1
|
Kim E, Lee C, Seo Y, Hong D, Song B, Kim J, Jeong W, Kwon SY, Kim DY, Pyo A. Synthesis and evaluation of a 68Ga-labeled iodinated benzamide derivative as a PET imaging agent for malignant melanoma. Appl Radiat Isot 2025; 220:111791. [PMID: 40127585 DOI: 10.1016/j.apradiso.2025.111791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
Malignant melanoma is a highly aggressive skin cancer with increasing prevalence worldwide. The 5-year survival rate for localized malignant melanoma is 90%, but this drops to 6% if metastasis has occurred at diagnosis. Current positron emission tomography (PET) imaging probes, such as 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), show low sensitivity for metastatic melanoma, underscoring the need for new probes. This study explores the potential of 68Ga-labeled 2,2',2″,2‴-(2-(4-(3-(2-((2-(5-iodopicolinamido)ethyl)(methyl)amino)ethyl)thioureido)benzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (68Ga-MI-0202F1) as a novel PET imaging probe designed for enhanced specificity and sensitivity towards melanin. The precursor MI-0202F1 was synthesized from 5-iodopicolinic acid, 2,2'-diamino-N-methyldiethylamine, and 2,2',2″,2‴-(2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid ((p-SCN-Bn)-DOTA). The precursor was labeled with 68Ga in a reaction vial at 95°C and pH 5.0 for 10 min. The radiochemical purity of the 68Ga-labeled compound was determined using radio-thin-layer chromatography. Cellular uptake of the iodinated benzamide derivative was evaluated in the B16F10 cell line (mouse melanoma) following L-tyrosine treatment. MicroPET studies were conducted at 30 and 60 min post-intravenous injection of the labeled complex into B16F10 tumor-bearing mice. The non-decay-corrected radiochemical yield was 95.96 ± 3.73% (n = 3), and the radiochemical purity exceeded 98%. In vitro studies demonstrated significantly higher uptake of 68Ga-MI-0202F1 in L-tyrosine-treated B16F10 cells compared with untreated cells. In vivo PET imaging showed rapid accumulation and sustained retention of 68Ga-MI-0202F1 in melanoma tumors, with high tumor-to-background ratios. Overall, 68Ga-MI-0202F1 demonstrates potential as an innovative molecular imaging probe for malignant melanoma. Further studies are needed to investigate the potential of MI-0202F1 as a theranostic agent incorporating the radioisotope pairs 68Ga and 177Lu.
Collapse
Affiliation(s)
- Eunsu Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Chaewon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Yejin Seo
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Dagyeong Hong
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Boreum Song
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jiyu Kim
- CNCure Biotech, Hwasun, Republic of Korea
| | | | - Seong-Young Kwon
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Dong-Yeon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea; CNCure Biotech, Hwasun, Republic of Korea.
| | - Ayoung Pyo
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
2
|
Jacquot P, Muñoz-Garcia J, Léger A, Babuty A, Taupin M, Fradet L, Dupont F, Heymann MF, Cinier M, Heymann D. A Multispecific Checkpoint Inhibitor Nanofitin with a Fast Tumor Accumulation Property and Anti-Tumor Activity in Immune Competent Mice. Biomolecules 2025; 15:471. [PMID: 40305184 PMCID: PMC12024894 DOI: 10.3390/biom15040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Immune checkpoint inhibitors have revolutionized cancer treatment but remain limited by on-target/off-tumor effects that narrow their therapeutic window. Although PD-L1 is mainly expressed by tumor cells, these effects could reduce bloodstream availability and tumor accumulation of PD-L1 inhibitors. Enhancing tumor specificity through bispecific proteins targeting two tumor-associated antigens offers a promising strategy. This study evaluated a bispecific Nanofitin, B10-B11, targeting PD-L1 and EGFR. In vitro, B10-B11 efficiently bound to human A431 and murine CT26 cell lines, validating these models for in vivo studies. Nanofitins' accumulation in tumors and their anti-tumor efficacy were assessed, respectively, in A431 xenograft and CT26 immunocompetent mouse models. In both experiments, B10-B11 was compared with its albumin binding fused counterpart (B10-B11-ABNF). This study showed that the dual-targeting approach with the bispecific Nanofitin enhanced in vitro PD-L1 neutralization compared to the monomeric form and led to in vivo anti-tumor activity evidenced by reduced tumor growth and increased CD3+ T cells and F4/80+ macrophages in tumors. This activity was further correlated with Nanofitin's tumor accumulation at 7 h post-injection, which was highest for the B10-B11-ABNF. This study highlights the potential of bispecific Nanofitins, particularly with albumin binding to enable rapid and uniform tumor accumulation of effective PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Perrine Jacquot
- Affilogic SAS, 24 rue de la Rainière, 44300 Nantes, France; (A.L.); (F.D.); (M.C.)
- UMR6286, US2B, CNRS, Nantes Université, 44322 Nantes, France; (J.M.-G.); (A.B.); (L.F.); (M.-F.H.); (D.H.)
- Tumor Heterogeneity and Precision Medicine Laboratory, Institut de Cancérologie de l’Ouest, 44805 Saint-Herblain, France
| | - Javier Muñoz-Garcia
- UMR6286, US2B, CNRS, Nantes Université, 44322 Nantes, France; (J.M.-G.); (A.B.); (L.F.); (M.-F.H.); (D.H.)
- Tumor Heterogeneity and Precision Medicine Laboratory, Institut de Cancérologie de l’Ouest, 44805 Saint-Herblain, France
| | - Antoine Léger
- Affilogic SAS, 24 rue de la Rainière, 44300 Nantes, France; (A.L.); (F.D.); (M.C.)
| | - Antoine Babuty
- UMR6286, US2B, CNRS, Nantes Université, 44322 Nantes, France; (J.M.-G.); (A.B.); (L.F.); (M.-F.H.); (D.H.)
- Tumor Heterogeneity and Precision Medicine Laboratory, Institut de Cancérologie de l’Ouest, 44805 Saint-Herblain, France
- Nantes University Hospital, 44000 Nantes, France
| | - Manon Taupin
- Research Pathology Platform, Institut de Cancérologie de l’Ouest, 44805 Saint-Herblain, France;
| | - Laurie Fradet
- UMR6286, US2B, CNRS, Nantes Université, 44322 Nantes, France; (J.M.-G.); (A.B.); (L.F.); (M.-F.H.); (D.H.)
- Tumor Heterogeneity and Precision Medicine Laboratory, Institut de Cancérologie de l’Ouest, 44805 Saint-Herblain, France
| | - Fabio Dupont
- Affilogic SAS, 24 rue de la Rainière, 44300 Nantes, France; (A.L.); (F.D.); (M.C.)
| | - Marie-Françoise Heymann
- UMR6286, US2B, CNRS, Nantes Université, 44322 Nantes, France; (J.M.-G.); (A.B.); (L.F.); (M.-F.H.); (D.H.)
- Tumor Heterogeneity and Precision Medicine Laboratory, Institut de Cancérologie de l’Ouest, 44805 Saint-Herblain, France
- Research Pathology Platform, Institut de Cancérologie de l’Ouest, 44805 Saint-Herblain, France;
| | - Mathieu Cinier
- Affilogic SAS, 24 rue de la Rainière, 44300 Nantes, France; (A.L.); (F.D.); (M.C.)
| | - Dominique Heymann
- UMR6286, US2B, CNRS, Nantes Université, 44322 Nantes, France; (J.M.-G.); (A.B.); (L.F.); (M.-F.H.); (D.H.)
- Tumor Heterogeneity and Precision Medicine Laboratory, Institut de Cancérologie de l’Ouest, 44805 Saint-Herblain, France
- School of Medicine and Population Health, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
3
|
Cao Z, Wichmann CW, Burvenich IJG, Osellame LD, Guo N, Rigopoulos A, O'Keefe GJ, Scott FE, Lorensuhewa N, Lynch KP, Scott AM. Radiolabelling and preclinical characterisation of [ 89Zr]Zr-Df-ATG-101 bispecific to PD-L1/4-1BB. Eur J Nucl Med Mol Imaging 2024; 51:3202-3214. [PMID: 38730087 PMCID: PMC11368977 DOI: 10.1007/s00259-024-06742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE ATG-101, a bispecific antibody that simultaneously targets the immune checkpoint PD-L1 and the costimulatory receptor 4-1BB, activates exhausted T cells upon PD-L1 crosslinking. Previous studies demonstrated promising anti-tumour efficacy of ATG-101 in preclinical models. Here, we labelled ATG-101 with 89Zr to confirm its tumour targeting effect and tissue biodistribution in a preclinical model. We also evaluated the use of immuno-PET to study tumour uptake of ATG-101 in vivo. METHODS ATG-101, anti-PD-L1, and an isotype control were conjugated with p-SCN-Deferoxamine (Df). The Df-conjugated antibodies were radiolabelled with 89Zr, and their radiochemical purity, immunoreactivity, and serum stability were assessed. We conducted PET/MRI and biodistribution studies on [89Zr]Zr-Df-ATG-101 in BALB/c nude mice bearing PD-L1-expressing MDA-MB-231 breast cancer xenografts for up to 10 days after intravenous administration of [89Zr]Zr-labelled antibodies. The specificity of [89Zr]Zr-Df-ATG-101 was evaluated through a competition study with unlabelled ATG-101 and anti-PD-L1 antibodies. RESULTS The Df-conjugation and [89Zr]Zr -radiolabelling did not affect the target binding of ATG-101. Biodistribution and imaging studies demonstrated biological similarity of [89Zr]Zr-Df-ATG-101 and [89Zr]Zr-Df-anti-PD-L1. Tumour uptake of [89Zr]Zr-Df-ATG-101 was clearly visualised using small-animal PET imaging up to 7 days post-injection. Competition studies confirmed the specificity of PD-L1 targeting in vivo. CONCLUSION [89Zr]Zr-Df-ATG-101 in vivo distribution is dependent on PD-L1 expression in the MDA-MB-231 xenograft model. Immuno-PET with [89Zr]Zr-Df-ATG-101 provides real-time information about ATG-101 distribution and tumour uptake in vivo. Our data support the use of [89Zr]Zr-Df-ATG-101 to assess tumour and tissue uptake of ATG-101.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
| | - Christian Werner Wichmann
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
- School of Chemistry - Bio21 Institute, University of Melbourne, Melbourne, Australia
| | - Ingrid Julienne Georgette Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Laura Danielle Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
| | - Graeme Joseph O'Keefe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Fiona Elizabeth Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | | | | | - Andrew Mark Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.
- Department of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
4
|
Yang H, Zeng X, Liu J, Wen X, Liu H, Liang Y, Wang X, Fang J, Zhang Q, Li J, Zhang X, Guo Z. Development of small-molecular-based radiotracers for PET imaging of PD-L1 expression and guiding the PD-L1 therapeutics. Eur J Nucl Med Mol Imaging 2024; 51:1582-1592. [PMID: 38246910 DOI: 10.1007/s00259-024-06610-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
PURPOSE Programmed cell death protein ligand 1 (PD-L1) is a crucial biomarker for immunotherapy. However, nearly 70% of patients do not respond to PD-L1 immune checkpoint therapy. Accurate monitoring of PD-L1 expression and quantification of target binding during treatment are essential. In this study, a series of small-molecule radiotracers were developed to assess PD-L1 expression and direct immunotherapy. METHODS Radiotracers of [68Ga]Ga-D-PMED, [68Ga]Ga-D-PEG-PMED, and [68Ga]Ga-D-pep-PMED were designed based on a 2-methyl-3-biphenyl methanol scaffold and successfully synthesized. Cellular experiments and molecular docking assays were performed to determine their specificity for PD-L1. PD-L1 status was investigated via positron emission tomography (PET) imaging in MC38 tumor models. PET imaging of [68Ga]Ga-D-pep-PMED was performed to noninvasively quantify PD-L1 blocking using an anti-mouse PD-L1 antibody (PD-L1 mAb). RESULTS The radiosyntheses of [68Ga]Ga-D-PMED, [68Ga]Ga-D-PEG-PMED, and [68Ga]Ga-D-pep-PMED were achieved with radiochemical yields of 87 ± 6%, 82 ± 4%, and 79 ± 9%, respectively. In vitro competition assays demonstrated their high affinities (the IC50 values of [68Ga]Ga-D-PMED, [68Ga]Ga-D-PEG-PMED, and [68Ga]Ga-D-pep-PMED were 90.66 ± 1.24, 160.8 ± 1.35, and 51.6 ± 1.32 nM, respectively). At 120 min postinjection (p.i.) of the radiotracers, MC38 tumors displayed optimized tumor-to-muscle ratios for all radioligands. Owing to its hydrophilic modification, [68Ga]Ga-D-pep-PMED had the highest target-to-nontarget (T/NT) ratio of approximately 6.2 ± 1.2. Interestingly, the tumor/liver ratio was hardly affected by different concentrations of the inhibitor BMS202. We then evaluated the impacts of dose and time on accessible PD-L1 levels in the tumor during anti-mouse PD-L1 antibody treatment. The tumor uptake of [68Ga]Ga-D-pep-PMED significantly decreased with increasing PD-L1 mAb dose. Moreover, after 8 days of treatment with a single antibody, the uptake of [68Ga]Ga-D-pep-PMED in the tumor significantly increased but remained lower than that in the saline group. CONCLUSION PET imaging with [68Ga]Ga-D-pep-PMED, a small-molecule radiotracer, is a promising tool for evaluating PD-L1 expression and quantifying the target blockade of PD-L1 to assist in the development of effective therapeutic regimens.
