1
|
Foss CA, Wildes F, Mezzanzanica D, Podo F, Hung CF, Yadav S, Vidaver MFP. Imaging tumor and ascites-associated macrophages in a mouse model of metastatic ovarian cancer. EJNMMI Res 2024; 14:121. [PMID: 39612052 DOI: 10.1186/s13550-024-01157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/29/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Tumor-Associated Macrophages (TAMs) play a critical role in the pathogenesis and progression of ovarian cancer, a lethal gynecologic malignancy. [124I]iodo-DPA-713 is a PET radiotracer that is selectively trapped within reactive macrophages. We have employed this radioligand here as well as a fluorescent analog to image TAMs associated with primary tumors, secondary pulmonary metastases and gastrointestinal tract-associated macrophages, associated with ascites accumulation in a syngeneic mouse model of metastatic ovarian cancer. Intact female C57BL/6 mice were engrafted with ID8-Defb29-VEGF tumor pieces. One month after engraftment, the mice were selected for positive bioluminescence to show primary and secondary tumor burden and were then scanned by PET/MRI with [124I]iodo-DPA-713, observing a 24 h uptake time. PET data were overlayed with T2-weighted MRI data to facilitate PET uptake tissue identity. Additionally, mice were imaged ex vivo using Near IR Fluorescence (NIRF), capturing the uptake and sequestration of DPA-713-IRDye800CW, a fluorescent analog of the radioligand used here. Additionally, cell culture uptake of DPA-713-IRDye680LT in ID8-DEFb29-VEGF, IOSE hTERT and RAW264.7 cells was conducted to measure tracer uptake in ovarian cancer cells, ovarian epithelial cells and macrophage. RESULTS PET/MRI data show an intense ring of radiotracer uptake surrounding primary tumors. PET uptake is also associated with lung metastases, but not healthy lung. Mice displaying ascites also display PET uptake along the gastrointestinal tract while sham-operated mice show minimal gastrointestinal uptake. All mice show specific kidney uptake. Mice imaged by NIRF confirmed TAMs uptake mostly at the rim of primary tumors while 1 mm secondary tumors in the lungs displayed robust, homogeneous uptake of the radio- and fluorescent analog. Ex vivo biodistribution of [124I]iodo-DPA-713 showed that contralateral ovaries in middle-stage disease had the highest probe uptake with tissues sampled in mid- and late-stage disease showing increasing uptake. CONCLUSION [124I]iodo-DPA-713 and DPA-713-IRDye800CW sensitively identify and locate TAMs in a syngeneic mouse model of metastatic ovarian cancer.
Collapse
Affiliation(s)
- Catherine A Foss
- Department of Radiology and Radiological Science, The Russell H. Morgan, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Center for Infection and Inflammation Imaging Research, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Flonné Wildes
- Department of Radiology and Radiological Science, The Russell H. Morgan, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Delia Mezzanzanica
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, Milano, 20133, Italy
| | - Franca Podo
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Santosh Yadav
- Department of Radiology and Radiological Science, The Russell H. Morgan, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Marie-France Penet Vidaver
- Department of Radiology and Radiological Science, The Russell H. Morgan, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Lavik E, Minasian L. Bioconjugates for Cancer Prevention: Opportunities for Impact. Bioconjug Chem 2024; 35:1148-1153. [PMID: 39116257 DOI: 10.1021/acs.bioconjchem.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Cancer prevention encompasses both screening strategies to find cancers early when they are likely to be most treatable and prevention and interception strategies to reduce the risk of developing cancers. Bioconjugates, here defined broadly as materials and molecules that have synthetic and biological components, have roles to play across the cancer-prevention spectrum. In particular, bioconjugates may be developed as affordable, accessible, and effective screening strategies or as novel vaccines and drugs to reduce one's risk of developing cancers. Developmental programs are available for taking novel technologies and evaluating them for clinical use in cancer screening and prevention. While a variety of different challenges exist in implementing cancer-prevention interventions, a thoughtful approach to bioconjugates could improve the delivery and acceptability of the interventions.
Collapse
Affiliation(s)
- Erin Lavik
- Division of Cancer Prevention, National Cancer Institute, 9609 Medical Center Dr, Rockville, Maryland 20850, United States
| | - Lori Minasian
- Division of Cancer Prevention, National Cancer Institute, 9609 Medical Center Dr, Rockville, Maryland 20850, United States
| |
Collapse
|
3
|
Chen X, Arun B, Nino-Meza OJ, Sarhan MO, Singh M, Jeon B, Mane K, Shah M, Tucker EW, Carroll LS, Freundlich JS, Peloquin CA, Ivaturi VD, Jain SK. Dynamic PET reveals compartmentalized brain and lung tissue antibiotic exposures of tuberculosis drugs. Nat Commun 2024; 15:6657. [PMID: 39143055 PMCID: PMC11324906 DOI: 10.1038/s41467-024-50989-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
Tuberculosis (TB) remains a leading cause of death, but antibiotic treatments for tuberculous meningitis, the deadliest form of TB, are based on those developed for pulmonary TB and not optimized for brain penetration. Here, we perform first-in-human dynamic 18F-pretomanid positron emission tomography (PET) in eight human subjects to visualize 18F-pretomanid biodistribution as concentration-time exposures in multiple compartments (NCT05609552), demonstrating preferential brain versus lung tissue partitioning. Preferential, antibiotic-specific partitioning into brain or lung tissues of several antibiotics, active against multidrug resistant (MDR) Mycobacterium tuberculosis strains, are confirmed in experimentally-infected mice and rabbits, using dynamic PET with chemically identical antibiotic radioanalogs, and postmortem mass spectrometry measurements. PET-facilitated pharmacokinetic modeling predicts human dosing necessary to attain therapeutic brain exposures. These data are used to design optimized, pretomanid-based regimens which are evaluated at human equipotent dosing in a mouse model of TB meningitis, demonstrating excellent bactericidal activity without an increase in intracerebral inflammation or brain injury. Importantly, several antibiotic regimens demonstrate discordant activities in brain and lung tissues in the same animal, correlating with tissue antibiotic exposures. These data provide a mechanistic basis for the compartmentalized activities of antibiotic regimens, with important implications for developing treatments for meningitis and other infections in compartments with unique antibiotic penetration.
