1
|
Ghatamaneni S, Coleman C, Shin I, Bruinsma T, Scott N, Lee J, Fang P, Min HK, Moloney CM, Wood AC, Constantopoulos E, Reichard RR, Schwarz CG, Jones DT, Graff-Radford J, Knopman DS, Jack CR, Petersen RC, Dickson DW, Murray ME, Lowe VJ. High resolution autoradiography of [ 18F]MK-6240 and [ 18F]Flortaucipir shows similar neurofibrillary tangle binding patterns preferentially recognizing middling neurofibrillary tangle maturity. Acta Neuropathol 2025; 149:26. [PMID: 40085238 PMCID: PMC11909026 DOI: 10.1007/s00401-025-02864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/08/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Recent developments in tau positron emission tomography (PET) radiotracers have enhanced the visualization of tau aggregates in Alzheimer's disease (AD). The maturity level of neurofibrillary tangles can affect its recognition by biomarkers. Early detection of tau aggregates regarding tangle pathology is of interest in early diagnosis and comparison of tau radiotracers in this aspect is important. This study focused on head to head pathologic comparison of [18F]MK-6240 and [18F]Flortaucipir postmortem binding as seen on high resolution autoradiography as compared to CP-13 (early tangle maturity) and PHF-1 (middling tangle maturity) immunohistochemistry (IHC) to evaluate the tangle maturity pathology specificity of binding for tau aggregates in AD, atypical AD and non-AD tauopathies. Analyses were performed on serial 5 μm formalin-fixed paraffin-embedded human brain sections acquired from the Mayo Clinic brain bank. Visual assessment of colocalization with IHC as well as quantitative analyses were used. Evaluation of the tracers' off-target binding profiles were performed. Both tracers had similar binding properties for tau aggregates with preference to middling tangle maturity as shown by comparison to immunohistochemical distributions. Both the tracers showed strong binding to AD tau aggregates and no or minimal binding to non-AD tauopathies which corroborates with other studies.
Collapse
Affiliation(s)
| | | | - Ian Shin
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tyler Bruinsma
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nancy Scott
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jeyeon Lee
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biomedical Engineering, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Ping Fang
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hoon-Ki Min
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Ashley C Wood
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Ross R Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Fu JF, Juttukonda MR, Garimella A, Salvatore AN, Lois C, Ranasinghe A, Efthimiou N, Sari H, Aye W, Guehl NJ, El Fakhri G, Johnson KA, Dickerson BC, Izquierdo-Garcia D, Catana C, Price JC. [ 18F]MK-6240 Radioligand Delivery Indices as Surrogates of Cerebral Perfusion: Bias and Correlation Against [ 15O]Water. J Nucl Med 2025; 66:410-417. [PMID: 39947916 PMCID: PMC11876731 DOI: 10.2967/jnumed.124.268701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/06/2025] [Indexed: 03/05/2025] Open
Abstract
[18F]MK-6240 PET (where MK-6240 is 6-(fluoro)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine) is used to assess in vivo tau deposition across the Alzheimer disease (AD) spectrum. We aimed to quantify the associations and bias of early-frame [18F]MK-6240 PET as surrogates for cerebral perfusion against gold standard [15O]water PET and the potential impact of cerebral perfusion on [18F]MK-6240 tau quantification across aging and the AD spectrum. Methods: Fourteen cognitively normal (CN, 4 young CN and 10 old CN) and 3 AD participants underwent dynamic [18F]MK-6240 PET, with 9 undergoing arterial sampling. A subset (n = 11) underwent [15O]water PET. [18F]MK-6240 perfusion indices were estimated as radiotracer delivery indices K 1 (using 2-tissue-compartment models), and relative perfusion indices were estimated as R1 (using compartmental and reference tissue models, cerebellar gray matter reference region) and early-frame SUV ratio (0-3 min). [15O]water K 1 and R1 were estimated using 1-tissue-compartment models). [18F]MK-6240 tau burden was estimated using distribution volume ratio and SUV ratio at 90-110 min. Spearman correlations, linear mixed-effect models, and Bland-Altman analyses examined relationships between [18F]MK-6240 perfusion indices against [15O]water and between estimates of perfusion and tau burden in tau-relevant regions. The impact of partial-volume correction was examined. Results: Significant correlations were observed between [18F]MK-6240 K 1 and [15O]water K 1 (ρ = 0.57); However, [18F]MK-6240 K 1 underestimated [15O]water K 1 by up to 50%, with a strong negative proportional bias. Significant correlations were observed between [18F]MK-6240 relative perfusion and [15O]water R1 (ρ > 0.84), with minimal bias. In 2 AD participants, significant correlations were observed between perfusion and [18F]MK-6240 retention. Applying partial-volume correction did not significantly impact the correlations or improve the underestimations in [18F]MK-6240 K 1 Conclusion: Using head-to-head [18F]MK-6240 and [15O]water data, we showed that [18F]MK-6240 exhibited a relatively low extraction fraction, leading to underestimation of cerebral perfusion. Our results provide further support for [18F]MK-6240 R1 as a reliable estimate of relative cerebral perfusion, with strong associations and minimal bias compared with [15O]water. In addition, lower perfusion may be associated with higher [18F]MK-6240 retention in tau-relevant regions in AD. These findings further support the use of dynamic [18F]MK-6240 in dual-imaging assessments of tau burden and vascular health.
Collapse
Affiliation(s)
- Jessie Fanglu Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Meher R Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Arun Garimella
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew N Salvatore
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina Lois
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Anthony Ranasinghe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nikos Efthimiou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hasan Sari
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - William Aye
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- New Zealand Brain Research Institute, Christchurch Central City, Canterbury, New Zealand; and
| | - Nicolas J Guehl
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Keith A Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bradford C Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julie C Price
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
3
|
Rea Reyes RE, Cody KA, Wilson RE, Zetterberg H, Chin NA, Jonaitis EM, Bahr M, Mandel O, Wintlend M, Bendlin BB, Okonkwo OC, Clark LR, Zammit M, Asthana S, Christian BT, Betthauser TJ, Eisenmenger L, Langhough RE, Johnson SC. Visual read of [F-18]florquinitau PET that includes and extends beyond the mesial temporal lobe is associated with increased plasma pTau217 and cognitive decline in a cohort that is enriched with risk for Alzheimer's disease. Alzheimers Dement 2025; 21:e14406. [PMID: 39560002 PMCID: PMC11848396 DOI: 10.1002/alz.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION Patterns of signal from tau positron emission tomography (tau-PET) confined to the medial temporal lobe (MTL) or extended into the neocortex may be relevant for Alzheimer's disease (AD) research if they are linked to differential biomarker levels and cognitive decline. METHODS Visual assessment of Tau-PET [F-18]florquinitau (FQT) exams from 728 initially non-demented older adults yielded four uptake groups: tau-negative (T-), MTL-only (T+MTL), neocortex-only (T+Neo), or both (T+MTL&Neo). Mixed effects models assessed group differences in retrospective cognitive and plasma pTau217 trajectories. RESULTS T+MTL&Neo was the most common T+ group (n = 97; 93% A+) and exhibited the sharpest worsening in cognitive and pTau217 trajectories before tau PET. DISCUSSION The T+MTL&Neo category represents an intermediate to advanced stage of AD preceded by rising ptau217 and progressive cognitive decline. The pTau217 finding suggests that A+, T+ in MTL or neocortex could represent early AD stages, with a higher likelihood of progressing to more advanced stages. HIGHLIGHTS Visual assessments of Tau-PET FQT revealed four distinct uptake groups: tau-negative (T-), MTL-only (T+MTL), neocortex-only (T+Neo), or both (T+MTL&Neo). Amyloid positive participants in the T+MTL and T+MTL&Neo categories showed a retrospectively faster decline in their cognitive trajectories, and a sharper increase in pTau217 levels in plasma, compared to T-. The T+MTL&Neo group displayed sharper trajectories compared with the other Tau positive groups in both their cognitive scores and pTau217 plasma levels. Our results suggest that participants with Tau present in both MTL and neocortex represent an intermediate to advanced stage of AD, whereas participants with signals confined to either MTL or neocortex could represent earlier AD stages.
Collapse
Affiliation(s)
- Ramiro Eduardo Rea Reyes
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Karly A. Cody
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of Neurology and Neurological SciencesStanford UniversityPalo AltoCaliforniaUSA
| | - Rachael E. Wilson
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Henrik Zetterberg
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalGothenburgSweden
- Department of Neurodegenerative DiseaseUCL Institute of Neurology, Queen SquareLondonUK
- UK Dementia Research Institute at UCLLondonUK
- Hong Kong Center for Neurodegenerative DiseasesClear Water Bay, Science ParkHong KongChina
| | - Nathaniel A. Chin
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Erin M. Jonaitis
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Melissa Bahr
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Olivia Mandel
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Madilynn Wintlend
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Barbara B. Bendlin
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Lindsay R. Clark
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Matt Zammit
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Bradley T. Christian
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Tobey J. Betthauser
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Laura Eisenmenger
- Department of RadiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Rebecca E. Langhough
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Wisconsin Alzheimer's InstituteUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
4
|
Vanderlinden G, Koole M, Michiels L, Lemmens R, Vandenbulcke M, Van Laere K. Longitudinal synaptic loss versus tau Braak staging in amnestic mild cognitive impairment. Alzheimers Dement 2025; 21:e14412. [PMID: 39732507 PMCID: PMC11848342 DOI: 10.1002/alz.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 12/30/2024]
Abstract
INTRODUCTION The longitudinal progression of synaptic loss in Alzheimer's disease (AD) and how it is affected by tau pathology remains poorly understood. METHODS Thirty patients with amnestic mild cognitive impairment (aMCI) and 26 healthy controls underwent cognitive evaluations and tau, synaptic vesicle protein 2A (SV2A), and amyloid positron emission tomography. Twenty-one aMCI underwent 2-year follow-up (FU) investigations. RESULTS Tau levels in aMCI increased longitudinally in Braak regions III through VI but not in Braak regions I and II. SV2A decreased longitudinally in all Braak regions in aMCI. Baseline tau was negatively associated with longitudinal SV2A loss in early Braak regions and with SV2A at FU across regions. Baseline tau and longitudinal change in SV2A were associated with longitudinal cognitive decline. DISCUSSION Tau accumulation reaches a plateau in early Braak regions already in the aMCI stage of AD. In early Braak regions, the association between baseline tau and longitudinal SV2A loss might reflect synaptic dysfunction caused by tau pathology. HIGHLIGHTS Tau accumulation reached a plateau in early Braak regions in amnestic mild cognitive impairment (aMCI) patients. aMCI patients show widespread longitudinal decrease in synaptic vesicle protein 2A (SV2A) over 2 years. Baseline tau was predictive for longitudinal SV2A loss. The tau-SV2A relation showed individual variability and was negative across patients. Baseline tau and longitudinal SV2A change were associated with change in cognition.
Collapse
Affiliation(s)
- Greet Vanderlinden
- Nuclear Medicine and Molecular ImagingImaging and PathologyKU LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Michel Koole
- Nuclear Medicine and Molecular ImagingImaging and PathologyKU LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Laura Michiels
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Department of NeurologyUniversity Hospitals UZ LeuvenLeuvenBelgium
- VIBCenter for Brain & Disease ResearchLaboratory of NeurobiologyLeuvenBelgium
- Department of NeurosciencesKU LeuvenLeuvenBelgium
| | - Robin Lemmens
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Department of NeurologyUniversity Hospitals UZ LeuvenLeuvenBelgium
- VIBCenter for Brain & Disease ResearchLaboratory of NeurobiologyLeuvenBelgium
- Department of NeurosciencesKU LeuvenLeuvenBelgium
| | - Mathieu Vandenbulcke
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Department of Geriatric PsychiatryUniversity Hospitals UZ LeuvenLeuvenBelgium
- NeuropsychiatryResearch Group Psychiatry, KU LeuvenLeuvenBelgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular ImagingImaging and PathologyKU LeuvenLeuvenBelgium
- Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Division of Nuclear MedicineUniversity Hospitals UZ LeuvenLeuvenBelgium
| |
Collapse
|
5
|
Wongso H, Harada R, Furumoto S. Current Progress and Future Directions in Non-Alzheimer's Disease Tau PET Tracers. ACS Chem Neurosci 2025; 16:111-127. [PMID: 39762194 DOI: 10.1021/acschemneuro.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Alzheimer's disease (AD) and non-AD tauopathies are dominant public health issues driven by several factors, especially in the aging population. The discovery of first-generation radiotracers, including [18F]FDDNP, [11C]PBB3, [18F]flortaucipir, and the [18F]THK series, for the in vivo detection of tauopathies has marked a significant breakthrough in the fields of neuroscience and radiopharmaceuticals, creating a robust new category of labeled compounds: tau positron emission tomography (PET) tracers. Subsequently, other tau PET tracers with improved binding properties have been developed using various chemical scaffolds to target the three-repeat/four-repeat (3R/4R) tau folds in AD. In 2020, [18F]flortaucipir was approved by the U.S. Food and Drug Administration for PET imaging of tau pathology in adult patients with cognitive deficits undergoing evaluation for AD. Despite remarkable progress in the development of AD tau PET tracers, imaging agents for rare non-AD tauopathies (4R tauopathies [predominantly expressing a 4R tau isoform], involved in progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, and globular glial tauopathy, and 3R tauopathies [predominantly expressing a 3R tau isoform], such as Pick's disease) remain substantially underdeveloped. In this review, we discuss recent progress in tau PET tracer development, with particular emphasis on clinically validated tracers for AD and their potential use for non-AD tauopathies. Additionally, we highlight the critical need for further development of tau PET tracers specifically designed for non-AD tauopathies, an area that remains significantly underexplored despite its importance in advancing the understanding and diagnosis of these disorders.
