1
|
Li X, Lu Y, Yang D, Guo J, Li G, Bian Q, Liu K, Song Y, Liu Z, Sui H, Chen J. Derivation of a health-based guidance value for bisphenol A via the weight of evidence approach. Food Chem Toxicol 2025; 200:115370. [PMID: 40054724 DOI: 10.1016/j.fct.2025.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 04/21/2025]
Abstract
There remains a debate over the health-based guidance value of bisphenol A (BPA) worldwide. Through the weight of evidence approach, this study systematically searched and evaluated the updated BPA toxicological data following the guidelines for evaluating the relevance and reliability of toxicological data developed by the China National Center for Food Safety Risk Assessment. Benchmark dose and no observed adverse effect dose/lowest observed adverse effect level methods were used for dose-relationship analysis. A total of 334 articles were used for evidence integration and included in this hazard assessment of BPA. General toxicity, toxicity to the reproductive system, and neurological (developmental) toxicity were included as possible critical effects in the present assessment. With a point of departure of 2310 μg/kg body weight (BW) based on the decreased round spermatid count in rat seminiferous tubules and the human equivalent dose factor of 0.185 using the constructed physiologically based toxicokinetic model of oral intake of BPA in Chinese population, a human equivalent dose of 427 μg/kg BW was obtained. Applying an overall uncertainty factor of 100, the present assessment established a temporary-tolerable daily intake of 4 μg/kg BW for oral exposure of humans to BPA.
Collapse
Affiliation(s)
- Xiaomeng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Yu Lu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - Daoyuan Yang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Jiabin Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Guojun Li
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Qian Bian
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Keliang Liu
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Yan Song
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Zhaoping Liu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100022, China
| | - Haixia Sui
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100022, China.
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
2
|
Davis OS, Scandlan OLM, Potestio EA, Robinson C, Hickey KD, Ross M, Favetta LA. Impact of BPA and its analogs on sperm hyperactivity, acrosome reaction, epigenetic profiles and in vitro embryo development. Mol Cell Endocrinol 2025; 604:112555. [PMID: 40252911 DOI: 10.1016/j.mce.2025.112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
Bisphenols, particularly BPA, are ubiquitous environmental contaminants known to affect male reproductive health. However, their specific impacts on sperm function and subsequent embryo development remain understudied especially for BPA's commonly used replacements, BPS and BPF. This study investigated the effects of direct sperm exposure to BPA, BPS, and BPF on fertilization capacity and embryo development using a bovine model, as translational for humans. Sperm samples were exposed to 0.05 mg/mL of each bisphenol in vitro. Parameters, including hyperactivity and acrosome reaction, as well as fertilization outcomes, such as developmental rates and blastocyst quality, were further evaluated following IVF. miRNA profiles were also analyzed in sperm and embryos to detect potential biomarkers of bisphenol exposure. We found that BPF significantly increased sperm hyperactivity, and BPA decreased acrosome reaction levels (p < 0.05). Cleavage and blastocyst rates were also notably decreased in embryos derived from BPA-exposed sperm (p < 0.05). Furthermore, blastocysts produced from BPA, BPS and BPF treated sperm all had significantly lower cell counts and increased DNA fragmentation (p < 0.05). Although no statistically significant changes in miRNA levels were observed, this study highlights some of the detrimental effects of bisphenols on bovine sperm and subsequent embryo development, with potential implications for human reproductive health.
Collapse
Affiliation(s)
- Ola S Davis
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, OVC, University of Guelph, Guelph, ON, Canada
| | - Olivia L M Scandlan
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, OVC, University of Guelph, Guelph, ON, Canada
| | - Erica A Potestio
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, OVC, University of Guelph, Guelph, ON, Canada
| | - Catherine Robinson
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, OVC, University of Guelph, Guelph, ON, Canada
| | - Katie D Hickey
- Semex®, Guelph, ON, Canada; BioTraceIT Ltd., Charlottetown, PE, Canada
| | | | - Laura A Favetta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, OVC, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
3
|
Li YJ, Liu AX, Zeng JY, Miao Y, Zhang M, Liu XY, Yang W, Li RC, Zhu JQ, Liu CJ, Zeng Q. Repeated measurements of urinary bisphenol A and its analogues in relation to sperm DNA damage. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137157. [PMID: 39823870 DOI: 10.1016/j.jhazmat.2025.137157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
Bisphenol A (BPA), a common endocrine disrupting chemical (EDC), has shown detrimental effects on sperm quality and function in experimental models. However, epidemiological evidence is inconsistent and also there exists a notable lack of data on its analogues, such as bisphenol F (BPF) and bisphenol S (BPS). To investigate the relationships between BPA, BPF and BPS exposures and sperm DNA damage, we conducted a cross-sectional study recruiting 474 Chinese men from an infertility clinic in Wuhan, China. We repeated measurements of urinary BPA, BPF and BPS concentrations to enhance the exposure assessments and evaluated sperm DNA damage using three comet assay indicators: tail length (TL), tail distributed moment (TDM) and percentages of tail DNA (Tail%). We observed positive associations of BPA exposure with TL and TDM (both P for trends < 0.05) and an association of elevated BPF exposure with increased Tail% (P for trend = 0.066). Furthermore, BPA exposure in relation to increased TL and TDM were more pronounced in men with body mass index (BMI) below 24 kg/m2 and non-smokers (all P for interactions < 0.05). Our findings strengthened human evidence that BPA and its analogue BPF exposures were in relation to increased sperm DNA damage.
Collapse
Affiliation(s)
- Yang-Juan Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - A-Xue Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Ying Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wu Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ru-Cheng Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jin-Qin Zhu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chang-Jiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
4
|
Berköz M, Yalın S, Türkmen Ö. Protective roles of some natural and synthetic aromatase inhibitors in testicular insufficiency caused by Bisphenol A exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:506-520. [PMID: 38825800 DOI: 10.1080/09603123.2024.2362810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
In our study, the protective role of synthetic aromatase inhibitors anastrozole (ANS), letrozole (LTZ) and exemestane (EXM) and natural aromatase inhibitors resveratrol (RSV) and apigenin (APG) against testicular failure caused by exposure to Bisphenol A (BPA) was investigated. The epididymal sperm concentration, sperm motility and sperm morphology were determined. Oxidative stress and inflammatory response parameters were examined and histological examinations were performed in testicular tissues. Our results revealed that BPA exposure decreased serum testosterone and estrogen levels, increased FSH and LH levels (p < 0.05). BPA has been found to increase oxidative stress and inflammatory response and disrupt the histological structure. Also, BPA exposure decreased testicular weight, epididymal sperm concentration and motility, and increased abnormal sperm rate (p < 0.05). These results show that ANS, LTZ and RSV treatments reduce the BPA-induced testicular damage.
Collapse
Affiliation(s)
- Mehmet Berköz
- Department of Biochemistry, Van Yuzuncu Yil University, Van, Turkey
| | - Serap Yalın
- Department of Biochemistry, Mersin University, Mersin, Turkey
| | - Ömer Türkmen
- Department of Pharmaceutical Technology, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
5
|
Cull ME, Winn LM. Bisphenol A and its potential mechanism of action for reproductive toxicity. Toxicology 2025; 511:154040. [PMID: 39725262 DOI: 10.1016/j.tox.2024.154040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Bisphenol A (BPA) is an organic synthetic chemical used worldwide. Billions of pounds of BPA are produced annually through industrial processes to be used in commercial products, making human exposure to BPA ubiquitous. Concerns have been raised due to the potential adverse health effects of BPA, specifically in vulnerable populations, such as pregnant persons and children. BPA is an endocrine-disrupting chemical, and through this function has been linked to reproductive toxicity. We review BPA's historical and current use, health and safety concerns and regulations, sources of exposure, and evidence for male and female reproductive toxicity. Evidence from epidemiological and animal studies idenfity that low- and high-exposure levels of BPA (prenatal, postnatal and adulthood exposure) can adversely affect male and female fertility and reproductive organs. While the cause of BPA-induced reproductive toxicity is not fully understood, we discuss BPA's estrogenic and androgenic activity, and its ability to disrupt the hypothalamic-pituitary-gonadal axis as a potential associated mechanism. There are significant differences in tolerable daily intakes of BPA set by global agencies, making interpretation of previous and emerging research findings challenging and inconsistent. Although BPA is deemed toxic by some government agencies, most do not currently consider it a health risk due to low populational exposure levels. However, we highlight evidence that even at acute, low exposure, BPA can adversely affect reproductive function. We recommend continuing research into the adverse effects of BPA on human health and revisiting the regulatory measures of BPA to limit exposure and promote public awareness of its potential to cause reproductive toxicity.
Collapse
Affiliation(s)
- Megan E Cull
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada; School of Environmental Studies, Queen's University, Kingston, Canada.
| |
Collapse
|
6
|
Calivarathan L, Mathur PP. Effect of Endocrine Disruptors on Testicular Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:115-125. [PMID: 40301255 DOI: 10.1007/978-3-031-82990-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Several classes of exogenous chemicals interfere with the endocrine system and disrupt the normal functioning of hormones, leading to a wide range of adverse health effects. The male reproductive system is particularly vulnerable to endocrine disruption, as it involves complex interactions between endocrine, paracrine, and autocrine signals that regulate spermatogenesis and steroidogenesis within the testes. Exposure to endocrine disruptors (EDs) has been associated with reduced semen quality, including decreased sperm concentration, motility, and morphology. Some endocrine disruptors have also been linked to alterations in testosterone levels, which impact overall male reproductive health. Bisphenol A, phthalates, dioxins, polychlorinated biphenyls, organophosphate pesticides, and phytoestrogens are well-known endocrine disruptors that interfere with male reproductive functions. Furthermore, these substances have been associated with an increased risk of reproductive disorders such as cryptorchidism, hypospadias, and testicular cancer. Due to the presence of endocrine-disrupting chemicals in numerous consumer goods and personal care products, people encounter these harmful substances through ingestion, absorption, inhalation, and skin contact. However, the duration of exposure to a particular endocrine disruptor or exposure during a particular stage of development is the determining factor for testicular function. This chapter provides a comprehensive overview of the effects of endocrine disruptors on testicular function, from molecular mechanisms to clinical outcomes.
Collapse
Affiliation(s)
- Latchoumycandane Calivarathan
- Molecular Pharmacology and Toxicology Laboratory, Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, India
| | | |
Collapse
|
7
|
Maniradhan M, Sivagurunathan N, Unnikrishnan AK, Anbiah VS, Calivarathan L. Selenium ameliorates oxidized phospholipid-mediated testicular dysfunction and epididymal sperm abnormalities following Bisphenol A exposure in adult Wistar rats. Reprod Toxicol 2024; 130:108751. [PMID: 39549767 DOI: 10.1016/j.reprotox.2024.108751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting compound extensively utilized in the production of polycarbonate polymers and epoxy resins that, upon exposure, pose a significant threat to male reproductive health because of its estrogenic properties. Accumulating evidence suggests that BPA exposure disrupts the normal process of spermatogenesis, alters testicular morphology and function, and interferes with testicular steroidogenesis and hormonal signaling. However, the precise mechanism by which BPA affects testicular function remains unclear. In this study, we explored the mechanism underlying BPA-induced testicular abnormalities and evaluated the protective effects of Selenium (Se). Thirty-two adult male albino Wistar rats were divided into four groups, and BPA was administered at 50 mg/kg body weight, with or without Se supplementation, for 30 days. Se supplementation (2.5 mg/kg body weight) was initiated 1 week before BPA administration. BPA administration resulted in alterations in testicular architecture, characterized by basement membrane disintegration in the seminiferous tubules, reduced spermatogenic cell counts, and increased interstitial tubule noncellular space. Furthermore, BPA exposure increased the levels of oxidized phospholipids, lipid peroxides, and hydroxyl radicals and decreased the activities of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. In addition, BPA significantly reduced the activities of 3β- and 17β-hydroxysteroid dehydrogenases, interfering with testicular steroidogenesis. In rats, coadministration of Se and BPA reduced the levels of oxidized phospholipids and increased the activities of antioxidant enzymes, leading to improved testicular function and epididymal sperm parameters, suggesting that Se plays a critical role in alleviating endocrine disruptor-induced testicular dysfunctions in rats.