Collapse
Affiliation(s)
- Xueyi Chen
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bhavatharini Arun
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Oscar J Nino-Meza
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mona O Sarhan
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Medha Singh
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Byeonghoon Jeon
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kishor Mane
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Maunank Shah
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth W Tucker
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laurence S Carroll
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel S Freundlich
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Vijay D Ivaturi
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD, USA
- Centre for Pharmacometrics, Manipal University, Manipal, Karnataka, India
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Jain S, Chen X, Arun B, Meza ON, Sarhan M, Singh M, Jeon B, Mane K, Shah M, Tucker E, Carroll L, Freundlich J, Peloquin C, Ivaturi V. Dynamic PET Reveals Compartmentalized Brain and Lung Tissue Antibiotic Exposures. RESEARCH SQUARE 2024:rs.3.rs-4096014. [PMID: 38562706 PMCID: PMC10984015 DOI: 10.21203/rs.3.rs-4096014/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Tuberculosis (TB) remains a leading cause of death, but antibiotic treatments for tuberculous meningitis, the deadliest form of TB, are based on those developed for pulmonary TB and not optimized for brain penetration. Here, we performed first-in-human dynamic 18F-pretomanid positron emission tomography (PET) studies in eight human subjects for three-dimensional, multi-compartmental in situ visualization of antibiotic concentration-time exposures (area under the curve - AUC), demonstrating preferential brain (AUCtissue/plasma 2.25) versus lung (AUCtissue/plasma 0.97) tissue partitioning. Preferential, antibiotic-specific partitioning into brain or lung tissues of antibiotics active against MDR strains were confirmed in experimentally-infected mice and rabbits, using dynamic PET with chemically identical antibiotic radioanalogs, and postmortem mass spectrometry measurements. PET-facilitated pharmacokinetic modeling predicted human dosing necessary to attain therapeutic brain exposures in human subjects. These data were used to design optimized, pretomanid-based regimens which were evaluated at human equipotent dosing in a mouse model of TB meningitis, demonstrating excellent bactericidal activity without an increase in intracerebral inflammation or brain injury. Importantly, several antibiotic regimens demonstrated discordant activities in brain and lung tissues in the same animal, correlating with the compartmentalized tissue exposures of the component antibiotics. These data provide a mechanistic basis for the compartmentalized activities of antibiotic regimens, with important implications for the development of antimicrobial regimens for meningitis and other infections in compartments with unique antibiotic penetration.
Collapse
Affiliation(s)
| | - Xueyi Chen
- Johns Hopkins University School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Noversa de Sousa R, Tascilar K, Corte G, Atzinger A, Minopoulou I, Ohrndorf S, Waldner M, Schmidkonz C, Kuwert T, Knieling F, Kleyer A, Ramming A, Schett G, Simon D, Fagni F. Metabolic and molecular imaging in inflammatory arthritis. RMD Open 2024; 10:e003880. [PMID: 38341194 PMCID: PMC10862311 DOI: 10.1136/rmdopen-2023-003880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
It is known that metabolic shifts and tissue remodelling precede the development of visible inflammation and structural organ damage in inflammatory rheumatic diseases such as the inflammatory arthritides. As such, visualising and measuring metabolic tissue activity could be useful to identify biomarkers of disease activity already in a very early phase. Recent advances in imaging have led to the development of so-called 'metabolic imaging' tools that can detect these changes in metabolism in an increasingly accurate manner and non-invasively.Nuclear imaging techniques such as 18F-D-glucose and fibroblast activation protein inhibitor-labelled positron emission tomography are increasingly used and have yielded impressing results in the visualisation (including whole-body staging) of inflammatory changes in both early and established arthritis. Furthermore, optical imaging-based bedside techniques such as multispectral optoacoustic tomography and fluorescence optical imaging are advancing our understanding of arthritis by identifying intra-articular metabolic changes that correlate with the onset of inflammation with high precision and without the need of ionising radiation.Metabolic imaging holds great potential for improving the management of patients with inflammatory arthritis by contributing to early disease interception and improving diagnostic accuracy, thereby paving the way for a more personalised approach to therapy strategies including preventive strategies. In this narrative review, we discuss state-of-the-art metabolic imaging methods used in the assessment of arthritis and inflammation, and we advocate for more extensive research endeavours to elucidate their full field of application in rheumatology.
Collapse
Affiliation(s)
- Rita Noversa de Sousa
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Serviço de Medicina Interna, Hospital Pedro Hispano, Matosinhos, Portugal
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Koray Tascilar
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Giulia Corte
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Armin Atzinger
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ioanna Minopoulou
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sarah Ohrndorf
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian Waldner
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Schmidkonz
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Institute for Medical Engineering, Ostbayerische Technische Hochschule Amberg-Weiden, Amberg, Germany
| | - Torsten Kuwert
- Department of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Arnd Kleyer
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - David Simon
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Filippo Fagni
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum fuer Immuntherapie (DZI), Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
6
|
Ha S, Kim YI, Oh JS, Yoo C, Ryoo BY, Ryu JS. Prediction of [ 177Lu]Lu-DOTA-TATE therapy response using the absorbed dose estimated from [ 177Lu]Lu-DOTA-TATE SPECT/CT in patients with metastatic neuroendocrine tumour. EJNMMI Phys 2024; 11:14. [PMID: 38315270 PMCID: PMC10844176 DOI: 10.1186/s40658-024-00620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Peptide receptor radionuclide therapy (PRRT) with [177Lu]Lu-DOTA-TATE has shown efficacy in patients with metastatic neuroendocrine tumours (NETs). Personalised dosimetry is crucial to optimise treatment outcomes and minimise adverse events. In this study, we investigated the correlation between the tumour-absorbed dose (TAD) estimated from [177Lu]Lu-DOTA-TATE SPECT/CT and the therapeutic response. METHOD A retrospective analysis was conducted on patients with advanced well-differentiated NETs grades 1-3 who underwent PRRT and exhibited greater uptake than liver on pre-therapeutic [68Ga]Ga-DOTA-TOC PET/CT. Target lesions were selected based on the RECIST 1.1 and PERCIST 1.0 criteria using [177Lu]Lu-DOTA-TATE SPECT/CT and pre-therapeutic contrast-enhanced CT scans. For anatomical image analysis, the sum of the longest diameter (SLD) of the target lesions was measured using the RECIST 1.1 criteria for patient-based analysis and the longest diameter (LD) of the target lesion using the RECIST-L criteria for lesion-based analysis. Standardised uptake values (SUVs) were measured on SPECT/CT images, and TADs were calculated based on the SUVs. Dosimetry was performed using a single SPECT/CT imaging time point at day 4-5 post-therapy. Statistical analyses were conducted to investigate correlations and determine the target lesion responses. RESULTS Twenty patients with primary tumour sites and hepatic metastases were included. Fifty-five target lesions, predominantly located in the pancreas and liver, were analysed. The cumulative TAD (lesion-based analysis: r = 0.299-0.301, p = 0.025-0.027), but not the cycle 1 SUV (lesion-based analysis: r = 0.198-0.206, p = 0.131-0.147) or cycle 1 TAD (lesion-based analysis: r = 0.209-0.217, p = 0.112-0.126), exhibited a significant correlation with the change in LD of the target lesion. Binary logistic regression analysis identified the significance of the cumulative TAD in predicting disease control according to the RECIST-L criteria (odds ratio = 1.031-1.051, p = 0.024-0.026). CONCLUSIONS The cumulative TAD estimated from [177Lu]Lu-DOTA-TATE SPECT/CT revealed a significant correlation with change in LD, which was significantly higher for the cumulative TAD than for the cycle 1 SUV or TAD. A higher cumulative TAD was associated with disease control in the target lesion. However, considering the limitations inherent to a confined sample size, careful interpretation of these findings is required. Estimation of the cumulative TAD of [177Lu]Lu-DOTA-TATE therapy could guide the platform towards personalised therapy.
