1
|
Helfrich-Förster C, Reinhard N. Mutual coupling of neurons in the circadian master clock: What we can learn from fruit flies. Neurobiol Sleep Circadian Rhythms 2025; 18:100112. [PMID: 39906412 PMCID: PMC11791320 DOI: 10.1016/j.nbscr.2025.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Circadian master clocks in the brain consist of multiple neurons that are organized into populations with different morphology, physiology, and neuromessenger content and presumably different functions. In most animals, these master clocks are distributed bilaterally, located in close proximity to the visual system, and synchronized by the eyes with the light-dark cycles of the environment. In mammals and cockroaches, each of the two master clocks consists of a core region that receives information from the eyes and a shell region from which most of the output projections originate, whereas in flies and several other insects, the master clocks are distributed in lateral and dorsal brain regions. In all cases, morning and evening clock neurons seem to exist, and the communication between them and other populations of clock neurons, as well as the connection across the two brain hemispheres, is a prerequisite for normal rhythmic function. Phenomena such as rhythm splitting, and internal desynchronization are caused by the "decoupling" of the master clocks in the two brain hemispheres or by the decoupling of certain clock neurons within the master clock of one brain hemisphere. Since the master clocks in flies contain relatively few neurons that are well characterized at the individual level, the fly is particularly well suited to study the communication between individual clock neurons. Here, we review the organization of the bilateral master clocks in the fly brain, with a focus on synaptic and paracrine connections between the multiple clock neurons, in comparison with other insects and mammals.
Collapse
Affiliation(s)
- Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
2
|
Helfrich-Förster C. The Never Given 2022 Pittendrigh/Aschoff Lecture: The Clock Network in the Brain-Insights From Insects. J Biol Rhythms 2025; 40:120-142. [PMID: 39529231 PMCID: PMC11915775 DOI: 10.1177/07487304241290861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
My journey into chronobiology began in 1977 with lectures and internships with Wolfgang Engelmann and Hans Erkert at the University of Tübingen in Germany. At that time, the only known animal clock gene was Period, and the location and organization of the master circadian clock in the brain was completely unknown for the model insect Drosophila melanogaster. I was thus privileged to witness and participate in the research that led us from discovering the first clock gene to identifying the clock network in the fly brain and the putative pathways linking it to behavior and physiology. This article highlights my role in these developments and also shows how the successful use of D. melanogaster for studies of circadian rhythms has contributed to the understanding of clock networks in other animals. I also report on my experiences in the German scientific system and hope that my story will be of interest to some of you.
Collapse
Affiliation(s)
- Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Reinhard N, Fukuda A, Manoli G, Derksen E, Saito A, Möller G, Sekiguchi M, Rieger D, Helfrich-Förster C, Yoshii T, Zandawala M. Synaptic connectome of the Drosophila circadian clock. Nat Commun 2024; 15:10392. [PMID: 39638801 PMCID: PMC11621569 DOI: 10.1038/s41467-024-54694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
The circadian clock and its output pathways play a pivotal role in optimizing daily processes. To obtain insights into how diverse rhythmic physiology and behaviors are orchestrated, we have generated a comprehensive connectivity map of an animal circadian clock using the Drosophila FlyWire brain connectome. Intriguingly, we identified additional dorsal clock neurons, thus showing that the Drosophila circadian network contains ~240 instead of 150 neurons. We revealed extensive contralateral synaptic connectivity within the network and discovered novel indirect light input pathways to the clock neurons. We also elucidated pathways via which the clock modulates descending neurons that are known to regulate feeding and reproductive behaviors. Interestingly, we observed sparse monosynaptic connectivity between clock neurons and downstream higher-order brain centers and neurosecretory cells known to regulate behavior and physiology. Therefore, we integrated single-cell transcriptomics and receptor mapping to decipher putative paracrine peptidergic signaling by clock neurons. Our analyses identified additional novel neuropeptides expressed in clock neurons and suggest that peptidergic signaling significantly enriches interconnectivity within the clock network.
Collapse
Affiliation(s)
- Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Ayumi Fukuda
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Giulia Manoli
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Emilia Derksen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Aika Saito
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Gabriel Möller
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Dirk Rieger
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany.
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany.
- Department of Biochemistry and Molecular Biology and Integrative Neuroscience Program, University of Nevada Reno, Reno, NV, USA.