Collapse
Affiliation(s)
- Hongzhang Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xinying Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jia Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xuejun Wen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Huanhuan Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yuanyuan Liang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xueqi Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jianyang Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qinglin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jindian Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, Institute of Clinical Medicine & Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China.
| | - Zhide Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
5
|
Vincze SR, Jaswal AP, Frederico SC, Nisnboym M, Li B, Xiong Z, Sever RE, Sneiderman CT, Rodgers M, Day KE, Latoche JD, Foley LM, Hitchens TK, Frederick R, Patel RB, Hadjipanayis CG, Raphael I, Nedrow JR, Edwards WB, Kohanbash G. ImmunoPET imaging of TIGIT in the glioma microenvironment. Sci Rep 2024; 14:5305. [PMID: 38438420 PMCID: PMC10912309 DOI: 10.1038/s41598-024-55296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor. Currently, there are few effective treatment options for GBM beyond surgery and chemo-radiation, and even with these interventions, median patient survival remains poor. While immune checkpoint inhibitors (ICIs) have demonstrated therapeutic efficacy against non-central nervous system cancers, ICI trials for GBM have typically had poor outcomes. TIGIT is an immune checkpoint receptor that is expressed on activated T-cells and has a role in the suppression of T-cell and Natural Killer (NK) cell function. As TIGIT expression is reported as both prognostic and a biomarker for anti-TIGIT therapy, we constructed a molecular imaging agent, [89Zr]Zr-DFO-anti-TIGIT (89Zr-αTIGIT), to visualize TIGIT in preclinical GBM by immunoPET imaging. PET imaging and biodistribution analysis of 89Zr-αTIGIT demonstrated uptake in the tumor microenvironment of GBM-bearing mice. Blocking antibody and irrelevant antibody tracer studies demonstrated specificity of 89Zr-αTIGIT with significance at a late time point post-tracer injection. However, the magnitude of 89Zr-αTIGIT uptake in tumor, relative to the IgG tracer was minimal. These findings highlight the features and limitations of using 89Zr-αTIGIT to visualize TIGIT in the GBM microenvironment.
Collapse
Affiliation(s)
- Sarah R Vincze
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ambika P Jaswal
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephen C Frederico
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michal Nisnboym
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Bo Li
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - ReidAnn E Sever
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chaim T Sneiderman
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mikayla Rodgers
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Kathryn E Day
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Joseph D Latoche
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Lesley M Foley
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - T Kevin Hitchens
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robin Frederick
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ravi B Patel
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Costas G Hadjipanayis
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jessie R Nedrow
- In Vivo Imaging Facility, University of Pittsburgh Medical Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - W Barry Edwards
- Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Privat M, Massot A, Hermetet F, Al Sabea H, Racoeur C, Mabrouk N, Cordonnier M, Moreau M, Collin B, Bettaieb A, Denat F, Bodio E, Bellaye PS, Goze C, Paul C. Development of an Immuno-SPECT/Fluorescent Bimodal Tracer Targeting Human or Murine PD-L1 on Preclinical Models. J Med Chem 2024; 67:2188-2201. [PMID: 38270503 DOI: 10.1021/acs.jmedchem.3c02120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Detection of biomarkers to diagnose, treat, and predict the efficacy of cancer therapies is a major clinical challenge. Currently, biomarkers such as PD-L1 are commonly detected from biopsies, but this approach does not take into account the spatiotemporal heterogeneity of their expression in tumors. A solution consists in conjugating monoclonal antibodies (mAbs) targeting these biomarkers with multimodal imaging probes. In this study, a bimodal [111In]-DOTA-aza-BODIPY probe emitting in the near-infrared (NIR) was grafted onto mAbs targeting murine or human PD-L1 either in a site-specific or random manner. In vitro, these bimodal mAbs showed a good stability and affinity for PD-L1. In vivo, they targeted specifically PD-L1 and were detected by both fluorescence and SPECT imaging. A significant benefit of site-specific conjugation on glycans was observed compared to random conjugation on lysine. The potential of this bimodal agent was also highlighted, thanks to a proof of concept of fluorescence-guided surgery in a human PD-L1+ tumor model.
Collapse
Affiliation(s)
- Malorie Privat
- LIIC, EA7269, Université de Bourgogne, 21000 Dijon, France
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France
- ICMUB, UMR 6302 CNRS, Université de Bourgogne, 9 av. A. Savary, BP 47870, 21078 Dijon, France
| | - Aurélie Massot
- LIIC, EA7269, Université de Bourgogne, 21000 Dijon, France
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France
| | - François Hermetet
- INSERM, UMR 1231, Label Ligue Nationale contre le Cancer and LipSTIC, 21000 Dijon, France
- CRIGEN, 21000 Dijon, France
| | - Hassan Al Sabea
- ICMUB, UMR 6302 CNRS, Université de Bourgogne, 9 av. A. Savary, BP 47870, 21078 Dijon, France
| | - Cindy Racoeur
- LIIC, EA7269, Université de Bourgogne, 21000 Dijon, France
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France
| | - Nesrine Mabrouk
- LIIC, EA7269, Université de Bourgogne, 21000 Dijon, France
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France
| | - Marine Cordonnier
- INSERM, UMR 1231, Label Ligue Nationale contre le Cancer and LipSTIC, 21000 Dijon, France
| | - Mathieu Moreau
- ICMUB, UMR 6302 CNRS, Université de Bourgogne, 9 av. A. Savary, BP 47870, 21078 Dijon, France
| | - Bertrand Collin
- ICMUB, UMR 6302 CNRS, Université de Bourgogne, 9 av. A. Savary, BP 47870, 21078 Dijon, France
- Centre Régional De Lutte Contre Le Cancer Georges-François Leclerc C.G.F.L, plateforme d'imagerie et de radiothérapie précliniques, 21000, Dijon, France
| | - Ali Bettaieb
- LIIC, EA7269, Université de Bourgogne, 21000 Dijon, France
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France
| | - Franck Denat
- ICMUB, UMR 6302 CNRS, Université de Bourgogne, 9 av. A. Savary, BP 47870, 21078 Dijon, France
| | - Ewen Bodio
- ICMUB, UMR 6302 CNRS, Université de Bourgogne, 9 av. A. Savary, BP 47870, 21078 Dijon, France
| | - Pierre-Simon Bellaye
- Centre Régional De Lutte Contre Le Cancer Georges-François Leclerc C.G.F.L, plateforme d'imagerie et de radiothérapie précliniques, 21000, Dijon, France
| | - Christine Goze
- ICMUB, UMR 6302 CNRS, Université de Bourgogne, 9 av. A. Savary, BP 47870, 21078 Dijon, France
| | - Catherine Paul
- LIIC, EA7269, Université de Bourgogne, 21000 Dijon, France
- Laboratoire d'Immunologie et Immunothérapie des Cancers, EPHE, PSL Research University, 75000 Paris, France
| |
Collapse
|
7
|
Kazim M, Yoo E. Recent Advances in the Development of Non-Invasive Imaging Probes for Cancer Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202310694. [PMID: 37843426 DOI: 10.1002/anie.202310694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/17/2023]
Abstract
The last two decades have witnessed a major revolution in the field of tumor immunology including clinical progress using various immunotherapy strategies. These advances have highlighted the potential for approaches that harness the power of the immune system to fight against cancer. While cancer immunotherapies have shown significant clinical successes, patient responses vary widely due to the complex and heterogeneous nature of tumors and immune responses, calling for reliable biomarkers and therapeutic strategies to maximize the benefits of immunotherapy. Especially, stratifying responding individuals from non-responders during the early stages of treatment could help avoid long-term damage and tailor personalized treatments. In efforts to develop non-invasive means for accurately evaluating and predicting tumor response to immunotherapy, multiple affinity-based agents targeting immune cell markers and checkpoint molecules have been developed and advanced to clinical trials. In addition, researchers have recently turned their attention to substrate and activity-based imaging probes that can provide real-time, functional assessment of immune response to treatment. Here, we highlight some of those recently designed probes that image functional proteases as biomarkers of cancer immunotherapy with a focus on their chemical design and detection modalities and discuss challenges and opportunities for the development of imaging tools utilized in cancer immunotherapy.
Collapse
Affiliation(s)
- Muhammad Kazim
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Euna Yoo
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
8
|
Josefsson A, Cortez AG, Yu J, Majumdar S, Bhise A, Hobbs RF, Nedrow JR. Evaluation of targeting α Vβ 3 in breast cancers using RGD peptide-based agents. Nucl Med Biol 2024; 128-129:108880. [PMID: 38330637 DOI: 10.1016/j.nucmedbio.2024.108880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/05/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Patients with HER2-positive and triple negative breast cancer (TNBC) are associated with increased risk to develop metastatic disease including reoccurring disease that is resistant to standard and targeted therapies. The αVβ3 has been implicated in BC including metastatic disease. The aims of this study were to investigate the potential of αVβ3-targeted peptides to deliver radioactive payloads to BC tumors expressing αVβ3 on the tumor cells or limited to the tumors' neovascular. Additionally, we aimed to assess the pharmacokinetic profile of the targeted α-particle therapy (TAT) agent [225Ac]Ac-DOTA-cRGDfK dimer peptide and the in vivo generated decay daughters. The expression of αVβ3 in a HER2-positive and a TNBC cell line were evaluated using western blot analysis. The pharmacokinetics of [111In]In-DOTA-cRGDfK dimer, a surrogate for the TAT-agent, was evaluated in subcutaneous mouse tumor models. The pharmacokinetic of the TAT-agent [225Ac]Ac-DOTA-cRGDfK dimer and its decay daughters were evaluated in healthy mice. Selective uptake of [111In]In-DOTA-cRGDfK dimer was shown in subcutaneous tumor models using αVβ3-positive tumor cells as well as αVβ3-negative tumor cells where the expression is limited to the neovasculature. Pharmacokinetic studies demonstrated rapid accumulation in the tumors with clearance from non-target organs. Dosimetric analysis of [225Ac]Ac-DOTA-cRGDfK dimer showed the highest radiation absorbed dose to the kidneys, which included the contributions from the free in vivo generated decay daughters. This study shows the potential of delivering radioactive payloads to BC tumors that have αVβ3 expression on the tumor cells as well as limited expression to the neovascular of the tumor. Furthermore, this work determines the radiation absorbed doses to normal organs/tissues and identified key organs that act as suppliers and receivers of the actinium-225 free in vivo generated α-particle-emitting decay daughters.
Collapse
Affiliation(s)
- Anders Josefsson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Angel G Cortez
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jing Yu
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sunipa Majumdar
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abhinav Bhise
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert F Hobbs
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessie R Nedrow
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Pyo A, Yun M, Song B, Kwon SY, Min JJ, Kim DY. Synthesis and evaluation of 18F-labeled procainamide as a PET imaging agent for malignant melanoma. Bioorg Med Chem Lett 2023; 96:129528. [PMID: 37852422 DOI: 10.1016/j.bmcl.2023.129528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Malignant melanoma has an aggressive nature and a high metastatic propensity resulting in the highest mortality rate of any skin cancer. In this study, we synthesized 18F-labeled procainamide (PCA) for detection of melanoma using positron emission tomography (PET), and evaluated its biological characteristics. The non-decay-corrected radiochemical yield of 18F-PCA was 10-15% and its in vitro stability was over 98% for 2 h. At 1 h, cellular uptake of 18F-PCA was 3.8-fold higher in a group with the presence of l-tyrosine than in a non-l-tyrosine-treated group. Furthermore, 18F-PCA permitted visualization of B16F10 (mouse melanoma) xenografts on microPET after intravenous injection, and was retained in the tumor for 60 min, with a high tumor-to-liver uptake ratio. 18F-PCA showed specific melanoma uptake in primary lesions with a high melanin targeting ability in small animal models. 18F-PCA may have potential as a PET imaging agent for direct melanoma detection.
Collapse
Affiliation(s)
- Ayoung Pyo
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Misun Yun
- Hygenic Safety-Material Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Boreum Song
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seong-Young Kwon
- Innovation Center for Molecular Probe Development, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Jung-Joon Min
- Innovation Center for Molecular Probe Development, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea; CNCure Biotech, Hwasun, Republic of Korea
| | - Dong-Yeon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea; CNCure Biotech, Hwasun, Republic of Korea.
| |
Collapse
|
10
|
Chen Y, Guo Y, Liu Z, Hu X, Hu M. An overview of current advances of PD-L1 targeting immuno-imaging in cancers. J Cancer Res Ther 2023; 19:866-875. [PMID: 37675710 DOI: 10.4103/jcrt.jcrt_88_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The programmed death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) pathway plays a significant role in immune evasion. PD-1 or PD-L1 immune checkpoint inhibitors (ICIs) have become a standard treatment for multiple types of cancer. To date, PD-L1 has served as a biomarker for predicting the efficacy of ICIs in several cancers. The need to establish an effective detection method that could visualize PD-L1 expression and predict the efficacy of PD-1/PD-L1 ICIs has promoted a search for new imaging strategies. PD-L1-targeting immuno-imaging could provide a noninvasive, real-time, repeatable, dynamic, and quantitative assessment of the characteristics of all tumor lesions in individual patients. This study analyzed the existing evidence in the literature on PD-L1-based immuno-imaging (2015-2022). Original English-language articles were searched using PubMed and Google Scholar. Keywords, such as "PD-L1," "PET," "SPECT," "PET/CT," and "SPECT/CT," were used in various combinations. A total of nearly 50 preclinical and clinical studies of PD-L1-targeting immuno-imaging were selected, reviewed, and included in this study. Therefore, in this review, we conducted a study of the advances in PD-L1-targeting immuno-imaging for detecting the expression of PD-L1 and the efficacy of ICIs. We focused on the different types of PD-L1-targeting agents, including antibodies and small PD-L1-binding agents, and illustrated the strength and weakness of these probes. Furthermore, we summarized the trends in the development of PD-L1-targeting immuno-imaging, as well as the current challenges and future directions for clinical workflow.