Collapse
Affiliation(s)
- Meenu Maniradhan
- Molecular Pharmacology and Toxicology Laboratory, Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610005, India
| | - Narmadhaa Sivagurunathan
- Molecular Pharmacology and Toxicology Laboratory, Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610005, India
| | - Ajay Krishnan Unnikrishnan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, Tamil Nadu 608002, India
| | - Vigil S Anbiah
- Central Animal House, Government Medical College & Hospital, Cuddalore District, Chidambaram, Tamil Nadu 608002, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology and Toxicology Laboratory, Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu 610005, India.
| |
Collapse
|
8
|
Daniels D, Berger Eberhardt A. Climate change, microplastics, and male infertility. Curr Opin Urol 2024; 34:366-370. [PMID: 38932480 DOI: 10.1097/mou.0000000000001201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW Semen quality is on the decline. While the etiology is unknown, recent literature suggests there may be a relationship between climate change, environmental toxins and male fertility. This review relays new information regarding associations between our environment and male infertility. RECENT FINDINGS Several recent studies have documented a negative association between heat stress and spermatogenesis, which suggests that climate change may be a factor in declining in sperm counts. The influence of particle pollution on spermatogenesis has also been recently investigated, with studies demonstrating a negative association. Another possible factor are microplastics, which have been posited to reduce sperm production. Recent animal studies have shown that microplastic exposure alters both adult sperm production and prenatal male genital development. The relationship between endocrine disrupting chemicals and male fertility remains an area of active study, with recent animal and human studies suggesting an association between these chemicals and male fertility. SUMMARY The etiology of the decline in male fertility over the past decades is yet unknown. However, changes in our environment as seen with climate change and exposure to pollutants and endocrine disrupting chemicals are proposed mechanisms for this decline. Further studies are needed to investigate this association further.
Collapse
Affiliation(s)
| | - Alexandra Berger Eberhardt
- Member of the Faculty, Harvard Medical School, Associate Surgeon, Brigham and Women's Hospital Department of Urology, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Wang L, Zhuang J, Xue Z, Lu H, Zeng W, Zhang T. VD 3/VDR attenuates bisphenol A-induced impairment in mouse Leydig cells via regulation of autophagy. J Food Sci 2024; 89:3858-3870. [PMID: 38725370 DOI: 10.1111/1750-3841.17103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 06/14/2024]
Abstract
Bisphenol A (BPA) is an endocrine disruptor with reproductive toxicity. Further, 1,25-dihydroxyvitamin D3 (VD3) plays an important role in male reproduction by binding vitamin D receptor (VDR) and mediating the pleiotropic biological actions that include spermatogenesis. However, whether VD3/VDR regulates the effect of BPA on Leydig cells (LCs) injury remains unknown. This study aimed to explore the effects of VD on BPA-induced cytotoxicity in mouse LCs. Hereby, LCs treated with BPA, VD3, or both were subjected to the assays of cell apoptosis, proliferation, autophagy, and levels of target proteins. This study unveiled that cell viability was dose-dependently reduced after exposure to BPA. BPA treatment significantly inhibited LC proliferation, induced apoptosis, and also downregulated VDR expression. By jointly analyzing transcriptome data and Comparative Toxicogenomics Database (CTD) data, autophagy signaling pathways related to testicular development and male reproduction were screened out. Therefore, the autophagy phenomenon of cells was further detected. The results showed that BPA treatment could activate cell autophagy, Vdr-/- inhibits cell autophagy, and active VD3 does not have a significant effect on the autophagy of normal LCs. After VD3 and BPA were used in combination, the autophagy of cells was further enhanced, and VD3 could alleviate BPA-induced damage of LCs. In conclusion, this study found that supplementing VD3 could eliminate the inhibition of BPA on VDR expression, further enhance LCs autophagy effect, and alleviate the inhibition of LCs proliferation and induction of apoptosis by BPA, playing a protective role in cells. The research results will provide valuable strategies to alleviate BPA-induced reproductive toxicity.
Collapse
Affiliation(s)
- Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- Engineering Research Center of quality improvement and safety control of Qinba special meat products, Universities of Shaanxi Province, Hanzhong, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong, China
| | - Jianan Zhuang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Zhen Xue
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- Engineering Research Center of quality improvement and safety control of Qinba special meat products, Universities of Shaanxi Province, Hanzhong, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Hanzhong, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Hanzhong, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Hanzhong, China
| |
Collapse
|
10
|
Qi Q, Yang J, Li S, Liu J, Xu D, Wang G, Feng L, Pan X. Melatonin alleviates oxidative stress damage in mouse testes induced by bisphenol A. Front Cell Dev Biol 2024; 12:1338828. [PMID: 38440074 PMCID: PMC10910031 DOI: 10.3389/fcell.2024.1338828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
We investigated the effect of melatonin on bisphenol A (BPA)-induced oxidative stress damage in testicular tissue and Leydig cells. Mice were gavaged with 50 mg/kg BPA for 30 days, and concurrently, were injected with melatonin (10 mg/kg and 20 mg/kg). Leydig cells were treated with 10 μmol/L of BPA and melatonin. The morphology and organ index of the testis and epididymis were observed and calculated. The sperm viability and density were determined. The expressions of melatonin receptor 1A and luteinizing hormone receptor, and the levels of malonaldehyde, antioxidant enzymes, glutathione, steroid hormone synthases, aromatase, luteinizing hormone, testosterone, and estradiol were measured. TUNEL assay was utilized to detect testicular cell apoptosis. The administration of melatonin at 20 mg/kg significantly improved the testicular index and epididymis index in mice treated with BPA. Additionally, melatonin promoted the development of seminiferous tubules in the testes. Furthermore, the treatment with 20 mg/kg melatonin significantly increased sperm viability and sperm density in mice, while also promoting the expressions of melatonin receptor 1A and luteinizing hormone receptor in Leydig cells of BPA-treated mice. Significantly, melatonin reduced the level of malonaldehyde in testicular tissue and increased the expression of antioxidant enzymes (superoxide dismutase 1, superoxide dismutase 2, and catalase) as well as the content of glutathione. Moreover, melatonin also reduced the number of apoptotic Leydig cells and spermatogonia, aromatase expression, and estradiol level, while increasing the expression of steroid hormone synthases (steroidogenic acute regulatory protein, cytochrome P450 family 17a1, cytochrome P450 17α-hydroxylase/20-lyase, and, 17β-hydroxysteroid dehydrogenase) and the level of testosterone. Melatonin exhibited significant potential in alleviating testicular oxidative stress damage caused by BPA. These beneficial effects may be attributed to melatonin's ability to enhance the antioxidant capacity of testicular tissue, promote testosterone synthesis, and reduce testicular cell apoptosis.
Collapse
Affiliation(s)
- Qi Qi
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
- School of Medical Technology, Beihua University, Jilin, China
| | - Jiaxin Yang
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| | - Shuang Li
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
- School of Medical Technology, Beihua University, Jilin, China
| | - Jingjing Liu
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
- School of Medical Technology, Beihua University, Jilin, China
| | - Da Xu
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| | - Guoqing Wang
- School of Medical Technology, Beihua University, Jilin, China
| | - Lei Feng
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| | - Xiaoyan Pan
- Center for Reproductive Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
11
|
Lahimer M, Abou Diwan M, Montjean D, Cabry R, Bach V, Ajina M, Ben Ali H, Benkhalifa M, Khorsi-Cauet H. Endocrine disrupting chemicals and male fertility: from physiological to molecular effects. Front Public Health 2023; 11:1232646. [PMID: 37886048 PMCID: PMC10598475 DOI: 10.3389/fpubh.2023.1232646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
The deleterious effects of chemical or non-chemical endocrine disruptors (EDs) on male fertility potential is well documented but still not fully elucidated. For example, the detection of industrial chemicals' metabolites in seminal plasma and follicular fluid can affect efficiency of the gametogenesis, the maturation and competency of gametes and has guided scientists to hypothesize that endocrine disrupting chemicals (EDCs) may disrupt hormonal homoeostasis by leading to a wide range of hormonal control impairments. The effects of EDCs exposure on reproductive health are highly dependent on factors including the type of EDCs, the duration of exposure, individual susceptibility, and the presence of other co-factors. Research and scientists continue to study these complex interactions. The aim of this review is to summarize the literature to better understand the potential reproductive health risks of EDCs in France.
Collapse
Affiliation(s)
- Marwa Lahimer
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, Amiens, France
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
- Exercise Physiology and Physiopathology: from Integrated to Molecular “Biology, Medicine and Health” (Code: LR19ES09), Sousse, Tunisia
| | - Maria Abou Diwan
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| | - Debbie Montjean
- Fertilys, Centres de Fertilité, Laval and Brossard, QC, Canada
| | - Rosalie Cabry
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, Amiens, France
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| | - Véronique Bach
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| | - Mounir Ajina
- Service of Reproductive Medicine, University Hospital Farhat Hached, Sousse, Tunisia
| | - Habib Ben Ali
- Laboratory Histology Embryology, Faculty of Medicine Sousse, University of Sousse, Sousse, Tunisia
| | - Moncef Benkhalifa
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, Amiens, France
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| | - Hafida Khorsi-Cauet
- ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, CHU Sud, Amiens, France
- PERITOX-(UMR-I 01), UPJV/INERIS, UPJV, CURS, Chemin du Thil, Amiens, France
| |
Collapse
|
12
|
Aja PM, Ogwoni HA, Agu PC, Ekpono EU, Awoke JN, Ukachi OU, Orji OU, Ale BA, Nweke CP, Igwenyi IO, Alum EU, Chukwu DC, Offor CE, Asuk AA, Eze ED, Yakubu OE, Akobi JB, Ani OG, Awuchi CG. Cucumeropsis mannii seed oil protects against Bisphenol A-induced testicular mitochondrial damages. Food Sci Nutr 2023; 11:2631-2641. [PMID: 37324897 PMCID: PMC10261808 DOI: 10.1002/fsn3.3260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 09/20/2024] Open
Abstract
There has been increasing search for the ameliorative properties of seed oils against toxicants. bisphenol A acts as an estrogenic endocrine-disrupting chemical capable of causing male infertility. This study aimed to explore Cucumeropsis mannii seed oil effects against mitochondrial damage in rats using bisphenol A. Forty-eight rats were randomly assigned to six groups (n = 6) of eight rats each and fed the same food and water for 6 weeks. The group A rats were given 1 mL olive oil, while the ones in group B were given bisphenol A at 100 mL/kg body weight via oral route. Group C received C. mannii seed oil 7.5 mL/kg body weight C. mannii seed oil, while group D, group E, and group F were pre-administered bisphenol A at 100 mL/kg body weight, followed by treatment with C. mannii seed oil at 7.5, 5, and 2.5 mL/kg body weight, respectively. Antioxidant enzymes, glutathione, reactive oxygen species, testicular volume, malondialdehyde, body weight, and testicular studies were done using standard methods. The results of the bisphenol A-administered group showed a significant decrease in the antioxidant enzymes, glutathione, body weight, and testicular volume with elevation in the levels of reactive oxygen species, malondialdehyde, and testicular indices. BPA + CMSO-treated group showed a significant increase in GPx activity compared with BPA-exposed rats. CMSO treatment significantly increased catalase activity in comparison with that of rats exposed to BPA. Remarkably, C. mannii seed oil and bisphenol A co-administration significantly reversed the abnormalities observed in the dysregulated biochemical biomarkers. Our findings suggest that C. mannii seed oil has considerable antioxidant potential which can be explored in therapeutic development against systemic toxicity induced by exposure to bisphenol A. Cucumeropsis mannii seed oil protects against bisphenol A-induced testicular mitochondria damages.
