1
|
Walker JR, Bente DA, Burch MT, Cerqueira FM, Ren P, Labonté JM. Molecular assessment of oyster microbiomes and viromes reveals their potential as pathogen and ecological sentinels. One Health 2025; 20:100973. [PMID: 39898315 PMCID: PMC11786891 DOI: 10.1016/j.onehlt.2025.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
Oyster aquaculture world-wide is a booming industry that can provide many benefits to coastal habitats, including economic, ecosystem-level, and cultural benefits. Oysters present several risks for human consumption, including transmission of parasites, and bacterial and viral pathogens. Oyster microbiomes are well-defined, but their connection to the incidence of pathogens, humans or others, is unclear. Furthermore, viruses associated with oysters are largely unknown, and their connection to humans, animals, and ecosystem health has not been explored. Here, we employed a One Health framework and modern molecular techniques, including 16S rRNA amplicon and metagenomic sequencing, to identify links between changes in the microbial and viral communities associated with oysters and the incidence of pathogens detected in oyster tissues and their surrounding environments. In addition, we adapted the BioFire® FilmArray®, commonly used in hospitals, to determine the presence of human pathogens within the sampled oysters. We detected known human pathogens in 50 % of the oysters tested. Within the genomic datasets, we noted that pathogens of humans, animals, and plants in oysters were shared with the nearby water and sediments, suggesting a sink-source dynamic between the oysters and their surroundings. 16S rRNA gene analysis revealed that while oysters share common microbial constituents with their surrounding environments, they enrich for certain bacteria such as Mycoplasmatales, Fusobacteriales, and Spirochaetales. On the contrary, we found that oyster viromes harbored the same viruses in near equal relative abundances as their surrounding environments. Our results show how oysters could be used not only to determine the risk of human pathogens within coastal estuaries but also how oyster viruses could be used as ecosystem-level sentinels.
Collapse
Affiliation(s)
- Jordan R. Walker
- Department of Marine Biology, Texas A&M University at Galveston, Galveston 77554, TX, United States
| | - Dennis A. Bente
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, TX, United States
| | - Megan T. Burch
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, TX, United States
| | - Filipe M. Cerqueira
- Department of Pathology, University of Texas Medical Branch, Galveston 77555, TX, United States
| | - Ping Ren
- Department of Pathology, University of Texas Medical Branch, Galveston 77555, TX, United States
| | - Jessica M. Labonté
- Department of Marine Biology, Texas A&M University at Galveston, Galveston 77554, TX, United States
| |
Collapse
|
2
|
Ciesielski M, Clerkin T, Funnell N, Ben-Horin T, Noble RT. A suite of ddPCR assays targeting microbial pathogens for improved management of shellfish aquaculture. Appl Environ Microbiol 2025; 91:e0214924. [PMID: 40172220 PMCID: PMC12016556 DOI: 10.1128/aem.02149-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025] Open
Abstract
The shellfish aquaculture industry is one of the fastest-growing sectors of global food production, but it is currently facing major challenges stemming from microbial pathogens. This study presents an optimized and validated suite of droplet digital PCR (ddPCR) assays using water samples proximal to oyster farms in North Carolina to quantify pathogens relevant to the aquaculture industry. Two of the molecular assays enable the quantification of the pathogens, Vibrio parahaemolyticus and Perkinsus marinus, that threaten human health and oyster performance, respectively. This work also introduces two ddPCR assays that enable the simultaneous quantification of at least nine ecologically relevant Vibrio spp. using only two sets of primers and probes targeting the glycosyl hydrolase family 18 (GH18) domain of the chiA gene in Vibrio bacteria. The entire suite of assays was applied to single assessments at 12 sites, revealing heterogeneity in microbial pathogen concentrations across the coastal landscape and variability of abundances within individual estuarine river systems. Additionally, a longitudinal study conducted at a demonstration lease elucidated unique temporal trends for all microbial targets. Notably, when concentrations of Vibrio spp. quantified using the two assays targeting the chiA gene reached their maximum, the daily probability of mortality increased, suggesting a role for other ecologically pertinent Vibrio spp. in the progression of mortality that would otherwise be missed. This study highlights the utility of ddPCR for the advancement of shellfish management by offering insights into the spaciotemporal dynamics of microbial pathogens. IMPORTANCE Climate change is drastically altering the environment and changing the abundance and geographical distribution of marine pathogens. These microbial species put additional pressure on the aquaculture industry by acting as sources of disease for animals important to the food industry as well as for humans upon consumption of contaminated food. To address growing concerns, high-resolution monitoring of pathogens can offer insights for effective management in a critical industry. Validated in the field, the suite of molecular droplet digital PCR assays presented here improves upon current methods, enabling the simultaneous quantification of several targets. This technology makes it possible to track pathogens as they move through the environment and reveals changes in abundance that may inform adjustments to farming practices aimed at mitigating negative outcomes. Additionally, this work presents a unique approach to molecular assay design that unveils potential drivers of ecological shifts and emerging etiologies of disease more efficiently.
Collapse
Affiliation(s)
- Mark Ciesielski
- Department of Marine Sciences, Institute of Marine Sciences (IMS), University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
| | - Thomas Clerkin
- Department of Marine Sciences, Institute of Marine Sciences (IMS), University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
| | - Nicholas Funnell
- Department of Marine Sciences, Institute of Marine Sciences (IMS), University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
| | - Tal Ben-Horin
- Department of Veterinary Medicine, North Carolina State University Center for Marine Sciences and Technology (CMAST), North Carolina State University, Morehead City, North Carolina, USA
| | - Rachel T. Noble
- Department of Marine Sciences, Institute of Marine Sciences (IMS), University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
| |
Collapse
|
3
|
Almuhaideb E, Hasan NA, Grim C, Rashed SM, Parveen S. Comparative evaluation of specimen type and processing conditions for studying oyster microbiomes. Front Microbiol 2025; 15:1504487. [PMID: 39845046 PMCID: PMC11750828 DOI: 10.3389/fmicb.2024.1504487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Metagenomic sequencing is increasingly being employed to understand the assemblage and dynamics of the oyster microbiome. Specimen collection and processing steps can impact the resultant microbiome composition and introduce bias. To investigate this systematically, a total of 54 farmed oysters were collected from Chesapeake Bay between May and September 2019. Six different specimen types and processing methods were evaluated for microbial community composition using shotgun metagenomics, namely fresh oyster homogenate (FOH), oyster homogenate after simulated temperature abuse (AOH), Luria broth-enriched oyster homogenate (EOH), dissected stomach homogenate (DSH), hemolymph (HLM), and stomach-gut content (SGC). In general, DSH, EOH, and FOH yielded the highest DNA concentration, while EOH had the highest microbial reads, followed by DSH, HLM, and FOH. HLM produced the highest bacterial species alpha diversity, followed by AOH, EOH, and SGC. Although alpha diversities did not differ significantly, beta-diversity measurements showed significant dissimilarity among methods (p < 0.05) indicating that the specimen types and processing steps do play an important role in representing the composition of the bacterial community. Bacterial species that had the highest log mean abundance included Cyanobium sp. PCC 7001 in FOH, Vibrio vulnificus in AOH, EOH, and DSH, and lastly Synechococcus sp. CB0205 in the DSH, HML, and SGC samples. EOH displayed higher bacterial hits, distinct microbial composition, and higher values of bacterial, phages, and antimicrobial resistance gene reads. Therefore, if studying the overall oyster microbial community, prioritizing optimum specimen collection and processing methods that align with the overall goal of the study is recommended.
Collapse
Affiliation(s)
- Esam Almuhaideb
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States
| | - Nur A. Hasan
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, United States
- EzBiome Inc, Gaithersburg, MD, United States
| | - Christopher Grim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | | | - Salina Parveen
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States
| |
Collapse
|
4
|
Diner RE, Allard SM, Gilbert JA. Host-associated microbes mitigate the negative impacts of aquatic pollution. mSystems 2024; 9:e0086824. [PMID: 39207151 PMCID: PMC11495061 DOI: 10.1128/msystems.00868-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Pollution can negatively impact aquatic ecosystems, aquaculture operations, and recreational water quality. Many aquatic microbes can sequester or degrade pollutants and have been utilized for bioremediation. While planktonic and benthic microbes are well-studied, host-associated microbes likely play an important role in mitigating the negative impacts of aquatic pollution and represent an unrealized source of microbial potential. For example, aquatic organisms that thrive in highly polluted environments or concentrate pollutants may have microbiomes adapted to these selective pressures. Understanding microbe-pollutant interactions in sensitive and valuable species could help protect human well-being and improve ecosystem resilience. Investigating these interactions using appropriate experimental systems and overcoming methodological challenges will present novel opportunities to protect and improve aquatic systems. In this perspective, we review examples of how microbes could mitigate negative impacts of aquatic pollution, outline target study systems, discuss challenges of advancing this field, and outline implications in the face of global changes.
Collapse
Affiliation(s)
- Rachel E. Diner
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, USA
| | - Sarah M. Allard
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Jack A. Gilbert
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Auguste M, Leonessi M, Doni L, Oliveri C, Jemec Kokalj A, Drobne D, Vezzulli L, Canesi L. Polyester Microfibers Exposure Modulates Mytilus galloprovincialis Hemolymph Microbiome. Int J Mol Sci 2024; 25:8049. [PMID: 39125616 PMCID: PMC11312190 DOI: 10.3390/ijms25158049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Microplastic (MP) contamination in the aquatic environment is a cause of concern worldwide since MP can be taken up by different organisms, altering different biological functions. In particular, evidence is accumulating that MP can affect the relationship between the host and its associated microbial communities (the microbiome), with potentially negative health consequences. Synthetic microfibers (MFs) represent one of the main MPs in the marine environment, which can be accumulated by filter-feeding invertebrates, such as bivalves, with consequent negative effects and transfer through the food chain. In the mussel Mytilus galloprovincialis, polyethylene terephthalate (PET) MFs, with a size distribution resembling that of an MF released from textile washing, have been previously shown to induce multiple stress responses. In this work, in the same experimental conditions, the effects of exposure to PET-MF (96 h, 10, and 100 μg/L) on mussel hemolymph microbiome were evaluated by 16S rRNA gene amplification and sequencing. The results show that PET-MF affects the composition of bacterial communities at the phylum, family and genus level, with stronger effects at the lowest concentration tested. The relationship between MF-induced changes in hemolymph microbial communities and responses observed at the whole organism level are discussed.
Collapse
Affiliation(s)
- Manon Auguste
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.L.); (L.D.); (C.O.); (L.V.); (L.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Martina Leonessi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.L.); (L.D.); (C.O.); (L.V.); (L.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Lapo Doni
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.L.); (L.D.); (C.O.); (L.V.); (L.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Caterina Oliveri
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.L.); (L.D.); (C.O.); (L.V.); (L.C.)
| | - Anita Jemec Kokalj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.J.K.); (D.D.)
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.J.K.); (D.D.)
| | - Luigi Vezzulli
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.L.); (L.D.); (C.O.); (L.V.); (L.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy; (M.L.); (L.D.); (C.O.); (L.V.); (L.C.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
6
|
Pathak A, Marquez M, Stothard P, Chukwujindu C, Su JQ, Zhou Y, Zhou XY, Jagoe CH, Chauhan A. A seasonal study on the microbiomes of Diploid vs. Triploid eastern oysters and their denitrification potential. iScience 2024; 27:110193. [PMID: 38984199 PMCID: PMC11231605 DOI: 10.1016/j.isci.2024.110193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/09/2024] [Accepted: 06/03/2024] [Indexed: 07/11/2024] Open
Abstract
Oyster reefs are hotspots of denitrification mediated removal of dissolved nitrogen (N), however, information on their denitrifier microbiota is scarce. Furthermore, in oyster aquaculture, triploids are often preferred over diploids, yet again, microbiome differences between oyster ploidies are unknown. To address these knowledge gaps, farmed diploid and triploid oysters were collected over an annual growth cycle and analyzed using shotgun metagenomics and quantitative microbial elemental cycling (QMEC) techniques. Regardless of ploidy, Psychrobacter genus was abundant, with positive correlations found for genes of central metabolism, DNA metabolism, and carbohydrate metabolism. MAGs (metagenome-assembled genomes) yielded multiple Psychrobacter genomes harboring norB, narH, narI, and nirK denitrification genes, indicating their functional relevance within the eastern oysters. QMEC analysis indicated the predominance of carbon (C) and nitrogen (N) cycling genes, with no discernable patterns between ploidies. Among the N-cycling genes, the nosZII clade was overrepresented, suggesting its role in the eastern oyster's N removal processes.
