1
|
Chandrashekar DV, Jagadeesan N, Abdullah T, Chang R, Steinberg RA, Sanchez F, Khal E, Yang J, Cribbs DH, Han D, Sumbria RK. Effect of chronic alcohol feeding using the Lieber-DeCarli diet on Alzheimer's disease pathology in Tg2576 mice. Front Aging Neurosci 2025; 17:1526571. [PMID: 40196176 PMCID: PMC11973299 DOI: 10.3389/fnagi.2025.1526571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/25/2025] [Indexed: 04/09/2025] Open
Abstract
Background Chronic alcohol drinking is a modifiable risk factor for Alzheimer's disease (AD), but underlying mechanisms remain poorly understood. Most studies of alcohol feeding to AD mice have utilized young mice and delivered alcohol in drinking water without controlling nutritional intake. Objective To study the impact of Lieber-DeCarli (LDC) liquid alcohol diet, which balances nutritional intake, on AD pathology of aged Tg2576 and wild-type (WT) mice, which is unexplored. Methods 13-month-old male and female Tg2576 or WT mice were fed LDC diet (5% ethanol or control) for six weeks (n = 11-13/group). Exploration (open-field test) and spatial reference memory (Y-maze test) were assessed after six weeks, and brains and livers were studied for Aβ levels, and Aβ synthesis and transport proteins (APP and LRP-1). Neuroinflammation, blood-brain barrier function, and synaptic health were studied using immunoassays. Results LDC alcohol feeding significantly reduced survival (p < 0.05) and spatial memory (p < 0.05) in Tg2576 mice, but not in WT mice. Alcohol feeding increased (p < 0.001) insoluble endogenous mouse Aβ1-42 and reduced microgliosis (p < 0.05) in Tg2576 mice brains, but not in WT mice. LDC alcohol feeding to Tg2576 mice caused mild liver injury, and important amyloidosis-relevant hepatic proteins (LRP-1 and APP) were largely unaltered. However, brain Aβ and microgliosis were positively correlated (p < 0.05) with serum alanine aminotransferase, a marker of liver injury, in Tg2576 mice. Conclusion Chronic alcohol intake, resulting in mild liver injury, caused modest but significant AD-relevant changes in aged Tg2576 mice, which correlated with liver injury; the latter suggests significant liver-brain crosstalk in an AD model of moderate alcohol intake.
Collapse
Affiliation(s)
- Devaraj V. Chandrashekar
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Nataraj Jagadeesan
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Tamara Abdullah
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Rudy Chang
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - Ross A. Steinberg
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, United States
| | - Frankey Sanchez
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, United States
| | - Elias Khal
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, United States
| | - Joshua Yang
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
| | - David H. Cribbs
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Derick Han
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA, United States
| | - Rachita K. Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA, United States
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
2
|
McGregor BA, Raihan MO, Brishti A, Hur J, Porter JE. Deciphering motor dysfunction and microglial activation in mThy1- α-synuclein mice: a comprehensive study of behavioral, gene expression, and methylation changes. Front Mol Neurosci 2025; 18:1544971. [PMID: 40018011 PMCID: PMC11865073 DOI: 10.3389/fnmol.2025.1544971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Growing recognition of microglia's role in neurodegenerative disorders has accentuated the need to characterize microglia profiles and their influence on pathogenesis. To understand changes observed in the microglial profile during the progression of synucleinopathies, microglial gene expression and DNA methylation were examined in the mThy1-α-synuclein mouse model. Methods Disease progression was determined using behavioral tests evaluating locomotor deficits before DNA and RNA extraction at 7 and 10 months from isolated microglia for enzymatic methyl-sequencing and RNA-sequencing. Results Pathway analysis of these changes at 7 months indicates a pro-inflammatory profile and changes in terms related to synaptic maintenance. Expression and methylation at both 7 and 10 months included terms regarding mitochondrial and metabolic stress. While behavior symptoms progressed at 10 months, we see many previously activated pathways being inhibited in microglia at a later stage, with only 8 of 53 shared pathways predicted to be directionally concordant. Despite the difference in pathway directionality, 21 of the 22 genes that were differentially expressed and annotated to differentially methylated regions at both 7 and 10 months had conserved directionality changes. Discussion These results highlight a critical period in disease progression, during which the microglia respond to α-synuclein, suggesting a transition in the role of microglia from the early to late stages of the disease.
Collapse
Affiliation(s)
- Brett A. McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Md. Obayed Raihan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
- Department of Pharmaceutical Sciences, Chicago State University School of Pharmacy, Chicago, IL, United States
| | - Afrina Brishti
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - James E. Porter
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
3
|
Zhou H, Li F, Lin Z, Meng L, Chen D, Zhang Q, Niu L. Holographic Ultrasound Modulates Neural Activity in a 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Mouse Model of Parkinson's Disease. RESEARCH (WASHINGTON, D.C.) 2024; 7:0516. [PMID: 39507404 PMCID: PMC11538569 DOI: 10.34133/research.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Ultrasound (US) has emerged as a noninvasive neurostimulation method for motor control in Parkinson's disease (PD). Previous in vivo US neuromodulation studies for PD were single-target stimulation. However, the motor symptoms of PD are linked with neural circuit dysfunction, and multi-target stimulation is conducted in clinical treatment for PD. Thus, in the present study, we achieved multi-target US stimulation using holographic lens transducer based on the Rayleigh-Sommerfeld diffraction integral and time-reversal methods. We demonstrated that holographic US stimulation of the bilateral dorsal striatum (DS) could improve the motor function in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. The holographic US wave (fundamental frequency: 3 MHz, pulse repetition frequency: 500 Hz, duty cycle: 20%, tone-burst duration: 0.4 ms, sonication duration: 1 s, interstimulus interval: 4 s, spatial-peak temporal-average intensity: 180 mw/cm2) was delivered to the bilateral DS 20 min per day for consecutive 10 d after the last injection of MPTP. Immunohistochemical c-Fos staining demonstrated that holographic US significantly increased the c-Fos-positive neurons in the bilateral DS compared with the sham group (P = 0.003). Moreover, our results suggested that holographic US stimulation of the bilateral DS ameliorated motor dysfunction (P < 0.05) and protected the dopaminergic (DA) neurons (P < 0.001). The neuroprotective effect of holographic US was associated with the prevention of axon degeneration and the reinforcement of postsynaptic densities [growth associated protein-43 (P < 0.001), phosphorylated Akt (P = 0.001), β3-tubulin (P < 0.001), phosphorylated CRMP2 (P = 0.037), postsynaptic density (P = 0.023)]. These data suggested that holographic US-induced acoustic radiation force has the potential to achieve multi-target neuromodulation and could serve as a reliable tool for the treatment of PD.
Collapse
Affiliation(s)
- Hui Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
- Tech X Academy,
Shenzhen Polytechnic University, Shenzhen, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| | - Zhengrong Lin
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| | - Dan Chen
- Institute of Ultrasonic Technology, Institute of Intelligent Manufacturing Technology,
Shenzhen Polytechnic University, Shenzhen, China
| | - Qingping Zhang
- School of Electronic and Communication Engineering,
Shenzhen Polytechnic University, Shenzhen, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
4
|
Babenko V, Redina O, Smagin D, Kovalenko I, Galyamina A, Kudryavtseva N. Brain-Region-Specific Genes Form the Major Pathways Featuring Their Basic Functional Role: Their Implication in Animal Chronic Stress Model. Int J Mol Sci 2024; 25:2882. [PMID: 38474132 DOI: 10.3390/ijms25052882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The analysis of RNA-Sec data from murine bulk tissue samples taken from five brain regions associated with behavior and stress response was conducted. The focus was on the most contrasting brain region-specific genes (BRSG) sets in terms of their expression rates. These BRSGs are identified as genes with a distinct outlying (high) expression rate in a specific region compared to others used in the study. The analysis suggested that BRSG sets form non-randomly connected compact gene networks, which correspond to the major neuron-mediated functional processes or pathways in each brain region. The number of BRSGs and the connection rate were found to depend on the heterogeneity and coordinated firing rate of neuron types in each brain region. The most connected pathways, along with the highest BRSG number, were observed in the Striatum, referred to as Medium Spiny Neurons (MSNs), which make up 95% of neurons and exhibit synchronous firing upon dopamine influx. However, the Ventral Tegmental Area/Medial Raphe Nucleus (VTA/MRN) regions, although primarily composed of monoaminergic neurons, do not fire synchronously, leading to a smaller BRSG number. The Hippocampus (HPC) region, on the other hand, displays significant neuronal heterogeneity, with glutamatergic neurons being the most numerous and synchronized. Interestingly, the two monoaminergic regions involved in the study displayed a common BRSG subnetwork architecture, emphasizing their proximity in terms of axonal throughput specifics and high-energy metabolism rates. This finding suggests the concerted evolution of monoaminergic neurons, leading to unique adaptations at the genic repertoire scale. With BRSG sets, we were able to highlight the contrasting features of the three groups: control, depressive, and aggressive mice in the animal chronic stress model. Specifically, we observed a decrease in serotonergic turnover in both the depressed and aggressive groups, while dopaminergic emission was high in both groups. There was also a notable absence of dopaminoceptive receptors on the postsynaptic membranes in the striatum in the depressed group. Additionally, we confirmed that neurogenesis BRSGs are specific to HPC, with the aggressive group showing attenuated neurogenesis rates compared to the control/depressive groups. We also confirmed that immune-competent cells like microglia and astrocytes play a crucial role in depressed phenotypes, including mitophagy-related gene Prkcd. Based on this analysis, we propose the use of BRSG sets as a suitable framework for evaluating case-control group-wise assessments of specific brain region gene pathway responses.
Collapse
Affiliation(s)
- Vladimir Babenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga Redina
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Dmitry Smagin
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Irina Kovalenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna Galyamina
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Natalia Kudryavtseva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg 199034, Russia
| |
Collapse
|
5
|
Radisavljevic N, Metcalfe-Roach A, Cirstea M, Tabusi MM, Bozorgmehr T, Bar-Yoseph H, Finlay BB. Microbiota-mediated effects of Parkinson's disease medications on Parkinsonian non-motor symptoms in male transgenic mice. mSphere 2024; 9:e0037923. [PMID: 38078745 PMCID: PMC10826342 DOI: 10.1128/msphere.00379-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/24/2023] [Indexed: 01/31/2024] Open
Abstract
Parkinson's disease (PD) is characterized by motor symptoms and a loss of dopaminergic neurons, as well as a variety of non-motor symptoms, including constipation, depression, and anxiety. Recently, evidence has also accumulated for a link between gut microbiota and PD. Most PD patients are on dopamine replacement therapy, primarily a combination of L-DOPA and carbidopa; however, the effect of these medications on the microbiota and non-motor symptoms in PD is still unclear. In this study, we explored the effects of chronic oral treatment with L-DOPA plus carbidopa (LDCD) on the gut microbiota and non-motor symptoms in males of a transgenic mouse model of PD (dbl-PAC-Tg(SNCAA53T);Snca-/-). To further test whether the effects of these PD medications were mediated by the gut microbiota, oral antibiotic treatment (Abx; vancomycin and neomycin) was included both with and without concurrent LDCD treatment. Post-treatment, the gastrointestinal, motor, and behavioral phenotypes were profiled, and fecal, ileal, and jejunal samples were analyzed for gut microbiota composition by 16S sequencing. LDCD treatment was found to improve symptoms of constipation and depression in this model, concurrent with increases in Turicibacter abundance in the ileum. Abx treatment worsened the symptoms of constipation, possibly through decreased levels of short-chain fatty acids and disrupted gut barrier function. LDCD + Abx treatment showed an interaction effect on behavioral symptoms that was also associated with ileal Turicibacter levels. This study demonstrates that, in a mouse model, PD medications and antibiotics affect PD-related non-motor symptoms potentially via the gut microbiota.IMPORTANCEThe motor symptoms of Parkinson's disease (PD) are caused by a loss of dopamine-producing neurons and are commonly treated with dopamine replacement therapy (L-DOPA plus carbidopa). PD has also been associated with altered gut microbiota composition. However, the effects of these PD medications on PD-related non-motor symptoms and the gut microbiota have not been well characterized. This study uses a transgenic mouse model of PD to help resolve medication-induced microbiota alterations from those that are potentially disease relevant within a PD context, and explores how long-term treatment may interact with the gut microbiota to impact non-motor symptoms.