Collapse
Affiliation(s)
- Patrick Maduabuchi Aja
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
- Department of BiochemistryKampala International UniversityBushenyiUganda
- Department of BiochemistryMbarara University of Science and TechnologyMbararaUganda
| | | | | | | | | | | | - Obasi Uche Orji
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | | | | | | | - Esther Ugo Alum
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | | | | | - Atamgba Agbor Asuk
- Department of Medical BiochemistryCross River University of Technology (CRUTECH)CalabarNigeria
| | | | | | - J. B. Akobi
- Department of Medical BiochemistryCross River University of Technology (CRUTECH)CalabarNigeria
| | | | - Chinaza Godswill Awuchi
- Department of BiochemistryKampala International UniversityBushenyiUganda
- School of Natural and Applied SciencesKampala International UniversityKampalaUganda
| |
Collapse
|
13
|
Yadav SK, Bijalwan V, Yadav S, Sarkar K, Das S, Singh DP. Susceptibility of male reproductive system to bisphenol A, an endocrine disruptor: Updates from epidemiological and experimental evidence. J Biochem Mol Toxicol 2023; 37:e23292. [PMID: 36527247 DOI: 10.1002/jbt.23292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Bisphenol A (BPA) is an omnipresent environmental pollutant. Despite being restrictions in-force for its utilization, it is widely being used in the production of polycarbonate plastics and epoxy resins. Direct, low-dose, and long-term exposure to BPA is expected when they are used in the packaging of food products and are used as containers for food consumption. Occupationally, workers are typically exposed to BPA at higher levels and for longer periods during the manufacturing process. BPA is a known endocrine disruptor chemical (EDC), that causes male infertility, which has a negative impact on human life from emotional, physical, and societal standpoints. To minimize the use of BPA in numerous consumer products, efforts and regulations are being made. Despite legislative limits in numerous nations, BPA is still found in consumer products. This paper examines BPA's overall male reproductive toxicity, including its impact on the hypothalamic-pituitary-testicular (HPT) axis, hormonal homeostasis, testicular steroidogenesis, sperm parameters, reproductive organs, and antioxidant defense system. Furthermore, this paper highlighted the role of non-monotonic dose-response (NMDR) in BPA exposure, which will help to improve the overall understanding of the harmful effects of BPA on the male reproductive system.
Collapse
Affiliation(s)
- Shiv K Yadav
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
| | - Vandana Bijalwan
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
| | - Suresh Yadav
- ICMR-National Institute for Implementation Research on Non-Communicable Disease (NIIRNCD), Jodhpur, Rajasthan, India
| | - Kamalesh Sarkar
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
- ICMR-National Institute of Cholera & Enteric Diseases (NICED), Kolkata, West Bengal, India
| | - Santasabuj Das
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
- ICMR-National Institute of Cholera & Enteric Diseases (NICED), Kolkata, West Bengal, India
| | - Dhirendra P Singh
- ICMR-National Institute of Occupational Health (NIOH), Ahmedabad, Gujarat, India
| |
Collapse
|
14
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
15
|
Ďurovcová I, Kyzek S, Fabová J, Makuková J, Gálová E, Ševčovičová A. Genotoxic potential of bisphenol A: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119346. [PMID: 35489531 DOI: 10.1016/j.envpol.2022.119346] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/05/2022] [Accepted: 04/20/2022] [Indexed: 05/25/2023]
Abstract
Bisphenol A (BPA), as a major component of some plastic products, is abundant environmental pollutant. Due to its ability to bind to several types of estrogen receptors, it can trigger multiple cellular responses, which can contribute to various manifestations at the organism level. The most studied effect of BPA is endocrine disruption, but recently its prooxidative potential has been confirmed. BPA ability to induce oxidative stress through increased ROS production, altered activity of antioxidant enzymes, or accumulation of oxidation products of biomacromolecules is observed in a wide range of organisms - estrogen receptor-positive and -negative. Subsequently, increased intracellular oxidation can lead to DNA damage induction, represented by oxidative damage, single- and double-strand DNA breaks. Importantly, BPA shows several mechanisms of action and can trigger adverse effects on all organisms inhabiting a wide variety of ecosystem types. Therefore, the main aim of this review is to summarize the genotoxic effects of BPA on organisms across all taxa.
Collapse
Affiliation(s)
- Ivana Ďurovcová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Stanislav Kyzek
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jana Fabová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Jana Makuková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Eliška Gálová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Andrea Ševčovičová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| |
Collapse
|
16
|
Dobrzyńska MM, Radzikowska J. The effects of Aroclor 1254 alone and in combination with X-rays on the male mice germ cells quantity and quality. Toxicology 2022; 477:153273. [PMID: 35872225 DOI: 10.1016/j.tox.2022.153273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
The effects of chemical and physical environmental factors are concerned as the main reason of diminished male fertility. The aim of the study was the investigation of the effects of low doses of Aroclor 1254 or combined exposure to low doses of Aroclor 1254 and low doses of ionizing radiation on the sperm quantity and quality of male germ cells including damage to genetic material of adult male mice. Mice were exposed for 2 weeks, 3 times per week by intraperitoneal injection with Aroclor 1254 diluted in corn oil at doses of 1, 2 and 4 mg/kg bw or to whole body X-rays irradiation at doses 0.05 Gy, 0.10 Gy and 0.15 Gy or to combination of X-rays and Aroclor 1254 at following doses 0.05 Gy + 1 mg/kg bw Aroclor 1254, 0.10 Gy + 2 mg/kg bw Aroclor 1254. The samples for sperm count, motility, morphology and DNA integrity of male germ cells estimation were taken from animals just after the end of exposure and 5 weeks later. Irradiation alone deteriorated sperm count and quality. Aroclor 1254 significantly reduced the sperm motility and increased sperm abnormality and at the highest dose also induced DNA damage of gametes. The combined exposure to 0.10 Gy + 2 mg/kg bw of Aroclor 1254 showed the increase in the sperm concentration and the decrease of percentage of abnormal spermatozoa compared to results after irradiation to 0.10 Gy alone. In conclusion, the low doses of Aroclor 1254 used in this study did not significantly reduce the sperm count, but affected the sperm motility, morphology and sometimes also DNA integrity of gametes. In combination with low doses of irradiation, low doses of Aroclor 1254 may ameliorate the harmful effect of irradiation on the male gametes.
Collapse
Affiliation(s)
- Małgorzata M Dobrzyńska
- Department of Radiation Hygiene and Radiobiology, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland.
| | - Joanna Radzikowska
- Department of Radiation Hygiene and Radiobiology, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland
| |
Collapse
|
17
|
Impact of bisphenol-A on the spliceosome and meiosis of sperm in the testis of adolescent mice. BMC Vet Res 2022; 18:278. [PMID: 35841026 PMCID: PMC9284711 DOI: 10.1186/s12917-022-03336-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bisphenol-A (BPA) has estrogenic activity and adversely affects humans and animals' reproductive systems and functions. There has been a disagreement with the safety of BPA exposure at Tolerable daily intake (TDI) (0.05 mg/kg/d) value and non-observed adverse effect level (5 mg/kg/d). The current study investigated the effects of BPA exposure at various doses starting from Tolerable daily intake (0.05 mg/kg/d) to the lowest observed adverse effect level (50 mg/kg/d) on the testis development in male mice offspring. The BPA exposure lasted for 63 days from pregnancy day 0 of the dams to post-natal day (PND) 45 of the offspring. RESULTS The results showed that BPA exposure significantly increased testis (BPA ≥ 20 mg/kg/d) and serum (BPA ≥ 10 mg/kg/d) BPA contents of PND 45 mice. The spermatogenic cells became loose, and the lumen of seminiferous tubules enlarged when BPA exposure at 0.05 mg/kg/d TDI. BPA exposure at a low dose (0.05 mg/kg/d) significantly reduced the expression of Scp3 proteins and elevated sperm abnormality. The significant decrease in Scp3 suggested that BPA inhibits the transformation of spermatogonia into spermatozoa in the testis. The RNA-seq proved that the spliceosome was significantly inhibited in the testes of mice exposed to BPA. According to the RT-qPCR, BPA exposure significantly reduced the expression of Snrpc (BPA ≥ 20 mg/kg/d) and Hnrnpu (BPA ≥ 0.5 mg/kg/d). CONCLUSIONS This study indicated that long-term BPA exposure at Tolerable daily intake (0.05 mg/kg/d) is not safe because low-dose long-term exposure to BPA inhibits spermatogonial meiosis in mice testis impairs reproductive function in male offspring.
Collapse
|
18
|
Golshan M, Hatef A, Kazori N, Socha M, Sokołowska-Mikołajczyk M, Habibi HR, Linhart O, Alavi SMH. A chronic exposure to bisphenol A reduces sperm quality in goldfish associated with increases in kiss2, gpr54, and gnrh3 mRNA and circulatory LH levels at environmentally relevant concentrations. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109342. [PMID: 35417786 DOI: 10.1016/j.cbpc.2022.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
The bisphenol A (BPA)-disrupted reproductive functions have been demonstrated in male animals. In fish, it has been shown that environmentally relevant concentrations of BPA decrease sperm quality associated with inhibition of androgen biosynthesis. However, BPA effects on neuroendocrine regulation of reproduction to affect testicular functions are largely unknown. In the present study, reproductive functions of hypothalamus and pituitary were studied in mature male goldfish exposed to nominal 0.2, 2.0 and 20.0 μg/L BPA. At 90 d of exposure, sperm volume, velocity, and density and motility were decreased in goldfish exposed to 0.2, 2.0, and 20.0 μg/L BPA, respectively (p < 0.05). At 30 d of exposure, there were no significant changes in circulatory LH levels and mRNA transcripts of kiss1, Kiss2, gpr54, and gnrh3. At 90 d of exposure, circulatory LH levels showed trends toward increases in BPA exposed goldfish, which was significant in those exposed to 2.0 μg/L (P < 0.05). At this time, Kiss2, gpr54, and gnrh3 mRNA levels were increased in goldfish exposed to any concentrations of BPA (p < 0.05). This study shows that BPA-diminished sperm quality was accompanied by an increase in circulatory LH levels associated with increases in mRNA transcripts of upstream neuroendocrine regulators of reproduction in goldfish. Further, this is the first study to report circulatory levels of LH in fish exposed to BPA.
Collapse
Affiliation(s)
- Mahdi Golshan
- Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, 133-15745 Tehran, Iran
| | - Azadeh Hatef
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Negar Kazori
- School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Magdalena Socha
- Faculty of Animal Sciences, University of Agriculture in Kraków, Kraków 30-059, Poland
| | | | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany 389 25, Czech Republic
| | | |
Collapse
|
19
|
Dobrzyńska MM, Gajowik A, Radzikowska J. The impact of preconceptional exposure of F0 male mice to bisphenol A alone or in combination with X-rays on the intrauterine development of F2 progeny. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503480. [PMID: 35649674 DOI: 10.1016/j.mrgentox.2022.503480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol A (BPA) is used for the production of polycarbonates and epoxy resins. Exposure to chemical and physical environmental factors may influence the health of exposed individuals, and of the next generations. This paper describes the prenatal effects in the F2 generation of mice after exposure of F0 pubescent or mature males to BPA (5 mg/kg bw, 10 mg/kg bw, 20 mg/kg bw), X-rays (0.05 Gy) or a combination of both factors in low doses (0.05 Gy + 5 mg/kg bw BPA) for 8 weeks. F1 males were mated with females from the same group but from a different litter. The females were sacrificed before parturition and examined for the number of implantations, live foetuses, as well as early and late post-implantation deaths. The fertility of males and the percentage of pregnant females in each group were also assessed. Exposure of pubescent F0 males to 10 mg/kg bw of BPA decreased the frequency of fertile males. Following exposure of pubescent males, the frequency of pregnant females decreased in the groups of 10 mg/kg bw and 20 mg/kg bw of BPA, whereas after exposure of adult F0 males in the groups of 5 mg/kg bw and 20 mg/kg bw of BPA, no significant changes in the frequency of total, live and dead implantations in all the experimental groups were found. The results observed in regard to prenatal development of the F2 generation suggest that sperm of the sons of F0 pubescent males exposed to BPA contains genetic defects that affect the possibility of fertilization. The results of both pubescent and mature males exposed to BPA showed that fertilized eggs died before implantation, probably due to defects induced in the sperm. This confirmed that BPA induced transgenerational effects in male germ cells.