Collapse
Affiliation(s)
- Hendris Wongso
- Research Center for Accelerator and Radioisotope Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Puspiptek, Banten 15314, Indonesia
| | - Ryuichi Harada
- Research Center for Accelerator and Radioisotope Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
- Division of Brain Science, Department of Aging Research and Geriatrics Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi 980-8575, Japan
| | - Shozo Furumoto
- Research Center for Accelerator and Radioisotope Science, Tohoku University, Sendai, Miyagi 980-0845, Japan
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
6
|
Kumar R, Waisberg E, Ong J, Paladugu P, Amiri D, Saintyl J, Yelamanchi J, Nahouraii R, Jagadeesan R, Tavakkoli A. Artificial Intelligence-Based Methodologies for Early Diagnostic Precision and Personalized Therapeutic Strategies in Neuro-Ophthalmic and Neurodegenerative Pathologies. Brain Sci 2024; 14:1266. [PMID: 39766465 PMCID: PMC11674895 DOI: 10.3390/brainsci14121266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
Advancements in neuroimaging, particularly diffusion magnetic resonance imaging (MRI) techniques and molecular imaging with positron emission tomography (PET), have significantly enhanced the early detection of biomarkers in neurodegenerative and neuro-ophthalmic disorders. These include Alzheimer's disease, Parkinson's disease, multiple sclerosis, neuromyelitis optica, and myelin oligodendrocyte glycoprotein antibody disease. This review highlights the transformative role of advanced diffusion MRI techniques-Neurite Orientation Dispersion and Density Imaging and Diffusion Kurtosis Imaging-in identifying subtle microstructural changes in the brain and visual pathways that precede clinical symptoms. When integrated with artificial intelligence (AI) algorithms, these techniques achieve unprecedented diagnostic precision, facilitating early detection of neurodegeneration and inflammation. Additionally, next-generation PET tracers targeting misfolded proteins, such as tau and alpha-synuclein, along with inflammatory markers, enhance the visualization and quantification of pathological processes in vivo. Deep learning models, including convolutional neural networks and multimodal transformers, further improve diagnostic accuracy by integrating multimodal imaging data and predicting disease progression. Despite challenges such as technical variability, data privacy concerns, and regulatory barriers, the potential of AI-enhanced neuroimaging to revolutionize early diagnosis and personalized treatment in neurodegenerative and neuro-ophthalmic disorders is immense. This review underscores the importance of ongoing efforts to validate, standardize, and implement these technologies to maximize their clinical impact.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA; (R.K.); (J.S.)
| | - Ethan Waisberg
- Department of Clinical Neurosciences, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK;
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, 1000 Wall St, Ann Arbor, MI 48105, USA
| | - Phani Paladugu
- Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut St, Philadelphia, PA 19107, USA;
- Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Dylan Amiri
- Department of Biology, University of Miami, 1301 Memorial Dr, Coral Gables, FL 33146, USA;
- Mecklenburg Neurology Group, 3541 Randolph Rd #301, Charlotte, NC 28211, USA;
| | - Jeremy Saintyl
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA; (R.K.); (J.S.)
| | - Jahnavi Yelamanchi
- Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, USA;
| | - Robert Nahouraii
- Mecklenburg Neurology Group, 3541 Randolph Rd #301, Charlotte, NC 28211, USA;
| | - Ram Jagadeesan
- Whiting School of Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA;
| | - Alireza Tavakkoli
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, NV 89557, USA;
| |
Collapse
|
7
|
Kunach P, Vaquer-Alicea J, Smith MS, Monistrol J, Hopewell R, Moquin L, Therriault J, Tissot C, Rahmouni N, Massarweh G, Soucy JP, Guiot MC, Shoichet BK, Rosa-Neto P, Diamond MI, Shahmoradian SH. Cryo-EM structure of Alzheimer's disease tau filaments with PET ligand MK-6240. Nat Commun 2024; 15:8497. [PMID: 39353896 PMCID: PMC11445244 DOI: 10.1038/s41467-024-52265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Positron Emission Tomography (PET) ligands have advanced Alzheimer's disease (AD) diagnosis and treatment. Using autoradiography and cryo-EM, we identify AD brain tissue with elevated tau burden, purify filaments, and determine the structure of second-generation high avidity PET ligand MK-6240 at 2.31 Å resolution, which bound at a 1:1 ratio within the cleft of tau paired-helical filament (PHF), engaging with glutamine 351, lysine 353, and isoleucine 360. This information elucidates the basis of MK-6240 PET in quantifying PHF deposits in AD and may facilitate the structure-based design of superior ligands against tau amyloids.
Collapse
Affiliation(s)
- Peter Kunach
- Department of Neurology, McGill University, Montreal, QC, Canada
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, Dallas, TX, US
| | - Jaime Vaquer-Alicea
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, Dallas, TX, US
| | - Matthew S Smith
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, US
- Program of Biophysics, UCSF, San Francisco, CA, US
| | - Jim Monistrol
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, Dallas, TX, US
| | | | - Luc Moquin
- Montreal Neurological Institute, Montreal, QC, Canada
| | | | - Cecile Tissot
- Department of Neurology, McGill University, Montreal, QC, Canada
| | - Nesrine Rahmouni
- Department of Neurology, McGill University, Montreal, QC, Canada
| | | | | | - Marie-Christine Guiot
- Department of Neurology, McGill University, Montreal, QC, Canada
- Montreal Neurological Institute, Montreal, QC, Canada
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, US
| | - Pedro Rosa-Neto
- Department of Neurology, McGill University, Montreal, QC, Canada.
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, Dallas, TX, US.
| | - Sarah H Shahmoradian
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, Dallas, TX, US.
| |
Collapse
|
8
|
Simon SS, Varangis E, Lee S, Gu Y, Gazes Y, Razlighi QR, Habeck C, Stern Y. In vivo tau is associated with change in memory and processing speed, but not reasoning, in cognitively unimpaired older adults. Neurobiol Aging 2024; 133:28-38. [PMID: 38376885 PMCID: PMC10879688 DOI: 10.1016/j.neurobiolaging.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/30/2023] [Accepted: 10/01/2023] [Indexed: 02/21/2024]
Abstract
The relationship between tau deposition and cognitive decline in cognitively healthy older adults is still unclear. The tau PET tracer 18F-MK-6240 has shown favorable imaging characteristics to identify early tau deposition in aging. We evaluated the relationship between in vivo tau levels (18F-MK-6240) and retrospective cognitive change over 5 years in episodic memory, processing speed, and reasoning. For tau quantification, a set of regions of interest (ROIs) was selected a priori based on previous literature: (1) total-ROI comprising selected areas, (2) medial temporal lobe-ROI, and (3) lateral temporal lobe-ROI and cingulate/parietal lobe-ROI. Higher tau burden in most ROIs was associated with a steeper decline in memory and speed. There were no associations between tau and reasoning change. The novelty of this finding is that tau burden may affect not only episodic memory, a well-established finding but also processing speed. Our finding reinforces the notion that early tau deposition in areas related to Alzheimer's disease is associated with cognitive decline in cognitively unimpaired individuals, even in a sample with low amyloid-β pathology.
Collapse
Affiliation(s)
- Sharon Sanz Simon
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Eleanna Varangis
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA; Concussion Center, University of Michigan, Ann Arbor, MI, USA
| | - Seonjoo Lee
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Yian Gu
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Epidemiology, Joseph P. Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Yunglin Gazes
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | | | - Christian Habeck
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yaakov Stern
- Cognitive Neuroscience Division, Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
9
|
Wang Y, Zhang Y, Yu E. Targeted examination of amyloid beta and tau protein accumulation via positron emission tomography for the differential diagnosis of Alzheimer's disease based on the A/T(N) research framework. Clin Neurol Neurosurg 2024; 236:108071. [PMID: 38043158 DOI: 10.1016/j.clineuro.2023.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases among the older population. Its main pathological features include the abnormal deposition of extracellular amyloid-β plaques and the intracellular neurofibrillary tangles of tau proteins. Its clinical presentation is complex. This review introduces the pathological processes in AD and other common neurodegenerative diseases. It then discusses the positron emission tomography (PET) probes that target amyloid-β plaques and tau proteins for diagnosing AD. According to the A/T(N) research framework, combined targeted amyloid-β and tau protein detection via PET to further improve the diagnostic accuracy of AD. In particular, the properties of the 18F-flortaucipir and 18F-MK6240 tracers-may be more beneficial in helping to differentiate AD from other common neurodegenerative diseases, such as dementia with Lewy bodies, Parkinson's disease dementia, and frontotemporal dementia. Furthermore, the A/T(N) research framework should be used as the clinical diagnosis model of AD in the future.
Collapse
Affiliation(s)
- Ye Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Psychiatry, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, China
| | - Yuhan Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Enyan Yu
- Department of Psychiatry, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), 310022, China.
| |
Collapse
|
10
|
Rani N, Alm KH, Corona-Long CA, Speck CL, Soldan A, Pettigrew C, Zhu Y, Albert M, Bakker A. Tau PET burden in Brodmann areas 35 and 36 is associated with individual differences in cognition in non-demented older adults. Front Aging Neurosci 2023; 15:1272946. [PMID: 38161595 PMCID: PMC10757623 DOI: 10.3389/fnagi.2023.1272946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The accumulation of neurofibrillary tau tangles, a neuropathological hallmark of Alzheimer's disease (AD), occurs in medial temporal lobe (MTL) regions early in the disease process, with some of the earliest deposits localized to subregions of the entorhinal cortex. Although functional specialization of entorhinal cortex subregions has been reported, few studies have considered functional associations with localized tau accumulation. Methods In this study, stepwise linear regressions were used to examine the contributions of regional tau burden in specific MTL subregions, as measured by 18F-MK6240 PET, to individual variability in cognition. Dependent measures of interest included the Clinical Dementia Rating Sum of Boxes (CDR-SB), Mini Mental State Examination (MMSE), and composite scores of delayed episodic memory and language. Other model variables included age, sex, education, APOE4 status, and global amyloid burden, indexed by 11C-PiB. Results Tau burden in right Brodmann area 35 (BA35), left and right Brodmann area 36 (BA36), and age each uniquely contributed to the proportion of explained variance in CDR-SB scores, while right BA36 and age were also significant predictors of MMSE scores, and right BA36 was significantly associated with delayed episodic memory performance. Tau burden in both left and right BA36, along with education, uniquely contributed to the proportion of explained variance in language composite scores. Importantly, the addition of more inclusive ROIs, encompassing less granular segmentation of the entorhinal cortex, did not significantly contribute to explained variance in cognition across any of the models. Discussion These findings suggest that the ability to quantify tau burden in more refined MTL subregions may better account for individual differences in cognition, which may improve the identification of non-demented older adults who are on a trajectory of decline due to AD.
Collapse
Affiliation(s)
- Nisha Rani
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kylie H. Alm
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Caitlin A. Corona-Long
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Caroline L. Speck
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Corinne Pettigrew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yuxin Zhu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Shulman M, Kong J, O'Gorman J, Ratti E, Rajagovindan R, Viollet L, Huang E, Sharma S, Racine AM, Czerkowicz J, Graham D, Li Y, Hering H, Haeberlein SB. TANGO: a placebo-controlled randomized phase 2 study of efficacy and safety of the anti-tau monoclonal antibody gosuranemab in early Alzheimer's disease. NATURE AGING 2023; 3:1591-1601. [PMID: 38012285 PMCID: PMC10724064 DOI: 10.1038/s43587-023-00523-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2023]
Abstract
In Alzheimer's disease, the spread of aberrantly phosphorylated tau is an important criterion in the Braak staging of disease severity and correlates with disease symptomatology. Here, we report the results of TANGO ( NCT03352557 ), a randomized, double-blind, placebo-controlled, parallel-group and multiple-dose long-term trial of gosuranemab-a monoclonal antibody to N-terminal tau-in patients with early Alzheimer's disease. The primary objective was to assess the safety and tolerability of gosuranemab compared to placebo. The secondary objectives were to assess the efficacy of multiple doses of gosuranemab in slowing cognitive and functional impairment (using the Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) scores at week 78) and evaluate the immunogenicity of gosuranemab (using the incidence of anti-gosuranemab antibody responses). Participants were randomized (n = 654); received (n = 650) low-dose (125 mg once every 4 weeks (q4w), n = 58; 375 mg q12w, n = 58), intermediate-dose (600 mg q4w, n = 106) or high-dose (2,000 mg q4w, n = 214) gosuranemab or placebo (q4w, n = 214) intravenously for 78 weeks; and assigned to cerebrospinal fluid (n = 327) and/or tau positron emission tomography (n = 357) biomarker substudies. Gosuranemab had an acceptable safety profile and was generally well tolerated (incidence of serious adverse events: placebo, 12.1%; low dose, 10.3%; intermediate dose, 12.3%; high dose, 11.7%). The incidence of treatment-emergent gosuranemab antibody responses was low at all time points. No significant effects were identified in cognitive and functional tests as no dose resulted in a favorable change from the baseline CDR-SB score at week 78 compared to placebo control (adjusted mean change: placebo, 1.85; low dose, 2.20; intermediate dose, 2.24; high dose, 1.85). At week 76, all doses caused significant (P < 0.0001) reductions in the cerebrospinal fluid levels of unbound N-terminal tau compared to placebo.
Collapse
Affiliation(s)
| | | | | | - Elena Ratti
- Biogen, Cambridge, MA, USA
- Takeda Pharmaceuticals, Cambridge, MA, USA
| | | | - Louis Viollet
- Biogen, Cambridge, MA, USA
- Moderna, Cambridge, MA, USA
| | | | | | - Annie M Racine
- Biogen, Cambridge, MA, USA
- Alexion, AstraZeneca Rare Disease, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
12
|
Ding J, Shen C, Wang Z, Yang Y, El Fakhri G, Lu J, Liang D, Zheng H, Zhou Y, Sun T. Tau-PET abnormality as a biomarker for Alzheimer's disease staging and early detection: a topological perspective. Cereb Cortex 2023; 33:10649-10659. [PMID: 37653600 DOI: 10.1093/cercor/bhad312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Alzheimer's disease can be detected early through biomarkers such as tau positron emission tomography (PET) imaging, which shows abnormal protein accumulations in the brain. The standardized uptake value ratio (SUVR) is often used to quantify tau-PET imaging, but topological information from multiple brain regions is also linked to tau pathology. Here a new method was developed to investigate the correlations between brain regions using subject-level tau networks. Participants with cognitive normal (74), early mild cognitive impairment (35), late mild cognitive impairment (32), and Alzheimer's disease (40) were included. The abnormality network from each scan was constructed to extract topological features, and 7 functional clusters were further analyzed for connectivity strengths. Results showed that the proposed method performed better than conventional SUVR measures for disease staging and prodromal sign detection. For example, when to differ healthy subjects with and without amyloid deposition, topological biomarker is significant with P < 0.01, SUVR is not with P > 0.05. Functionally significant clusters, i.e. medial temporal lobe, default mode network, and visual-related regions, were identified as critical hubs vulnerable to early disease conversion before mild cognitive impairment. These findings were replicated in an independent data cohort, demonstrating the potential to monitor the early sign and progression of Alzheimer's disease from a topological perspective for individual.