Collapse
Affiliation(s)
- Nina Radisavljevic
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Avril Metcalfe-Roach
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mihai Cirstea
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Mahebali Tabusi
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tahereh Bozorgmehr
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Haggai Bar-Yoseph
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Li LD, Zhou Y, Shi SF. Identification and characterization of biomarkers associated with endoplasmic reticulum protein processing in cerebral ischemia-reperfusion injury. PeerJ 2024; 12:e16707. [PMID: 38188159 PMCID: PMC10768662 DOI: 10.7717/peerj.16707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Background Cerebral ischemia (CI), ranking as the second leading global cause of death, is frequently treated by reestablishing blood flow and oxygenation. Paradoxically, this reperfusion can intensify tissue damage, leading to CI-reperfusion injury. This research sought to uncover biomarkers pertaining to protein processing in the endoplasmic reticulum (PER) during CI-reperfusion injury. Methods We utilized the Gene Expression Omnibus (GEO) dataset GSE163614 to discern differentially expressed genes (DEGs) and single out PER-related DEGs. The functions and pathways of these PER-related DEGs were identified via Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Core genes were pinpointed through protein-protein interaction (PPI) networks. Subsequent to this, genes with diagnostic relevance were distinguished using external validation datasets. A single-sample gene-set enrichment analysis (ssGSEA) was undertaken to pinpoint genes with strong associations to hypoxia and apoptosis, suggesting their potential roles as primary inducers of apoptosis in hypoxic conditions during ischemia-reperfusion injuries. Results Our study demonstrated that PER-related genes, specifically ADCY5, CAMK2A, PLCB1, NTRK2, and DLG4, were markedly down-regulated in models, exhibiting a robust association with hypoxia and apoptosis. Conclusion The data indicates that ADCY5, CAMK2A, PLCB1, NTRK2, and DLG4 could be pivotal genes responsible for triggering apoptosis in hypoxic environments during CI-reperfusion injury.
Collapse
Affiliation(s)
- Liang-da Li
- Department of Neurology, The People’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Yue Zhou
- Department of Neurology, The People’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Shan-fen Shi
- Department of Rheumatology, The People’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
De Simone G, Mazza B, Vellucci L, Barone A, Ciccarelli M, de Bartolomeis A. Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment. Antioxidants (Basel) 2023; 12:antiox12040975. [PMID: 37107350 PMCID: PMC10135787 DOI: 10.3390/antiox12040975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants' mechanisms in antipsychotic action and the impact of first- and second-generation compounds on mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment. EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism, and regulation of oxidative systems were reported to be significantly modified by antipsychotic treatment with differences between first- and second-generation drugs. Finally, antioxidants may affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence is only preliminary, the results indicate that further studies are warranted.
Collapse
Affiliation(s)
- Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
8
|
van Zundert B, Montecino M. Epigenetic Changes and Chromatin Reorganization in Brain Function: Lessons from Fear Memory Ensemble and Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms232012081. [PMID: 36292933 PMCID: PMC9602769 DOI: 10.3390/ijms232012081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Healthy brain functioning in mammals requires a continuous fine-tuning of gene expression. Accumulating evidence over the last three decades demonstrates that epigenetic mechanisms and dynamic changes in chromatin organization are critical components during the control of gene transcription in neural cells. Recent genome-wide analyses show that the regulation of brain genes requires the contribution of both promoter and long-distance enhancer elements, which must functionally interact with upregulated gene expression in response to physiological cues. Hence, a deep comprehension of the mechanisms mediating these enhancer–promoter interactions (EPIs) is critical if we are to understand the processes associated with learning, memory and recall. Moreover, the onset and progression of several neurodegenerative diseases and neurological alterations are found to be strongly associated with changes in the components that support and/or modulate the dynamics of these EPIs. Here, we overview relevant discoveries in the field supporting the role of the chromatin organization and of specific epigenetic mechanisms during the control of gene transcription in neural cells from healthy mice subjected to the fear conditioning paradigm, a relevant model to study memory ensemble. Additionally, special consideration is dedicated to revising recent results generated by investigators working with animal models and human postmortem brain tissue to address how changes in the epigenome and chromatin architecture contribute to transcriptional dysregulation in Alzheimer’s disease, a widely studied neurodegenerative disease. We also discuss recent developments of potential new therapeutic strategies involving epigenetic editing and small chromatin-modifying molecules (or epidrugs).
Collapse
Affiliation(s)
- Brigitte van Zundert
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
- CARE Biomedical Research Center, Santiago 8330005, Chile
- Correspondence: (B.v.Z.); (M.M.)
| | - Martin Montecino
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
- Millennium Institute Center for Genome Regulation CRG, Santiago 8370186, Chile
- Correspondence: (B.v.Z.); (M.M.)
| |
Collapse
|
9
|
de Bartolomeis A, Vellucci L, Austin MC, De Simone G, Barone A. Rational and Translational Implications of D-Amino Acids for Treatment-Resistant Schizophrenia: From Neurobiology to the Clinics. Biomolecules 2022; 12:biom12070909. [PMID: 35883465 PMCID: PMC9312470 DOI: 10.3390/biom12070909] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia has been conceptualized as a neurodevelopmental disorder with synaptic alterations and aberrant cortical–subcortical connections. Antipsychotics are the mainstay of schizophrenia treatment and nearly all share the common feature of dopamine D2 receptor occupancy, whereas glutamatergic abnormalities are not targeted by the presently available therapies. D-amino acids, acting as N-methyl-D-aspartate receptor (NMDAR) modulators, have emerged in the last few years as a potential augmentation strategy in those cases of schizophrenia that do not respond well to antipsychotics, a condition defined as treatment-resistant schizophrenia (TRS), affecting almost 30–40% of patients, and characterized by serious cognitive deficits and functional impairment. In the present systematic review, we address with a direct and reverse translational perspective the efficacy of D-amino acids, including D-serine, D-aspartate, and D-alanine, in poor responders. The impact of these molecules on the synaptic architecture is also considered in the light of dendritic spine changes reported in schizophrenia and antipsychotics’ effect on postsynaptic density proteins. Moreover, we describe compounds targeting D-amino acid oxidase and D-aspartate oxidase enzymes. Finally, other drugs acting at NMDAR and proxy of D-amino acids function, such as D-cycloserine, sarcosine, and glycine, are considered in the light of the clinical burden of TRS, together with other emerging molecules.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
- Correspondence: ; Tel.: +39-081-7463673 or +39-081-7463884 or +39-3662745592; Fax: +39-081-7462644
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Mark C. Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA;
| | - Giuseppe De Simone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| |
Collapse
|
10
|
Nguyen TT, Kim YJ, Lai TT, Nguyen PT, Koh YH, Nguyen LTN, Ma HI, Kim YE. PTEN-Induced Putative Kinase 1 Dysfunction Accelerates Synucleinopathy. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1201-1217. [PMID: 35253778 PMCID: PMC9198758 DOI: 10.3233/jpd-213065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Mutations in PTEN-induced putative kinase 1 (PINK1) cause autosomal recessive Parkinson’s disease (PD) and contribute to the risk of sporadic PD. However, the relationship between PD-related PINK1 mutations and alpha-synuclein (α-syn) aggregation—a main pathological component of PD—remains unexplored. Objective: To investigate whether α-syn pathology is exacerbated in the absence of PINK1 after α-syn preformed fibril (PFF) injection in a PD mouse model and its effects on neurodegeneration. Methods: In this study, 10-week-old Pink1 knockout (KO) and wildtype (WT) mice received stereotaxic unilateral striatal injection of recombinant mouse α-syn PFF. Then, α-syn pathology progression, inflammatory responses, and neurodegeneration were analyzed via immunohistochemistry, western blot analysis, and behavioral testing. Results: After PFF injection, the total α-syn levels significantly increased, and pathological α-syn was markedly aggregated in Pink1 KO mice compared with Pink1 WT mice. Then, earlier and more severe neuronal loss and motor deficits occurred. Moreover, compared with WT mice, Pink1 KO mice had evident microglial/astrocytic immunoreactivity and prolonged astrocytic activation, and a higher rate of protein phosphatase 2A phosphorylation, which might explain the greater α-syn aggravation and neuronal death. Conclusion: The loss of Pink1 function accelerated α-syn aggregation, accumulation and glial activation, thereby leading to early and significant neurodegeneration and behavioral impairment in the PD mouse model. Therefore, our findings support the notion that PINK1 dysfunction increases the risk of synucleinopathy.
Collapse
Affiliation(s)
- Tinh Thi Nguyen
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, South Korea.,Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, South Korea.,Hallym Neurological Institute, Hallym University, South Korea
| | - Yun Joong Kim
- Department of Neurology, Yongin Severance Hospital, Yonsei University College of Medicine, South Korea
| | - Thuy Thi Lai
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, South Korea.,Hallym Neurological Institute, Hallym University, South Korea
| | - Phuong Thi Nguyen
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, South Korea.,Ilsong Institute of Life Science, Hallym University, Seoul, South Korea
| | - Young Ho Koh
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, South Korea.,Ilsong Institute of Life Science, Hallym University, Seoul, South Korea
| | - Linh Thi Nhat Nguyen
- Department of Medical Sciences, Graduate School of Hallym University, Chuncheon, South Korea
| | - Hyeo-Il Ma
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, South Korea.,Hallym Neurological Institute, Hallym University, South Korea
| | - Young Eun Kim
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym University, Anyang, South Korea.,Hallym Neurological Institute, Hallym University, South Korea
| |
Collapse
|
11
|
Gao F, Liu A, Qi X, Wang M, Chen X, Wei S, Gao S, Sun Y, Sun P, Li X, Sun W, Li J, Liu Q. Ppp4r3a deficiency leads to depression-like behaviors in mice by modulating the synthesis of synaptic proteins. Dis Model Mech 2022; 15:dmm049374. [PMID: 35314861 PMCID: PMC9150120 DOI: 10.1242/dmm.049374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/15/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic stress is one of the main risk factors for the onset of major depressive disorder. Chronic unpredictable mild stress results in reduced expression of synaptic proteins and depression-like behaviors in rodent models. However, the upstream molecule that senses the demand for synaptic proteins and initiates their synthesis under chronic stress remains unknown. In this study, chronic unpredictable mild stress reduced the expression of PPP4R3A in the prefrontal cortex and hippocampus in mice. Selective knockout of Ppp4r3a in the cortex and hippocampus mimicked the depression- and anxiety-like behavioral effects of chronic stress in mice. Notably, Ppp4r3a deficiency led to downregulated mTORC1 signaling, which resulted in reduced synthesis of synaptic proteins and impaired synaptic functions. By contrast, overexpression of Ppp4r3a in the cortex and hippocampus protected against behavioral and synaptic deficits induced by chronic stress in a PPP4R3A-mTORC1-dependent manner. Rapamycin treatment of Ppp4r3a-overexpressing neurons blocked the regulatory effect of Ppp4r3a on the synthesis of synaptic proteins by directly inhibiting mTORC1. Overall, our results reveal a regulatory role of Ppp4r3a in driving synaptic protein synthesis in chronic stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
12
|
Bandopadhyay R, Mishra N, Rana R, Kaur G, Ghoneim MM, Alshehri S, Mustafa G, Ahmad J, Alhakamy NA, Mishra A. Molecular Mechanisms and Therapeutic Strategies for Levodopa-Induced Dyskinesia in Parkinson's Disease: A Perspective Through Preclinical and Clinical Evidence. Front Pharmacol 2022; 13:805388. [PMID: 35462934 PMCID: PMC9021725 DOI: 10.3389/fphar.2022.805388] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is the second leading neurodegenerative disease that is characterized by severe locomotor abnormalities. Levodopa (L-DOPA) treatment has been considered a mainstay for the management of PD; however, its prolonged treatment is often associated with abnormal involuntary movements and results in L-DOPA-induced dyskinesia (LID). Although LID is encountered after chronic administration of L-DOPA, the appearance of dyskinesia after weeks or months of the L-DOPA treatment has complicated our understanding of its pathogenesis. Pathophysiology of LID is mainly associated with alteration of direct and indirect pathways of the cortico-basal ganglia-thalamic loop, which regulates normal fine motor movements. Hypersensitivity of dopamine receptors has been involved in the development of LID; moreover, these symptoms are worsened by concurrent non-dopaminergic innervations including glutamatergic, serotonergic, and peptidergic neurotransmission. The present study is focused on discussing the recent updates in molecular mechanisms and therapeutic approaches for the effective management of LID in PD patients.