Collapse
Affiliation(s)
- Ashish Pathak
- School of the Environment, Florida A&M University, 1515 S. Martin Luther King Boulevard, Tallahassee, FL 32307, USA
| | - Mario Marquez
- Texas Sea Grant College Program, 4115 TAMU Eller O&M 306, Texas A&M University, College Station, TX 77843, USA
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, General Services Bldg, Edmonton, AB 2-31 T6G 2H1, Canada
| | - Christian Chukwujindu
- Material & Energy Technology Department, Projects Development Institute, Emene Industrial Layout, Enugu-Nigeria 400104
| | - Jian-Qiang Su
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yanyan Zhou
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xin-Yuan Zhou
- Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Charles H. Jagoe
- School of the Environment, Florida A&M University, 1515 S. Martin Luther King Boulevard, Tallahassee, FL 32307, USA
| | - Ashvini Chauhan
- School of the Environment, Florida A&M University, 1515 S. Martin Luther King Boulevard, Tallahassee, FL 32307, USA
| |
Collapse
|
7
|
Biessy L, Pearman JK, Mertens KN, Réveillon D, Savar V, Hess P, Hampton H, Thompson L, Lebrun L, Terre-Terrillon A, Smith KF. Sudden peak in tetrodotoxin in French oysters during the summer of 2021: Source investigation using microscopy, metabarcoding and droplet digital PCR. Toxicon 2024; 243:107721. [PMID: 38636612 DOI: 10.1016/j.toxicon.2024.107721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin causing human intoxications from contaminated seafood worldwide and is of emerging concern in Europe. Shellfish have been shown to contain varying TTX concentrations globally, with concentrations typically higher in Pacific oysters Crassostrea gigas in Europe. Despite many decades of research, the source of TTX remains unknown, with bacterial or algal origins having been suggested. The aim of this study was to identify potential source organisms causing TTX contamination in Pacific oysters in French coastal waters, using three different techniques. Oysters were deployed in cages from April to September 2021 in an estuary where TTX was previously detected. Microscopic analyses of water samples were used to investigate potential microalgal blooms present prior or during the peak in TTX. Differences in the bacterial communities from oyster digestive glands (DG) and remaining flesh were explored using metabarcoding, and lastly, droplet digital PCR assays were developed to investigate the presence of Cephalothrix sp., one European TTX-bearing species in the DG of toxic C. gigas. Oysters analysed by liquid chromatography-tandem mass spectrometry contained quantifiable levels of TTX over a three-week period (24 June-15 July 2021), with concentrations decreasing in the DG from 424 μg/kg for the first detection to 101 μg/kg (equivalent to 74 to 17 μg/kg of total flesh), and trace levels being detected until August 13, 2021. These concentrations are the first report of the European TTX guidance levels being exceeded in French shellfish. Microscopy revealed that some microalgae bloomed during the TTX peak, (e.g., Chaetoceros spp., reaching 40,000 cells/L). Prokaryotic metabarcoding showed increases in abundance of Rubritaleaceae (genus Persicirhabdus) and Neolyngbya, before and during the TTX peak. Both phyla have previously been described as possible TTX-producers and should be investigated further. Droplet digital PCR analyses were negative for the targeted TTX-bearing genus Cephalothrix.
Collapse
Affiliation(s)
- Laura Biessy
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand.
| | - John K Pearman
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand
| | - Kenneth Neil Mertens
- Ifremer, LITTORAL Unit, Place de la Croix, BP40537, 29900, Concarneau CEDEX, France
| | | | | | | | - Hannah Hampton
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand
| | - Lucy Thompson
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand
| | - Luc Lebrun
- Ifremer, LITTORAL Unit, Place de la Croix, BP40537, 29900, Concarneau CEDEX, France
| | | | - Kirsty F Smith
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand
| |
Collapse
|
8
|
Griffin TW, Darsan MA, Collins HI, Holohan BA, Pierce ML, Ward JE. A multi-study analysis of gut microbiome data from the blue mussel (Mytilus edulis) emphasises the impact of depuration on biological interpretation. Environ Microbiol 2023; 25:3435-3449. [PMID: 37941484 DOI: 10.1111/1462-2920.16537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
The blue mussel (Mytilus edulis) is a suspension feeder which has been used in gut-microbiome surveys. Although raw 16S sequence data are often publicly available, unifying secondary analyses are lacking. The present work analysed raw data from seven projects conducted by one group over 7 years. Although each project had different motivations, experimental designs and conclusions, all selected samples were from the guts of M. edulis collected from a single location in Long Island Sound. The goal of this analysis was to determine which independent factors (e.g., collection date, depuration status) were responsible for governing composition and diversity in the gut microbiomes. Results indicated that whether mussels had undergone depuration, defined here as voidance of faeces in a controlled, no-food period, was the primary factor that governed gut microbiome composition. Gut microbiomes from non-depurated mussels were mixtures of resident and transient communities and were influenced by temporal factors. Resident communities from depurated mussels were influenced by the final food source and length of time host mussels were held under laboratory conditions. These findings reinforce the paradigm that gut microbiota are divided into resident and transient components and suggest that depuration status should be taken into consideration when designing and interpreting future experiments.
Collapse
Affiliation(s)
- Tyler W Griffin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Mya A Darsan
- Department of Biological Sciences, University at Albany, Albany, New York, USA
- Department of Marine and Environmental Science, Northeastern University, Nahant, Massachusetts, USA
| | - Hannah I Collins
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Bridget A Holohan
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Melissa L Pierce
- Discovery Partners Institute, Applied R&D, University of Illinois System, Chicago, Illinois, USA
| | - J Evan Ward
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
9
|
Bhaskaran R, Ramachandra KSS, Peter R, Gopakumar ST, Gopalan MK, Mozhikulangara RR. Antimicrobial resistance and antagonistic features of bivalve-associated Vibrio parahaemolyticus from the south-west coast of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107681-107692. [PMID: 37740157 DOI: 10.1007/s11356-023-29924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/13/2023] [Indexed: 09/24/2023]
Abstract
Vibrio parahaemolyticus, a potent human and aquatic pathogen, is usually found in estuaries and oceans. Human illness is associated with consuming uncooked/partially cooked contaminated seafood. The study on bivalve-associated V. parahaemolyticus revealed that the post-monsoon season had the highest bacterial abundance (9 ± 1.5 log cfu) compared to the monsoon season (8.03 ± 0.56 log cfu). Antimicrobial resistance (AMR) profiling was performed on 114 V. parahaemolyticus isolates obtained from bivalves. The highest AMR was observed against ampicillin (78%). Chloramphenicol was found to be effective against all the isolates. Multiple antibiotic resistance index values of 0.2 or higher were detected in 18% of the isolates. Molecular analysis of antimicrobial resistant genes (ARGs) revealed the high prevalence (100%) of the TEM-1 gene in the aquatic environment. After plasmid profiling and curing, 41.6% and 100% of the resistant isolates were found to be sensitive to ampicillin and cephalosporins, respectively, indicating the prevalence of plasmid-associated ARGs in the aquatic environment. A study to evaluate the antagonistic properties of Bacillus subtilis, Pseudomonas aeruginosa, and Bacillus amyloliquefaciens against V. parahaemolyticus isolates identified the potential of these bacteria to resist the growth of V. parahaemolyticus.
Collapse
Affiliation(s)
- Remya Bhaskaran
- Marine Biotechnology, Fish Nutrition and Health Division (MBFNHD), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India
- Department of Biosciences, Mangalore University, Mangalagangotri - 574 199, Karnataka State, India
| | - Krupesha Sharma Sulumane Ramachandra
- Marine Biotechnology, Fish Nutrition and Health Division (MBFNHD), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India.
| | - Reynold Peter
- Marine Biotechnology, Fish Nutrition and Health Division (MBFNHD), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India
| | - Sumithra Thangalazhy Gopakumar
- Marine Biotechnology, Fish Nutrition and Health Division (MBFNHD), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India
| | - Mini Kalappurakkal Gopalan
- Fishery Resources Assessment, Economics and Extension Division (FRAEED), ICAR-Central Marine Fisheries Research Institute, Post Box No. 1603, Kochi, Ernakulam North (P.O.), 682 018, India
| | - Rithin Raj Mozhikulangara
- School of Industrial Fisheries, Cochin University of Science and Technology (CUSAT), Lakeside Campus, Kochi, 682 016, India
| |
Collapse
|
10
|
Li F, Kong N, Zhao J, Zhao B, Liu J, Yang C, Wang L, Song L. The intestinal bacterial community over seasons and its relationship with physiological status of Yesso scallop Patinopecten yessoensis. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109030. [PMID: 37634756 DOI: 10.1016/j.fsi.2023.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Emerging evidence indicates that the intestinal bacterial communities associated with eukaryotes play critical roles in the physiological activities and health of their hosts. Yesso scallop Patinopecten yessoensis, one of the cold-water aquaculture species in the North Yellow Sea of China, has suffered from massive mortality in recent years. In the present study, P. yessoensis were collected from Zhangzi Island, Dalian from March 2021 to January 2022 to investigate the intestinal bacterial community and physiological indices. 16S rRNA gene sequencing data revealed that the diversity of intestinal bacteria changed significantly over seasons, with the highest Chao1 (237.42) and Shannon (6.13) indices detected in January and the lowest Chao1 (115.44) and Shannon (2.73) indices detected in July. Tenericutes, Proteobacteria and Firmicutes were dominant phyla in the intestinal bacteria of P. yessoensis, among which Firmicutes and Proteobacteria significantly enriched in August and January, respectively. Mycoplasma was the most abundant genus during the sampling period, which exhibited the highest abundance in October (75.26%) and lowest abundance in August (13.15%). The functional profiles of intestinal bacteria also exhibited seasonal variation, with the pathways related to pentose phosphate and deoxyribonucleotides biosynthesis enriched in August while the glycogen biosynthesis pathway enriched in October. Redundancy analysis showed that seawater pH, dissolved inorganic nitrogen and silicate were major environmental factors driving the temporal succession of scallop intestinal bacteria. Correlation clustering analysis suggested that the relative abundances of Endozoicomonas and Vibrio in the intestine were positively correlated with superoxide dismutase activity in hepatopancreas while negatively correlated with malondialdehyde content in hepatopancreas and glycogen content in adductor muscle. All the results revealed that the intestine harbored a lower bacterial diversity and a higher abundance of Vibrio in August, compared to January, which were closely related to the oxidative stress status of scallop in summer. These findings will advance our understanding of the relationship between seasonal alteration in the intestinal bacteria and the physiological status of scallops.
Collapse
Affiliation(s)
- Fuzhe Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Junyan Zhao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Bao Zhao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Jinyu Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
11
|
Akter S, Wos-Oxley ML, Catalano SR, Hassan MM, Li X, Qin JG, Oxley AP. Host Species and Environment Shape the Gut Microbiota of Cohabiting Marine Bivalves. MICROBIAL ECOLOGY 2023; 86:1755-1772. [PMID: 36811710 PMCID: PMC10497454 DOI: 10.1007/s00248-023-02192-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Pacific oysters (Crassostrea gigas) and Mediterranean mussels (Mytilus galloprovincialis) are commercially important marine bivalves that frequently coexist and have overlapping feeding ecologies. Like other invertebrates, their gut microbiota is thought to play an important role in supporting their health and nutrition. Yet, little is known regarding the role of the host and environment in driving these communities. Here, bacterial assemblages were surveyed from seawater and gut aspirates of farmed C. gigas and co-occurring wild M. galloprovincialis in summer and winter using Illumina 16S rRNA gene sequencing. Unlike seawater, which was dominated by Pseudomonadata, bivalve samples largely consisted of Mycoplasmatota (Mollicutes) and accounted for >50% of the total OTU abundance. Despite large numbers of common (core) bacterial taxa, bivalve-specific species (OTUs) were also evident and predominantly associated with Mycoplasmataceae (notably Mycoplasma). An increase in diversity (though with varied taxonomic evenness) was observed in winter for both bivalves and was associated with changes in the abundance of core and bivalve-specific taxa, including several representing host-associated and environmental (free-living or particle-diet associated) organisms. Our findings highlight the contribution of the environment and the host in defining the composition of the gut microbiota in cohabiting, intergeneric bivalve populations.