Collapse
Affiliation(s)
- Sejin Ha
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong-Il Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Theranostics Center, Asan Cancer Institute, Asan Medical Center, Seoul, Republic of Korea.
| | - Jungsu S Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Theranostics Center, Asan Cancer Institute, Asan Medical Center, Seoul, Republic of Korea
| | - Changhoon Yoo
- Theranostics Center, Asan Cancer Institute, Asan Medical Center, Seoul, Republic of Korea
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Baek-Yeol Ryoo
- Theranostics Center, Asan Cancer Institute, Asan Medical Center, Seoul, Republic of Korea
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin-Sook Ryu
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Theranostics Center, Asan Cancer Institute, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
7
|
Abstract
Recently developed molecular imaging approaches can be used to visualize specific host responses and pathology in a quest to image infections where few microbe-specific tracers have been developed and in recognition that host responses contribute to morbidity and mortality in their own right. Here we highlight several recent examples of these imaging approaches adapted for imaging infections. The early successes and new avenues described here encompass diverse imaging modalities and leverage diverse aspects of the host response to infection-including inflammation, tissue injury and healing, and key nutrients during host-pathogen interactions. Clearly, these approaches merit further preclinical and clinical study as they are complementary and orthogonal to the pathogen-focused imaging modalities currently under investigation.
Collapse
Affiliation(s)
- Catherine A Foss
- Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adam R Renslo
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
8
|
Peyronneau MA, Kuhnast B, Nguyen DL, Jego B, Sayet G, Caillé F, Lavisse S, Gervais P, Stankoff B, Sarazin M, Remy P, Bouilleret V, Leroy C, Bottlaender M. [ 18F]DPA-714: Effect of co-medications, age, sex, BMI and TSPO polymorphism on the human plasma input function. Eur J Nucl Med Mol Imaging 2023; 50:3251-3264. [PMID: 37291448 DOI: 10.1007/s00259-023-06286-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/16/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE We aimed to assess the effect of concomitant medication, age, sex, body mass index and 18-kDa translocator protein (TSPO) binding affinity status on the metabolism and plasma pharmacokinetics of [18F]DPA-714 and their influence on the plasma input function in a large cohort of 201 subjects who underwent brain and whole-body PET imaging to investigate the role of neuroinflammation in neurological diseases. METHODS The non-metabolized fraction of [18F]DPA-714 was estimated in venous plasma of 138 patients and 63 healthy controls (HCs; including additional arterial sampling in 16 subjects) during the 90 min brain PET acquisition using a direct solid-phase extraction method. The mean fraction between 70 and 90 min post-injection ([18F]DPA-71470-90) and corresponding normalized plasma concentration (SUV70-90) were correlated with all factors using a multiple linear regression model. Differences between groups (arterial vs venous measurements; HCs vs patients; high- (HAB), mixed- (MAB) and low-affinity binders (LAB); subjects with vs without co-medications, females vs males were also assessed using the non-parametric Mann-Whitney or Kruskal-Wallis ANOVA tests. Finally, the impact of co-medications on the brain uptake of [18F]DPA-714 at equilibrium was investigated. RESULTS As no significant differences were observed between arterial and venous [18F]DPA-71470-90 and SUV70-90, venous plasma was used for correlations. [18F]DPA-71470-90 was not significantly different between patients and HCS (59.7 ± 12.3% vs 60.2 ± 12.9%) despite high interindividual variability. However, 47 subjects exhibiting a huge increase or decrease of [18F]DPA-71470-90 (up to 88% or down to 23%) and SUV70-90 values (2-threefold) were found to receive co-medications identified as inhibitors or inducers of CYP3A4, known to catalyse [18F]DPA-714 metabolism. Comparison between cortex-to-plasma ratios using individual input function (VTIND) or population-based input function derived from untreated HCs (VTPBIF) indicated that non-considering the individual metabolism rate led to a bias of about 30% in VT values. Multiple linear regression model analysis of subjects free of these co-medications suggested significant correlations between [18F]DPA-71470-90 and age, BMI and sex while TSPO polymorphism did not influence the metabolism of the radiotracer. [18F]DPA-714 metabolism fell with age and BMI and was significantly faster in females than in males. Whole-body PET/CT exhibited a high uptake of the tracer in TSPO-rich organs (heart wall, spleen, kidneys…) and those involved in metabolism and excretion pathways (liver, gallbladder) in HAB and MAB with a strong decrease in LAB (-89% and -85%) resulting in tracer accumulation in plasma (4.5 and 3.3-fold increase). CONCLUSION Any co-medication that inhibits or induces CYP3A4 as well as TSPO genetic status, age, BMI and sex mostly contribute to interindividual variations of the radiotracer metabolism and/or concentration that may affect the input function of [18F]DPA-714 and consequently its human brain and peripheral uptake. TRIAL REGISTRATION INFLAPARK, NCT02319382, registered December 18, 2014, retrospectively registered; IMABIO 3, NCT01775696, registered January 25, 2013, retrospectively registered; INFLASEP, NCT02305264, registered December 2, 2014, retrospectively registered; EPI-TEP, EudraCT 2017-003381-27, registered September 24, 2018.
Collapse
Affiliation(s)
- M A Peyronneau
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France.
| | - B Kuhnast
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - D-L Nguyen
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - B Jego
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - G Sayet
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - F Caillé
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - S Lavisse
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, F-92265, Fontenay-Aux-Roses, France
| | - P Gervais
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - B Stankoff
- Sorbonne Université, UPMC Paris 06, Institut du Cerveau et de La Moelle Epinière, Hôpital de La Pitié Salpêtrière, Inserm UMR S 1127, CNRS UMR 7225, Paris, France
| | - M Sarazin
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
- Service de Neurologie de La Mémoire Et du Langage, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France
| | - P Remy
- Laboratoire Des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, F-92265, Fontenay-Aux-Roses, France
- Centre Expert Parkinson, Neurologie, Hôpital Henri Mondor, AP-HP, F-94010, Créteil, France
- Université Paris-Est Créteil, INSERM U955, Institut Mondor de Recherche Biomédicale, Equipe NeuroPsychologie Interventionnelle, F-94010, Créteil, France
- Département d'Etudes Cognitives, École Normale Supérieure, Université PSL, F-75005, Paris, France
| | - V Bouilleret
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
- Service de Neurophysiologie Clinique et d'Epileptologie, Hôpital Bicêtre, AP-HP, Université Paris Saclay, F-94270, Le Kremlin-Bicêtre, France
| | - C Leroy
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
| | - M Bottlaender
- Université Paris Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomedicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, F-91401, ORSAY, France
- Université Paris Saclay, UNIACT, Neurospin, CEA, Gif-Sur-Yvette, F-91190, France
| |
Collapse
|
9
|
Martin EB, Stuckey A, Powell D, Lands R, Whittle B, Wooliver C, Macy S, Foster JS, Guthrie S, Kennel SJ, Wall JS. Clinical Confirmation of Pan-Amyloid Reactivity of Radioiodinated Peptide 124I-p5+14 (AT-01) in Patients with Diverse Types of Systemic Amyloidosis Demonstrated by PET/CT Imaging. Pharmaceuticals (Basel) 2023; 16:629. [PMID: 37111386 PMCID: PMC10144944 DOI: 10.3390/ph16040629] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
There are at least 20 distinct types of systemic amyloidosis, all of which result in the organ-compromising accumulation of extracellular amyloid deposits. Amyloidosis is challenging to diagnose due to the heterogeneity of the clinical presentation, yet early detection is critical for favorable patient outcomes. The ability to non-invasively and quantitatively detect amyloid throughout the body, even in at-risk populations, before clinical manifestation would be invaluable. To this end, a pan-amyloid-reactive peptide, p5+14, has been developed that is capable of binding all types of amyloid. Herein, we demonstrate the ex vivo pan-amyloid reactivity of p5+14 by using peptide histochemistry on animal and human tissue sections containing various types of amyloid. Furthermore, we present clinical evidence of pan-amyloid binding using iodine-124-labeled p5+14 in a cohort of patients with eight (n = 8) different types of systemic amyloidosis. These patients underwent PET/CT imaging as part of the first-in-human Phase 1/2 clinical trial evaluating this radiotracer (NCT03678259). The uptake of 124I-p5+14 was observed in abdominothoracic organs in patients with all types of amyloidosis evaluated and was consistent with the disease distribution described in the medical record and literature reports. On the other hand, the distribution in healthy subjects was consistent with radiotracer catabolism and clearance. The early and accurate diagnosis of amyloidosis remains challenging. These data support the utility of 124I-p5+14 for the diagnosis of varied types of systemic amyloidosis by PET/CT imaging.