Collapse
Affiliation(s)
- Jie Ding
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 100864, People's Republic of China
| | - Chushu Shen
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 100864, People's Republic of China
| | - Zhenguo Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 100864, People's Republic of China
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 100864, People's Republic of China
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 100864, People's Republic of China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 100864, People's Republic of China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201807, People's Republic of China
- School of Biomedical Engineering, Shanghai Tech University, Shanghai 201210, People's Republic of China
| | - Tao Sun
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 100864, People's Republic of China
- United Imaging Research Institute of Innovative Medical Equipment, Shenzhen 518055, People's Republic of China
| |
Collapse
|
13
|
Kunach P, Vaquer-Alicea J, Smith MS, Hopewell R, Monistrol J, Moquin L, Therriault J, Tissot C, Rahmouni N, Massarweh G, Soucy JP, Guiot MC, Shoichet BK, Rosa-Neto P, Diamond MI, Shahmoradian SH. Cryo-EM structure of Alzheimer's disease tau filaments with PET ligand MK-6240. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.558671. [PMID: 37790438 PMCID: PMC10542181 DOI: 10.1101/2023.09.22.558671] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Positron Emission Tomography (PET) ligands have advanced Alzheimer's disease (AD) diagnosis and treatment. Using autoradiography and cryo-EM, we identified AD brain tissue with elevated tau burden, purified filaments, and determined the structure of second-generation high avidity PET ligand MK-6240 at 2.31 Å resolution, which bound at a 1:1 ratio within the cleft of tau paired-helical filament (PHF), engaging with glutamine 351, lysine K353, and isoleucine 360. This information elucidates the basis of MK-6240 PET in quantifying PHF deposits in AD and may facilitate the structure-based design of superior ligands against tau amyloids.
Collapse
Affiliation(s)
- Peter Kunach
- Department of Neurology, McGill University, Montreal, Quebec, Canada
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Jaime Vaquer-Alicea
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Matthew S. Smith
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, United States
- Program of Biophysics, UCSF, San Francisco, CA, United States
| | | | - Jim Monistrol
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Luc Moquin
- Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Joseph Therriault
- Department of Neurology, McGill University, Montreal, Quebec, Canada
| | - Cecile Tissot
- Department of Neurology, McGill University, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- Department of Neurology, McGill University, Montreal, Quebec, Canada
| | | | | | - Marie-Christine Guiot
- Department of Neurology, McGill University, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, United States
| | - Pedro Rosa-Neto
- Department of Neurology, McGill University, Montreal, Quebec, Canada
| | - Marc I. Diamond
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, Dallas, TX, United States
| | - Sarah H. Shahmoradian
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, Dallas, TX, United States
| |
Collapse
|
14
|
Marik J, Rich S, Deshmukh G, Zhang D, Tinianow J, Cai J, Wong S, Bobba S, DeMent K, Liu N, Halladay J, Sanabria-Bohórquez S, Cheruzel L, Khojasteh C. GTP1 metabolic stability assessment: A study of the tau PET tracer [ 18F]GTP1. Nucl Med Biol 2023; 124-125:108386. [PMID: 37699300 DOI: 10.1016/j.nucmedbio.2023.108386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
Tau PET imaging using the tau specific PET tracer [18F]GTP1 has been and is part of therapeutic trials in Alzheimer's disease to monitor the accumulation of tau aggregates in the brain. Herein, we examined the metabolic processes of GTP1 and assessed the influence of smoking on its metabolism through in vitro assays. The tracer metabolic profile was assessed by incubating GTP1 with human liver microsomes (HLM) and human hepatocytes. Since smoking strongly stimulates the CYP1A2 enzyme activity, we incubated GTP1 with recombinant CYP1A2 to evaluate the role of the enzyme in tracer metabolism. It was found that GTP1 could form up to eleven oxidative metabolites with higher polarity than the parent. Only a small amount (2.6 % at 60 min) of a defluorinated metabolite was detected in HLM and human hepatocytes incubations highlighting the stability of GTP1 with respect to enzymatic defluorination. Moreover, the major GTP1 metabolites were not the product of CYP1A2 activity suggesting that smoking may not impact in vivo tracer metabolism and subsequently GTP1 brain kinetics.
Collapse
Affiliation(s)
- Jan Marik
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA.
| | - Sharyl Rich
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Gauri Deshmukh
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Donglu Zhang
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Jeff Tinianow
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Jingwei Cai
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Susan Wong
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Sudheer Bobba
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Kevin DeMent
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Ning Liu
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Jason Halladay
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Sandra Sanabria-Bohórquez
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Lionel Cheruzel
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| | - Cyrus Khojasteh
- Genentech Research and Early Development (gRED), Genentech Inc., 1 DNA way, South San Francisco, CA 94080, USA
| |
Collapse
|
15
|
Cools R, Kerkhofs K, Leitao RCF, Bormans G. Preclinical Evaluation of Novel PET Probes for Dementia. Semin Nucl Med 2023; 53:599-629. [PMID: 37149435 DOI: 10.1053/j.semnuclmed.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The development of novel PET imaging agents that selectively bind specific dementia-related targets can contribute significantly to accurate, differential and early diagnosis of dementia causing diseases and support the development of therapeutic agents. Consequently, in recent years there has been a growing body of literature describing the development and evaluation of potential new promising PET tracers for dementia. This review article provides a comprehensive overview of novel dementia PET probes under development, classified by their target, and pinpoints their preclinical evaluation pathway, typically involving in silico, in vitro and ex/in vivo evaluation. Specific target-associated challenges and pitfalls, requiring extensive and well-designed preclinical experimental evaluation assays to enable successful clinical translation and avoid shortcomings observed for previously developed 'well-established' dementia PET tracers are highlighted in this review.
Collapse
Affiliation(s)
- Romy Cools
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kobe Kerkhofs
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; NURA, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Renan C F Leitao
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
Wagatsuma K, Miwa K, Akamatsu G, Yamao T, Kamitaka Y, Sakurai M, Fujita N, Hanaoka K, Matsuda H, Ishii K. Toward standardization of tau PET imaging corresponding to various tau PET tracers: a multicenter phantom study. Ann Nucl Med 2023; 37:494-503. [PMID: 37243882 DOI: 10.1007/s12149-023-01847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
OBJECTIVE Tau positron emission tomography (PET) imaging is a recently developed non-invasive tool that can detect the density and extension of tau neurofibrillary tangles. Tau PET tracers have been validated to harmonize and accelerate their development and implementation in clinical practice. Whereas standard protocols including injected dose, uptake time, and duration have been determined for tau PET tracers, reconstruction parameters have not been standardized. The present study conducted phantom experiments based on tau pathology to standardize quantitative tau PET imaging parameters and optimize reconstruction conditions of PET scanners at four Japanese sites according to the results of phantom experiments. METHODS The activity of 4.0 and 2.0 kBq/mL for Hoffman 3D brain and cylindrical phantoms, respectively, was estimated from published studies of brain activity using [18F]flortaucipir, [18F]THK5351, and [18F]MK6240. We developed an original tau-specific volume of interest template for the brain based on pathophysiological tau distribution in the brain defined as Braak stages. We acquired brain and cylindrical phantom images using four PET scanners. Iteration numbers were determined as contrast and recover coefficients (RCs) in gray (GM) and white (WM) matter, and the magnitude of the Gaussian filter was determined from image noise. RESULTS Contrast and RC converged at ≥ 4 iterations, the error rates of RC for GM and WM were < 15% and 1%, respectively, and noise was < 10% in Gaussian filters of 2-4 mm in images acquired using the four scanners. Optimizing the reconstruction conditions for phantom tau PET images acquired by each scanner improved contrast and image noise. CONCLUSIONS The phantom activity was comprehensive for first- and second-generation tau PET tracers. The mid-range activity that we determined could be applied to later tau PET tracers. We propose an analytical tau-specific VOI template based on tau pathophysiological changes in patients with AD to standardize tau PET imaging. Phantom images reconstructed under the optimized conditions for tau PET imaging achieved excellent image quality and quantitative accuracy.
Collapse
Affiliation(s)
- Kei Wagatsuma
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-Ku, Sagamihara, Kanagawa, 252-0373, Japan.
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan.
| | - Kenta Miwa
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Fukushima City, Fukushima, 960-1295, Japan
| | - Go Akamatsu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University, Fukushima City, Fukushima, 960-1295, Japan
| | - Yuto Kamitaka
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Minoru Sakurai
- Clinical Imaging Center for Healthcare, Nippon Medical School, 1-12-15, Sendagi, Bunkyo-Ku, Tokyo, 113-0022, Japan
| | - Naotoshi Fujita
- Department of Radiological Technology, Nagoya University Hospital, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
| | - Kohei Hanaoka
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University, 377-2 Onohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroshi Matsuda
- Department of Biofunctional Imaging, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima, 960-1295, Japan
- Drug Discovery and Cyclotron Research Center, Southern Tohoku Research Institute for Neuroscience, 7-115, Yatsuyamada, Koriyama, 963-8052, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2, Sakae-Cho, Itabashi-Ku, Tokyo, 173-0015, Japan
| |
Collapse
|
17
|
Matsuda H, Yamao T. Tau positron emission tomography in patients with cognitive impairment and suspected Alzheimer's disease. Fukushima J Med Sci 2023; 69:85-93. [PMID: 37302841 PMCID: PMC10480511 DOI: 10.5387/fms.2023-08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Alzheimer's disease (AD) is diagnosed by the presence of both amyloid β and tau proteins. Recent advances in molecular PET imaging have made it possible to assess the accumulation of these proteins in the living brain. PET ligands have been developed that bind to 3R/4R tau in AD, but not to 3R tau or 4R tau alone. Of the first-generation PET ligands, 18F-flortaucipir has recently been approved by the Food and Drug Administration. Several second-generation PET probes with less off-target binding have been developed and are being applied clinically. Visual interpretation of tau PET should be based on neuropathological neurofibrillary tangle staging instead of a simple positive or negative classification. Four visual read classifications have been proposed: "no uptake," "medial temporal lobe (MTL) only," "MTL AND," and "outside MTL." As an adjunct to visual interpretation, quantitative analysis has been proposed using MRI-based native space FreeSurfer parcellations. The standardized uptake value ratio of the target area is measured using the cerebellar gray matter as a reference region. In the near future, the Centiloid scale of tau PET is expected to be used as a harmonized value for standardizing each analytical method or PET ligand used, similar to amyloid PET.
Collapse
Affiliation(s)
- Hiroshi Matsuda
- Department of Biofunctional Imaging, Fukushima Medical University
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University
| |
Collapse
|
18
|
Guehl NJ, Dhaynaut M, Hanseeuw BJ, Moon SH, Lois C, Thibault E, Fu JF, Price JC, Johnson KA, El Fakhri G, Normandin MD. Measurement of Cerebral Perfusion Indices from the Early Phase of [ 18F]MK6240 Dynamic Tau PET Imaging. J Nucl Med 2023; 64:968-975. [PMID: 36997330 PMCID: PMC10241011 DOI: 10.2967/jnumed.122.265072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 04/01/2023] Open
Abstract
6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]MK6240) has high affinity and selectivity for hyperphosphorylated tau and readily crosses the blood-brain barrier. This study investigated whether the early phase of [18F]MK6240 can be used to provide a surrogate index of cerebral perfusion. Methods: Forty-nine subjects who were cognitively normal (CN), had mild cognitive impairment (MCI), or had Alzheimer's disease (AD) underwent paired dynamic [18F]MK6240 and [11C]Pittsburgh compound B (PiB) PET, as well as structural MRI to obtain anatomic information. Arterial blood samples were collected in a subset of 24 subjects for [18F]MK6240 scans to derive metabolite-corrected arterial input functions. Regional time-activity curves were extracted using atlases available in the Montreal Neurologic Institute template space and using FreeSurfer. The early phase of brain time-activity curves was analyzed using a 1-tissue-compartment model to obtain a robust estimate of the rate of transfer from plasma to brain tissue, K 1 (mL⋅cm-3⋅min-1), and the simplified reference tissue model 2 was investigated for noninvasive estimation of the relative delivery rate, R 1 (unitless). A head-to-head comparison with R 1 derived from [11C]PiB scans was performed. Grouped differences in R 1 were evaluated among CN, MCI, and AD subjects. Results: Regional K 1 values suggested a relatively high extraction fraction. R 1 estimated noninvasively from simplified reference tissue model 2 agreed well with R 1 calculated indirectly from the blood-based compartment modeling (r = 0.99; mean difference, 0.024 ± 0.027), suggesting that robust estimates were obtained. R 1 measurements obtained with [18F]MK6240 correlated strongly and overall agreed well with those obtained from [11C]PiB (r = 0.93; mean difference, -0.001 ± 0.068). Statistically significant differences were observed in regional R 1 measurements among CN, MCI, and AD subjects, notably in the temporal and parietal cortices. Conclusion: Our results provide evidence that the early phase of [18F]MK6240 images may be used to derive a useful index of cerebral perfusion. The early and late phases of a [18F]MK6240 dynamic acquisition may thus offer complementary information about the pathophysiologic mechanisms of the disease.
Collapse
Affiliation(s)
- Nicolas J Guehl
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;
| | - Maeva Dhaynaut
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bernard J Hanseeuw
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium; and
| | - Sung-Hyun Moon
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina Lois
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Emma Thibault
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jessie Fanglu Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julie C Price
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keith A Johnson
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
Fu JF, Lois C, Sanchez J, Becker JA, Rubinstein ZB, Thibault E, Salvatore AN, Sari H, Farrell ME, Guehl NJ, Normandin MD, Fakhri GE, Johnson KA, Price JC. Kinetic evaluation and assessment of longitudinal changes in reference region and extracerebral [ 18F]MK-6240 PET uptake. J Cereb Blood Flow Metab 2023; 43:581-594. [PMID: 36420769 PMCID: PMC10063833 DOI: 10.1177/0271678x221142139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 11/25/2022]
Abstract
[18F]MK-6240 meningeal/extracerebral off-target binding may impact tau quantification. We examined the kinetics and longitudinal changes of extracerebral and reference regions. [18F]MK-6240 PET was performed in 24 cognitively-normal and eight cognitively-impaired subjects, with arterial samples in 13 subjects. Follow-up scans at 6.1 ± 0.5 (n = 25) and 13.3 ± 0.9 (n = 16) months were acquired. Extracerebral and reference region (cerebellar gray matter (CerGM)-based, cerebral white matter (WM), pons) uptake were evaluated using standardized uptake values (SUV90-110), spectral analysis, and distribution volume. Longitudinal changes in SUV90-110 were examined. The impact of reference region on target region outcomes, partial volume correction (PVC) and regional erosion were evaluated. Eroded WM and pons showed lower variability, lower extracerebral contamination, and lower longitudinal changes than CerGM-based regions. CerGM-based regions resulted larger cross-sectional effect sizes for group differentiation. Extracerebral signal was high in 50% of subjects and exhibited irreversible kinetics and nonsignificant longitudinal changes over one-year but was highly variable at subject-level. PVC resulted in higher variability in reference region uptake and longitudinal changes. Our results suggest that eroded CerGM may be preferred for cross-sectional, whilst eroded WM or pons may be preferred for longitudinal [18F]MK-6240 studies. For CerGM, erosion was necessary (preferred over PVC) to address the heterogenous nature of extracerebral signal.