Collapse
Affiliation(s)
- Shirin Akter
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | | - Sarah R Catalano
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| | - Md Mahbubul Hassan
- Aquaculture Research and Development, Department of Primary Industries and Regional Development, Hillarys, WA, Australia
| | - Xiaoxu Li
- Aquatic Sciences Centre, South Australian Research and Development Institute, West Beach, SA, Australia
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Andrew Pa Oxley
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.
| |
Collapse
|
12
|
Diner RE, Zimmer-Faust A, Cooksey E, Allard S, Kodera SM, Kunselman E, Garodia Y, Verhougstraete MP, Allen AE, Griffith J, Gilbert JA. Host and Water Microbiota Are Differentially Linked to Potential Human Pathogen Accumulation in Oysters. Appl Environ Microbiol 2023; 89:e0031823. [PMID: 37318344 PMCID: PMC10370324 DOI: 10.1128/aem.00318-23] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Oysters play an important role in coastal ecology and are a globally popular seafood source. However, their filter-feeding lifestyle enables coastal pathogens, toxins, and pollutants to accumulate in their tissues, potentially endangering human health. While pathogen concentrations in coastal waters are often linked to environmental conditions and runoff events, these do not always correlate with pathogen concentrations in oysters. Additional factors related to the microbial ecology of pathogenic bacteria and their relationship with oyster hosts likely play a role in accumulation but are poorly understood. In this study, we investigated whether microbial communities in water and oysters were linked to accumulation of Vibrio parahaemolyticus, Vibrio vulnificus, or fecal indicator bacteria. Site-specific environmental conditions significantly influenced microbial communities and potential pathogen concentrations in water. Oyster microbial communities, however, exhibited less variability in microbial community diversity and accumulation of target bacteria overall and were less impacted by environmental differences between sites. Instead, changes in specific microbial taxa in oyster and water samples, particularly in oyster digestive glands, were linked to elevated levels of potential pathogens. For example, increased levels of V. parahaemolyticus were associated with higher relative abundances of cyanobacteria, which could represent an environmental vector for Vibrio spp. transport, and with decreased relative abundance of Mycoplasma and other key members of the oyster digestive gland microbiota. These findings suggest that host and microbial factors, in addition to environmental variables, may influence pathogen accumulation in oysters. IMPORTANCE Bacteria in the marine environment cause thousands of human illnesses annually. Bivalves are a popular seafood source and are important in coastal ecology, but their ability to concentrate pathogens from the water can cause human illness, threatening seafood safety and security. To predict and prevent disease, it is critical to understand what causes pathogenic bacteria to accumulate in bivalves. In this study, we examined how environmental factors and host and water microbial communities were linked to potential human pathogen accumulation in oysters. Oyster microbial communities were more stable than water communities, and both contained the highest concentrations of Vibrio parahaemolyticus at sites with warmer temperatures and lower salinities. High oyster V. parahaemolyticus concentrations corresponded with abundant cyanobacteria, a potential vector for transmission, and a decrease in potentially beneficial oyster microbes. Our study suggests that poorly understood factors, including host and water microbiota, likely play a role in pathogen distribution and pathogen transmission.
Collapse
Affiliation(s)
- Rachel E. Diner
- University of California, San Diego, Department of Pediatrics, La Jolla, California, USA
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
| | - Amy Zimmer-Faust
- Southern California Coastal Water Research Project, Microbiology Group, Costa Mesa, California, USA
| | - Emily Cooksey
- Environment, Exposure Science and Risk Assessment Center, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Sarah Allard
- University of California, San Diego, Department of Pediatrics, La Jolla, California, USA
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
| | - Sho M. Kodera
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
| | - Emily Kunselman
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
| | - Yash Garodia
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
| | - Marc P. Verhougstraete
- Environment, Exposure Science and Risk Assessment Center, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona, USA
| | - Andrew E. Allen
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
- J. Craig Venter Institute, Environmental and Microbial Genomics Group, La Jolla, California, USA
| | - John Griffith
- Southern California Coastal Water Research Project, Microbiology Group, Costa Mesa, California, USA
| | - Jack A. Gilbert
- University of California, San Diego, Department of Pediatrics, La Jolla, California, USA
- University of California, San Diego, Scripps Institution of Oceanography, La Jolla, California, USA
| |
Collapse
|
13
|
Hallmann A, Leszczyńska D, Czumaj A, Świeżak J, Caban M, Michnowska A, Smolarz K. Oxytetracycline-induced inflammatory process without oxidative stress in blue mussels Mytilus trossulus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80462-80477. [PMID: 37301807 PMCID: PMC10345040 DOI: 10.1007/s11356-023-28057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Potentially harmful compounds including pharmaceuticals are commonly found in marine waters and sediments. Amongst those, antibiotics and their metabolites are detected worldwide in various abiotic (at concentrations as high as µg/L) and biotic matrices at ng/gram of tissue, posing a risk to non-target species exposed to them such as blue mussels. Amongst those, oxytetracycline (OTC) belongs to the most detected antibiotics in the marine environment. In this work, we concentrated on studying the potential induction of oxidative stress, activation of cellular detoxification processes (including Phase I and Phase II xenobiotic biotransformation enzymes) and multixenobiotic resistance pumps (Phase III) as well as changes in the aromatisation efficiency in Mytilus trossulus exposed to 100 μg/L OTC. Our results show that 100 µg/L OTC concentration did not provoke cellular oxidative stress and did not affect the expression of genes involved in detoxification processes in our model. Moreover, no effect of OTC on aromatisation efficiency was found. Instead, phenoloxidase activity measured in haemolymph was significantly higher in OTC exposed mussels than in those from the control (30.95 ± 3.33 U/L and 17.95 ± 2.75 U/L, respectively). OTC exposed mussels were also characterised by a tissue-dependant activation of major vault protein (MVP) gene expression (1.5 times higher in gills and 2.4 times higher in the digestive system) and a decreased expression of the nuclear factor kappa B-a (NF-κB) gene (3.4 times lower in the digestive system) when compared to those from the control. Additionally, an elevated number of regressive changes and inflammatory responses in tissues such as gills, digestive system and mantle (gonads) was observed underlining the worsening of bivalves' general health. Therefore, instead of a free-radical effect of OTC, we for the first time describe the occurrence of typical changes resulting from antibiotic therapy in non-target organisms like M. trossulus exposed to antibiotics such as OTC.
Collapse
Affiliation(s)
- Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Dagmara Leszczyńska
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Justyna Świeżak
- Department of Marine Ecosystem Functioning, University of Gdańsk, Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Alicja Michnowska
- Department of Marine Ecosystem Functioning, University of Gdańsk, Gdynia, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystem Functioning, University of Gdańsk, Gdynia, Poland.
| |
Collapse
|
14
|
Mohammadpour H, Cardin M, Carraro L, Fasolato L, Cardazzo B. Characterization of the archaeal community in foods: The neglected part of the food microbiota. Int J Food Microbiol 2023; 401:110275. [PMID: 37295268 DOI: 10.1016/j.ijfoodmicro.2023.110275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/30/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Despite the large number of studies conducted on archaea associated with extreme environments, the archaeal community composition in food products is still poorly known. Here, we investigated a new insight into exploring the archaeal community in several food matrices, with a particular focus on determining whether living archaea were present. A total of 71 samples of milk, cheese and its derived brine, honey, hamburger, clam, and trout were analyzed by high-throughput 16S rRNA sequencing. Archaea were detected in all the samples, ranging from 0.62 % of microbial communities in trout to 37.71 % in brine. Methanogens dominated 47.28 % of the archaeal communities, except for brine, which was dominated by halophilic taxa affiliated with the genus Haloquadratum (52.45 %). Clams were found to be a food with high richness and diversity of archaea and were targeted for culturing living archaea under different incubation time and temperature conditions. A subset of 16 communities derived from culture-dependent and culture-independent communities were assessed. Among the homogenates and living archaeal communities, the predominant taxa were distributed in the genera Nitrosopumilus (47.61 %) and Halorussus (78.78 %), respectively. A comparison of the 28 total taxa obtained by culture-dependent and culture-independent methods enabled their categorization into different groups, including detectable (8 out of 28), cultivable (8 out of 28), and detectable-cultivable (12 out of 28) taxa. Furthermore, using the culture method, the majority (14 out of 20) of living taxa grew at lower temperatures of 22 and 4 °C during long-term incubation, and few taxa (2 out of 20) were found at 37 °C during the initial days of incubation. Our results demonstrated the distribution of archaea in all analyzed food matrices, which opens new perspectives to expand our knowledge on archaea in foods and their beneficial and detrimental effects.
Collapse
Affiliation(s)
- Hooriyeh Mohammadpour
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Universit'a 16, 35020 Legnaro, Pd, Italy
| | - Marco Cardin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Universit'a 16, 35020 Legnaro, Pd, Italy
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Universit'a 16, 35020 Legnaro, Pd, Italy
| | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Universit'a 16, 35020 Legnaro, Pd, Italy.
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale Universit'a 16, 35020 Legnaro, Pd, Italy
| |
Collapse
|
15
|
He J, Jia M, Wang J, Wu Z, Shao S, He Y, Zhang X, Buttino I, Liao Z, Yan X. Mytilus farming drives higher local bacterial diversity and facilitates the accumulation of aerobic anoxygenic photoheterotrophic related genera. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158861. [PMID: 36419274 DOI: 10.1016/j.scitotenv.2022.158861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Research to assess the impacts of mariculture on the microbiota of the surrounding environment is still inadequate. Here, we examined the effects of Mytilus coruscus farming on the diversity of bacterial community in surrounding seawater using field investigations and indoor simulations, focusing on the variation of members of aerobic anoxygenic photoheterotrophic (AAP) bacteria. In the field, Mytilus farming shaped bacterial community and significantly increased their diversity, including biomass, OTUs, Shannon, relative abundance, number of enriched species, as compared with the non-farming area. Higher abundance of AAP related genera was observed in the Mytilus farming seawater. Under the controlled condition, the presence of M. coruscus significantly shaped the bacterial community composition and caused species composition to become similar after 10 days. Furthermore, the presence of M. coruscus consistently strengthened local diversity in seawater bacterial community, with linkages to the recruitment of AAP members as well. In addition, the tissue-related composition of M. coruscus significantly differed from those in seawater. Our findings highlight a ecological importance of Mytilus farming, as process that shape surrounding water-cultured bacterial community and offer experimental evidence for the accumulation of AAP-related genera in aquaculture systems.
Collapse
Affiliation(s)
- Jianyu He
- Laboratory of Marine Biological Resources and Molecular Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Mengxue Jia
- Laboratory of Marine Biological Resources and Molecular Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Jianxin Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ziqi Wu
- Laboratory of Marine Biological Resources and Molecular Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Shuai Shao
- Laboratory of Marine Biological Resources and Molecular Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Yutang He
- Laboratory of Marine Biological Resources and Molecular Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biological Resources and Molecular Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy
| | - Zhi Liao
- Laboratory of Marine Biological Resources and Molecular Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Xiaojun Yan
- Laboratory of Marine Biological Resources and Molecular Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China.
| |
Collapse
|
16
|
Howells J, Brosnahan C. Bacteriology & bivalves: Assessing diagnostic tools for geographically remote bivalve populations. J Microbiol Methods 2022; 202:106581. [PMID: 36181970 DOI: 10.1016/j.mimet.2022.106581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/27/2022]
Abstract
Two sampling approaches for the growth of common or dominant bacteria from bivalve haemolymph were compared: (1) samples processed in the field immediately after collection (field samples), and (2) samples processed in the laboratory at least 24 h after collection (laboratory samples). The sampling approaches were compared on 210 marine bivalve molluscs Paphies subtriangulata and P. australis from two shallow intertidal sites in North Island New Zealand. The approaches were evaluated for the amount of bacterial growth, type of growth, and diversity of growth. Differences in amount and type of growth between the two sampling approaches were observed. Samples processed in the field from P. subtriangulata had significantly more bacterial growth, and a higher diversity of bacteria, including more common or dominant bacterial species. Laboratory samples had a higher proportion of samples with no growth, however common or dominant bacteria were still isolated from these samples. For P. australis, field samples more often had no bacterial growth and laboratory samples had a significantly higher number of common or dominant growth present. Field samples did however contain a higher diversity of bacteria. By conducting bacteriology on bivalves in either the field or the laboratory only, there may be limitations to determining the significance of a bacterial agent isolated. Sampling of both field and laboratory samples should be carried out where possible to optimise detection of important bacteria.
Collapse
Affiliation(s)
- Joanne Howells
- Animal Health Laboratory, Ministry for Primary Industries, PO Box 40742, Upper Hutt 5140, New Zealand; Environmental Research Institute, University of Waikato, Tauranga 3110, New Zealand.
| | - Cara Brosnahan
- Aquatic and Environmental Health, Ministry for Primary Industries, PO Box 40742, Upper Hutt 5140, New Zealand
| |
Collapse
|
17
|
Ferchiou S, Caza F, Villemur R, Betoulle S, St-Pierre Y. Species- and site-specific circulating bacterial DNA in Subantarctic sentinel mussels Aulacomya atra and Mytilus platensis. Sci Rep 2022; 12:9547. [PMID: 35681072 PMCID: PMC9184546 DOI: 10.1038/s41598-022-13774-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/29/2022] [Indexed: 11/27/2022] Open
Abstract
Impacts of climate changes are particularly severe in polar regions where warmer temperatures and reductions in sea-ice covers threaten the ecological integrity of marine coastal ecosystems. Because of their wide distribution and their ecological importance, mussels are currently used as sentinel organisms in monitoring programs of coastal ecosystems around the world. In the present study, we exploited the concept of liquid biopsy combined to a logistically friendly sampling method to study the hemolymphatic bacterial microbiome in two mussel species (Aulacomya atra and Mytilus platensis) in Kerguelen Islands, a remote Subantarctic volcanic archipelago. We found that the circulating microbiome signatures of both species differ significantly even though their share the same mussel beds. We also found that the microbiome differs significantly between sampling sites, often correlating with the particularity of the ecosystem. Predictive models also revealed that both species have distinct functional microbiota, and that the circulating microbiome of Aulacomya atra was more sensitive to changes induced by acute thermal stress when compared to Mytilus platensis. Taken together, our study suggests that defining circulating microbiome is a useful tool to assess the health status of marine ecosystems and to better understand the interactions between the sentinel species and their habitat.