Collapse
Affiliation(s)
- Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Nainshi Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ruhi Rana
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gagandeep Kaur
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gulam Mustafa
- College of Pharmacy (Boys), Al-Dawadmi Campus, Shaqra University, Riyadh, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Nabil. A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Guwahati, India
| |
Collapse
|
13
|
Radisavljevic N, Cirstea M, Bauer K, Lo C, Metcalfe-Roach A, Bozorgmehr T, Bar-Yoseph H, Brett Finlay B. Effects of Gut Microbiota Alterations on Motor, Gastrointestinal, and Behavioral Phenotype in a Mouse Model of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1479-1495. [PMID: 35599496 DOI: 10.3233/jpd-223165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a multi-system disorder consisting of not only classic motor symptoms but also a variety of non-motor symptoms including gastrointestinal (GI) dysfunction and mood disorders. The gut microbiota has been suggested to play a role in modulating PD motor and non-motor features, although the causality and mechanisms behind these proposed interactions remains largely understudied. OBJECTIVE In this study, we aimed to provide in-depth characterization of an established mouse model of PD (transgenic (TG) SNCA A53T) and experimentally address how changes to the gut microbiota impact the PD-like phenotype. METHODS We profiled the PD-like phenotype of transgenic mice through a panel of motor, GI, and behavioral tests. We then investigated how antibiotic treatment or gut microbial community transfer (via cohousing with wild-type mice) impacted the PD-like phenotype. RESULTS We found that this mouse model demonstrated early (6 weeks of age) motor symptoms when compared to a wild-type control mouse strain. Transgenic mice also exhibited early GI dysfunction, as well as behavioral alterations, including reduced anxiety-like behavior, and increased depression-like and apathy-like behavior. Compared to wild-type mice, the transgenic fecal microbiota was less diverse and compositionally distinct. Interestingly, drastic alterations to the gut microbiota, through antibiotic treatment or cohousing with wild-type mice, had a minimal effect on the motor, GI, and behavioral phenotype of transgenic mice. CONCLUSION We concluded that this mouse model effectively recapitulates motor and non-motor features of PD; however, the gut microbiota appears to exhibit a minor impact on the pathophysiology of this PD model.
Collapse
Affiliation(s)
- Nina Radisavljevic
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Mihai Cirstea
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Kylynda Bauer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Christine Lo
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Avril Metcalfe-Roach
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Tahereh Bozorgmehr
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Haggai Bar-Yoseph
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Love CJ, Masson BA, Gubert C, Hannan AJ. The microbiota-gut-brain axis in Huntington's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 167:141-184. [DOI: 10.1016/bs.irn.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Clabough E, Ingersoll J, Reekes T, Gleichsner A, Ryan A. Acute Ethanol Exposure during Synaptogenesis Rapidly Alters Medium Spiny Neuron Morphology and Synaptic Protein Expression in the Dorsal Striatum. Int J Mol Sci 2021; 23:290. [PMID: 35008713 PMCID: PMC8745582 DOI: 10.3390/ijms23010290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Fetal alcohol spectrum disorders are caused by the disruption of normal brain development in utero. The severity and range of symptoms is dictated by both the dosage and timing of ethanol administration, and the resulting developmental processes that are impacted. In order to investigate the effects of an acute, high-dose intoxication event on the development of medium spiny neurons (MSNs) in the striatum, mice were injected with ethanol on P6, and neuronal morphology was assessed after 24 h, or at 1 month or 5 months of age. Data indicate an immediate increase in MSN dendritic length and branching, a rapid decrease in spine number, and increased levels of the synaptic protein PSD-95 as a consequence of this neonatal exposure to ethanol, but these differences do not persist into adulthood. These results demonstrate a rapid neuronal response to ethanol exposure and characterize the dynamic nature of neuronal architecture in the MSNs. Although differences in neuronal branching and spine density induced by ethanol resolve with time, early changes in the caudate/putamen region have a potential impact on the execution of complex motor skills, as well as aspects of long-term learning and addictive behavior.
Collapse
Affiliation(s)
- Erin Clabough
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA
| | - James Ingersoll
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA; (J.I.); (T.R.)
| | - Tyler Reekes
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA; (J.I.); (T.R.)
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71104, USA
| | - Alyssa Gleichsner
- Department of Biological Science, SUNY Plattsburgh, Plattsburgh, NY 12901, USA; (A.G.); (A.R.)
| | - Amy Ryan
- Department of Biological Science, SUNY Plattsburgh, Plattsburgh, NY 12901, USA; (A.G.); (A.R.)
| |
Collapse
|
16
|
Babenko V, Redina O, Smagin D, Kovalenko I, Galyamina A, Babenko R, Kudryavtseva N. Dorsal Striatum Transcriptome Profile Profound Shift in Repeated Aggression Mouse Model Converged to Networks of 12 Transcription Factors after Fighting Deprivation. Genes (Basel) 2021; 13:genes13010021. [PMID: 35052361 PMCID: PMC8774333 DOI: 10.3390/genes13010021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 01/18/2023] Open
Abstract
Both aggressive and aggression-deprived (AD) species represent pathologic cases intensely addressed in psychiatry and substance abuse disciplines. Previously, we reported that AD mice displayed a higher aggressive behavior score than the aggressive group, implying the manifestation of a withdrawal effect. We employed an animal model of chronic social conflicts, curated in our lab for more than 30 years. In the study, we pursued the task of evaluating key events in the dorsal striatum transcriptome of aggression experienced mice and AD species compared to controls using RNA-Seq profiling. Aggressive species were subjected to repeated social conflict encounters (fights) with regular positive (winners) experience in the course of 20 consecutive days (A20 group). This led to a profoundly shifted transcriptome expression profile relative to the control group, outlined by more than 1000 differentially expressed genes (DEGs). RNA-Seq cluster analysis revealed that elevated cyclic AMP (cAMP) signaling cascade and associated genes comprising 170 differentially expressed genes (DEGs) in aggressive (A20) species were accompanied by a downturn in the majority of other metabolic/signaling gene networks (839 DEGs) via the activation of transcriptional repressor DEGs. Fourteen days of a consecutive fighting deprivation period (AD group) featured the basic restoration of the normal (control) transcriptome expression profile yielding only 62 DEGs against the control. Notably, we observed a network of 12 coordinated DEG Transcription Factor (TF) activators from 62 DEGs in total that were distinctly altered in AD compared to control group, underlining the distinct transcription programs featuring AD group, partly retained from the aggressive encounters and not restored to normal in 14 days. We found circadian clock TFs among them, reported previously as a withdrawal effect factor. We conclude that the aggressive phenotype selection with positive reward effect (winning) manifests an addiction model featuring a distinct opioid-related withdrawal effect in AD group. Along with reporting profound transcriptome alteration in A20 group and gaining some insight on its specifics, we outline specific TF activator gene networks associated with transcriptional repression in affected species compared to controls, outlining Nr1d1 as a primary candidate, thus offering putative therapeutic targets in opioid-induced withdrawal treatment.
Collapse
Affiliation(s)
- Vladimir Babenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
- Correspondence:
| | - Olga Redina
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Dmitry Smagin
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Irina Kovalenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Anna Galyamina
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Roman Babenko
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
| | - Natalia Kudryavtseva
- FRC Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.R.); (D.S.); (I.K.); (A.G.); (R.B.); (N.K.)
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| |
Collapse
|
17
|
Hutny M, Hofman J, Klimkowicz-Mrowiec A, Gorzkowska A. Current Knowledge on the Background, Pathophysiology and Treatment of Levodopa-Induced Dyskinesia-Literature Review. J Clin Med 2021; 10:jcm10194377. [PMID: 34640395 PMCID: PMC8509231 DOI: 10.3390/jcm10194377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Levodopa remains the primary drug for controlling motor symptoms in Parkinson’s disease through the whole course, but over time, complications develop in the form of dyskinesias, which gradually become more frequent and severe. These abnormal, involuntary, hyperkinetic movements are mainly characteristic of the ON phase and are triggered by excess exogenous levodopa. They may also occur during the OFF phase, or in both phases. Over the past 10 years, the issue of levodopa-induced dyskinesia has been the subject of research into both the substrate of this pathology and potential remedial strategies. The purpose of the present study was to review the results of recent research on the background and treatment of dyskinesia. To this end, databases were reviewed using a search strategy that included both relevant keywords related to the topic and appropriate filters to limit results to English language literature published since 2010. Based on the selected papers, the current state of knowledge on the morphological, functional, genetic and clinical features of levodopa-induced dyskinesia, as well as pharmacological, genetic treatment and other therapies such as deep brain stimulation, are described.
Collapse
Affiliation(s)
- Michał Hutny
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
- Correspondence:
| | - Jagoda Hofman
- Students’ Scientific Society, Department of Neurorehabilitation, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Aleksandra Klimkowicz-Mrowiec
- Department of Internal Medicine and Gerontology, Faculty of Medicine, Medical College, Jagiellonian University, 30-688 Kraków, Poland;
| | - Agnieszka Gorzkowska
- Department of Neurorehabilitation, Faculty of Medical Sciences, School of Medicine, Medical University of Silesia, 40-752 Katowice, Poland;
| |
Collapse
|
18
|
Yin X, Qiu Y, Zhao C, Zhou Z, Bao J, Qian W. The Role of Amyloid-Beta and Tau in the Early Pathogenesis of Alzheimer's Disease. Med Sci Monit 2021; 27:e933084. [PMID: 34471085 PMCID: PMC8422899 DOI: 10.12659/msm.933084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The abnormal accumulation of amyloid-b (Ab) and neurofibrillary tangles (NFTs) containing phosphorylated tau proteins are the main histopathological feature of Alzheimer's disease (AD). Synaptic damage and loss are earlier events than amyloid plaques and NFTs in AD progress and best correlate with cognitive deficits in AD patients. Soluble oligomeric Aß initiates the progression of AD and tau mediates the subsequent synaptic impairments at an early stage of AD. In this review we discuss how Ab or/and tau causes synaptic dysfunction. Ab oligomers gather at synapses and give rise to synaptic death in a variety of ways such as regulating receptors and receptor tyrosine kinases, unbalancing calcium homeostasis, and activating caspases and calcineurin. A large amount of hyperphosphorylated tau exists in the synapse of the AD brain. Aß-triggered synaptic deficits are dependent on tau. Soluble, hyperphosphorylated tau is much more correlated to cognitive decline in AD patients. Tau-targeted therapies have received more attention because the treatments targeting Aß failed in AD. Here, we also review the therapy strategies used to intervene in the very early stages of AD. Soluble hyperphosphorylated tau forms a complex with cell surface receptors, scaffold proteins, or intracellular signaling molecules to damage synaptic function. Therefore, therapeutic strategies targeting synaptic tau at the early stage of AD may ameliorating pathology in AD. This review aims to provide an update on the role of oligomeric Ab and soluble hyperphosphorylated tau in the early pathogenesis of Alzheimer's disease and to develop a new treatment strategy based on this.
