1
|
Ju M, Ren W, Zhang Z, Lu J, Han K, Wang L, Fang W. Automated Radiolabeling and Evaluation of [ 18F]FPMBBG: A Novel Cardiac Neuronal PET Imaging Agent. J Labelled Comp Radiopharm 2025; 68:e4139. [PMID: 40035485 DOI: 10.1002/jlcr.4139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/31/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
This study reports the automated radiosynthesis and evaluation of [18F]FPMBBG, a radiopharmaceutical designed to target the norepinephrine transporter (NET). A newly developed fully protected benzylguanidine precursor, which prevents interference from non-protected benzylguanidine part during the nucleophilic process, has enabled a one-pot two-step fully automated cassette-based synthesis of [18F]FPMBBG. This advancement enhances the feasibility of the synthesis, ensures reproducibility, and allows for the production of substantial quantities of the radiotracer, paving the way for future clinical applications. [18F]FPMBBG was prepared in radiochemical yield of ~ 23% (n = 6, decay-corrected) within 70 min, with a radiochemical purity exceeding 98%, and molar activity of > 2 GBq/μmol. In studies using miniature Bama pigs, [18F]FPMBBG showed favorable distribution, providing high-contrast cardiac images at an early stage. Moreover, desipramine inhibition studies confirmed the high NET specificity of [18F]FPMBBG. The efficient automated synthesis, robust heart uptake, and minimal background signal highlight [18F]FPMBBG as a promising PET tracer for assessing cardiac sympathetic neuronal function.
Collapse
Affiliation(s)
- Min Ju
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanjie Ren
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongyao Zhang
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Kai Han
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Wang
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Fang
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Higuchi T, Klimek K, Groener D, Chen X, Werner RA. Norepinephrine Transporter-Targeted Cancer Theranostics-New Horizons. Clin Nucl Med 2024:00003072-990000000-01400. [PMID: 39570057 DOI: 10.1097/rlu.0000000000005567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
ABSTRACT In the evolving landscape of precision oncology, this review delineates the role of radiopharmaceuticals targeting the norepinephrine transporter (NET), with a particular focus on the current clinical application of 123I-MIBG diagnostic imaging and 131I-MIBG therapeutics, in particular for pheochromocytoma, neuroblastoma, or paraganglioma. We will also highlight recently introduced 18F-labeled NET targeting imaging radiotracers, which would offer unparalleled resolution, enhanced tumor localization, and staging properties. Complementing these novel second-generation PET agents in a theranostic approach, astatine-211 meta-astatobenzylguanidine (211At-MABG) would leverage the advantages of alpha-particles to selectively target and eradicate NET-expressing tumor cells with minimal off-target effects.
Collapse
Affiliation(s)
| | - Konrad Klimek
- Clinic for Radiology and Nuclear Medicine, Department of Nuclear Medicine, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Daniel Groener
- Clinic for Radiology and Nuclear Medicine, Department of Nuclear Medicine, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Xinyu Chen
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | | |
Collapse
|
3
|
Ji W, Miao A, Liang K, Liu J, Qi Y, Zhou Y, Duan X, Sun J, Lai L, Wu JX. Substrate binding and inhibition mechanism of norepinephrine transporter. Nature 2024; 633:473-479. [PMID: 39143211 DOI: 10.1038/s41586-024-07810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/10/2024] [Indexed: 08/16/2024]
Abstract
Norepinephrine transporter (NET; encoded by SLC6A2) reuptakes the majority of the released noradrenaline back to the presynaptic terminals, thereby affecting the synaptic noradrenaline level1. Genetic mutations and dysregulation of NET are associated with a spectrum of neurological conditions in humans, making NET an important therapeutic target1. However, the structure and mechanism of NET remain unclear. Here we provide cryogenic electron microscopy structures of the human NET (hNET) in three functional states-the apo state, and in states bound to the substrate meta-iodobenzylguanidine (MIBG) or the orthosteric inhibitor radafaxine. These structures were captured in an inward-facing conformation, with a tightly sealed extracellular gate and an open intracellular gate. The substrate MIBG binds at the centre of hNET. Radafaxine also occupies the substrate-binding site and might block the structural transition of hNET for inhibition. These structures provide insights into the mechanism of substrate recognition and orthosteric inhibition of hNET.
Collapse
Affiliation(s)
- Wenming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Anran Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Kai Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Jiameng Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yuhan Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yue Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xinli Duan
- Beijing Jingtai Technology, Beijing, P. R. China
| | - Jixue Sun
- Beijing Jingtai Technology, Beijing, P. R. China
| | - Lipeng Lai
- Beijing Jingtai Technology, Beijing, P. R. China
| | - Jing-Xiang Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
4
|
Pacak K, Taieb D, Lin FI, Jha A. Approach to the Patient: Concept and Application of Targeted Radiotherapy in the Paraganglioma Patient. J Clin Endocrinol Metab 2024; 109:2366-2388. [PMID: 38652045 PMCID: PMC11319006 DOI: 10.1210/clinem/dgae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Paragangliomas can metastasize, posing potential challenges both in symptomatic management and disease control. Systemic targeted radiotherapies using 131I-MIBG and 177Lu-DOTATATE are a mainstay in the treatment of metastatic paragangliomas. This clinical scenario and discussion aim to enhance physicians' knowledge of the stepwise approach to treat these patients with paraganglioma-targeted radiotherapies. It comprehensively discusses current approaches to selecting paraganglioma patients for targeted radiotherapies and how to choose between the two radiotherapies based on specific patient and tumor characteristics, when either therapy is feasible, or one is superior to another. The safety, efficacy, toxicity profiles, and optimization of these radiotherapies are also discussed, along with other therapeutic options including radiotherapies, available for patients besides these two therapies. Perspectives in radiotherapies of paraganglioma patients are outlined since they hold promising approaches in the near future that can improve patient outcomes.
Collapse
Affiliation(s)
- Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892-1109, USA
| | - David Taieb
- Department of Nuclear Medicine, Aix-Marseille University, La Timone University Hospital, 13385 Marseille, France
| | - Frank I Lin
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892-1109, USA
| |
Collapse
|
5
|
Higuchi T, Chen X, Werner RA. Navigating new horizons: Prospects of NET-targeted radiopharmaceuticals in precision medicine. Theranostics 2024; 14:3178-3192. [PMID: 38855189 PMCID: PMC11155404 DOI: 10.7150/thno.96743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
In the evolving landscape of precision medicine, NET-targeted radiopharmaceuticals are emerging as pivotal tools for the diagnosis and treatment of a range of conditions, from heart failure and neurodegenerative disorders to neuroendocrine cancers. This review evaluates the advancements offered by 18F-labeled PET tracers and 211At alpha-particle therapy, juxtaposed with current 123I-MIBG SPECT and 131I-MIBG therapies. The enhanced spatial resolution and capability for quantitative analysis render 18F-labeled PET tracers potential candidates for improved detection and management of diseases. Alpha-particle therapy with 211At may offer increased specificity and tumoricidal efficacy, pointing towards a shift in therapeutic protocols. While preliminary data is promising, these innovative approaches require thorough validation against current modalities. Ongoing clinical trials are pivotal to confirm the expected clinical benefits and to address safety concerns. This review underscores the need for rigorous research to verify the clinical utility of NET-targeted radiopharmaceuticals, which may redefine precision medicine paradigms and significantly impact patient care.
Collapse
Affiliation(s)
- Takahiro Higuchi
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital of Würzburg, Würzburg, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Xinyu Chen
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Rudolf A Werner
- DZHK (German Centre for Cardiovascular Research), Partner Site Frankfurt Rhine-Main, Frankfurt, Germany
- Goethe University Frankfurt, Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
- The Russell H Morgan Department of Radiology and Radiological Sciences, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Munekane M, Fuchigami T, Ogawa K. Recent advances in the development of 225Ac- and 211At-labeled radioligands for radiotheranostics. ANAL SCI 2024; 40:803-826. [PMID: 38564087 PMCID: PMC11035452 DOI: 10.1007/s44211-024-00514-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024]
Abstract
Radiotheranostics utilizes a set of radioligands incorporating diagnostic or therapeutic radionuclides to achieve both diagnosis and therapy. Imaging probes using diagnostic radionuclides have been used for systemic cancer imaging. Integration of therapeutic radionuclides into the imaging probes serves as potent agents for radionuclide therapy. Among them, targeted alpha therapy (TAT) is a promising next-generation cancer therapy. The α-particles emitted by the radioligands used in TAT result in a high linear energy transfer over a short range, inducing substantial damage to nearby cells surrounding the binding site. Therefore, the key to successful cancer treatment with minimal side effects by TAT depends on the selective delivery of radioligands to their targets. Recently, TAT agents targeting biomolecules highly expressed in various cancer cells, such as sodium/iodide symporter, norepinephrine transporter, somatostatin receptor, αvβ3 integrin, prostate-specific membrane antigen, fibroblast-activation protein, and human epidermal growth factor receptor 2 have been developed and have made remarkable progress toward clinical application. In this review, we focus on two radionuclides, 225Ac and 211At, which are expected to have a wide range of applications in TAT. We also introduce recent fundamental and clinical studies of radiopharmaceuticals labeled with these radionuclides.
Collapse
Affiliation(s)
- Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, 920-1192, Japan.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-Machi, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
7
|
Mallak N, O'Brien SR, Pryma DA, Mittra E. Theranostics in Neuroendocrine Tumors. Cancer J 2024; 30:185-193. [PMID: 38753753 DOI: 10.1097/ppo.0000000000000723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Neuroendocrine tumors (NETs) are rare tumors that develop from cells of the neuroendocrine system and can originate in multiple organs and tissues such as the bowels, pancreas, adrenal glands, ganglia, thyroid, and lungs. This review will focus on gastroenteropancreatic NETs (more commonly called NETs) characterized by frequent somatostatin receptor (SSTR) overexpression and pheochromocytomas/paragangliomas (PPGLs), which typically overexpress norepinephrine transporter. Advancements in SSTR-targeted imaging and treatment have revolutionized the management of patients with NETs. This comprehensive review delves into the current practice, discussing the use of the various Food and Drug Administration-approved SSTR-agonist positron emission tomography tracers and the predictive imaging biomarkers, and elaborating on 177Lu-DOTATATE peptide receptor radionuclide therapy including the evolving areas of posttherapy imaging practices and peptide receptor radionuclide therapy retreatment. SSTR-targeted imaging and therapy can also be used in patients with PPGL; however, this patient population has demonstrated the best outcomes from norepinephrine transporter-targeted therapy with 131I-metaiodobenzylguanidine. Metaiodobenzylguanidine theranostics for PPGL will be discussed, noting that in 2024 it became commercially unavailable in the United States. Therefore, the use and reported success of SSTR theranostics for PPGL will also be explored.