Collapse
Affiliation(s)
- Yunhao Chen
- Department of Radiation Oncology, Shandong University Cancer Center; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yujiao Guo
- Department of Oncology, The Affiliated Hospital of Jining Medical University, Jining, China
| | - Zhiguo Liu
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaokun Hu
- Department of the Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Man Hu
- Department of Radiation Oncology, Shandong University Cancer Center; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
11
|
Melo V, Nelemans LC, Vlaming M, Lourens HJ, Wiersma VR, Bilemjian V, Huls G, de Bruyn M, Bremer E. EGFR-selective activation of CD27 co-stimulatory signaling by a bispecific antibody enhances anti-tumor activity of T cells. Front Immunol 2023; 14:1191866. [PMID: 37545491 PMCID: PMC10399592 DOI: 10.3389/fimmu.2023.1191866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
A higher density of tumor infiltrating lymphocytes (TILs) in the tumor microenvironment, particularly cytotoxic CD8+ T cells, is associated with improved clinical outcome in various cancers. However, local inhibitory factors can suppress T cell activity and hinder anti-tumor immunity. Notably, TILs from various cancer types express the co-stimulatory Tumor Necrosis Factor receptor CD27, making it a potential target for co-stimulation and re-activation of tumor-infiltrated and tumor-reactive T cells. Anti-cancer therapeutics based on exploiting CD27-mediated T cell co-stimulation have proven safe, but clinical responses remain limited. This is likely because current monoclonal antibodies fail to effectively activate CD27 signaling, as this receptor requires higher-order receptor cross-linking. Here, we report on a bispecific antibody, CD27xEGFR, that targets both CD27 and the tumor antigen, epidermal growth factor receptor (EGFR). By targeting EGFR, which is commonly expressed on carcinomas, CD27xEGFR induced cancer cell-localized crosslinking and activation of CD27. The design of CD27xEGFR includes an Fc-silent domain, which is designed to minimize potential toxicity by reducing Fc gamma receptor-mediated binding and activation of immune cells. CD27xEGFR bound to both of its targets simultaneously and triggered EGFR-restricted co-stimulation of T cells as measured by T cell proliferation, T cell activation markers, cytotoxicity and IFN-γ release. Further, CD27xEGFR augmented T cell cytotoxicity in a panel of artificial antigen-presenting carcinoma cell line models, leading to Effector-to-Target ratio-dependent elimination of cancer cells. Taken together, we present the in vitro characterization of a novel bispecific antibody that re-activates T cell immunity in EGFR-expressing cancers through targeted co-stimulation of CD27.
Collapse
Affiliation(s)
- Vinicio Melo
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Levi Collin Nelemans
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martijn Vlaming
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Harm Jan Lourens
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Valerie R. Wiersma
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Vrouyr Bilemjian
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco de Bruyn
- Department of Obstetrics & Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
12
|
Peng Z, Lu C, Shi G, Yin L, Liang X, Song G, Tian J, Du Y. Sensitive and quantitative in vivo analysis of PD-L1 using magnetic particle imaging and imaging-guided immunotherapy. Eur J Nucl Med Mol Imaging 2023; 50:1291-1305. [PMID: 36504279 DOI: 10.1007/s00259-022-06083-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The programmed cell death protein-1 (PD-1) and programmed cell death ligand-1 (PD-L1) expression correlate with the immunotherapeutic response rate. The sensitive and non-invasive imaging of immune checkpoint biomarkers is favorable for the accurate detection and characterization, image-guided immunotherapy in cancer precision medicine. Magnetic particle imaging (MPI), as a novel and emerging imaging modality, possesses the advantages of high sensitivity, no image depth limitation, positive contrast, and absence of radiation. Hence, in this study, we performed the pioneer investigation of monitoring PD-L1 expression using MPI and the MPI-guided immunotherapy. METHODS We developed anti-PD-L1 antibody (aPDL1)-conjugated magnetic fluorescent hybrid nanoparticles (MFNPs-aPDL1) and utilized MPI in combination with fluorescence imaging (FMI) to dynamically monitor and quantify PD-L1 expression in various tumors with different PD-L1 expression levels. The ex vivo real-time polymerase chain reaction (qPCR), western blotting, and immunofluorescence staining analysis were further performed to validate the in vivo imaging observation. Moreover, the MPI was further performed for the guidance of immunotherapy. RESULTS Our data showed that PD-L1 expression can be specifically and sensitively monitored and quantified using MPI and FMI imaging methods, which were validated by ex vivo qPCR and western blotting analysis. In addition, MPI-guided PD-L1 immunotherapy can enhance the effectiveness of cancer immunotherapy. CONCLUSION To our best knowledge, this is the pioneer study to utilize MPI in combination with a newly developed MFNPs-aPDL1 imaging probe to dynamically visualize and quantify PD-L1 expression in tumor microenvironment. This imaging strategy may facilitate the clinical optimization of immunotherapy management.
Collapse
Affiliation(s)
- Zhengyao Peng
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Chang Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Shenzhen Research Institution of Hunan University, Hunan University, Changsha, 410082, China
| | - Guangyuan Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Lin Yin
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Shenzhen Research Institution of Hunan University, Hunan University, Changsha, 410082, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100080, China.
| |
Collapse
|
13
|
Fu Y, Yu J, Liatsou I, Du Y, Josefsson A, Nedrow JR, Rindt H, Bryan JN, Kraitchman DL, Sgouros G. Anti-GD2 antibody for radiopharmaceutical imaging of osteosarcoma. Eur J Nucl Med Mol Imaging 2022; 49:4382-4393. [PMID: 35809088 DOI: 10.1007/s00259-022-05888-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/19/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE Osteosarcoma (OS) is the most frequently diagnosed bone cancer in children with little improvement in overall survival in the past decades. The high surface expression of disialoganglioside GD2 on OS tumors and restricted expression in normal tissues makes it an ideal target for anti-OS radiopharmaceuticals. Since human and canine OS share many biological and molecular features, spontaneously occurring OS in canines has been an ideal model for testing new imaging and treatment modalities for human translation. In this study, we evaluated a humanized anti-GD2 antibody, hu3F8, as a potential delivery vector for targeted radiopharmaceutical imaging of human and canine OS. METHODS The cross-reactivity of hu3F8 with human and canine OS cells and tumors was examined by immunohistochemistry and flow cytometry. The hu3F8 was radiolabeled with indium-111, and the biodistribution of [111In]In-hu3F8 was assessed in tumor xenograft-bearing mice. The targeting ability of [111In]In-hu3F8 to metastatic OS was tested in spontaneous OS canines. RESULTS The hu3F8 cross reacts with human and canine OS cells and canine OS tumors with high binding affinity. Biodistribution studies revealed selective uptake of [111In]In-hu3F8 in tumor tissue. SPECT/CT imaging of spontaneous OS canines demonstrated avid uptake of [111In]In-hu3F8 in all metastatic lesions. Immunohistochemistry confirmed the extensive binding of radiolabeled hu3F8 within both osseous and soft lesions. CONCLUSION This study demonstrates the feasibility of targeting GD2 on OS cells and spontaneous OS canine tumors using hu3F8-based radiopharmaceutical imaging. Its ability to deliver an imaging payload in a targeted manner supports the utility of hu3F8 for precision imaging of OS and potential future use in radiopharmaceutical therapy.
Collapse
Affiliation(s)
- Yingli Fu
- Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Jing Yu
- Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Ioanna Liatsou
- Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Yong Du
- Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Anders Josefsson
- Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Jessie R Nedrow
- Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - Hans Rindt
- Department of Veterinary Medicine & Surgery, the University of Missouri, Columbia, MO, USA
| | - Jeffrey N Bryan
- Department of Veterinary Medicine & Surgery, the University of Missouri, Columbia, MO, USA
| | - Dara L Kraitchman
- Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, MD, Baltimore, USA
| | - George Sgouros
- Department of Radiology and Radiological Science, the Johns Hopkins University School of Medicine, MD, Baltimore, USA.
| |
Collapse
|
14
|
Zhao X, Bao Y, Meng B, Xu Z, Li S, Wang X, Hou R, Ma W, Liu D, Zheng J, Shi M. From rough to precise: PD-L1 evaluation for predicting the efficacy of PD-1/PD-L1 blockades. Front Immunol 2022; 13:920021. [PMID: 35990664 PMCID: PMC9382880 DOI: 10.3389/fimmu.2022.920021] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Developing biomarkers for accurately predicting the efficacy of immune checkpoint inhibitor (ICI) therapies is conducive to avoiding unwanted side effects and economic burden. At the moment, the quantification of programmed cell death ligand 1 (PD-L1) in tumor tissues is clinically used as one of the combined diagnostic assays of response to anti-PD-1/PD-L1 therapy. However, the current assays for evaluating PD-L1 remain imperfect. Recent studies are promoting the methodologies of PD-L1 evaluation from rough to precise. Standardization of PD-L1 immunohistochemistry tests is being promoted by using optimized reagents, platforms, and cutoff values. Combining novel in vivo probes with PET or SPECT will probably be of benefit to map the spatio-temporal heterogeneity of PD-L1 expression. The dynamic change of PD-L1 in the circulatory system can also be realized by liquid biopsy. Consider PD-L1 expressed on non-tumor (immune and non-immune) cells, and optimized combination detection indexes are further improving the accuracy of PD-L1 in predicting the efficacy of ICIs. The combinations of artificial intelligence with novel technologies are conducive to the intelligence of PD-L1 as a predictive biomarker. In this review, we will provide an overview of the recent progress in this rapidly growing area and discuss the clinical and technical challenges.
Collapse
Affiliation(s)
- Xuan Zhao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Yulin Bao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Bi Meng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Zijian Xu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Sijin Li
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xu Wang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wen Ma
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Dan Liu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Dan Liu, ; Junnian Zheng, ; Ming Shi,
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Dan Liu, ; Junnian Zheng, ; Ming Shi,
| | - Ming Shi
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Dan Liu, ; Junnian Zheng, ; Ming Shi,
| |
Collapse
|
15
|
Liu WL, Zhang YQ, Li LT, Zhu YY, Ming ZH, Chen WL, Yang RQ, Li RH, Chen M, Zhang GJ. Application of molecular imaging in immune checkpoints therapy: From response assessment to prognosis prediction. Crit Rev Oncol Hematol 2022; 176:103746. [PMID: 35752425 DOI: 10.1016/j.critrevonc.2022.103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/30/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, immune checkpoint therapy (ICT) represented by programmed cell death1 (PD-1) and its major ligands, programmed death ligand 1 (PD-L1), has achieved significant success. Detection of PD-L1 by immunohistochemistry (IHC) is a classic method to guide the treatment of ICT patients. However, PD-L1 expression in the tumor microenvironment is highly complex. Thus, PD-L1 IHC is inadequate to fully understand the relevance of PD-L1 levels in the whole body and their dynamics to improve therapeutic outcomes. Intriguingly, numerous studies have revealed that molecular imaging technologies could potentially meet this need. Therefore, the purpose of this narrative review is to summarize the preclinical and clinical application of ICT guided by molecular imaging technology, and to explore the future opportunities and practical difficulties of these innovations.
Collapse
Affiliation(s)
- Wan-Ling Liu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Yong-Qu Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Liang-Tao Li
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Yuan-Yuan Zhu
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Zi-He Ming
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Wei-Ling Chen
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Rui-Qin Yang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China
| | - Rong-Hui Li
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Department of Medical Oncology, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China
| | - Min Chen
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China.
| | - Guo-Jun Zhang
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer (Xiang'an Hospital of Xiamen University), 2000 East Xiang'an Road, Xiamen, China; Xiamen Key Laboratory for Endocrine Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Road, Xiamen, China; Xiamen Research Center of Clinical Medicine in Breast & Thyroid Cancers, 2000 East Xiang'an Road, Xiamen, China; Cancer Research Center, School of Medicine, Xiamen University, 4221 South Xiang'an Road, Xiamen, China.
| |
Collapse
|
16
|
Krutzek F, Kopka K, Stadlbauer S. Development of Radiotracers for Imaging of the PD-1/PD-L1 Axis. Pharmaceuticals (Basel) 2022; 15:ph15060747. [PMID: 35745666 PMCID: PMC9228425 DOI: 10.3390/ph15060747] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has emerged as a major treatment option for a variety of cancers. Among the immune checkpoints addressed, the programmed death receptor 1 (PD-1) and its ligand PD-L1 are the key targets for an ICI. PD-L1 has especially been proven to be a reproducible biomarker allowing for therapy decisions and monitoring therapy success. However, the expression of PD-L1 is not only heterogeneous among and within tumor lesions, but the expression is very dynamic and changes over time. Immunohistochemistry, which is the standard diagnostic tool, can only inadequately address these challenges. On the other hand, molecular imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) provide the advantage of a whole-body scan and therefore fully address the issue of the heterogeneous expression of checkpoints over time. Here, we provide an overview of existing PET, SPECT, and optical imaging (OI) (radio)tracers for the imaging of the upregulation levels of PD-1 and PD-L1. We summarize the preclinical and clinical data of the different molecule classes of radiotracers and discuss their respective advantages and disadvantages. At the end, we show possible future directions for developing new radiotracers for the imaging of PD-1/PD-L1 status in cancer patients.