Collapse
Affiliation(s)
- Xiaomin Yin
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, China (mainland).,Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China (mainland).,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Yanyan Qiu
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Chenhao Zhao
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Zheng Zhou
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Junze Bao
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, China (mainland)
| | - Wei Qian
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, Jiangsu, China (mainland).,Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China (mainland).,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China (mainland)
| |
Collapse
|
19
|
Komeili G, Haghparast E, Sheibani V. Marijuana improved motor impairments and changes in synaptic plasticity-related molecules in the striatum in 6-OHDA-treated rats. Behav Brain Res 2021; 410:113342. [PMID: 33961911 DOI: 10.1016/j.bbr.2021.113342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 01/06/2023]
Abstract
Using marijuana has become popular and is allowed for medical purposes in some countries. The effect of marijuana on Parkinson's disease is controversial and Medical marijuana may benefit for motor and non-motor symptoms of patients with Parkinson's disease. No research has been conducted to fully prove the benefits, risks, and uses of marijuana as a treatment for patients with Parkinson's disease. In the present study, several different approaches, including behavioral measures and the western blot method for protein level assay, were used to investigate whether exposure to marijuana affects the motor and synaptic plasticity impairment induced by 6-OHDA. Marijuana consumption significantly decreased apomorphine-induced contralateral rotation, beam travel time, beam freeze time, and catalepsy time, but significantly increased latency to fall in the rotarod test, balance time, and protein level of PSD-95 and dopamine receptor D1 in the 6-OHDA + marijuana group. These results suggest that marijuana may be helpful for motor disorders and synaptic changes in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Gholamreza Komeili
- Department of Physiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Elham Haghparast
- Department of Physiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran; Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Vahid Sheibani
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Ayuso-Dolado S, Esteban-Ortega GM, Vidaurre ÓG, Díaz-Guerra M. A novel cell-penetrating peptide targeting calpain-cleavage of PSD-95 induced by excitotoxicity improves neurological outcome after stroke. Theranostics 2021; 11:6746-6765. [PMID: 34093851 PMCID: PMC8171078 DOI: 10.7150/thno.60701] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/02/2021] [Indexed: 01/11/2023] Open
Abstract
Postsynaptic density protein-95 (PSD-95) is a multidomain protein critical to the assembly of signaling complexes at excitatory synapses, required for neuronal survival and function. However, calpain-processing challenges PSD-95 function after overactivation of excitatory glutamate receptors (excitotoxicity) in stroke, a leading cause of death, disability and dementia in need of efficient pharmacological treatments. A promising strategy is neuroprotection of the infarct penumbra, a potentially recoverable area, by promotion of survival signaling. Interference of PSD-95 processing induced by excitotoxicity might thus be a therapeutic target for stroke and other excitotoxicity-associated pathologies. Methods: The nature and stability of PSD-95 calpain-fragments was analyzed using in vitro assays or excitotoxic conditions induced in rat primary neuronal cultures or a mouse model of stroke. We then sequenced PSD-95 cleavage-sites and rationally designed three cell-penetrating peptides (CPPs) containing these sequences. The peptides effects on PSD-95 stability and neuronal viability were investigated in the cultured neurons, subjected to acute or chronic excitotoxicity. We also analyzed the effect of one of these peptides in the mouse model of stroke by measuring infarct size and evaluating motor coordination and balance. Results: Calpain cleaves three interdomain linker regions in PSD-95 and produces stable fragments corresponding to previously described PSD-95 supramodules (PDZ1-2 and P-S-G) as well as a truncated form SH3-GK. Peptide TP95414, containing the cleavage site in the PDZ3-SH3 linker, is able to interfere PSD-95 downregulation and reduces neuronal death by excitotoxicity. Additionally, TP95414 is delivered to mice cortex and, in a severe model of permanent ischemia, significantly improves the neurological outcome after brain damage. Conclusions: Interference of excitotoxicity-induced PSD-95-processing with specific CPPs constitutes a novel and promising therapeutic approach for stroke treatment.
Collapse
|
21
|
Wu J, Liu C, Zhang L, He B, Shi WP, Shi HL, Qin C. Chronic restraint stress impairs cognition via modulating HDAC2 expression. Transl Neurosci 2021; 12:154-163. [PMID: 33986954 PMCID: PMC8090798 DOI: 10.1515/tnsci-2020-0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 01/08/2023] Open
Abstract
Background To investigate the effects of chronic restraint stress on cognition and the probable molecular mechanism in mice. Methods In the current work, a restraining tube was used as a way to induce chronic stress in mice. The protein levels were determined with ELISA and western blot. A series of behavior tests, including the Morris water maze, elevated plus maze, open field test, and novel object recognition test, were also performed to examine the anxiety and the ability of learning and memory. Moreover, murine neuroblastoma N2a cells were used to confirm the findings from mice under chronic stress. Results Decreased synaptic functions were impaired in chronic stress with the downregulation of PSD95, GluR-1, the neurotrophic factor BDNF, and immediate-onset genes Arc and Egr. Chronic restraint decreased the histone acetylation level in hippocampal neurons while HDAC2 was increased and was co-localized with glucocorticoid receptors. Moreover, chronic stress inhibited the PI3K/AKT signaling pathway and induced energy metabolism dysfunctions. Conclusion This work examining the elevated levels of HDAC2 in the hippocampus may provide new insights and targets for drug development for treating many neurodegenerative diseases.
Collapse
Affiliation(s)
- Jie Wu
- Pathology Department, Comparative Medical Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS), Panjiayuan Nanli No. 5, Beijing, 100021, People's Republic of China.,Department of Pathology, Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong province, 266003, People's Republic of China
| | - Cui Liu
- Comparative Medical Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS), Panjiayuan Nanli No. 5, Beijing, 100021, People's Republic of China
| | - Ling Zhang
- Comparative Medical Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS), Panjiayuan Nanli No. 5, Beijing, 100021, People's Republic of China
| | - Bing He
- Department of Pathology, Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong province, 266003, People's Republic of China
| | - Wei-Ping Shi
- Department of Pathology, Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong province, 266003, People's Republic of China
| | - Hai-Lei Shi
- Department of Pathology, Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong province, 266003, People's Republic of China
| | - Chuan Qin
- Comparative Medical Center, Peking Union Medical College (PUMC) and Institute of Laboratory Animal Science, Chinese Academy of Medical Science (CAMS), Panjiayuan Nanli No. 5, Beijing, 100021, People's Republic of China
| |
Collapse
|
22
|
Fructuoso M, Gu YC, Kassis N, de Lagran MM, Dierssen M, Janel N. Ethanol-Induced Changes in Brain of Transgenic Mice Overexpressing DYRK1A. Mol Neurobiol 2020; 57:3195-3205. [PMID: 32504418 DOI: 10.1007/s12035-020-01967-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/29/2020] [Indexed: 12/01/2022]
Abstract
Alcoholism is a chronic relapsing disorder defined by loss of control over excessive consumption of ethanol despite damaging effects on the liver and brain. We previously showed that the overexpression in mice of Dyrk1A (TgDyrk1A, for dual-specificity tyrosine (Y) phosphorylation-regulated kinase 1A) reduces the severity of alcohol mediated liver injury. Ethanol consumption has also been associated with increased brain glutamate concentration that led to therapies targeting glutamatergic receptors and normalization of glutamatergic neurotransmission. Interestingly, mice overexpressing Dyrk1A (TgDyrk1A mice) present a reduction of glutamatergic brain transmission, which we propose could be protective against alcohol intake. To answer this question, we investigated the ethanol preference in TgDyrk1A mice using a two-bottle choice paradigm. TgDyrk1A mice showed a non-significant decrease of voluntary ethanol intake and ethanol preference compared with wild-type mice. At the peripheral level, mice overexpressing Dyrk1A show lower ethanol plasma levels, indicating a faster ethanol metabolism. At the end of the protocol, lasting 21 days, brains were extracted for protein analysis. Ethanol reduced levels of the synaptic protein PSD-95 and increased the glutamate decarboxylase GAD65, specifically in the cortex of TgDyrk1A mice. Our results suggest that overexpression of DYRK1A may cause different ethanol-induced changes in the brain.
Collapse
Affiliation(s)
- Marta Fructuoso
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Pompeu Fabra University (Universitat Pompeu Fabra, UPF), 08003, Barcelona, Spain
- Institut du Cerveau et la Moelle épinière, ICM, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France
| | - Yu Chen Gu
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Nadim Kassis
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France
| | - Maria Martinez de Lagran
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Pompeu Fabra University (Universitat Pompeu Fabra, UPF), 08003, Barcelona, Spain
| | - Mara Dierssen
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Pompeu Fabra University (Universitat Pompeu Fabra, UPF), 08003, Barcelona, Spain
- Human Pharmacology and Clinical Neurosciences Research Group, Neurosciences Research Program, Hospital Del Mar Medical Research Institute (IMIM), 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya BarcelonaTech, Barcelona, Spain
| | - Nathalie Janel
- Université de Paris, BFA, UMR 8251, CNRS, F-75013, Paris, France.
| |
Collapse
|
23
|
Kreisler AD, Terranova MJ, Somkuwar SS, Purohit DC, Wang S, Head BP, Mandyam CD. In vivo reduction of striatal D1R by RNA interference alters expression of D1R signaling-related proteins and enhances methamphetamine addiction in male rats. Brain Struct Funct 2020; 225:1073-1088. [PMID: 32246242 DOI: 10.1007/s00429-020-02059-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/18/2020] [Indexed: 01/06/2023]
Abstract
This study sought to determine if reducing dopamine D1 receptor (D1R) expression in the dorsal striatum (DS) via RNA-interference alters methamphetamine self-administration. A lentiviral construct containing a short hairpin RNA (shRNA) was used to knock down D1R expression (D1RshRNA). D1RshRNA in male rats increased responding for methamphetamine (i.v.) under a fixed-ratio schedule in an extended access paradigm, compared to D1R-intact rats. D1RshRNA also produced a vertical shift in a dose-response paradigm and enhanced responding for methamphetamine in a progressive-ratio schedule, generating a drug-vulnerable phenotype. D1RshRNA did not alter responding for sucrose (oral) under a fixed-ratio schedule compared to D1R-intact rats. Western blotting confirmed reduced D1R expression in methamphetamine and sucrose D1RshRNA rats. D1RshRNA reduced the expression of PSD-95 and MAPK-1 and increased the expression of dopamine transporter (DAT) in the DS from methamphetamine, but not sucrose rats. Sucrose density gradient fractionation was performed in behavior-naïve controls, D1RshRNA- and D1R-intact rats to determine the subcellular localization of D1Rs, DAT and D1R signaling proteins. D1Rs, DAT, MAPK-1 and PSD-95 predominantly localized to heavy fractions, and the membrane/lipid raft protein caveolin-1 (Cav-1) and flotillin-1 were distributed equally between buoyant and heavy fractions in controls. Methamphetamine increased localization of PSD-95, Cav-1, and flotillin-1 in D1RshRNA and D1R-intact rats to buoyant fractions. Our studies indicate that reduced D1R expression in the DS increases vulnerability to methamphetamine addiction-like behavior, and this is accompanied by striatal alterations in the expression of DAT and D1R signaling proteins and is independent of the subcellular localization of these proteins.