Collapse
Affiliation(s)
- Emily B. Martin
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA (J.S.F.); (S.J.K.); (J.S.W.)
| | - Alan Stuckey
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA (J.S.F.); (S.J.K.); (J.S.W.)
| | - Dustin Powell
- Department of Radiology, University of Tennessee Medical Center, Knoxville, TN 37920, USA
| | - Ronald Lands
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA (J.S.F.); (S.J.K.); (J.S.W.)
| | - Bryan Whittle
- Department of Radiology, University of Tennessee Medical Center, Knoxville, TN 37920, USA
| | - Craig Wooliver
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA (J.S.F.); (S.J.K.); (J.S.W.)
| | - Sallie Macy
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA (J.S.F.); (S.J.K.); (J.S.W.)
| | - James S. Foster
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA (J.S.F.); (S.J.K.); (J.S.W.)
| | | | - Stephen J. Kennel
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA (J.S.F.); (S.J.K.); (J.S.W.)
| | - Jonathan S. Wall
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA (J.S.F.); (S.J.K.); (J.S.W.)
| |
Collapse
|
10
|
Foss CA, Ordonez AA, Naik R, Das D, Hall A, Wu Y, Dannals RF, Jain SK, Pomper MG, Horti AG. PET/CT imaging of CSF1R in a mouse model of tuberculosis. Eur J Nucl Med Mol Imaging 2022; 49:4088-4096. [PMID: 35713665 PMCID: PMC9922090 DOI: 10.1007/s00259-022-05862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/03/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Macrophages represent an essential means of sequestration and immune evasion for Mycobacterium tuberculosis. Pulmonary tuberculosis (TB) is characterized by dense collections of tissue-specific and recruited macrophages, both of which abundantly express CSF1R on their outer surface. 4-Cyano-N-(5-(1-(dimethylglycyl)piperidin-4-yl)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)-1H-imidazole-2-carboxamide (JNJ-28312141) is a reported high affinity, CSF1R-selective antagonist. We report the radiosynthesis of 4-cyano-N-(5-(1-(N-methyl-N-([11C]methyl)glycyl)piperidin-4-yl)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)-1H-imidazole-2-carboxamide ([11C]JNJ-28312141) and non-invasive detection of granulomatous and diffuse lesions in a mouse model of TB using positron emission tomography (PET). METHODS Nor-methyl-JNJ-28312141 precursor was radiolabeled with [11C]iodomethane to produce [11C]JNJ-28312141. PET/CT imaging was performed in the C3HeB/FeJ murine model of chronic pulmonary TB to co-localize radiotracer uptake with granulomatous lesions observed on CT. Additionally, CSF1R, Iba1 fluorescence immunohistochemistry was performed to co-localize CSF1R target with reactive macrophages in infected and healthy mice. RESULTS Radiosynthesis of [11C]JNJ-28312141 averaged a non-decay-corrected yield of 18.7 ± 2.1%, radiochemical purity of 99%, and specific activity averaging 658 ± 141 GBq/µmol at the end-of-synthesis. PET/CT imaging in healthy mice showed hepatobiliary [13.39-25.34% ID/g, percentage of injected dose per gram of tissue (ID/g)] and kidney uptake (12.35% ID/g) at 40-50 min post-injection. Infected mice showed focal pulmonary lesion uptake (5.58-12.49% ID/g), hepatobiliary uptake (15.30-40.50% ID/g), cervical node uptake, and renal uptake (11.66-29.33% ID/g). The ratio of infected lesioned lung/healthy lung uptake is 5.91:1, while the ratio of lesion uptake to adjacent infected radiolucent lung is 2.8:1. Pre-administration of 1 mg/kg of unlabeled JNJ-28312141 with [11C]JNJ-28312141 in infected animals resulted in substantial blockade. Fluorescence microscopy of infected and uninfected whole lung sections exclusively co-localized CSF1R staining with abundant Iba1 + macrophages. Healthy lung exhibited no CSF1R staining and very few Iba1 + macrophages. CONCLUSION [11C]JNJ-28312141 binds specifically to CSF1R + macrophages and delineates granulomatous foci of disease in a murine model of pulmonary TB.
Collapse
Affiliation(s)
- Catherine A Foss
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA.
- Department of Pediatrics, Center for Infection and Inflammation Imaging Research, Baltimore, MD, USA.
| | - Alvaro A Ordonez
- Department of Pediatrics, Center for Infection and Inflammation Imaging Research, Baltimore, MD, USA
| | - Ravi Naik
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Deepankar Das
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew Hall
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Yunkou Wu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Robert F Dannals
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Sanjay K Jain
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Pediatrics, Center for Infection and Inflammation Imaging Research, Baltimore, MD, USA
| | - Martin G Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew G Horti
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
11
|
Abstract
The authors define molecular imaging, according to the Society of Nuclear Medicine and Molecular Imaging, as the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in humans and other living systems. Although practiced for many years clinically in nuclear medicine, expansion to other imaging modalities began roughly 25 years ago and has accelerated since. That acceleration derives from the continual appearance of new and highly relevant animal models of human disease, increasingly sensitive imaging devices, high-throughput methods to discover and optimize affinity agents to key cellular targets, new ways to manipulate genetic material, and expanded use of cloud computing. Greater interest by scientists in allied fields, such as chemistry, biomedical engineering, and immunology, as well as increased attention by the pharmaceutical industry, have likewise contributed to the boom in activity in recent years. Whereas researchers and clinicians have applied molecular imaging to a variety of physiologic processes and disease states, here, the authors focus on oncology, arguably where it has made its greatest impact. The main purpose of imaging in oncology is early detection to enable interception if not prevention of full-blown disease, such as the appearance of metastases. Because biochemical changes occur before changes in anatomy, molecular imaging-particularly when combined with liquid biopsy for screening purposes-promises especially early localization of disease for optimum management. Here, the authors introduce the ways and indications in which molecular imaging can be undertaken, the tools used and under development, and near-term challenges and opportunities in oncology.