Collapse
Affiliation(s)
- Małgorzata M Dobrzyńska
- National Institute of Public Heath NIH - National Research Institute, Department of Radiation Hygiene and Radiobiology, Chocimska 24, 00-791 Warszawa, Poland.
| | - Aneta Gajowik
- National Institute of Public Heath NIH - National Research Institute, Department of Radiation Hygiene and Radiobiology, Chocimska 24, 00-791 Warszawa, Poland
| | - Joanna Radzikowska
- National Institute of Public Heath NIH - National Research Institute, Department of Radiation Hygiene and Radiobiology, Chocimska 24, 00-791 Warszawa, Poland
| |
Collapse
|
20
|
Šturm S, Weber K, Klinc P, Spörndly-Nees E, Fakhrzadeh A, Knific T, Škibin A, Fialová V, Okazaki Y, Razinger T, Laufs J, Kreutzer R, Pogačnik M, Švara T, Cerkvenik-Flajs V. Basic Exploratory Study of Bisphenol A (BPA) Dietary Administration to Istrian Pramenka Rams and Male Toxicity Investigation. TOXICS 2022; 10:toxics10050224. [PMID: 35622638 PMCID: PMC9143511 DOI: 10.3390/toxics10050224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 12/30/2022]
Abstract
Bisphenol A (BPA), an endocrine-disrupting chemical and environmental pollutant, has been reported by many researchers to induce male reproductive toxicity in different experimental models. In this study, we investigated whether long-term exposure for two months to 25 µg/kg body weight (low dose) of BPA affects spermatogenesis or sperm quality in young Istrian Pramenka rams exposed via diet. We evaluated body and testicular weights, histopathology of testes and epididymides, and sperm analyses, and compared these parameters between the group of treated rams and the control group of rams. Although there were some differences between the two groups, these differences were not large or statistically significant. The only statistically significant difference was the lower epithelial height of seminiferous tubules in treated rams, compared to control rams. In addition to assessing toxicity, BPA concentrations in the blood plasma of treated rams were determined after the first administration, and the toxicokinetic parameters of total BPA were calculated. In this study, no major signs of altered reproduction in rams were detected.
Collapse
Affiliation(s)
- Sabina Šturm
- Veterinary Faculty, University of Ljubljana, Gerbičeva Ulica 60, 1000 Ljubljana, Slovenia; (P.K.); (T.K.); (A.Š.); (M.P.); (T.Š.); (V.C.-F.)
- Correspondence:
| | - Klaus Weber
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal, Switzerland; (K.W.); (Y.O.); (T.R.); (J.L.); (R.K.)
| | - Primož Klinc
- Veterinary Faculty, University of Ljubljana, Gerbičeva Ulica 60, 1000 Ljubljana, Slovenia; (P.K.); (T.K.); (A.Š.); (M.P.); (T.Š.); (V.C.-F.)
| | - Ellinor Spörndly-Nees
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, P.O. Box 7011, 75007 Uppsala, Sweden;
| | - Azadeh Fakhrzadeh
- Iranian Research Institute for Information Science and Technology (IranDoc) Tehran Province, No. 1090, Enghelab, Tehran 13157 73314, Iran;
| | - Tanja Knific
- Veterinary Faculty, University of Ljubljana, Gerbičeva Ulica 60, 1000 Ljubljana, Slovenia; (P.K.); (T.K.); (A.Š.); (M.P.); (T.Š.); (V.C.-F.)
| | - Andrej Škibin
- Veterinary Faculty, University of Ljubljana, Gerbičeva Ulica 60, 1000 Ljubljana, Slovenia; (P.K.); (T.K.); (A.Š.); (M.P.); (T.Š.); (V.C.-F.)
| | - Věra Fialová
- Biopharm, Research Institute of Biopharmacy and Veterinary Drugs, Pohoří-Chotouň 90, 254 01 Jílové u Prahy, Czech Republic;
| | - Yoshimasa Okazaki
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal, Switzerland; (K.W.); (Y.O.); (T.R.); (J.L.); (R.K.)
| | - Tanja Razinger
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal, Switzerland; (K.W.); (Y.O.); (T.R.); (J.L.); (R.K.)
| | - Jürgen Laufs
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal, Switzerland; (K.W.); (Y.O.); (T.R.); (J.L.); (R.K.)
| | - Robert Kreutzer
- AnaPath Services GmbH, Hammerstrasse 49, 4410 Liestal, Switzerland; (K.W.); (Y.O.); (T.R.); (J.L.); (R.K.)
| | - Milan Pogačnik
- Veterinary Faculty, University of Ljubljana, Gerbičeva Ulica 60, 1000 Ljubljana, Slovenia; (P.K.); (T.K.); (A.Š.); (M.P.); (T.Š.); (V.C.-F.)
| | - Tanja Švara
- Veterinary Faculty, University of Ljubljana, Gerbičeva Ulica 60, 1000 Ljubljana, Slovenia; (P.K.); (T.K.); (A.Š.); (M.P.); (T.Š.); (V.C.-F.)
| | - Vesna Cerkvenik-Flajs
- Veterinary Faculty, University of Ljubljana, Gerbičeva Ulica 60, 1000 Ljubljana, Slovenia; (P.K.); (T.K.); (A.Š.); (M.P.); (T.Š.); (V.C.-F.)
| |
Collapse
|
21
|
Maternal and developmental toxicity of Bisphenol-A in SWR/J mice. Saudi J Biol Sci 2022; 29:1543-1549. [PMID: 35280563 PMCID: PMC8913423 DOI: 10.1016/j.sjbs.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
Bisphenol-A (BPA), an organic compound with two phenol functional groups, is a widely used industrial plasticizer with known estrogenic properties. It is used in the manufacture of epoxy resins and polycarbonate plastics. This study was designed to evaluate and assess the possible toxicity arising from the oral administration of BPA to pregnant mice. Pregnant SWR/J mice (15 mice/group) were administrated oral doses of BPA (125, 250 and 500 mg/kg/day) over the course of five-day intervals during gestation (D1-5, D6-10 and D11-15), while control groups received only corn oil. The results indicated that BPA was associated with a reduction in the body weight of the pregnant mice from around 2–3 days after administration until the end of gestation. The greatest effects were evident when the BPA was given during the later stages of pregnancy, and with higher doses. They also showed marked reduction in food intake and, to a lesser extent, in water intake. Furthermore, doses of BPA induced a reduction in implantation sites, lower foetal body weight and increased mortality rates. Abortion and foetal resorption rates were not affected by BPA administration, however. The above findings were concluded by discussing the possible mechanisms involved in producing these effects.
Collapse
|
22
|
Wieckowski M, Ranga S, Moison D, Messiaen S, Abdallah S, Granon S, Habert R, Rouiller-Fabre V, Livera G, Guerquin MJ. Unexpected Interacting Effects of Physical (Radiation) and Chemical (Bisphenol A) Treatments on Male Reproductive Functions in Mice. Int J Mol Sci 2021; 22:ijms222111808. [PMID: 34769238 PMCID: PMC8584123 DOI: 10.3390/ijms222111808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/19/2022] Open
Abstract
For decades, numerous chemical pollutants have been described to interfere with endogenous hormone metabolism/signaling altering reproductive functions. Among these endocrine disrupting substances, Bisphenol A (BPA), a widely used compound, is known to negatively impact germ and somatic cells in the testis. Physical agents, such as ionizing radiation, were also described to perturb spermatogenesis. Despite the fact that we are constantly exposed to numerous environmental chemical and physical compounds, very few studies explore the impact of combined exposure to chemical and physical pollutants on reproductive health. The aim of this study was to describe the impact of fetal co-exposure to BPA and IR on testicular function in mice. We exposed pregnant mice to 10 µM BPA (corresponding to 0.5 mg/kg/day) in drinking water from 10.5 dpc until birth, and we irradiated mice with 0.2 Gy (γ-ray, RAD) at 12.5 days post-conception. Co-exposure to BPA and γ-ray induces DNA damage in fetal germ cells in an additive manner, leading to a long-lasting decrease in germ cell abundance. We also observed significant alteration of adult steroidogenesis by RAD exposure independently of the BPA exposure. This is illustrated by the downregulation of steroidogenic genes and the decrease of the number of adult Leydig cells. As a consequence, courtship behavior is modified, and male ultrasonic vocalizations associated with courtship decreased. In conclusion, this study provides evidence for the importance of broadening the concept of endocrine disruptors to include physical agents, leading to a reevaluation of risk management and regulatory decisions.
Collapse
Affiliation(s)
- Margaux Wieckowski
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Stéphanie Ranga
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Delphine Moison
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Sébastien Messiaen
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Sonia Abdallah
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Sylvie Granon
- Neuroscience Paris-Saclay Institute (Neuro-PSI), CNRS UMR 9197, Paris-Sud University, 91400 Saclay, France;
- Paris-Saclay University, 91405 Orsay, France
| | - René Habert
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Virginie Rouiller-Fabre
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
| | - Gabriel Livera
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
- Correspondence: (G.L.); (M.-J.G.)
| | - Marie-Justine Guerquin
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université de Paris, 92265 Fontenay-aux-Roses, France; (M.W.); (S.R.); (D.M.); (S.M.); (S.A.); (R.H.); (V.R.-F.)
- Université Paris Saclay, CEA/DRF/IBFJ/IRCM, 98 Route du Panorama, 92265 Fontenay-aux-Roses, France
- Correspondence: (G.L.); (M.-J.G.)
| |
Collapse
|
23
|
Ren X, Zhang X, Chen X, Zhang T, Li G, Zhou X, Su S, Zhang W, Qin C, Wang S. Evaluation of post-adolescence exposure to bisphenol A on reproductive outcomes of male rodent models. Reprod Toxicol 2021; 101:124-136. [PMID: 33757772 DOI: 10.1016/j.reprotox.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/06/2021] [Accepted: 03/16/2021] [Indexed: 12/09/2022]
Abstract
The effect of post-adolescence bisphenol A (BPA) exposure on the reproductive system is not well-defined. We therefore performed this meta-analysis to elucidate the associations between post-adolescence BPA exposure and reproductive-related outcomes. A search was performed on the PubMed, EMBASE, and Web of science databases to identify relevant literature. The standardized mean differences (SMDs) and the 95 % confidence intervals (CIs) were measured by fixed-effects or random-effects models. Publication bias was assessed using funnel plots and Egger's regression test. A total of 40 studies were included in the final analysis. The results showed that post-adolescence BPA exposure was negatively associated with reproductive-related organ weighty (Testis weight: SMD: -0.61; 95 % Cl: -0.85, -0.36; epididymis weight; SMD: -0.43; 95 % Cl: -0.69, -0.17; seminal vesicles weight; SMD: -0.77; 95 % Cl: -1.05, -0.49) and sperm parameters (Sperm motility: SMD: -1.44; 95 % Cl: -1.95, -0.93; epididymal sperm concentration: SMD: -2.26; 95 % Cl: -2.79, -1.72; and abnormal sperm morphology: SMD: 2.41; 95 % Cl: 1.41, 2.86). Moreover, BPA exposure decreased the level of testosterone (T) and superoxide dismutase (SOD), but increased the ratio of serum estradiol (E2) to T. This systematic review demonstrates that post-adolescence exposure to BPA may adversely affect reproductive functions in male rodents.
Collapse
Affiliation(s)
- Xiaohan Ren
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China
| | - Xu Zhang
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China
| | - Xinglin Chen
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China
| | - Tongtong Zhang
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China
| | - Guangyao Li
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China
| | - Xiang Zhou
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China
| | - Shifeng Su
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China
| | - Wei Zhang
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China
| | - Chao Qin
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China.
| | - Shangqian Wang
- Department of Urology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, No 300 Guangzhou Road, Nanjing 210000, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China.
| |
Collapse
|
24
|
Characterization of Estrogenic Activity and Site-Specific Accumulation of Bisphenol-A in Epididymal Fat Pad: Interfering Effects on the Endocannabinoid System and Temporal Progression of Germ Cells. Int J Mol Sci 2021; 22:ijms22052540. [PMID: 33802611 PMCID: PMC7961766 DOI: 10.3390/ijms22052540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/31/2022] Open
Abstract
The objective of this work has been to characterize the estrogenic activity of bisphenol-A (BPA) and the adverse effects on the endocannabinoid system (ECS) in modulating germ cell progression. Male offspring exposed to BPA during the foetal-perinatal period at doses below the no-observed-adverse-effect-level were used to investigate the exposure effects in adulthood. Results showed that BPA accumulates specifically in epididymal fat rather than in abdominal fat and targets testicular expression of 3β-hydroxysteroid dehydrogenase and cytochrome P450 aromatase, thus promoting sustained increase of estrogens and a decrease of testosterone. The exposure to BPA affects the expression levels of some ECS components, namely type-1 (CB1) and type-2 cannabinoid (CB2) receptor and monoacylglycerol-lipase (MAGL). Furthermore, it affects the temporal progression of germ cells reported to be responsive to ECS and promotes epithelial germ cell exfoliation. In particular, it increases the germ cell content (i.e., spermatogonia while reducing spermatocytes and spermatids), accelerates progression of spermatocytes and spermatids, promotes epithelial detachment of round and condensed spermatids and interferes with expression of cell–cell junction genes (i.e., zonula occcludens protein-1, vimentin and β-catenin). Altogether, our study provides evidence that early exposure to BPA produces in adulthood sustained and site-specific BPA accumulation in epididymal fat, becoming a risk factor for the reproductive endocrine pathways associated to ECS.