Collapse
Affiliation(s)
- Jessie Fanglu Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Department of Radiology, Boston, MA, USA
| | - Cristina Lois
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Justin Sanchez
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - J Alex Becker
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Zoe B Rubinstein
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Emma Thibault
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew N Salvatore
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Hasan Sari
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Department of Radiology, Boston, MA, USA
| | | | - Nicolas J Guehl
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Marc D Normandin
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Georges El Fakhri
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Keith A Johnson
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Julie C Price
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Department of Radiology, Boston, MA, USA
| |
Collapse
|
20
|
Tissot C, Servaes S, Lussier FZ, Ferrari-Souza JP, Therriault J, Ferreira PCL, Bezgin G, Bellaver B, Leffa DT, Mathotaarachchi SS, Chamoun M, Stevenson J, Rahmouni N, Kang MS, Pallen V, Margherita-Poltronetti N, Wang YT, Fernandez-Arias J, Benedet AL, Zimmer ER, Soucy JP, Tudorascu DL, Cohen AD, Sharp M, Gauthier S, Massarweh G, Lopresti B, Klunk WE, Baker SL, Villemagne VL, Rosa-Neto P, Pascoal TA. The Association of Age-Related and Off-Target Retention with Longitudinal Quantification of [ 18F]MK6240 Tau PET in Target Regions. J Nucl Med 2023; 64:452-459. [PMID: 36396455 PMCID: PMC10071794 DOI: 10.2967/jnumed.122.264434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]MK6240) tau PET tracer quantifies the brain tau neurofibrillary tangle load in Alzheimer disease. The aims of our study were to test the stability of common reference region estimates in the cerebellum over time and across diagnoses and evaluate the effects of age-related and off-target retention on the longitudinal quantification of [18F]MK6240 in target regions. Methods: We assessed reference, target, age-related, and off-target regions in 125 individuals across the aging and Alzheimer disease spectrum with longitudinal [18F]MK6240 SUVs and SUV ratios (SUVRs) (mean ± SD, 2.25 ± 0.40 y of follow-up). We obtained SUVR from meninges, exhibiting frequent off-target retention with [18F]MK6240. Additionally, we compared tracer uptake between 37 cognitively unimpaired young (CUY) (mean age, 23.41 ± 3.33 y) and 27 cognitively unimpaired older (CU) adults (amyloid-β-negative and tau-negative, 58.50 ± 9.01 y) to identify possible nonvisually apparent, age-related signal. Two-tailed t testing and Pearson correlation testing were used to determine the difference between groups and associations between changes in region uptake, respectively. Results: Inferior cerebellar gray matter SUV did not differ on the basis of diagnosis and amyloid-β status, cross-sectionally and over time. [18F]MK6240 uptake significantly differed between CUY and CU adults in the putamen or pallidum (affecting ∼75% of the region) and in the Braak II region (affecting ∼35%). Changes in meningeal and putamen or pallidum SUVRs did not significantly differ from zero, nor did they vary across diagnostic groups. We did not observe significant correlations between longitudinal changes in age-related or meningeal off-target retention and changes in target regions, whereas changes in all target regions were strongly correlated. Conclusion: Inferior cerebellar gray matter was similar across diagnostic groups cross-sectionally and stable over time and thus was deemed a suitable reference region for quantification. Despite not being visually perceptible, [18F]MK6240 has age-related retention in subcortical regions, at a much lower magnitude but topographically colocalized with significant off-target signal of the first-generation tau tracers. The lack of correlation between changes in age-related or meningeal and target retention suggests little influence of possible off-target signals on longitudinal tracer quantification. Nevertheless, the age-related retention in the Braak II region needs to be further investigated. Future postmortem studies should elucidate the source of the newly reported age-related [18F]MK6240 signal, and in vivo studies should further explore its impact on tracer quantification.
Collapse
Affiliation(s)
- Cécile Tissot
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stijn Servaes
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Firoza Z Lussier
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - João Pedro Ferrari-Souza
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Graduate Program in Biological Sciences: Biochemistry, Porto Alegre, Brazil
| | - Joseph Therriault
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Pâmela C L Ferreira
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gleb Bezgin
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Bruna Bellaver
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Graduate Program in Biological Sciences: Biochemistry, Porto Alegre, Brazil
| | - Douglas Teixeira Leffa
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sulantha S Mathotaarachchi
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Mira Chamoun
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Jenna Stevenson
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Nesrine Rahmouni
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Min Su Kang
- Artificial Intelligence and Computational Neurosciences Lab, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- L.C. Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Pallen
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Nina Margherita-Poltronetti
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Yi-Ting Wang
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | - Jaime Fernandez-Arias
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
| | | | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Porto Alegre, Brazil
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Dana L Tudorascu
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Annie D Cohen
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Serge Gauthier
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
- Douglas Mental Health Institute, Montreal, Quebec, Canada
| | - Gassan Massarweh
- Department of Radiochemistry, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Brian Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - William E Klunk
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Victor L Villemagne
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Pedro Rosa-Neto
- McGill University, Montreal, Quebec, Canada
- McGill University Research Center for Studies in Aging, Montreal, Quebec, Canada
- Montreal Neurological Institute, Montreal, Quebec, Canada
- Douglas Mental Health Institute, Montreal, Quebec, Canada
| | - Tharick A Pascoal
- Departments of Psychiatry and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania;
| |
Collapse
|
21
|
Mohammadi Z, Alizadeh H, Marton J, Cumming P. The Sensitivity of Tau Tracers for the Discrimination of Alzheimer's Disease Patients and Healthy Controls by PET. Biomolecules 2023; 13:290. [PMID: 36830659 PMCID: PMC9953528 DOI: 10.3390/biom13020290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Hyperphosphorylated tau aggregates, also known as neurofibrillary tangles, are a hallmark neuropathological feature of Alzheimer's disease (AD). Molecular imaging of tau by positron emission tomography (PET) began with the development of [18F]FDDNP, an amyloid β tracer with off-target binding to tau, which obtained regional specificity through the differing distributions of amyloid β and tau in AD brains. A concerted search for more selective and affine tau PET tracers yielded compounds belonging to at least eight structural categories; 18F-flortaucipir, known variously as [18F]-T807, AV-1451, and Tauvid®, emerged as the first tau tracer approved by the American Food and Drug Administration. The various tau tracers differ concerning their selectivity over amyloid β, off-target binding at sites such as monoamine oxidase and neuromelanin, and degree of uptake in white matter. While there have been many reviews of molecular imaging of tau in AD and other conditions, there has been no systematic comparison of the fitness of the various tracers for discriminating between AD patient and healthy control (HC) groups. In this narrative review, we endeavored to compare the binding properties of the various tau tracers in vitro and the effect size (Cohen's d) for the contrast by PET between AD patients and age-matched HC groups. The available tracers all gave good discrimination, with Cohen's d generally in the range of two-three in culprit brain regions. Overall, Cohen's d was higher for AD patient groups with more severe illness. Second-generation tracers, while superior concerning off-target binding, do not have conspicuously higher sensitivity for the discrimination of AD and HC groups. We suppose that available pharmacophores may have converged on a maximal affinity for tau fibrils, which may limit the specific signal imparted in PET studies.
Collapse
Affiliation(s)
- Zohreh Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Hadi Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - János Marton
- ABX Advanced Biochemical Compounds Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Straße 10-14, D-01454 Radeberg, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Freiburgstraße 18, CH-3010 Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
22
|
Shimohama S, Tezuka T, Takahata K, Bun S, Tabuchi H, Seki M, Momota Y, Suzuki N, Morimoto A, Iwabuchi Y, Kubota M, Yamamoto Y, Sano Y, Shikimoto R, Funaki K, Mimura Y, Nishimoto Y, Ueda R, Jinzaki M, Nakahara J, Mimura M, Ito D. Impact of Amyloid and Tau PET on Changes in Diagnosis and Patient Management. Neurology 2023; 100:e264-e274. [PMID: 36175151 DOI: 10.1212/wnl.0000000000201389] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/26/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Previous studies have evaluated the diagnostic effect of amyloid PET in selected research cohorts. However, these studies did not assess the clinical impact of the combination of amyloid and tau PETs. Our objective was to evaluate the association of the combination of 2 PETs with changes in diagnosis, treatment, and management in a memory clinic cohort. METHODS All participants underwent amyloid [18F]florbetaben PET and tau PET using [18F]PI-2620 or [18F]Florzolotau, which are potentially useful for the diagnosis of non-Alzheimer disease (AD) tauopathies. Dementia specialists determined a pre- and post-PET diagnosis that existed in both a clinical syndrome (cognitive normal [CN], mild cognitive impairment [MCI], and dementia) and suspected etiology, with a confidence level. In addition, the dementia specialists determined patient treatment in terms of ancillary investigations and management. RESULTS Among 126 registered participants, 84.9% completed the study procedures and were included in the analysis (CN [n = 40], MCI [n = 25], AD [n = 20], and non-AD dementia [n = 22]). The etiologic diagnosis changed in 25.0% in the CN, 68.0% in the MCI, and 23.8% with dementia. Overall changes in management between pre- and post-PET occurred in 5.0% of CN, 52.0% of MCI, and 38.1% of dementia. Logistic regression analysis revealed that tau PET has stronger associations with change management than amyloid PET in all participants and dementia groups. DISCUSSION The combination of amyloid and tau PETs was associated with changes in management and diagnosis of MCI and dementia, and the second-generation tau PET has a strong impact on the changes in diagnosis and management in memory clinics. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that the combination of amyloid and tau PETs was associated with changes in management and diagnosis of MCI and dementia.
Collapse
Affiliation(s)
- Sho Shimohama
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Toshiki Tezuka
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Keisuke Takahata
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Shogyoku Bun
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Hajime Tabuchi
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Morinobu Seki
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Yuki Momota
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Natsumi Suzuki
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Ayaka Morimoto
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Yu Iwabuchi
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Masahito Kubota
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Yasuharu Yamamoto
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Yasunori Sano
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Ryo Shikimoto
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Kei Funaki
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Yu Mimura
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Yoshinori Nishimoto
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Ryo Ueda
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Masahiro Jinzaki
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Jin Nakahara
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Masaru Mimura
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan
| | - Daisuke Ito
- From the Departments of Neurology (S.S., T.T., M.S., M.K., Y.N., J.N.), Neuropsychiatry (T.K., S.B., H.T., Yuki Momota, N.S., A.M., Y.Y., Y.S., R.S., K.F., Yu Mimura, M.M.), Radiology (Y.I., M.J.), Physiology (D.I.), and Memory Center (D.I.), Keio University School of Medicine, Tokyo; Department of Functional Brain Imaging (T.K.), Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba; and Office of Radiation Technology (R.U.), Keio University Hospital, Tokyo, Japan.
| |
Collapse
|
23
|
Laferriere-Holloway TS, Rios A, Lu Y, Okoro CC, van Dam RM. A rapid and systematic approach for the optimization of radio thin-layer chromatography resolution. J Chromatogr A 2023; 1687:463656. [PMID: 36463649 PMCID: PMC9894532 DOI: 10.1016/j.chroma.2022.463656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Radiopharmaceutical analysis is limited by conventional methods. Radio-HPLC may be inaccurate for some compounds (e.g., 18F-radiopharmaceuticals) due to radionuclide sequester. Radio-TLC is simpler, faster, and detects all species but has limited resolution. Imaging-based readout of TLC plates (e.g., using Cerenkov luminescence imaging) can improve readout resolution, but the underlying chromatographic separation efficiency may be insufficient to resolve chemically similar species such as product and precursor-derived impurities. This study applies a systematic mobile phase optimization method, PRISMA, to improve radio-TLC resolution. The PRISMA method optimizes the mobile phase by selecting the correct solvent, optimizing solvent polarity, and optimizing composition. Without prior knowledge of impurities and by simply observing the separation resolution between a radiopharmaceutical and its nearest radioactive or non-radioactive impurities (observed via UV imaging) for different mobile phases, the PRISMA method enabled the development of high-resolution separation conditions for a wide range of 18F-radiopharmaceuticals ( [18F]PBR-06, [18F]FEPPA, [18F]Fallypride, [18F]FPEB, and [18F]FDOPA). Each optimization required a single batch of crude radiopharmaceutical and a few hours. Interestingly, the optimized TLC method provided greater accuracy (compared to other published TLC methods) in determining the product abundance of one radiopharmaceutical studied in more depth ( [18F]Fallypride) and was capable of resolving a comparable number of species as isocratic radio-HPLC. We used the PRISMA-optimized mobile phase for [18F]FPEB in combination with multi-lane radio-TLC techniques to evaluate reaction performance during high-throughput synthesis optimization of [18F]FPEB. The PRISMA methodology, in combination with high-resolution radio-TLC readout, enables a rapid and systematic approach to achieving high-resolution and accurate analysis of radiopharmaceuticals without the need for radio-HPLC.
Collapse
Affiliation(s)
- Travis S Laferriere-Holloway
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA.
| | - Alejandra Rios
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA
| | - Yingqing Lu
- Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA
| | - Chelsea C Okoro
- Institute for Society and Genetics, UCLA, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA
| | - R Michael van Dam
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Physics and Biology in Medicine Interdepartmental Graduate Program, UCLA, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Wang J, Jin C, Zhou J, Zhou R, Tian M, Lee HJ, Zhang H. PET molecular imaging for pathophysiological visualization in Alzheimer's disease. Eur J Nucl Med Mol Imaging 2023; 50:765-783. [PMID: 36372804 PMCID: PMC9852140 DOI: 10.1007/s00259-022-05999-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/09/2022] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia worldwide. The exact etiology of AD is unclear as yet, and no effective treatments are currently available, making AD a tremendous burden posed on the whole society. As AD is a multifaceted and heterogeneous disease, and most biomarkers are dynamic in the course of AD, a range of biomarkers should be established to evaluate the severity and prognosis. Positron emission tomography (PET) offers a great opportunity to visualize AD from diverse perspectives by using radiolabeled agents involved in various pathophysiological processes; PET imaging technique helps to explore the pathomechanisms of AD comprehensively and find out the most appropriate biomarker in each AD phase, leading to a better evaluation of the disease. In this review, we discuss the application of PET in the course of AD and summarized radiolabeled compounds with favorable imaging characteristics.
