1
|
Jiang Y, Song H, Zhang G, Ling J. The application of medicinal fungi from the subphylum Ascomycota in the treatment of type 2 diabetes. JOURNAL OF FUTURE FOODS 2025; 5:361-371. [DOI: 10.1016/j.jfutfo.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Sian-Hulsmann J, Riederer P, Michel TM. Metabolic Dysfunction in Parkinson's Disease: Unraveling the Glucose-Lipid Connection. Biomedicines 2024; 12:2841. [PMID: 39767747 PMCID: PMC11673947 DOI: 10.3390/biomedicines12122841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Despite many years of research into the complex neurobiology of Parkinson's disease, the precise aetiology cannot be pinpointed down to one causative agent but rather a multitude of mechanisms. Current treatment options can alleviate symptomsbut only slightly slow down the progression and not cure the disease and its underlying causes. Factors that play a role in causing the debilitating neurodegenerative psycho-motoric symptoms include genetic alterations, oxidative stress, neuroinflammation, general inflammation, neurotoxins, iron toxicity, environmental influences, and mitochondrial dysfunction. Recent findings suggest that the characteristic abnormal protein aggregation of alpha-synuclein and destruction of substantia nigra neurons might be due to mitochondrial dysfunction related to disturbances in lipid and glucose metabolism along with insulin resistance. The latter mechanism of action might be mediated by insulin receptor substrate docking to proteins that are involved in neuronal survival and signaling related to cell destruction. The increased risk of developing Type 2 Diabetes Mellitus endorses a connection between metabolic dysfunction and neurodegeneration. Here, we explore and highlight the potential role of glycolipid cellular insults in the pathophysiology of the disorder, opening up new promising avenues for the treatment of PD. Thus, antidiabetic drugs may be employed as neuromodulators to hinder the progression of the disorder.
Collapse
Affiliation(s)
- Jeswinder Sian-Hulsmann
- Department of Human Anatomy and Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya;
| | - Peter Riederer
- Research Unit of Psychiatry, Department of Psychiatry, Odense, Region of Southern Denmark, University Hospital of Southern Denmark, 5000 Odense, Denmark;
| | - Tanja Maria Michel
- Research Unit of Psychiatry, Department of Psychiatry, Odense, Region of Southern Denmark, University Hospital of Southern Denmark, 5000 Odense, Denmark;
| |
Collapse
|
3
|
Jansen TJP, Tokgöz S, Buitinga M, van Lith SAM, Joosten L, Frielink C, Smeets EMM, Stommel MWJ, van der Kolk MB, de Galan BE, Brom M, Boss M, Gotthardt M. Validation of radiolabelled exendin for beta cell imaging by ex vivo autoradiography and immunohistochemistry of human pancreas. EJNMMI Res 2024; 14:96. [PMID: 39405026 PMCID: PMC11480297 DOI: 10.1186/s13550-024-01159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Estimation of beta cell mass is currently restricted to evaluating pancreatic tissue samples, which provides limited information. A non-invasive imaging technique that reliably quantifies beta cell mass enables monitoring of changes of beta cell mass during the progression of diabetes mellitus and may contribute to monitoring of therapy effectiveness. We assessed the specificity of radiolabelled exendin for beta cell mass quantification in humans. Fourteen adults with pancreas tumours were injected with 111In-labeled exendin-4 prior to pancreatic resection. In resected pancreas tissue, endocrine-exocrine ratios of tracer uptake were determined by digital autoradiography and accumulation of 111In-labeled exendin-4 was compared to insulin and GLP-1 receptor staining. Of four participants, abdominal single photon emission computed tomography/computed tomography (SPECT/CT) images were acquired to quantify pancreatic uptake in vivo RESULTS: Tracer uptake was predominantly present in the endocrine pancreas (endocrine-exocrine ratio: 3.6 [2.8-10.8]. Tracer accumulation showed overlap with insulin-positive regions, which overlapped with GLP-1 receptor positive areas. SPECT imaging showed pancreatic uptake of radiolabelled exendin in three participants. CONCLUSION Radiolabelled exendin specifically accumulates in the islets of Langerhans in human pancreas tissue. The clear overlap between regions positive for insulin and the GLP-1 receptor substantiate the beta cell specificity of the tracer. Radiolabelled exendin is therefore a valuable imaging agent for human beta cell mass quantification and has the potential to be used for a range of applications, including improvement of diabetes treatment by assessment of the effects of current and novel diabetes therapies on the beta cell mass. TRIAL REGISTRATION ClinicalTrials.gov NCT03889496, registered 26,032,019, URL https://clinicaltrials.gov/study/NCT03889496?term=NCT03889496 . CLINICALTRIALS gov NCT04733508, registered 02022021, URL https://clinicaltrials.gov/study/NCT04733508 .