Collapse
Affiliation(s)
- Steven P. Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin G. Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Bzowski P, Borys D, Gorczewski K, Chmura A, Daszewska K, Gorczewska I, Kastelik-Hryniewiecka A, Szydło M, d’Amico A, Sokół M. Efficiency of 124I radioisotope production from natural and enriched tellurium dioxide using 124Te(p,xn) 124I reaction. EJNMMI Phys 2022; 9:41. [PMID: 35666325 PMCID: PMC9170869 DOI: 10.1186/s40658-022-00471-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND 124I Iodine (T[Formula: see text] = 4.18 d) is the only long-life positron emitter radioisotope of iodine that may be used for both imaging and therapy as well as for 131I dosimetry. Its physical characteristics permits taking advantages of the higher Positron Emission Tomography (PET) image quality, whereas the availability of new molecules to be targeted with 124I makes it a novel innovative radiotracer probe for a specific molecular targeting. RESULTS In this study Monte Carlo and SRIM/TRIM modelling was applied to predict the nuclear parameters of the 124I production process in a small medical cyclotron IBA 18/9 Cyclone. The simulation production yields for 124I and the polluting radioisotopes were calculated for the natural and enriched 124TeO2 + Al2O3 solid targets irradiated with 14.8 MeV protons. The proton beam was degraded energetically from 18 MeV with 0.2 mm Havar foil. The 124Te(p,xn)124I reactions were taken into account in the simulations. The optimal thickness of the target material was calculated using the SRIM/TRIM and Geant4 codes. The results of the simulations were compared with the experimental data obtained for the natural TeO2 +Al2O3 target. The dry distillation technique of the 124-iodine was applied. CONCLUSIONS The experimental efficiency for the natural Te target was better than 41% with an average thick target (>0.8 mm) yield of 1.32 MBq/μAh. Joining the Monte Carlo and experimental approaches makes it possible to optimize the methodology for the 124I production from the expensive Te enriched targets.
Collapse
Affiliation(s)
- Paweł Bzowski
- Department of Nuclear Medicine and Endocrine Oncology, PET Diagnostics Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Damian Borys
- Department of Nuclear Medicine and Endocrine Oncology, PET Diagnostics Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Kamil Gorczewski
- Department of Nuclear Medicine and Endocrine Oncology, PET Diagnostics Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Agnieszka Chmura
- Radiopharmacy and Preclinical PET Imaging Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Kinga Daszewska
- Radiopharmacy and Preclinical PET Imaging Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Izabela Gorczewska
- Department of Nuclear Medicine and Endocrine Oncology, PET Diagnostics Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Anna Kastelik-Hryniewiecka
- Radiopharmacy and Preclinical PET Imaging Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Marcin Szydło
- Radiopharmacy and Preclinical PET Imaging Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Andrea d’Amico
- Department of Nuclear Medicine and Endocrine Oncology, PET Diagnostics Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Maria Sokół
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| |
Collapse
|
13
|
Gulhane AV, Chen DL. Overview of positron emission tomography in functional imaging of the lungs for diffuse lung diseases. Br J Radiol 2022; 95:20210824. [PMID: 34752146 PMCID: PMC9153708 DOI: 10.1259/bjr.20210824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Positron emission tomography (PET) is a quantitative molecular imaging modality increasingly used to study pulmonary disease processes and drug effects on those processes. The wide range of drugs and other entities that can be radiolabeled to study molecularly targeted processes is a major strength of PET, thus providing a noninvasive approach for obtaining molecular phenotyping information. The use of PET to monitor disease progression and treatment outcomes in DLD has been limited in clinical practice, with most of such applications occurring in the context of research investigations under clinical trials. Given the high costs and failure rates for lung drug development efforts, molecular imaging lung biomarkers are needed not only to aid these efforts but also to improve clinical characterization of these diseases beyond canonical anatomic classifications based on computed tomography. The purpose of this review article is to provide an overview of PET applications in characterizing lung disease, focusing on novel tracers that are in clinical development for DLD molecular phenotyping, and briefly address considerations for accurately quantifying lung PET signals.
Collapse
Affiliation(s)
- Avanti V Gulhane
- Department of Radiology, University of Washington School of Medicine, Seattle, United States
| | - Delphine L Chen
- Department of Radiology, University of Washington School of Medicine, Seattle, United States
| |
Collapse
|
14
|
Ruiz-Bedoya CA, Mota F, Ordonez AA, Foss CA, Singh AK, Praharaj M, Mahmud FJ, Ghayoor A, Flavahan K, De Jesus P, Bahr M, Dhakal S, Zhou R, Solis CV, Mulka KR, Bishai WR, Pekosz A, Mankowski JL, Villano J, Klein SL, Jain SK. 124I-Iodo-DPA-713 Positron Emission Tomography in a Hamster Model of SARS-CoV-2 Infection. Mol Imaging Biol 2022; 24:135-143. [PMID: 34424479 PMCID: PMC8381721 DOI: 10.1007/s11307-021-01638-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE Molecular imaging has provided unparalleled opportunities to monitor disease processes, although tools for evaluating infection remain limited. Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by lung injury that we sought to model. Activated macrophages/phagocytes have an important role in lung injury, which is responsible for subsequent respiratory failure and death. We performed pulmonary PET/CT with 124I-iodo-DPA-713, a low-molecular-weight pyrazolopyrimidine ligand selectively trapped by activated macrophages cells, to evaluate the local immune response in a hamster model of SARS-CoV-2 infection. PROCEDURES Pulmonary 124I-iodo-DPA-713 PET/CT was performed in SARS-CoV-2-infected golden Syrian hamsters. CT images were quantified using a custom-built lung segmentation tool. Studies with DPA-713-IRDye680LT and a fluorescent analog of DPA-713 as well as histopathology and flow cytometry were performed on post-mortem tissues. RESULTS Infected hamsters were imaged at the peak of inflammatory lung disease (7 days post-infection). Quantitative CT analysis was successful for all scans and demonstrated worse pulmonary disease in male versus female animals (P < 0.01). Increased 124I-iodo-DPA-713 PET activity co-localized with the pneumonic lesions. Additionally, higher pulmonary 124I-iodo-DPA-713 PET activity was noted in male versus female hamsters (P = 0.02). DPA-713-IRDye680LT also localized to the pneumonic lesions. Flow cytometry demonstrated a higher percentage of myeloid and CD11b + cells (macrophages, phagocytes) in male versus female lung tissues (P = 0.02). CONCLUSION 124I-Iodo-DPA-713 accumulates within pneumonic lesions in a hamster model of SARS-CoV-2 infection. As a novel molecular imaging tool, 124I-Iodo-DPA-713 PET could serve as a noninvasive, clinically translatable approach to monitor SARS-CoV-2-associated pulmonary inflammation and expedite the development of novel therapeutics for COVID-19.
Collapse
Affiliation(s)
- Camilo A Ruiz-Bedoya
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB-II Room 109, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Filipa Mota
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB-II Room 109, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB-II Room 109, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Catherine A Foss
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alok K Singh
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Monali Praharaj
- Bloomberg-Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Farina J Mahmud
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB-II Room 109, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Kelly Flavahan
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB-II Room 109, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patricia De Jesus
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB-II Room 109, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melissa Bahr
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB-II Room 109, Baltimore, MD, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ruifeng Zhou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Clarisse V Solis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathleen R Mulka
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William R Bishai
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jason Villano
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB-II Room 109, Baltimore, MD, USA.