Collapse
Affiliation(s)
- Fabian Krutzek
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
| | - Klaus Kopka
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technical University Dresden, 01069 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, University Cancer Cancer (UCC), 01307 Dresden, Germany
| | - Sven Stadlbauer
- Department of Translational TME Ligands, Institute of Radiopharmaceutical Cancer Research, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (F.K.); (K.K.)
- Correspondence:
| |
Collapse
|
17
|
Zhou H, Bao G, Wang Z, Zhang B, Li D, Chen L, Deng X, Yu B, Zhao J, Zhu X. PET imaging of an optimized anti-PD-L1 probe 68Ga-NODAGA-BMS986192 in immunocompetent mice and non-human primates. EJNMMI Res 2022; 12:35. [PMID: 35695985 PMCID: PMC9192916 DOI: 10.1186/s13550-022-00906-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background Adnectin is a protein family derived from the 10th type III domain of human fibronectin (10Fn3) with high-affinity targeting capabilities. Positron emission tomography (PET) probes derived from anti-programmed death ligand-1 (PD-L1) Adnectins, including 18F- and 68Ga-labeled BMS-986192, are recently developed for the prediction of patient response to immune checkpoint blockade. The 68Ga-labeled BMS-986192, in particular, is an attractive probe for under-developed regions due to the broader availability of 68Ga. However, the pharmacokinetics and biocompatibility of 68Ga-labeled BMS-986192 are still unknown, especially in non-human primates, impeding its further clinical translation. Methods We developed a variant of 68Ga-labeled BMS-986192 using 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA) as the radionuclide–chelator. The resultant probe, 68Ga-NODAGA-BMS986192, was evaluated in terms of targeting specificity using a bilateral mouse tumor model inoculated with wild-type B16F10 and B16F10 transduced with human PD-L1 (hPD-L1-B16F10). The dynamic biodistribution and radiation dosimetry of this probe were also investigated in non-human primate cynomolgus. Results 68Ga-NODAGA-BMS986192 was prepared with a radiochemical purity above 99%. PET imaging with 68Ga-NODAGA-BMS986192 efficiently delineated the hPD-L1-B16F10 tumor at 1 h post-injection. The PD-L1-targeting capability of this probe was further confirmed using in vivo blocking assay and ex vivo biodistribution studies. PET dynamic imaging in both mouse and cynomolgus models revealed a rapid clearance of the probe via the renal route, which corresponded to the low background signals of the PET images. The probe also exhibited a favorable radiation dosimetry profile with a total-body effective dose of 6.34E-03 mSv/MBq in male cynomolgus. Conclusions 68Ga-NODAGA-BMS986192 was a feasible and safe tool for the visualization of human PD-L1. Our study also provided valuable information on the potential of targeted PET imaging using Adnectin-based probes. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-022-00906-x.
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Guangfa Bao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Buchuan Zhang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Dan Li
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Lixing Chen
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xiaoyun Deng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Bo Yu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jun Zhao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.,Department of Anatomy, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.,Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
18
|
Ridge NA, Rajkumar-Calkins A, Dudzinski SO, Kirschner AN, Newman NB. Radiopharmaceuticals as Novel Immune System Tracers. Adv Radiat Oncol 2022; 7:100936. [PMID: 36148374 PMCID: PMC9486425 DOI: 10.1016/j.adro.2022.100936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the treatment paradigms for multiple cancers. However, ICI therapy often fails to generate measurable and sustained antitumor responses, and clinically meaningful benefits remain limited to a small proportion of overall patients. A major obstacle to development and effective application of novel therapeutic regimens is optimized patient selection and response assessment. Noninvasive imaging using novel immunoconjugate radiopharmaceuticals (immuno–positron emission tomography and immuno-single-photon emission computed tomography) can assess for expression of cell surface immune markers, such as programmed cell death protein ligand-1 (PD-L1), akin to a virtual biopsy. This emerging technology has the potential to provide clinicians with a quantitative, specific, real-time evaluation of immunologic responses relative to cancer burden in the body. We discuss the rationale for using noninvasive molecular imaging of the programmed cell death protein-1 and PD-L1 axis as a biomarker for immunotherapy and summarize the current status of preclinical and clinical studies examining PD-L1 immuno–positron emission tomography. The strategies described in this review provide insight for future clinical trials exploring the use of immune checkpoint imaging as a biomarker for both ICI and radiation therapy, and for the rational design of combinatorial therapeutic regimens.
Collapse
|
19
|
Sandker GGW, Adema G, Molkenboer-Kuenen J, Wierstra P, Bussink J, Heskamp S, Aarntzen EHJG. PD-L1 Antibody Pharmacokinetics and Tumor Targeting in Mouse Models for Infectious Diseases. Front Immunol 2022; 13:837370. [PMID: 35359962 PMCID: PMC8960984 DOI: 10.3389/fimmu.2022.837370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Programmed death-ligand 1 (PD-L1) regulates immune homeostasis by promoting T-cell exhaustion. It is involved in chronic infections and tumor progression. Nuclear imaging using radiolabeled anti-PD-L1 antibodies can monitor PD-L1 tissue expression and antibody distribution. However, physiological PD-L1 can cause rapid antibody clearance from blood at imaging doses. Therefore, we hypothesized that inflammatory responses, which can induce PD-L1 expression, affect anti-PD-L1 antibody distribution. Here, we investigated the effects of three different infectious stimuli on the pharmacokinetics and tumor targeting of radiolabeled anti-PD-L1 antibodies in tumor-bearing mice. Materials/Methods Anti-mouse-PD-L1 and isotype control antibodies were labelled with indium-111 ([111In]In-DTPA-anti-mPD-L1 and [111In]In-DTPA-IgG2a, respectively). We evaluated the effect of inflammatory responses on the pharmacokinetics of [111In]In-DTPA-anti-mPD-L1 in RenCa tumor-bearing BALB/c mice in three conditions: lipopolysaccharide (LPS), local Staphylococcus aureus, and heat-killed Candida albicans. After intravenous injection of 30 or 100 µg of [111In]In-DTPA-anti-mPD-L1 or [111In]In-DTPA-IgG2a, blood samples were collected 1, 4, and 24 h p.i. followed by microSPECT/CT and ex vivo biodistribution analyses. PD-L1 expression, neutrophil, and macrophage infiltration in relevant tissues were evaluated immunohistochemically. Results In 30 µg of [111In]In-DTPA-anti-mPD-L1 injected tumor-bearing mice the LPS-challenge significantly increased lymphoid organ uptake compared with vehicle controls (spleen: 49.9 ± 4.4%ID/g versus 21.2 ± 6.9%ID/g, p < 0.001), resulting in lower blood levels (3.6 ± 1.6%ID/g versus 11.5 ± 7.2%ID/g; p < 0.01) and reduced tumor targeting (8.1 ± 4.5%ID/g versus 25.2 ± 5.2%ID/g, p < 0.001). Local S. aureus infections showed high PD-L1+ neutrophil influx resulting in significantly increased [111In]In-DTPA-anti-mPD-L1 uptake in affected muscles (8.6 ± 2.6%ID/g versus 1.7 ± 0.8%ID/g, p < 0.001). Heat-killed Candida albicans (Hk-C. albicans) challenge did not affect pharmacokinetics. Increasing [111In]In-DTPA-anti-mPD-L1 dose to 100 µg normalized blood clearance and tumor uptake in LPS-challenged mice, although lymphoid organ uptake remained higher. Infectious stimuli did not affect [111In]In-DTPA-IgG2a pharmacokinetics. Conclusions This study shows that anti-PD-L1 antibody pharmacokinetics and tumor targeting can be significantly altered by severe inflammatory responses, which can be compensated for by increasing the tracer dose. This has implications for developing clinical PD-L1 imaging protocols in onco-immunology. We further demonstrate that radiolabeled anti-PD-L1 antibodies can be used to evaluate PD-L1 expression changes in a range of infectious diseases. This supports the exploration of using these techniques to assess hosts' responses to infectious stimuli.
Collapse
Affiliation(s)
- Gerwin G W Sandker
- Department of Medical Imaging, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse Adema
- Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Janneke Molkenboer-Kuenen
- Department of Medical Imaging, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Wierstra
- Department of Medical Imaging, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Erik H J G Aarntzen
- Department of Medical Imaging, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
20
|
Hegi-Johnson F, Rudd S, Hicks RJ, De Ruysscher D, Trapani JA, John T, Donnelly P, Blyth B, Hanna G, Everitt S, Roselt P, MacManus MP. Imaging immunity in patients with cancer using positron emission tomography. NPJ Precis Oncol 2022; 6:24. [PMID: 35393508 PMCID: PMC8989882 DOI: 10.1038/s41698-022-00263-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/24/2022] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibitors and related molecules can achieve tumour regression, and even prolonged survival, for a subset of cancer patients with an otherwise dire prognosis. However, it remains unclear why some patients respond to immunotherapy and others do not. PET imaging has the potential to characterise the spatial and temporal heterogeneity of both immunotherapy target molecules and the tumor immune microenvironment, suggesting a tantalising vision of personally-adapted immunomodulatory treatment regimens. Personalised combinations of immunotherapy with local therapies and other systemic therapies, would be informed by immune imaging and subsequently modified in accordance with therapeutically induced immune environmental changes. An ideal PET imaging biomarker would facilitate the choice of initial therapy and would permit sequential imaging in time-frames that could provide actionable information to guide subsequent therapy. Such imaging should provide either prognostic or predictive measures of responsiveness relevant to key immunotherapy types but, most importantly, guide key decisions on initiation, continuation, change or cessation of treatment to reduce the cost and morbidity of treatment while enhancing survival outcomes. We survey the current literature, focusing on clinically relevant immune checkpoint immunotherapies, for which novel PET tracers are being developed, and discuss what steps are needed to make this vision a reality.
Collapse
Affiliation(s)
- Fiona Hegi-Johnson
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Stacey Rudd
- Department of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Rodney J Hicks
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joseph A Trapani
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Thomas John
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Paul Donnelly
- Department of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin Blyth
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard Hanna
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Sarah Everitt
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Roselt
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Michael P MacManus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
21
|
Wu AM, Pandit-Taskar N. ImmunoPET: harnessing antibodies for imaging immune cells. Mol Imaging Biol 2022; 24:181-197. [PMID: 34550529 DOI: 10.1007/s11307-021-01652-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/22/2023]
Abstract
Dramatic, but uneven, progress in the development of immunotherapies for cancer has created a need for better diagnostic technologies including innovative non-invasive imaging approaches. This review discusses challenges and opportunities for molecular imaging in immuno-oncology and focuses on the unique role that antibodies can fill. ImmunoPET has been implemented for detection of immune cell subsets, activation and inhibitory biomarkers, tracking adoptively transferred cellular therapeutics, and many additional applications in preclinical models. Parallel progress in radionuclide availability and infrastructure supporting biopharmaceutical manufacturing has accelerated clinical translation. ImmunoPET is poised to provide key information on prognosis, patient selection, and monitoring immune responses to therapy in cancer and beyond.
Collapse
Affiliation(s)
- Anna M Wu
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Center for Theranostics Studies, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA.
- Department of Radiation Oncology, City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| | - Neeta Pandit-Taskar
- Molecular Imaging &Therapy Svc, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical Center, New York, NY, USA
- Center for Targeted Radioimmunotherapy and Theranostics, Ludwig Center for Cancer Immunotherapy, MSK, 1275 York Ave, New York, NY, 10065, USA
| |
Collapse
|
22
|
Enhanced Delivery of Thermoresponsive Polymer-Based Medicine into Tumors by Using Heat Produced from Gold Nanorods Irradiated with Near-Infrared Light. Cancers (Basel) 2021; 13:cancers13195005. [PMID: 34638489 PMCID: PMC8508138 DOI: 10.3390/cancers13195005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary To establish a therapy targeting scattered tumors throughout the body, we propose a novel drug delivery system using a thermoresponsive polyoxazoline (POZ) as a drug carrier in combination with gold nanorods (GNR), which produce heat when irradiated with near-infrared (NIR) light. After the tumor was irradiated with NIR light, where GNR was accumulated in advance, the radiolabeled POZ was intravenously injected. As a result, a marked tumor uptake was achieved via self-aggregation of POZ by sensing heat yielded from the GNR. Because the POZ would be chemically modified with various anti-tumor drugs including therapeutic radionuclides, remarkable anti-tumor effects can be expected by enhancing delivery of POZ-based medicine into scattered tumors throughout the body. Abstract The aim of this study was to establish a drug delivery system (DDS) for marked therapy of tumors using a thermoresponsive polymer, polyoxazoline (POZ). The effectiveness of the following was investigated: (i) the delivery of gold nanorods (GNRs) to tumor tissues, (ii) heat production of GNR upon irradiation with near-infrared (NIR) light, and (iii) high accumulation of an intravenously injected radiolabeled POZ as a drug carrier in tumors by sensing heat produced by GNRs. When the GNR solution was irradiated with NIR light (808 nm), the solution temperature was increased both in a GNR-concentration-dependent manner and in a light-dose-dependent manner. POZ, with a lower critical solution temperature of 38 °C, was aggregated depending on the heat produced by the GNR irradiated by NIR light. When it was intratumorally pre-injected into colon26-tumor-bearing mice, followed by NIR light irradiation (GNR+/Light+ group), the tumor surface temperature increased to approximately 42 °C within 5 min. Fifteen minutes after irradiation with NIR light, indium-111 (111In)-labeled POZ was intravenously injected into tumor-bearing mice, and the radioactivity distribution was evaluated. The accumulation of POZ in the tumor was significantly (approximately 4-fold) higher than that in the control groups (GNR+/without NIR light irradiation (Light–), without injection of GNR (GNR–)/Light+, and GNR–/Light– groups). Furthermore, an in vivo confocal fluorescence microscopy study, using fluorescence-labeled POZ, revealed that uptake of POZ by the tumor could be attributed to the heat produced by GNR. In conclusion, we successfully established a novel DDS in which POZ could be efficiently delivered into tumors by using the heat produced by GNR irradiated with NIR light.