Collapse
Affiliation(s)
- Theodorus J P Jansen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sevilay Tokgöz
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mijke Buitinga
- Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
- Radiology and Nuclear Medicine, Maastricht UMC+, Maastricht, The Netherlands
| | - Sanne A M van Lith
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lieke Joosten
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cathelijne Frielink
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Esther M M Smeets
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn W J Stommel
- Department of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Bastiaan E de Galan
- Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Internal Medicine, Maastricht UMC+, Maastricht, The Netherlands
- CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, The Netherlands
| | - Maarten Brom
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marti Boss
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Li Z, Zheng L, Wang J, Wang L, Qi Y, Amin B, Zhu J, Zhang N. Dopamine in the regulation of glucose and lipid metabolism: a narrative review. Obesity (Silver Spring) 2024; 32:1632-1645. [PMID: 39081007 DOI: 10.1002/oby.24068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE Owing to the global obesity epidemic, understanding the regulatory mechanisms of glucose and lipid metabolism has become increasingly important. The dopaminergic system, including dopamine, dopamine receptors, dopamine transporters, and other components, is involved in numerous physiological and pathological processes. However, the mechanism of action of the dopaminergic system in glucose and lipid metabolism is poorly understood. In this review, we examine the role of the dopaminergic system in glucose and lipid metabolism. RESULTS The dopaminergic system regulates glucose and lipid metabolism through several mechanisms. It regulates various activities at the central level, including appetite control and decision-making, which contribute to regulating body weight and energy metabolism. In the pituitary gland, dopamine inhibits prolactin production and promotes insulin secretion through dopamine receptor 2. Furthermore, it can influence various physiological components in the peripheral system, such as pancreatic β cells, glucagon-like peptide-1, adipocytes, hepatocytes, and muscle, by regulating insulin and glucagon secretion, glucose uptake and use, and fatty acid metabolism. CONCLUSIONS The role of dopamine in regulating glucose and lipid metabolism has significant implications for the physiology and pathogenesis of disease. The potential therapeutic value of dopamine lies in its effects on metabolic disorders.
Collapse
Affiliation(s)
- Zhehong Li
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lifei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Wang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yao Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Buhe Amin
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jinxia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Nengwei Zhang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Li S, Yang D, Zhou X, Chen L, Liu L, Lin R, Li X, Liu Y, Qiu H, Cao H, Liu J, Cheng Q. Neurological and metabolic related pathophysiologies and treatment of comorbid diabetes with depression. CNS Neurosci Ther 2024; 30:e14497. [PMID: 37927197 PMCID: PMC11017426 DOI: 10.1111/cns.14497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The comorbidity between diabetes mellitus and depression was revealed, and diabetes mellitus increased the prevalence of depressive disorder, which ranked 13th in the leading causes of disability-adjusted life-years. Insulin resistance, which is common in diabetes mellitus, has increased the risk of depressive symptoms in both humans and animals. However, the mechanisms behind the comorbidity are multi-factorial and complicated. There is still no causal chain to explain the comorbidity exactly. Moreover, Selective serotonin reuptake inhibitors, insulin and metformin, which are recommended for treating diabetes mellitus-induced depression, were found to be a risk factor in some complications of diabetes. AIMS Given these problems, many researchers made remarkable efforts to analyze diabetes complicating depression from different aspects, including insulin resistance, stress and Hypothalamic-Pituitary-Adrenal axis, neurological system, oxidative stress, and inflammation. Drug therapy, such as Hydrogen Sulfide, Cannabidiol, Ascorbic Acid and Hesperidin, are conducive to alleviating diabetes mellitus and depression. Here, we reviewed the exact pathophysiology underlying the comorbidity between depressive disorder and diabetes mellitus and drug therapy. METHODS The review refers to the available literature in PubMed and Web of Science, searching critical terms related to diabetes mellitus, depression and drug therapy. RESULTS In this review, we found that brain structure and function, neurogenesis, brain-derived neurotrophic factor and glucose and lipid metabolism were involved in the pathophysiology of the comorbidity. Obesity might lead to diabetes mellitus and depression through reduced adiponectin and increased leptin and resistin. In addition, drug therapy displayed in this review could expand the region of potential therapy. CONCLUSIONS The review summarizes the mechanisms underlying the comorbidity. It also overviews drug therapy with anti-diabetic and anti-depressant effects.