Collapse
Affiliation(s)
- Nadine Mallak
- From the Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR
| | - Sophia R O'Brien
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Daniel A Pryma
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Erik Mittra
- From the Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR
| |
Collapse
|
8
|
Piccardo A, Treglia G, Fiz F, Bar-Sever Z, Bottoni G, Biassoni L, Borgwardt L, de Keizer B, Jehanno N, Lopci E, Kurch L, Massollo M, Nadel H, Roca Bielsa I, Shulkin B, Vali R, De Palma D, Cecchin D, Santos AI, Zucchetta P. The evidence-based role of catecholaminergic PET tracers in Neuroblastoma. A systematic review and a head-to-head comparison with mIBG scintigraphy. Eur J Nucl Med Mol Imaging 2024; 51:756-767. [PMID: 37962616 PMCID: PMC10796700 DOI: 10.1007/s00259-023-06486-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Molecular imaging is pivotal in staging and response assessment of children with neuroblastoma (NB). [123I]-metaiodobenzylguanidine (mIBG) is the standard imaging method; however, it is characterised by low spatial resolution, time-consuming acquisition procedures and difficult interpretation. Many PET catecholaminergic radiotracers have been proposed as a replacement for [123I]-mIBG, however they have not yet made it into clinical practice. We aimed to review the available literature comparing head-to-head [123I]-mIBG with the most common PET catecholaminergic radiopharmaceuticals. METHODS We searched the PubMed database for studies performing a head-to-head comparison between [123I]-mIBG and PET radiopharmaceuticals including meta-hydroxyephedrine ([11C]C-HED), 18F-18F-3,4-dihydroxyphenylalanine ([18F]DOPA) [124I]mIBG and Meta-[18F]fluorobenzylguanidine ([18F]mFBG). Review articles, preclinical studies, small case series (< 5 subjects), case reports, and articles not in English were excluded. From each study, the following characteristics were extracted: bibliographic information, technical parameters, and the sensitivity of the procedure according to a patient-based analysis (PBA) and a lesion-based analysis (LBA). RESULTS Ten studies were selected: two regarding [11C]C-HED, four [18F]DOPA, one [124I]mIBG, and three [18F]mFBG. These studies included 181 patients (range 5-46). For the PBA, the superiority of the PET method was reported in two out of ten studies (both using [18F]DOPA). For LBA, PET detected significantly more lesions than scintigraphy in seven out of ten studies. CONCLUSIONS PET/CT using catecholaminergic tracers shows superior diagnostic performance than mIBG scintigraphy. However, it is still unknown if such superiority can influence clinical decision-making. Nonetheless, the PET examination appears promising for clinical practice as it offers faster image acquisition, less need for sedation, and a single-day examination.
Collapse
Affiliation(s)
- Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. "Ospedali Galliera", Mura Delle Cappuccine 14, 16128, Genoa, Italy.
| | - Giorgio Treglia
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Francesco Fiz
- Department of Nuclear Medicine, E.O. "Ospedali Galliera", Mura Delle Cappuccine 14, 16128, Genoa, Italy
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital, Tübingen, Germany
| | - Zvi Bar-Sever
- Department of Nuclear Medicine, Schneider Children's Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Gianluca Bottoni
- Department of Nuclear Medicine, E.O. "Ospedali Galliera", Mura Delle Cappuccine 14, 16128, Genoa, Italy
| | - Lorenzo Biassoni
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Lise Borgwardt
- Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bart de Keizer
- Department of Nuclear Medicine and Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nina Jehanno
- Department of Nuclear Medicine, Institut Curie Paris, Paris, France
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Lars Kurch
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Michela Massollo
- Department of Nuclear Medicine, E.O. "Ospedali Galliera", Mura Delle Cappuccine 14, 16128, Genoa, Italy
| | - Helen Nadel
- Department of Pediatric Nuclear Medicine, Lucile Packard Children's Hospital of Stanford (CA), Palo Alto, USA
| | | | - Barry Shulkin
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Reza Vali
- Division of Nuclear Medicine, Department of Diagnostic Imaging, The Hospital for Sick Children of Toronto, Toronto, Canada
| | - Diego De Palma
- Nuclear Medicine Unit, Ospedale Di Circolo of Varese, Varese, Italy
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine - DIMED, University Hospital of Padova, Padua, Italy
| | - Ana Isabel Santos
- Department of Nuclear Medicine, Hospital Garcia de Orta, Almada, Portugal
| | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine - DIMED, University Hospital of Padova, Padua, Italy
| |
Collapse
|
9
|
Zhang X, Hu M, Kang F, Wang J, Lan X. [ 18F]-mFBG imaging for COVID-19-induced cardiac sympathetic innervation impairment. Eur J Nucl Med Mol Imaging 2024; 51:604-605. [PMID: 37712995 DOI: 10.1007/s00259-023-06432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mengyan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, No. 127 West Changle Road, Xi'an, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
10
|
Pitton Rissardo J, Fornari Caprara AL. Cardiac 123I-Metaiodobenzylguanidine (MIBG) Scintigraphy in Parkinson's Disease: A Comprehensive Review. Brain Sci 2023; 13:1471. [PMID: 37891838 PMCID: PMC10605004 DOI: 10.3390/brainsci13101471] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/23/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiac sympathetic denervation, as documented on 123I-metaiodobenzylguanidine (MIBG) myocardial scintigraphy, is relatively sensitive and specific for distinguishing Parkinson's disease (PD) from other neurodegenerative causes of parkinsonism. The present study aims to comprehensively review the literature regarding the use of cardiac MIBG in PD. MIBG is an analog to norepinephrine. They share the same uptake, storage, and release mechanisms. An abnormal result in the cardiac MIBG uptake in individuals with parkinsonism can be an additional criterion for diagnosing PD. However, a normal result of cardiac MIBG in individuals with suspicious parkinsonian syndrome does not exclude the diagnosis of PD. The findings of cardiac MIBG studies contributed to elucidating the pathophysiology of PD. We investigated the sensitivity and specificity of cardiac MIBG scintigraphy in PD. A total of 54 studies with 3114 individuals diagnosed with PD were included. The data were described as means with a Hoehn and Yahr stage of 2.5 and early and delayed registration H/M ratios of 1.70 and 1.51, respectively. The mean cutoff for the early and delayed phases were 1.89 and 1.86. The sensitivity for the early and delayed phases was 0.81 and 0.83, respectively. The specificity for the early and delayed phases were 0.86 and 0.80, respectively.
Collapse
|
11
|
Grand-Guillaume J, Mansi R, Gaonkar RH, Zanger S, Fani M, Eugster PJ, Beck Popovic M, Grouzmann E, Abid K. CUDC-907, a dual PI3K/histone deacetylase inhibitor, increases meta-iodobenzylguanidine uptake ( 123/131I-mIBG) in vitro and in vivo: a promising candidate for advancing theranostics in neuroendocrine tumors. J Transl Med 2023; 21:604. [PMID: 37679770 PMCID: PMC10485979 DOI: 10.1186/s12967-023-04466-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB) and pheochromocytoma/paraganglioma (PHEO/PGL) are neuroendocrine tumors. Imaging of these neoplasms is performed by scintigraphy after injection of radiolabeled meta-iodobenzylguanidine (mIBG), a norepinephrine analog taken up by tumoral cells through monoamine transporters. The pharmacological induction of these transporters is a promising approach to improve the imaging and therapy (theranostics) of these tumors. METHODS Transporters involved in mIBG internalization were identified by using transfected Human Embryonic Kidney (HEK) cells. Histone deacetylase inhibitors (HDACi) and inhibitors of the PI3K/AKT/mTOR pathway were tested in cell lines to study their effect on mIBG internalization. Studies in xenografted mice were performed to assess the effect of the most promising HDACi on 123I-mIBG uptake. RESULTS Transfected HEK cells demonstrated that the norepinephrine and dopamine transporter (NET and DAT) avidly internalizes mIBG. Sodium-4-phenylbutyrate (an HDACi), CUDC-907 (a dual HDACi and PI3K inhibitor), BGT226 (a PI3K inhibitor) and VS-5584 and rapamycin (two inhibitors of mTOR) increased mIBG internalization in a neuroblastoma cell line (IGR-NB8) by 2.9-, 2.1-, 2.5-, 1.5- and 1.3-fold, respectively, compared with untreated cells. CUDC-907 also increased mIBG internalization in two other NB cell lines and in one PHEO cell line. We demonstrated that mIBG internalization occurs primarily through the NET. In xenografted mice with IGR-NB8 cells, oral treatment with 5 mg/kg of CUDC-907 increased the tumor uptake of 123I-mIBG by 2.3- and 1.9-fold at 4 and 24 h post-injection, respectively, compared to the untreated group. CONCLUSIONS Upregulation of the NET by CUDC-907 lead to a better internalization of mIBG in vitro and in vivo.