Collapse
Affiliation(s)
- Sophia Ferchiou
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - France Caza
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Richard Villemur
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Stéphane Betoulle
- UMR-I 02 SEBIO Stress environnementaux et Biosurveillance des milieux aquatiques, Université Reims Champagne-Ardenne, Campus Moulin de la Housse, 51687, Reims, France
| | - Yves St-Pierre
- INRS-Centre Armand-Frappier Santé Technologie, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
18
|
Variation in Survival and Gut Microbiome Composition of Hatchery-Grown Native Oysters at Various Locations within the Puget Sound. Microbiol Spectr 2022; 10:e0198221. [PMID: 35536036 PMCID: PMC9241838 DOI: 10.1128/spectrum.01982-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Olympia oyster (Ostrea lurida) of the Puget Sound suffered a dramatic population crash, but restoration efforts hope to revive this native species. One overlooked variable in the process of assessing ecosystem health is association of bacteria with marine organisms and the environments they occupy. Oyster microbiomes are known to differ significantly between species, tissue type, and the habitat in which they are found. The goals of this study were to determine the impact of field site and habitat on the oyster microbiome and to identify core oyster-associated bacteria in the Puget Sound. Olympia oysters from one parental family were deployed at four sites in the Puget Sound both inside and outside of eelgrass (Zostera marina) beds. Using 16S rRNA gene amplicon sequencing of the oyster gut, shell, and surrounding seawater and sediment, we demonstrate that gut-associated bacteria are distinct from the surrounding environment and vary by field site. Furthermore, regional differences in the gut microbiota are associated with the survival rates of oysters at each site after 2 months of field exposure. However, habitat type had no influence on microbiome diversity. Further work is needed to identify the specific bacterial dynamics that are associated with oyster physiology and survival rates. IMPORTANCE This is the first exploration of the microbial colonizers of the Olympia oyster, a native oyster species to the West Coast, which is a focus of restoration efforts. The patterns of differential microbial colonization by location reveal microscale characteristics of potential restoration sites which are not typically considered. These microbial dynamics can provide a more holistic perspective on the factors that may influence oyster performance.
Collapse
|
19
|
Pavón A, Riquelme D, Jaña V, Iribarren C, Manzano C, Lopez-Joven C, Reyes-Cerpa S, Navarrete P, Pavez L, García K. The High Risk of Bivalve Farming in Coastal Areas With Heavy Metal Pollution and Antibiotic-Resistant Bacteria: A Chilean Perspective. Front Cell Infect Microbiol 2022; 12:867446. [PMID: 35463633 PMCID: PMC9021898 DOI: 10.3389/fcimb.2022.867446] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Anthropogenic pollution has a huge impact on the water quality of marine ecosystems. Heavy metals and antibiotics are anthropogenic stressors that have a major effect on the health of the marine organisms. Although heavy metals are also associate with volcanic eruptions, wind erosion or evaporation, most of them come from industrial and urban waste. Such contamination, coupled to the use and subsequent misuse of antimicrobials in aquatic environments, is an important stress factor capable of affecting the marine communities in the ecosystem. Bivalves are important ecological components of the oceanic environments and can bioaccumulate pollutants during their feeding through water filtration, acting as environmental sentinels. However, heavy metals and antibiotics pollution can affect several of their physiologic and immunological processes, including their microbiome. In fact, heavy metals and antibiotics have the potential to select resistance genes in bacteria, including those that are part of the microbiota of bivalves, such as Vibrio spp. Worryingly, antibiotic-resistant phenotypes have been shown to be more tolerant to heavy metals, and vice versa, which probably occurs through co- and cross-resistance pathways. In this regard, a crucial role of heavy metal resistance genes in the spread of mobile element-mediated antibiotic resistance has been suggested. Thus, it might be expected that antibiotic resistance of Vibrio spp. associated with bivalves would be higher in contaminated environments. In this review, we focused on co-occurrence of heavy metal and antibiotic resistance in Vibrio spp. In addition, we explore the Chilean situation with respect to the contaminants described above, focusing on the main bivalves-producing region for human consumption, considering bivalves as potential vehicles of antibiotic resistance genes to humans through the ingestion of contaminated seafood.
Collapse
Affiliation(s)
- Alequis Pavón
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Diego Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Víctor Jaña
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
| | - Cristian Iribarren
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Camila Manzano
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carmen Lopez-Joven
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Paola Navarrete
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Leonardo Pavez
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Carrera de Nutrición y Dietética, Universidad Autónoma de Chile, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| |
Collapse
|
20
|
Population Genomics, Transcriptional Response to Heat Shock, and Gut Microbiota of the Hong Kong Oyster Magallana hongkongensis. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Hong Kong oyster Magallana hongkongensis, previously known as Crassostrea hongkongensis, is a true oyster species native to the estuarine-coast of the Pearl River Delta in southern China. The species—with scientific, ecological, cultural, and nutritional importance—has been farmed for hundreds of years. However, there is only limited information on its genetics, stress adaptation mechanisms, and gut microbiota, restricting the sustainable production and use of oyster resources. Here, we present population structure analysis on M. hongkongensis oysters collected from Deep Bay and Lantau Island in Hong Kong, as well as transcriptome analysis on heat shock responses and the gut microbiota profile of M. hongkongensis oysters collected from Deep Bay. Single nucleotide polymorphisms (SNPs), including those on the homeobox genes and heat shock protein genes, were revealed by the whole genome resequencing. Transcriptomes of oysters incubated at 25 °C and 32 °C for 24 h were sequenced which revealed the heat-induced regulation of heat shock protein pathway genes. Furthermore, the gut microbe community was detected by 16S rRNA sequencing which identified Cyanobacteria, Proteobacteria and Spirochaetes as the most abundant phyla. This study reveals the molecular basis for the adaptation of the oyster M. hongkongensis to environmental conditions.
Collapse
|
21
|
Paillard C, Gueguen Y, Wegner KM, Bass D, Pallavicini A, Vezzulli L, Arzul I. Recent advances in bivalve-microbiota interactions for disease prevention in aquaculture. Curr Opin Biotechnol 2022; 73:225-232. [PMID: 34571318 DOI: 10.1016/j.copbio.2021.07.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
In bivalves, no clear-cut functional role of microbiota has yet been identified, although many publications suggest that they could be involved in nutrition or immunity of their host. In the context of climate change, integrative approaches at the crossroads of disciplines have been developed to explore the environment-host-pathogen-microbiota system. Here, we attempt to synthesize work on (1) the current methodologies to analyse bivalve microbiota, (2) the comparison of microbiota between species, between host compartments and their surrounding habitat, (3) how the bivalve microbiota are governed by environmental factors and host genetics and (4) how host-associated microorganisms act as a buffer against pathogens and/or promote recovery, and could thereby play a role in the prevention of disease or mortalities.
Collapse
Affiliation(s)
| | - Yannick Gueguen
- IHPE, Univ Montpellier, CNRS, Ifremer, UPVD, Montpellier, France.
| | - K Mathias Wegner
- Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, Coastal Ecology, Waddensea Station Sylt, D-25992 List, Germany
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, DT4 8UB Dorset, UK; Centre for Sustainable Aquaculture Futures, University of Exeter, College of Life and Environmental Sciences, University of Exeter, EX4 4QD Exeter, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, SW7 5BD London, UK
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Licio Giorgeri 5, 34126 Trieste, Italy; National Institute of Oceanography and Applied Geophysics, via Piccard 54, 34151 Trieste, Italy
| | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Isabelle Arzul
- Ifremer, RBE-SG2M-LGPMM, Station de La Tremblade, Avenue de Mus de Loup, F-17390 La Tremblade, France.
| |
Collapse
|
22
|
Pacor S, Benincasa M, Musso MV, Krce L, Aviani I, Pallavicini A, Scocchi M, Gerdol M, Mardirossian M. The proline-rich myticalins from Mytilus galloprovincialis display a membrane-permeabilizing antimicrobial mode of action. Peptides 2021; 143:170594. [PMID: 34118363 DOI: 10.1016/j.peptides.2021.170594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Bivalve mollusks are continuously exposed to potentially pathogenic microorganisms living in the marine environment. Not surprisingly, these filter-feeders developed a robust innate immunity to protect themselves, which includes a broad panel of antimicrobial peptides. Among these, myticalins represent a recently discovered family of linear cationic peptides expressed in the gills of Mytilus galloprovincialis. Even though myticalins and insect and mammalian proline-rich antimicrobial peptides (PrAMPs) share a similar amino acid composition, we here show that none of the tested mussel peptides use a non-lytic mode of action relying on the bacterial transporter SbmA. On the other hand, all the tested myticalins perturbed and permeabilized the membranes of E. coli BW25113, as shown by flow-cytometry and atomic force microscopy. Circular dichroism spectra revealed that most myticalins did not adopt recognizable secondary structures in the presence of amphipathic environments, such as biological membranes. To explore possible uses of myticalins for biotech, we assessed their biocompatibility with a human cell line. Non-negligible cytotoxic effects displayed by myticalins indicate that their optimization would be required before their further use as lead compounds in the development of new antibiotics.
Collapse
Affiliation(s)
- Sabrina Pacor
- Department of Life Sciences, Via Licio Giorgieri 5, University of Trieste, 34127 Trieste, Italy.
| | - Monica Benincasa
- Department of Life Sciences, Via Licio Giorgieri 5, University of Trieste, 34127 Trieste, Italy.
| | - Maria Valentina Musso
- Department of Life Sciences, Via Licio Giorgieri 5, University of Trieste, 34127 Trieste, Italy.
| | - Lucija Krce
- Department of Physics, Faculty of Science, University of Split, Soba B3-18, Ruđera Boškovića 33, 21000 Split, Croatia.
| | - Ivica Aviani
- Department of Physics, Faculty of Science, University of Split, Soba B3-18, Ruđera Boškovića 33, 21000 Split, Croatia.
| | - Alberto Pallavicini
- Department of Life Sciences, Via Licio Giorgieri 5, University of Trieste, 34127 Trieste, Italy.
| | - Marco Scocchi
- Department of Life Sciences, Via Licio Giorgieri 5, University of Trieste, 34127 Trieste, Italy.
| | - Marco Gerdol
- Department of Life Sciences, Via Licio Giorgieri 5, University of Trieste, 34127 Trieste, Italy.
| | - Mario Mardirossian
- Department of Medical Sciences, University of Trieste, Laboratorio Clinica Odontostomatologica, Piazza dell'Ospitale 1, 34125 Trieste, Italy.
| |
Collapse
|
23
|
Yeh H, Skubel SA, Patel H, Cai Shi D, Bushek D, Chikindas ML. From Farm to Fingers: an Exploration of Probiotics for Oysters, from Production to Human Consumption. Probiotics Antimicrob Proteins 2021; 12:351-364. [PMID: 32056150 DOI: 10.1007/s12602-019-09629-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oysters hold a unique place within the field of aquaculture as one of the only organisms that is regularly shipped live to be consumed whole and raw. The microbiota of oysters is capable of adapting to a wide range of environmental conditions within their dynamic estuarine environments; however, human aquaculture practices can challenge the resilience of this microbial community. Several discrete stages in oyster cultivation and market processing can cause disruption to the oyster microbiota, thus increasing the possibility of proliferation by pathogens and spoilage bacteria. These same pressure points offer the opportunity for the application of probiotics to help decrease disease occurrence in stocks, improve product yields, minimize the risk of shellfish poisoning, and increase product shelf life. This review provides a summary of the current knowledge on oyster microbiota, the impact of aquaculture upon this community, and the current status of oyster probiotic development. In response to this biotechnological gap, the authors highlight opportunities of highest potential impact within the aquaculture pipeline and propose a strategy for oyster-specific probiotic candidate development.