Collapse
Affiliation(s)
- Sixin Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Dong Yang
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Xuhui Zhou
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of GastroenterologyBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lini Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ruoheng Lin
- Department of Psychiatry, National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ying Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital, Hunan University of Chinese MedicineChangshaHunanChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
6
|
Sun Y, Li G, Hong H, Zhu L, Kung HF, Zhang Y, Zhu J. Serotonin transporter imaging agent as a probe for β-cells of pancreas. Nucl Med Biol 2024; 130-131:108894. [PMID: 38422917 DOI: 10.1016/j.nucmedbio.2024.108894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVE Diabetes mellitus (DM) is one of the major diseases in the world. Nuclear medicine imaging may be able to detect functional status of pancreatic β cells in vivo, which might elucidate the pathological mechanisms of diabetes and develop individualized treatment plans. In this study, we evaluated the ability of [125I]ADAM, a serotonin transporter (SERT) imaging agent, as a probe for detecting pancreatic β-cell mass (BCM). METHODS In vitro cell studies were evaluated in INS-1 cells (rat islet β cell line). Biodistribution studies were performed in male normal Sprague-Dawley rats and alloxan-induced type 1 diabetes mellitus (T1DM) rats. Distribution and expression of SERT protein in pancreas of rats were also measured by immunofluorescence staining and Western blot. RESULTS In vitro cell studies showed that the concentration of [125I]ADAM associated with the INS-1 cells was increased gradually with incubation time, and the SERT specific inhibitor, escitalopram, exhibited the inhibitory effect on this interaction. Biodistribution studies also showed that the uptake of [125I]ADAM in the pancreas of normal rats was decreased in the presence of escitalopram. However, in the T1DM rat model with a significant β cells reduction, the uptake of pancreas was increased when compared with the control. Through immunofluorescence staining and Western blot, it was found that both the endocrine and exocrine cells of the normal pancreas expressed SERT protein, and the level of SERT protein in the exocrine cells was higher than islets. In the diabetic state, the expression of SERT in the exocrine cells was further increased. CONCLUSIONS The SERT imaging agent, [125I]ADAM, at the present form will not be suitable for imaging β cells, specifically because there were extraordinarily high non-specific signals contributing from the exocrine cells of pancreas. In addition, we noticed that the level of SERT expression was abnormally elevated in the diabetic state, which might provide an unexpected target for studying the pathological mechanisms of diabetes.
Collapse
Affiliation(s)
- Yuli Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Guangwen Li
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Haiyan Hong
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lin Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China.
| | - Jinxia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
7
|
Bini J. The historical progression of positron emission tomography research in neuroendocrinology. Front Neuroendocrinol 2023; 70:101081. [PMID: 37423505 PMCID: PMC10530506 DOI: 10.1016/j.yfrne.2023.101081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The rapid and continual development of a number of radiopharmaceuticals targeting different receptor, enzyme and small molecule systems has fostered Positron Emission Tomography (PET) imaging of endocrine system actions in vivo in the human brain for several decades. PET radioligands have been developed to measure changes that are regulated by hormone action (e.g., glucose metabolism, cerebral blood flow, dopamine receptors) and actions within endocrine organs or glands such as steroids (e.g., glucocorticoids receptors), hormones (e.g., estrogen, insulin), and enzymes (e.g., aromatase). This systematic review is targeted to the neuroendocrinology community that may be interested in learning about positron emission tomography (PET) imaging for use in their research. Covering neuroendocrine PET research over the past half century, researchers and clinicians will be able to answer the question of where future research may benefit from the strengths of PET imaging.