Collapse
Affiliation(s)
- Joana Grand-Guillaume
- Catecholamine and Peptides Laboratory, Service of Clinical Pharmacology and Toxicology, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, 4031, Basel, Switzerland
| | - Raghuvir H Gaonkar
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, 4031, Basel, Switzerland
| | - Sandra Zanger
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, 4031, Basel, Switzerland
| | - Melpomeni Fani
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, 4031, Basel, Switzerland
| | - Philippe J Eugster
- Catecholamine and Peptides Laboratory, Service of Clinical Pharmacology and Toxicology, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - Maja Beck Popovic
- Pediatric Hematology-Oncology Unit, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eric Grouzmann
- Catecholamine and Peptides Laboratory, Service of Clinical Pharmacology and Toxicology, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland
| | - Karim Abid
- Catecholamine and Peptides Laboratory, Service of Clinical Pharmacology and Toxicology, Lausanne University Hospital and University of Lausanne, 1011, Lausanne, Switzerland.
| |
Collapse
|
12
|
Wang P, Li T, Liu Z, Jin M, Su Y, Zhang J, Jing H, Zhuang H, Li F. [ 18F]MFBG PET/CT outperforming [ 123I]MIBG SPECT/CT in the evaluation of neuroblastoma. Eur J Nucl Med Mol Imaging 2023; 50:3097-3106. [PMID: 37160439 DOI: 10.1007/s00259-023-06221-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/02/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE Iodine 123 labeled meta-iodobenzylguanidine ([123I]MIBG) scan with SPECT/CT imaging is one of the most commonly used imaging modalities in the evaluation of neuroblastoma. [18F]-meta-fluorobenzylguanidine ([18F]MFBG) is a novel positron emission tomography (PET) tracer which was reported to have a similar biodistribution to [123I]MIBG. However, the experience of using [18F]MFBG PET/CT in the evaluation of patients with neuroblastoma is limited. This preliminary investigation aims to assess the efficacy of [18F]MFBG PET/CT in the evaluation of neuroblastomas in comparison to [123I]MIBG scans with SPECT/CT. MATERIALS AND METHODS In this prospective, single-center study, 40 participants (mean age 6.0 ± 3.7 years) with history of neuroblastoma were enrolled. All children underwent both [123I]MIBG SPECT/CT and [18F]MFBG PET/CT studies. The number of lesions and the Curie scores revealed by each imaging method were recorded. RESULTS Six patients had negative findings on both [123I]MIBG and [18F]MFBG studies. Four of the 34 patients (11.8%) were negative on [123I]MIBG but positive on [18F]MFBG, while 30 patients were positive on both [123I]MIBG and [18F]MFBG studies. In these 34 patients, [18F]MFBG PET/CT identified 784 lesions while [123I]MIBG SPECT/CT detected 532 lesions (p < 0.001). The Curie scores obtained from [18F]MFBG PET/CT (11.32 ± 8.18, range 1-27) were statistically higher (p < 0.001) than those from [123I]MIBG SPECT/CT (7.74 ± 7.52, range 0-26). 30 of 34 patients (88.2%) with active disease on imaging had higher Curie scores based on the [18F]MFBG study than on the [123I]MIBG imaging. CONCLUSION [18F]MFBG PET/CT shows higher lesion detection rate than [123I]MIBG SPECT/CT in the evaluation of pediatric patients with neuroblastoma. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov : NCT05069220 (Registered: 25 September 2021, retrospectively registered); Institute Review Board of Peking Union Medical College Hospital: ZS-2514.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China
| | - Tuo Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China
| | - Zhikai Liu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, People's Republic of China
| | - Mei Jin
- Department of Medical Oncology, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yan Su
- Department of Medical Oncology, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China.
| | - Jingjing Zhang
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hongli Jing
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China.
| | - Hongming Zhuang
- Department of Radiology, Children's Hospital of Philadelphia University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China.
| |
Collapse
|
13
|
Anagnostakis F, Kokkorakis M, Markouli M, Piperi C. Impact of Solute Carrier Transporters in Glioma Pathology: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24119393. [PMID: 37298344 DOI: 10.3390/ijms24119393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Solute carriers (SLCs) are essential for brain physiology and homeostasis due to their role in transporting necessary substances across cell membranes. There is an increasing need to further unravel their pathophysiological implications since they have been proposed to play a pivotal role in brain tumor development, progression, and the formation of the tumor microenvironment (TME) through the upregulation and downregulation of various amino acid transporters. Due to their implication in malignancy and tumor progression, SLCs are currently positioned at the center of novel pharmacological targeting strategies and drug development. In this review, we discuss the key structural and functional characteristics of the main SLC family members involved in glioma pathogenesis, along with their potential targeting options to provide new opportunities for CNS drug design and more effective glioma management.
Collapse
Affiliation(s)
- Filippos Anagnostakis
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Michail Kokkorakis
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
14
|
Eid M, Foukal J, Sochorová D, Tuček Š, Starý K, Kala Z, Mayer J, Němeček R, Trna J, Kunovský L. Management of pheochromocytomas and paragangliomas: Review of current diagnosis and treatment options. Cancer Med 2023. [PMID: 37145019 DOI: 10.1002/cam4.6010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Pheochromocytomas (PCCs) are rare neuroendocrine tumors derived from the chromaffin cells of the adrenal medulla. When these tumors have an extra-adrenal location, they are called paragangliomas (PGLs) and arise from sympathetic and parasympathetic ganglia, particularly of the para-aortic location. Up to 25% of PCCs/PGLs are associated with inherited genetic disorders. The majority of PCCs/PGLs exhibit indolent behavior. However, according to their affiliation to molecular clusters based on underlying genetic aberrations, their tumorigenesis, location, clinical symptomatology, and potential to metastasize are heterogenous. Thus, PCCs/PGLs are often associated with diagnostic difficulties. In recent years, extensive research revealed a broad genetic background and multiple signaling pathways leading to tumor development. Along with this, the diagnostic and therapeutic options were also expanded. In this review, we focus on the current knowledge and recent advancements in the diagnosis and treatment of PCCs/PGLs with respect to the underlying gene alterations while also discussing future perspectives in this field.
Collapse
Affiliation(s)
- Michal Eid
- Department of Hematology, Oncology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jakub Foukal
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dana Sochorová
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Štěpán Tuček
- Department of Hematology, Oncology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karel Starý
- Department of Gastroenterology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdeněk Kala
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Mayer
- Department of Hematology, Oncology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radim Němeček
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Trna
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lumír Kunovský
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Gastroenterology and Digestive Endoscopy, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- 2nd Department of Internal Medicine - Gastroenterology and Geriatrics, University Hospital Olomouc, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
15
|
[ 18F] MFBG PET imaging: biodistribution, pharmacokinetics, and comparison with [ 123I] MIBG in neural crest tumour patients. Eur J Nucl Med Mol Imaging 2023; 50:1134-1145. [PMID: 36435928 DOI: 10.1007/s00259-022-06046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/13/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Despite its limitations, [123I]MIBG scintigraphy has been the standard for human norepinephrine transporter (hNET) imaging for several decades. Recently, [18F]MFBG has emerged as a promising PET alternative. This prospective trial aimed to evaluate safety, biodistribution, tumour lesion pharmacokinetics, and lesion targeting of [18F]MFBG and perform a head-to-head comparison with [123I]MIBG in neural crest tumour patients. METHODS Six neural crest tumour patients (4 phaeochromocytoma, 1 paraganglioma, 1 neuroblastoma) with a recent routine clinical [123I]MIBG scintigraphy (interval: - 37-75 days) were included. Adult patients (n = 5) underwent a 30-min dynamic PET, followed by 3 whole-body PET/CT scans at 60, 120, and 180 min after injection of 4 MBq/kg [18F]MFBG. One minor participant underwent a single whole-body PET/CT at 60 min after administration of 2 MBq/kg [18F]MFBG. Normal organ uptake (SUVmean) and lesion uptake (SUVmax; tumour-to-background ratio (TBR)) were measured. Regional distribution volumes (VT) were estimated using a Logan graphical analysis in up to 6 lesions per patient. A lesion-by-lesion analysis was performed to compare detection ratios (DR), i.e. fraction of detected lesions, between [18F]MFBG and [123I]MIBG. RESULTS [18F]MFBG was safe and well tolerated. Its biodistribution was overall similar to that of [123I]MIBG, with prominent uptake in the salivary glands, liver, left ventricle wall and adrenals, and mainly urinary excretion. In the phaeochromocytoma subgroup, the median VT was 37.4 mL/cm3 (range: 18.0-144.8) with an excellent correlation between VT and SUVmean at all 3 time points (R2: 0.92-0.94). Mean lesion SUVmax and TBR at 1 h after injection were 19.3 ± 10.7 and 23.6 ± 8.4, respectively. All lesions detected with [123I]MIBG were also observed with [18F]MFBG. The mean DR with [123I]MIBG was significantly lower than with [18F]MFBG (61.0% ± 26.7% vs. 99.8% ± 0.5% at 1 h; p = 0.043). CONCLUSION [18F]MFBG is a promising hNET imaging agent with favourable imaging characteristics and improved lesion targeting compared with [123I]MIBG scintigraphy. TRIAL REGISTRATION Clinicaltrials.gov : NCT04258592 (Registered: 06 February 2020), EudraCT: 2019-003872-37A.
Collapse
|
16
|
Comparison of 18 F-MFBG and 68 Ga-DOTATATE PET/CT in the Imaging of Metastatic Paraganglioma and Pheochromocytoma. Clin Nucl Med 2022; 47:e735-e737. [PMID: 35777982 DOI: 10.1097/rlu.0000000000004314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT Two men with metastatic paraganglioma/pheochromocytoma underwent PET/CT examination in our hospital to understand the treatment effect and progression of the disease. Both patients had previously been treated with 131 I-MIBG, and at this evaluation, both of them underwent 68 Ga-DOTATATE and 18 F-MFBG PET/CT. The 68 Ga-DOTATATE PET/CT showed more metastases in the images of these 2 patients. This case highlighted that 68 Ga-DOTATATE PET/CT is superior to 18 F-MFBG PET/CT in detecting metastases from paraganglioma and pheochromocytoma in these 2 patients.
Collapse
|
17
|
Future Prospective of Radiopharmaceuticals from Natural Compounds Using Iodine Radioisotopes as Theranostic Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228009. [PMID: 36432107 PMCID: PMC9694974 DOI: 10.3390/molecules27228009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
Natural compounds provide precursors with various pharmacological activities and play an important role in discovering new chemical entities, including radiopharmaceuticals. In the development of new radiopharmaceuticals, iodine radioisotopes are widely used and interact with complex compounds including natural products. However, the development of radiopharmaceuticals from natural compounds with iodine radioisotopes has not been widely explored. This review summarizes the development of radiopharmaceuticals from natural compounds using iodine radioisotopes in the last 10 years, as well as discusses the challenges and strategies to improve future discovery of radiopharmaceuticals from natural resources. Literature research was conducted via PubMed, from which 32 research articles related to the development of natural compounds labeled with iodine radioisotopes were reported. From the literature, the challenges in developing radiopharmaceuticals from natural compounds were the purity and biodistribution. Despite the challenges, the development of radiopharmaceuticals from natural compounds is a golden opportunity for nuclear medicine advancement.