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
15
|
Ruiz-Bedoya CA, Mota F, Tucker EW, Mahmud FJ, Reyes-Mantilla MI, Erice C, Bahr M, Flavahan K, De Jesus P, Kim J, Foss CA, Peloquin CA, Hammoud DA, Ordonez AA, Pardo CA, Jain SK. High-dose rifampin improves bactericidal activity without increased intracerebral inflammation in animal models of tuberculous meningitis. J Clin Invest 2022; 132:155851. [PMID: 35085105 PMCID: PMC8920328 DOI: 10.1172/jci155851] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/26/2022] [Indexed: 11/29/2022] Open
Abstract
Tuberculous meningitis (TB meningitis) is the most severe form of tuberculosis (TB), requiring 12 months of multidrug treatment for cure, and is associated with high morbidity and mortality. High-dose rifampin (35 mg/kg/d) is safe and improves the bactericidal activity of the standard-dose (10 mg/kg/d) rifampin-containing TB regimen in pulmonary TB. However, there are conflicting clinical data regarding its benefit for TB meningitis, where outcomes may also be associated with intracerebral inflammation. We conducted cross-species studies in mice and rabbits, demonstrating that an intensified high-dose rifampin-containing regimen has significantly improved bactericidal activity for TB meningitis over the first-line, standard-dose rifampin regimen, without an increase in intracerebral inflammation. Positron emission tomography in live animals demonstrated spatially compartmentalized, lesion-specific pathology, with postmortem analyses showing discordant brain tissue and cerebrospinal fluid rifampin levels and inflammatory markers. Longitudinal multimodal imaging in the same cohort of animals during TB treatment as well as imaging studies in two cohorts of TB patients demonstrated that spatiotemporal changes in localized blood-brain barrier disruption in TB meningitis are an important driver of rifampin brain exposure. These data provide unique insights into the mechanisms underlying high-dose rifampin in TB meningitis with important implications for developing new antibiotic treatments for infections.
Collapse
Affiliation(s)
- Camilo A Ruiz-Bedoya
- Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Filipa Mota
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Elizabeth W Tucker
- Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Farina J Mahmud
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Maria I Reyes-Mantilla
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Clara Erice
- Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Melissa Bahr
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Kelly Flavahan
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Patricia De Jesus
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - John Kim
- Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Catherine A Foss
- Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Charles A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, University of Florida College of Pharmacy, Gainesville, United States of America
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, NIH, Bethesda, United States of America
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Carlos A Pardo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, United States of America
| |
Collapse
|
16
|
Signore A, Conserva M, Varani M, Galli F, Lauri C, Velikyan I, Roivainen A. PET imaging of bacteria. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
George KJH, Borjian S, Cross MC, Hicks JW, Schaffer P, Kovacs MS. Expanding the PET radioisotope universe utilizing solid targets on small medical cyclotrons. RSC Adv 2021; 11:31098-31123. [PMID: 35498914 PMCID: PMC9041346 DOI: 10.1039/d1ra04480j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
Molecular imaging with medical radioisotopes enables the minimally-invasive monitoring of aberrant biochemical, cellular and tissue-level processes in living subjects. The approach requires the administration of radiotracers composed of radioisotopes attached to bioactive molecules, the pairing of which considers several aspects of the radioisotope in addition to the biological behavior of the targeting molecule to which it is attached. With the advent of modern cellular and biochemical techniques, there has been a virtual explosion in potential disease recognition antigens as well as targeting moieties, which has subsequently opened new applications for a host of emerging radioisotopes with well-matched properties. Additionally, the global radioisotope production landscape has changed rapidly, with reactor-based production and its long-defined, large-scale centralized manufacturing and distribution paradigm shifting to include the manufacture and distribution of many radioisotopes via a worldwide fleet of cyclotrons now in operation. Cyclotron-based radioisotope production has become more prevalent given the commercial availability of instruments, coupled with the introduction of new target hardware, process automation and target manufacturing methods. These advances enable sustained, higher-power irradiation of solid targets that allow hospital-based radiopharmacies to produce a suite of radioisotopes that drive research, clinical trials, and ultimately clinical care. Over the years, several different radioisotopes have been investigated and/or selected for radiolabeling due to favorable decay characteristics (i.e. a suitable half-life, high probability of positron decay, etc.), well-elucidated chemistry, and a feasible production framework. However, longer-lived radioisotopes have surged in popularity given recent regulatory approvals and incorporation of radiopharmaceuticals into patient management within the medical community. This review focuses on the applications, nuclear properties, and production and purification methods for some of the most frequently used/emerging positron-emitting, solid-target-produced radioisotopes that can be manufactured using small-to-medium size cyclotrons (≤24 MeV).
Collapse
Affiliation(s)
- K J H George
- Lawson Health Research Institute 268 Grosvenor Street London ON N6A 4V2 Canada
- Medical Biophysics, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
| | - S Borjian
- ARTMS 301-4475 Wayburn Drive Burnaby BC V5G 4X4 Canada
| | - M C Cross
- ARTMS 301-4475 Wayburn Drive Burnaby BC V5G 4X4 Canada
| | - J W Hicks
- Lawson Health Research Institute 268 Grosvenor Street London ON N6A 4V2 Canada
- Medical Biophysics, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
| | - P Schaffer
- Life Sciences, TRIUMF 4004 Wesbrook Mall Vancouver BC V6T 2A3 Canada
- ARTMS 301-4475 Wayburn Drive Burnaby BC V5G 4X4 Canada
- Radiology, University of British Columbia 2775 Laurel St Vancouver BC V5Z 1M9 Canada
- Chemistry, Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - M S Kovacs
- Lawson Health Research Institute 268 Grosvenor Street London ON N6A 4V2 Canada
- Medical Biophysics, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
- Medical Imaging, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
| |
Collapse
|
18
|
Jiang Y, Fang S, Zhang X, Feng J, Ruan Q, Zhang J. Radiolabeling and evaluation of a novel [ 99mTcN] 2+ complex with deferoxamine dithiocarbamate as a potential agent for bacterial infection imaging. Bioorg Med Chem Lett 2021; 43:128102. [PMID: 33984471 DOI: 10.1016/j.bmcl.2021.128102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 01/17/2023]
Abstract
In order to find a 99mTc-labeled deferoxamine radiotracer for bacterial infection imaging, deferoxamine dithiocarbamate (DFODTC) was successfully synthesized and it was radiolabeled with [99mTcN]2+ core to prepare the 99mTcN(DFODTC)2 complex. 99mTcN(DFODTC)2 was obtained with high radiochemical purity without further purification. The complex was lipophilic and exhibited good in vitro stability. According to the result of bacterial binding study, the binding of 99mTcN(DFODTC)2 to bacteria was specific. Biodistribution in mice study indicated that 99mTcN(DFODTC)2 had a higher uptake in bacterial infection tissues than in turpentine-induced abscesses at 120 min after injection, which showed that the radiotracer could differentiate between bacterial infection and sterile inflammation. SPECT/CT images showed that there was a clear accumulation in infection sites, suggesting that 99mTcN(DFODTC)2 could be a potential bacterial infection imaging radiotracer.