Collapse
Affiliation(s)
- Heidi Yeh
- Haskin Shellfish Research Laboratory, Rutgers State University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA.
| | - Sarah A Skubel
- Department of Plant Biology, Rutgers State University, New Brunswick, NJ, 08904, USA
| | - Harna Patel
- Department of Plant Biology, Rutgers State University, New Brunswick, NJ, 08904, USA
| | - Denia Cai Shi
- Department of Plant Biology, Rutgers State University, New Brunswick, NJ, 08904, USA
| | - David Bushek
- Haskin Shellfish Research Laboratory, Rutgers State University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, 08904, USA.,Don State Technical University, Rostov-on-Don, 344002, Russia
| |
Collapse
|
24
|
Microbiome Analysis Reveals Diversity and Function of Mollicutes Associated with the Eastern Oyster, Crassostrea virginica. mSphere 2021; 6:6/3/e00227-21. [PMID: 33980678 PMCID: PMC8125052 DOI: 10.1128/msphere.00227-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite their biological and ecological significance, a mechanistic characterization of microbiome function is frequently missing from many nonmodel marine invertebrates. As an initial step toward filling this gap for the eastern oyster, Crassostrea virginica, this study provides an integrated taxonomic and functional analysis of the oyster microbiome using samples from a coastal salt pond in August 2017. Marine invertebrate microbiomes play important roles in diverse host and ecological processes. However, a mechanistic understanding of host-microbe interactions is currently available for a small number of model organisms. Here, an integrated taxonomic and functional analysis of the microbiome of the eastern oyster, Crassostrea virginica, was performed using 16S rRNA gene-based amplicon profiling, shotgun metagenomics, and genome-scale metabolic reconstruction. Relatively high variability of the microbiome was observed across individual oysters and among different tissue types. Specifically, a significantly higher alpha diversity was observed in the inner shell than in the gut, gill, mantle, and pallial fluid samples, and a distinct microbiome composition was revealed in the gut compared to other tissues examined in this study. Targeted metagenomic sequencing of the gut microbiota led to further characterization of a dominant bacterial taxon, the class Mollicutes, which was captured by the reconstruction of a metagenome-assembled genome (MAG). Genome-scale metabolic reconstruction of the oyster Mollicutes MAG revealed a reduced set of metabolic functions and a high reliance on the uptake of host-derived nutrients. A chitin degradation and an arginine deiminase pathway were unique to the MAG compared to closely related genomes of Mollicutes isolates, indicating distinct mechanisms of carbon and energy acquisition by the oyster-associated Mollicutes. A systematic reanalysis of public eastern oyster-derived microbiome data revealed a high prevalence of the Mollicutes among adult oyster guts and a significantly lower relative abundance of the Mollicutes in oyster larvae and adult oyster biodeposits. IMPORTANCE Despite their biological and ecological significance, a mechanistic characterization of microbiome function is frequently missing from many nonmodel marine invertebrates. As an initial step toward filling this gap for the eastern oyster, Crassostrea virginica, this study provides an integrated taxonomic and functional analysis of the oyster microbiome using samples from a coastal salt pond in August 2017. The study identified high variability of the microbiome across tissue types and among individual oysters, with some dominant taxa showing higher relative abundance in specific tissues. A high prevalence of Mollicutes in the adult oyster gut was revealed by comparative analysis of the gut, biodeposit, and larva microbiomes. Phylogenomic analysis and metabolic reconstruction suggested the oyster-associated Mollicutes is closely related but functionally distinct from Mollicutes isolated from other marine invertebrates. To the best of our knowledge, this study represents the first metagenomics-derived functional inference of Mollicutes in the eastern oyster microbiome.
Collapse
|
25
|
Mathai PP, Bertram JH, Padhi SK, Singh V, Tolo IE, Primus A, Mor SK, Phelps NBD, Sadowsky MJ. Influence of Environmental Stressors on the Microbiota of Zebra Mussels (Dreissena polymorpha). MICROBIAL ECOLOGY 2021; 81:1042-1053. [PMID: 33244619 PMCID: PMC8062372 DOI: 10.1007/s00248-020-01642-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/11/2020] [Indexed: 06/03/2023]
Abstract
Host-associated microbiota play a critical role in host fitness by providing nutrition, enhancing digestion capabilities, and by providing protection from pathogens. Here, we investigated the effects of two environmental stressors, temperature, and salinity, on the microbiota associated with zebra mussels (ZMs), a highly invasive bivalve in North America. To examine this in detail, lake-collected ZMs were acclimated to laboratory conditions, and subjected to temperature and salinity stress conditions. The impact of these stressors on the diversity, composition, and dynamics of ZM-associated microbiota were assessed by using amplicon- and shotgun-based sequencing, and qPCR-based approaches. Elevated temperature was found to be the primary driver of ZM mortality, although salinity alone also increased its likelihood. Stressor-induced ZM mortality, which ranged between 53 and 100%, was concomitant with significant increases in the relative abundance of several genera of putative opportunistic pathogens including Aeromonas. These genera were only present in low relative abundance in ZMs obtained from the control tank with 0% mortality. Shotgun sequencing and qPCR analyses indicated that the relative and absolute abundances of pathogenic Aeromonas species (particularly A. veronii) were significantly greater in temperature-induced dead ZMs. Taken together, our results show that environmental stress, especially elevated temperature (> 25 °C), is associated with the rapid mortality of ZMs as well as the proliferation of putative opportunistic bacterial pathogens.
Collapse
Affiliation(s)
- Prince P Mathai
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave., 140 Gortner Labs, St. Paul, MN, 55108, USA
| | - Jonathan H Bertram
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave., 140 Gortner Labs, St. Paul, MN, 55108, USA
| | - Soumesh K Padhi
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Vikash Singh
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Isaiah E Tolo
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Alexander Primus
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Sunil K Mor
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Nicholas B D Phelps
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN, USA
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave., 140 Gortner Labs, St. Paul, MN, 55108, USA.
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, USA.
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
26
|
Lattos A, Bitchava K, Giantsis IA, Theodorou JA, Batargias C, Michaelidis B. The Implication of Vibrio Bacteria in the Winter Mortalities of the Critically Endangered Pinna nobilis. Microorganisms 2021; 9:922. [PMID: 33925782 PMCID: PMC8145015 DOI: 10.3390/microorganisms9050922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/25/2023] Open
Abstract
Pinna nobilis populations, constituting the largest bivalve mollusk endemic to the Mediterranean, is characterized as critically endangered, threatened by extinction. Among the various factors proposed as etiological agents are the Haplosporidium pinnae and Mycobacterium sp. parasites. Nevertheless, devastation of the fan mussel populations is still far from clear. The current work is undertaken under a broader study aiming to evaluate the health status of Pinna nobilis population in Aegean Sea, after the mass mortalities that occurred in 2019. A significant objective was also (a) the investigation of the etiological agents of small-scale winter mortalities in the remaining populations after the devastating results of Haplosporidium pinnae and Mycobacterium sp. infections, as well as (b) the examination of the susceptibility of the identified bacterial strains in antibiotics for future laboratory experiments. Microbiological assays were used in order to detect the presence of potential bacterial pathogens in moribund animals in combination with molecular tools for their identification. Our results provide evidence that Vibrio bacterial species are directly implicated in the winter mortalities, particularly in cases where the haplosporidian parasite was absent. Additionally, this is the first report of Vibrio mediterranei and V. splendidus hosted by any bivalve on the Greek coastline.
Collapse
Affiliation(s)
- Athanasios Lattos
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Konstantina Bitchava
- Laboratory of Fish, Shellfish & Crustacean Diseases, Veterinary Research Institute of Thessaloniki ELGO-DEMETER, 570 01 Thessaloniki, Greece;
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 531 00 Florina, Greece
| | - John A. Theodorou
- Department of Animal Production Fisheries & Aquaculture, University of Patras, 232 00 Mesolonghi, Greece; (J.A.T.); (C.B.)
| | - Costas Batargias
- Department of Animal Production Fisheries & Aquaculture, University of Patras, 232 00 Mesolonghi, Greece; (J.A.T.); (C.B.)
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Science, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| |
Collapse
|
27
|
Impact of Marine Aquaculture on the Microbiome Associated with Nearby Holobionts: The Case of Patella caerulea Living in Proximity of Sea Bream Aquaculture Cages. Microorganisms 2021; 9:microorganisms9020455. [PMID: 33671759 PMCID: PMC7927081 DOI: 10.3390/microorganisms9020455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/04/2023] Open
Abstract
Aquaculture plays a major role in the coastal economy of the Mediterranean Sea. This raises the issue of the impact of fish cages on the surrounding environment. Here, we explore the impact of aquaculture on the composition of the digestive gland microbiome of a representative locally dwelling wild holobiont, the grazer gastropod Patella caerulea, at an aquaculture facility located in Southern Sicily, Italy. The microbiome was assessed in individuals collected on sea bream aquaculture cages and on a rocky coastal tract located about 1.2 km from the cages, as the control site. Patella caerulea microbiome variations were explained in the broad marine metacommunity context, assessing the water and sediment microbiome composition at both sites, and characterizing the microbiome associated with the farmed sea bream. The P. caerulea digestive gland microbiome at the aquaculture site was characterized by a lower diversity, the loss of microorganisms sensitive to heavy metal contamination, and by the acquisition of fish pathogens and parasites. However, we also observed possible adaptive responses of the P. caerulea digestive gland microbiome at the aquaculture site, including the acquisition of putative bacteria able to deal with metal and sulfide accumulation, highlighting the inherent microbiome potential to drive the host acclimation to stressful conditions.
Collapse
|
28
|
Marzocchi U, Bonaglia S, Zaiko A, Quero GM, Vybernaite-Lubiene I, Politi T, Samuiloviene A, Zilius M, Bartoli M, Cardini U. Zebra Mussel Holobionts Fix and Recycle Nitrogen in Lagoon Sediments. Front Microbiol 2021; 11:610269. [PMID: 33542710 PMCID: PMC7851879 DOI: 10.3389/fmicb.2020.610269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/29/2020] [Indexed: 01/04/2023] Open
Abstract
Bivalves are ubiquitous filter-feeders able to alter ecosystems functions. Their impact on nitrogen (N) cycling is commonly related to their filter-feeding activity, biodeposition, and excretion. A so far understudied impact is linked to the metabolism of the associated microbiome that together with the host constitute the mussel's holobiont. Here we investigated how colonies of the invasive zebra mussel (Dreissena polymorpha) alter benthic N cycling in the shallow water sediment of the largest European lagoon (the Curonian Lagoon). A set of incubations was conducted to quantify the holobiont's impact and to quantitatively compare it with the indirect influence of the mussel on sedimentary N transformations. Zebra mussels primarily enhanced the recycling of N to the water column by releasing mineralized algal biomass in the form of ammonium and by stimulating dissimilatory nitrate reduction to ammonium (DNRA). Notably, however, not only denitrification and DNRA, but also dinitrogen (N2) fixation was measured in association with the holobiont. The diazotrophic community of the holobiont diverged substantially from that of the water column, suggesting a unique niche for N2 fixation associated with the mussels. At the densities reported in the lagoon, mussel-associated N2 fixation may account for a substantial (and so far, overlooked) source of bioavailable N. Our findings contribute to improve our understanding on the ecosystem-level impact of zebra mussel, and potentially, of its ability to adapt to and colonize oligotrophic environments.
Collapse
Affiliation(s)
- Ugo Marzocchi
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
- Center for Water Technology (WATEC), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Stefano Bonaglia
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anastasija Zaiko
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Grazia M. Quero
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
- Institute for Biological Resources and Marine Biotechnologies, National Research Council of Italy, Ancona, Italy
| | | | - Tobia Politi
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
| | | | - Mindaugas Zilius
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marco Bartoli
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
- Department of Chemistry, Life science and Environmental Sustainability, Parma University, Parma, Italy
| | - Ulisse Cardini
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
| |
Collapse
|
29
|
Stevick RJ, Post AF, Gómez-Chiarri M. Functional plasticity in oyster gut microbiomes along a eutrophication gradient in an urbanized estuary. Anim Microbiome 2021; 3:5. [PMID: 33499983 PMCID: PMC7934548 DOI: 10.1186/s42523-020-00066-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/29/2020] [Indexed: 01/04/2023] Open
Abstract
Background Oysters in coastal environments are subject to fluctuating environmental conditions that may impact the ecosystem services they provide. Oyster-associated microbiomes are responsible for some of these services, particularly nutrient cycling in benthic habitats. The effects of climate change on host-associated microbiome composition are well-known, but functional changes and how they may impact host physiology and ecosystem functioning are poorly characterized. We investigated how environmental parameters affect oyster-associated microbial community structure and function along a trophic gradient in Narragansett Bay, Rhode Island, USA. Adult eastern oyster, Crassostrea virginica, gut and seawater samples were collected at 5 sites along this estuarine nutrient gradient in August 2017. Samples were analyzed by 16S rRNA gene sequencing to characterize bacterial community structures and metatranscriptomes were sequenced to determine oyster gut microbiome responses to local environments. Results There were significant differences in bacterial community structure between the eastern oyster gut and water samples, suggesting selection of certain taxa by the oyster host. Increasing salinity, pH, and dissolved oxygen, and decreasing nitrate, nitrite and phosphate concentrations were observed along the North to South gradient. Transcriptionally active bacterial taxa were similar for the different sites, but expression of oyster-associated microbial genes involved in nutrient (nitrogen and phosphorus) cycling varied throughout the Bay, reflecting the local nutrient regimes and prevailing environmental conditions. Conclusions The observed shifts in microbial community composition and function inform how estuarine conditions affect host-associated microbiomes and their ecosystem services. As the effects of estuarine acidification are expected to increase due to the combined effects of eutrophication, coastal pollution, and climate change, it is important to determine relationships between host health, microbial community structure, and environmental conditions in benthic communities. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-020-00066-0.