Collapse
|
18
|
Espinosa-Cotton M, Cheung NKV. Bispecific antibodies for the treatment of neuroblastoma. Pharmacol Ther 2022; 237:108241. [PMID: 35830901 PMCID: PMC10351215 DOI: 10.1016/j.pharmthera.2022.108241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Bispecific antibodies (BsAb) are a new generation of antibody-based therapy, conveying artificial specificity to polyclonal T cells or radiohaptens. These drugs have been successfully implemented to cure hematologic malignancies and are under clinical investigation for solid tumors including HRNB. BsAbs designed to engage T cells or increase the therapeutic index of radiotherapy hold the potential to significantly improve the long-term survival of HRNB patients by shrinking bulky tumors and more effectively eliminating micrometastases and preventing relapse. BsAbs can also be used to arm T cells, yielding a product analogous to CAR T cells, possibly with an improved safety profile. A thoughtful and realistic integration of these therapies into the standard of care should benefit more patients worldwide. Here we describe the history of development of BsAbs for HRNB, which dates back almost three decades. We discuss the merits and pitfalls of all relevant BsAbs, including T cell-engagers and agents used for radioimmunotherapy, highlighting the importance of structural design and interdomain spacing for anti-tumor efficacy.
Collapse
Affiliation(s)
- Madelyn Espinosa-Cotton
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY 10065, New York.
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY 10065, New York
| |
Collapse
|
19
|
Huang Y, He Z, Manyande A, Feng M, Xiang H. Nerve regeneration in transplanted organs and tracer imaging studies: A review. Front Bioeng Biotechnol 2022; 10:966138. [PMID: 36051591 PMCID: PMC9424764 DOI: 10.3389/fbioe.2022.966138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
The technique of organ transplantation is well established and after transplantation the patient might be faced with the problem of nerve regeneration of the transplanted organ. Transplanted organs are innervated by the sympathetic, parasympathetic, and visceral sensory plexuses, but there is a lack of clarity regarding the neural influences on the heart, liver and kidneys and the mechanisms of their innervation. Although there has been considerable recent work exploring the potential mechanisms of nerve regeneration in organ transplantation, there remains much that is unknown about the heterogeneity and individual variability in the reinnervation of organ transplantation. The widespread availability of radioactive nerve tracers has also made a significant contribution to organ transplantation and has helped to investigate nerve recovery after transplantation, as well as providing a direction for future organ transplantation research. In this review we focused on neural tracer imaging techniques in humans and provide some conceptual insights into theories that can effectively support our choice of radionuclide tracers. This also facilitates the development of nuclear medicine techniques and promotes the development of modern medical technologies and computer tools. We described the knowledge of neural regeneration after heart transplantation, liver transplantation and kidney transplantation and apply them to various imaging techniques to quantify the uptake of radionuclide tracers to assess the prognosis of organ transplantation. We noted that the aim of this review is both to provide clinicians and nuclear medicine researchers with theories and insights into nerve regeneration in organ transplantation and to advance imaging techniques and radiotracers as a major step forward in clinical research. Moreover, we aimed to further promote the clinical and research applications of imaging techniques and provide clinicians and research technology developers with the theory and knowledge of the nerve.
Collapse
Affiliation(s)
- Yan Huang
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Interventional Therapy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhigang He
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, United Kingdom
| | - Maohui Feng
- Department of Gastrointestinal Surgery, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
- *Correspondence: Maohui Feng, ; Hongbing Xiang,
| | - Hongbing Xiang
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Maohui Feng, ; Hongbing Xiang,
| |
Collapse
|
20
|
Muros MA, Aroui T, Rivas-Navas D, Fernandez-Fernadez J. Integration of molecular imaging in the personalized approach to neuroendocrine tumors. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:116-129. [PMID: 35238519 DOI: 10.23736/s1824-4785.22.03431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
NETs lesions can be difficult to characterize with conventional anatomic imaging (CT and MRI). Functional imaging techniques, and especially PET imaging, are very useful for detecting small neuroendocrine tumors that would not be seen with other techniques. The role of nuclear medicine in the localization, staging, restaging, treatment and monitoring of neuroendocrine tumors (NETs) has become progressively more relevant due to: the availability of tracers on new targets, tracers for positron emission tomography (PET); the development of cyclotrons and generators that allow this availability; as well as to hybrid systems (SPECT/CT, PET/CT and PET/MRI) that, by joining the functional and anatomical image, improve the quality of the images. Teragnosis, a new emerging therapy, in NET used receptor-mediated or nonreceptor- mediated mechanism to facilitate penetration and high-affinity binding between the radiopharmaceutical and the tumor cell. Teragnosis offers the possibility of personalized targeted radionuclide therapy.
Collapse
Affiliation(s)
- Maria A Muros
- Department of Nuclear Medicine, Virgen de las Nieves Hospital, Granada, Spain -
| | - Tarik Aroui
- Department of Nuclear Medicine, Virgen de las Nieves Hospital, Granada, Spain
| | - Daniel Rivas-Navas
- Department of Nuclear Medicine, Virgen de las Nieves Hospital, Granada, Spain
| | | |
Collapse
|
21
|
Abstract
In recent years, cancer care has been transformed by immune-based and targeted treatments. Although these treatments are effective against various solid organ malignancies, multiple adverse effects can occur, including thyroid dysfunction. In this review, the authors consider treatments for solid organ cancers that affect the thyroid, focusing on immune checkpoint inhibitors, kinase inhibitors, and radioactive iodine-conjugated treatments (I-131-metaiodobenzylguanidine). They discuss the mechanisms causing thyroid dysfunction, provide a framework for their diagnosis and management, and explore the association of thyroid dysfunction from these agents with patient survival.
Collapse
Affiliation(s)
- Anupam Kotwal
- Division of Diabetes, Endocrinology and Metabolism, Department of Internal Medicine, University of Nebraska Medical Center, 984120 Nebraska Medical Center, Omaha, NE 68198, USA. https://twitter.com/DrAKotwal
| | - Donald S A McLeod
- Department of Endocrinology and Diabetes, Royal Brisbane and Women's Hospital, Butterfield Street, Herston, Queensland 4029, Australia; Population Health Department, QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital, Queensland 4029, Australia.
| |
Collapse
|
22
|
Wang J, Si R, Zhang Q, Lu W, Zhang J. Discovery of Imaging and Therapeutic Integration Bifunctional Molecules Based on Bio-Orthogonal Reaction and Releasable Disulfide Bond. Bioconjug Chem 2022; 33:918-928. [PMID: 35504859 DOI: 10.1021/acs.bioconjchem.2c00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The application of conventional fluorescent probes in living cells has been limited by excess fluorescence interference, reduced selectivity, and poor permeability. Herein, we describe a convenient solution for overcoming the above limitations based on bio-orthogonal reactions and releasable linkers that provide bifunctional molecules for imaging and therapeutic integration. To reduce the interference of excess fluorescent moieties, a bio-orthogonal reaction was applied to activate the fluorescence of the active parent drugs without fluorophores. Moreover, disulfide bonds were incorporated as releasable linkers. After imaging the target protein, the newly yielded fluorophore could be released from the active drugs based on the highly reducing conditions of the tumor. Thus, these bifunctional molecules are comparable in therapeutic activity to the parent drug. These novel imaging and therapeutic integration molecules could be used to realize imaging-aided diagnosis and perform efficient real-time monitoring of cancer cells. Our findings are expected to enable efficient and specific imaging and real-time in vivo prognostic monitoring in the clinic.
Collapse
Affiliation(s)
- Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Ru Si
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Qingqing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Wen Lu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P. R. China
| |
Collapse
|
23
|
Mahajan S, Pandit-Taskar N. Imaging in malignant adrenal cancers. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
24
|
Theranostic radiopharmacy for the nuclear medicine and molecular imaging. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Burak Z. Radionuclide Therapy in Neuroectodermal Tumors. RADIONUCLIDE THERAPY 2022:199-222. [DOI: 10.1007/978-3-030-97220-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Heart diseases (autonomic dysfunctions)—Myocardial innervation imaging: 123I-MIBG planar scintigraphy and SPECT. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Rufini V, Triumbari EKA, Garganese MC. Imaging adrenal medulla. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
28
|
Barca C, Griessinger CM, Faust A, Depke D, Essler M, Windhorst AD, Devoogdt N, Brindle KM, Schäfers M, Zinnhardt B, Jacobs AH. Expanding Theranostic Radiopharmaceuticals for Tumor Diagnosis and Therapy. Pharmaceuticals (Basel) 2021; 15:13. [PMID: 35056071 PMCID: PMC8780589 DOI: 10.3390/ph15010013] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
Radioligand theranostics (RT) in oncology use cancer-type specific biomarkers and molecular imaging (MI), including positron emission tomography (PET), single-photon emission computed tomography (SPECT) and planar scintigraphy, for patient diagnosis, therapy, and personalized management. While the definition of theranostics was initially restricted to a single compound allowing visualization and therapy simultaneously, the concept has been widened with the development of theranostic pairs and the combination of nuclear medicine with different types of cancer therapies. Here, we review the clinical applications of different theranostic radiopharmaceuticals in managing different tumor types (differentiated thyroid, neuroendocrine prostate, and breast cancer) that support the combination of innovative oncological therapies such as gene and cell-based therapies with RT.
Collapse
Affiliation(s)
- Cristina Barca
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
| | - Christoph M. Griessinger
- Roche Innovation Center, Early Clinical Development Oncology, Roche Pharmaceutical Research and Early Development, CH-4070 Basel, Switzerland;
| | - Andreas Faust
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Nuclear Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Dominic Depke
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, D-53127 Bonn, Germany;
| | - Albert D. Windhorst
- Department Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands;
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, B-1090 Brussel, Belgium;
| | - Kevin M. Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 ORE, UK;
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Nuclear Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Nuclear Medicine, University Hospital Münster, D-48149 Münster, Germany
- Biomarkers and Translational Technologies, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Andreas H. Jacobs
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Geriatrics and Neurology, Johanniter Hospital, D-53113 Bonn, Germany
- Centre of Integrated Oncology, University Hospital Bonn, D-53127 Bonn, Germany
| |
Collapse
|
29
|
Overlap and Specificity in the Substrate Spectra of Human Monoamine Transporters and Organic Cation Transporters 1, 2, and 3. Int J Mol Sci 2021; 22:ijms222312816. [PMID: 34884618 PMCID: PMC8657982 DOI: 10.3390/ijms222312816] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022] Open
Abstract
Human monoamine transporters (MATs) are cation transporters critically involved in neuronal signal transmission. While inhibitors of MATs have been intensively studied, their substrate spectra have received far less attention. Polyspecific organic cation transporters (OCTs), predominantly known for their role in hepatic and renal drug elimination, are also expressed in the central nervous system and might modulate monoaminergic signaling. Using HEK293 cells overexpressing MATs or OCTs, we compared uptake of 48 compounds, mainly phenethylamine and tryptamine derivatives including matched molecular pairs, across noradrenaline, dopamine and serotonin transporters and OCTs (1, 2, and 3). Generally, MATs showed surprisingly high transport activities for numerous analogs of neurotransmitters, but their substrate spectra were limited by molar mass. Human OCT2 showed the broadest substrate spectrum, and also the highest overlap with MATs substrates. Comparative kinetic analyses revealed that the radiotracer meta-iodobenzylguanidine had the most balanced uptake across all six transporters. Matched molecular pair analyses comparing MAT and OCT uptake using the same methodology could provide a better understanding of structural determinants for high cell uptake by MATs or OCTs. The data may result in a better understanding of pharmacokinetics and toxicokinetics of small molecular organic cations and, possibly, in the development of more specific radiotracers for MATs.