Collapse
Affiliation(s)
- Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Si'an Fang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Xuran Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
19
|
Wang S, Zhu H, Ding J, Wang F, Meng X, Ding L, Zhang Y, Li N, Yao S, Sheng X, Yang Z. Positron Emission Tomography Imaging of Programmed Death 1 Expression in Cancer Patients Using 124I-Labeled Toripalimab: A Pilot Clinical Translation Study. Clin Nucl Med 2021; 46:382-388. [PMID: 33512952 DOI: 10.1097/rlu.0000000000003520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE Although anti-programmed cell death molecule-1 (PD-1)/PD-1 ligand therapy has achieved remarkable success in oncology field, the low response rate and lack of accurate prognostic biomarker identifying benefiting patients remain unresolved challenges. This study developed a PD-1 targeting radiotracer 124I-labeled toripalimab (124I-JS001) for clinical PET imaging and evaluated its biodistribution, safety, and dosimetry in human. METHODS Patients with melanoma or urologic cancer confirmed by pathology were enrolled. 124I-JS001 PET/CT and PET/MR were performed with or without coinjection of 5 mg unlabeled JS001, and 18F-FDG PET was undertaken within 1 week. RESULTS Eight melanoma and 3 urologic cancer patients were enrolled. No adverse events were noticed during the whole examination after the injection of 124I-JS001 and an acceptable dosimetry of 0.236 mSv/MBq was found. 124I-JS001 PET/CT showed high uptake in spleen and liver and slight uptake in bone marrow and lung. All primary and metastatic tumor lesions in 11 patients demonstrated different levels of uptake of 124I-JS001 with SUVmax ranging from 0.2 to 4.7. With coinjection of unlabeled JS001, the uptake in spleen was reduced significantly (P < 0.05), whereas tumor uptake and tumor background ratio increased significantly (P < 0.05). Four patients undertook regional 124I-JS001 PET/MR. All tumor lesions were detected effectively with abnormal MR signal on PET/MR, whereas PET/MR detected liver lesions more sensitively than PET/CT. CONCLUSIONS The first-in-human study demonstrated 124I-JS001 was a safe tracer for PET with acceptable dosimetry, and the PET/CT results showed a favorable biodistribution. PET/MR could detect liver lesions more sensitively than PET/CT.
Collapse
Affiliation(s)
- Shujing Wang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing
| | - Hua Zhu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing
| | - Jin Ding
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing
| | - Feng Wang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing
| | - Xiangxi Meng
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing
| | - Lixin Ding
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing
| | - Yan Zhang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing
| | - Nan Li
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing
| | - Sheng Yao
- Shanghai Junshi Biosciences Co Ltd, Shanghai
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing
| |
Collapse
|
20
|
Ordonez AA, Tucker EW, Anderson CJ, Carter CL, Ganatra S, Kaushal D, Kramnik I, Lin PL, Madigan CA, Mendez S, Rao J, Savic RM, Tobin DM, Walzl G, Wilkinson RJ, Lacourciere KA, Via LE, Jain SK. Visualizing the dynamics of tuberculosis pathology using molecular imaging. J Clin Invest 2021; 131:145107. [PMID: 33645551 PMCID: PMC7919721 DOI: 10.1172/jci145107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nearly 140 years after Robert Koch discovered Mycobacterium tuberculosis, tuberculosis (TB) remains a global threat and a deadly human pathogen. M. tuberculosis is notable for complex host-pathogen interactions that lead to poorly understood disease states ranging from latent infection to active disease. Additionally, multiple pathologies with a distinct local milieu (bacterial burden, antibiotic exposure, and host response) can coexist simultaneously within the same subject and change independently over time. Current tools cannot optimally measure these distinct pathologies or the spatiotemporal changes. Next-generation molecular imaging affords unparalleled opportunities to visualize infection by providing holistic, 3D spatial characterization and noninvasive, temporal monitoring within the same subject. This rapidly evolving technology could powerfully augment TB research by advancing fundamental knowledge and accelerating the development of novel diagnostics, biomarkers, and therapeutics.
Collapse
Affiliation(s)
- Alvaro A. Ordonez
- Center for Infection and Inflammation Imaging Research
- Center for Tuberculosis Research
- Department of Pediatrics, and
| | - Elizabeth W. Tucker
- Center for Infection and Inflammation Imaging Research
- Center for Tuberculosis Research
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Claire L. Carter
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Shashank Ganatra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Igor Kramnik
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusets, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Philana L. Lin
- Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cressida A. Madigan
- Department of Biological Sciences, UCSD, San Diego, La Jolla, California, USA
| | - Susana Mendez
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology and Chemistry, Stanford University, Stanford, California, USA
| | - Rada M. Savic
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy and Medicine, UCSF, San Francisco, California, USA
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Gerhard Walzl
- SAMRC Centre for Tuberculosis Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robert J. Wilkinson
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
- Wellcome Centre for Infectious Diseases Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- The Francis Crick Institute, London, United Kingdom
| | - Karen A. Lacourciere
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, and Tuberculosis Imaging Program, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA
| | - Sanjay K. Jain
- Center for Infection and Inflammation Imaging Research
- Center for Tuberculosis Research
- Department of Pediatrics, and
| |
Collapse
|
21
|
van der Krogt JMA, van Binsbergen WH, van der Laken CJ, Tas SW. Novel positron emission tomography tracers for imaging of rheumatoid arthritis. Autoimmun Rev 2021; 20:102764. [PMID: 33476822 DOI: 10.1016/j.autrev.2021.102764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022]
Abstract
Positron emission tomography (PET) is a nuclear imaging modality that relies on visualization of molecular targets in tissues, which is nowadays combined with a structural imaging modality such as computed tomography (CT) or Magnetic Resonance Imaging (MRI) and referred to as hybrid PET imaging. This technique allows to image specific immunological targets in rheumatoid arthritis (RA). Moreover, quantification of the PET signal enables highly sensitive monitoring of therapeutic effects on the molecular target. PET may also aid in stratification of the immuno-phenotype at baseline in order to develop personalized therapy. In this systematic review we will provide an overview of novel PET tracers, investigated in the context of RA, either pre-clinically, or clinically, that specifically visualize immune cells or stromal cells, as well as other factors and processes that contribute to pathology. The potential of these tracers in RA diagnosis, disease monitoring, and prediction of treatment outcome will be discussed. In addition, novel PET tracers established within the field of oncology that may be of use in RA will also be reviewed in order to expand the future opportunities of PET imaging in RA.
