renal and liver function tests the day before and 2 days after application (mean administered activity 5.6 GBq, range 4.1–6.1 GBq), followed by further tests every 2 weeks. All patients were contacted by telephone every week regarding side effects or any positive and negative changes. Results Eight weeks after the therapy, seven patients (70 %) experienced a PSA decline, of whom six experienced more than 30 % and five more than 50 %. Three patients showed a progressive disease according to the PSA increase. No patient experienced any side effects immediately after injection of Lu-PSMA. Relevant hematotoxicity (grade 3 or 4) occurred 7 weeks after the administration in just one patient. The same patient showed a leucopenia grade 2. Two patients showed a disturbance of only 1 hematologic cell line, whereas one patient showed a reduction of grades 1 and 2 in leucocytes and thrombocytes, respectively. Six patients did not show any hematotoxicity during the 8 weeks after therapy. There was no relevant nephrotoxicity (grade 3 or 4). Conclusions Our initial results indicate that RLT with Lu-PSMA is safe and seems to have low early side-effect profile. A relevant PSA decline was detected in 70 % of patients.
Collapse
Affiliation(s)
- Hojjat Ahmadzadehfar
- Department of Nuclear Medicine, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Barthel H, Seibyl J, Sabri O. The role of positron emission tomography imaging in understanding Alzheimer’s disease. Expert Rev Neurother 2015; 15:395-406. [DOI: 10.1586/14737175.2015.1023296] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Chang CC, Chang CH, Shen CC, Chen CL, Liu RS, Lin MH, Wang HE. Synthesis and evaluation of ¹²³/¹³¹I-Iochlonicotinamide as a novel SPECT probe for malignant melanoma. Bioorg Med Chem 2015; 23:2261-9. [PMID: 25800432 DOI: 10.1016/j.bmc.2015.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 01/01/2023]
Abstract
Malignant melanoma expresses a highly aggressive metastasis. Early diagnosis of malignant melanoma is important for patient survival. Radiolabeled benzamides and nicotinamides have been reported to be attractive candidates for malignant melanoma diagnosis as they bind to melanin, a characteristic substance that displays in malignant melanoma, and show high tumor accumulation and retention. Herein, we designed and synthesized a novel (123/131)I-labeled nicotinamide derivative that specifically binds to melanin. (123/131)I-Iochlonicotinamide was prepared with good radiochemical yield (50-70%, decay corrected) and high specific radioactivity (50-80 GBq/μmol). (131)I-Iochlonicotinamide exhibited good in vitro stability (radiochemical purity >95% after a 24-h incubation) in human serum. High uptake of (123/131)I-Iochlonicotinamide in B16F0 melanoma cells compared to that in A375 amelanotic cells demonstrated its selective binding to melanin. Intravenous administration of (123/131)I-Iochlonicotinamide in a melanoma-bearing mouse model revealed high uptake in melanotic melanoma and high tumor-to-muscle ratio. MicroSPECT scan of (123/131)I-Iochlonicotinamide injected mice also displayed high contrast tumor imaging as compared with normal organs. The radiation-absorbed dose projection for the administration of (131)I-Iochlonicotinamide to human was based on the results of biodistribution study. The effective dose appears to be approximately 0.44 mSv/MBq(-1). The specific binding of (123/131)I-Iochlonicotinamide to melanin along with a prolonged tumor retention and acceptable projected human dosimetry suggest that it may be a promising theranostic agent for treating malignant melanoma.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Humans
- Iodine Radioisotopes
- Male
- Melanoma/diagnosis
- Melanoma/drug therapy
- Melanoma/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- Molecular Probes/administration & dosage
- Molecular Probes/chemistry
- Molecular Probes/pharmacokinetics
- Molecular Structure
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/pathology
- Niacinamide/administration & dosage
- Niacinamide/chemistry
- Niacinamide/pharmacology
- Positron-Emission Tomography
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/chemistry
- Radiopharmaceuticals/pharmacokinetics
- Structure-Activity Relationship
- Tissue Distribution
- Tomography, Emission-Computed, Single-Photon
Collapse
Affiliation(s)
- Chih-Chao Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou District, Taipei 11221, Taiwan
| | - Chih-Hsien Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou District, Taipei 11221, Taiwan; Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Chih-Chieh Shen
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Chuan-Lin Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou District, Taipei 11221, Taiwan
| | - Ren-Shyan Liu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou District, Taipei 11221, Taiwan; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Hsien Lin
- Department of Nuclear Medicine, Taipei City Hospital, Zhongxiao Branch, No. 87, Tong-De Rd., Nan-Gang District, Taipei 11556, Taiwan.
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Li-Nong St., Sec. 2, Pei-tou District, Taipei 11221, Taiwan.
| |
Collapse
|
41
|
Synthesis, radiolabeling and preliminary in vivo evaluation of multimodal radiotracers for PET imaging and targeted radionuclide therapy of pigmented melanoma. Eur J Med Chem 2015; 92:818-38. [DOI: 10.1016/j.ejmech.2015.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 12/27/2022]
|
42
|
Parat A, Kryza D, Degoul F, Taleb J, Viallard C, Janier M, Garofalo A, Bonazza P, Heinrich-Balard L, Cohen R, Miot-Noirault E, Chezal JM, Billotey C, Felder-Flesch D. Radiolabeled dendritic probes as tools for high in vivo tumor targeting: application to melanoma. J Mater Chem B 2015; 3:2560-2571. [DOI: 10.1039/c5tb00235d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A small-sized and bifunctional111In-radiolabeled dendron shows highin vivotargeting efficiency towards an intracellular target in a murine melanoma model.
Collapse
|
43
|
The study of external dose rate and retained body activity of patients receiving 131I therapy for differentiated thyroid carcinoma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:10991-1003. [PMID: 25337944 PMCID: PMC4211018 DOI: 10.3390/ijerph111010991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 12/29/2022]
Abstract
Radiation safety is an integral part of targeted radionuclide therapy. The aim of this work was to study the external dose rate and retained body activity as functions of time in differentiated thyroid carcinoma patients receiving 131I therapy. Seventy patients were stratified into two groups: the ablation group (A) and the follow-up group (FU). The patients’ external dose rate was measured, and simultaneously, their retained body radiation activity was monitored at various time points. The equations of the external dose rate and the retained body activity, described as a function of hours post administration, were fitted. Additionally, the release time for patients was calculated. The reduction in activity in the group receiving a second or subsequent treatment was more rapid than the group receiving only the initial treatment. Most important, an expeditious method was established to indirectly evaluate the retained body activity of patients by measuring the external dose rate with a portable radiation survey meter. By this method, the calculated external dose rate limits are 19.2, 8.85, 5.08 and 2.32 μSv·h−1 at 1, 1.5, 2 and 3 m, respectively, according to a patient’s released threshold level of retained body activity <400 MBq. This study is beneficial for radiation safety decision-making.
Collapse
|
44
|
|