Collapse
|
30
|
Combination Therapies with PRRT. Pharmaceuticals (Basel) 2021; 14:ph14101005. [PMID: 34681229 PMCID: PMC8538931 DOI: 10.3390/ph14101005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) is a successful targeted radionuclide therapy in neuroendocrine tumors (NETs). However, complete responses remain elusive. Combined treatments anticipate synergistic effects and thus better responses by combining ionizing radiation with other anti-tumor treatments. Furthermore, multimodal therapies often have a balanced toxicity profile. To date, few studies have evaluated the effect of combination therapies with PRRT, some of them phase I/II trials. This review will focus on several clinically tested, tailored approaches to improving the effects of PRRT. The aim is to help clinicians in the treatment planning of NETs to choose the most effective and safe treatment for each patient in the sense of personalized medicine. Current promising combination partners of PRRT are somatostatin analogues (SSAs), chemotherapy, molecular targeted treatment, liver radioembolization, and dual radionuclide PRRT (Lutetium-177-PRRT combined with Yttrium-90-PRRT).
Collapse
|
31
|
Vahidfar N, Eppard E, Farzanehfar S, Yordanova A, Fallahpoor M, Ahmadzadehfar H. An Impressive Approach in Nuclear Medicine: Theranostics. PET Clin 2021; 16:327-340. [PMID: 34053577 DOI: 10.1016/j.cpet.2021.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Radiometal-based theranostics or theragnostics, first used in the early 2000s, is the combined application of diagnostic and therapeutic agents that target the same molecule, and represents a considerable advancement in nuclear medicine. One of the promising fields related to theranostics is radioligand therapy. For instance, the concepts of targeting the prostate-specific membrane antigen (PSMA) for imaging and therapy in prostate cancer, or somatostatin receptor targeted imaging and therapy in neuroendocrine tumors (NETs) are part of the field of theranostics. Combining targeted imaging and therapy can improve prognostication, therapeutic decision-making, and monitoring of the therapy.
Collapse
Affiliation(s)
- Nasim Vahidfar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Elisabeth Eppard
- Positronpharma SA, Santiago, Chile; Department of Nuclear Medicine, University Hospital Magdeburg, Germany
| | - Saeed Farzanehfar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Fallahpoor
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
32
|
Kowalska M, Fijałkowski Ł, Nowaczyk A. Assessment of Paroxetine Molecular Interactions with Selected Monoamine and γ-Aminobutyric Acid Transporters. Int J Mol Sci 2021; 22:6293. [PMID: 34208199 PMCID: PMC8230779 DOI: 10.3390/ijms22126293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Thus far, many hypotheses have been proposed explaining the cause of depression. Among the most popular of these are: monoamine, neurogenesis, neurobiology, inflammation and stress hypotheses. Many studies have proven that neurogenesis in the brains of adult mammals occurs throughout life. The generation of new neurons persists throughout adulthood in the mammalian brain due to the proliferation and differentiation of adult neural stem cells. For this reason, the search for drugs acting in this mechanism seems to be a priority for modern pharmacotherapy. Paroxetine is one of the most commonly used antidepressants. However, the exact mechanism of its action is not fully understood. The fact that the therapeutic effect after the administration of paroxetine occurs after a few weeks, even if the levels of monoamine are rapidly increased (within a few minutes), allows us to assume a neurogenic mechanism of action. Due to the confirmed dependence of depression on serotonin, norepinephrine, dopamine and γ-aminobutyric acid levels, studies have been undertaken into paroxetine interactions with these primary neurotransmitters using in silico and in vitro methods. We confirmed that paroxetine interacts most strongly with monoamine transporters and shows some interaction with γ-aminobutyric acid transporters. However, studies of the potency inhibitors and binding affinity values indicate that the neurogenic mechanism of paroxetine's action may be determined mainly by its interactions with serotonin transporters.
Collapse
Affiliation(s)
| | | | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland; (M.K.); (Ł.F.)
| |
Collapse
|
33
|
Sijben HJ, van Oostveen WM, Hartog PBR, Stucchi L, Rossignoli A, Maresca G, Scarabottolo L, IJzerman AP, Heitman LH. Label-free high-throughput screening assay for the identification of norepinephrine transporter (NET/SLC6A2) inhibitors. Sci Rep 2021; 11:12290. [PMID: 34112854 PMCID: PMC8192900 DOI: 10.1038/s41598-021-91700-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
The human norepinephrine transporter (NET) is an established drug target for a wide range of psychiatric disorders. Conventional methods that are used to functionally characterize NET inhibitors are based on the use of radiolabeled or fluorescent substrates. These methods are highly informative, but pose limitations to either high-throughput screening (HTS) adaptation or physiologically accurate representation of the endogenous uptake events. Recently, we developed a label-free functional assay based on the activation of G protein-coupled receptors by a transported substrate, termed the TRACT assay. In this study, the TRACT assay technology was applied to NET expressed in a doxycycline-inducible HEK 293 JumpIn cell line. Three endogenous substrates of NET-norepinephrine (NE), dopamine (DA) and epinephrine (EP)-were compared in the characterization of the reference NET inhibitor nisoxetine. The resulting assay, using NE as a substrate, was validated in a manual HTS set-up with a Z' = 0.55. The inhibitory potencies of several reported NET inhibitors from the TRACT assay showed positive correlation with those from an established fluorescent substrate uptake assay. These findings demonstrate the suitability of the TRACT assay for HTS characterization and screening of NET inhibitors and provide a basis for investigation of other solute carrier transporters with label-free biosensors.
Collapse
Affiliation(s)
- Hubert J Sijben
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Wieke M van Oostveen
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Peter B R Hartog
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Laura Stucchi
- Axxam S.p.A, Openzone Science Park, Bresso, Milan, Italy
| | | | | | | | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, LACDR, Leiden University, P.O. Box 9502, 2300RA, Leiden, The Netherlands.
- Oncode Institute, Leiden, The Netherlands.
| |
Collapse
|
34
|
Initial Evaluation of AF78: a Rationally Designed Fluorine-18-Labelled PET Radiotracer Targeting Norepinephrine Transporter. Mol Imaging Biol 2021; 22:602-611. [PMID: 31332629 PMCID: PMC7250802 DOI: 10.1007/s11307-019-01407-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose Taking full advantage of positron emission tomography (PET) technology, fluorine-18-labelled radiotracers targeting norepinephrine transporter (NET) have potential applications in the diagnosis and assessment of cardiac sympathetic nerve conditions as well as the delineation of neuroendocrine tumours. However, to date, none have been used clinically. Drawbacks of currently reported radiotracers include suboptimal kinetics and challenging radiolabelling procedures. Procedures We developed a novel fluorine-18-labelled radiotracer targeting NET, AF78, with efficient one-step radiolabelling based on the phenethylguanidine structure. Radiosynthesis of AF78 was undertaken, followed by validation in cell uptake studies, autoradiography, and in vivo imaging in rats. Results [18F]AF78 was successfully synthesized with 27.9 ± 3.1 % radiochemical yield, > 97 % radiochemical purity and > 53.8 GBq/mmol molar activity. Cell uptake studies demonstrated essentially identical affinity for NET as norepinephrine and meta-iodobenzylgaunidine. Both ex vivo autoradiography and in vivo imaging in rats showed homogeneous and specific cardiac uptake. Conclusions The new PET radiotracer [18F]AF78 demonstrated high affinity for NET and favourable biodistribution in rats. A structure-activity relationship between radiotracer structures and affinity for NET was revealed, which may serve as the basis for the further design of NET targeting radiotracers with favourable features. Electronic supplementary material The online version of this article (10.1007/s11307-019-01407-5) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Bhoopathi P, Mannangatti P, Emdad L, Das SK, Fisher PB. The quest to develop an effective therapy for neuroblastoma. J Cell Physiol 2021; 236:7775-7791. [PMID: 33834508 DOI: 10.1002/jcp.30384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/27/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
Neuroblastoma (NB) is a common solid extracranial tumor developing in pediatric populations. NB can spontaneously regress or grow and metastasize displaying resistance to therapy. This tumor is derived from primitive cells, mainly those of the neural crest, in the sympathetic nervous system and usually develops in the adrenal medulla and paraspinal ganglia. Our understanding of the molecular characteristics of human NBs continues to advance documenting abnormalities at the genome, epigenome, and transcriptome levels. The high-risk tumors have MYCN oncogene amplification, and the MYCN transcriptional regulator encoded by the MYCN oncogene is highly expressed in the neural crest. Studies on the biology of NB has enabled a more precise risk stratification strategy and a concomitant reduction in the required treatment in an expanding number of cases worldwide. However, newer treatment strategies are mandated to improve outcomes in pediatric patients who are at high-risk and display relapse. To improve outcomes and survival rates in such high-risk patients, it is necessary to use a multicomponent therapeutic approach. Accuracy in clinical staging of the disease and assessment of the associated risks based on biological, clinical, surgical, and pathological criteria are of paramount importance for prognosis and to effectively plan therapeutic approaches. This review discusses the staging of NB and the biological and genetic features of the disease and several current therapies including targeted delivery of chemotherapy, novel radiation therapy, and immunotherapy for NB.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
36
|
Van Heerden J, Kruger M, Esterhuizen TM, Hendricks M, Du Plessis J, Engelbrecht G, Janse van Vuuren M, van Emmenes B, Uys R, Burger C, Nyakale N, More S, Brink A. The Association between Tumour Markers and Meta-iodobenzylguanidine Scans in South African Children with High-risk Neuroblastoma. Clin Oncol (R Coll Radiol) 2021; 33:517-526. [PMID: 33781675 DOI: 10.1016/j.clon.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
AIMS Diagnostic and post-induction 123I-meta-iodobenzylguanidine (123I-mIBG) scans have prognostic significance in the treatment of neuroblastoma, but data from low- and middle-income countries are limited due to resource constraints. The aim of this study was to determine the association between neuroblastoma-associated tumour markers (lactate dehydrogenase [LDH], ferritin and MYCN amplification) and 123I-mIBG scans (modified Curie scores and metastatic disease patterns) in predicting complete metastatic response rates (mCR) and overall survival. MATERIALS AND METHODS Two hundred and ninety patients diagnosed with high-risk neuroblastoma in South Africa between January 2000 and May 2018 and a subanalysis of 78 patients with diagnostic 123I-mIBG scans were included. Data collection included LDH, ferritin and MYCN amplification at diagnosis. Two nuclear physicians independently determined the modified Curie scores and pattern of distribution for each diagnostic and post-induction 123I-mIBG scans with high inter-rater agreement (r = 0.952) and reliability (K = 0.805). The cut-off values for the diagnostic and post-induction modified Curie scores of ≥7.0 (P = 0.026) and 3 (P = 0.009), respectively, were generated. The association between the tumour markers and the modified Curie score of the 123I-mIBG scans was determined using post-induction mCR and 2-year overall survival. RESULTS Diagnostic LDH (P < 0.001), ferritin (P < 0.001) and the diagnostic modified Curie scores (P = 0.019) significantly predicted mCR. Only ferritin correlated with diagnostic modified Curie scores (P = 0.003) but had a low correlation coefficient of 0.353. On multivariable analysis, the only significant covariate for 2-year overall survival at diagnosis was LDH <750 U/l (P = 0.024). A post-induction chemotherapy modified Curie score ≤3.0 had a 2-year overall survival of 46.2% compared with 30.8% for a score >3.0 (P = 0.484). CONCLUSION LDH, ferritin and the diagnostic 123I-mIBG scans significantly predicted mCR, but only LDH predicted 2-year overall survival. Ferritin and the modified Curie scores correlated with each other. MYCN amplification neither correlated with any aspect of the 123I-mIBG scans nor significantly predicted mCR or 2-year overall survival. LDH and ferritin are therefore appropriate neuroblastoma tumour markers to be used in low- and middle-income countries with limited or no access to mIBG scans and/or MYCN amplification studies.