Collapse
|
25
|
Alabi OA, Ologbonjaye KI, Sorungbe AA, Shokunbi OS, Omotunwase OI, Lawanson G, Ayodele OG. Bisphenol A-induced Alterations in Different Stages of Spermatogenesis and Systemic Toxicity in Albino Mice ( Mus musculus). J Health Pollut 2021; 11:210307. [PMID: 33815905 PMCID: PMC8009649 DOI: 10.5696/2156-9614-11.29.210307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/03/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is known to alter sperm morphology, but information is limited on the most susceptible stage(s) of spermatogenesis, especially in mice. OBJECTIVES This study investigated the reproductive, biochemical, and hematological changes caused by exposure to BPA in male albino mice. The genotoxicity of BPA to the six stages of spermatogenesis in mice was determined. METHODS Mice were exposed orally to BPA at 0.5, 1.0, 2.0, and 5.0 mg/kg bw doses for 5 days and assessed for sperm morphology after 35 days. Based on the result, the second group of mice was exposed to BPA at 1.0 mg/kg bw dose for 5 days, their spermatozoa were assessed for sperm morphology based on BPA exposure at the 6 maturation stages of spermatogenesis: spermatozoa, elongating spermatids, round spermatids, secondary spermatocytes, primary spermatocytes, and spermatogonia. Biochemical and hematological analyses of the blood of exposed mice were also carried out. RESULTS The results showed that BPA induced concentration-dependent, significantly (p<0.05) increased sperm cell abnormalities at three of the four concentrations tested, with the exception of 0.5 mg/kg bw, in comparison with the negative control. The highest frequency of sperm aberrations was induced in spermatozoa exposed to BPA while at the primary spermatocytes. The order of induced sperm abnormality at the different stages of exposure was: primary spermatocytes > elongating spermatids > spermatozoa > spermatogonia > round spermatids > secondary spermatocytes. The results of the biochemical analysis showed significantly (p<0.05) increased serum urea, creatinine, and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities with a concomitant decrease in total protein content at the various stages of spermatogenesis. In addition, the results for hematological parameters showed several significant (p<0.05) modulations in mice exposed to BPA. CONCLUSIONS These data showed that BPA is most toxic to primary spermatocytes and alterations of biochemical and hematological parameters might be the mechanisms of induced toxicity. ETHICS APPROVAL The Research Ethics Committee, Federal University of Technology, Akure approved the study protocols. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Okunola A. Alabi
- Department of Biology, Federal University of Technology, Akure, Ondo State, Nigeria
| | | | - Adewale A. Sorungbe
- Department of Biology, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Olutayo S. Shokunbi
- Department of Biochemistry, School of Basic Medical Sciences, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | | | - Gbemisola Lawanson
- Department of Biology, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Oluwafemi G. Ayodele
- Department of Biology, Federal University of Technology, Akure, Ondo State, Nigeria
| |
Collapse
|
26
|
Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants. Antioxidants (Basel) 2021; 10:antiox10020289. [PMID: 33671960 PMCID: PMC7919053 DOI: 10.3390/antiox10020289] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 01/23/2023] Open
Abstract
Bisphenol A (BPA), a well-known endocrine disruptor present in epoxy resins and polycarbonate plastics, negatively disturbs the male reproductive system affecting male fertility. In vivo studies showed that BPA exposure has deleterious effects on spermatogenesis by disturbing the hypothalamic–pituitary–gonadal axis and inducing oxidative stress in testis. This compound seems to disrupt hormone signalling even at low concentrations, modifying the levels of inhibin B, oestradiol, and testosterone. The adverse effects on seminal parameters are mainly supported by studies based on urinary BPA concentration, showing a negative association between BPA levels and sperm concentration, motility, and sperm DNA damage. Recent studies explored potential approaches to treat or prevent BPA-induced testicular toxicity and male infertility. Since the effect of BPA on testicular cells and spermatozoa is associated with an increased production of reactive oxygen species, most of the pharmacological approaches are based on the use of natural or synthetic antioxidants. In this review, we briefly describe the effects of BPA on male reproductive health and discuss the use of antioxidants to prevent or revert the BPA-induced toxicity and infertility in men.
Collapse
|
27
|
Bahelka I, Stupka R, Čítek J, Šprysl M. The impact of bisphenols on reproductive system and on offspring in pigs - A review 2011-2020. CHEMOSPHERE 2021; 263:128203. [PMID: 33297166 DOI: 10.1016/j.chemosphere.2020.128203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
This study summarizes the knowledge about effects of bisphenol A (BPA) and its analogues on reproduction of pigs and some parameters of their offspring during period 2011-2020. Bisphenols are known as one of the most harmful environmental toxicants with endocrine-disrupting properties. One study in the reference period related to male reproductive system. Treatment with an antagonist of G-protein coupled estrogen receptor (GPER) - G15, and bisphenol A and its analogues, tetrabromobisphenol A (TBBPA) and tetrachromobisphenol A (TCBPA) diversely disrupted protein molecules controlling the biogenesis and function of microRNA in Leydig cells. Nine studies examined the effect of BPA, bisphenol S (BPS) or fluorene-9-bisphenol (BHPF) on female reproductive system. From the possible protective effect's point of view seems to be perspective the administration of melatonin in BPA-exposed oocytes. Finally, two studies were found to evaluate the maternal exposure to BPA on offspring's meat quality, muscle metabolism and oxidative stress. Administration of methyl donor improved antioxidant enzymes activity and reduced oxidative stress in piglets.
Collapse
Affiliation(s)
- Ivan Bahelka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic.
| | - Roman Stupka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Jaroslav Čítek
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Michal Šprysl
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| |
Collapse
|
28
|
Krzastek SC, Farhi J, Gray M, Smith RP. Impact of environmental toxin exposure on male fertility potential. Transl Androl Urol 2020; 9:2797-2813. [PMID: 33457251 PMCID: PMC7807371 DOI: 10.21037/tau-20-685] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 10/18/2020] [Indexed: 11/06/2022] Open
Abstract
Idiopathic infertility is the most common individual diagnosis in male infertility, representing nearly 44% of cases. Research studies dating over the last half-century consistently demonstrate a decline in male fertility that is incompletely explained by obesity, known genetic causes, or diet and lifestyle changes alone. Human exposures have changed dramatically over the same time course as this fertility decline. Synthetic chemicals surround us. Some are benevolent; however, many are known to cause disruption of the hypothalamic-pituitary-gonadal axis and impair spermatogenesis. More than 80,000 chemicals are registered with the United States National Toxicology Program and nearly 2,000 new chemicals are introduced each year. Many of these are known toxins, such as phthalates, polycyclic aromatic hydrocarbons, aromatic amines, and organophosphate esters, and have been banned or significantly restricted by other countries as they carry known carcinogenic effects and are reproductively toxic. In the United States, many of these chemicals are still permissible in exposure levels known to cause reproductive harm. This contrasts to other chemical regulatory legislature, such as the European Union's REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) regulations which are more comprehensive and restrictive. Quantification of these diverse exposures on an individual level has proven challenging, although forthcoming technologies may soon make this data available to consumers. Establishing causality and the proportion of idiopathic infertility attributable to environmental toxin exposures remains elusive, however, continued investigation, avoidance of exposure, and mitigation of risk is essential to our reproductive health. The aim of this review is to examine the literature linking changes in male fertility to some of the most common environmental exposures. Specifically, pesticides and herbicides such as dichlorodiphenyltrichloroethane (DDT), dibromochloropropane (DBCP), organophosphates and atrazine, endocrine disrupting compounds including plastic compounds phthalates and bisphenol A (BPA), heavy metals, natural gas/oil, non-ionizing radiation, air and noise pollution, lifestyle factors including diet, obesity, caffeine use, smoking, alcohol and drug use, as well as commonly prescribed medications will be discussed.
Collapse
Affiliation(s)
- Sarah C. Krzastek
- Department of Urology, University of Virginia, Charlottesville, VA, USA
- Division of Urology, Virginia Commonwealth University, Richmond, VA, USA
- Division of Urology, Hunter Holmes McGuire VAMC, Richmond, VA, USA
| | - Jack Farhi
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | - Marisa Gray
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | - Ryan P. Smith
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
29
|
Gestational Exposure to Bisphenol A Affects Testicular Morphology, Germ Cell Associations, and Functions of Spermatogonial Stem Cells in Male Offspring. Int J Mol Sci 2020; 21:ijms21228644. [PMID: 33212759 PMCID: PMC7696188 DOI: 10.3390/ijms21228644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Exposure to bisphenol A (BPA) in the gestational period damages the reproductive health of offspring; detailed evidence regarding BPA-induced damage in testicular germ cells of offspring is still limited. In this study, pregnant mice (F0) were gavaged with three BPA doses (50 μg, 5 mg, and 50 mg/kg body weight (bw)/day; tolerable daily intake (TDI), no-observed-adverse-effect-level (NOAEL), and lowest-observed-adverse-effect level (LOAEL), respectively) on embryonic days 7 to 14, followed by investigation of the transgenerational effects of such exposure in male offspring. We observed that the NOAEL- and LOAEL-exposed F1 offspring had abnormalities in anogenital distance, nipple retention, and pubertal onset (days), together with differences in seminiferous epithelial stages and testis morphology. These effects were eradicated in the next F2 and F3 generations. Moreover, there was an alteration in the ratio of germ cell population and the apoptosis rate in germ cells increased in F1 offspring at the LOAEL dose. However, the total number of spermatogonia remained unchanged. Finally, a reduction in the stemness properties of spermatogonial stem cells in F1 offspring was observed upon LOAEL exposure. Therefore, we provide evidence of BPA-induced disruption of physiology and functions in male germ cells during the gestational period. This may lead to several reproductive health issues and infertility in offspring.
Collapse
|
30
|
Lakshmanan MD, Shaheer K. Endocrine disrupting chemicals may deregulate DNA repair through estrogen receptor mediated seizing of CBP/p300 acetylase. J Endocrinol Invest 2020; 43:1189-1196. [PMID: 32253726 DOI: 10.1007/s40618-020-01241-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/27/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE Environmental pollutants are known to induce DNA breaks, leading to genomic instability. Here, we propose a novel mechanism for the genotoxic effects exerted by environmentally exposed endocrine-disrupting chemicals (EDCs). METHODS Bibliographic research and presentation of the analysis. DISCUSSION In mammals, nucleotide excision repair, base excision repair, homologous recombination and non-homologous end-joining pathways are some of the major DNA repair pathways. p300 along with CREB-binding protein (CBP) contributes to chromatin remodeling, DNA damage response and repair of both single- and double-stranded DNA breaks. In addition to its role in DNA repair, CBP/p300 also acts as a coactivator to interact with the estrogen receptor and androgen receptor during its estrogen- and androgen-dependent transactivation, respectively. Since activated estrogen receptors (ERs) seize p300 from the repressed genes and redistribute it to the enhancer genes to activate transcription, the cellular functioning may be based on a balance between these pathways and any disturbance in one may alter the other, leading to undesirable physiological effects. CONCLUSION In conclusion, CBP/p300 is important for DNA repair and nuclear hormone receptor transactivation. Activated hormone receptors can sequester p300 to regulate the hormonal effects. Hence, we believe that activation of ERs by EDCs results in sequestration of CBP/p300 for ER transactivation and transcription initiation of its target genes, leading to a competition for CBP/P300, resulting in the deregulation of all other pathways involving p300/CBP.