Collapse
Affiliation(s)
- Jason Bini
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
8
|
Bini J, Carson RE, Cline GW. Noninvasive Quantitative PET Imaging in Humans of the Pancreatic Beta-Cell Mass Biomarkers VMAT2 and Dopamine D2/D3 Receptors In Vivo. Methods Mol Biol 2023; 2592:61-74. [PMID: 36507985 DOI: 10.1007/978-1-0716-2807-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Noninvasive quantitative imaging of beta-cells can provide information on changes in cellular transporters, receptors, and signaling proteins that may affect function and/or loss of mass, both of which contribute to the loss of insulin secretion and glucose regulation of patients with type 1 or type 2 diabetes (T1D/T2D). We have developed and optimized the use of two positron emission tomography (PET) radioligands, [18F]FP-(+)-DTBZ and [11C](+)-PHNO, targeting beta-cell VMAT2 and dopamine (D2/D3) receptors, respectively. Here we describe our optimized methodology for the clinical use of these two tracers for quantitative PET imaging of beta-cell biomarkers in vivo. We also briefly discuss our previous results and their implications and value towards extending the use of PET radioligand beyond the original goal of quantitative imaging of beta-cell mass to the potential to provide insight into the biology of beta-cell loss of mass and/or function and to evaluate the efficacy of therapeutics to prevent or restore functional beta-cell mass.
Collapse
Affiliation(s)
- Jason Bini
- PET Center, Yale University School of Medicine, New Haven, CT, USA.
| | - Richard E Carson
- PET Center, Yale University School of Medicine, New Haven, CT, USA
| | - Gary W Cline
- Department of Internal Medicine, Division of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Wagner LE, Melnyk O, Duffett BE, Linnemann AK. Mouse models and human islet transplantation sites for intravital imaging. Front Endocrinol (Lausanne) 2022; 13:992540. [PMID: 36277698 PMCID: PMC9579277 DOI: 10.3389/fendo.2022.992540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/09/2022] [Indexed: 01/12/2023] Open
Abstract
Human islet transplantations into rodent models are an essential tool to aid in the development and testing of islet and cellular-based therapies for diabetes prevention and treatment. Through the ability to evaluate human islets in an in vivo setting, these studies allow for experimental approaches to answer questions surrounding normal and disease pathophysiology that cannot be answered using other in vitro and in vivo techniques alone. Intravital microscopy enables imaging of tissues in living organisms with dynamic temporal resolution and can be employed to measure biological processes in transplanted human islets revealing how experimental variables can influence engraftment, and transplant survival and function. A key consideration in experimental design for transplant imaging is the surgical placement site, which is guided by the presence of vasculature to aid in functional engraftment of the islets and promote their survival. Here, we review transplantation sites and mouse models used to study beta cell biology in vivo using intravital microscopy and we highlight fundamental observations made possible using this methodology.