Collapse
Affiliation(s)
- Rebecca J Stevick
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Anton F Post
- Division of Research, Florida Atlantic University, Boca Raton, FL, USA
| | - Marta Gómez-Chiarri
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
30
|
Gut Symbiotic Microbial Communities in the IUCN Critically Endangered Pinna nobilis Suffering from Mass Mortalities, Revealed by 16S rRNA Amplicon NGS. Pathogens 2020; 9:pathogens9121002. [PMID: 33260452 PMCID: PMC7761360 DOI: 10.3390/pathogens9121002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Mass mortality events due to disease outbreaks have recently affected almost every healthy population of fan mussel, Pinna nobilis in Mediterranean Sea. The devastating mortality of the species has turned the interest of the research towards the causes of these events. After the haplosporidan infestation and the infection by Mycobacterium sp., new emerging pathogens have arisen based on the latest research. In the present study, a metagenomic approach of 16S rRNA next generation sequencing (NGS) was applied in order to assess the bacterial diversity within the digestive gland of diseased individuals as well as to carry out geographical correlations among the biodiversity of microbiome in the endangered species Pinna nobilis. The specimens originated from the mortalities occurred in 2019 in the region of Greece. Together with other bacterial genera, the results confirmed the presence of Vibrio spp., assuming synergistic effects in the mortality events of the species. Alongside with the presence of Vibrio spp., numerous bacterial genera were detected as well, including Aliivibrio spp., Photobacterium spp., Pseudoalteromonas spp., Psychrilyobacter spp. and Mycoplasma spp. Bacteria of the genus Mycoplasma were in high abundance particularly in the sample originated from Limnos island representing the first time recorded in Pinna nobilis. In conclusion, apart from exclusively the Haplosporidan and the Mycobacterium parasites, the presence of potentially pathogenic bacterial taxa detected, such as Vibrio spp., Photobactrium spp. and Alivibrio spp. lead us to assume that mortality events in the endangered Fan mussel, Pinna nobilis, may be attributed to synergistic effects of more pathogens.
Collapse
|
31
|
González R, Gonçalves AT, Rojas R, Brokordt K, Rosa RD, Schmitt P. Host Defense Effectors Expressed by Hemocytes Shape the Bacterial Microbiota From the Scallop Hemolymph. Front Immunol 2020; 11:599625. [PMID: 33281827 PMCID: PMC7689009 DOI: 10.3389/fimmu.2020.599625] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/19/2020] [Indexed: 01/04/2023] Open
Abstract
The interaction between host immune response and the associated microbiota has recently become a fundamental aspect of vertebrate and invertebrate animal health. This interaction allows the specific association of microbial communities, which participate in a variety of processes in the host including protection against pathogens. Marine aquatic invertebrates such as scallops are also colonized by diverse microbial communities. Scallops remain healthy most of the time, and in general, only a few species are fatally affected on adult stage by viral and bacterial pathogens. Still, high mortalities at larval stages are widely reported and they are associated with pathogenic Vibrio. Thus, to give new insights into the interaction between scallop immune response and its associated microbiota, we assessed the involvement of two host antimicrobial effectors in shaping the abundances of bacterial communities present in the scallop Argopecten purpuratus hemolymph. To do this, we first characterized the microbiota composition in the hemolymph from non-stimulated scallops, finding both common and distinct bacterial communities dominated by the Proteobacteria, Spirochaetes and Bacteroidetes phyla. Next, we identified dynamic shifts of certain bacterial communities in the scallop hemolymph along immune response progression, where host antimicrobial effectors were expressed at basal level and early induced after a bacterial challenge. Finally, the transcript silencing of the antimicrobial peptide big defensin ApBD1 and the bactericidal/permeability-increasing protein ApLBP/BPI1 by RNA interference led to an imbalance of target bacterial groups from scallop hemolymph. Specifically, a significant increase in the class Gammaproteobacteria and the proliferation of Vibrio spp. was observed in scallops silenced for each antimicrobial. Overall, our results strongly suggest that scallop antimicrobial peptides and proteins are implicated in the maintenance of microbial homeostasis and are key molecules in orchestrating host-microbiota interactions. This new evidence depicts the delicate balance that exists between the immune response of A. purpuratus and the hemolymph microbiota.
Collapse
Affiliation(s)
- Roxana González
- Doctorado en Acuicultura. Programa Cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
- Laboratorio de Genética e Inmunología Molecular, Facultad de Ciencias, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Rodrigo Rojas
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile
| | - Katherina Brokordt
- Laboratorio de Fisiología Marina (FIGEMA), Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Antofagasta, Chile
| | - Rafael Diego Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Facultad de Ciencias, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
32
|
Balbi T, Vezzulli L, Lasa A, Pallavicini A, Canesi L. Insight into the microbial communities associated with first larval stages of Mytilus galloprovincialis: Possible interference by estrogenic compounds. Comp Biochem Physiol C Toxicol Pharmacol 2020; 237:108833. [PMID: 32585367 DOI: 10.1016/j.cbpc.2020.108833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
Abstract
The microbiota, the host-associated community of microbes, play important roles in health status and whole body homeostasis of all organisms, including marine species. In bivalves, the microbiota composition has been mainly investigated in adults, whereas little information is available during development. In this work, the microbiota composition of the first larval stages of Mytilus galloprovincialis was evaluated by 16S rRNA gene-based profiling, at 24 and 48 hours post fertilization in comparison with those of eggs and sperm. The main genera detected in both larvae (Vibrio, Pseudoalteromonas, Psychrobium, Colwellia) derived from eggs. However, a clear shift in microbiota was observed in developing larvae compared to eggs, both in terms of core microbiome and relative abundance of different genera. The results provide a first insight into the composition of the microbial communities associated with gametes and early larvae of mussels. Moreover, the impact on larval microbiome of estrogenic chemicals that potentially affect Mytilus early development, 17βestradiol-E2, Bisphenol A-BPA and Bisphenol F-BPF (10 μg/L), was investigated. Exposure to estrogenic chemicals leads to changes in abundance of different genera, with distinct and common effects depending on the compound and larval stage. Both potential pathogens (Vibrio, Arcobacter, Tenacibaculum) and genera involved in xenobiotic biotransformation (Oleispira, Shewanella) were affected. The effects of estrogenic compounds on larval microbiome were not related to their developmental effects: however, the results address the importance of evaluating the impact of emerging contaminants on the microbiota of marine invertebrates, including larval stages, that are most sensitive to environmental perturbations.
Collapse
Affiliation(s)
- T Balbi
- DISTAV, Dept. of Earth, Environment and Life Sciences, University of Genoa, Italy.
| | - L Vezzulli
- DISTAV, Dept. of Earth, Environment and Life Sciences, University of Genoa, Italy
| | - A Lasa
- Dept. of Microbiology and Parasitology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - A Pallavicini
- Dept. of Life Sciences, University of Trieste, Italy
| | - L Canesi
- DISTAV, Dept. of Earth, Environment and Life Sciences, University of Genoa, Italy
| |
Collapse
|
33
|
Biessy L, Pearman JK, Smith KF, Hawes I, Wood SA. Seasonal and Spatial Variations in Bacterial Communities From Tetrodotoxin-Bearing and Non-tetrodotoxin-Bearing Clams. Front Microbiol 2020; 11:1860. [PMID: 32849450 PMCID: PMC7419435 DOI: 10.3389/fmicb.2020.01860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
Tetrodotoxin (TTX) is one of the most potent naturally occurring compounds and is responsible for many human intoxications worldwide. Paphies australis are endemic clams to New Zealand which contain varying concentrations of TTX. Research suggests that P. australis accumulate the toxin exogenously, but the source remains uncertain. The aim of this study was to identify potential bacterial TTX-producers by exploring differences in bacterial communities in two organs of P. australis: the siphon and digestive gland. Samples from the digestive glands of a non-toxic bivalve Austrovenus stutchburyi that lives amongst toxic P. australis populations were also analyzed. Bacterial communities were characterized using 16S ribosomal RNA gene metabarcoding in P. australis sourced monthly from the Hokianga Harbor, a site known to have TTX-bearing clams, for 1 year, from ten sites with varying TTX concentrations around New Zealand, and in A. stutchburyi from the Hokianga Harbor. Tetrodotoxin was detected in P. australis from sites all around New Zealand and in all P. australis collected monthly from the Hokianga Harbor. The toxin averaged 150 μg kg-1 over the year of sampling in the Hokianga Harbor but no TTX was detected in the A. stutchburyi samples from the same site. Bacterial species diversity differed amongst sites (p < 0.001, F = 5.9) and the diversity in siphon samples was significantly higher than in digestive glands (p < 0.001, F = 65.8). Spirochaetaceae (4-60%) and Mycoplasmataceae (16-78%) were the most abundant families in the siphons and the digestive glands, respectively. The bacterial communities were compared between sites with the lowest TTX concentrations and the Hokianga Harbor (site with the highest TTX concentrations), and the core bacterial communities from TTX-bearing individuals were analyzed. The results from both spatial and temporal studies corroborate with previous hypotheses that Vibrio and Bacillus could be responsible for the source of TTX in bivalves. The results from this study also indicate that marine cyanobacteria, in particular picocyanobacteria (e.g., Cyanobium, Synechococcus, Pleurocapsa, and Prochlorococcus), should be investigated further as potential TTX producers.
Collapse
Affiliation(s)
- Laura Biessy
- Coastal and Freshwater, Cawthron Institute, Nelson, New Zealand.,Department of Biological Sciences, University of Waikato, Hamilton, New Zealand.,New Zealand Food Safety Science and Research Centre, Palmerston North, New Zealand
| | - John K Pearman
- Coastal and Freshwater, Cawthron Institute, Nelson, New Zealand
| | - Kirsty F Smith
- Coastal and Freshwater, Cawthron Institute, Nelson, New Zealand
| | - Ian Hawes
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Susanna A Wood
- Coastal and Freshwater, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
34
|
The effects of atrazine on the microbiome of the eastern oyster: Crassostrea virginica. Sci Rep 2020; 10:11088. [PMID: 32632188 PMCID: PMC7338443 DOI: 10.1038/s41598-020-67851-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Long-standing evidence supports the importance of maintaining healthy populations of microbiota for the survival, homeostasis, and complete development of marine mollusks. However, the long-term ecological effects of agricultural runoff on these populations remains largely unknown. Atrazine (6-Chloro-n-ethyl-n'-(1-methylethyl)-triazine-2,4-diamine), a prevalent herbicide in the United States, is often used along tributaries of the Chesapeake Bay where oyster breeding programs are concentrated. To investigate any potential effects atrazine maybe having on mollusk-prokaryote interactions, we used 16S rRNA gene amplicons to evaluate how microbial compositions shift in response to exposure of environmentally relevant concentrations of atrazine previously found within the Chesapeake Bay. The dominant bacterial genera found within all groups included those belonging to Pseudoalteromonas, Burkholderia, Bacteroides, Lactobacillis, Acetobacter, Allobaculum, Ruminococcus, and Nocardia. Our results support previously published findings of a possible core microbial community in Crassostrea virginica. We also report a novel finding: oysters exposed to atrazine concentrations as low as 3 µg/L saw a significant loss of a key mutualistic microbial species and a subsequent colonization of a pathogenic bacteria Nocardia. We conclude that exposure to atrazine in the Chesapeake Bay may be contributing to a significant shift in the microbiomes of juvenile oysters that reduces fitness and impedes natural and artificial repopulation of the oyster species within the Bay.
Collapse
|
35
|
Auguste M, Lasa A, Balbi T, Pallavicini A, Vezzulli L, Canesi L. Impact of nanoplastics on hemolymph immune parameters and microbiota composition in Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2020; 159:105017. [PMID: 32662444 DOI: 10.1016/j.marenvres.2020.105017] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Ocean contamination by micro- and nanoplastics represents a potential threat to marine biota, from bacterial communities to higher organisms. In this work, the effect of in vivo exposure of Mytilus galloprovincialis to amino modified nanopolystyrene (PS-NH2) (10 μg/L, 96 h) on hemolymph immune parameters and microbiota composition were investigated. Nanoplastics significantly affected immune parameters (decreased phagocytosis, increased ROS and lysozyme activity, inhibition of NO production). These changes were associated with a shift in hemolymph microbiota composition, with increase in some genera (Arcobacter-like, Psychrobium, Vibrio), and decreases in others (Shewanella, Mycoplasma). The results indicate that exposure to nanoplastics can impact on the microbiome of marine bivalves, and suggest that downregulation of immune defences induced by PS-NH2 may favour potentially pathogenic bacteria. These data underline how exposure to nanoplastics may represent a potential threat to the complex interplay between innate immunity and host microbiota, thus affecting the homeostatic processes involved in maintenance of organism health.