Collapse
Affiliation(s)
- M D Lakshmanan
- Molecular Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India.
| | - K Shaheer
- Molecular Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575018, India
| |
Collapse
|
31
|
Shi M, Whorton AE, Sekulovski N, MacLean JA, Hayashi K. Prenatal Exposure to Bisphenol A, E, and S Induces Transgenerational Effects on Male Reproductive Functions in Mice. Toxicol Sci 2020; 172:303-315. [PMID: 31532523 DOI: 10.1093/toxsci/kfz207] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This study was performed to examine the transgenerational effects of bisphenol (BP) A analogs, BPE, and BPS on male reproductive functions using mice as a model. CD-1 mice (F0) were orally exposed to control treatment (corn oil), BPA, BPE, or BPS (0.5 or 50 µg/kg/day) from gestational day 7 (the presence of vaginal plug = 1) to birth. Mice from F1 and F2 offspring were used to generate F3 males. Prenatal exposure to BPA, BPE, and BPS decreased sperm counts and/or motility and disrupted the progression of germ cell development as morphometric analyses exhibited an abnormal distribution of the stages of spermatogenesis in F3 males. Dysregulated serum levels of estradiol-17β and testosterone, as well as expression of steroidogenic enzymes in F3 adult testis were also observed. In the neonatal testis, although apoptosis and DNA damage were not affected, mRNA levels of DNA methyltransferases, histone methyltransferases, and their associated factors were increased by BP exposure. Furthermore, BP exposure induced immunoreactive expression of DNMT3A in Sertoli cells, strengthened DNMT3B, and weakened H3K9me2 and H3K9me3 in germ cells of the neonatal testis, whereas DNMT1, H3K4me3, and H3K27ac were not affected. In adult testis, stage-specific DNMT3B was altered by BP exposure, although DNMT3A, H3K9me2, and H3K9me3 expression remained stable. These results suggest that prenatal exposure to BPA, BPE, and BPS induces transgenerational effects on male reproductive functions probably due to altered epigenetic modification following disruption of DNMTs and histone marks in the neonatal and/or adult testis.
Collapse
Affiliation(s)
- Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Allison E Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| |
Collapse
|
32
|
Yang C, Song G, Lim W. Effects of endocrine disrupting chemicals in pigs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114505. [PMID: 32268228 DOI: 10.1016/j.envpol.2020.114505] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are compounds that interfere with the expression, synthesis, and activity of hormones in organisms. They are released into the environment from flame retardants and products containing plasticizers. Persistent pesticides, such as dichlorodiphenyltrichloroethane (DDT) and hexachlorobenzene, also disrupt the endocrine system through interaction with hormone receptors. Endogenous hormones, such as 17β-estradiol (E2), are released in the urine and feces of farm animals and seep into terrestrial and aquatic ecosystems through sewage. Pigs are widely used as animal models to determine the effects of EDCs because they are physiologically, biochemically, and histologically similar to humans. EDCs primarily disrupt the reproductive and nervous systems of pigs. Moreover, embryonic development during the prenatal and early postnatal periods is particularly sensitive to EDCs. Mycotoxins, such as zearalenone, are food contaminants that alter hormonal activities in pigs. Mycotoxins also alter the innate immune system in pigs, making them vulnerable to diseases. It has been reported that farm animals are exposed to various types of EDCs, which accumulate in tissues, such as those of gonads, livers, and intestines. There is a lack of an integrated understanding of the impact of EDCs on porcine reproduction and development. Thus, this article aims to provide a comprehensive review of literature regarding the effects of EDCs in pigs.
Collapse
Affiliation(s)
- Changwon Yang
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
33
|
Castellini C, Totaro M, Parisi A, D'Andrea S, Lucente L, Cordeschi G, Francavilla S, Francavilla F, Barbonetti A. Bisphenol A and Male Fertility: Myths and Realities. Front Endocrinol (Lausanne) 2020; 11:353. [PMID: 32595601 PMCID: PMC7304337 DOI: 10.3389/fendo.2020.00353] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Bisphenol A (BPA) represents the main chemical monomer of epoxy resins and polycarbonate plastics. The environmental presence of BPA is widespread, and it can easily be absorbed by the human body through dietary and transdermal routes, so that more than 90% of the population in western countries display detectable BPA levels in the urine. As BPA is qualified as an endocrine disruptor, growing concern is rising for possible harmful effects on human health. This review critically discusses the available literature dealing with the possible impact of BPA on male fertility. In rodent models, the in vivo exposure to BPA negatively interfered with the regulation of spermatogenesis throughout the hypothalamic-pituitary-gonadal axis. Furthermore, in in vitro studies, BPA promoted mitochondrial dysfunction and oxidative/apoptotic damages in spermatozoa from different species, including humans. To date, the claimed clinical adverse effects on male fertility are largely based on the results from studies assessing the relationship between urinary BPA concentration and conventional semen parameters. These studies, however, produced controversial evidence due to heterogeneity in the extent of BPA exposure, type of population, and enrollment setting. Moreover, the cause-effect relationship cannot be established due to the cross-sectional design of the studies as well as the large spontaneous between- and within-subject variability of semen parameters. The best evidence of an adverse effect of BPA on male fertility would be provided by prospective studies on clinically relevant endpoints, including natural or medically assisted pregnancies among men either with different exposure degrees (occupational/environmental) or with different clinical conditions (fertile/subfertile).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Arcangelo Barbonetti
- Medical Andrology, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
34
|
Zahra Z, Khan MR, Majid M, Maryam S, Sajid M. Gonadoprotective ability of Vincetoxicum arnottianum extract against bisphenol A-induced testicular toxicity and hormonal imbalance in male Sprague Dawley rats. Andrologia 2020; 52:e13590. [PMID: 32293051 DOI: 10.1111/and.13590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/14/2020] [Accepted: 03/15/2020] [Indexed: 12/31/2022] Open
Abstract
Vincetoxicum arnottianum (Wight) of family Apocynaceae is a rich source of therapeutic alkaloids, phenolics and flavonoids. Study aims to evaluate the protective potential of methanol extract of Vincetoxicum arnottianum (VAM) on bisphenol A (BPA)-induced testicular toxicity in male Sprague Dawley rat. Quantitative analysis of VAM for total phenolic (TPC), total flavonoid (TFC) and total alkaloid content (TAC) along with HPLC analysis for polyphenolics was carried out. BPA-induced testicular toxicity was determined through analysis of antioxidant enzymes, DNA damages and testicular histopathology along with reproductive hormones in serum of rat. VAM was constituted of TFC (382.50 ± 1.67 μg GAE/mg), TPC (291.17 ± 0.82 μg RE/mg), TAC (16.5 ± 0.5%), ferulic acid (2.2433 μg/mg) and vanillic acid (2.1249 μg/mg). VAM co-administration to BPA-treated rats attenuated the toxic effects of BPA and restored the body and testis weights. Altered level of luteinizing hormone (LH), testosterone and follicle-stimulating hormone (FSH) in serum, and level of antioxidants (GSH, POD, CAT and SOD) and nitric oxide in testis tissues of BPA-induced toxicity were significantly restored by VAM. Histological and comet assay studies also sanctioned the protective potential of VAM in BPA-intoxicated rats. The presence of polyphenols and alkaloids might contribute towards the scavenging and ameliorative potential of VAM in testicular toxicity induced by BPA.
Collapse
Affiliation(s)
- Zartash Zahra
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Majid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sonia Maryam
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Moniba Sajid
- Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| |
Collapse
|
35
|
Jiao N, Xu D, Qiu K, Wang L, Wang L, Piao X, Yin J. Restoring mitochondrial function and normalizing ROS-JNK/MAPK pathway exert key roles in glutamine ameliorating bisphenol A-induced intestinal injury. FASEB J 2020; 34:7442-7461. [PMID: 32285985 DOI: 10.1096/fj.201902503r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 12/30/2022]
Abstract
Bisphenol A (BPA) is toxic to the reproductive and nervous system, even carcinogenetic in humans and animals. However, few studies focused on effects of BPA on the intestinal tract. Here, we detected BPA-induced injuries on intestinal mucosa and explored a reliable approach to counteract BPA effects. C57BL/6J mice were gavage BPA or BPA accompanied with ingestion of 4% (w/w) of glutamine for 4-wks. In vitro, IEC-6 cells were treated with 0.4 mmol/L BPA for 6 hours mimicking acute injury and 0.2 mmol/L BPA for 12 hours followed with or without the inclusion of 4 mmol/L glutamine for 12 hours to determine cell renewal, mitochondrial function and ROS-JNK/MAPK pathway upon moderate BPA exposure. As results, BPA exposure caused severe intestinal injury, and disturbed intestinal epithelial cell proliferation and apoptosis, accompanied with mitochondrial malfunction and activated JNK/MAPK pathway as well. Notably, glutathione metabolism was implicated in BPA-induce injury. Glutamine could well rescue cell renewal and mitochondrial function from BPA exposure-induced injuries. In conclusion, we demonstrated impaired effect of BPA exposure on intestinal functions, which could be well counteracted by glutamine partly via restoring mitochondrial function and normalizing ROS-JNK/MAPK pathway. Thereby, we provided a novel application of glutamine to rescue intestinal injury.
Collapse
Affiliation(s)
- Ning Jiao
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Doudou Xu
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kai Qiu
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Liqi Wang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Wang
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangshu Piao
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingdong Yin
- State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
De Toni L, De Rocco Ponce M, Petre GC, Rtibi K, Di Nisio A, Foresta C. Bisphenols and Male Reproductive Health: From Toxicological Models to Therapeutic Hypotheses. Front Endocrinol (Lausanne) 2020; 11:301. [PMID: 32582021 PMCID: PMC7287019 DOI: 10.3389/fendo.2020.00301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Bisphenols, and in particular bisphenol A (BPA), have been widely used for the production of plastic manufacts in the last 50 years. Currently, BPA is present in a variety of daily use polycarbonate plastics and epoxy resins, and dietary ingestion is considered the main route of human exposure. Accordingly, BPA is the chemical pollutant with the widest exposure in humans, involving nearly 90% of general population, according to recent studies. Concerns about BPA effects on human health date back to 1930s, when severe impact on male sexual development was suggested. Now, the acknowledged biological effects of BPA are various. In regard to human fertility, BPA has been shown to disrupt hormone signaling even at low concentrations. Results from human epidemiological studies have reported BPA interference with follicle stimulating hormone, inhibin B, estradiol, testosterone levels, and sexual function in male subjects. Moreover, recent studies have reported an association between BPA levels and reduced sperm concentration, motility, normal morphology, sperm DNA damage, and altered epigenetic pattern, resulting in trans-generational legacy of BPA effects. In this review, the recognized effects of BPA on male reproductive health are described, from the most recent issues on experimental models to epidemiological data. In addition, the very recent interest about the use of nutraceutical remedies to counteract BPA effects are discussed.
Collapse
Affiliation(s)
- Luca De Toni
- Department of Medicine and Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | | | - Gabriel Cosmin Petre
- Department of Medicine and Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Kais Rtibi
- Laboratory of Functional Physiology and Valorization of Bioresources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Andrea Di Nisio
- Department of Medicine and Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Department of Medicine and Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
- *Correspondence: Carlo Foresta
| |
Collapse
|
37
|
Chioccarelli T, Manfrevola F, Migliaccio M, Altucci L, Porreca V, Fasano S, Cobellis G. Fetal-Perinatal Exposure to Bisphenol-A Affects Quality of Spermatozoa in Adulthood Mouse. Int J Endocrinol 2020; 2020:2750501. [PMID: 32256569 PMCID: PMC7109585 DOI: 10.1155/2020/2750501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Bisphenol-A (BPA) is considered an endocrine disruptor with estrogenic activity. It is described as an environment-polluting industrial chemical whose adverse effects on the male reproductive system depend on the period of exposure (i.e., fetal, prepubertal, or adult life). We exposed male mice to BPA during the fetal-perinatal period (from 10 days post coitum to 31 days post partum) and investigated the impact of this early-life exposure on gamete health in adulthood animals at 78 days of age. Both in control and BPA-exposed mice, viability and motility of spermatozoa, as well as sperm motility acquisition and chromatin condensation of spermatozoa, have been evaluated. Results reveal harmful effect of BPA on viability and motility of sperm cells as well as on chromatin condensation status during epididymal maturation of spermatozoa. In particular, BPA exposure interferes with biochemical mechanism useful to stabilize sperm chromatin condensation, as it interferes with oxidation of thiol groups associated to chromatin.