Collapse
|
23
|
Leung D, Bonacorsi S, Smith RA, Weber W, Hayes W. Molecular Imaging and the PD-L1 Pathway: From Bench to Clinic. Front Oncol 2021; 11:698425. [PMID: 34497758 PMCID: PMC8420047 DOI: 10.3389/fonc.2021.698425] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/22/2021] [Indexed: 01/24/2023] Open
Abstract
Programmed death-1 (PD-1) and programmed death ligand 1 (PD-L1) inhibitors target the important molecular interplay between PD-1 and PD-L1, a key pathway contributing to immune evasion in the tumor microenvironment (TME). Long-term clinical benefit has been observed in patients receiving PD-(L)1 inhibitors, alone and in combination with other treatments, across multiple tumor types. PD-L1 expression has been associated with response to immune checkpoint inhibitors, and treatment strategies are often guided by immunohistochemistry-based diagnostic tests assessing expression of PD-L1. However, challenges related to the implementation, interpretation, and clinical utility of PD-L1 diagnostic tests have led to an increasing number of preclinical and clinical studies exploring interrogation of the TME by real-time imaging of PD-(L)1 expression by positron emission tomography (PET). PET imaging utilizes radiolabeled molecules to non-invasively assess PD-(L)1 expression spatially and temporally. Several PD-(L)1 PET tracers have been tested in preclinical and clinical studies, with clinical trials in progress to assess their use in a number of cancer types. This review will showcase the development of PD-(L)1 PET tracers from preclinical studies through to clinical use, and will explore the opportunities in drug development and possible future clinical implementation.
Collapse
Affiliation(s)
- David Leung
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| | - Samuel Bonacorsi
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| | - Ralph Adam Smith
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| | - Wolfgang Weber
- Technische Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wendy Hayes
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| |
Collapse
|
24
|
Qiu L, Tan H, Lin Q, Si Z, Mao W, Wang T, Fu Z, Cheng D, Shi H. A Pretargeted Imaging Strategy for Immune Checkpoint Ligand PD-L1 Expression in Tumor Based on Bioorthogonal Diels-Alder Click Chemistry. Mol Imaging Biol 2021; 22:842-853. [PMID: 31741201 DOI: 10.1007/s11307-019-01441-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The use of antibodies as tracers requires labeling with isotopes with long half-lives due to their slow pharmacokinetics, which creates prohibitively high radiation dose to non-target organs. Pretargeted methodology could avoid the high radiation exposure due to the slow pharmacokinetics of antibodies. In this investigation, we reported the development of a novel pretargeted single photon emission computed tomography (SPECT) imaging strategy (atezolizumab-TCO/[99mTc]HYNIC-PEG11-Tz) for evaluating immune checkpoint ligand PD-L1 expression in tumor based on bioorthogonal Diels-Alder click chemistry. PROCEDURES The radioligand [99mTc]HYNIC-PEG11-Tz was achieved by the synthesis of a 6-hydrazinonicotinc acid (HYNIC) modified 1,2,4,5-tetrazine (Tz) and subsequently radiolabeled with technetium-99m (Tc-99m). The stability of [99mTc]HYNIC-PEG11-Tz was evaluated in vitro, and its blood pharmacokinetic test was performed in vivo. Atezolizumab was modified with trans-cyclooctene (TCO). The [99mTc]HYNIC-PEG11-Tz and atezolizumab-TCO interaction was tested in vitro. Pretargeted H1975 cell immunoreactivity binding and saturation binding assays were evaluated. Pretargeted biodistribution and SPECT imaging experiments were performed in H1975 and A549 tumor-bearing modal mice to evaluate the PD-L1 expression level. RESULTS [99mTc]HYNIC-PEG11-Tz was successfully radiosynthesized with a specific activity of 9.25 MBq/μg and a radiochemical purity above 95 % as confirmed by reversed-phase HPLC (RP-HPLC). [99mTc]HYNIC-PEG11-Tz showed favorable stability in NS, PBS, and FBS and rapid blood clearance in mice. The atezolizumab was modified with TCO-NHS ester to produce a conjugate with an average 6.4 TCO moieties as confirmed by liquid chromatograph-mass spectrometer (LC-MS). Size exclusion HPLC revealed almost complete reaction between atezolizumab-TCO and [99mTc]HYNIC-PEG11-Tz in vitro, with the 1:1 Tz-to-mAb reaction providing a conversion yield of 88.65 ± 1.22 %. Pretargeted cell immunoreactivity binding and saturation binding assays showed high affinity to H1975 cells. After allowing 48 h for accumulation of atezolizumab-TCO in H1975 tumor, pretargeted in vivo biodistribution revealed high uptake of the radiotracer in the tumor with a tumor-to-muscle ratio of 27.51 and tumor-to-blood ratio of 1.91. Pretargeted SPECT imaging delineated the H1975 tumor clearly. Pretargeted biodistribution and SPECT imaging in control groups demonstrated a significantly reduced tracer accumulation in the A549 tumor. CONCLUSIONS We have developed a HYNIC-modified Tz derivative, and the HYNIC-PEG11-Tz was labeled with Tc-99m with a high specific activity and radiochemical purity. [99mTc]HYNIC-PEG11-Tz reacted rapidly and almost completely towards atezolizumab-TCO in vitro with the 1:1 Tz-to-mAb reaction. SPECT imaging using the pretargeted strategy (atezolizumab-TCO/[99mTc]HYNIC-PEG11-Tz) demonstrated high-contrast images for high PD-L1 expression H1975 tumor and a low background accumulation of the probe. The pretargeted imaging strategy is a powerful tool for evaluating PD-L1 expression in xenograft mice tumor models and a potential candidate for translational clinical application.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Qingyu Lin
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhan Si
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Wujian Mao
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Tingting Wang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhequan Fu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
25
|
Xuan Y, Guan M, Zhang S. Tumor immunotherapy and multi-mode therapies mediated by medical imaging of nanoprobes. Theranostics 2021; 11:7360-7378. [PMID: 34158855 PMCID: PMC8210602 DOI: 10.7150/thno.58413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy is an effective tumor treatment strategy that has several advantages over conventional methods such as surgery, radiotherapy and chemotherapy. Studies show that multifunctional nanoprobes can achieve multi-mode image-guided multiple tumor treatment modes. The tumor cells killed by chemotherapies or phototherapies release antigens that trigger an immune response and augment the effects of tumor immunotherapy. Thus, combining immunotherapy and multifunctional nanoprobes can achieve early cancer diagnosis and treatment. In this review, we have summarized the current research on the applications of multifunctional nanoprobes in image-guided immunotherapy. In addition, image-guided synergistic chemotherapy/photothermal therapy/photodynamic therapy and immunotherapy have also been discussed. Furthermore, the application potential and clinical prospects of multifunctional nanoprobes in combination with immunotherapy have been assessed.
Collapse
Affiliation(s)
| | | | - Shubiao Zhang
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, 116600, China
| |
Collapse
|
26
|
Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021; 172:148-182. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The remarkable success of targeted immunotherapies is revolutionizing cancer treatment. However, tumor heterogeneity and low immunogenicity, in addition to several tumor-associated immunosuppression mechanisms are among the major factors that have precluded the success of cancer vaccines as targeted cancer immunotherapies. The exciting outcomes obtained in patients upon the injection of tumor-specific antigens and adjuvants intratumorally, reinvigorated interest in the use of nanotechnology to foster the delivery of vaccines to address cancer unmet needs. Thus, bridging nano-based vaccine platform development and predicted clinical outcomes the selection of the proper preclinical model will be fundamental. Preclinical models have revealed promising outcomes for cancer vaccines. However, only few cases were associated with clinical responses. This review addresses the major challenges related to the translation of cancer nano-based vaccines to the clinic, discussing the requirements for ex vivo and in vivo models of cancer to ensure the translation of preclinical success to patients.
Collapse
|
27
|
Wang S, Zhu H, Ding J, Wang F, Meng X, Ding L, Zhang Y, Li N, Yao S, Sheng X, Yang Z. Positron Emission Tomography Imaging of Programmed Death 1 Expression in Cancer Patients Using 124I-Labeled Toripalimab: A Pilot Clinical Translation Study. Clin Nucl Med 2021; 46:382-388. [PMID: 33512952 DOI: 10.1097/rlu.0000000000003520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE Although anti-programmed cell death molecule-1 (PD-1)/PD-1 ligand therapy has achieved remarkable success in oncology field, the low response rate and lack of accurate prognostic biomarker identifying benefiting patients remain unresolved challenges. This study developed a PD-1 targeting radiotracer 124I-labeled toripalimab (124I-JS001) for clinical PET imaging and evaluated its biodistribution, safety, and dosimetry in human. METHODS Patients with melanoma or urologic cancer confirmed by pathology were enrolled. 124I-JS001 PET/CT and PET/MR were performed with or without coinjection of 5 mg unlabeled JS001, and 18F-FDG PET was undertaken within 1 week. RESULTS Eight melanoma and 3 urologic cancer patients were enrolled. No adverse events were noticed during the whole examination after the injection of 124I-JS001 and an acceptable dosimetry of 0.236 mSv/MBq was found. 124I-JS001 PET/CT showed high uptake in spleen and liver and slight uptake in bone marrow and lung. All primary and metastatic tumor lesions in 11 patients demonstrated different levels of uptake of 124I-JS001 with SUVmax ranging from 0.2 to 4.7. With coinjection of unlabeled JS001, the uptake in spleen was reduced significantly (P < 0.05), whereas tumor uptake and tumor background ratio increased significantly (P < 0.05). Four patients undertook regional 124I-JS001 PET/MR. All tumor lesions were detected effectively with abnormal MR signal on PET/MR, whereas PET/MR detected liver lesions more sensitively than PET/CT. CONCLUSIONS The first-in-human study demonstrated 124I-JS001 was a safe tracer for PET with acceptable dosimetry, and the PET/CT results showed a favorable biodistribution. PET/MR could detect liver lesions more sensitively than PET/CT.
Collapse
Affiliation(s)
- Shujing Wang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing
| | - Hua Zhu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing
| | - Jin Ding
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing
| | - Feng Wang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing
| | - Xiangxi Meng
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing
| | - Lixin Ding
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing
| | - Yan Zhang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing
| | - Nan Li
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing
| | - Sheng Yao
- Shanghai Junshi Biosciences Co Ltd, Shanghai
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing
| |
Collapse
|
28
|
Burvenich IJG, Goh YW, Guo N, Gan HK, Rigopoulos A, Cao D, Liu Z, Ackermann U, Wichmann CW, McDonald AF, Huynh N, O'Keefe GJ, Gong SJ, Scott FE, Li L, Geng W, Zutshi A, Lan Y, Scott AM. Radiolabelling and preclinical characterization of 89Zr-Df-radiolabelled bispecific anti-PD-L1/TGF-βRII fusion protein bintrafusp alfa. Eur J Nucl Med Mol Imaging 2021; 48:3075-3088. [PMID: 33608805 DOI: 10.1007/s00259-021-05251-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/08/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE Τhis study aimed to optimize the 89Zr-radiolabelling of bintrafusp alfa investigational drug product and controls, and perform the in vitro and in vivo characterization of 89Zr-Df-bintrafusp alfa and 89Zr-Df-control radioconjugates. METHODS Bintrafusp alfa (anti-PD-L1 human IgG1 antibody fused to TGF-β receptor II (TGF-βRII), avelumab (anti-PD-L1 human IgG1 control antibody), isotype control (mutated inactive anti-PD-L1 IgG1 control antibody), and trap control (mutated inactive anti-PD-L1 human IgG1 fused to active TGF-βRII) were chelated with p-isothiocyanatobenzyl-desferrioxamine (Df). After radiolabelling with zirconium-89 (89Zr), radioconjugates were assessed for radiochemical purity, immunoreactivity, antigen binding affinity, and serum stability in vitro. In vivo biodistribution and imaging studies were performed with PET/CT to identify and quantitate 89Zr-Df-bintrafusp alfa tumour uptake in a PD-L1/TGF-β-positive murine breast cancer model (EMT-6). Specificity of 89Zr-Df-bintrafusp alfa was assessed via a combined biodistribution and imaging experiment in the presence of competing cold bintrafusp alfa (1 mg/kg). RESULTS Nanomolar affinities for PD-L1 were achieved with 89Zr-Df-bintrafusp alfa and 89Zr-avelumab. Biodistribution and imaging studies in PD-L1- and TGF-β-positive EMT-6 tumour-bearing BALB/c mice demonstrated the biologic similarity of 89Zr-Df-bintrafusp alfa and 89Zr-avelumab indicating the in vivo distribution pattern of bintrafusp alfa is driven by its PD-L1 binding arm. Competition study with 1 mg of unlabelled bintrafusp alfa or avelumab co-administered with trace dose of 89Zr-labelled bintrafusp alfa demonstrated the impact of dose and specificity of PD-L1 targeting in vivo. CONCLUSION Molecular imaging of 89Zr-Df-bintrafusp alfa biodistribution was achievable and allows non-invasive quantitation of tumour uptake of 89Zr-Df-bintrafusp alfa, suitable for use in bioimaging clinical trials in cancer patients.