Collapse
Affiliation(s)
- Leslie E. Wagner
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Olha Melnyk
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bryce E. Duffett
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Amelia K. Linnemann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
10
|
Bini J, Lattin CR, Toyonaga T, Finnema SJ, Carson R. Optimized Methodology for Reference Region and Image-Derived Input Function Kinetic Modeling in Preclinical PET. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022; 6:454-462. [PMID: 36185820 PMCID: PMC9524424 DOI: 10.1109/trpms.2021.3088606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
PET imaging of small animals is often used for assessing biodistribution of a novel radioligand and pharmacology in small animal models of disease. PET acquisition and processing settings may affect reference region or image-derived input function (IDIF) kinetic modeling estimates. We examined four different factors in comparing quantitative results: 1) effect of reconstruction algorithm, 2) number of MAP iterations, 3) strength of the MAP prior, and 4) Attenuation and scatter. The effect of these parameters has not been explored for small-animal reference region and IDIF kinetic modeling approaches. Dynamic PET/CT scans were performed in 3 species with 3 different tracers: house sparrows with [11C]raclopride, rats with [18F]AS2471907 (11βHSD1) and mice with [11C]UCB-J (SV2A). FBP yielded lower kinetic modeling estimates compared to 3D-OSEM-MAP reconstructions, in sparrow and rat studies. Target resolutions (MAP prior strength) of 1.5 and 3.0mm demonstrated reduced VT in rats but only 3.0mm reduced BP ND in sparrows. Therefore, use of the highest target resolution (0.8mm) is warranted. We demonstrated using kinetic modeling that forgoing CT-based attenuation and scatter correction may be appropriate to improve animal throughput when using short-lived radioisotopes in sparrows and mice. This work provides recommendations and a framework for future optimization of kinetic modeling for preclinical PET methodology with novel radioligands.
Collapse
Affiliation(s)
- Jason Bini
- Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
11
|
De Iuliis A, Montinaro E, Fatati G, Plebani M, Colosimo C. Diabetes mellitus and Parkinson's disease: dangerous liaisons between insulin and dopamine. Neural Regen Res 2022; 17:523-533. [PMID: 34380882 PMCID: PMC8504381 DOI: 10.4103/1673-5374.320965] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/08/2021] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
The relationship between diabetes mellitus and Parkinson's disease has been described in several epidemiological studies over the 1960s to date. Molecular studies have shown the possible functional link between insulin and dopamine, as there is strong evidence demonstrating the action of dopamine in pancreatic islets, as well as the insulin effects on feeding and cognition through central nervous system mechanism, largely independent of glucose utilization. Therapies used for the treatment of type 2 diabetes mellitus appear to be promising candidates for symptomatic and/or disease-modifying action in neurodegenerative diseases including Parkinson's disease, while an old dopamine agonist, bromocriptine, has been repositioned for the type 2 diabetes mellitus treatment. This review will aim at reappraising the different studies that have highlighted the dangerous liaisons between diabetes mellitus and Parkinson's disease.
Collapse
Affiliation(s)
| | - Ennio Montinaro
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| | | | - Mario Plebani
- Department of Medicine-DiMED, University of Padova, Italy
- Department of Medicine-DiMED, University of Padova, Padova, Italy; Department of Laboratory Medicine-Hospital of Padova, Padova, Italy
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| |
Collapse
|
12
|
Cheung P, Eriksson O. The Current State of Beta-Cell-Mass PET Imaging for Diabetes Research and Therapies. Biomedicines 2021; 9:1824. [PMID: 34944640 PMCID: PMC8698817 DOI: 10.3390/biomedicines9121824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Diabetes is a chronic metabolic disease affecting over 400 million people worldwide and one of the leading causes of death, especially in developing nations. The disease is characterized by chronic hyperglycemia, caused by defects in the insulin secretion or action pathway. Current diagnostic methods measure metabolic byproducts of the disease such as glucose level, glycated hemoglobin (HbA1c), insulin or C-peptide levels, which are indicators of the beta-cell function. However, they inaccurately reflect the disease progression and provide poor longitudinal information. Beta-cell mass has been suggested as an alternative approach to study disease progression in correlation to beta-cell function, as it behaves differently in the diabetes physiopathology. Study of the beta-cell mass, however, requires highly invasive and potentially harmful procedures such as pancreatic biopsies, making diagnosis and monitoring of the disease tedious. Nuclear medical imaging techniques using radiation emitting tracers have been suggested as strong non-invasive tools for beta-cell mass. A highly sensitive and high-resolution technique, such as positron emission tomography, provides an ideal solution for the visualization of beta-cell mass, which is particularly essential for better characterization of a disease such as diabetes, and for estimating treatment effects towards regeneration of the beta-cell mass. Development of novel, validated biomarkers that are aimed at beta-cell mass imaging are thus highly necessary and would contribute to invaluable breakthroughs in the field of diabetes research and therapies. This review aims to describe the various biomarkers and radioactive probes currently available for positron emission tomography imaging of beta-cell mass, as well as highlight the need for precise quantification and visualization of the beta-cell mass for designing new therapy strategies and monitoring changes in the beta-cell mass during the progression of diabetes.