Collapse
Affiliation(s)
- Jeffrey M A van der Krogt
- Amsterdam UMC, Location AMC, Amsterdam Rheumatology & Immunology Center (ARC), University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam UMC/University of Amsterdam, Amsterdam, the Netherlands
| | - Wouter H van Binsbergen
- Amsterdam UMC, Location VUmc, Amsterdam Rheumatology and Immunology Center (ARC), VU University, Amsterdam, the Netherlands
| | - Conny J van der Laken
- Amsterdam UMC, Location VUmc, Amsterdam Rheumatology and Immunology Center (ARC), VU University, Amsterdam, the Netherlands
| | - Sander W Tas
- Amsterdam UMC, Location AMC, Amsterdam Rheumatology & Immunology Center (ARC), University of Amsterdam, Amsterdam, the Netherlands; Department of Experimental Immunology, Amsterdam UMC/University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021; 92:241-269. [PMID: 32900582 DOI: 10.1016/j.nucmedbio.2020.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Positron-emission-tomography (PET) has become an indispensable diagnostic tool in modern nuclear medicine. Its outstanding molecular imaging features allow repetitive studies on one individual and with high sensitivity, though no interference. Rather few positron-emitters with near favourable physical properties, i.e. carbon-11 and fluorine-18, furnished most studies in the beginning, preferably if covalently bound as isotopic label of small molecules. With the advancement of PET-devices the scope of in vivo research in life sciences and especially that of medical applications expanded, and other than "standard" PET-nuclides received increasing significance, like the radiometals copper-64 and gallium-68. Especially during the last decades, positron-emitters of other chemical elements have gotten into the focus of interest, concomitant with the technical advancements in imaging and radionuclide production. With known nuclear imaging properties and main production methods of emerging positron-emitters their usefulness for medical application is promising and even proven for several ones already. Unfortunate decay properties could be corrected for, and β+-emitters, especially with a longer half-life, provided new possibilities for application where slower processes are of importance. Further on, (bio)chemical features of positron-emitters of other elements, among there many metals, not only expanded the field of classical clinical investigations, but also opened up new fields of application. Appropriately labelled peptides, proteins and nanoparticles lend itself as newer probes for PET-imaging, e.g. in theragnostic or PET/MR hybrid imaging. Furthermore, the potential of non-destructive in-vivo imaging with positron-emission-tomography directs the view on further areas of life sciences. Thus, exploiting the excellent methodology for basic research on molecular biochemical functions and processes is increasingly encouraged as well in areas outside of health, such as plant and environmental sciences.
Collapse
Affiliation(s)
- Heinz H Coenen
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
23
|
Mota F, Ordonez AA, Firth G, Ruiz-Bedoya CA, Ma MT, Jain SK. Radiotracer Development for Bacterial Imaging. J Med Chem 2020; 63:1964-1977. [PMID: 32048838 DOI: 10.1021/acs.jmedchem.9b01623] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bacterial infections remain a major threat to humanity and are a leading cause of death and disability. Antimicrobial resistance has been declared as one of the top ten threats to human health by the World Health Organization, and new technologies are urgently needed for the early diagnosis and monitoring of deep-seated and complicated infections in hospitalized patients. This review summarizes the radiotracers as applied to imaging of bacterial infections. We summarize the recent progress in the development of pathogen-specific imaging and the application of radiotracers in understanding drug pharmacokinetics as well as the local biology at the infection sites. We also highlight the opportunities for medicinal chemists in radiotracer development for bacterial infections, with an emphasis on target selection and radiosynthetic approaches. Imaging of infections is an emerging field. Beyond clinical applications, these technologies could provide unique insights into disease pathogenesis and expedite bench-to-bedside translation of new therapeutics.
Collapse
Affiliation(s)
- Filipa Mota
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - George Firth
- School of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Camilo A Ruiz-Bedoya
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Michelle T Ma
- School of Biomedical Engineering and Imaging Sciences, St. Thomas' Hospital, King's College London, London SE1 7EH, United Kingdom
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
24
|
Abstract
Molecular imaging is an emerging technology that enables the noninvasive visualization, characterization, and quantification of molecular events within living subjects. Positron emission tomography (PET) is a clinically available molecular imaging tool with significant potential to study pathogenesis of infections in humans. Molecular imaging is an emerging technology that enables the noninvasive visualization, characterization, and quantification of molecular events within living subjects. Positron emission tomography (PET) is a clinically available molecular imaging tool with significant potential to study pathogenesis of infections in humans. PET enables dynamic assessment of infectious processes within the same subject with high temporal and spatial resolution and obviates the need for invasive tissue sampling, which is difficult in patients and generally limited to a single time point, even in animal models. This review presents current state-of-the-art concepts on the application of molecular imaging for infectious diseases and details how PET imaging can facilitate novel insights into infectious processes, ongoing development of pathogen-specific imaging, and simultaneous in situ measurements of intralesional antimicrobial pharmacokinetics in multiple compartments, including privileged sites. Finally, the potential clinical applications of this promising technology are also discussed.
Collapse
|
25
|
Radiation effective dose assessment of [ 51Mn]- and [ 52Mn]-chloride. Appl Radiat Isot 2019; 153:108805. [PMID: 31382087 DOI: 10.1016/j.apradiso.2019.108805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022]
Abstract
In order to establish the potential of [51/52Mn]Cl2 as safe PET brain tracers, the radiation effective dose (ED) of [51Mn]- and [52Mn]-chloride has been assessed by using biokinetic models in anthropomorphic phantoms. Results showed that [52Mn]-chloride releases one hundred thirty times more radiation dose (ED = 1.35 mSv/MBq) than [51Mn]-chloride (ED = 1.02E-02 mSv/MBq). Although the maximum positron energy of 52Mn allows a PET image resolution similar to that of 18F, activities below 15 MBq should be administered.
Collapse
|
26
|
Sanchez-Bautista J, Foss CA, Ordonez AA, Klunk MH, Jain SK. Imaging Pulmonary Foreign Body Reaction Using [ 125I]iodo-DPA-713 SPECT/CT in Mice. Mol Imaging Biol 2018; 21:228-231. [PMID: 29987615 DOI: 10.1007/s11307-018-1249-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Foreign body reactions elicit granulomatous inflammation composed of reactive macrophages. We hypothesized that [125I]iodo-DPA-713 single-photon emission computed tomography (SPECT), a low-molecular-weight pyrazolopyrimidine ligand selectively trapped by phagocytes, could be used to detect foreign body reactions in a murine model. PROCEDURES C57BL/6 mice intratracheally inoculated with dextran beads, which developed foreign body lesions, were imaged after injection of [125I]iodo-DPA-713 or DPA-713-IRDye800CW using SPECT and optical imaging, respectively. RESULTS Foreign body lesions were clearly observed in the lungs of the dextran-treated mice on computer tomography imaging and demonstrated significantly higher [125I]iodo-DPA-713 uptake compared with control animals (p < 0.01). Ex vivo studies demonstrated granulomatous reactions in the lungs of dextran-treated mice and localization of DPA-713-IRDye800CW at the diseased sites confirming the imaging findings. CONCLUSION Radioiodinated DPA-713 may be used as a noninvasive biomarker for the detection of pulmonary foreign body reactions.
Collapse
Affiliation(s)
- Julian Sanchez-Bautista
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University, 1550 Orleans Street, CRB-II, Rm 1.09, Baltimore, MD, 21287, USA
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Catherine A Foss
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University, 1550 Orleans Street, CRB-II, Rm 1.09, Baltimore, MD, 21287, USA
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University, 1550 Orleans Street, CRB-II, Rm 1.09, Baltimore, MD, 21287, USA
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Mariah H Klunk
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University, 1550 Orleans Street, CRB-II, Rm 1.09, Baltimore, MD, 21287, USA
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University, 1550 Orleans Street, CRB-II, Rm 1.09, Baltimore, MD, 21287, USA.
- Center for Tuberculosis Research, Johns Hopkins University, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, USA.
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|