Collapse
Affiliation(s)
- Ingrid Julienne Georgette Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Yit Wooi Goh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia
| | - Hui Kong Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Angela Rigopoulos
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Diana Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Zhanqi Liu
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Uwe Ackermann
- School of Cancer Medicine, La Trobe University, Melbourne, Australia.,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Christian Werner Wichmann
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Alexander Franklin McDonald
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Nhi Huynh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia
| | - Graeme Joseph O'Keefe
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Sylvia Jie Gong
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.,School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, Australia
| | - Fiona Elizabeth Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Linghui Li
- EMD Serono Research & Development Institute, Inc., a business of Merck KGaA, Darmstadt, Germany, Billerica, MA, USA
| | - Wanping Geng
- EMD Serono Research & Development Institute, Inc., a business of Merck KGaA, Darmstadt, Germany, Billerica, MA, USA
| | - Anup Zutshi
- EMD Serono Research & Development Institute, Inc., a business of Merck KGaA, Darmstadt, Germany, Billerica, MA, USA
| | - Yan Lan
- EMD Serono Research & Development Institute, Inc., a business of Merck KGaA, Darmstadt, Germany, Billerica, MA, USA
| | - Andrew Mark Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, Melbourne, Victoria, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Melbourne, Australia. .,Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia. .,Department of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
29
|
Liu Q, Tian J, Tian Y, Sun Q, Sun D, Wang F, Xu H, Ying G, Wang J, Yetisen AK, Jiang N. Near-Infrared-II Nanoparticles for Cancer Imaging of Immune Checkpoint Programmed Death-Ligand 1 and Photodynamic/Immune Therapy. ACS NANO 2021; 15:515-525. [PMID: 33426893 DOI: 10.1021/acsnano.0c05317] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Development of second near-infrared (NIR-II) nanoparticles (NPs) with high biocompatibility, low toxicity, and high singlet oxygen quantum yield (ΦΔ) to prevent tumor recurrence is highly desirable in molecular imaging and photodynamic/immune combination therapy. Here, theranostic photosensitizer BODIPY (BDP)-I-N-anti-PD-L1 NPs were developed by encapsulating the photosensitizer BDP-I-N with amphipathic poly(styrene-co-chloromethylstyrene)-graft-poly(ethylene glycol) nanocarriers through self-assembly functionalization with programmed cell death-ligand 1 (PD-L1) monoclonal antibody. These NPs exhibit highly intensive luminescence in the NIR-II window (1000-1700 nm) to real-time imaging of immune checkpoint PD-L1, high singlet oxygen quantum yield (ΦΔ = 73%), and an eliminating effect of primary cancers. The NPs also allow for profiling PD-L1 expression as well as accumulating in MC38 tumor and enabling molecular imaging in vivo. Upon an 808 nm laser excitation, the targeted NPs produce an emission wavelength above 1200 nm to image a tumor to a normal tissue signal ratio (T/NT) at an approximate value of 14.1. Moreover, the MC38 tumors in mice are eliminated by combining photodynamic therapy and immunotherapy within 30 days, with no tumor recurrence within a period of 40 days. In addition, the tumors do not grow in the rechallenged mice within 7 days of inoculation. Such a strategy shows a durable immune memory effect against tumor rechallenging without toxic side effects to major organs.
Collapse
Affiliation(s)
- Qiang Liu
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ye Tian
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qinchao Sun
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dan Sun
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Feifei Wang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Guoliang Ying
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Jigang Wang
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
30
|
Kelly MP, Makonnen S, Hickey C, Arnold TC, Giurleo JT, Tavaré R, Danton M, Granados C, Chatterjee I, Dudgeon D, Retter MW, Ma D, Olson WC, Thurston G, Kirshner JR. Preclinical PET imaging with the novel human antibody 89Zr-DFO-REGN3504 sensitively detects PD-L1 expression in tumors and normal tissues. J Immunother Cancer 2021; 9:jitc-2020-002025. [PMID: 33483343 PMCID: PMC7831708 DOI: 10.1136/jitc-2020-002025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
Background Programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) blocking antibodies including cemiplimab have generated profound clinical activity across diverse cancer types. Tumorous PD-L1 expression, as assessed by immunohistochemistry (IHC), is an accepted predictive marker of response to therapy in some cancers. However, expression is often dynamic and heterogeneous, and therefore not reliably captured by IHC from tumor biopsies or archival samples. Thus, there is significant need for accurate whole-body quantification of PD-L1 levels. Methods We radiolabeled the novel human anti-PD-L1 antibody REGN3504 with zirconium-89 (89Zr) using the chelator p-SCN-Bn-Deferoxamine to enable non-invasive immuno-positron emission tomography (immuno-PET) of PD-L1 expression. PET imaging assessed the localization of 89Zr-REGN3504 to multiple human tumor xenografts. Mice genetically humanized for PD-1 and PD-L1 were used to assess the biodistribution of 89Zr-REGN3504 to normal tissues and the estimated human radiation dosimetry of 89Zr-REGN3504 was also determined. Pharmacokinetics of REGN3504 was assessed in monkeys. Results Clear localization of 89Zr-REGN3504 to human tumor xenografts was observed via PET imaging and ex vivo biodistribution studies demonstrated high (fourfold to sixfold) tumor:blood ratios. 89Zr-REGN3504 specifically localized to spleen and lymph nodes in the PD-1/PD-L1 humanized mice. 89Zr-REGN3504 immuno-PET accurately detected a significant reduction in splenic PD-L1 positive cells following systemic treatment with clodronate liposomes. Radiation dosimetry suggested absorbed doses would be within guidelines for other 89Zr radiolabeled, clinically used antibodies. Pharmacokinetics of REGN3504 was linear. Conclusion This work supports the clinical translation of 89Zr-REGN3504 immuno-PET for the assessment of PD-L1 expression. Future clinical studies will aim to investigate the utility of 89Zr-REGN3504 immuno-PET for predicting and monitoring response to anti-PD-1 therapy.
Collapse
Affiliation(s)
| | | | - Carlos Hickey
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - T Cody Arnold
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | | | | | | | | | - Drew Dudgeon
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Marc W Retter
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | - Dangshe Ma
- Regeneron Pharmaceuticals Inc, Tarrytown, New York, USA
| | | | | | | |
Collapse
|
31
|
Carreira B, Acúrcio RC, Matos AI, Peres C, Pozzi S, Vaskovich‐Koubi D, Kleiner R, Bento M, Satchi‐Fainaro R, Florindo HF. Nanomedicines as Multifunctional Modulators of Melanoma Immune Microenvironment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ana I. Matos
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Daniella Vaskovich‐Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Mariana Bento
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| |
Collapse
|
32
|
Abousaway O, Rakhshandehroo T, Van den Abbeele AD, Kircher MF, Rashidian M. Noninvasive Imaging of Cancer Immunotherapy. Nanotheranostics 2021; 5:90-112. [PMID: 33391977 PMCID: PMC7738948 DOI: 10.7150/ntno.50860] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has revolutionized the treatment of several malignancies. Notwithstanding the encouraging results, many patients do not respond to treatments. Evaluation of the efficacy of treatments is challenging and robust methods to predict the response to treatment are not yet available. The outcome of immunotherapy results from changes that treatment evokes in the tumor immune landscape. Therefore, a better understanding of the dynamics of immune cells that infiltrate into the tumor microenvironment may fundamentally help in addressing this challenge and provide tools to assess or even predict the response. Noninvasive imaging approaches, such as PET and SPECT that provide whole-body images are currently seen as the most promising tools that can shed light on the events happening in tumors in response to treatment. Such tools can provide critical information that can be used to make informed clinical decisions. Here, we review recent developments in the field of noninvasive cancer imaging with a focus on immunotherapeutics and nuclear imaging technologies and will discuss how the field can move forward to address the challenges that remain unresolved.
Collapse
Affiliation(s)
- Omar Abousaway
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Taha Rakhshandehroo
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Annick D. Van den Abbeele
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Moritz F. Kircher
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, USA
| | - Mohammad Rashidian
- Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
33
|
Wang W, Gao Z, Wang L, Li J, Yu J, Han S, Meng X. Application and Prospects of Molecular Imaging in Immunotherapy. Cancer Manag Res 2020; 12:9389-9403. [PMID: 33061627 PMCID: PMC7533904 DOI: 10.2147/cmar.s269773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022] Open
Abstract
Recently, immunotherapies that target the interactions of programmed cell death 1 (PD-1) with its major ligands, programmed death ligand 1 (PD-L1) and programmed death ligand 2 (PD-L2), have achieved significant success. To date, several immune checkpoint inhibitors targeting the PD-1/PD-L1 pathway have been developed to treat melanoma, non-small cell lung cancer, head and neck cancer, renal cell carcinoma, and urothelial carcinoma. Despite promising outcomes with immunotherapy, there are many limitations to several current immune biomarkers for predicting immune benefits and to traditional imaging for evaluating the efficacy and prognosis of immunotherapy and monitoring adverse reactions. In this review, we recommend a novel imaging method, molecular imaging. This paper reviews the application and prospects of molecular imaging in the context of current immunotherapies in regard to the following aspects: 1) detecting the expression of PD-1/PD-L1; 2) evaluating the efficacy of immunotherapy; 3) assessing patient prognosis with immunotherapy; 4) monitoring the toxicity of immunotherapy; and 5) other targets imaging.
Collapse
Affiliation(s)
- Weiqing Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, People's Republic of China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, People's Republic of China
| | - Zhenhua Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, People's Republic of China
| | - Lu Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, People's Republic of China
| | - Jianing Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, People's Republic of China
| | - Jinming Yu
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261053, People's Republic of China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, People's Republic of China
| | - Shumei Han
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, People's Republic of China
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, People's Republic of China
| |
Collapse
|
34
|
van der Veen EL, Giesen D, Pot-de Jong L, Jorritsma-Smit A, De Vries EGE, Lub-de Hooge MN. 89Zr-pembrolizumab biodistribution is influenced by PD-1-mediated uptake in lymphoid organs. J Immunother Cancer 2020; 8:jitc-2020-000938. [PMID: 33020241 PMCID: PMC7537332 DOI: 10.1136/jitc-2020-000938] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Background To better predict response to immune checkpoint therapy and toxicity in healthy tissues, insight in the in vivo behavior of immune checkpoint targeting monoclonal antibodies is essential. Therefore, we aimed to study in vivo pharmacokinetics and whole-body distribution of zirconium-89 (89Zr) labeled programmed cell death protein-1 (PD-1) targeting pembrolizumab with positron-emission tomography (PET) in humanized mice. Methods Humanized (huNOG) and non-humanized NOG mice were xenografted with human A375M melanoma cells. PET imaging was performed on day 7 post 89Zr-pembrolizumab (10 µg, 2.5 MBq) administration, followed by ex vivo biodistribution studies. Other huNOG mice bearing A375M tumors received a co-injection of excess (90 µg) unlabeled pembrolizumab or 89Zr-IgG4 control (10 µg, 2.5 MBq). Tumor and spleen tissue were studied with autoradiography and immunohistochemically including PD-1. Results PET imaging and biodistribution studies showed high 89Zr-pembrolizumab uptake in tissues containing human immune cells, including spleen, lymph nodes and bone marrow. Tumor uptake of 89Zr-pembrolizumab was lower than uptake in lymphoid tissues, but higher than uptake in other organs. High uptake in lymphoid tissues could be reduced by excess unlabeled pembrolizumab. Tracer activity in blood pool was increased by addition of unlabeled pembrolizumab, but tumor uptake was not affected. Autoradiography supported PET findings and immunohistochemical staining on spleen and lymph node tissue showed PD-1 positive cells, whereas tumor tissue was PD-1 negative. Conclusion 89Zr-pembrolizumab whole-body biodistribution showed high PD-1-mediated uptake in lymphoid tissues, such as spleen, lymph nodes and bone marrow, and modest tumor uptake. Our data may enable evaluation of 89Zr-pembrolizumab whole-body distribution in patients.
Collapse
Affiliation(s)
| | - Danique Giesen
- Department of Medical Oncology, UMCG, Groningen, Groningen, Netherlands
| | - Linda Pot-de Jong
- Department of Medical Oncology, UMCG, Groningen, Groningen, Netherlands
| | | | | | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, UMCG, Groningen, Groningen, Netherlands .,Department of Nuclear Medicine and Molecular Imaging, UMCG, Groningen, Groningen, Netherlands
| |
Collapse
|
35
|
Chua CYX, Ho J, Demaria S, Ferrari M, Grattoni A. Emerging technologies for local cancer treatment. ADVANCED THERAPEUTICS 2020; 3:2000027. [PMID: 33072860 PMCID: PMC7567411 DOI: 10.1002/adtp.202000027] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 12/13/2022]
Abstract
The fundamental limitations of systemic therapeutic administration have prompted the development of local drug delivery platforms as a solution to increase effectiveness and reduce side effects. By confining therapeutics to the site of disease, local delivery technologies can enhance therapeutic index. This review highlights recent advances and opportunities in local drug delivery strategies for cancer treatment in addition to challenges that need to be addressed to facilitate clinical translation. The benefits of local cancer treatment combined with technological advancements and increased understanding of the tumor microenvironment, present a prime breakthrough opportunity for safer and more effective therapies.