Collapse
Affiliation(s)
- Manon Auguste
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy.
| | - Aide Lasa
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy; Department of Microbiology and Parasitology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Teresa Balbi
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy
| | | | - Luigi Vezzulli
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy
| | - Laura Canesi
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy
| |
Collapse
|
36
|
Dupont S, Lokmer A, Corre E, Auguet JC, Petton B, Toulza E, Montagnani C, Tanguy G, Pecqueur D, Salmeron C, Guillou L, Desnues C, La Scola B, Bou Khalil J, de Lorgeril J, Mitta G, Gueguen Y, Escoubas JM. Oyster hemolymph is a complex and dynamic ecosystem hosting bacteria, protists and viruses. Anim Microbiome 2020; 2:12. [PMID: 33499958 PMCID: PMC7807429 DOI: 10.1186/s42523-020-00032-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The impact of the microbiota on host fitness has so far mainly been demonstrated for the bacterial microbiome. We know much less about host-associated protist and viral communities, largely due to technical issues. However, all microorganisms within a microbiome potentially interact with each other as well as with the host and the environment, therefore likely affecting the host health. RESULTS We set out to explore how environmental and host factors shape the composition and diversity of bacterial, protist and viral microbial communities in the Pacific oyster hemolymph, both in health and disease. To do so, five oyster families differing in susceptibility to the Pacific oyster mortality syndrome were reared in hatchery and transplanted into a natural environment either before or during a disease outbreak. Using metabarcoding and shotgun metagenomics, we demonstrate that hemolymph can be considered as an ecological niche hosting bacterial, protist and viral communities, each of them shaped by different factors and distinct from the corresponding communities in the surrounding seawater. Overall, we found that hemolymph microbiota is more strongly shaped by the environment than by host genetic background. Co-occurrence network analyses suggest a disruption of the microbial network after transplantation into natural environment during both non-infectious and infectious periods. Whereas we could not identify a common microbial community signature for healthy animals, OsHV-1 μVar virus dominated the hemolymph virome during the disease outbreak, without significant modifications of other microbiota components. CONCLUSION Our study shows that oyster hemolymph is a complex ecosystem containing diverse bacteria, protists and viruses, whose composition and dynamics are primarily determined by the environment. However, all of these are also shaped by oyster genetic backgrounds, indicating they indeed interact with the oyster host and are therefore not only of transient character. Although it seems that the three microbiome components respond independently to environmental conditions, better characterization of hemolymph-associated viruses could change this picture.
Collapse
Affiliation(s)
- S Dupont
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France
| | - A Lokmer
- Coastal Ecology, Wadden Sea Station Sylt, Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research, List auf Sylt, Germany.,Current affiliation UMR 7206 Eco-anthropologie et Ethnologie, CNRS - MNHN Univ. Paris Diderot Sorbonne Paris Cité, Paris, France
| | - E Corre
- Sorbonne Université, CNRS, FR2424 ABiMS (Analysis and Bioanalysis for Marine Sciences), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - J-C Auguet
- MARBEC, Université Montpellier, CNRS, IFREMER, IRD, CC093, place Eugène Bataillon, 34095, Montpellier, France
| | - B Petton
- Ifremer, LEMAR UMR 6539, 11 presqu'île du Vivier, 29840, Argenton-en-Landunvez, France
| | - E Toulza
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France
| | - C Montagnani
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France
| | - G Tanguy
- Sorbonne Université, CNRS, FR2424, Genomer, Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - D Pecqueur
- Observatoire Océanologique de Banyuls sur Mer, FR 3724, BioPIC, CNRS/SU, Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | - C Salmeron
- Observatoire Océanologique de Banyuls sur Mer, FR 3724, BioPIC, CNRS/SU, Avenue Pierre Fabre, 66650, Banyuls-sur-Mer, France
| | - L Guillou
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff SBR, 29680, Roscoff, France
| | - C Desnues
- Aix-Marseille Université, IRD 257, Assistance-Publique des Hôpitaux de Marseille, UMR Microbes, Evolution, Phylogeny and Infections (MEPHI), IHU Méditerranée Infection, 13005, Marseille, France.,Aix-Marseille Université, Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography, UM 110, 13288, Marseille, France
| | - B La Scola
- Microbes, Evolution, Phylogeny and Infection (MEΦI), Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique - Hôpitaux de Marseille (AP-HM), Marseille, France.,Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - J Bou Khalil
- Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - J de Lorgeril
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France
| | - G Mitta
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France
| | - Y Gueguen
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France
| | - J-M Escoubas
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan Via Domitia, 34095, Montpellier, France.
| |
Collapse
|
37
|
Guibert I, Lecellier G, Torda G, Pochon X, Berteaux-Lecellier V. Metabarcoding reveals distinct microbiotypes in the giant clam Tridacna maxima. MICROBIOME 2020; 8:57. [PMID: 32317019 PMCID: PMC7175534 DOI: 10.1186/s40168-020-00835-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Giant clams and scleractinian (reef-building) corals are keystone species of coral reef ecosystems. The basis of their ecological success is a complex and fine-tuned symbiotic relationship with microbes. While the effect of environmental change on the composition of the coral microbiome has been heavily studied, we know very little about the composition and sensitivity of the microbiome associated with clams. Here, we explore the influence of increasing temperature on the microbial community (bacteria and dinoflagellates from the family Symbiodiniaceae) harbored by giant clams, maintained either in isolation or exposed to other reef species. We created artificial benthic assemblages using two coral species (Pocillopora damicornis and Acropora cytherea) and one giant clam species (Tridacna maxima) and studied the microbial community in the latter using metagenomics. RESULTS Our results led to three major conclusions. First, the health status of giant clams depended on the composition of the benthic species assemblages. Second, we discovered distinct microbiotypes in the studied T. maxima population, one of which was disproportionately dominated by Vibrionaceae and directly linked to clam mortality. Third, neither the increase in water temperature nor the composition of the benthic assemblage had a significant effect on the composition of the Symbiodiniaceae and bacterial communities of T. maxima. CONCLUSIONS Altogether, our results suggest that at least three microbiotypes naturally exist in the studied clam populations, regardless of water temperature. These microbiotypes plausibly provide similar functions to the clam host via alternate molecular pathways as well as microbiotype-specific functions. This redundancy in functions among microbiotypes together with their specificities provides hope that giant clam populations can tolerate some levels of environmental variation such as increased temperature. Importantly, the composition of the benthic assemblage could make clams susceptible to infections by Vibrionaceae, especially when water temperature increases. Video abstract.
Collapse
Affiliation(s)
- Isis Guibert
- Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, SAR China
- UMR250/9220 ENTROPIE IRD-CNRS-UR, Promenade Roger-Laroque, Sorbonne Université, Noumea Cedex, New Caledonia France
- USR3278 PSL CRIOBE CNRS-EPHE-UPVD, Papetoai, Moorea, French Polynesia
| | - Gael Lecellier
- UMR250/9220 ENTROPIE IRD-CNRS-UR, Promenade Roger-Laroque, Sorbonne Université, Noumea Cedex, New Caledonia France
- UVSQ, Université de Paris-Saclay, 45 Avenue des Etats-Unis, Versailles Cedex, France
| | - Gergely Torda
- ARC, Centre of Excellence for Coral Reef Studies, James Cook University, QLD, Townsville, 4811 Australia
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute, Private Bag 2, Nelson, 7042 New Zealand
- Institute of Marine Science, University of Auckland, Private Bag 349, Warkworth, 0941 New Zealand
| | - Véronique Berteaux-Lecellier
- UMR250/9220 ENTROPIE IRD-CNRS-UR, Promenade Roger-Laroque, Sorbonne Université, Noumea Cedex, New Caledonia France
| |
Collapse
|
38
|
Liu X, Teixeira JS, Ner S, Ma KV, Petronella N, Banerjee S, Ronholm J. Exploring the Potential of the Microbiome as a Marker of the Geographic Origin of Fresh Seafood. Front Microbiol 2020; 11:696. [PMID: 32362885 PMCID: PMC7181054 DOI: 10.3389/fmicb.2020.00696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
Geographic food fraud – misrepresenting the geographic origin of a food item, is very difficult to detect, and therefore this type of fraud tends to go undetected. This potentially negatively impacts the health of Canadians and economic success of our seafood industry. Surveillance studies have shown that up to a significant portion of commercially sold seafood items in Canada are mislabeled or otherwise misrepresented in some way. The current study aimed to determine if the microbiome of fresh shellfish could be used as an accurate marker of harvest location. Total DNA was extracted from the homogenate of 25 batches of fresh soft-shell clams (Mya arenaria) harvested in 2015 and 2018 from two locations on the East Coast of Canada and the microbiome of each homogenate was characterized using 16S rRNA targeted amplicon sequencing. Clams harvested from Nova Scotia in both years had a higher abundance of Proteobacteria and Acidobacteria (p < 0.05), but a lower abundance of Actinobacteria (p < 0.05) than those from Quebec. Alpha-diversity also differed significantly between sites. Samples harvested from Nova Scotia had greater diversity (p < 0.0001) than those from Quebec. Beta-diversity analysis showed that the microbial community composition was significantly different between the samples from Nova Scotia and Quebec and indicated that 16S rRNA targeted amplicon sequencing might be an effective tool for elucidating the geographic origin of unprocessed shellfish. To evaluate if the microbiome of shellfish experiences a loss of microbial diversity during processing and storage – which would limit the ability of this technique to link retail samples to geographic origin, 10 batches of retail clams purchased from grocery stores were also examined. Microbial diversity and species richness was significantly lower in retail clams, and heavily dominated by Proteobacteria, a typical spoilage organism for fresh seafood, this may make determining the geographic origin of seafood items more difficult in retail clams than in freshly harvested clams.
Collapse
Affiliation(s)
- Xiaoji Liu
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | | | - Saurabh Ner
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | | | | | | | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
39
|
Alma L, Kram KE, Holtgrieve GW, Barbarino A, Fiamengo CJ, Padilla-Gamiño JL. Ocean acidification and warming effects on the physiology, skeletal properties, and microbiome of the purple-hinge rock scallop. Comp Biochem Physiol A Mol Integr Physiol 2020; 240:110579. [DOI: 10.1016/j.cbpa.2019.110579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
|
40
|
Gut Microbiomes of the Eastern Oyster ( Crassostrea virginica) and the Blue Mussel ( Mytilus edulis): Temporal Variation and the Influence of Marine Aggregate-Associated Microbial Communities. mSphere 2019; 4:4/6/e00730-19. [PMID: 31826972 PMCID: PMC6908423 DOI: 10.1128/msphere.00730-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This work investigates the influence that extrinsic factors, diet, and the environment can have on the microbiomes of shellfish. Over the course of a year, the gut microbial communities of two species of bivalves, oysters and mussels, held under identical conditions in coastal marine waters were compared. While the mussels and oysters harbored gut microbial communities with similar composition, on a functional level, they exhibited species and temporal variation. These results indicate that intrinsic factors influence the bivalve microbiome, resulting in species variability, even when environmental conditions, feeding mechanism, and particle diet are constant. Seasonal and multispecies comparisons for bivalve-associated microbial communities are rare, and we believe this research represents an important contribution. The results presented here advance our understanding of the symbiotic interactions between marine invertebrates, the microbial communities they harbor, and the environment. Gut microbial community structure was evaluated for two species of bivalve molluscs, the eastern oyster (Crassostrea virginica) and the blue mussel (Mytilus edulis) collected from Long Island Sound, Connecticut, over the course of a year. These bivalves utilize a shared feeding mechanism, which may result in similar gut microbial communities. Their particle diet, marine aggregates, and surrounding environment, aggregate-free seawater (AFSW), were also collected for comparison. Due to the suspension-feeding activities of bivalves, the potential for aggregate- and AFSW-associated microbiota to influence their microbial communities may be significant. Both taxonomic and functional diversity of the samples were assessed. 16S rRNA gene amplicon sequencing indicated that oysters and mussels maintained similar, but not identical, gut microbiomes, with some temporal variation. Throughout the year, bivalve species had gut microbial community compositions that were more similar to one another than to aggregates. Within a month, bivalves shared on average a quarter of their total operational taxonomic units (OTUs) with each other and a 10th of their total OTUs with aggregates. During months with warm water temperatures, individuals within each of the four sample types had similar alpha diversity, but again, temporal variation was observed. On a functional level, bivalve gut microbial communities exhibited variation attributed to host species and season. Unlike oysters, mussel gut bacterial communities maintained high richness and evenness values throughout the year, even when values for the particle diet and AFSW were reduced. Overall, a core gut bivalve microbiome was present, and it was partially influenced by the marine aggregate microbial community. IMPORTANCE This work investigates the influence that extrinsic factors, diet, and the environment can have on the microbiomes of shellfish. Over the course of a year, the gut microbial communities of two species of bivalves, oysters and mussels, held under identical conditions in coastal marine waters were compared. While the mussels and oysters harbored gut microbial communities with similar composition, on a functional level, they exhibited species and temporal variation. These results indicate that intrinsic factors influence the bivalve microbiome, resulting in species variability, even when environmental conditions, feeding mechanism, and particle diet are constant. Seasonal and multispecies comparisons for bivalve-associated microbial communities are rare, and we believe this research represents an important contribution. The results presented here advance our understanding of the symbiotic interactions between marine invertebrates, the microbial communities they harbor, and the environment.