Collapse
Affiliation(s)
- Pierre Cheung
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, SE-75183 Uppsala, Sweden;
| | | |
Collapse
|
13
|
Li L, Zhao R, Hong H, Li G, Zhang Y, Luo Y, Zha Z, Zhu J, Qiao J, Zhu L, Kung HF. 68Ga-labelled-exendin-4: New GLP1R targeting agents for imaging pancreatic β-cell and insulinoma. Nucl Med Biol 2021; 102-103:87-96. [PMID: 34695640 DOI: 10.1016/j.nucmedbio.2021.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Glucagon-like peptide-1 receptor (GLP1R) specifically expressed on the surface of pancreatic β-cells and insulinoma, is a potential biomarker for imaging β-cell mass (BCM). In this study, two new 68Ga-labelled GLP1R targeting agents were prepared and their biological properties for imaging BCM and insulinoma were evaluated. METHODS [68Ga]Ga-HBED-CC-MAL-Cys39-exendin-4 ([68Ga]Ga-4) and its dimer ([68Ga]Ga-5) were synthesized from corresponding precursors. Cell uptake studies were evaluated in INS-1 cells. Biodistribution and microPET studies were performed in male normal Sprague-Dawley rats, diabetic rats and insulinoma xenograft NOD/SCID mice. RESULTS [68Ga]Ga-4 and [68Ga]Ga-5 were efficiently radiolabelled by a simple one-step reaction without purification leading to high radiochemical yields and radiochemical purities (both >95%, decay corrected, n = 6, molar activity 15 GBq/μmol). They both showed excellent stability (~95%) in phosphate-buffered saline, pH 7.4, and in rat serum (~90%) for 2 h. Biodistribution studies and small animal PET/CT imaging showed that [68Ga]Ga-4 displayed specific uptake in rat pancreas and mouse insulinoma, and a reduced uptake in the pancreas of diabetic rat was observed (~62% reduction). Notably, it exhibited a rapid time-to-peak pancreatic uptake (0.96 ± 0.19%ID/g in 15 min) and fast clearance from the kidney (42% clearance in 30 min). Results suggested a favorable in vivo kinetics for human imaging studies. CONCLUSIONS [68Ga]Ga-4 targeting GLP1R of pancreatic β-cells may be a potentially useful PET agent and a suitable candidate for further structural modification studies. This agent has demonstrated several advantages, rapid time-to-peak pancreatic uptake and faster clearance from the kidney, factors may enhance diagnosis of diabetes and insulinoma.
Collapse
Affiliation(s)
- Linlin Li
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Ruiyue Zhao
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Haiyan Hong
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Guangwen Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yang Luo
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Zhihao Zha
- Department of Radiology, University of Pennsylvania, USA
| | - Jinxia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jinping Qiao
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Lin Zhu
- College of Chemistry, Beijing Normal University, Beijing, China.
| | - Hank F Kung
- Department of Radiology, University of Pennsylvania, USA.
| |
Collapse
|
14
|
Bini J, Norcross M, Cheung M, Duffy A. The Role of Positron Emission Tomography in Bariatric Surgery Research: a Review. Obes Surg 2021; 31:4592-4606. [PMID: 34304378 DOI: 10.1007/s11695-021-05576-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022]
Abstract
Bariatric surgery, initially understood as restricting or bypassing the amount of food that reaches the stomach to reduce food intake and/or increase malabsorption of food to promote weight loss, is now recognized to also affect incretin signaling in the gut and promote improvements in system-wide metabolism. Positron emission tomography (PET) is an imaging technique whereby patients are injected with picomolar concentrations of radioactive molecules, below the threshold of having physiological effects, to measure spatial distributions of blood flow, metabolism, receptor, and enzyme pharmacology. Recent advances in both whole-body PET imaging and radioligand development will allow for novel research that may help clarify the roles of peripheral and central receptor/enzyme systems in treating obesity with bariatric surgery.