Collapse
Affiliation(s)
- Jing Wang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
| | - Chentao Jin
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Jinyun Zhou
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Rui Zhou
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China
| | - Mei Tian
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
| | - Hyeon Jeong Lee
- grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310014 Zhejiang China
| | - Hong Zhang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China ,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China ,grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310014 Zhejiang China ,grid.13402.340000 0004 1759 700XKey Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310014 Zhejiang China
| |
Collapse
|
25
|
Ohnishi A, Akamatsu G, Ikari Y, Nishida H, Shimizu K, Matsumoto K, Aita K, Sasaki M, Yamamoto Y, Yamane T, Senda M. Dosimetry and efficacy of a tau PET tracer [ 18F]MK-6240 in Japanese healthy elderly and patients with Alzheimer's disease. Ann Nucl Med 2023; 37:108-120. [PMID: 36411357 PMCID: PMC9902412 DOI: 10.1007/s12149-022-01808-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE A new tau PET tracer [18F]MK-6240 has been developed; however, its dosimetry and pharmacokinetics have been published only for a European population. This study investigated the safety, radiation dosimetry, pharmacokinetics and biodistribution of [18F]MK-6240 in Japanese elderly subjects. Also, the pattern and extent of brain retention of [18F]MK-6240 in Japanese healthy elderly subjects and patients with Alzheimer's disease (AD) were investigated. These Japanese results were compared with previous reports on non-Japanese. METHODS Three healthy elderly subjects and three AD patients were enrolled. Dynamic whole-body PET scans were acquired for up to 232 min after starting injection of [18F]MK-6240 (370.4 ± 27.0 MBq) for the former, while a dynamic brain scan was performed from 0 to 75 min post injection for the latter. For both groups, brain PET scans were conducted from 90 to 110 min post injection. Sequential venous blood sampling was performed to measure the radioactivity concentration in the whole blood and plasma as well as the percentages of parent [18F]MK-6240 and radioactive metabolites in plasma. Organ doses and effective doses were estimated using the OLINDA Ver.2 software. Standardized uptake value ratios (SUVRs) and distribution volume ratios (DVRs) by Logan reference tissue model (LRTM) were measured in eight brain regions using the cerebellar cortex as the reference. Blood tests, urine analysis, vital signs and electrocardiography were performed for safety assessments. RESULTS No adverse events were observed. The highest radiation doses were received by the gallbladder (257.7 ± 74.9 μGy/MBq) and the urinary bladder (127.3 ± 11.7 μGy/MBq). The effective dose was 26.8 ± 1.4 μSv/MBq. The parent form ([18F]MK-6240) was metabolized quickly and was less than 15% by 35 min post injection. While no obvious accumulation was found in the brain of healthy subjects, focal accumulation of [18F]MK-6240 was observed in the cerebral cortex of AD patients. Regional SUVRs of the focal lesions in AD patients increased gradually over time, and the difference of SUVRs between healthy subjects and AD patients became large and stable at 90 min after injection. High correlations of SUVR and DVR were observed (p < 0.01). CONCLUSION The findings supported safety and efficacy of [18F]MK-6240 as a tau PET tracer for Japanese populations. Even though the number of subjects was limited, the radiation dosimetry profiles, pharmacokinetics, and biodistribution of [18F]MK-6240 were consistent with those for non-Japanese populations. TRIAL REGISTRATION Japan Pharmaceutical Information Center ID, JapicCTI-194972.
Collapse
Affiliation(s)
- Akihito Ohnishi
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
- Department of Radiology, Kobe Red Cross Hospital, 1-3-1 Wakinohamakaigan-Dori, Chuo-Ku, Kobe, Hyogo, 651-0073, Japan
| | - Go Akamatsu
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Yasuhiko Ikari
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
- Department of Medical Physics and Engineering Course of Health Science, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-Shi, Osaka, 565-0871, Japan
| | - Hiroyuki Nishida
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Keiji Shimizu
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Keiichi Matsumoto
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
- Department of Radiological Technology, Kyoto College of Medical Science, 1-3 Imakita Oyamahigashi-Cho, Sonobe Nantan, Kyoto, 622-0041, Japan
| | - Kazuki Aita
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Masahiro Sasaki
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Yasuji Yamamoto
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
- Department of Biosignal Pathophysiology, Kobe University Graduate School of Medicine, 1-1 Rokkodai-Cho, Nada-Ku, Kobe, 657-8501, Japan
| | - Tomohiko Yamane
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan
| | - Michio Senda
- Department of Molecular Imaging Research, Kobe City Medical Center General Hospital, 2-1-1 Minatojima-Minamimachi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
26
|
Vanderlinden G, Ceccarini J, Vande Casteele T, Michiels L, Lemmens R, Triau E, Serdons K, Tournoy J, Koole M, Vandenbulcke M, Van Laere K. Spatial decrease of synaptic density in amnestic mild cognitive impairment follows the tau build-up pattern. Mol Psychiatry 2022; 27:4244-4251. [PMID: 35794185 DOI: 10.1038/s41380-022-01672-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
Next to amyloid and tau, synaptic loss is a key pathological hallmark in Alzheimer's disease, closely related to cognitive dysfunction and neurodegeneration. Tau is thought to cause synaptic loss, but this has not been experimentally verified in vivo. In a 2-year follow-up study, dual tracer PET-MR was performed in 12 amnestic MCI patients using 18F-MK-6240 for tau and 11C-UCB-J for SV2A as a proxy for synaptic density. Tau already accumulated in the neocortex at baseline with progression in Braak V/VI at follow-up. While synaptic loss was limited to limbic regions at baseline, it followed the specific tau pattern to stage IV/V regions two years later, indicating that tau spread might drive synaptic vulnerability. Moreover, synaptic density changes correlated to changes in cognitive function. This study shows for the first time in vivo that synaptic loss regionally follows tau accumulation after two years, providing a disease-modifying window of opportunity for (combined) tau-targeting therapies.
Collapse
Affiliation(s)
- Greet Vanderlinden
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium.
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium
| | - Thomas Vande Casteele
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Laura Michiels
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals UZ Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals UZ Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Eric Triau
- Private Practice Neurology, Leuven, Belgium
| | - Kim Serdons
- Department of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium
| | - Jos Tournoy
- Department of Geriatric Medicine, University Hospitals UZ Leuven, Leuven, Belgium.,Department of Public Health and Primary Care, Gerontology and Geriatrics, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Department of Old-Age Psychiatry, University Hospitals UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Imaging Pathology, KU Leuven, Leuven, Belgium.,Department of Nuclear Medicine, University Hospitals UZ Leuven, Leuven, Belgium
| |
Collapse
|
27
|
GC-CNNnet: Diagnosis of Alzheimer’s Disease with PET Images Using Genetic and Convolutional Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7413081. [PMID: 35983158 PMCID: PMC9381254 DOI: 10.1155/2022/7413081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
There is a wide variety of effects of Alzheimer's disease (AD), a neurodegenerative disease that can lead to cognitive decline, deterioration of daily life, and behavioral and psychological changes. A polymorphism of the ApoE gene ε 4 is considered a genetic risk factor for Alzheimer's disease. The purpose of this paper is to demonstrate that single-nucleotide polymorphic markers (SNPs) have a causal relationship with quantitative PET imaging traits. Additionally, the classification of AD is based on the frequency of brain tissue variations in PET images using a combination of k-nearest-neighbor (KNN), support vector machine (SVM), linear discrimination analysis (LDA), and convolutional neural network (CNN) techniques. According to the results, the suggested SNPs appear to be associated with quantitative traits more strongly than the SNPs in the ApoE genes. Regarding the classification result, the highest accuracy is obtained by the CNN with 91.1%. These results indicate that the KNN and CNN methods are beneficial in diagnosing AD. Nevertheless, the LDA and SVM are demonstrated with a lower level of accuracy.
Collapse
|
28
|
Long-term test-retest of cerebral [18F]MK-6240 binding and longitudinal evaluation of extracerebral tracer uptake in healthy controls and amnestic MCI patients. Eur J Nucl Med Mol Imaging 2022; 49:4580-4588. [DOI: 10.1007/s00259-022-05907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022]
|
29
|
Mertens N, Michiels L, Vanderlinden G, Vandenbulcke M, Lemmens R, Van Laere K, Koole M. Impact of meningeal uptake and partial volume correction techniques on [ 18F]MK-6240 binding in aMCI patients and healthy controls. J Cereb Blood Flow Metab 2022; 42:1236-1246. [PMID: 35062837 PMCID: PMC9207493 DOI: 10.1177/0271678x221076023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
[18F]MK-6240 is a second-generation tau PET-tracer to quantify neurofibrillary tangles in-vivo. However, individually variable levels of meningeal uptake induce spill-in-effects into the cortex, complicating [18F]MK-6240 PET quantification. Group SUVR differences between age-matched HC subgroups with varying extracerebral uptake (EC-low/mixed/high), and between aMCI and each HC subgroup were assessed without and with partial volume correction (PVC). Both Müller-Gartner (MG-)PVC and region-based voxelwise (RBV-)PVC, with the latter also correcting for extracerebral spill-in-effects, were implemented. Between HC groups, where no differences are to be expected, HC EC-high showed spill-in differences compared to HC EC-low when no PVC was applied while for MG-PVC, differences were reduced and, for RBV-PVC, no statistically significant differences were observed. Between aMCI and HC, cortical SUVR differences were statistically significant, both without and with PVC, but modulated by the varying meningeal uptake in HC subgroups when no PVC was applied. After applying PVC, correlations to clinical parameters improved and effect sizes between HC and aMCI increased, independent of the HC-subgroup. Therefore, appropriate PVC with correction for extracerebral spill-in-effects is recommended to minimize the impact of varying meningeal uptake on cortical differences between HC and aMCI.
Collapse
Affiliation(s)
- Nathalie Mertens
- Nuclear Medicine and Molecular Imaging, University Hospital and KU Leuven, Leuven, Belgium
| | - Laura Michiels
- Department of Neurosciences, Experimental Neurology, KU Leuven - University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Greet Vanderlinden
- Nuclear Medicine and Molecular Imaging, University Hospital and KU Leuven, Leuven, Belgium
| | - Mathieu Vandenbulcke
- Department of Neurosciences, Experimental Neurology, KU Leuven - University of Leuven, Leuven, Belgium.,Old-Age Psychiatry, University Hospital and KU Leuven, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurosciences, Experimental Neurology, KU Leuven - University of Leuven, Leuven, Belgium.,VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, University Hospital and KU Leuven, Leuven, Belgium.,Division of Nuclear Medicine, University Hospitals Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, University Hospital and KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Li Y, Liu T, Cui M. Recent development in selective Tau tracers for PET imaging in the brain. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Helboe L, Rosenqvist N, Volbracht C, Pedersen LØ, Pedersen JT, Christensen S, Egebjerg J, Christoffersen CT, Bang-Andersen B, Beach TG, Serrano GE, Falsig J. Highly Specific and Sensitive Target Binding by the Humanized pS396-Tau Antibody hC10.2 Across a Wide Spectrum of Alzheimer’s Disease and Primary Tauopathy Postmortem Brains. J Alzheimers Dis 2022; 88:207-228. [DOI: 10.3233/jad-220125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Deposits of hyperphosphorylated tau fibrils are hallmarks of a broad spectrum of tauopathies, including Alzheimer’s disease (AD). Objective: To investigate heterogeneity of tau pathology across brain extracts from a broad selection of different tauopathies and examine the binding properties of the humanized pS396-tau antibody hC10.2 and six other anti-tau antibodies. Methods: 76 individual tauopathy tissue samples were analyzed in a battery of assays: immunohistochemistry, ELISA, tau aggregation assay, western blot, [3H]PI-2620 and [3H]MK-6240 tau tracer binding, and aggregated seeding activity in RD_P301S HEK293T Biosensor cells. The efficiency of seven anti-tau antibodies to engage with pathological tau species was directly compared. Results: Our data indicate that a strong correlation existed between the tau tracer binding, amount of tau aggregates, pS396-tau phosphorylation, and seeding activity. The hC10.2 antibody, which has entered clinical development, effectively engaged with its epitope across all individual cases of mid-stage and late AD, and primary tauopathies. hC10.2 was superior compared to other phospho- and total tau antibodies to prevent seeded tau aggregation in the biosensor cells. hC10.2 effectively depleted hyperphosphorylated and aggregated tau species across all tauopathy samples proportionally to the amount of tau aggregates. In AD samples, hC10.2 bound to ghost tangles which represent extracellular pathological tau species. Conclusion: S396 hyperphosphorylation is a feature of the formation of seeding-competent tau across different tauopathies and it is present both in intra- and extracellular pathological tau. hC10.2 represents an excellent candidate for a hyperphosphorylation-selective therapeutic tau antibody for the treatment of AD and primary tauopathies.
Collapse
|
32
|
Kreisl WC, Lao PJ, Johnson A, Tomljanovic Z, Klein J, Polly K, Maas B, Laing KK, Chesebro AG, Igwe K, Razlighi QR, Honig LS, Yan X, Lee S, Mintz A, Luchsinger JA, Stern Y, Devanand DP, Brickman AM. Patterns of tau pathology identified with 18 F-MK-6240 PET imaging. Alzheimers Dement 2022; 18:272-282. [PMID: 34057284 PMCID: PMC8630090 DOI: 10.1002/alz.12384] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Positron emission tomography (PET) imaging for neurofibrillary tau allows investigation of the in vivo spatiotemporal progression of Alzheimer's disease (AD) pathology. We evaluated the suitability of 18 F-MK-6240 in a clinical sample and determined the relationships among 18 F-MK-6240 binding, age, cognition, and cerebrospinal fluid (CSF)-based AD biomarkers. METHODS Participants (n = 101, 72 ± 9 years, 52% women) underwent amyloid PET, tau PET, structural T1-weighted magnetic resonance imaging, and neuropsychological evaluation. Twenty-one participants had lumbar puncture for CSF measurement of amyloid beta (Aβ)42 , tau, and phosphorylated tau (p-tau). RESULTS 18 F-MK-6240 recapitulated Braak staging and correlated with CSF tau and p-tau, normalized to Aβ42 . 18 F-MK-6240 negatively correlated with age across Braak regions in amyloid-positive participants, consistent with greater tau pathology in earlier onset AD. Domain-specific, regional patterns of 18 F-MK-6240 binding were associated with reduced memory, executive, and language performance, but only in amyloid-positive participants. DISCUSSION 18 F-MK-6240 can approximate Braak staging across the AD continuum and provide region-dependent insights into biomarker-based AD models.