Collapse
Affiliation(s)
| | | | | | | | - Shanshan Wang
- VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA, 92161, USA
| | - Brian P Head
- VA San Diego Healthcare System, San Diego, CA, 92161, USA
- Department of Anesthesiology, University of California San Diego, San Diego, CA, 92161, USA
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA, 92161, USA.
- Department of Anesthesiology, University of California San Diego, San Diego, CA, 92161, USA.
| |
Collapse
|
24
|
Sampson TR, Challis C, Jain N, Moiseyenko A, Ladinsky MS, Shastri GG, Thron T, Needham BD, Horvath I, Debelius JW, Janssen S, Knight R, Wittung-Stafshede P, Gradinaru V, Chapman M, Mazmanian SK. A gut bacterial amyloid promotes α-synuclein aggregation and motor impairment in mice. eLife 2020; 9:53111. [PMID: 32043464 PMCID: PMC7012599 DOI: 10.7554/elife.53111] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Amyloids are a class of protein with unique self-aggregation properties, and their aberrant accumulation can lead to cellular dysfunctions associated with neurodegenerative diseases. While genetic and environmental factors can influence amyloid formation, molecular triggers and/or facilitators are not well defined. Growing evidence suggests that non-identical amyloid proteins may accelerate reciprocal amyloid aggregation in a prion-like fashion. While humans encode ~30 amyloidogenic proteins, the gut microbiome also produces functional amyloids. For example, curli are cell surface amyloid proteins abundantly expressed by certain gut bacteria. In mice overexpressing the human amyloid α-synuclein (αSyn), we reveal that colonization with curli-producing Escherichia coli promotes αSyn pathology in the gut and the brain. Curli expression is required for E. coli to exacerbate αSyn-induced behavioral deficits, including intestinal and motor impairments. Purified curli subunits accelerate αSyn aggregation in biochemical assays, while oral treatment of mice with a gut-restricted amyloid inhibitor prevents curli-mediated acceleration of pathology and behavioral abnormalities. We propose that exposure to microbial amyloids in the gastrointestinal tract can accelerate αSyn aggregation and disease in the gut and the brain.
Collapse
Affiliation(s)
- Timothy R Sampson
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Collin Challis
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Neha Jain
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Anastasiya Moiseyenko
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Mark S Ladinsky
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Gauri G Shastri
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Taren Thron
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Brittany D Needham
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Istvan Horvath
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Justine W Debelius
- Department of Pediatrics, University of California, San Diego, San Diego, United States
| | - Stefan Janssen
- Department of Pediatrics, University of California, San Diego, San Diego, United States
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, San Diego, United States.,Department of Computer Science and Engineering, University of California, San Diego, San Diego, United States
| | | | - Viviana Gradinaru
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Matthew Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Sarkis K Mazmanian
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
25
|
Zhang Y, Meng X, Jiao Z, Liu Y, Zhang X, Qu S. Generation of a Novel Mouse Model of Parkinson's Disease via Targeted Knockdown of Glutamate Transporter GLT-1 in the Substantia Nigra. ACS Chem Neurosci 2020; 11:406-417. [PMID: 31909584 DOI: 10.1021/acschemneuro.9b00609] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that is characterized by pathological dopaminergic (DA) neuronal death and α-synuclein aggregation. Glutamate excitotoxicity is a well-established pathogenesis of PD that involves dysfunctional expression of glutamate transporters. Glutamate transporter-1 (GLT-1) is mainly responsible for clearance of glutamate at synapses, including DA synapses. However, the role of GLT-1 in the aberrant synaptic transmission in PD remains elusive. In the present study, we generated small-interfering RNAs (siRNAs) to knockdown GLT-1 expression in primary astrocytes, and we report that siRNA knockdown of astrocytic GLT-1 decreased postsynaptic density-95 (PSD-95) expression in neuron-astrocyte cocultures in vitro. Using adeno-associated viruses (AAVs) targeting GLT-1 short-hairpin RNA (shRNA) sequences with a glial fibrillary acidic protein (GFAP) promoter, we abolished astrocytic GLT-1 expression in the substantia nigra pars compacta (SNpc) of mice. We found that GLT-1 deficiency in the SNpc induced parkinsonian phenotypes in terms of progressive motor deficits and nigral DA neuronal death in mice. We also found that there were reactive astrocytes and microglia in the SNpc upon GLT-1 knockdown. Furthermore, we used RNA sequencing to determine altered gene expression patterns upon GLT-1 knockdown in the SNpc, which revealed that disrupted calcium signaling pathways may be responsible for GLT-1 deficiency-mediated DA neuronal death in the SNpc. Taken together, our findings provide evidence for a novel role of GLT-1 in parkinsonian phenotypes in mice, which may contribute to further elucidation of the mechanisms of PD pathogenesis.
Collapse
Affiliation(s)
- Yunlong Zhang
- Institute of Neuroscience
and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 510260, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Xingjun Meng
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan 528300, China
| | - Zhigang Jiao
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan 528300, China
| | - Yan Liu
- Department of Traditional Chinese Medicine, Medical College, Xiamen University, Xiamen 361102, China
| | - Xiuping Zhang
- Teaching Center of Experimental Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shaogang Qu
- Central Laboratory and Department of Neurology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde Foshan), Foshan 528300, China
| |
Collapse
|
26
|
Paldino E, Balducci C, La Vitola P, Artioli L, D'Angelo V, Giampà C, Artuso V, Forloni G, Fusco FR. Neuroprotective Effects of Doxycycline in the R6/2 Mouse Model of Huntington's Disease. Mol Neurobiol 2019; 57:1889-1903. [PMID: 31879858 PMCID: PMC7118056 DOI: 10.1007/s12035-019-01847-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/25/2019] [Indexed: 12/04/2022]
Abstract
Mechanisms of tissue damage in Huntington’s disease involve excitotoxicity, mitochondrial damage, and inflammation, including microglia activation. Immunomodulatory and anti-protein aggregation properties of tetracyclines were demonstrated in several disease models. In the present study, the neuroprotective and anti-inflammatory effects of the tetracycline doxycycline were investigated in the mouse model of HD disease R6/2. Transgenic mice were daily treated with doxycycline 20 mg/kg, starting from 4 weeks of age. After sacrifice, histological and immunohistochemical studies were performed. We found that doxycycline-treated R6/2 mice survived longer and displayed less severe signs of neurological dysfunction than the saline-treated ones. Primary outcome measures such as striatal atrophy, neuronal intranuclear inclusions, and the negative modulation of microglial reaction revealed a neuroprotective effect of the compound. Doxycycline provided a significantly increase of activated CREB and BDNF in the striatal neurons, along with a down modulation of neuroinflammation, which, combined, might explain the beneficial effects observed in this model. Our findings show that doxycycline treatment could be considered as a valid therapeutic approach for HD.
Collapse
Affiliation(s)
- Emanuela Paldino
- IRCCS Fondazione Santa Lucia, Laboratory of Neuroanatomy, Via del Fosso di Fiorano, 64, Rome, Italy
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Pietro La Vitola
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Luisa Artioli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Vincenza D'Angelo
- Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy
| | - Carmela Giampà
- IRCCS Fondazione Santa Lucia, Laboratory of Neuroanatomy, Via del Fosso di Fiorano, 64, Rome, Italy
| | | | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesca R Fusco
- IRCCS Fondazione Santa Lucia, Laboratory of Neuroanatomy, Via del Fosso di Fiorano, 64, Rome, Italy.
| |
Collapse
|
27
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
28
|
Torre-Muruzabal T, Devoght J, Van den Haute C, Brône B, Van der Perren A, Baekelandt V. Chronic nigral neuromodulation aggravates behavioral deficits and synaptic changes in an α-synuclein based rat model for Parkinson's disease. Acta Neuropathol Commun 2019; 7:160. [PMID: 31640762 PMCID: PMC6805517 DOI: 10.1186/s40478-019-0814-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/22/2019] [Indexed: 01/26/2023] Open
Abstract
Aggregation of alpha-synuclein (α-SYN) is the pathological hallmark of several diseases named synucleinopathies, including Parkinson's disease (PD), which is the most common neurodegenerative motor disorder. Alpha-SYN has been linked to synaptic function both in physiological and pathological conditions. However, the exact link between neuronal activity, α-SYN toxicity and disease progression in PD is not clear. In this study, we aimed to investigate the effect of chronic neuromodulation in an α-SYN-based rat model for PD using chemogenetics. To do this, we expressed excitatory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) combined with mutant A53T α-SYN, using two different recombinant adeno-associated viral (rAAV) vectors (serotypes 2/7 and 2/8) in rat substantia nigra (SN) and investigated the effect on motor behavior, synapses and neuropathology. We found that chronic neuromodulation aggravates motor deficits induced by α-SYN, without altering dopaminergic neurodegeneration. In addition, neuronal activation led to changes in post-translational modification and subcellular localization of α-SYN, linking neuronal activity to the pathophysiological role of α-SYN in PD.
Collapse
Affiliation(s)
- Teresa Torre-Muruzabal
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | | | - Chris Van den Haute
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
- KU Leuven, Leuven Viral Vector Core, Leuven, Belgium
| | | | - Anke Van der Perren
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Veerle Baekelandt
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
29
|
Gorecki AM, Preskey L, Bakeberg MC, Kenna JE, Gildenhuys C, MacDougall G, Dunlop SA, Mastaglia FL, Akkari PA, Koengten F, Anderton RS. Altered Gut Microbiome in Parkinson's Disease and the Influence of Lipopolysaccharide in a Human α-Synuclein Over-Expressing Mouse Model. Front Neurosci 2019; 13:839. [PMID: 31440136 PMCID: PMC6693556 DOI: 10.3389/fnins.2019.00839] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
The interaction between the gut microbiota and alpha-synuclein (αSyn) aggregation in Parkinson’s disease (PD) is receiving increasing attention. The objective of this study was to investigate gut microbiota, and effects of an inflammatory lipopolysaccharide (LPS) trigger in a human αSyn over-expressing mouse model of PD (Thy1-αSyn). Stool samples from patients with confirmed PD and Thy1-αSyn mice were analyzed using 16S ribosomal RNA sequencing. Compared to healthy controls, the relative abundance of mucin-degrading Verrucomicrobiae and LPS-producing Gammaproteobacteria were greater in PD patients. In mice, the abundance of Gammaproteobacteria was negligible in both Thy1-αSyn and wild-type (WT) animals, while Verrucomicrobiae were reduced in Thy1-αSyn mice. The effect of LPS on intestinal barrier function was investigated in vitro using intestinal epithelial (IEC-6) cells, and in vivo via administration of LPS in drinking water to Thy1-αSyn mice. Acute exposure to LPS in vitro resulted in a reduction and altered distribution of the tight junction markers ZO-1 and e-Cadherin around the cell membrane in IEC-6 cells, as shown by immunohistochemistry. LPS administration in Thy1-αSyn mice resulted in the emergence of early motor manifestations at 10 weeks, compared to untreated mice who were still asymptomatic at this age. This study reaffirms that an altered microbiome exists in patients with PD, and supports the notion of a proinflammatory gut microbiome environment as a trigger for PD pathogenesis.