Collapse
Affiliation(s)
- J Van Heerden
- Paediatric Haematology and Oncology, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa; Paediatric Haematology and Oncology, Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium.
| | - M Kruger
- Paediatric Haematology and Oncology, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - T M Esterhuizen
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - M Hendricks
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of Cape Town, Paediatric Haematology and Oncology Service, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - J Du Plessis
- Department of Paediatrics, Faculty of Health Sciences, University of the Free State, Division of Paediatric Haematology and Oncology, Universitas Hospital, Bloemfontein, South Africa
| | - G Engelbrecht
- Department of Nuclear Medicine, University of the Free State, Universitas Hospital, Bloemfontein, South Africa
| | - M Janse van Vuuren
- Drs B Vorster and M Janse van Vuuren Incorporated, Nuclear Physicians, Bloemfontein, South Africa
| | - B van Emmenes
- Division of Paediatric Haematology and Oncology Hospital, Department of Paediatrics, Frere Hospital, East London, South Africa
| | - R Uys
- Paediatric Haematology and Oncology, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - C Burger
- Department of Nuclear Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - N Nyakale
- Department of Nuclear Medicine, Faculty of Health Sciences, University of KwaZulu-Natal, Inkosi Albert Luthuli Academic Hospital, Durban, South Africa
| | - S More
- Department of Paediatrics and Child Health, Division of Nuclear Medicine, Faculty of Health Sciences, University of Cape Town, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| | - A Brink
- Department of Paediatrics and Child Health, Division of Nuclear Medicine, Faculty of Health Sciences, University of Cape Town, Red Cross War Memorial Children's Hospital, Cape Town, South Africa
| |
Collapse
|
37
|
Chiba T, Takaguri A, Maeda T. Norepinephrine transporter expressed on mammary epithelial cells incorporates norepinephrine in milk into the cells. Biochem Biophys Res Commun 2021; 545:1-7. [PMID: 33529804 DOI: 10.1016/j.bbrc.2021.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
Mammary epithelial cells synthesize and secrete norepinephrine (NE) into breast milk to regulate β-casein expression through the adrenergic β2 receptor. We investigated the expression, localization, and roles of NE transporter (NET) in the mammary epithelium during lactation. mRNA and protein levels of NET were determined in primary normal human mammary epithelial cells (pHMECs) and non-malignant human mammary epithelial MCF-12A cells. In nursing CD1 mice, NET localized to the apical membranes of the mammary epithelium. The intracellular NE content of pHMECs incubated with NE increased. Although the β-casein concentration in milk was slightly higher at day 10 than at day 2 of lactation, the NE concentration and lactation-related proteins were only slightly changed on days 2-10. Restraint stress increased the NE concentration in milk from nursing mice and NET protein levels were significantly higher than in non-stressed nursing mice. NET is expressed on the apical membrane of mammary epithelial cells and incorporates NE in milk into cells, potentially regulating the NE concentration in milk.
Collapse
Affiliation(s)
- Takeshi Chiba
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1 Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, 006-8585, Japan; Creation Research Institute of Life Science in KITA-no-DAICHI, Hokkaido University of Science, 15-4-1 Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, 006-8585, Japan.
| | - Akira Takaguri
- Creation Research Institute of Life Science in KITA-no-DAICHI, Hokkaido University of Science, 15-4-1 Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, 006-8585, Japan; Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1 Maeda 7-jo, Teine-ku, Sapporo-shi, Hokkaido, 006-8585, Japan
| | - Tomoji Maeda
- Department of Clinical Pharmacology and Pharmaceutics, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0862, Japan
| |
Collapse
|
38
|
Dillon JS, Bushnell D, Laux DE. High-specific-activity 131iodine-metaiodobenzylguanidine for therapy of unresectable pheochromocytoma and paraganglioma. Future Oncol 2021; 17:1131-1141. [PMID: 33506713 DOI: 10.2217/fon-2020-0625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PPG) are rare cancers arising from the adrenal medulla (pheochromocytoma) or autonomic ganglia (paraganglioma). They have highly variable biological behavior. Most PPG express high-affinity norepinephrine transporters, allowing active uptake of the norepinephrine analog, 131iodine-metaiodobenzylguanidine (131I-MIBG). Low-specific-activity forms of 131I-MIBG have been used since 1983 for therapy of PPG. High-specific-activity 131I-MIBG therapy improves hypertension management, induces partial radiological response or stable disease, decreases biochemical markers of disease activity and is well tolerated by patients. This drug, approved in the USA in July 2018, is the first approved agent for patients with unresectable, locally advanced or metastatic PPG and imaging evidence of metaiodobenzylguanidine uptake, who require systemic anticancer therapy.
Collapse
Affiliation(s)
- Joseph S Dillon
- Division of Endocrinology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - David Bushnell
- Department of Radiology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Douglas E Laux
- Division of Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| |
Collapse
|
39
|
Shahzad K, Majid ASA, Khan M, Iqbal MA, Ali A. Recent advances in the synthesis of (99mTechnetium) based radio-pharmaceuticals. REV INORG CHEM 2021. [DOI: 10.1515/revic-2020-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Technetium radionuclide (99mTc) has excellent extent of disintegration properties and occupies a special place in the field of nuclear medicinal chemistry and other health disciplines. Current review describes recent approaches of synthesis in detailed ways for radio-pharmaceuticals of technetium which have been developed to treat and diagnose the biotic disorders. These technetium labeled radio-pharmaceuticals have been established to apply in the field of diagnostic nuclear medicine especially for imaging of different body parts such as brain, heart, kidney, bones and so on, through single photon emission computed tomography (SPECT) that is thought to be difficult to image such organs by using common X-ray and MRI (Magnetic Resonance Imaging) techniques. This review highlights and accounts an inclusive study on the various synthetic routes of technetium labeled radio-pharmaceuticals using ligands with various donor atoms such as carbon, nitrogen, sulphur, phosphorus etc. These compounds can be utilized as next generation radio-pharmaceuticals.
Collapse
Affiliation(s)
- Khurram Shahzad
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | | | - Mumtaz Khan
- Health Physics Division, Pakistan Institute of Nuclear Science and Technology , Islamabad , Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
- Organometallic and Coordination Chemistry Laboratory, University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Asjad Ali
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| |
Collapse
|
40
|
Pictorial review of the clinical applications of MIBG in neuroblastoma: current practices. Clin Transl Imaging 2020. [DOI: 10.1007/s40336-020-00392-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Kessler L, Schlitter AM, Krönke M, von Werder A, Tauber R, Maurer T, Robinson S, Orlandi C, Herz M, Yousefi BH, Nekolla SG, Schwaiger M, Eiber M, Rischpler C. First Experience Using 18F-Flubrobenguane PET Imaging in Patients with Suspected Pheochromocytoma or Paraganglioma. J Nucl Med 2020; 62:479-485. [PMID: 32859709 DOI: 10.2967/jnumed.120.248021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022] Open
Abstract
Pheochromocytomas and paragangliomas are a rare tumor entity originating from adrenomedullary chromaffin cells in the adrenal medulla or in sympathetic, paravertebral ganglia outside the medulla. Small lesions are especially difficult to detect by conventional CT or MRI and even by SPECT with the currently available radiotracers (e.g., metaiodobenzylguanidine [MIBG]). The novel PET radiotracer 18F-flubrobenguane could change the diagnostic paradigm in suspected pheochromocytomas and paragangliomas because of its homology with MIBG and the general advantages of PET imaging. The aim of this retrospective analysis was to evaluate 18F-flubrobenguane in pheochromocytomas and paragangliomas and to investigate the biodistribution in patients. Methods: Twenty-three patients with suspected pheochromocytoma or paraganglioma underwent PET/CT or PET/MRI at 63 ± 24 min after injection of 256 ± 33 MBq of 18F-flubrobenguane. The SUVmean and SUVmax of organs were measured with spheric volumes of interest. Threshold-segmented volumes of interest were used to measure the SUVmean or SUVmax of the tumor lesions. One reader evaluated all cross-sectional imaging datasets (CT or MRI) separately, as well as the PET hybrid datasets, and reported the lesion number and size. The diagnostic certainty for a positive lesion was scored on a 3-point scale. Results: 18F-flubrobenguane showed a reproducible, stable biodistribution, with the highest SUVmax and SUVmean being in the thyroid gland (30.3 ± 2.2 and 22.5 ± 1.6, respectively), pancreas (12.2 ± 0.8 and 9.5 ± 0.7, respectively), and tumor lesions (16.8 ± 1.7 and 10.1 ± 1.1, respectively) and the lowest SUVmax and SUVmean being in muscle (1.1 ± 0.06 and 0.7 ± 0.04, respectively) and the lung (2.5 ± 0.17 and 1.85 ± 0.13, respectively). In a subgroup analysis, a significantly higher average SUVmean was seen for both pheochromocytoma and paraganglioma than for healthy adrenal glands (11.9 ± 2.0 vs. 9.9 ± 1.5 vs. 3.7 ± 0.2, respectively). In total, 47 lesions were detected. The reader reported more and smaller lesions with higher certainty in PET hybrid imaging than in conventional imaging; however, statistical significance was not reached. Of the 23 (23/47, 49%) lesions smaller than 1 cm, 61% (14/23) were found on hybrid imaging only. Conclusion: Our preliminary data suggest 18F-flubrobenguane PET to be a new, effective staging tool for patients with suspected pheochromocytoma or paraganglioma. Major advantages are the fast acquisition and high spatial resolution of PET imaging and the intense uptake in tumor lesions, facilitating detection. Further studies are warranted to define the role of 18F-flubrobenguane PET, particularly in comparison to standard diagnostic procedures such as MRI or 123I-MIBG SPECT/CT.