Collapse
Affiliation(s)
- Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute (HMRI), Houston, TX, 77030, USA
| | - Jeremy Ho
- Department of Nanomedicine, Houston Methodist Research Institute (HMRI), Houston, TX, 77030, USA
- School of Medicine, Weill Cornell Medical College, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Mauro Ferrari
- University of Washington, Box 357630, H375 Health Science Building, Seattle, WA, 98195, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute (HMRI), Houston, TX, 77030, USA
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Surgery, Houston Methodist Hospital, Houston, TX, 77030, USA
| |
Collapse
|
36
|
Cortez A, Josefsson A, McCarty G, Shtekler AE, Rao A, Austin Z, Nedrow JR. Evaluation of [ 225Ac]Ac-DOTA-anti-VLA-4 for targeted alpha therapy of metastatic melanoma. Nucl Med Biol 2020; 88-89:62-72. [PMID: 32799049 DOI: 10.1016/j.nucmedbio.2020.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/25/2022]
Abstract
Very late antigen 4 (VLA-4; also called integrin α4β1) is overexpressed in melanoma tumor cells with an active role in tumor growth, angiogenesis, and metastasis, making VLA-4 a potential target for targeted alpha therapy (TAT). METHODS An anti-VLA-4 antibody was conjugated to DOTA for [225Ac]Ac-labeling and DTPA for [111In]In-labeling. The resulting agents, [225Ac]Ac- or [111In]In-labeled anti-VLA-4 were evaluated in vitro, including binding affinity, internalization, and colony formation assays as well as in vivo biodistribution studies. In addition, the therapeutic efficacy of [225Ac]Ac-DOTA-anti-VLA-4 was evaluated in a disseminated disease mouse model of melanoma. RESULTS [111In]In-DTPA-anti-VLA-4 demonstrated high affinity for VLA-4 (Kd = 5.2 ± 1.6 nM). [225Ac]Ac-DOTA-anti-VLA-4 was labeled with an apparent molar activity of 3.5 MBq/nmol and > 95% radiochemical purity. Colony formation assays demonstrated a decrease in the surviving fraction of B16F10 cells treated with [225Ac]Ac-DOTA-anti-VLA-4 compared to control. Biodistribution studies demonstrated accumulation in the VLA-4-positive tumor and VLA-4 rich organs. Therapeutic efficacy studies demonstrated a significant increase in survival in mice treated with [225Ac]Ac-DOTA-anti-VLA-4 as compared to controls. CONCLUSION The work presented here demonstrated that [225Ac]Ac-DOTA-anti-VLA-4 was effective as a treatment in mice with disseminated disease, but potentially has dose limiting hematopoietic toxicity. Preliminary studies presented here also supported the potential to overcome this limitation by exploring a pre-loading or blocking dose strategy, to optimize the targeting vector to help minimize the absorbed dose to VLA-4 rich organs while maximizing the dose delivered to VLA-4-positive melanoma tumor cells.
Collapse
Affiliation(s)
- Angel Cortez
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anders Josefsson
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Greg McCarty
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abigail E Shtekler
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akhila Rao
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zachery Austin
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jessie R Nedrow
- Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
37
|
Chua CYX, Ho J, Susnjar A, Lolli G, Di Trani N, Pesaresi F, Zhang M, Nance E, Grattoni A. Intratumoral Nanofluidic System for Enhancing Tumor Biodistribution of Agonist CD40 Antibody. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Jeremy Ho
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Weill Cornell Medical College New York NY 10065 USA
| | - Antonia Susnjar
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Graziano Lolli
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Mechanical and Aerospace Engineering Polytechnic of Turin Turin 10129 Italy
| | - Nicola Di Trani
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- University of Chinese Academy of Science (UCAS) Shijingshan, 19 Yuquan Road Beijing 100049 China
| | - Federica Pesaresi
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Electronics and Telecommunications Polytechnic of Turin Turin 10129 Italy
| | - Mengying Zhang
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| | - Elizabeth Nance
- Department of Chemical Engineering University of Washington Seattle WA 98195 USA
| | - Alessandro Grattoni
- Department of Nanomedicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Surgery Houston Methodist Hospital Houston TX 77030 USA
- Department of Radiation Oncology Houston Methodist Hospital Houston TX 77030 USA
| |
Collapse
|
38
|
Zhao S, Pan W, Jiang H, Zhang R, Jiang H, Liang Z, Hu H. Cerenkov luminescence imaging is an effective preclinical tool for assessing colorectal cancer PD-L1 levels in vivo. EJNMMI Res 2020; 10:64. [PMID: 32542442 PMCID: PMC7295871 DOI: 10.1186/s13550-020-00654-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Preclinical and clinical studies have demonstrated that immunotherapy has effectively delayed tumor progression, and the clinical outcomes of anti-PD-1/PD-L1 therapy were related to PD-L1 expression level in the tumors. A 131I-labeled anti-PD-L1 monoclonal antibody tracer, 131I-PD-L1-Mab, was developed to study the target ability of noninvasive Cerenkov luminescence imaging in colorectal cancer xenograft mice. METHOD Anti-PD-L1 monoclonal antibody labeled with 131I (131I-PD-L1-Mab), and in vitro binding assays were used to evaluate the affinity of 131I-PD-L1-Mab to PD-L1 and their binding level to different colorectal cancer cells, and compared with flow cytometry, Western blot analysis, and immunofluorescence staining. The clinical application value of 131I-PD-L1-Mab was evaluated through biodistribution and Cerenkov luminescence imaging, and different tumor-bearing models expressing PD-L1 were evaluated. RESULTS 131I-PD-L1-Mab showed high affinity to PD-L1, and the equilibrium dissociation constant was 1.069 × 10-9 M. The competitive inhibition assay further confirmed the specific binding ability of 131I-PD-L1-Mab. In four different tumor-bearing models with different PD-L1 expression, the biodistribution and Cerenkov luminescence imaging showed that the RKO tumors demonstrated the highest uptake of the tracer 131I-PD-L1-Mab, with a maximum uptake of 1.613 ± 0.738% IA/g at 48 h. CONCLUSIONS There is a great potential for 131I-PD-L1-Mab noninvasive Cerenkov luminescence imaging to assess the status of tumor PD-L1 expression and select patients for anti-PD-L1 targeted therapy.
Collapse
Affiliation(s)
- Sheng Zhao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Pan
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | | | - Hao Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zonghui Liang
- Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Hongbo Hu
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
39
|
Wen X, Shi C, Zhao L, Yao L, Xu D, Lin X, Su X, Liu T, Zhuang R, Lin Q, Chen H, Guo Z, Zhang X. Immuno-SPECT/PET imaging with radioiodinated anti-PD-L1 antibody to evaluate PD-L1 expression in immune-competent murine models and PDX model of lung adenocarcinoma. Nucl Med Biol 2020; 86-87:44-51. [PMID: 32474281 DOI: 10.1016/j.nucmedbio.2020.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/21/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Accurate evaluation of tumor programmed death ligand 1 (PD-L1) expression can assist in predicting whether a patient will respond to anti-PD-L1 therapy. In this study, we aimed to develop stable radioiodinated PD-L1 antibodies that can be used for PD-L1 targeted SPECT/PET imaging. METHODS Radioiodination was accomplished via a prosthetic group ([131I]SIB or [124I]SIB) to give radioiodinated anti-human PD-L1 and anti-mouse PD-L1 antibody (anti-PD-L1 and anti-PD-L1M). MicroSPECT/PET imaging and biodistribution of radioiodinated antibodies were studied in two immune-competent murine models (B16F10 and 4T1 syngeneic tumor models) and patient-derived xenograft (PDX) model of lung adenocarcinoma to evaluate the feasibility of identifying tumor PD-L1 expression. RESULTS Radioiodinated PD-L1 antibodies had high radiochemical purity (>99%) and favorable stability in vivo. There was high uptake of [131I]SIB-anti-PD-L1M in both 4T1 and B16F10 syngeneic tumors when injected with 5.5 MBq radiotracers containing 200 μg anti-mouse-PD-L1. The presence of excess unlabeled anti-PD-L1 antibody increased [131I]SIB-anti-PD-L1M uptake in tumors. The highly specific PD-L1-positive tumor uptake detected by SPECT imaging indicated that radioiodinated antibody could be used for PD-L1 expression imaging. In addition, PET imaging of the PDX model was performed with [124I]SIB-anti-PD-L1, which showed high signal intensity in tumors and optimal contrast between tumor and muscle (tumor-to-muscle ratios at 6 h p.i. and 24 h p.i. were 2.5 and 5.3, respectively). CONCLUSIONS This study provides an efficient strategy for synthesizing stable radioiodinated PD-L1 antibodies with excellent pharmacokinetics to identify PD-L1 expression in tumors.
Collapse
Affiliation(s)
- Xuejun Wen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Liang Zhao
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361103, China; Department of Radiation Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361103, China
| | - Lanlin Yao
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361103, China
| | - Duo Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xiaoru Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Xinhui Su
- Zhongshan Hospital Affiliated to Xiamen University, Hubin South Road, Xiamen 361004, China
| | - Ting Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361103, China.
| | - Haojun Chen
- Department of Nuclear Medicine & Minnan PET Center, Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, Xiamen 361103, China.
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China.
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 4221-116 Xiang'An South Rd, Xiamen 361102, China.
| |
Collapse
|
40
|
Li M, Ehlerding EB, Jiang D, Barnhart TE, Chen W, Cao T, Engle JW, Cai W. In vivo characterization of PD-L1 expression in breast cancer by immuno-PET with 89Zr-labeled avelumab. Am J Transl Res 2020; 12:1862-1872. [PMID: 32509182 PMCID: PMC7270013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Programmed death protein 1 and programmed death-ligand 1 (PD-1/PD-L1) have been widely studied as one of the most critical immune check-point pairs in the cancer microenvironment. In breast cancer (BrCa), the expression of PD-L1 is regarded as a determinant biomarker for patient stratification and prediction of inhibition response. Quantitative positron emission tomography (PET) imaging of PD-L1 expression in tumors using a therapeutic antibody in the clinic seems to be a promising approach that can complement conventional histopathological methods and overcome several issues, such as the tumor heterogeneities, sampling representativeness and clear differentiation of positive and negative results. In this study, we synthesized and evaluated 89Zr-labeled avelumab (Ave) for the in vivo characterization of PD-L1 expression in BrCa. Confocal imaging of BrCa cells and flow cytometry were employed to evaluate PD-L1 expression in MDA-MB-231 cells. The intact human monoclonal antibody targeting PD-L1, i.e., Ave, was conjugated to p-SCN-Deferoxamine (Df) and labeled with 89Zr. After intravenous injection of 89Zr-Df-avelumab (89Zr-Df-Ave), PET imaging of MDA-MB-231 tumor-bearing mice, with or without blocking, was performed. High PD-L1 expression of MDA-MB-231 cells was confirmed by in vitro immuno-fluorescent staining and flow cytometry. PET imaging indicated the peak uptake of 89Zr-Df-Ave in the tumor (6.4±1.0 %ID/g), spleen (10.2±0.7 %ID/g) and lymph nodes (6.9±1.0 %ID/g) at 48 h after injection (n=4). Blocking study using unlabeled Ave could reduce the tracer uptake in these tissues (5.2±1.0 %ID/g in the tumor, 4.9±0.5 %ID/g in the spleen and 5.8±1.1 %ID/g in lymph nodes at 48 h, n=4), which demonstrated the specificity of 89Zr-Df-Ave. Biodistribution study and immuno-fluorescent staining were consistent with the quantitative data from PET imaging. Herein, we offer the evidence supporting the value of immuno-PET imaging using 89Zr-Df-Ave for non-invasive characterization of PD-L1 expression in BrCa and the applicability of this tracer in BrCa for treatment evaluation after immunotherapy.
Collapse
Affiliation(s)
- Miao Li
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University277 West Yanta Road, Xi’an 710061, Shaanxi, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Emily B Ehlerding
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Dawei Jiang
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Todd E Barnhart
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Weiyu Chen
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Tianye Cao
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison1111 Highland Avenue, Madison 53705, Wisconsin, United States
| |
Collapse
|
41
|
Zhao J, Wen X, Li T, Shi S, Xiong C, Wang YA, Li C. Concurrent Injection of Unlabeled Antibodies Allows Positron Emission Tomography Imaging of Programmed Cell Death Ligand 1 Expression in an Orthotopic Pancreatic Tumor Model. ACS OMEGA 2020; 5:8474-8482. [PMID: 32337408 PMCID: PMC7178348 DOI: 10.1021/acsomega.9b03731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/30/2020] [Indexed: 05/09/2023]
Abstract
Purpose: Among the treatment options for pancreatic ductal adenocarcinoma (PDAC) are antibodies against the programmed cell death receptor 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway. Positron emission tomography (PET) has been successfully used to assess PD-1/PD-L1 signaling in subcutaneous tumor models, but orthotopic tumor models are increasingly being recognized as a better option to accurately recapitulate human disease. However, when PET radiotracers have high uptake in the liver and spleen, it can obscure signals from the adjacent pancreas, making visualization of the response in orthotopic pancreatic tumors technically challenging. In this study, we first investigated the impact of radioisotope chelators on the biodistribution of 64Cu-labeled anti-PD-1 and anti-PD-L1 antibodies and compared the distribution profiles of anti-PD-1 and anti-PD-L1 antibodies. We then tested the hypothesis that co-injection of unlabeled antibodies reduces uptake of 64Cu-labeled anti-PD-L1 antibodies in the spleen and thereby permits accurate delineation of orthotopic pancreatic tumors in mice. Procedures: We established subcutaneous and orthotopic mouse models of PDAC using KRAS* murine pancreatic cancer cells with a doxycycline-inducible mutation of KRASG12D. We then (1) compared the biodistribution of 64Cu-labeled anti-PD-1 with 2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA) and 2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) used as the chelators in the orthotopic model; (2) compared the biodistribution of [64Cu]Cu-NOTA-anti-PD-1 and [64Cu]Cu-NOTA-anti-PD-L1 in the orthotopic model; and (3) imaged subcutaneous and orthotopic KRAS* tumors with [64Cu]Cu-NOTA-anti-PD-L1 with and without co-injection of unlabeled anti-PD-L1 as the blocking agent. Results: [64Cu]Cu-NOTA-anti-PD-L1 was a promising imaging probe. By co-injection of an excess of unlabeled anti-PD-L1, background signals of [64Cu]Cu-NOTA-anti-PD-L1 from the spleen were significantly reduced, leading to a clear delineation of orthotopic pancreatic tumors. Conclusions: Co-injection with unlabeled anti-PD-L1 is a useful method for PET imaging of PD-L1 expression in orthotopic pancreatic cancer models.