Collapse
Affiliation(s)
- Jason Bini
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, 801 Howard Avenue, PO Box 208048, New Haven, CT, USA.
| | | | - Maija Cheung
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew Duffy
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
15
|
Joosten L, Boss M, Jansen T, Brom M, Buitinga M, Aarntzen E, Eriksson O, Johansson L, de Galan B, Gotthardt M. Molecular Imaging of Diabetes. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
16
|
Mitrofanova LB, Perminova AA, Ryzhkova DV, Sukhotskaya AA, Bairov VG, Nikitina IL. Differential Morphological Diagnosis of Various Forms of Congenital Hyperinsulinism in Children. Front Endocrinol (Lausanne) 2021; 12:710947. [PMID: 34497584 PMCID: PMC8419459 DOI: 10.3389/fendo.2021.710947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Congenital hyperinsulinism (CHI) has diffuse (CHI-D), focal (CHI-F) and atypical (CHI-A) forms. Surgical management depends on preoperative [18F]-DOPA PET/CT and intraoperative morphological differential diagnosis of CHI forms. Objective: to improve differential diagnosis of CHI forms by comparative analysis [18F]-DOPA PET/CT data, as well as cytological, histological and immunohistochemical analysis (CHIA). MATERIALS AND METHODS The study included 35 CHI patients aged 3.2 ± 2.0 months; 10 patients who died from congenital heart disease at the age of 3.2 ± 2.9 months (control group). We used PET/CT, CHIA of pancreas with antibodies to ChrA, insulin, Isl1, Nkx2.2, SST, NeuroD1, SSTR2, SSTR5, DR1, DR2, DR5; fluorescence microscopy with NeuroD1/ChrA, Isl1/insulin, insulin/SSTR2, DR2/NeuroD1 cocktails. RESULTS Intraoperative examination of pancreatic smears showed the presence of large nuclei, on average, in: 14.5 ± 3.5 cells of CHI-F; 8.4 ± 1.1 of CHI-D; and 4.5 ± 0.7 of control group (from 10 fields of view, x400). The percentage of Isl1+ and NeuroD1+endocrinocytes significantly differed from that in the control for all forms of CHI. The percentage of NeuroD1+exocrinocytes was also significantly higher than in the control. The proportion of ChrA+ and DR2+endocrinocytes was higher in CHI-D than in CHI-F, while the proportion of insulin+cells was higher in CHI-A. The number of SST+cells was significantly higher in CHI-D and CHI-F than in CHI-A. CONCLUSION For intraoperative differential diagnosis of CHI forms, in addition to frozen sections, quantitative cytological analysis can be used. In quantitative immunohistochemistry, CHI forms differ in the expression of ChrA, insulin, SST and DR2. The development of a NeuroD1 inhibitor would be advisable for targeted therapy of CHI.
Collapse
|
17
|
Murakami T, Fujimoto H, Inagaki N. Non-invasive Beta-cell Imaging: Visualization, Quantification, and Beyond. Front Endocrinol (Lausanne) 2021; 12:714348. [PMID: 34248856 PMCID: PMC8270651 DOI: 10.3389/fendo.2021.714348] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Pancreatic beta (β)-cell dysfunction and reduced mass play a central role in the development and progression of diabetes mellitus. Conventional histological β-cell mass (BCM) analysis is invasive and limited to cross-sectional observations in a restricted sampling area. However, the non-invasive evaluation of BCM remains elusive, and practical in vivo and clinical techniques for β-cell-specific imaging are yet to be established. The lack of such techniques hampers a deeper understanding of the pathophysiological role of BCM in diabetes, the implementation of personalized BCM-based diabetes management, and the development of antidiabetic therapies targeting BCM preservation and restoration. Nuclear medical techniques have recently triggered a major leap in this field. In particular, radioisotope-labeled probes using exendin peptides that include glucagon-like peptide-1 receptor (GLP-1R) agonist and antagonist have been employed in positron emission tomography and single-photon emission computed tomography. These probes have demonstrated high specificity to β cells and provide clear images accurately showing uptake in the pancreas and transplanted islets in preclinical in vivo and clinical studies. One of these probes, 111indium-labeled exendin-4 derivative ([Lys12(111In-BnDTPA-Ahx)]exendin-4), has captured the longitudinal changes in BCM during the development and progression of diabetes and under antidiabetic therapies in various mouse models of type 1 and type 2 diabetes mellitus. GLP-1R-targeted imaging is therefore a promising tool for non-invasive BCM evaluation. This review focuses on recent advances in non-invasive in vivo β-cell imaging for BCM evaluation in the field of diabetes; in particular, the exendin-based GLP-1R-targeted nuclear medicine techniques.