Collapse
Affiliation(s)
- Lukas Kessler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna M Schlitter
- Institute of Pathology, Technical University Munich, Munich, Germany
| | - Markus Krönke
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexander von Werder
- Department of Gastroenterology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Robert Tauber
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tobias Maurer
- Department of Urology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Simon Robinson
- Discovery Research, Lantheus Medical Imaging, North Billerica, Massachusetts; and
| | - Cesare Orlandi
- Discovery Research, Lantheus Medical Imaging, North Billerica, Massachusetts; and
| | - Michael Herz
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Behrooz H Yousefi
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Nuclear Medicine, Philipps University of Marburg, Marburg, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany .,Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
42
|
Haddad Y, Charousova M, Zivotska H, Splichal Z, Merlos Rodrigo MA, Michalkova H, Krizkova S, Tesarova B, Richtera L, Vitek P, Stokowa-Soltys K, Hynek D, Milosavljevic V, Rex S, Heger Z. Norepinephrine transporter-derived homing peptides enable rapid endocytosis of drug delivery nanovehicles into neuroblastoma cells. J Nanobiotechnology 2020; 18:95. [PMID: 32660596 PMCID: PMC7359476 DOI: 10.1186/s12951-020-00654-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Currently, the diagnosis and treatment of neuroblastomas-the most frequent solid tumors in children-exploit the norepinephrine transporter (hNET) via radiolabeled norepinephrine analogs. We aim to develop a nanomedicine-based strategy towards precision therapy by targeting hNET cell-surface protein with hNET-derived homing peptides. RESULTS The peptides (seq. GASNGINAYL and SLWERLAYGI) were shown to bind high-resolution homology models of hNET in silico. In particular, one unique binding site has marked the sequence and structural similarities of both peptides, while most of the contribution to the interaction was attributed to the electrostatic energy of Asn and Arg (< - 228 kJ/mol). The peptides were comprehensively characterized by computational and spectroscopic methods showing ~ 21% β-sheets/aggregation for GASNGINAYL and ~ 27% α-helix for SLWERLAYGI. After decorating 12-nm ferritin-based nanovehicles with cysteinated peptides, both peptides exhibited high potential for use in actively targeted neuroblastoma nanotherapy with exceptional in vitro biocompatibility and stability, showing minor yet distinct influences of the peptides on the global expression profiles. Upon binding to hNET with fast binding kinetics, GASNGINAYLC peptides enabled rapid endocytosis of ferritins into neuroblastoma cells, leading to apoptosis due to increased selective cytotoxicity of transported payload ellipticine. Peptide-coated nanovehicles significantly showed higher levels of early apoptosis after 6 h than non-coated nanovehicles (11% and 7.3%, respectively). Furthermore, targeting with the GASNGINAYLC peptide led to significantly higher degree of late apoptosis compared to the SLWERLAYGIC peptide (9.3% and 4.4%, respectively). These findings were supported by increased formation of reactive oxygen species, down-regulation of survivin and Bcl-2 and up-regulated p53. CONCLUSION This novel homing nanovehicle employing GASNGINAYLC peptide was shown to induce rapid endocytosis of ellipticine-loaded ferritins into neuroblastoma cells in selective fashion and with successful payload. Future homing peptide development via lead optimization and functional analysis can pave the way towards efficient peptide-based active delivery of nanomedicines to neuroblastoma cells.
Collapse
Affiliation(s)
- Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czechia
| | - Marketa Charousova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czechia
| | - Hana Zivotska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czechia
| | - Zbynek Splichal
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czechia
| | - Miguel Angel Merlos Rodrigo
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czechia
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czechia
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czechia
| | - Barbora Tesarova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czechia
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czechia
| | - Petr Vitek
- Global Change Research Institute of the Czech Academy of Sciences, Belidla 986/4a, 603 00, Brno, Czechia
| | - Kamila Stokowa-Soltys
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383, Wrocław, Poland
| | - David Hynek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czechia
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czechia
| | - Simona Rex
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czechia.
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czechia.
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czechia.
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czechia.
| |
Collapse
|
43
|
Karakus OO, Godugu K, Rajabi M, Mousa SA. Dual Targeting of Norepinephrine Transporter (NET) Function and Thyrointegrin αvβ3 Receptors in the Treatment of Neuroblastoma. J Med Chem 2020; 63:7653-7662. [DOI: 10.1021/acs.jmedchem.0c00537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ozlem Ozen Karakus
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| | - Mehdi Rajabi
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| |
Collapse
|
44
|
Pauwels E, Van Aerde M, Bormans G, Deroose CM. Molecular imaging of norepinephrine transporter-expressing tumors: current status and future prospects. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:234-249. [PMID: 32397701 DOI: 10.23736/s1824-4785.20.03261-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The human norepinephrine transporter (hNET) is a transmembrane protein responsible for reuptake of norepinephrine in presynaptic sympathetic nerve terminals and adrenal chromaffin cells. Neural crest tumors, such as neuroblastoma, paraganglioma and pheochromocytoma often show high hNET expression. Molecular imaging of these tumors can be done using radiolabeled norepinephrine analogs that target hNET. Currently, the most commonly used radiopharmaceutical for hNET imaging is meta-[123I]iodobenzylguanidine ([123I]MIBG) and this has been the case since its development several decades ago. The γ-emitter, iodine-123 only allows for planar scintigraphy and single photon emission computed tomography imaging. These modalities typically have a poorer spatial resolution and lower sensitivity than positron emission tomography (PET). Additional practical disadvantages include the fact that a two-day imaging protocol is required and the need for thyroid blockade. Therefore, several PET alternatives for hNET imaging are actively being explored. This review gives an in-depth overview of the current status and recent developments in clinical trials leading to the next generation of clinical PET ligands for imaging of hNET-expressing tumors.
Collapse
Affiliation(s)
- Elin Pauwels
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium.,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Matthias Van Aerde
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium.,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, KU Leuven, Leuven, Belgium
| | - Christophe M Deroose
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium - .,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Belgium
| |
Collapse
|
45
|
Recent advances in radiotracers targeting norepinephrine transporter: structural development and radiolabeling improvements. J Neural Transm (Vienna) 2020; 127:851-873. [PMID: 32274584 PMCID: PMC7223405 DOI: 10.1007/s00702-020-02180-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
The norepinephrine transporter (NET) is a major target for the evaluation of the cardiac sympathetic nerve system in patients with heart failure and Parkinson's disease. It is also used in the therapeutic applications against certain types of neuroendocrine tumors, as exemplified by the clinically used 123/131I-MIBG as theranostic single-photon emission computed tomography (SPECT) agent. With the development of more advanced positron emission tomography (PET) technology, more radiotracers targeting NET have been reported, with superior temporal and spatial resolutions, along with the possibility of functional and kinetic analysis. More recently, fluorine-18-labelled NET tracers have drawn increasing attentions from researchers, due to their longer radiological half-life relative to carbon-11 (110 min vs. 20 min), reduced dependence on on-site cyclotrons, and flexibility in the design of novel tracer structures. In the heart, certain NET tracers provide integral diagnostic information on sympathetic innervation and the nerve status. In the central nervous system, such radiotracers can reveal NET distribution and density in pathological conditions. Most radiotracers targeting cardiac NET-function for the cardiac application consistent of derivatives of either norepinephrine or MIBG with its benzylguanidine core structure, e.g. 11C-HED and 18F-LMI1195. In contrast, all NET tracers used in central nervous system applications are derived from clinically used antidepressants. Lastly, possible applications of NET as selective tracers over organic cation transporters (OCTs) in the kidneys and other organs controlled by sympathetic nervous system will also be discussed.
Collapse
|
46
|
Abrantes AM, Pires AS, Monteiro L, Teixo R, Neves AR, Tavares NT, Marques IA, Botelho MF. Tumour functional imaging by PET. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165717. [PMID: 32035103 DOI: 10.1016/j.bbadis.2020.165717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Carcinogenesis is a complex multistep process, characterized by changes at different levels, both genetic and epigenetic, which alter cell metabolism. Positron emission tomography (PET) is a very sensitive image modality that allows to evaluate oncometabolism. PET functionalities are immense, since by labelling a molecule that specifically intervenes in a biochemical regulatory pathway of interest with a positron-emitting radionuclide, we can easily image that pathway. Thus, PET makes possible imaging several metabolic processes and assessing risk prediction, screening, diagnosis, response to therapy, metastization and recurrence. In this paper, we provide an overview of different radiopharmaceuticals developed for PET use in oncology, with a focus on brain tumours, breast cancer, hepatocellular carcinoma, neuroendocrine tumours, bladder cancer and prostate cancer because for these cancer types PET has been shown to be valuable. Most of the described tracers are just used in the research environment, with the aim to assess if these tracers could be able to offer an improvement concerning staging/restaging, characterization and stratification of different types of cancer, as well as therapeutic response assessment. In pursuit of personalized therapy, we briefly discuss the more established metabolic tracers and describe recent work on the development of new radiopharmaceuticals, aware that there will continue to exist diagnostic challenges to face modern cancer medicine.