Collapse
Affiliation(s)
- Anastazja M Gorecki
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular & Neurological Disorders, The University of Western Australia, Crawley, WA, Australia
| | - Leah Preskey
- Ozgene Pty Ltd., Bentley, WA, Australia.,School of Medicine, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Megan C Bakeberg
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular & Neurological Disorders, The University of Western Australia, Crawley, WA, Australia
| | - Jade E Kenna
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular & Neurological Disorders, The University of Western Australia, Crawley, WA, Australia
| | - Christi Gildenhuys
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Institute for Health Research and School of Health Sciences, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Gabriella MacDougall
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Institute for Health Research and School of Health Sciences, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Sarah A Dunlop
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,School of Biological Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular & Neurological Disorders, The University of Western Australia, Crawley, WA, Australia
| | - P Anthony Akkari
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular & Neurological Disorders, The University of Western Australia, Crawley, WA, Australia.,The Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Frank Koengten
- Ozgene Pty Ltd., Bentley, WA, Australia.,School of Medicine, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Ryan S Anderton
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular & Neurological Disorders, The University of Western Australia, Crawley, WA, Australia.,Institute for Health Research and School of Health Sciences, The University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
30
|
Qi YH, Zhu R, Wang Q, Li Q, Liu YD, Qian ZY, Yang ZH, Mu ZH, Liu XJ, Zhang MY, Wang X, Liao XY, Wan Q, Lu D, Zou YY. Early intervention with gastrodin reduces striatal neurotoxicity in adult rats with experimentally‑induced diabetes mellitus. Mol Med Rep 2019; 19:3114-3122. [PMID: 30816461 PMCID: PMC6423552 DOI: 10.3892/mmr.2019.9954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/11/2019] [Indexed: 01/02/2023] Open
Abstract
Glutamate-induced excitotoxicity in the striatum has an important role in neurodegenerative diseases. It has been reported that diabetes mellitus (DM) induces excitotoxicity in striatal neurons, although the underlying mechanism remains to be fully elucidated. The present study aimed to investigate the effect of gastrodin on DM-induced excitotoxicity in the striatal neurons of diabetic rats. Adult Sprague-Dawley rats were divided into control, diabetic, and gastrodin intervention groups. Diabetes in the rats was induced with a single intraperitoneal injection of streptozotocin (65 mg/kg). In the gastrodin groups, the rats were gavaged with 60 or 120 mg/kg/day gastrodin for 6 weeks, 3 weeks following the induction of diabetes. Pathological alterations in the striatum were assessed using hematoxylin and eosin (H&E) staining. The protein expression levels of phosphorylated (p)-extracellular signal-regulated kinase (ERK)1/2, p-mitogen-activated protein kinase kinase (MEK)1/2, tyrosine receptor kinase B (TrKB) and brain-derived neurotrophic factor (BDNF) in the striatal neurons were evaluated by western blotting and double immunofluorescence. Additionally, the extracellular levels of glutamate were measured by microanalysis followed by high-pressure-liquid-chromatography. In diabetic rats, striatal neuronal degeneration was evident following H&E staining, which revealed the common occurrence of pyknotic nuclei. This was coupled with an increase in glutamate levels in the striatal tissues. The protein expression levels of p-ERK1/2, p-MEK1/2, TrKB and BDNF in the striatal tissues were significantly increased in the diabetic rats compared with those in the normal rats. In the gastrodin groups, degeneration of the striatal neurons was ameliorated. Furthermore, the expression levels of glutamate, p-ERK1/2, p-MEK1/2, TrKB and BDNF in the striatal neurons were decreased. From these findings, it was concluded that reduced neurotoxicity in striatal neurons following treatment with gastrodin may be attributed to its suppressive effects on the expression of p-ERK1/2, p-MEK1/2, BDNF and TrKB.
Collapse
Affiliation(s)
- Yu-Han Qi
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Rui Zhu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qing Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qian Li
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yi-Dan Liu
- Institute of Drug Discovery and Development, Kunming Pharmaceutical Corporation, Kunming, Yunnan 650500, P.R. China
| | - Zhong-Yi Qian
- Department of Morphological Laboratory, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhi-Hong Yang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhi-Hao Mu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xin-Jie Liu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Mei-Yan Zhang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xie Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xin-Yu Liao
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Department of Neurosurgery of The Affiliated Hospital, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Di Lu
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Ying-Ying Zou
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
31
|
Tambasco N, Romoli M, Calabresi P. Selective basal ganglia vulnerability to energy deprivation: Experimental and clinical evidences. Prog Neurobiol 2018; 169:55-75. [DOI: 10.1016/j.pneurobio.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
|
32
|
Moutton S, Bruel AL, Assoum M, Chevarin M, Sarrazin E, Goizet C, Guerrot AM, Charollais A, Charles P, Heron D, Faudet A, Houcinat N, Vitobello A, Tran-Mau-Them F, Philippe C, Duffourd Y, Thauvin-Robinet C, Faivre L. Truncating variants of the DLG4
gene are responsible for intellectual disability with marfanoid features. Clin Genet 2018; 93:1172-1178. [DOI: 10.1111/cge.13243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 02/02/2023]
Affiliation(s)
- S. Moutton
- Reference Center for Developmental Anomalies, Department of Medical Genetics; Dijon University Hospital; Dijon France
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - A.-L. Bruel
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - M. Assoum
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - M. Chevarin
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - E. Sarrazin
- Caribbean Reference Center for Rare Neurological and Neuromuscular Diseases; Fort de France University Hospital; Fort de France France
| | - C. Goizet
- Reference Center for Developmental Anomalies, Medical Genetics Department, CHU Bordeaux and Laboratoire MRGM, INSERM U1211; University of Bordeaux; Bordeaux France
| | - A.-M. Guerrot
- Department of Genetics; Rouen University Hospital; Rouen France
| | - A. Charollais
- Department of Neonatal Medicine and Intensive Care, Neuropediatrics and Reference Centre for Learning Disabilities; Rouen University Hospital; Rouen France
| | - P. Charles
- Reference Center for Rare Intellectual Disability Disorders, AP-HP, Pitié-Salpêtrière Hospital, Paris, France and Clinical Research Group “intellectual disability and autism”; UPMC; Paris France
| | - D. Heron
- Reference Center for Rare Intellectual Disability Disorders, AP-HP, Pitié-Salpêtrière Hospital, Paris, France and Clinical Research Group “intellectual disability and autism”; UPMC; Paris France
| | - A. Faudet
- Reference Center for Rare Intellectual Disability Disorders, AP-HP, Pitié-Salpêtrière Hospital, Paris, France and Clinical Research Group “intellectual disability and autism”; UPMC; Paris France
| | - N. Houcinat
- Reference Center for Developmental Anomalies, Department of Medical Genetics; Dijon University Hospital; Dijon France
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - A. Vitobello
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - F. Tran-Mau-Them
- Reference Center for Developmental Anomalies, Department of Medical Genetics; Dijon University Hospital; Dijon France
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - C. Philippe
- Reference Center for Developmental Anomalies, Department of Medical Genetics; Dijon University Hospital; Dijon France
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - Y. Duffourd
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - C. Thauvin-Robinet
- Reference Center for Developmental Anomalies, Department of Medical Genetics; Dijon University Hospital; Dijon France
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| | - L. Faivre
- Reference Center for Developmental Anomalies, Department of Medical Genetics; Dijon University Hospital; Dijon France
- INSERM U1231, LNC UMR1231 GAD; Burgundy University; Dijon France
| |
Collapse
|
33
|
Horner AE, McLaughlin CL, Afinowi NO, Bussey TJ, Saksida LM, Komiyama NH, Grant SGN, Kopanitsa MV. Enhanced cognition and dysregulated hippocampal synaptic physiology in mice with a heterozygous deletion of PSD-95. Eur J Neurosci 2018; 47:164-176. [DOI: 10.1111/ejn.13792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/25/2023]
Affiliation(s)
| | - Catherine L. McLaughlin
- Genes to Cognition Programme; Centre for Clinical Brain Sciences; University of Edinburgh; Edinburgh UK
| | | | - Timothy J. Bussey
- Department of Psychology; University of Cambridge; Cambridge UK
- The MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Molecular Medicine Research Group; Robarts Research Institute; London ON Canada
- Department of Physiology and Pharmacology; Schulich School of Medicine & Dentistry; Western University; London ON Canada
| | - Lisa M. Saksida
- Department of Psychology; University of Cambridge; Cambridge UK
- The MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute; University of Cambridge; Cambridge UK
- Molecular Medicine Research Group; Robarts Research Institute; London ON Canada
- Department of Physiology and Pharmacology; Schulich School of Medicine & Dentistry; Western University; London ON Canada
| | - Noboru H. Komiyama
- Genes to Cognition Programme; Centre for Clinical Brain Sciences; University of Edinburgh; Edinburgh UK
| | - Seth G. N. Grant
- Genes to Cognition Programme; Centre for Clinical Brain Sciences; University of Edinburgh; Edinburgh UK
| | | |
Collapse
|
34
|
Efimova EV, Gainetdinov RR, Budygin EA, Sotnikova TD. Dopamine transporter mutant animals: a translational perspective. J Neurogenet 2017; 30:5-15. [PMID: 27276191 DOI: 10.3109/01677063.2016.1144751] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The dopamine transporter (DAT) plays an important homeostatic role in the control of both the extracellular and intraneuronal concentrations of dopamine, thereby providing effective control over activity of dopaminergic transmission. Since brain dopamine is known to be involved in numerous neuropsychiatric disorders, investigations using mice with genetically altered DAT function and thus intensity of dopamine-mediated signaling have provided numerous insights into the pathology of these disorders and novel pathological mechanisms that could be targeted to provide new therapeutic approaches for these disorders. In this brief overview, we discuss recent investigations involving animals with genetically altered DAT function, particularly focusing on translational studies providing new insights into pathology and pharmacology of dopamine-related disorders. Perspective applications of these and newly developed models of DAT dysfunction are also discussed.
Collapse
Affiliation(s)
- Evgeniya V Efimova
- a Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia ;,b Skolkovo Institute of Science and Technology , Skolkovo , Moscow Region , Russia
| | - Raul R Gainetdinov
- a Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia ;,b Skolkovo Institute of Science and Technology , Skolkovo , Moscow Region , Russia
| | - Evgeny A Budygin
- a Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia ;,c Department of Neurobiology and Anatomy , Wake Forest School of Medicine , Winston-Salem , NC , USA
| | - Tatyana D Sotnikova
- a Institute of Translational Biomedicine, St. Petersburg State University , St. Petersburg , Russia
| |
Collapse
|
35
|
Bustos FJ, Ampuero E, Jury N, Aguilar R, Falahi F, Toledo J, Ahumada J, Lata J, Cubillos P, Henríquez B, Guerra MV, Stehberg J, Neve RL, Inestrosa NC, Wyneken U, Fuenzalida M, Härtel S, Sena-Esteves M, Varela-Nallar L, Rots MG, Montecino M, van Zundert B. Epigenetic editing of the Dlg4/PSD95 gene improves cognition in aged and Alzheimer's disease mice. Brain 2017; 140:3252-3268. [PMID: 29155979 PMCID: PMC5841035 DOI: 10.1093/brain/awx272] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/16/2017] [Accepted: 08/27/2017] [Indexed: 12/31/2022] Open
Abstract
The Dlg4 gene encodes for post-synaptic density protein 95 (PSD95), a major synaptic protein that clusters glutamate receptors and is critical for plasticity. PSD95 levels are diminished in ageing and neurodegenerative disorders, including Alzheimer's disease and Huntington's disease. The epigenetic mechanisms that (dys)regulate transcription of Dlg4/PSD95, or other plasticity genes, are largely unknown, limiting the development of targeted epigenome therapy. We analysed the Dlg4/PSD95 epigenetic landscape in hippocampal tissue and designed a Dlg4/PSD95 gene-targeting strategy: a Dlg4/PSD95 zinc finger DNA-binding domain was engineered and fused to effector domains to either repress (G9a, Suvdel76, SKD) or activate (VP64) transcription, generating artificial transcription factors or epigenetic editors (methylating H3K9). These epi-editors altered critical histone marks and subsequently Dlg4/PSD95 expression, which, importantly, impacted several hippocampal neuron plasticity processes. Intriguingly, transduction of the artificial transcription factor PSD95-VP64 rescued memory deficits in aged and Alzheimer's disease mice. Conclusively, this work validates PSD95 as a key player in memory and establishes epigenetic editing as a potential therapy to treat human neurological disorders.