Collapse
Affiliation(s)
- William Charles Kreisl
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Patrick J Lao
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Aubrey Johnson
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Zeljko Tomljanovic
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Julia Klein
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Krista Polly
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Benjamin Maas
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Krystal K Laing
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Anthony G Chesebro
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Kay Igwe
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | | | - Lawrence S Honig
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Xinyu Yan
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Seonjoo Lee
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
- Division of Mental Health Data Science, New York State Psychiatric Institute, New York, NY, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - José A Luchsinger
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| | - Yaakov Stern
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - D P Devanand
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Adam M Brickman
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| |
Collapse
|
33
|
Ni R, Nitsch RM. Recent Developments in Positron Emission Tomography Tracers for Proteinopathies Imaging in Dementia. Front Aging Neurosci 2022; 13:751897. [PMID: 35046791 PMCID: PMC8761855 DOI: 10.3389/fnagi.2021.751897] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
An early detection and intervention for dementia represent tremendous unmet clinical needs and priorities in society. A shared feature of neurodegenerative diseases causing dementia is the abnormal accumulation and spreading of pathological protein aggregates, which affect the selective vulnerable circuit in a disease-specific pattern. The advancement in positron emission tomography (PET) biomarkers has accelerated the understanding of the disease mechanism and development of therapeutics for Alzheimer's disease and Parkinson's disease. The clinical utility of amyloid-β PET and the clinical validity of tau PET as diagnostic biomarker for Alzheimer's disease continuum have been demonstrated. The inclusion of biomarkers in the diagnostic criteria has introduced a paradigm shift that facilitated the early and differential disease diagnosis and impacted on the clinical management. Application of disease-modifying therapy likely requires screening of patients with molecular evidence of pathological accumulation and monitoring of treatment effect assisted with biomarkers. There is currently still a gap in specific 4-repeat tau imaging probes for 4-repeat tauopathies and α-synuclein imaging probes for Parkinson's disease and dementia with Lewy body. In this review, we focused on recent development in molecular imaging biomarkers for assisting the early diagnosis of proteinopathies (i.e., amyloid-β, tau, and α-synuclein) in dementia and discussed future perspectives.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Roger M. Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Brumberg J, Varrone A. New PET radiopharmaceuticals for imaging CNS diseases. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
35
|
Gogola A, Minhas DS, Villemagne VL, Cohen AD, Mountz JM, Pascoal TA, Laymon CM, Mason NS, Ikonomovic MD, Mathis CA, Snitz BE, Lopez OL, Klunk WE, Lopresti BJ. Direct Comparison of the Tau PET Tracers 18F-Flortaucipir and 18F-MK-6240 in Human Subjects. J Nucl Med 2022; 63:108-116. [PMID: 33863821 PMCID: PMC8717175 DOI: 10.2967/jnumed.120.254961] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Tau PET tracers exhibit varying levels of specific signal and distinct off-target binding patterns that are more diverse than amyloid PET tracers. This study compared 2 frequently used tau PET tracers, 18F-flortaucipir and 18F-MK-6240, in the same subjects. Methods:18F-flortaucipir and 18F-MK-6240 scans were collected within 2 mo in 15 elderly subjects varying in clinical diagnosis and cognition. FreeSurfer, version 5.3, was applied to 3-T MR images to segment Braak pathologic regions (I-VI) for PET analyses. Off-target binding was assessed in the choroid plexus, meninges, and striatum. SUV ratio (SUVR) outcomes were determined over 80-100 min (18F-flortaucipir) or 70-90 min (18F-MK-6240) normalized to cerebellar gray matter. Masked visual interpretation of images was performed by 5 raters for both the medial temporal lobe and the neocortex, and an overall (majority) rating was determined. Results: Overall visual ratings showed complete concordance between radiotracers for both the medial temporal lobe and the neocortex. SUVR outcomes were highly correlated (r2 > 0.92; P ≪ 0.001) for all Braak regions except Braak II. The dynamic range of SUVRs in target regions was approximately 2-fold higher for 18F-MK-6240 than for 18F-flortaucipir. Cerebellar SUVs were similar for 18F-MK-6240 and 18F-flortaucipir, suggesting that differences in SUVRs are driven by specific signals. Apparent off-target binding was observed often in the striatum and choroid plexus with 18F-flortaucipir and most often in the meninges with 18F-MK-6240. Conclusion: Both 18F-MK-6240 and 18F-flortaucipir are capable of quantifying signal in a common set of brain regions that develop tau pathology in Alzheimer disease; these tracers perform equally well in visual interpretations. Each also shows distinct patterns of apparent off-target binding. 18F-MK-6240 showed a greater dynamic range in SUVR estimates, which may be an advantage in detecting early tau pathology or in performing longitudinal studies to detect small interval changes.
Collapse
Affiliation(s)
- Alexandra Gogola
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Davneet S Minhas
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James M Mountz
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Charles M Laymon
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - N Scott Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Milos D Ikonomovic
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Beth E Snitz
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania;
| |
Collapse
|
36
|
Teng E, Manser PT, Sanabria Bohorquez S, Wildsmith KR, Pickthorn K, Baker SL, Ward M, Kerchner GA, Weimer RM. Baseline [ 18F]GTP1 tau PET imaging is associated with subsequent cognitive decline in Alzheimer's disease. Alzheimers Res Ther 2021; 13:196. [PMID: 34852837 PMCID: PMC8638526 DOI: 10.1186/s13195-021-00937-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
Background The role and implementation of tau PET imaging for predicting subsequent cognitive decline in Alzheimer’s disease (AD) remains uncertain. This study was designed to evaluate the relationship between baseline [18F]GTP1 tau PET and subsequent longitudinal change across multiple cognitive measures over 18 months. Methods Our analyses incorporated data from 67 participants, including cognitively normal controls (n = 10) and β-amyloid (Aβ)-positive individuals ([18F] florbetapir Aβ PET) with prodromal (n = 26), mild (n = 16), or moderate (n = 15) AD. Baseline measurements included cortical volume (MRI), tau burden ([18F]GTP1 tau PET), and cognitive assessments [Mini-Mental State Examination (MMSE), Clinical Dementia Rating (CDR), 13-item version of the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog13), and Repeatable Battery for the Assessment of Neuropsychological Status (RBANS)]. Cognitive assessments were repeated at 6-month intervals over an 18-month period. Associations between baseline [18F]GTP1 tau PET indices and longitudinal cognitive performance were assessed via univariate (Spearman correlations) and multivariate (linear mixed effects models) approaches. The utility of potential prognostic tau PET cut points was assessed with ROC curves. Results Univariate analyses indicated that greater baseline [18F]GTP1 tau PET signal was associated with faster rates of subsequent decline on the MMSE, CDR, and ADAS-Cog13 across regions of interest (ROIs). In multivariate analyses adjusted for baseline age, cognitive performance, cortical volume, and Aβ PET SUVR, the prognostic performance of [18F]GTP1 SUVR was most robust in the whole cortical gray ROI. When AD participants were dichotomized into low versus high tau subgroups based on baseline [18F]GTP1 PET standardized uptake value ratios (SUVR) in the temporal (cutoff = 1.325) or whole cortical gray (cutoff = 1.245) ROIs, high tau subgroups demonstrated significantly more decline on the MMSE, CDR, and ADAS-Cog13. Conclusions Our results suggest that [18F]GTP1 tau PET represents a prognostic biomarker in AD and are consistent with data from other tau PET tracers. Tau PET imaging may have utility for identifying AD patients at risk for more rapid cognitive decline and for stratification and/or enrichment of participant selection in AD clinical trials. Trial registration ClinicalTrials.gov NCT02640092. Registered on December 28, 2015 Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00937-x.
Collapse
Affiliation(s)
- Edmond Teng
- Early Clinical Development, Genentech, Inc., South San Francisco, CA, USA.
| | - Paul T Manser
- Clinical Biostatistics, Genentech, Inc., South San Francisco, CA, USA
| | | | | | - Karen Pickthorn
- Early Clinical Development, Genentech, Inc., South San Francisco, CA, USA
| | - Suzanne L Baker
- Clinical Imaging Group, Genentech, Inc., South San Francisco, CA, USA.,Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Ward
- Early Clinical Development, Genentech, Inc., South San Francisco, CA, USA.,Current Address: Alector, Inc., South San Francisco, CA, USA
| | - Geoffrey A Kerchner
- Early Clinical Development, Genentech, Inc., South San Francisco, CA, USA.,Current Address: F. Hoffmann-La Roche AG, Basel, Switzerland
| | - Robby M Weimer
- Biomedical Imaging, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
37
|
Ricci M, Cimini A, Camedda R, Chiaravalloti A, Schillaci O. Tau Biomarkers in Dementia: Positron Emission Tomography Radiopharmaceuticals in Tauopathy Assessment and Future Perspective. Int J Mol Sci 2021; 22:ijms222313002. [PMID: 34884804 PMCID: PMC8657996 DOI: 10.3390/ijms222313002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/14/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Abnormal accumulation of Tau protein is closely associated with neurodegeneration and cognitive impairment and it is a biomarker of neurodegeneration in the dementia field, especially in Alzheimer’s disease (AD); therefore, it is crucial to be able to assess the Tau deposits in vivo. Beyond the fluid biomarkers of tauopathy described in this review in relationship with the brain glucose metabolic patterns, this review aims to focus on tauopathy assessment by using Tau PET imaging. In recent years, several first-generation Tau PET tracers have been developed and applied in the dementia field. Common limitations of first-generation tracers include off-target binding and subcortical white-matter uptake; therefore, several institutions are working on developing second-generation Tau tracers. The increasing knowledge about the distribution of first- and second-generation Tau PET tracers in the brain may support physicians with Tau PET data interpretation, both in the research and in the clinical field, but an updated description of differences in distribution patterns among different Tau tracers, and in different clinical conditions, has not been reported yet. We provide an overview of first- and second-generation tracers used in ongoing clinical trials, also describing the differences and the properties of novel tracers, with a special focus on the distribution patterns of different Tau tracers. We also describe the distribution patterns of Tau tracers in AD, in atypical AD, and further neurodegenerative diseases in the dementia field.
Collapse
Affiliation(s)
- Maria Ricci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Correspondence:
| | - Andrea Cimini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
38
|
Levy JP, Bezgin G, Savard M, Pascoal TA, Finger E, Laforce R, Sonnen JA, Soucy JP, Gauthier S, Rosa-Neto P, Ducharme S. 18F-MK-6240 tau-PET in genetic frontotemporal dementia. Brain 2021; 145:1763-1772. [PMID: 34664612 PMCID: PMC9166561 DOI: 10.1093/brain/awab392] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022] Open
Abstract
Tau is one of several proteins associated with frontotemporal dementia. While knowing which protein is causing a patient’s disease is crucial, no biomarker currently exists for identifying tau in vivo in frontotemporal dementia. The objective of this study was to investigate the potential for the promising 18F-MK-6240 PET tracer to bind to tau in vivo in genetic frontotemporal dementia. We enrolled subjects with genetic frontotemporal dementia, who constitute an ideal population for testing because their pathology is already known based on their mutation. Ten participants (three with symptomatic P301L and R406W MAPT mutations expected to show tau binding, three with presymptomatic MAPT mutations and four with non-tau mutations who acted as disease controls) underwent clinical characterization, tau-PET scanning with 18F-MK-6240, amyloid-PET imaging with 18F-NAV-4694 to rule out confounding Alzheimer’s pathology, and high-resolution structural MRI. Tau-PET scans of all three symptomatic MAPT carriers demonstrated at least mild 18F-MK-6240 binding in expected regions, with particularly strong binding in a subject with an R406W MAPT mutation (known to be associated with Alzheimer’s like neurofibrillary tangles). Two asymptomatic MAPT carriers estimated to be 5 years from disease onset both showed modest 18F-MK-6240 binding, while one ∼30 years from disease onset did not exhibit any binding. Additionally, four individuals with symptomatic frontotemporal dementia caused by a non-tau mutation were scanned (two C9orf72; one GRN; one VCP): 18F-MK-6240 scans were negative for three subjects, while one advanced C9orf72 case showed minimal regionally non-specific binding. All 10 amyloid-PET scans were negative. Furthermore, a general linear model contrasting genetic frontotemporal dementia subjects to a set of 83 age-matched controls showed significant binding only in the MAPT carriers in selected frontal, temporal and subcortical regions. In summary, our findings demonstrate mild but significant binding of MK-6240 in amyloid-negative P301L and R406W MAPT mutation subjects, with higher standardized uptake value ratio in the R406W mutation associated with the presence of NFTs, and little non-specific binding. These results highlight that a positive 18F-MK-6240 tau-PET does not necessarily imply a diagnosis of Alzheimer’s disease and point towards a potential use for 18F-MK-6240 as a biomarker in certain tauopathies beyond Alzheimer’s, although further patient recruitment and autopsy studies will be necessary to determine clinical applicability.
Collapse
Affiliation(s)
- Jake P Levy
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gleb Bezgin
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Melissa Savard
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Parkwood Institute, Lawson Health Research Institute, University of Western Ontario, London, ON, Canada
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques du CHU de Québec, Faculté de Médecine, Université Laval, QC, Canada
| | - Joshua A Sonnen
- Departments of Pathology, Neurology and Neurosurgery, Montreal Neurological Institute, McGill University
| | - Jean-Paul Soucy
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Pedro Rosa-Neto
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.,Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, QC H4H 1R3, Canada
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.,Douglas Mental Health University Institute, Department of Psychiatry, Montreal, QC H4H 1R3, Canada
| |
Collapse
|
39
|
Tezuka T, Takahata K, Seki M, Tabuchi H, Momota Y, Shiraiwa M, Suzuki N, Morimoto A, Nakahara T, Iwabuchi Y, Miura E, Yamamoto Y, Sano Y, Funaki K, Yamagata B, Ueda R, Yoshizaki T, Mashima K, Shibata M, Oyama M, Okada K, Kubota M, Okita H, Takao M, Jinzaki M, Nakahara J, Mimura M, Ito D. Evaluation of [ 18F]PI-2620, a second-generation selective tau tracer, for assessing four-repeat tauopathies. Brain Commun 2021; 3:fcab190. [PMID: 34632382 PMCID: PMC8495135 DOI: 10.1093/braincomms/fcab190] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 11/14/2022] Open
Abstract
Tau aggregates represent a key pathologic feature of Alzheimer's disease and other neurodegenerative diseases. Recently, PET probes have been developed for in vivo detection of tau accumulation; however, they are limited because of off-target binding and a reduced ability to detect tau in non-Alzheimer's disease tauopathies. The novel tau PET tracer, [18F]PI-2620, has a high binding affinity and specificity for aggregated tau; therefore, it was hypothesized to have desirable properties for the visualization of tau accumulation in Alzheimer's disease and non-Alzheimer's disease tauopathies. To assess the ability of [18F]PI-2620 to detect regional tau burden in non-Alzheimer's disease tauopathies compared with Alzheimer's disease, patients with progressive supranuclear palsy (n = 3), corticobasal syndrome (n = 2), corticobasal degeneration (n = 1) or Alzheimer's disease (n = 8), and healthy controls (n = 7) were recruited. All participants underwent MRI, amyloid β assessment and [18F]PI-2620 PET (Image acquisition at 60-90 min post-injection). Cortical and subcortical tau accumulations were assessed by calculating standardized uptake value ratios using [18F]PI-2620 PET. For pathologic validation, tau pathology was assessed using tau immunohistochemistry and compared with [18F]PI-2620 retention in an autopsied case of corticobasal degeneration. In Alzheimer's disease, focal retention of [18F]PI-2620 was evident in the temporal and parietal lobes, precuneus, and cingulate cortex. Standardized uptake value ratio analyses revealed that patients with non-Alzheimer's disease tauopathies had elevated [18F]PI-2620 uptake only in the globus pallidus, as compared to patients with Alzheimer's disease, but not healthy controls. A head-to-head comparison of [18F]PI-2620 and [18F]PM-PBB3, another tau PET probe for possibly visualizing the four-repeat tau pathogenesis in non-Alzheimer's disease, revealed different retention patterns in one subject with progressive supranuclear palsy. Imaging-pathology correlation analysis of the autopsied patient with corticobasal degeneration revealed no significant correlation between [18F]PI-2620 retention in vivo. High [18F]PI-2620 uptake at 60-90 min post-injection in the globus pallidus may be a sign of neurodegeneration in four-repeat tauopathy, but not necessarily practical for diagnosis of non-Alzheimer's disease tauopathies. Collectively, this tracer is a promising tool to detect Alzheimer's disease-tau aggregation. However, late acquisition PET images of [18F]PI-2620 may have limited utility for reliable detection of four-repeat tauopathy because of lack of correlation between post-mortem tau pathology and different retention pattern than the non-Alzheimer's disease-detectable tau radiotracer, [18F]PM-PBB3. A recent study reported that [18F]PI-2620 tracer kinetics curves in four-repeat tauopathies peak earlier (within 30 min) than Alzheimer's disease; therefore, further studies are needed to determine appropriate PET acquisition times that depend on the respective interest regions and diseases.