Collapse
Affiliation(s)
- Ana Margarida Abrantes
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Ana Salomé Pires
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Lúcia Monteiro
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ricardo Teixo
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Rita Neves
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Project Development Office, Department of Mathematics and Computer Science, Eindhoven University of Technology (TU/e), NL-5612 AE Eindhoven, the Netherlands
| | - Nuno Tiago Tavares
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Alexandra Marques
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-561 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
47
|
Cao LL, Holmes AP, Marshall JM, Fabritz L, Brain KL. Dynamic monitoring of single-terminal norepinephrine transporter rate in the rodent cardiovascular system: A novel fluorescence imaging method. Auton Neurosci 2020; 223:102611. [PMID: 31901784 PMCID: PMC6977090 DOI: 10.1016/j.autneu.2019.102611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/29/2019] [Accepted: 12/14/2019] [Indexed: 12/17/2022]
Abstract
Here, we validate the use of a novel fluorescent norepinephrine transporter (NET) substrate for dynamic measurements of transporter function in rodent cardiovascular tissue; this technique avoids the use of radiotracers and provides single-terminal resolution. Rodent (Wistar rats and C57BL/6 mice) hearts and mesenteric arteries (MA) were isolated, loaded with NET substrate Neurotransmitter Transporter Uptake Assay (NTUA) ex vivo and imaged with confocal microscopy. NTUA labelled noradrenergic nerve terminals in all four chambers of the heart and on the surface of MA. In all tissues, a temperature-dependent, stable linear increase in intra-terminal fluorescence upon NTUA exposure was observed; this was abolished by NET inhibitor desipramine (1 μM) and reversed by indirectly-acting sympathomimetic amine tyramine (10 μM). NET reuptake rates were similar across the mouse cardiac chambers. In both species, cardiac NET activity was significantly greater than in MA (by 62 ± 29% (mouse) and 21 ± 16% (rat)). We also show that mouse NET reuptake rate was twice as fast as that in the rat (for example, in the heart, by 94 ± 30%). Finally, NET reuptake rate in the mouse heart was attenuated with muscarinic agonist carbachol (10 μM) thus demonstrating the potential for parasympathetic regulation of norepinephrine clearance. Our data provide the first demonstration of monitoring intra-terminal NET function in rodent cardiovascular tissue. This straightforward method allows dynamic measurements of transporter rate in response to varying physiological conditions and drug treatments; this offers the potential to study new mechanisms of sympathetic dysfunction associated with cardiovascular disease.
Collapse
Affiliation(s)
- Lily L Cao
- School of Biomedical Science, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| | - Andrew P Holmes
- School of Biomedical Science, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| | - Janice M Marshall
- School of Biomedical Science, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| | - Larissa Fabritz
- Institute of Cardiovascular Science, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom; Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.
| | - Keith L Brain
- School of Biomedical Science, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
48
|
Targeting uptake transporters for cancer imaging and treatment. Acta Pharm Sin B 2020; 10:79-90. [PMID: 31993308 PMCID: PMC6977162 DOI: 10.1016/j.apsb.2019.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/27/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer cells reprogram their gene expression to promote growth, survival, proliferation, and invasiveness. The unique expression of certain uptake transporters in cancers and their innate function to concentrate small molecular substrates in cells make them ideal targets for selective delivering imaging and therapeutic agents into cancer cells. In this review, we focus on several solute carrier (SLC) transporters known to be involved in transporting clinically used radiopharmaceutical agents into cancer cells, including the sodium/iodine symporter (NIS), norepinephrine transporter (NET), glucose transporter 1 (GLUT1), and monocarboxylate transporters (MCTs). The molecular and functional characteristics of these transporters are reviewed with special emphasis on their specific expressions in cancers and interaction with imaging or theranostic agents [e.g., I-123, I-131, 123I-iobenguane (mIBG), 18F-fluorodeoxyglucose (18F-FDG) and 13C pyruvate]. Current clinical applications and research areas of these transporters in cancer diagnosis and treatment are discussed. Finally, we offer our views on emerging opportunities and challenges in targeting transporters for cancer imaging and treatment. By analyzing the few clinically successful examples, we hope much interest can be garnered in cancer research towards uptake transporters and their potential applications in cancer diagnosis and treatment.
Collapse
Key Words
- CT, computed tomography
- Cancer imaging
- DDI, drug–drug interaction
- DTC, differentiated thyroid cancer
- FDA, U.S. Food and Drug Administrations
- FDG, fluorodeoxyglucose
- GLUT, glucose transporter
- IAEA, the International Atomic Energy Agency
- LACC, locally advanced cervical cancer
- LAT, large amino acid transporter
- MCT, monocarboxylate transporter
- MRI, magnetic resonance imaging
- NE, norepinephrine
- NET, norepinephrine transporter
- NIS, sodium/iodine symporter
- Neuroblastoma
- OCT, organic cation transporter
- PET, positron emission tomography
- PHEO, pheochromocytoma
- RA, retinoic acid
- RET, rearranged during transfection
- SLC, solute carrier
- SPECT, single-photon emission computed tomography
- SUV, standardized uptake value
- TFB, tetrafluoroborate
- TSH, thyroid stimulating hormones
- Thyroid cancer
- Uptake transporter
- Warburg effect
- mIBG
- mIBG, iobenguane/meta-iodobenzylguanidine
- vHL, von Hippel-Lindau
Collapse
|
49
|
Zhang H, Miao J, Li F, Xue W, Tang K, Zhao X, Jing X, Zhang J, Huang C, Hou N, Han J. Norepinephrine transporter promotes the invasion of human colon cancer cells. Oncol Lett 2019; 19:824-832. [PMID: 31897198 PMCID: PMC6924147 DOI: 10.3892/ol.2019.11146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 08/29/2019] [Indexed: 01/29/2023] Open
Abstract
Epidemiological studies suggested the use of antidepressants to be associated with decreased risk of colorectal cancer (CRC). However, the underlying mechanism through which this decreased risk occurs remains elusive. The norepinephrine transporter (NET) is a target of antidepressants that maintains noradrenergic transmission homeostasis; however, little is known about its function in human CRC cells. The present study, using public datasets and immunohistochemistry approaches, revealed that NET was highly expressed in human CRC tissues with metastasis and in human colon cancer cells. Furthermore, knockdown of NET inhibited the invasive capability of human colon cancer cells. Additionally, epithelial (E)-cadherin expression was increased and Notch1 signaling was inhibited in NET-depleted colon cancer cells. These findings suggest that NET is highly expressed in human colon cancer, which is associated with the invasion of human colon cancer cells by influencing cell-cell adhesion through the Notch1-E-cadherin pathway. Thus, the present study revealed a novel function for NET and its downstream effectors in colon cancer cells, which will be valuable for future studies in a clinical setting.
Collapse
Affiliation(s)
- Huahua Zhang
- Medical Research and Experimental Center, Medical College, Yan'an University, Yan'an, Shaanxi 716000, P.R. China.,Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Jiyu Miao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Fang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Wanjuan Xue
- Medical Research and Experimental Center, Medical College, Yan'an University, Yan'an, Shaanxi 716000, P.R. China.,Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Kaijie Tang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoge Zhao
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Xintao Jing
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Jing Zhang
- Medical Research and Experimental Center, Medical College, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Ni Hou
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Jiming Han
- Medical Research and Experimental Center, Medical College, Yan'an University, Yan'an, Shaanxi 716000, P.R. China
| |
Collapse
|
50
|
Lee H, Riad A, Martorano P, Mansfield A, Samanta M, Batra V, Mach RH, Maris JM, Pryma DA, Makvandi M. PARP-1-Targeted Auger Emitters Display High-LET Cytotoxic Properties In Vitro but Show Limited Therapeutic Utility in Solid Tumor Models of Human Neuroblastoma. J Nucl Med 2019; 61:850-856. [PMID: 31676730 DOI: 10.2967/jnumed.119.233965] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
The currently available therapeutic radiopharmaceutical for high-risk neuroblastoma, 131I-metaiodobenzylguanidine, is ineffective at targeting micrometastases because of the low-linear-energy-transfer (LET) properties of high-energy β-particles. In contrast, Auger radiation has high-LET properties with nanometer ranges in tissue, efficiently causing DNA damage when emitted near DNA. The aim of this study was to evaluate the cytotoxicity of targeted Auger therapy in preclinical models of high-risk neuroblastoma. Methods: We used a radiolabled poly(adenosine diphosphate ribose) polymerase (PARP) inhibitor called 125I-KX1 to deliver Auger radiation to PARP-1, a chromatin-binding enzyme overexpressed in neuroblastoma. The in vitro cytotoxicity of 125I-KX1 was assessed in 19 neuroblastoma cell lines, followed by in-depth pharmacologic analysis in a sensitive and resistant pair of cell lines. Immunofluorescence microscopy was used to characterize 125I-KX1-induced DNA damage. Finally, in vitro and in vivo microdosimetry was modeled from experimentally derived pharmacologic variables. Results: 125I-KX1 was highly cytotoxic in vitro across a panel of neuroblastoma cell lines, directly causing double-strand DNA breaks. On the basis of subcellular dosimetry, 125I-KX1 was approximately twice as effective as 131I-KX1, whereas cytoplasmic 125I-metaiodobenzylguanidine demonstrated low biological effectiveness. Despite the ability to deliver a focused radiation dose to the cell nuclei, 125I-KX1 remained less effective than its α-emitting analog 211At-MM4 and required significantly higher activity for equivalent in vivo efficacy based on tumor microdosimetry. Conclusion: Chromatin-targeted Auger therapy is lethal to high-risk neuroblastoma cells and has the potential to be used in micrometastatic disease. This study provides the first evidence for cellular lethality from a PARP-1-targeted Auger emitter, calling for further investigation into targeted Auger therapy.
Collapse
Affiliation(s)
- Hwan Lee
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Aladdin Riad
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Paul Martorano
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Adam Mansfield
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Minu Samanta
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Vandana Batra
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Daniel A Pryma
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| | - Mehran Makvandi
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and
| |
Collapse
|