Collapse
|
41
|
Rossbach S, Cardenas A, Perna G, Duarte CM, Voolstra CR. Tissue-Specific Microbiomes of the Red Sea Giant Clam Tridacna maxima Highlight Differential Abundance of Endozoicomonadaceae. Front Microbiol 2019; 10:2661. [PMID: 31849854 PMCID: PMC6901920 DOI: 10.3389/fmicb.2019.02661] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/31/2019] [Indexed: 02/01/2023] Open
Abstract
Giant clams (subfamily Tridacninae) are prevalent members of coral reef communities and engage in symbioses with algal photosymbionts of the family Symbiodiniaceae, similar to their scleractinian coral counterparts. However, we know little about their associated bacterial microbiome members. Here, we explored bacterial community diversity of digestive system, gill, and mantle tissues associated with the giant clam Tridacna maxima across a cross-shelf gradient (inshore, midshore, and offshore reef sites) in the central Red Sea using 16S rRNA gene amplicon sequencing. Different tissues harbor spatially stable and distinct microbial communities. Notably, diverse assemblages of bacteria affiliated to the family Endozoicomonadaceae were prevalent in all tissues, but particularly abundant in gills and to a lesser extent in digestive tissues. Besides Endozoicomonadaceae, bacteria in the families Pasteurellaceae, Alteromonadaceae, and Comamonadaceae were common associates, depending on the tissue queried. Taxonomy-based functional inference identified processes related to nitrogen cycling (among others) to be enriched in giant clam tissues and contributed by Endozoicomonadaceae. Our study highlights the tissue-specificity and broad taxonomic range of Endozoicomonadaceae associates, similar to other marine invertebrates, and suggests their contribution to nitrogen-related pathways. The investigation of bivalve-associated microbiome communities provides an important addition to the pathogen-focused studies for commercially important bivalves (e.g., oysters).
Collapse
Affiliation(s)
- Susann Rossbach
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Anny Cardenas
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gabriela Perna
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
42
|
Muñoz K, Flores-Herrera P, Gonçalves AT, Rojas C, Yáñez C, Mercado L, Brokordt K, Schmitt P. The immune response of the scallop Argopecten purpuratus is associated with changes in the host microbiota structure and diversity. FISH & SHELLFISH IMMUNOLOGY 2019; 91:241-250. [PMID: 31100440 DOI: 10.1016/j.fsi.2019.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
All organisms live in close association with a variety of microorganisms called microbiota. Furthermore, several studies support a fundamental role of the microbiota on the host health and homeostasis. In this context, the aim of this work was to determine the structure and diversity of the microbiota associated with the scallop Argopecten purpuratus, and to assess changes in community composition and diversity during the host immune response. To do this, adult scallops were immune challenged and sampled after 24 and 48 h. Activation of the immune response was established by transcript overexpression of several scallop immune response genes in hemocytes and gills, and confirmed by protein detection of the antimicrobial peptide big defensin in gills of Vibrio-injected scallops at 24 h post-challenge. Then, the major bacterial community profile present in individual scallops was assessed by denaturing gradient gel electrophoresis (DGGE) of 16S rDNA genes and dendrogram analyses, which indicated a clear clade differentiation of the bacterial communities noticeable at 48 h post-challenge. Finally, the microbiota structure and diversity from pools of scallops were characterized using 16S deep amplicon sequencing. The results revealed an overall modulation of the microbiota abundance and diversity according to scallop immune status, allowing for prediction of some changes in the functional potential of the microbial community. Overall, the present study showed that changes in the structure and diversity of bacterial communities associated with the scallop A. purpuratus are detected after the activation of the host immune response. Now, the relevance of microbial balance disruption in the immune capacity of the scallop remains to be elucidated.
Collapse
Affiliation(s)
- K Muñoz
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - P Flores-Herrera
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - A T Gonçalves
- Laboratorio de Biotecnología y Genómica Acuícola - Centro Interdisciplinario para la Investigación Acuícola (INCAR), Universidad de Concepción, Concepción, Chile
| | - C Rojas
- Laboratorio de Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - C Yáñez
- Laboratorio de Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - L Mercado
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - K Brokordt
- Laboratory of Marine Physiology and Genetics (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Coquimbo, Chile
| | - P Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
43
|
Auguste M, Lasa A, Pallavicini A, Gualdi S, Vezzulli L, Canesi L. Exposure to TiO 2 nanoparticles induces shifts in the microbiota composition of Mytilus galloprovincialis hemolymph. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:129-137. [PMID: 30903888 DOI: 10.1016/j.scitotenv.2019.03.133] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
It is now recognized that host microbiome, the community of microorganisms that colonize the animal body (e.g. microbiota) and their genomes, play an important role in the health status of all organisms, from nutrient processing to protection from disease. In particular, the complex, bilateral interactions between the host innate immune system and the microbiota are crucial in maintaining whole body homeostasis. The development of nanotechnology is raising concern on the potential impact of nanoparticles-NPs on human and environmental health. Titanium dioxide-nTiO2, one of the most widely NP in use, has been shown to affect the gut microbiota of mammals and fish, as well as to potentially alter microbial communities. In the marine bivalve Mytilus galloprovincialis, nTiO2 has been previously shown to interact with hemolymph components, thus resulting in immunomodulation. However, no information is available on the possible impact of NPs on the microbiome of marine organisms. Bivalves host high microbial abundance and diversity, and alteration of their microbiota, in both tissues and hemolymph, in response to stressful conditions has been linked to a compromised health status and susceptibility to diseases. In this work, the effects of nTiO2 exposure (100 μg/L, 4 days) on Mytilus hemolymph microbiota were investigated by 16S rRNA gene-based profiling. Immune parameters were also evaluated. Although hemolymph microbiota of control and nTiO2-treated mussels revealed a similar core composition, nTiO2 exposure affected the abundance of different genera, with decreases in some (e.g. Shewanella, Kistimonas, Vibrio) and increases in others (e.g. Stenotrophomonas). The immunomodulatory effects of nTiO2 were confirmed by the increase in the bactericidal activity of whole hemolymph. These represent the first data on the effects of NPs on the microbiome of marine invertebrates, and suggest that the shift in hemolymph microbiome composition induced by nTiO2 may result from the interplay between the microbiota and the immune system.
Collapse
Affiliation(s)
- Manon Auguste
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy.
| | - Aide Lasa
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy; Department of Microbiology and Parasitology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Stefano Gualdi
- Department of Plant and Microbial Biology, University of Zürich, Switzerland
| | - Luigi Vezzulli
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy
| | - Laura Canesi
- DISTAV, Dept. of Environmental, Earth and Life Sciences, University of Genoa, Italy
| |
Collapse
|
44
|
Pathirana E, McPherson A, Whittington R, Hick P. The role of tissue type, sampling and nucleic acid purification methodology on the inferred composition of Pacific oyster (Crassostrea gigas) microbiome. J Appl Microbiol 2019; 127:429-444. [PMID: 31102430 DOI: 10.1111/jam.14326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 01/02/2023]
Abstract
AIMS This study evaluated methods to sample and extract nucleic acids from Pacific oysters to accurately determine the microbiome associated with different tissues. METHODS AND RESULTS Samples were collected from haemolymph, gill, gut and adductor muscle, using swabs and homogenates of solid tissues. Nucleic acids were extracted from fresh and frozen samples using three different commercial kits. The bacterial DNA yield varied between methods (P < 0·05) and each tissue harboured a unique microbiota, except for gill and muscle. Higher bacterial DNA yields were obtained by swabbing compared to tissue homogenates and from fresh tissues compared to frozen tissues, without impacting the bacterial community composition estimated by 16S rRNA gene (V1-V3 region) sequencing. Despite the higher bacterial DNA yields with QIAamp® DNA Microbiome Kit, the E.Z.N.A.® Mollusc DNA Kit identified twice as many operational taxonomic units (OTUs) and eliminated PCR inhibition from gut tissues. CONCLUSIONS Sampling and nucleic acid purification substantially affected the quantity and diversity of bacteria identified in Pacific oyster microbiome studies and a fit-for-purpose strategy is recommended. SIGNIFICANCE AND IMPACT OF THE STUDY Accurate identification of Pacific oyster microbial diversity is instrumental for understanding the polymicrobial aetiology of Pacific oyster mortality diseases which greatly impact oyster production.
Collapse
Affiliation(s)
- E Pathirana
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| | - A McPherson
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| | - R Whittington
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| | - P Hick
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| |
Collapse
|
45
|
Stevick RJ, Sohn S, Modak TH, Nelson DR, Rowley DC, Tammi K, Smolowitz R, Markey Lundgren K, Post AF, Gómez-Chiarri M. Bacterial Community Dynamics in an Oyster Hatchery in Response to Probiotic Treatment. Front Microbiol 2019; 10:1060. [PMID: 31156583 PMCID: PMC6530434 DOI: 10.3389/fmicb.2019.01060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/26/2019] [Indexed: 01/10/2023] Open
Abstract
Larval oysters in hatcheries are susceptible to diseases caused by bacterial pathogens, including Vibrio spp. Previous studies have shown that daily addition of the probiotic Bacillus pumilus RI06-95 to water in rearing tanks increases larval survival when challenged with the pathogen Vibrio coralliilyticus. We propose that the presence of probiotics causes shifts in bacterial community structure in rearing tanks, leading to a net decrease in the relative abundance of potential pathogens. During three trials spanning the 2012-2015 hatchery seasons, larvae, tank biofilm, and rearing water samples were collected from control and probiotic-treated tanks in an oyster hatchery over a 12-day period after spawning. Samples were analyzed by 16S rRNA sequencing of the V4 or V6 regions followed by taxonomic classification, in order to determine bacterial community structures. There were significant differences in bacterial composition over time and between sample types, but no major effect of probiotics on the structure and diversity of bacterial communities (phylum level, Bray-Curtis k = 2, 95% confidence). Probiotic treatment, however, led to a higher relative percent abundance of Oceanospirillales and Bacillus spp. in water and oyster larvae. In the water, an increase in Vibrio spp. diversity in the absence of a net increase in relative read abundance suggests a likely decrease in the abundance of specific pathogenic Vibrio spp., and therefore lower chances of a disease outbreak. Co-occurrence network analysis also suggests that probiotic treatment had a systemic effect on targeted members of the bacterial community, leading to a net decrease in potentially pathogenic species.
Collapse
Affiliation(s)
- Rebecca J. Stevick
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI, United States
| | - Saebom Sohn
- Department of Fisheries, Animal and Veterinary Sciences, The University of Rhode Island, Kingston, RI, United States
| | - Tejashree H. Modak
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, United States
| | - David R. Nelson
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, United States
| | - David C. Rowley
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| | - Karin Tammi
- Feinstein School of Social and Natural Sciences, Roger Williams University, Bristol, RI, United States
| | - Roxanna Smolowitz
- Feinstein School of Social and Natural Sciences, Roger Williams University, Bristol, RI, United States
| | - Kathryn Markey Lundgren
- Feinstein School of Social and Natural Sciences, Roger Williams University, Bristol, RI, United States
| | - Anton F. Post
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI, United States
- Division of Research, Florida Atlantic University, Boca Raton, FL, United States
| | - Marta Gómez-Chiarri
- Department of Fisheries, Animal and Veterinary Sciences, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
46
|
Fernández Robledo JA, Yadavalli R, Allam B, Pales Espinosa E, Gerdol M, Greco S, Stevick RJ, Gómez-Chiarri M, Zhang Y, Heil CA, Tracy AN, Bishop-Bailey D, Metzger MJ. From the raw bar to the bench: Bivalves as models for human health. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:260-282. [PMID: 30503358 PMCID: PMC6511260 DOI: 10.1016/j.dci.2018.11.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/09/2018] [Accepted: 11/24/2018] [Indexed: 05/05/2023]
Abstract
Bivalves, from raw oysters to steamed clams, are popular choices among seafood lovers and once limited to the coastal areas. The rapid growth of the aquaculture industry and improvement in the preservation and transport of seafood have enabled them to be readily available anywhere in the world. Over the years, oysters, mussels, scallops, and clams have been the focus of research for improving the production, managing resources, and investigating basic biological and ecological questions. During this decade, an impressive amount of information using high-throughput genomic, transcriptomic and proteomic technologies has been produced in various classes of the Mollusca group, and it is anticipated that basic and applied research will significantly benefit from this resource. One aspect that is also taking momentum is the use of bivalves as a model system for human health. In this review, we highlight some of the aspects of the biology of bivalves that have direct implications in human health including the shell formation, stem cells and cell differentiation, the ability to fight opportunistic and specific pathogens in the absence of adaptive immunity, as source of alternative drugs, mucosal immunity and, microbiome turnover, toxicology, and cancer research. There is still a long way to go; however, the next time you order a dozen oysters at your favorite raw bar, think about a tasty model organism that will not only please your palate but also help unlock multiple aspects of molluscan biology and improve human health.
Collapse
Affiliation(s)
| | | | - Bassem Allam
- Stony Brook University, School of Marine and Atmospheric Sciences, Stony Brook, NY, 11794, USA
| | | | - Marco Gerdol
- University of Trieste, Department of Life Sciences, 34127, Trieste, Italy
| | - Samuele Greco
- University of Trieste, Department of Life Sciences, 34127, Trieste, Italy
| | - Rebecca J Stevick
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI, 02882, USA
| | - Marta Gómez-Chiarri
- University of Rhode Island, Department of Fisheries, Animal and Veterinary Science, Kingston, RI, 02881, USA
| | - Ying Zhang
- University of Rhode Island, Department of Cell and Molecular Biology, Kingston, RI, 02881, USA
| | - Cynthia A Heil
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| | - Adrienne N Tracy
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA; Colby College, Waterville, 4,000 Mayflower Hill Dr, ME, 04901, USA
| | | | | |
Collapse
|