Collapse
Affiliation(s)
- Toshiki Tezuka
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Keisuke Takahata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Morinobu Seki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Tabuchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Momota
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Mika Shiraiwa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Natsumi Suzuki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ayaka Morimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Tadaki Nakahara
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yu Iwabuchi
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eisuke Miura
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasuharu Yamamoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Sano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kei Funaki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Ueda
- Office of Radiation Technology, Keio University Hospital, Tokyo 160-8582, Japan
| | - Takahito Yoshizaki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kyoko Mashima
- Department of Neurology, Tokyo Saiseikai Central Hospital, Tokyo 108-0073, Japan
| | - Mamoru Shibata
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan.,Department of Neurology, Tokyo Dental College Ichikawa General Hospital, Tokyo 272-8513, Japan
| | - Munenori Oyama
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kensuke Okada
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Masahito Kubota
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Okita
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Center of Neurology and Psychiatry (NCNP), National Center Hospital, Tokyo 187-8551, Japan.,Brain Bank, Mihara Memorial Hospital, Gunma 372-0006, Japan
| | - Masahiro Jinzaki
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Ito
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
40
|
Whittington A, Gunn RN. Tau IQ: A Canonical Image Based Algorithm to Quantify Tau PET Scans. J Nucl Med 2021; 62:1292-1300. [PMID: 33517326 PMCID: PMC8882899 DOI: 10.2967/jnumed.120.258962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Recently, AmyloidIQ was introduced as a new canonical image-based algorithm to quantify amyloid PET scans and demonstrated increased power over traditional SUV ratio (SUVR) approaches when assessed in cross-sectional and longitudinal analyses. We build further on this mathematical framework to develop a TauIQ algorithm for the quantitative analysis of the more complex spatial distribution displayed by tau PET radiotracers. Methods: Cross-sectional (n = 615) and longitudinal (n = 149) 18F-flortaucipir data were obtained from the Alzheimer's Disease Neuroimaging Initiative along with necessary adjunct amyloid PET and T1-weighted structural MRI data. A subset of these data were used to derive a chronological tau dataset, using AmyloidIQ analysis of associated amyloid PET data to calculate the subject's temporal position in the canonical AD disease process, from which canonical images for the nonspecific and specific binding components of 18F-flortaucipir in AD were calculated. These 2 canonical images were incorporated into the TauIQ algorithm that enables the quantification of both global and local tau outcome measures using an image-based regression and statistical parametric analysis of the initial residual image. Performance of the TauIQ algorithm was compared with SUVR approaches for cross-sectional analyses, longitudinal analyses, and correlation with clinical measures (Alzheimer Disease Assessment Scale-Cognitive Subscale [ADAS-Cog], Clinical Dementia Rating scale-sum of boxes [CDR-SB], and Mini-Mental State Examination [MMSE]). Results: TauIQ successfully calculated global tau load (TauL) in all 791 scans analyzed (range, -3.5% to 185.2%; mean ± SD, 23% ± 20.5%) with a nonzero additional local tau component being required in 31% of all scans (cognitively normal [CN], 22%; mild cognitive impairment [MCI], 35%; dementia, 72%). TauIQ was compared with the best SUVR approach in the cross-sectional analysis (TauL increase in effect size: CN- vs. CN+, +45%; CN- vs. MCI+, -5.6%; CN- vs. dementia+, +2.3%) (+/- indicates amyloid-positive or -negative) and correlation with clinical scores (TauL increase in r2: CDR-SB+, 7%; MMSE+, 38%; ADAS-Cog+, 0%). TauIQ substantially outperformed SUVR approaches in the longitudinal analysis (TauIQ increase in power: CN+, >3.2-fold; MCI+, >2.2-fold; dementia+, >2.9-fold). Conclusion: TauL as calculated by TauIQ provides a superior approach for the quantification of tau PET data. In particular, it provides a substantial improvement in power for longitudinal analyses and the early detection of tau deposition and thus should have significant value for clinical imaging trials in AD that are investigating the attenuation of tau deposition with novel therapies.
Collapse
Affiliation(s)
| | - Roger N Gunn
- Invicro LLC, London, United Kingdom; and
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| |
Collapse
|
41
|
Bischof GN, Dodich A, Boccardi M, van Eimeren T, Festari C, Barthel H, Hansson O, Nordberg A, Ossenkoppele R, Sabri O, Giovanni BFG, Garibotto V, Drzezga A. Clinical validity of second-generation tau PET tracers as biomarkers for Alzheimer's disease in the context of a structured 5-phase development framework. Eur J Nucl Med Mol Imaging 2021; 48:2110-2120. [PMID: 33590274 PMCID: PMC8175320 DOI: 10.1007/s00259-020-05156-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE In 2017, the Geneva Alzheimer's disease (AD) strategic biomarker roadmap initiative proposed a framework of the systematic validation AD biomarkers to harmonize and accelerate their development and implementation in clinical practice. Here, we use this framework to examine the translatability of the second-generation tau PET tracers into the clinical context. METHODS All available literature was systematically searched based on a set of search terms that related independently to analytic validity (phases 1-2), clinical validity (phase 3-4), and clinical utility (phase 5). The progress on each of the phases was determined based on scientific criteria applied for each phase and coded as fully, partially, preliminary achieved or not achieved at all. RESULTS The validation of the second-generation tau PET tracers has successfully passed the analytical phase 1 of the strategic biomarker roadmap. Assay definition studies showed evidence on the superiority over first-generation tau PET tracers in terms of off-target binding. Studies have partially achieved the primary aim of the analytical validity stage (phase 2), and preliminary evidence has been provided for the assessment of covariates on PET signal retention. Studies investigating of the clinical validity in phases 3, 4, and 5 are still underway. CONCLUSION The current literature provides overall preliminary evidence on the establishment of the second-generation tau PET tracers into the clinical context, thereby successfully addressing some methodological issues from the tau PET tracer of the first generation. Nevertheless, bigger cohort studies, longitudinal follow-up, and examination of diverse disease population are still needed to gauge their clinical validity.
Collapse
Affiliation(s)
- Gérard N Bischof
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany.
| | - Alessandra Dodich
- NIMTlab, Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Center for Neurocognitive Rehabilitation (CeRiN), CIMeC, University of Trento, Trento, Italy
| | - Marina Boccardi
- German Center for Neurodegenerative Disorders (DZNE), Rostock/Greifswald, Rostock, Germany
- German Center for Neurodegenerative Disorders (DZNE), Bonn/Cologne, Germany
| | - Thilo van Eimeren
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
- German Center for Neurodegenerative Disorders (DZNE), Rostock/Greifswald, Rostock, Germany
- German Center for Neurodegenerative Disorders (DZNE), Bonn/Cologne, Germany
| | - Cristina Festari
- LANE - Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Oskar Hansson
- Memory Clinic, Skåne University Hopsital, Malmö, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - B Frisoni G Giovanni
- NIMTlab, Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Memory Center - Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| | - Valentina Garibotto
- NIMTlab, Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Nuclear Medicine and Molecular Imaging Division, Diagnostic Department, Geneva University Hospitals, Genève, Switzerland
| | - Alexander Drzezga
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
- German Center for Neurodegenerative Disorders (DZNE), Rostock/Greifswald, Rostock, Germany
- German Center for Neurodegenerative Disorders (DZNE), Bonn/Cologne, Germany
- Molecular Organization of the Brain, Institute for Neuroscience and Medicine (INM-2), Jülich, Germany
| |
Collapse
|
42
|
Zhong S, Sun K, Zuo X, Chen A. Monitoring and Prognostic Analysis of Severe Cerebrovascular Diseases Based on Multi-Scale Dynamic Brain Imaging. Front Neurosci 2021; 15:684469. [PMID: 34276294 PMCID: PMC8277932 DOI: 10.3389/fnins.2021.684469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Severe cerebrovascular disease is an acute cerebrovascular event that causes severe neurological damage in patients, and is often accompanied by severe dysfunction of multiple systems such as breathing and circulation. Patients with severe cerebrovascular disease are in critical condition, have many complications, and are prone to deterioration of neurological function. Therefore, they need closer monitoring and treatment. The treatment strategy in the acute phase directly determines the prognosis of the patient. The case of this article selected 90 patients with severe cerebrovascular disease who were hospitalized in four wards of the Department of Neurology and the Department of Critical Care Medicine in a university hospital. The included cases were in accordance with the guidelines for the prevention and treatment of cerebrovascular diseases. Patients with cerebral infarction are given routine treatments such as improving cerebral circulation, protecting nutrient brain cells, dehydration, and anti-platelet; patients with cerebral hemorrhage are treated within the corresponding safe time window. We use Statistical Product and Service Solutions (SPSS) Statistics21 software to perform statistical analysis on the results. Based on the study of the feature extraction process of convolutional neural network, according to the hierarchical principle of convolutional neural network, a backbone neural network MF (Multi-Features)—Dense Net that can realize the fusion, and extraction of multi-scale features is designed. The network combines the characteristics of densely connected network and feature pyramid network structure, and combines strong feature extraction ability, high robustness and relatively small parameter amount. An end-to-end monitoring algorithm for severe cerebrovascular diseases based on MF-Dense Net is proposed. In the experiment, the algorithm showed high monitoring accuracy, and at the same time reached the speed of real-time monitoring on the experimental platform. An improved spatial pyramid pooling structure is designed to strengthen the network’s ability to merge and extract local features at the same level and at multiple scales, which can further improve the accuracy of algorithm monitoring by paying a small amount of additional computational cost. At the same time, a method is designed to strengthen the use of low-level features by improving the network structure, which improves the algorithm’s monitoring performance on small-scale severe cerebrovascular diseases. For patients with severe cerebrovascular disease in general, APACHEII1, APACHEII2, APACHEII3 and the trend of APACHEII score change are divided into high-risk group and low-risk group. The overall severe cerebrovascular disease, severe cerebral hemorrhage and severe cerebral infarction are analyzed, respectively. The differences are statistically significant.
Collapse
Affiliation(s)
- Suting Zhong
- Department of Emergency Medicine, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Neurosurgery, Yantai Penglai Traditional Chinese Medicine Hospital, Yantai, China
| | - Xiaobing Zuo
- Department of Emergency Medicine, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Aihong Chen
- Department of Emergency Medicine, Hanyang Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Zhang H, Wang M, Lu J, Bao W, Li L, Jiang J, Zuo C. Parametric Estimation of Reference Signal Intensity for Semi-Quantification of Tau Deposition: A Flortaucipir and [ 18F]-APN-1607 Study. Front Neurosci 2021; 15:598234. [PMID: 34234637 PMCID: PMC8255619 DOI: 10.3389/fnins.2021.598234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Tau positron emission tomography (PET) imaging can reveal the pathophysiology and neurodegeneration that occurs in Alzheimer's disease (AD) in vivo. The standardized uptake value ratio (SUVR) is widely used for semi-quantification of tau deposition but is susceptible to disturbance from the reference region and the partial volume effect (PVE). To overcome this problem, we applied the parametric estimation of reference signal intensity (PERSI) method-which was previously evaluated for flortaucipir imaging-to two tau tracers, flortaucipir and [18F]-APN-1607. METHODS Two cohorts underwent tau PET scanning. Flortaucipir PET imaging data for cohort I (65 healthy controls [HCs], 60 patients with mild cognitive impairment [MCI], and 12 AD patients) were from the AD Neuroimaging Initiative database. [18F]-APN-1607 ([18F]-PM-PBB3) PET imaging data were for Cohort II, which included 21 patients with a clinical diagnosis of amyloid PET-positive AD and 15 HCs recruited at Huashan Hospital. We used white matter (WM) postprocessed by PERSI (PERSI-WM) as the reference region and compared this with the traditional semi-quantification method that uses the whole cerebellum as the reference. SUVRs were calculated for regions of interest including the frontal, parietal, temporal, and occipital lobes; anterior and posterior cingulate; precuneus; and Braak I/II (entorhinal cortex and hippocampus). Receiver operating characteristic (ROC) curve analysis and effect sizes were used to compare the two methods in terms of ability to discriminate between different clinical groups. RESULTS In both cohorts, regional SUVR determined using the PERSI-WM method was superior to using the cerebellum as reference region for measuring tau retention in AD patients (e.g., SUVR of the temporal lobe: flortaucipir, 1.08 ± 0.17 and [18F]-APN-1607, 1.57 ± 0.34); and estimates of the effect size and areas under the ROC curve (AUC) indicated that it also increased between-group differences (e.g., AUC of the temporal lobe for HC vs AD: flortaucipir, 0.893 and [18F]-APN-1607: 0.949). CONCLUSION The PERSI-WM method significantly improves diagnostic discrimination compared to conventional approach of using the cerebellum as a reference region and can mitigate the PVE; it can thus enhance the efficacy of semi-quantification of multiple tau tracers in PET scanning, making it suitable for large-scale clinical application.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - and Alzheimer’s Disease Neuroimaging Initiative
- Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol- Myers Squibb Company; CereSpir, Inc.; Eisai, Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO, Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC; Johnson & Johnson Pharmaceutical Research & Development LLC; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer, Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics
| |
Collapse
|
44
|
Kolinger GD, Vállez García D, Lohith TG, Hostetler ED, Sur C, Struyk A, Boellaard R, Koole M. A dual-time-window protocol to reduce acquisition time of dynamic tau PET imaging using [ 18F]MK-6240. EJNMMI Res 2021; 11:49. [PMID: 34046730 PMCID: PMC8160074 DOI: 10.1186/s13550-021-00790-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND [18F]MK-6240 is a PET tracer with sub-nanomolar affinity for neurofibrillary tangles. Therefore, tau quantification is possible with [18F]MK-6240 PET/CT scans, and it can be used for assessment of Alzheimer's disease. However, long acquisition scans are required to provide fully quantitative estimates of pharmacokinetic parameters. Therefore, on the present study, dual-time-window (DTW) acquisitions was simulated to reduce PET/CT acquisition time, while taking into consideration perfusion changes and possible scanning protocol non-compliance. To that end, time activity curves (TACs) representing a 120-min acquisition (TAC120) were simulated using a two-tissue compartment model with metabolite corrected arterial input function from 90-min dynamic [18F]MK-6240 PET scans of three healthy control subjects and five subjects with mild cognitive impairment or Alzheimer's disease. Therefore, TACs corresponding to different levels of specific binding were generated and then various perfusion changes were simulated. Next, DTW acquisitions were simulated consisting of an acquisition starting at tracer injection, a break and a second acquisition starting at 90 min post-injection. Finally, non-compliance with the PET/CT scanning protocol were simulated to assess its impact on quantification. All TACs were quantified using reference Logan's distribution volume ratio (DVR) and standardized uptake value ratio (SUVR90) using the cerebellar cortex as reference region. RESULTS It was found that DVR from a DTW protocol with a 60-min break between two 30-min dynamic scans closely approximates the DVR from the uninterrupted TAC120, with a regional bias smaller than 2.5%. Moreover, SUVR90 estimates were more susceptible (regional bias ≤ 19%) to changes in perfusion compared to DVR from a DTW TAC (regional bias ≤ 10%). Similarly, SUVR90 was affected by late-time scanning protocol delays reaching an increase of 8% for a 20-min delay, while DVR was not affected (regional bias < 1.5%) by DTW protocol non-compliance. CONCLUSIONS Therefore, such DTW protocol has the potential to increase patient comfort and throughput without compromising quantitative accuracy and is more reliable against SUVR in terms of perfusion changes and protocol deviations, which could prove beneficial for drug effect assessment and patient follow-up using longitudinal [18F]MK-6240 PET imaging.