Collapse
Affiliation(s)
- Teresa Chioccarelli
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Marina Migliaccio
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
| |
Collapse
|
38
|
Amin DM. Role of copeptin as a novel biomarker of bisphenol A toxic effects on cardiac tissues: biochemical, histological, immunohistological, and genotoxic study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36037-36047. [PMID: 31713131 DOI: 10.1007/s11356-019-06855-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Copeptin is a precursor for arginine vasopressin which is usually elevated in acute stress and cardiac emergencies. Bisphenol A (BPA) is an ideal plasticizing factor used in manufacturing of plastics and epoxy resins. To evaluate the cardio toxicity of bisphenol A and to assess copeptin as a cardio toxic diagnostic and prognostic biomarker in Wistar rats. Sixty Wistar rats were classified into three groups: group I, naive group received regular diet and water; group II, vehicle group administered corn oil; and group III, each rat received BPA daily with (30 mg/kg/day S.C). After 4 weeks, blood samples were collected for estimating serum copeptin levels. Then, the hearts were subjected to histological, immunohistochemical, and electron microscopic examination. Cell suspensions from the hearts were examined to determine the extent of DNA damage by comet assay. Bisphenol A induced a significant increase in mean values of serum copeptin level, histopathological changes in the form of dilated congested blood vessels and extensive collagen fiber deposition in the myocardium. Ultrastructurally, disturbed indented nuclei, focal lysis of myofibrils, normal cross striations loss, mitochondrial swelling, and intercalated disks distortion were noticed. Immunohistochemical study showed a significant increase in TLR2 immunoreactions in the myocytes of BPA administered rats. In addition, comet assay showed that bisphenol A exposure produced DNA damage in cardiac cells. We concluded that bisphenol A has deleterious effects on cardiac tissues mean, while copeptin is a good diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Dalia Mohamed Amin
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
39
|
Uzunhisarcikli M, Aslanturk A. Hepatoprotective effects of curcumin and taurine against bisphenol A-induced liver injury in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:37242-37253. [PMID: 31745802 DOI: 10.1007/s11356-019-06615-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) is an estrogenic endocrine disrupting chemical to which humans are frequently exposed during routine daily life. Curcumin and taurine are natural products that have also been used as antioxidants against different environmental toxin-induced hepatotoxicity. Furthermore, they have protective and therapeutic effects against various diseases. The present investigation has been conducted to evaluate the therapeutic potential of curcumin (100 mg kg-1) and taurine (100 mg kg-1) for their hepatoprotective efficacy against BPA (130 mg kg-1)-induced liver injury in rat. BPA significantly elevated the levels of malondialdehyde (MDA), while it reduced the activities of catalase (CAT), total glutathione S-transferase (GST), total glutathione peroxidase (GPx), and total superoxide dismutase (SOD). Besides, these biochemical changes were accompanied by histopathological alterations marked by the destruction of normal liver structure. The histological examinations showed that exposure of BPA caused dilatation of sinusoids, inflammatory cell infiltration, congestion, and necrosis in liver parenchyma. The BPA-induced histopathological alterations in liver were minimized by curcumin and taurine treatment. Furthermore, no necrosis was observed in the liver tissues of curcumin plus BPA and taurine plus BPA-treated rats. Oral administration of curcumin and taurine to BPA-exposed rats significantly reversed the content of lipid peroxidation products, as well as enhanced the activities of GPx and GST, CAT, and SOD enzymes. These findings have indicated that curcumin and taurine might have a protective effect against BPA-induced hepatotoxicity in rats.
Collapse
Affiliation(s)
| | - Ayse Aslanturk
- Gazi University, Vocational High School of Health Services, Ankara, Turkey
| |
Collapse
|
40
|
Zhang S, Bao J, Gong X, Shi W, Zhong X. Hazards of bisphenol A -- blocks RNA splicing leading to abnormal testicular development in offspring male mice. CHEMOSPHERE 2019; 230:432-439. [PMID: 31121507 DOI: 10.1016/j.chemosphere.2019.05.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/19/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
This study was conducted to investigate the effects of maternal exposure to BPA on testicular development in offspring males. Pregnant Kunming mice were randomly divided into 7 groups with 20 mice in each group. Group A was the control group and the mice were given distilled water orally. Mice in groups B, C, D, E, F, G received BPA orally at a dose of 0.05 mg/kg/d, 0.5 mg/kg/d, 5 mg/kg/d, 10 mg/kg/d, 20 mg/kg/d, 50 mg/kg/d, respectively. F0 mice were exposed to BPA for 40 days from gestation day 0 to lactation day 21. F1 male mice were sacrificed at weaning (postnatal day 21). Histological observations revealed architectural damages in testis in BPA exposed groups. The testicular organ index increased significantly when the BPA oral exposure dose was above 20 mg/kg/d (P < 0.05). BPA contents in serum of F1 male mice increased significantly when BPA was above 5 mg/kg/d (P < 0.05), while the contents significant increased in maternal serum when BPA was higher than 0.5 mg/kg/d. The damage of cell nuclear DNA of testis was significantly aggravated when BPA was above 5 mg/kg/d. The expression of AR in the testis was significantly increased when BPA was above 20 mg/kg/d (P < 0.05). Transcriptome sequencing showed that the Snrnp 40 which encoding U5 snRNA subunit was significantly up-regulated in spliceosome pathway, and the Hnrnpu which encoding splicing universal protein component was significantly down-regulated. The blockage of spliceosome might be one of the reasons why BPA affects testicular development.
Collapse
Affiliation(s)
- Shilei Zhang
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, 071001, China; College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China
| | - Jialu Bao
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China
| | - Xincheng Gong
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China
| | - Xiuhui Zhong
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, 071001, China; College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, China.
| |
Collapse
|
41
|
Sonavane M, Gassman NR. Bisphenol A co-exposure effects: a key factor in understanding BPA's complex mechanism and health outcomes. Crit Rev Toxicol 2019; 49:371-386. [PMID: 31256736 DOI: 10.1080/10408444.2019.1621263] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bisphenol A (BPA) is an environmental endocrine disrupting chemical widely used in the production of consumer products, such as polycarbonate plastics, epoxies, and thermal receipt paper. Human exposure to BPA is ubiquitous due to its high-volume production and use. BPA exposure has been associated with obesity, diabetes, reproductive disorders, and cancer. Yet, the molecular mechanisms or modes of action underlying these disease outcomes are poorly understood due to the pleiotropic effects induced by BPA. A further confounding factor in understanding BPA's impact on human health is that co-exposure of BPA with endogenous and exogenous agents occurs during the course of daily life. Studies investigating BPA exposure effects and their relationship to adverse health outcomes often ignore interactions between BPA and other chemicals present in the environment. This review examines BPA co-exposure studies to highlight potentially unexplored mechanisms of action and their possible associations with the adverse health effects attributed to BPA. Importantly, both adverse and beneficial co-exposure effects are observed between BPA and natural chemicals or environmental stressors in in vitro and in vivo models. These interactions clearly influence cellular responses and impact endpoint measures and need to be considered when evaluating BPA exposures and their health effects.
Collapse
Affiliation(s)
- Manoj Sonavane
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA.,Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Natalie R Gassman
- Department of Oncologic Sciences, University of South Alabama Mitchell Cancer Institute, Mobile, AL, USA.,Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| |
Collapse
|
42
|
Gallic acid protects rat liver mitochondria ex vivo from bisphenol A induced oxidative stress mediated damages. Toxicol Rep 2019; 6:578-589. [PMID: 31293903 PMCID: PMC6595240 DOI: 10.1016/j.toxrep.2019.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 06/08/2019] [Accepted: 06/15/2019] [Indexed: 01/19/2023] Open
Abstract
Bisphenol A induces oxidative stress mediated liver mitochondrial damage. Bisphenol A induced damage is being protected when mitochondria are co-incubated with gallic acid. Scanning electron microscopy of mitochondrial tomography supports the biochemical observations. Gallic acid may be used as future remedial measure for the protection of bisphenol A induced damages of liver mitochondria.
Humans are often exposed to bisphenol A (BPA), the monomer of polycarbonate plastics and epoxy resins, through BPA contaminated drinking water, beverages and foods, packaged in polycarbonate plastic bottles and cans coated with epoxy resins due to leaching. Several research groups have reported that BPA may cause damage of mitochondria in liver, kidney, heart and brain cells by inducing oxidative stress. The antioxidant efficacy of gallic acid (GA), a polyphenol compound obtained from plants, against different toxicants induced oxidative stress has been well established. The aim of the present study was to examine the protective efficacy of GA against BPA induced oxidative damages of the rat liver mitochondria ex vivo. In our study, we have found a significant decrease in the intactness of mitochondria; a significant increase (P ≤ 0.001) in the levels of lipid peroxidation end product (i.e. malondialdehyde) and protein carbonylation product; and also a significant decrease (P ≤ 0.001) in the reduced glutathione content; when mitochondria were incubated with BPA (160 μM/ml) only. These results indicate that BPA probably causes damage to the cellular macromolecules through oxidative stress. We have observed significant counteractions (P ≤ 0.001) against BPA induced alterations in mitochondrial intactness, lipid peroxidation and protein carbonylation products formation and reduced glutathione content when mitochondria were incubated with BPA and GA (20 μg/ml/ 40 μg/ml/ 80 μg/ml) in combination in a dose-dependent manner. Gallic acid also showed significant restorations (P ≤ 0.001) of the activities of antioxidant enzymes, Krebs cycle enzymes, respiratory chain enzymes and thiolase when mitochondria were incubated with BPA and dosage of GA (20 μg/ml/ 40 μg/ml/ 80 μg/ml) in combination compared to BPA incubated mitochondria. Furthermore, GA significantly (P ≤ 0.001) counteracted the BPA induced decrease in tryptophan and NADH auto-fluroscence levels in mitochondria. This result suggests that GA protects the mitochondria probably by reducing the oxidative stress. Besides, GA protects the mitochondrial surface from BPA induced oxidative damages as viewed under the scanning electron microscope. Considering all the results, it can be concluded that GA shows potent efficacy in protecting the rat liver mitochondria ex vivo from BPA induced oxidative stress mediated damages.
Collapse
|
43
|
Tao S, Wang L, Zhu Z, Liu Y, Wu L, Yuan C, Zhang G, Wang Z. Adverse effects of bisphenol A on Sertoli cell blood-testis barrier in rare minnow Gobiocypris rarus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:475-483. [PMID: 30639874 DOI: 10.1016/j.ecoenv.2019.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA), an environmental contaminant, has been shown to disturb the dynamics of Sertoli cell blood-testis barrier (BTB) in mammal testis. However, the effects of BPA on Sertoli cell barrier (SC barrier) were little known in fish to date. To evaluate the potential mechanism of reproductive toxicity of BPA, we studied the damage of SC barrier using in vivo models. In this study, male adult rare minnow Gobiocypris rarus were exposed to 15 μg/L BPA for 7-35 days. Gonadal histology and the integrity of SC barrier were analyzed. Meanwhile, the expressions of SC barrier -associated proteins, tumor necrosis factor (TNFα) content, and the mRNA expressions of genes in the mitogen activated protein kinase (MAPK) pathway were detected. Histological analysis demonstrated 15 μg/L BPA promoted the infiltration of inflammatory cells in fish testes after 7-days exposure. The biotin tracer assay showed that 7-days BPA exposure increased permeability for spermatid cysts. In addition, the BPA treatment caused increased TNFα in testis, which was reportedly related to SC barrier impairment. The expressions of Occludin and β-Catenin protein were significantly decreased in the testes after 7- and 21-days exposure. BPA also altered the mRNA expressions of occludin, β-catenin, p38 MAPK and JNK. Therefore, the detrimental effects of BPA on reproduction of male fish may attribute to the disturbed expressions of SC junction proteins.