Collapse
Affiliation(s)
- Fernando J Bustos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
- FONDAP Center for Genome Regulation, Chile
| | - Estibaliz Ampuero
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Nur Jury
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Rodrigo Aguilar
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
- FONDAP Center for Genome Regulation, Chile
| | - Fahimeh Falahi
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jorge Toledo
- Anatomy and Developmental Biology, SCIAN-Lab, Institute of Biomedical Sciences, Biomedical Neuroscience Institute, Center for Medical Informatics and Telemedicine CIMT, National Center for Health Information Systems CENS, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan Ahumada
- Centro de Neurobiología y Plasticidad Cerebral, Departamento de Fisiología, Facultad de Ciencias, Universidad Valparaíso, Chile
| | - Jaclyn Lata
- Department of Neurology and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Paula Cubillos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Berta Henríquez
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Miguel V Guerra
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Jimmy Stehberg
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Nibaldo C Inestrosa
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Chile
| | - Ursula Wyneken
- Laboratorio de Neurociencias, Universidad de Los Andes, Santiago, Chile
| | - Marco Fuenzalida
- Centro de Neurobiología y Plasticidad Cerebral, Departamento de Fisiología, Facultad de Ciencias, Universidad Valparaíso, Chile
| | - Steffen Härtel
- Anatomy and Developmental Biology, SCIAN-Lab, Institute of Biomedical Sciences, Biomedical Neuroscience Institute, Center for Medical Informatics and Telemedicine CIMT, National Center for Health Information Systems CENS, Santiago, Chile
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Miguel Sena-Esteves
- Department of Neurology and Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lorena Varela-Nallar
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| | - Marianne G Rots
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
- FONDAP Center for Genome Regulation, Chile
| | - Brigitte van Zundert
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 217, Santiago, Chile
| |
Collapse
|
36
|
Xu J, Marshall JJ, Fernandes HB, Nomura T, Copits BA, Procissi D, Mori S, Wang L, Zhu Y, Swanson GT, Contractor A. Complete Disruption of the Kainate Receptor Gene Family Results in Corticostriatal Dysfunction in Mice. Cell Rep 2017; 18:1848-1857. [PMID: 28228252 DOI: 10.1016/j.celrep.2017.01.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/28/2016] [Accepted: 01/27/2017] [Indexed: 12/22/2022] Open
Abstract
Kainate receptors are members of the glutamate receptor family that regulate synaptic function in the brain. They modulate synaptic transmission and the excitability of neurons; however, their contributions to neural circuits that underlie behavior are unclear. To understand the net impact of kainate receptor signaling, we generated knockout mice in which all five kainate receptor subunits were ablated (5ko). These mice displayed compulsive and perseverative behaviors, including over-grooming, as well as motor problems, indicative of alterations in striatal circuits. There were deficits in corticostriatal input to spiny projection neurons (SPNs) in the dorsal striatum and correlated reductions in spine density. The behavioral alterations were not present in mice only lacking the primary receptor subunit expressed in adult striatum (GluK2 KO), suggesting that signaling through multiple receptor types is required for proper striatal function. This demonstrates that alterations in striatal function dominate the behavioral phenotype in mice without kainate receptors.
Collapse
Affiliation(s)
- Jian Xu
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John J Marshall
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Herman B Fernandes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Toshihiro Nomura
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bryan A Copits
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Daniele Procissi
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Susumu Mori
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yongling Zhu
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anis Contractor
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
37
|
Rangel-Barajas C, Rebec GV. Dysregulation of Corticostriatal Connectivity in Huntington's Disease: A Role for Dopamine Modulation. J Huntingtons Dis 2017; 5:303-331. [PMID: 27983564 PMCID: PMC5181679 DOI: 10.3233/jhd-160221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aberrant communication between striatum, the main information processing unit of the basal ganglia, and cerebral cortex plays a critical role in the emergence of Huntington’s disease (HD), a fatal monogenetic condition that typically strikes in the prime of life. Although both striatum and cortex undergo substantial cell loss over the course of HD, corticostriatal circuits become dysfunctional long before neurons die. Understanding the dysfunction is key to developing effective strategies for treating a progressively worsening triad of motor, cognitive, and psychiatric symptoms. Cortical output neurons drive striatal activity through the release of glutamate, an excitatory amino acid. Striatal outputs, in turn, release γ-amino butyric acid (GABA) and exert inhibitory control over downstream basal ganglia targets. Ample evidence from transgenic rodent models points to dysregulation of corticostriatal glutamate transmission along with corresponding changes in striatal GABA release as underlying factors in the HD behavioral phenotype. Another contributor is dysregulation of dopamine (DA), a modulator of both glutamate and GABA transmission. In fact, pharmacological manipulation of DA is the only currently available treatment for HD symptoms. Here, we review data from animal models and human patients to evaluate the role of DA in HD, including DA interactions with glutamate and GABA within the context of dysfunctional corticostriatal circuitry.
Collapse
Affiliation(s)
| | - George V. Rebec
- Correspondence to: George V. Rebec, PhD, Department of Psychological and Brain Sciences, Program in
Neuroscience, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405-7007, USA. Tel.: +1 812 855 4832;
Fax: +1 812 855 4520; E-mail:
| |
Collapse
|
38
|
Sun Y, Zhan L, Cheng X, Zhang L, Hu J, Gao Z. The Regulation of GluN2A by Endogenous and Exogenous Regulators in the Central Nervous System. Cell Mol Neurobiol 2017; 37:389-403. [PMID: 27255970 PMCID: PMC11482088 DOI: 10.1007/s10571-016-0388-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/25/2016] [Indexed: 12/25/2022]
Abstract
The NMDA receptor is the most widely studied ionotropic glutamate receptor, and it is central to many physiological and pathophysiological processes in the central nervous system. GluN2A is one of the two main types of GluN2 NMDA receptor subunits in the forebrain. The proper activity of GluN2A is important to brain function, as the abnormal regulation of GluN2A may induce some neuropsychiatric disorders. This review will examine the regulation of GluN2A by endogenous and exogenous regulators in the central nervous system.
Collapse
Affiliation(s)
- Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, People's Republic of China
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Liying Zhan
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, People's Republic of China
| | - Xiaokun Cheng
- North China Pharmaceutical Group New Drug Research and Development Co., Ltd, Shijiazhuang, 050015, People's Republic of China
| | - Linan Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Jie Hu
- School of Nursing, Hebei Medical University, Shijiazhuang, 050017, People's Republic of China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Yuhua East Road 70, Shijiazhuang, 050018, People's Republic of China.
- Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
39
|
Hypersocial behavior and biological redundancy in mice with reduced expression of PSD95 or PSD93. Behav Brain Res 2017; 352:35-45. [PMID: 28189758 DOI: 10.1016/j.bbr.2017.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/27/2022]
Abstract
The postsynaptic density proteins 95 (PSD95) and 93 (PSD93) belong to a family of scaffolding proteins, the membrane-associated guanylate kinases (MAGUKs), which are highly enriched in synapses and responsible for organizing the numerous protein complexes required for synaptic development and plasticity. Genetic studies have associated MAGUKs with diseases like autism and schizophrenia, but knockout mice show severe, complex defects with difficult-to-interpret behavioral abnormalities due to major motor dysfunction which is atypical for psychiatric phenotypes. Therefore, rather than studying loss-of-function mutants, we comprehensively investigated the behavioral consequences of reduced PSD95 expression, using heterozygous PSD95 knockout mice (PSD95+/-). Specifically, we asked whether heterozygous PSD95 deficient mice would exhibit alterations in the processing of social stimuli and social behavior. Additionally, we investigated whether PSD95 and PSD93 would reveal any indication of functional or biological redundancy. Therefore, homozygous and heterozygous PSD93 deficient mice were examined in a similar behavioral battery as PSD95 mutants. We found robust hypersocial behavior in the dyadic interaction test in both PSD95+/- males and females. Additionally, male PSD95+/- mice exhibited higher levels of aggression and territoriality, while female PSD95+/- mice showed increased vocalization upon exposure to an anesthetized female mouse. Both male and female PSD95+/- mice revealed mild hypoactivity in the open field but no obvious motor deficit. Regarding PSD93 mutants, homozygous (but not heterozygous) knockout mice displayed prominent hypersocial behavior comparable to that observed in PSD95+/- mice, despite a more severe motor phenotype, which precluded several behavioral tests or their interpretation. Considering that PSD95 and PSD93 reduction provoke strikingly similar behavioral consequences, we explored a potential substitution effect and found increased PSD93 protein expression in hippocampal synaptic enrichment preparations of PSD95+/- mice. These data suggest that both PSD95 and PSD93 are involved in processing of social stimuli and control of social behavior. This important role may be partly assured by functional/behavioral and biological/biochemical redundancy.
Collapse
|
40
|
Tomasetti C, Iasevoli F, Buonaguro EF, De Berardis D, Fornaro M, Fiengo ALC, Martinotti G, Orsolini L, Valchera A, Di Giannantonio M, de Bartolomeis A. Treating the Synapse in Major Psychiatric Disorders: The Role of Postsynaptic Density Network in Dopamine-Glutamate Interplay and Psychopharmacologic Drugs Molecular Actions. Int J Mol Sci 2017; 18:E135. [PMID: 28085108 PMCID: PMC5297768 DOI: 10.3390/ijms18010135] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/25/2016] [Accepted: 01/08/2017] [Indexed: 12/20/2022] Open
Abstract
Dopamine-glutamate interplay dysfunctions have been suggested as pathophysiological key determinants of major psychotic disorders, above all schizophrenia and mood disorders. For the most part, synaptic interactions between dopamine and glutamate signaling pathways take part in the postsynaptic density, a specialized ultrastructure localized under the membrane of glutamatergic excitatory synapses. Multiple proteins, with the role of adaptors, regulators, effectors, and scaffolds compose the postsynaptic density network. They form structural and functional crossroads where multiple signals, starting at membrane receptors, are received, elaborated, integrated, and routed to appropriate nuclear targets. Moreover, transductional pathways belonging to different receptors may be functionally interconnected through postsynaptic density molecules. Several studies have demonstrated that psychopharmacologic drugs may differentially affect the expression and function of postsynaptic genes and proteins, depending upon the peculiar receptor profile of each compound. Thus, through postsynaptic network modulation, these drugs may induce dopamine-glutamate synaptic remodeling, which is at the basis of their long-term physiologic effects. In this review, we will discuss the role of postsynaptic proteins in dopamine-glutamate signals integration, as well as the peculiar impact of different psychotropic drugs used in clinical practice on postsynaptic remodeling, thereby trying to point out the possible future molecular targets of "synapse-based" psychiatric therapeutic strategies.
Collapse
Affiliation(s)
- Carmine Tomasetti
- NHS, Department of Mental Health ASL Teramo, Psychiatric Service of Diagnosis and Treatment, Hospital "Maria SS dello Splendore", 641021 Giulianova, Italy.
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
- Polyedra Research Group, 64100 Teramo, Italy.