Collapse
Affiliation(s)
- Guilherme D Kolinger
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - David Vállez García
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Talakad G Lohith
- Translational Imaging Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, Mailstop WP44D-216, West Point, PA, 19486, USA
| | - Eric D Hostetler
- Translational Imaging Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, Mailstop WP44D-216, West Point, PA, 19486, USA
| | - Cyrille Sur
- Translational Imaging Biomarkers, Merck & Co., Inc., 770 Sumneytown Pike, Mailstop WP44D-216, West Point, PA, 19486, USA
| | - Arie Struyk
- Translational Pharmacology, Merck & Co., Inc, 351 N Sumneytown Pike, Mailstop UG4D-48, North Wales, PA, 19454, USA
| | - Ronald Boellaard
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location VU Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Herestraat 49 - Bus 7003, 3000, Leuven, Belgium.
| |
Collapse
|
45
|
Klenner MA, Pascali G, Fraser BH, Darwish TA. Kinetic isotope effects and synthetic strategies for deuterated carbon-11 and fluorine-18 labelled PET radiopharmaceuticals. Nucl Med Biol 2021; 96-97:112-147. [PMID: 33892374 DOI: 10.1016/j.nucmedbio.2021.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022]
Abstract
The deuterium labelling of pharmaceuticals is a useful strategy for altering pharmacokinetic properties, particularly for improving metabolic resistance. The pharmacological effects of such metabolites are often assumed to be negligible during standard drug discovery and are factored in later at the clinical phases of development, where the risks and benefits of the treatment and side-effects can be wholly assessed. This paradigm does not translate to the discovery of radiopharmaceuticals, however, as the confounding effects of radiometabolites can inevitably show in preliminary positron emission tomography (PET) scans and thus complicate interpretation. Consequently, the formation of radiometabolites is crucial to take into consideration, compared to non-radioactive metabolites, and the application of deuterium labelling is a particularly attractive approach to minimise radiometabolite formation. Herein, we provide a comprehensive overview of the deuterated carbon-11 and fluorine-18 radiopharmaceuticals employed in PET imaging experiments. Specifically, we explore six categories of deuterated radiopharmaceuticals used to investigate the activities of monoamine oxygenase (MAO), choline, translocator protein (TSPO), vesicular monoamine transporter 2 (VMAT2), neurotransmission and the diagnosis of Alzheimer's disease; from which we derive four prominent deuteration strategies giving rise to a kinetic isotope effect (KIE) for reducing the rate of metabolism. Synthetic approaches for over thirty of these deuterated radiopharmaceuticals are discussed from the perspective of deuterium and radioisotope incorporation, alongside an evaluation of the deuterium labelling and radiolabelling efficacies across these independent studies. Clinical and manufacturing implications are also discussed to provide a more comprehensive overview of how deuterated radiopharmaceuticals may be introduced to routine practice.
Collapse
Affiliation(s)
- Mitchell A Klenner
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia; Department of Nuclear Medicine and PET, Liverpool Hospital, Liverpool, NSW 2170, Australia.
| | - Giancarlo Pascali
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia; Department of Nuclear Medicine and PET, Prince of Wales Hospital, Randwick, NSW 2031, Australia; School of Chemistry, University of New South Wales (UNSW), Kensington, NSW 2052, Australia
| | - Benjamin H Fraser
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Tamim A Darwish
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| |
Collapse
|
46
|
Luo C, Ampomah-Wireko M, Wang H, Wu C, Wang Q, Zhang H, Cao Y. Isoquinolines: Important Cores in Many Marketed and Clinical Drugs. Anticancer Agents Med Chem 2021; 21:811-824. [PMID: 32329698 DOI: 10.2174/1871520620666200424132248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 02/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Isoquinoline analogs are an important, structurally diverse class of compounds that are extensively used as pharmaceuticals. Derivatives containing the isoquinoline scaffold have become a focus of therapeutic research because of their wide range of biological characteristics. Examples of these drugs, many of which are in clinical application or at the pre-clinical stage, are used to treat a broad swathe of ailments, such as tumors, respiratory diseases, infections, nervous system diseases, cardiovascular and cerebrovascular diseases, endocrine and metabolic diseases. METHODS Data were collected from PubMed, Web of Science, and SciFinder, through searches of drug names. RESULTS At least 38 isoquinoline-based therapeutic drugs are in clinical application or clinical trials, and their chemical structure and pharmacokinetics are described in detail. CONCLUSION The isoquinoline ring is a privileged scaffold which is often preferred as a structural basis for drug design, and plays an important role in drug discovery. This review provides a guide for pharmacologists to find effective preclinical/clinical drugs and examines recent progress in the application of the isoquinoline scaffold.
Collapse
Affiliation(s)
- Chunying Luo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | | | - Huanhuan Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qing Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hui Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yaquan Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
47
|
Schwarz AJ. The Use, Standardization, and Interpretation of Brain Imaging Data in Clinical Trials of Neurodegenerative Disorders. Neurotherapeutics 2021; 18:686-708. [PMID: 33846962 PMCID: PMC8423963 DOI: 10.1007/s13311-021-01027-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Imaging biomarkers play a wide-ranging role in clinical trials for neurological disorders. This includes selecting the appropriate trial participants, establishing target engagement and mechanism-related pharmacodynamic effect, monitoring safety, and providing evidence of disease modification. In the early stages of clinical drug development, evidence of target engagement and/or downstream pharmacodynamic effect-especially with a clear relationship to dose-can provide confidence that the therapeutic candidate should be advanced to larger and more expensive trials, and can inform the selection of the dose(s) to be further tested, i.e., to "de-risk" the drug development program. In these later-phase trials, evidence that the therapeutic candidate is altering disease-related biomarkers can provide important evidence that the clinical benefit of the compound (if observed) is grounded in meaningful biological changes. The interpretation of disease-related imaging markers, and comparability across different trials and imaging tools, is greatly improved when standardized outcome measures are defined. This standardization should not impinge on scientific advances in the imaging tools per se but provides a common language in which the results generated by these tools are expressed. PET markers of pathological protein aggregates and structural imaging of brain atrophy are common disease-related elements across many neurological disorders. However, PET tracers for pathologies beyond amyloid β and tau are needed, and the interpretability of structural imaging can be enhanced by some simple considerations to guard against the possible confound of pseudo-atrophy. Learnings from much-studied conditions such as Alzheimer's disease and multiple sclerosis will be beneficial as the field embraces rarer diseases.
Collapse
Affiliation(s)
- Adam J Schwarz
- Takeda Pharmaceuticals Ltd., 40 Landsdowne Street, Cambridge, MA, 02139, USA.
| |
Collapse
|
48
|
Yap SY, Frias B, Wren MC, Schöll M, Fox NC, Årstad E, Lashley T, Sander K. Discriminatory ability of next-generation tau PET tracers for Alzheimer's disease. Brain 2021; 144:2284-2290. [PMID: 33742656 PMCID: PMC8453387 DOI: 10.1093/brain/awab120] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
A next generation of tau PET tracers for the imaging of Alzheimer’s disease and other dementias has recently been developed. Whilst the new compounds have now entered clinical studies, there is limited information available to assess their suitability for clinical applications. Head-to-head comparisons are urgently needed to understand differences in the radiotracer binding profiles. We characterized the binding of the tau tracers PI2620, RO948, MK6240 and JNJ067 in human post-mortem brain tissue from a cohort of 25 dementia cases and age-matched controls using quantitative phosphorimaging with tritium-labelled radiotracers in conjunction with phospho-tau specific immunohistochemistry. The four radiotracers depicted tau inclusions composed of paired helical filaments with high specificity, both in cases with Alzheimer’s disease and in primary tauopathy cases with concomitant Alzheimer’s disease pathology. In contrast, cortical binding to primary tauopathy in cases without paired helical filament tau was found to be within the range of age-matched controls. Off-target binding to monoamine oxidase B has been overcome, as demonstrated by heterologous blocking studies in basal ganglia tissue. The high variability of cortical tracer binding within the Alzheimer’s disease group followed the same pattern with each tracer, suggesting that all compounds are suited to differentiate Alzheimer’s disease from other dementias.
Collapse
Affiliation(s)
- Steven Y Yap
- Centre for Radiopharmaceutical Chemistry, Department of Imaging, University College London, London, UK.,Department of Chemistry, University College London, London, UK
| | - Barbara Frias
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| | - Melissa C Wren
- Centre for Radiopharmaceutical Chemistry, Department of Imaging, University College London, London, UK.,Department of Chemistry, University College London, London, UK.,Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, 405 30 Gothenburg, Sweden.,Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Nick C Fox
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK.,UK Dementia Research Institute, Queen Square Institute of Neurology, University College London, London, UK
| | - Erik Årstad
- Centre for Radiopharmaceutical Chemistry, Department of Imaging, University College London, London, UK.,Department of Chemistry, University College London, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.,Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| | - Kerstin Sander
- Centre for Radiopharmaceutical Chemistry, Department of Imaging, University College London, London, UK.,Department of Chemistry, University College London, London, UK
| |
Collapse
|
49
|
Campese N, Palermo G, Del Gamba C, Beatino MF, Galgani A, Belli E, Del Prete E, Della Vecchia A, Vergallo A, Siciliano G, Ceravolo R, Hampel H, Baldacci F. Progress regarding the context-of-use of tau as biomarker of Alzheimer's disease and other neurodegenerative diseases. Expert Rev Proteomics 2021; 18:27-48. [PMID: 33545008 DOI: 10.1080/14789450.2021.1886929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Tau protein misfolding and accumulation in toxic species is a critical pathophysiological process of Alzheimer's disease (AD) and other neurodegenerative disorders (NDDs). Tau biomarkers, namely cerebrospinal fluid (CSF) total-tau (t-tau), 181-phosphorylated tau (p-tau), and tau-PET tracers, have been recently embedded in the diagnostic criteria for AD. Nevertheless, the role of tau as a diagnostic and prognostic biomarker for other NDDs remains controversial.Areas covered: We performed a systematical PubMed-based review of the most recent advances in tau-related biomarkers for NDDs. We focused on papers published from 2015 to 2020 assessing the diagnostic or prognostic value of each biomarker.Expert opinion: The assessment of tau biomarkers in alternative easily accessible matrices, through the development of ultrasensitive techniques, represents the most significant perspective for AD-biomarker research. In NDDs, novel tau isoforms (e.g. p-tau217) or proteolytic fragments (e.g. N-terminal fragments) may represent candidate diagnostic and prognostic biomarkers and may help monitoring disease progression. Protein misfolding amplification assays, allowing the identification of different tau strains (e.g. 3 R- vs. 4 R-tau) in CSF, may constitute a breakthrough for the in vivo stratification of NDDs. Tau-PET may help tracking the spatial-temporal evolution of tau pathophysiology in AD but its application outside the AD-spectrum deserves further studies.
Collapse
Affiliation(s)
- Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Del Gamba
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabetta Belli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Andrea Vergallo
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Harald Hampel
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| |
Collapse
|
50
|
Jie CVML, Treyer V, Schibli R, Mu L. Tauvid™: The First FDA-Approved PET Tracer for Imaging Tau Pathology in Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:ph14020110. [PMID: 33573211 PMCID: PMC7911942 DOI: 10.3390/ph14020110] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/03/2022] Open
Abstract
Tauvid has been approved by the U.S. Food and Drug Administration (FDA) in 2020 for positron emission tomography (PET) imaging of adult patients with cognitive impairments undergoing evaluation for Alzheimer’s disease (AD) based on tau pathology. Abnormal aggregation of tau proteins is one of the main pathologies present in AD and is receiving increasing attention as a diagnostic and therapeutic target. In this review, we summarised the production and quality control of Tauvid, its clinical application, pharmacology and pharmacokinetics, as well as its limitation due to off-target binding. Moreover, a brief overview on the second-generation of Tau PET tracers is provided. The approval of Tauvid marks a step forward in the field of AD research and opens up opportunities for second-generation tau tracers to advance tau PET imaging in the clinic.
Collapse
Affiliation(s)
- Caitlin V. M. L. Jie
- Center for Radiopharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zurich, Switzerland; (C.V.M.L.J.); (R.S.)
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zurich, Switzerland; (C.V.M.L.J.); (R.S.)
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zurich, Switzerland; (C.V.M.L.J.); (R.S.)
- Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland;
- Correspondence:
| |
Collapse
|