Collapse
Affiliation(s)
- Jun Zhao
- Department
of Cancer Systems Imaging and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1881 East Road, 3SCRB4.3636, Houston, Texas 77054, United States
| | - Xiaoxia Wen
- Department
of Cancer Systems Imaging and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1881 East Road, 3SCRB4.3636, Houston, Texas 77054, United States
| | - Tingting Li
- Department
of Cancer Systems Imaging and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1881 East Road, 3SCRB4.3636, Houston, Texas 77054, United States
| | - Sixiang Shi
- Department
of Cancer Systems Imaging and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1881 East Road, 3SCRB4.3636, Houston, Texas 77054, United States
| | - Chiyi Xiong
- Department
of Cancer Systems Imaging and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1881 East Road, 3SCRB4.3636, Houston, Texas 77054, United States
| | - Yaoqi Alan Wang
- Department
of Cancer Systems Imaging and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1881 East Road, 3SCRB4.3636, Houston, Texas 77054, United States
| | - Chun Li
- Department
of Cancer Systems Imaging and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1881 East Road, 3SCRB4.3636, Houston, Texas 77054, United States
| |
Collapse
|
42
|
Foray C, Barca C, Backhaus P, Schelhaas S, Winkeler A, Viel T, Schäfers M, Grauer O, Jacobs AH, Zinnhardt B. Multimodal Molecular Imaging of the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:71-87. [PMID: 32030648 DOI: 10.1007/978-3-030-35727-6_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The tumour microenvironment (TME) surrounding tumour cells is a highly dynamic and heterogeneous composition of immune cells, fibroblasts, precursor cells, endothelial cells, signalling molecules and extracellular matrix (ECM) components. Due to the heterogeneity and the constant crosstalk between the TME and the tumour cells, the components of the TME are important prognostic parameters in cancer and determine the response to novel immunotherapies. To improve the characterization of the TME, novel non-invasive imaging paradigms targeting the complexity of the TME are urgently needed.The characterization of the TME by molecular imaging will (1) support early diagnosis and disease follow-up, (2) guide (stereotactic) biopsy sampling, (3) highlight the dynamic changes during disease pathogenesis in a non-invasive manner, (4) help monitor existing therapies, (5) support the development of novel TME-targeting therapies and (6) aid stratification of patients, according to the cellular composition of their tumours in correlation to their therapy response.This chapter will summarize the most recent developments and applications of molecular imaging paradigms beyond FDG for the characterization of the dynamic molecular and cellular changes in the TME.
Collapse
Affiliation(s)
- Claudia Foray
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,PET Imaging in Drug Design and Development (PET3D), Münster, Germany
| | - Cristina Barca
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,PET Imaging in Drug Design and Development (PET3D), Münster, Germany
| | - Philipp Backhaus
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Department of Nuclear Medicine, University Hospital Münster, Westfälische Wilhelms University Münster, Münster, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Alexandra Winkeler
- UMR 1023, IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Thomas Viel
- Paris Centre de Recherche Cardiovasculaire, INSERM-U970, Université Paris Descartes, Paris, France
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Department of Nuclear Medicine, University Hospital Münster, Westfälische Wilhelms University Münster, Münster, Germany
| | - Oliver Grauer
- Department of Neurology, University Hospital Münster, Münster, Germany
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,PET Imaging in Drug Design and Development (PET3D), Münster, Germany.,Department of Geriatrics, Johanniter Hospital, Evangelische Kliniken, Bonn, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany. .,PET Imaging in Drug Design and Development (PET3D), Münster, Germany. .,Department of Nuclear Medicine, University Hospital Münster, Westfälische Wilhelms University Münster, Münster, Germany.
| |
Collapse
|
43
|
Giesen D, Broer LN, Lub-de Hooge MN, Popova I, Howng B, Nguyen M, Vasiljeva O, de Vries EGE, Pool M. Probody Therapeutic Design of 89Zr-CX-072 Promotes Accumulation in PD-L1-Expressing Tumors Compared to Normal Murine Lymphoid Tissue. Clin Cancer Res 2020; 26:3999-4009. [PMID: 31953313 DOI: 10.1158/1078-0432.ccr-19-3137] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/26/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Probody therapeutic CX-072 is a protease-activatable antibody that is cross-reactive with murine and human programmed death-ligand 1 (PD-L1). CX-072 can be activated in vivo by proteases present in the tumor microenvironment, thereby potentially reducing peripheral, anti-PD-L1-mediated toxicities. To study its targeting of PD-L1-expressing tissues, we radiolabeled CX-072 with the PET isotope zirconium-89 (89Zr). EXPERIMENTAL DESIGN 89Zr-labeled CX-072, nonspecific Probody control molecule (PbCtrl) and CX-072 parental antibody (CX-075) were injected in BALB/c nude mice bearing human MDA-MB-231 tumors or C57BL/6J mice bearing syngeneic MC38 tumors. Mice underwent serial PET imaging 1, 3, and 6 days after intravenous injection (pi), followed by ex vivo biodistribution. Intratumoral 89Zr-CX-072 distribution was studied by autoradiography on tumor tissue sections, which were subsequently stained for PD-L1 by IHC. Activated CX-072 species in tissue lysates were detected by Western capillary electrophoresis. RESULTS PET imaging revealed 89Zr-CX-072 accumulation in MDA-MB-231 tumors with 2.1-fold higher tumor-to-blood ratios at 6 days pi compared with 89Zr-PbCtrl. Tumor tissue autoradiography showed high 89Zr-CX-072 uptake in high PD-L1-expressing regions. Activated CX-072 species were detected in these tumors, with 5.3-fold lower levels found in the spleen. Furthermore, 89Zr-CX-072 uptake by lymphoid tissues of immune-competent mice bearing MC38 tumors was low compared with 89Zr-CX-075, which lacks the Probody design. CONCLUSIONS 89Zr-CX-072 accumulates specifically in PD-L1-expressing tumors with limited uptake in murine peripheral lymphoid tissues. Our data may enable clinical evaluation of 89Zr-CX-072 whole-body distribution as a tool to support CX-072 drug development (NCT03013491).
Collapse
Affiliation(s)
- Danique Giesen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Linda N Broer
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Irina Popova
- CytomX Therapeutics, Inc., South San Francisco, California
| | - Bruce Howng
- CytomX Therapeutics, Inc., South San Francisco, California
| | | | - Olga Vasiljeva
- CytomX Therapeutics, Inc., South San Francisco, California.
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Martin Pool
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
44
|
Lütje S, Feldmann G, Essler M, Brossart P, Bundschuh RA. Immune Checkpoint Imaging in Oncology: A Game Changer Toward Personalized Immunotherapy? J Nucl Med 2020; 61:1137-1144. [PMID: 31924724 DOI: 10.2967/jnumed.119.237891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/03/2020] [Indexed: 01/05/2023] Open
Abstract
Immune checkpoint blockade represents a promising approach in oncology, showing antitumor activities in various cancers. However, although being generally far better tolerated than classic cytotoxic chemotherapy, this treatment, too, may be accompanied by considerable side effects and not all patients benefit equally. Therefore, careful patient selection and monitoring of the treatment response is mandatory. At present, checkpoint-specific molecular imaging is being increasingly investigated as a tool for patient selection and response evaluation. Here, an overview of the current developments in immune checkpoint imaging is provided.
Collapse
Affiliation(s)
- Susanne Lütje
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany; and
| | - Georg Feldmann
- Department of Internal Medicine 3, Center of Integrated Oncology Cologne-Bonn, University Hospital Bonn, Bonn, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany; and
| | - Peter Brossart
- Department of Internal Medicine 3, Center of Integrated Oncology Cologne-Bonn, University Hospital Bonn, Bonn, Germany
| | - Ralph A Bundschuh
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany; and
| |
Collapse
|
45
|
|
46
|
Nuclear Medicine Imaging Techniques in Melanoma. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Du Y, Qi Y, Jin Z, Tian J. Noninvasive imaging in cancer immunotherapy: The way to precision medicine. Cancer Lett 2019; 466:13-22. [DOI: 10.1016/j.canlet.2019.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/13/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
|
48
|
Tracers for non-invasive radionuclide imaging of immune checkpoint expression in cancer. EJNMMI Radiopharm Chem 2019; 4:29. [PMID: 31696402 PMCID: PMC6834817 DOI: 10.1186/s41181-019-0078-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
Abstract Immunotherapy with checkpoint inhibitors demonstrates impressive improvements in the treatment of several types of cancer. Unfortunately, not all patients respond to therapy while severe immune-related adverse effects are prevalent. Currently, patient stratification is based on immunotherapy marker expression through immunohistochemical analysis on biopsied material. However, expression can be heterogeneous within and between tumor lesions, amplifying the sampling limitations of biopsies. Analysis of immunotherapy target expression by non-invasive quantitative molecular imaging with PET or SPECT may overcome this issue. In this review, an overview of tracers that have been developed for preclinical and clinical imaging of key immunotherapy targets, such as programmed cell death-1, programmed cell death ligand-1, IDO1 and cytotoxic T lymphocyte-associated antigen-4 is presented. We discuss important aspects to consider when developing such tracers and outline the future perspectives of molecular imaging of immunotherapy markers. Graphical abstract Current techniques in immune checkpoint imaging and its potential for future applications ![]()
Collapse
|
49
|
Wang W, Hu Z. Targeting Peptide-Based Probes for Molecular Imaging and Diagnosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804827. [PMID: 30537222 DOI: 10.1002/adma.201804827] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/19/2018] [Indexed: 05/27/2023]
Abstract
A series of novel peptide-based molecular probes for different biomarkers is highlighted herein. These probes can provide targeted recognition with high affinity, high specificity, high penetration, and rapid excretion ability. These sensitive peptides can achieve rapid and specific detection when they are conjugated with imaging moieties or are formed into nanoprobes, which can be adapted for in vivo molecular imaging in targeted diagnosis and therapy.
Collapse
Affiliation(s)
- Weizhi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Zhiyuan Hu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Centre for Neuroscience Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, Fujian, P. R. China
| |
Collapse
|
50
|
Zhong Y, Ma Z, Wang F, Wang X, Yang Y, Liu Y, Zhao X, Li J, Du H, Zhang M, Cui Q, Zhu S, Sun Q, Wan H, Tian Y, Liu Q, Wang W, Garcia KC, Dai H. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-IIb rare-earth nanoparticles. Nat Biotechnol 2019; 37:1322-1331. [PMID: 31570897 PMCID: PMC6858548 DOI: 10.1038/s41587-019-0262-4] [Citation(s) in RCA: 321] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/19/2019] [Indexed: 12/27/2022]
Abstract
The near-infrared-IIb (NIR-IIb) (1,500-1,700 nm) window is ideal for deep-tissue optical imaging in mammals, but lacks bright and biocompatible probes. Here, we developed biocompatible cubic-phase (α-phase) erbium-based rare-earth nanoparticles (ErNPs) exhibiting bright downconversion luminescence at ~1,600 nm for dynamic imaging of cancer immunotherapy in mice. We used ErNPs functionalized with cross-linked hydrophilic polymer layers attached to anti-PD-L1 (programmed cell death-1 ligand-1) antibody for molecular imaging of PD-L1 in a mouse model of colon cancer and achieved tumor-to-normal tissue signal ratios of ~40. The long luminescence lifetime of ErNPs (~4.6 ms) enabled simultaneous imaging of ErNPs and lead sulfide quantum dots emitting in the same ~1,600 nm window. In vivo NIR-IIb molecular imaging of PD-L1 and CD8 revealed cytotoxic T lymphocytes in the tumor microenvironment in response to immunotherapy, and altered CD8 signals in tumor and spleen due to immune activation. The cross-linked functionalization layer facilitated 90% ErNP excretion within 2 weeks without detectable toxicity in mice.
Collapse
Affiliation(s)
- Yeteng Zhong
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Zhuoran Ma
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Feifei Wang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Xi Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Department of Physics, School of Science, Beijing Jiaotong University, Beijing, China
| | - Yijun Yang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Department of Physics, School of Science, Beijing Jiaotong University, Beijing, China
| | - Yulai Liu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Xiang Zhao
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiachen Li
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Haotian Du
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Mingxi Zhang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Qiuhong Cui
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Department of Physics, School of Science, Beijing Jiaotong University, Beijing, China
| | - Shoujun Zhu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Qinchao Sun
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Hao Wan
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Ye Tian
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Qiang Liu
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - Weizhi Wang
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongjie Dai
- Department of Chemistry and Bio-X, Stanford University, Stanford, CA, USA.
| |
Collapse
|