Collapse
Affiliation(s)
- Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Fujimoto
- Radioisotope Research Center, Agency of Health, Safety and Environment, Kyoto University, Kyoto, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
- *Correspondence: Nobuya Inagaki,
| |
Collapse
|
18
|
Kong Y, Zhou H, Feng H, Zhuang J, Wen T, Zhang C, Sun B, Wang J, Guan Y. Elucidating the Relationship Between Diabetes Mellitus and Parkinson's Disease Using 18F-FP-(+)-DTBZ, a Positron-Emission Tomography Probe for Vesicular Monoamine Transporter 2. Front Neurosci 2020; 14:682. [PMID: 32760240 PMCID: PMC7372188 DOI: 10.3389/fnins.2020.00682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/03/2020] [Indexed: 01/25/2023] Open
Abstract
Diabetes mellitus (DM) and Parkinson’s disease (PD) have been and will continue to be two common chronic diseases globally that are difficult to diagnose during the prodromal phase. Current molecular genetics, cell biological, and epidemiological evidences have shown the correlation between PD and DM. PD shares the same pathogenesis pathways and pathological factors with DM. In addition, β-cell reduction, which can cause hyperglycemia, is a striking feature of DM. Recent studies indicated that hyperglycemia is highly relevant to the pathologic changes in PD. However, further correlation between DM and PD remains to be investigated. Intriguingly, polycystic monoamine transporter 2 (VMAT2), which is co-expressed in dopaminergic neurons and β cells, is responsible for taking up dopamine into the presynaptic vesicles and can specifically bind to the β cells. Furthermore, we have summarized the specific molecular and diagnostic functions of VMAT2 for the two diseases reported in this review. Therefore, VMAT2 can be applied as a target probe for positron emission tomography (PET) imaging to detect β-cell and dopamine level changes, which can contribute to the diagnosis of DM and PD during the prodromal phase. Targeting VMAT2 with the molecular probe 18F-FP-(+)-DTBZ can be an entry point for the β cell mass (BCM) changes in DM at the molecular level, to clarify the potential relationship between DM and PD. VMAT2 has promising clinical significance in investigating the pathogenesis, early diagnosis, and treatment evaluation of the two diseases.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Haicong Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Hu Feng
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Junyi Zhuang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Bini J, Carson RE, Cline GW. Reply: 11C-(+)-PHNO Trapping Reversibility for Quantitative PET Imaging of β-Cell Mass in Patients with Type 1 Diabetes. J Nucl Med 2020; 61:1693. [PMID: 32620703 DOI: 10.2967/jnumed.120.250985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jason Bini
- Yale University School of Medicine 801 Howard Ave., P.O. Box 208048 New Haven, CT E-mail:
| | | | | |
Collapse
|
20
|
Laffon E, Marthan R. 11C-(+)-PHNO Trapping Reversibility for Quantitative PET Imaging of β-Cell Mass in Patients with Type 1 Diabetes. J Nucl Med 2020; 61:1692-1693. [PMID: 31924722 DOI: 10.2967/jnumed.119.241075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Eric Laffon
- Hôpital du Haut-Lévèque avenue de Magellan 33604 Pessac, France E-mail:
| | | |
Collapse
|