Collapse
Affiliation(s)
- Shiyu Tao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zeliang Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Yuan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guo Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
44
|
Di Nisio A, Foresta C. Water and soil pollution as determinant of water and food quality/contamination and its impact on male fertility. Reprod Biol Endocrinol 2019; 17:4. [PMID: 30611299 PMCID: PMC6321708 DOI: 10.1186/s12958-018-0449-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Over the past two decades, public health has focused on the identification of environmental chemical factors that are able to adversely affect hormonal function, known as endocrine disruptors (EDs). EDs mimic naturally occurring hormones like estrogens and androgens which can in turn interfere with the endocrine system. As a consequence, EDs affect human reproduction as well as post and pre-natal development. In fact, infants can be affected already at prenatal level due to maternal exposure to EDs. In particular, great attention has been given to those chemicals, or their metabolites, that have estrogenic properties or antagonistic effects on the activity of androgen or even inhibiting their production. These compounds have therefore the potential of interfering with important physiological processes, such as masculinization, morphological development of the urogenital system and secondary sexual traits. Animal and in vitro studies have supported the conclusion that endocrine-disrupting chemicals affect the hormone-dependent pathways responsible for male gonadal development, either through direct interaction with hormone receptors or via epigenetic and cell-cycle regulatory modes of action. In human populations, epidemiological studies have reported an overall decline of male fertility and an increased incidence of diseases or congenital malformations of the male reproductive system. The majority of studies point towards an association between exposure to EDs and male and/or female reproductive system disorders, such as infertility, endometriosis, breast cancer, testicular cancer, poor sperm quality and/or function. Despite promising discoveries, a causal relationship between the reproductive disorders and exposure to specific toxicants has yet to be established, due to the complexity of the clinical protocols used, the degree of occupational or environmental exposure, the determination of the variables measured and the sample size of the subjects examined. Despite the lack of consistency in the results of so many studies investigating endocrine-disrupting properties of many different classes of chemicals, the overall conclusion points toward a positive association between exposure to EDs and reproductive system. Future studies should focus on a uniform systems to examine human populations with regard to the exposure to specific EDs and the direct effect on the reproductive system.
Collapse
Affiliation(s)
- Andrea Di Nisio
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani, 2, 35128, Padova, Italy
| | - Carlo Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani, 2, 35128, Padova, Italy.
| |
Collapse
|
45
|
Liu X, Chen Q, Ding X, Zhao Y, Zhang K, Yu P, Cui F, Xue B. X-ray-induced reproductive dysfunction and differentially expressed piRNAs in male mice. Hum Exp Toxicol 2018; 38:533-546. [PMID: 30596273 DOI: 10.1177/0960327118812187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of X-ray radiation on spermatogenesis, sperm motility, and PIWI-interacting RNAs (piRNAs) in mice were analyzed. Male C57BL/6 J mice were divided into control and two irradiation groups ( n = 9 mice/group). After irradiation of their reproductive regions, the mice were fed for 3 days (irradiation group 1) or 7 days (control and irradiation group 2). The sperm viability, motility, velocity, and motion curve were analyzed. After piRNA expression profiling, quantitative reverse-transcription polymerase chain reaction was conducted for validation. Ionizing radiation led to vessel dilation and congestion, fewer spermatogenic cells, and reduced sperm production compared to the control. At 3 and 7 days postirradiation, the sperm count (grade d) increased while sperm viability and sperm lateral head displacement decreased. At 7 days, the sperm abnormality rate was higher compared to the control. Many piRNAs were differentially expressed after irradiation, including decreased and increased expression of mmu_piR_009082 and mmu_piR_020217, respectively. Downregulated piRNAs were involved in Rap1 signaling, non-homologous end-joining, hedgehog signaling, oxytocin signaling, and cholinergic synapse. Upregulated piRNAs participated in pathways including proteoglycans in cancer, phosphatidylinositol signaling, cGMP-PKG signaling, and stem cell pluripotency regulation. X-ray irradiation inhibited spermatogenesis and increased abnormal sperm rate in mice. piRNA-related signaling pathways may be involved in this process.
Collapse
Affiliation(s)
- X Liu
- Department of Urology, the Second Affiliated Hospital of Suzhou University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Q Chen
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - X Ding
- Department of Urology, Suzhou University, Suzhou, China
| | - Y Zhao
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - K Zhang
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - P Yu
- Department of Urology, the Second Affiliated Hospital of Suzhou University, Suzhou, China
| | - F Cui
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - B Xue
- Department of Urology, the Second Affiliated Hospital of Suzhou University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
46
|
Khalaf AA, Ahmed WMS, Moselhy WA, Abdel-Halim BR, Ibrahim MA. Protective effects of selenium and nano-selenium on bisphenol-induced reproductive toxicity in male rats. Hum Exp Toxicol 2018; 38:398-408. [DOI: 10.1177/0960327118816134] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bisphenol A (BPA) is a widespread compound associated with the manufacture of many consumer products. The BPA-induced reproductive toxicity was reported to be mainly attributed to oxidative stress. However, the role of antioxidants usage to decrease the injurious effects of BPA, on male reproductive functions, remains to unveil. The present research is established to evaluate the role of selenium (Se) and its nano form (NSe) as protective agents to alleviate BPA-induced testicular toxicity. Ninety mature albino male rats were assigned into six equal groups: negative control; orally BPA 150 mg/kg; Se 3 mg/kg; NSe 2 mg/kg; both BPA 150 mg/kg and Se 3 mg/kg; and BPA 150 mg/kg + NSe 2 mg/kg. The experiment lasted for 70 consecutive days, and then serum was collected for estimation of prostatic acid phosphatase. Testicular tissues were subjected to measurement of antioxidant status, lipid peroxidation, DNA damage, and expression of some apoptotic genes. Our results reported that BPA-induced marked testicular damage evidenced by significant elevations in serum prostatic acid phosphatase activity, malondialdehyde levels, a decrease in testicular catalase activity and reduced glutathione level. Moreover, marked DNA internucleosomal fragmentation pattern as well as upregulation of cyclooxygenase-2 and estrogen receptor-2 NSe genes were detected. Coadministration of Se and NSe attenuated the reproductive toxicity induced by BPA via improvement of the antioxidant activity, genetic changes, and restoration of testicular tissue nearly as control one. These results indicated that both Se and NSe forms could be used as reproductive protective agents against the detrimental effect induced by BPA. However, the NSe surpassed the selenium in modulating the DNA laddering, and the studied gene expression levels, and offered a potent reproductive protection.
Collapse
Affiliation(s)
- AA Khalaf
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - WMS Ahmed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - WA Moselhy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - BR Abdel-Halim
- Department of Theriogenology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - MA Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
47
|
Sonavane M, Sykora P, Andrews JF, Sobol RW, Gassman NR. Camptothecin Efficacy to Poison Top1 Is Altered by Bisphenol A in Mouse Embryonic Fibroblasts. Chem Res Toxicol 2018; 31:510-519. [PMID: 29799191 DOI: 10.1021/acs.chemrestox.8b00050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bisphenol A (BPA) is used heavily in the production of polycarbonate plastics, thermal receipt paper, and epoxies. Ubiquitous exposure to BPA has been linked to obesity, diabetes, and breast and reproductive system cancers. Resistance to chemotherapeutic agents has also been shown in cancer cell models. Here, we investigated BPA's ability to confer resistance to camptothecin (CPT) in mouse embryonic fibroblasts (MEFs). MEFs are sensitive to CPT; however, co-exposure of BPA with CPT improved cell survival. Co-exposure significantly reduced Top1-DNA adducts, decreasing chromosomal aberrations and DNA strand break formation. This decrease occurs despite BPA treatment increasing the protein levels of Top1. By examining chromatin structure after BPA exposure, we determined that widespread compaction and loss of nuclear volume occurs. Therefore, BPA reduced CPT activity by reducing the accessibility of DNA to Top1, inhibiting DNA adduct formation, the generation of toxic DNA strand breaks, and improving cell survival.
Collapse
Affiliation(s)
- Manoj Sonavane
- Department of Oncologic Sciences , University of South Alabama Mitchell Cancer Institute , 1660 Spring Hill Avenue , Mobile , Alabama 36604 , United States
| | - Peter Sykora
- Department of Oncologic Sciences , University of South Alabama Mitchell Cancer Institute , 1660 Spring Hill Avenue , Mobile , Alabama 36604 , United States
| | - Joel F Andrews
- Department of Oncologic Sciences , University of South Alabama Mitchell Cancer Institute , 1660 Spring Hill Avenue , Mobile , Alabama 36604 , United States
| | - Robert W Sobol
- Department of Oncologic Sciences , University of South Alabama Mitchell Cancer Institute , 1660 Spring Hill Avenue , Mobile , Alabama 36604 , United States
| | - Natalie R Gassman
- Department of Oncologic Sciences , University of South Alabama Mitchell Cancer Institute , 1660 Spring Hill Avenue , Mobile , Alabama 36604 , United States
| |
Collapse
|
48
|
Shi M, Sekulovski N, MacLean JA, Hayashi K. Prenatal Exposure to Bisphenol A Analogues on Male Reproductive Functions in Mice. Toxicol Sci 2018; 163:620-631. [DOI: 10.1093/toxsci/kfy061] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| |
Collapse
|
49
|
Winship AL, Stringer JM, Liew SH, Hutt KJ. The importance of DNA repair for maintaining oocyte quality in response to anti-cancer treatments, environmental toxins and maternal ageing. Hum Reprod Update 2018; 24:119-134. [PMID: 29377997 DOI: 10.1093/humupd/dmy002] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/05/2017] [Accepted: 01/14/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Within the ovary, oocytes are stored in long-lived structures called primordial follicles, each comprising a meiotically arrested oocyte, surrounded by somatic granulosa cells. It is essential that their genetic integrity is maintained throughout life to ensure that high quality oocytes are available for ovulation. Of all the possible types of DNA damage, DNA double-strand breaks (DSBs) are considered to be the most severe. Recent studies have shown that DNA DSBs can accumulate in oocytes in primordial follicles during reproductive ageing, and are readily induced by exogenous factors such as γ-irradiation, chemotherapy and environmental toxicants. DSBs can induce oocyte death or, alternatively, activate a program of DNA repair in order to restore genetic integrity and promote survival. The repair of DSBs has been intensively studied in the context of meiotic recombination, and in recent years more detail is becoming available regarding the repair capabilities of primordial follicle oocytes. OBJECTIVE AND RATIONALE This review discusses the induction and repair of DNA DSBs in primordial follicle oocytes. SEARCH METHODS PubMed (Medline) and Google Scholar searches were performed using the key words: primordial follicle oocyte, DNA repair, double-strand break, DNA damage, chemotherapy, radiotherapy, ageing, environmental toxicant. The literature was restricted to papers in the English language and limited to reports in animals and humans dated from 1964 until 2017. The references within these articles were also manually searched. OUTCOMES Recent experiments in animal models and humans have provided compelling evidence that primordial follicle oocytes can efficiently repair DNA DSBs arising from diverse origins, but this capacity may decline with increasing age. WIDER IMPLICATIONS Primordial follicle oocytes are vulnerable to DNA DSBs emanating from endogenous and exogenous sources. The ability to repair this damage is essential for female fertility. In the long term, augmenting DNA repair in primordial follicle oocytes has implications for the development of novel fertility preservation agents for female cancer patients and for the management of maternal ageing. However, further work is required to fully characterize the specific proteins involved and to develop strategies to bolster their activity.
Collapse
Affiliation(s)
- Amy L Winship
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Jessica M Stringer
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Seng H Liew
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Karla J Hutt
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
50
|
The toxic effects and possible mechanisms of Bisphenol A on oocyte maturation of porcine in vitro. Oncotarget 2018; 7:32554-65. [PMID: 27086915 PMCID: PMC5078033 DOI: 10.18632/oncotarget.8689] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
Bisphenol A (BPA) and Di-(2-ethylhexyl) phthalate (DEHP) are widely used in the plastic industry such as water bottles, containers, packaging and toys. BPA and DEHP are shown to be the endocrine disruptors which disturb the endocrine system and are linked to several diseases including infertility. In this study, we investigated the effects of BPA exposure on porcine oocyte maturation and its possible reasons. Our results showed that: (i) the rates of oocyte maturation significantly decreased with 250 μM BPA treatment in vitro, but not DEHP. This might be due to the delayed cell cycle progression of oocyte maturation. (ii) BPA treatment resulted in abnormal cytoskeletons on porcine oocytes, showing with aberrant actin distribution, spindle morphology and chromosome alignment, which was further confirmed by the reduced p-MAPK level. (iii) The fluorescence intensity of histone methylation (H3K4me2) and DNA methylation (5 mC) levels were altered after BPA treatment, indicating that epigenetic modification was disturbed. (iv) BPA-exposed oocytes had higher rates of early stage apoptosis/autophagy, and this may be resulted from the increased level of oxidative stress. Collectively, our results indicated that porcine oocytes maturation was disrupted after BPA treatment through disrupting cytoskeletal dynamics, epigenetic modifications and inducing apoptosis/autophagy.
Collapse
|