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
- Polyedra Research Group, 64100 Teramo, Italy.
| | - Elisabetta Filomena Buonaguro
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
- Polyedra Research Group, 64100 Teramo, Italy.
| | - Domenico De Berardis
- Polyedra Research Group, 64100 Teramo, Italy.
- NHS, Department of Mental Health ASL Teramo, Psychiatric Service of Diagnosis and Treatment, Hospital "G. Mazzini", 64100 Teramo, Italy.
- Department of Neuroscience and Imaging, University "G. d'Annunzio", 66100 Chieti, Italy.
| | - Michele Fornaro
- Polyedra Research Group, 64100 Teramo, Italy.
- New York State Psychiatric Institute, Columbia University, New York, NY 10027, USA.
| | | | - Giovanni Martinotti
- Polyedra Research Group, 64100 Teramo, Italy.
- Department of Neuroscience and Imaging, University "G. d'Annunzio", 66100 Chieti, Italy.
| | - Laura Orsolini
- Polyedra Research Group, 64100 Teramo, Italy.
- Casa di Cura Villa San Giuseppe, 63100 Ascoli Piceno, Italy.
| | - Alessandro Valchera
- Polyedra Research Group, 64100 Teramo, Italy.
- Casa di Cura Villa San Giuseppe, 63100 Ascoli Piceno, Italy.
| | | | - Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry, Department of Neuroscience, Reproductive and Odontostomatogical Sciences, University of Naples "Federico II", 80131 Napoli, Italy.
| |
Collapse
|
41
|
Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, Chesselet MF, Keshavarzian A, Shannon KM, Krajmalnik-Brown R, Wittung-Stafshede P, Knight R, Mazmanian SK. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell 2016; 167:1469-1480.e12. [PMID: 27912057 PMCID: PMC5718049 DOI: 10.1016/j.cell.2016.11.018] [Citation(s) in RCA: 2339] [Impact Index Per Article: 259.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/12/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023]
Abstract
The intestinal microbiota influence neurodevelopment, modulate behavior, and contribute to neurological disorders. However, a functional link between gut bacteria and neurodegenerative diseases remains unexplored. Synucleinopathies are characterized by aggregation of the protein α-synuclein (αSyn), often resulting in motor dysfunction as exemplified by Parkinson's disease (PD). Using mice that overexpress αSyn, we report herein that gut microbiota are required for motor deficits, microglia activation, and αSyn pathology. Antibiotic treatment ameliorates, while microbial re-colonization promotes, pathophysiology in adult animals, suggesting that postnatal signaling between the gut and the brain modulates disease. Indeed, oral administration of specific microbial metabolites to germ-free mice promotes neuroinflammation and motor symptoms. Remarkably, colonization of αSyn-overexpressing mice with microbiota from PD-affected patients enhances physical impairments compared to microbiota transplants from healthy human donors. These findings reveal that gut bacteria regulate movement disorders in mice and suggest that alterations in the human microbiome represent a risk factor for PD.
Collapse
Affiliation(s)
- Timothy R Sampson
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Justine W Debelius
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92110, USA
| | - Taren Thron
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Stefan Janssen
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92110, USA
| | - Gauri G Shastri
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zehra Esra Ilhan
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Collin Challis
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Catherine E Schretter
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sandra Rocha
- Biology and Biological Engineering Department, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Viviana Gradinaru
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kathleen M Shannon
- Department of Neurological Sciences, Section of Movement Disorders, Rush University Medical Center, Chicago, IL 60612, USA
| | - Rosa Krajmalnik-Brown
- Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Pernilla Wittung-Stafshede
- Biology and Biological Engineering Department, Chalmers University of Technology, Gothenburg 41296, Sweden
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92110, USA; Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Sarkis K Mazmanian
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
42
|
Reichard EE, Nanaware-Kharade N, Gonzalez GA, Thakkar S, Owens SM, Peterson EC. PEGylation of a High-Affinity Anti-(+)Methamphetamine Single Chain Antibody Fragment Extends Functional Half-Life by Reducing Clearance. Pharm Res 2016; 33:2954-2966. [PMID: 27620175 DOI: 10.1007/s11095-016-2017-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/09/2016] [Indexed: 12/26/2022]
Abstract
PURPOSE Methamphetamine (METH) abuse is a worldwide drug problem, yet no FDA-approved pharmacological treatments are available for METH abuse. Therefore, we produced an anti-METH single chain antibody fragment (scFv7F9Cys) as a pharmacological treatment for METH abuse. ScFv's have a short half-life due to their small size, limiting their clinical use. Thus, we examined the pharmacokinetic effects of conjugating poly(ethylene) glycol (-PEG) to scFv7F9Cys to extend its functional half-life. METHODS The affinity of scFv7F9Cys and PEG conjugates to METH was determined in vitro via equilibrium dialysis saturation binding. Pharmacokinetic and parameters of scFv7F9Cys and scFv7F9Cys-PEG20K (30 mg/kg i.v. each) and their ability to bind METH in vivo were determined in male Sprague-Dawley rats receiving a subcutaneous infusion of METH (3.2 mg/kg/day). RESULTS Of three PEGylated conjugates, scFv7F9Cys-PEG20K was determined the most viable therapeutic candidate. PEGylation of scFv7F9Cys did not alter METH binding functionality in vitro, and produced a 27-fold increase in the in vivo half-life of the antibody fragment. Furthermore, total METH serum concentrations increased following scFv7F9Cys or scFv7F9Cys-PEG20K administration, with scFv7F9Cys-PEG20K producing significantly longer changes in METH distribution than scFv7F9Cys. CONCLUSIONS PEGylation of scFv7F9Cys significantly increase the functional half-life of scFv7F9Cys, suggesting it may be a long-lasting pharmacological treatment option for METH abuse.
Collapse
Affiliation(s)
- Emily E Reichard
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Nisha Nanaware-Kharade
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Guillermo A Gonzalez
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Shraddha Thakkar
- Department of Physiology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - S Michael Owens
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Eric C Peterson
- Department of Pharmacology & Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.
| |
Collapse
|
43
|
Zhang L, Han X, Cheng X, Tan XF, Zhao HY, Zhang XH. Denervated hippocampus provides a favorable microenvironment for neuronal differentiation of endogenous neural stem cells. Neural Regen Res 2016; 11:597-603. [PMID: 27212920 PMCID: PMC4870916 DOI: 10.4103/1673-5374.180744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fimbria-fornix transection induces both exogenous and endogenous neural stem cells to differentiate into neurons in the hippocampus. This indicates that the denervated hippocampus provides an environment for neuronal differentiation of neural stem cells. However, the pathways and mechanisms in this process are still unclear. Seven days after fimbria fornix transection, our reverse transcription polymerase chain reaction, western blot assay, and enzyme linked immunosorbent assay results show a significant increase in ciliary neurotrophic factor mRNA and protein expression in the denervated hippocampus. Moreover, neural stem cells derived from hippocampi of fetal (embryonic day 17) Sprague-Dawley rats were treated with ciliary neurotrophic factor for 7 days, with an increased number of microtubule associated protein-2-positive cells and decreased number of glial fibrillary acidic protein-positive cells detected. Our results show that ciliary neurotrophic factor expression is up-regulated in the denervated hippocampus, which may promote neuronal differentiation of neural stem cells in the denervated hippocampus.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao Han
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xiang Cheng
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xue-Feng Tan
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - He-Yan Zhao
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xin-Hua Zhang
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
44
|
Chen ZZ, Yang DD, Zhao Z, Yan H, Ji J, Sun XL. Memantine mediates neuroprotection via regulating neurovascular unit in a mouse model of focal cerebral ischemia. Life Sci 2016; 150:8-14. [PMID: 26920629 DOI: 10.1016/j.lfs.2016.02.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 01/15/2023]
Abstract
AIMS Memantine is a low-moderate affinity and uncompetitive N-methyl-d-aspartate receptor (NMDAR) antagonist, which is also a potential neuroprotectant in acute ischemic stroke for its particular action profiles. The present study was to reveal the mechanisms involved in the neuroprotection of memantine. MAIN METHODS We used a mouse model of permanent focal cerebral ischemia via middle cerebral artery occlusion to verify our hypothesis. 2,3,5-Triphenyltetrazolium chloride staining was used to compare infarct size. The amount of astrocytes and the somal volume of the microglia cell body were analyzed by immunohistochemistry and stereological estimates. Western blotting was used to determine the protein expressions. KEY FINDINGS Memantine prevented cerebral ischemia-induced brain infarct and neuronal injury, and reduced oxygen-glucose deprivation-induced cortical neuronal apoptosis. Moreover, memantine reduced the amount of the damaged astrocytes and over activated microglia after 24h of ischemia. In the early phase of ischemia, higher production of MMP-9 was observed, and thereby collagen IV was dramatically disrupted. Meanwhile, the post-synaptic density protein 95(PSD-95) was also severely cleavaged. Memantine decreased MMP-9 secretion, prevented the degradation of collagen IV in mouse brain. PSD-95 cleavage was also inhibited by memantine. SIGNIFICANCE These results suggested that memantine exerted neuroprotection effects in acute ischemic brain damage, partially via improving the functions of neurovascular unit. Taking all these findings together, we consider that memantine might be a promising protective agent against ischemic stroke.
Collapse
Affiliation(s)
- Zheng-Zhen Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Dan-Dan Yang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Zhan Zhao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Hui Yan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Juan Ji
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China
| | - Xiu-Lan Sun
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, PR China.
| |
Collapse
|
45
|
Morigaki R, Goto S. Postsynaptic Density Protein 95 in the Striosome and Matrix Compartments of the Human Neostriatum. Front Neuroanat 2015; 9:154. [PMID: 26648848 PMCID: PMC4663261 DOI: 10.3389/fnana.2015.00154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/16/2015] [Indexed: 11/13/2022] Open
Abstract
The human neostriatum consists of two functional subdivisions referred to as the striosome (patch) and matrix compartments. The striosome-matrix dopamine systems play a central role in cortico-thalamo-basal ganglia circuits, and their involvement is thought to underlie the genesis of multiple movement and behavioral disorders, and of drug addiction. Human neuropathology also has shown that striosomes and matrix have differential vulnerability patterns in several striatal neurodegenerative diseases. Postsynaptic density protein 95 (PSD-95), also known as disks large homolog 4, is a major scaffolding protein in the postsynaptic densities of dendritic spines. PSD-95 is now known to negatively regulate not only N-methyl-D-aspartate glutamate signaling, but also dopamine D1 signals at sites of postsynaptic transmission. Accordingly, a neuroprotective role for PSD-95 against dopamine D1 receptor (D1R)-mediated neurotoxicity in striatal neurodegeneration also has been suggested. Here, we used a highly sensitive immunohistochemistry technique to show that in the human neostriatum, PSD-95 is differentially concentrated in the striosome and matrix compartments, with a higher density of PSD-95 labeling in the matrix compartment than in the striosomes. This compartment-specific distribution of PSD-95 was strikingly complementary to that of D1R. In addition to the possible involvement of PSD-95-mediated synaptic function in compartment-specific dopamine signals, we suggest that the striosomes might be more susceptible to D1R-mediated neurotoxicity than the matrix compartment. This notion may provide new insight into the compartment-specific vulnerability of MSNs in striatal neurodegeneration.
Collapse
Affiliation(s)
- Ryoma Morigaki
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University Tokushima, Japan ; Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima University Tokushima, Japan ; Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University Tokushima, Japan
| | - Satoshi Goto
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University Tokushima, Japan ; Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima University Tokushima, Japan
| |
Collapse
|
46
|
Affiliation(s)
- Wei-Dong Yao
- Guest Editor, New England Primate Research Center, Harvard Medical School Southborough , Massachusetts , USA
| | | |
Collapse
|