| |
Collapse
|
4
|
Reinhard N, Bertolini E, Saito A, Sekiguchi M, Yoshii T, Rieger D, Helfrich-Förster C. The lateral posterior clock neurons (LPN) of Drosophila melanogaster express three neuropeptides and have multiple connections within the circadian clock network and beyond. J Comp Neurol 2021; 530:1507-1529. [PMID: 34961936 DOI: 10.1002/cne.25294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/12/2022]
Abstract
Drosophila's lateral posterior neurons (LPNs) belong to a small group of circadian clock neurons that is so far not characterized in detail. Thanks to a new highly specific split-Gal4 line, here we describe LPNs' morphology in fine detail, their synaptic connections, daily bimodal expression of neuropeptides, and propose a putative role of this cluster in controlling daily activity and sleep patterns. We found that the three LPNs are heterogeneous. Two of the neurons with similar morphology arborize in the superior medial and lateral protocerebrum and most likely promote sleep. One unique, possibly wakefulness-promoting, neuron with wider arborizations extends from the superior lateral protocerebrum toward the anterior optic tubercle. Both LPN types exhibit manifold connections with the other circadian clock neurons, especially with those that control the flies' morning and evening activity (M- and E-neurons, respectively). In addition, they form synaptic connections with neurons of the mushroom bodies, the fan-shaped body, and with many additional still unidentified neurons. We found that both LPN types rhythmically express three neuropeptides, Allostatin A, Allostatin C, and Diuretic Hormone 31 with maxima in the morning and the evening. The three LPN neuropeptides may, furthermore, signal to the insect hormonal center in the pars intercerebralis and contribute to rhythmic modulation of metabolism, feeding, and reproduction. We discuss our findings in the light of anatomical details gained by the recently published hemibrain of a single female fly on the electron microscopic level and of previous functional studies concerning the LPN. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nils Reinhard
- Neurobiology and Genetics, Biocenter, University of Würzburg, Germany
| | - Enrico Bertolini
- Neurobiology and Genetics, Biocenter, University of Würzburg, Germany
| | - Aika Saito
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Dirk Rieger
- Neurobiology and Genetics, Biocenter, University of Würzburg, Germany
| | | |
Collapse
|
5
|
Beer K, Helfrich-Förster C. Model and Non-model Insects in Chronobiology. Front Behav Neurosci 2020; 14:601676. [PMID: 33328925 PMCID: PMC7732648 DOI: 10.3389/fnbeh.2020.601676] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an established model organism in chronobiology, because genetic manipulation and breeding in the laboratory are easy. The circadian clock neuroanatomy in D. melanogaster is one of the best-known clock networks in insects and basic circadian behavior has been characterized in detail in this insect. Another model in chronobiology is the honey bee Apis mellifera, of which diurnal foraging behavior has been described already in the early twentieth century. A. mellifera hallmarks the research on the interplay between the clock and sociality and complex behaviors like sun compass navigation and time-place-learning. Nevertheless, there are aspects of clock structure and function, like for example the role of the clock in photoperiodism and diapause, which can be only insufficiently investigated in these two models. Unlike high-latitude flies such as Chymomyza costata or D. ezoana, cosmopolitan D. melanogaster flies do not display a photoperiodic diapause. Similarly, A. mellifera bees do not go into "real" diapause, but most solitary bee species exhibit an obligatory diapause. Furthermore, sociality evolved in different Hymenoptera independently, wherefore it might be misleading to study the social clock only in one social insect. Consequently, additional research on non-model insects is required to understand the circadian clock in Diptera and Hymenoptera. In this review, we introduce the two chronobiology model insects D. melanogaster and A. mellifera, compare them with other insects and show their advantages and limitations as general models for insect circadian clocks.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, Am Hubland, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
6
|
Werckenthin A, Huber J, Arnold T, Koziarek S, Plath MJA, Plath JA, Stursberg O, Herzel H, Stengl M. Neither per, nor tim1, nor cry2 alone are essential components of the molecular circadian clockwork in the Madeira cockroach. PLoS One 2020; 15:e0235930. [PMID: 32750054 PMCID: PMC7402517 DOI: 10.1371/journal.pone.0235930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/25/2020] [Indexed: 12/30/2022] Open
Abstract
Circadian clocks control rhythms in physiology and behavior entrained to 24 h light-dark cycles. Despite of conserved general schemes, molecular circadian clockworks differ between insect species. With RNA interference (RNAi) we examined an ancient circadian clockwork in a basic insect, the hemimetabolous Madeira cockroach Rhyparobia maderae. With injections of double-stranded RNA (dsRNA) of cockroach period (Rm´per), timeless 1 (Rm´tim1), or cryptochrome 2 (Rm´cry2) we searched for essential components of the clock´s core negative feedback loop. Single injections of dsRNA of each clock gene into adult cockroaches successfully and permanently knocked down respective mRNA levels within ~two weeks deleting daytime-dependent mRNA rhythms for Rm´per and Rm´cry2. Rm´perRNAi or Rm´cry2RNAi affected total mRNA levels of both genes, while Rm´tim1 transcription was independent of both, also keeping rhythmic expression. Unexpectedly, circadian locomotor activity of most cockroaches remained rhythmic for each clock gene knockdown employed. It expressed weakened rhythms and unchanged periods for Rm´perRNAi and shorter periods for Rm´tim1RNAi and Rm´cry2RNAi.As a hypothesis of the cockroach´s molecular clockwork, a basic network of switched differential equations was developed to model the oscillatory behavior of clock cells expressing respective clock genes. Data were consistent with two synchronized main groups of coupled oscillator cells, a leading (morning) oscillator, or a lagging (evening) oscillator that couple via mutual inhibition. The morning oscillators express shorter, the evening oscillators longer endogenous periods based on core feedback loops with either PER, TIM1, or CRY2/PER complexes as dominant negative feedback of the clockwork. We hypothesize that dominant morning oscillator cells with shorter periods express PER, but not CRY2, or TIM1 as suppressor of clock gene expression, while two groups of evening oscillator cells with longer periods either comprise TIM1 or CRY2/PER suppressing complexes. Modelling suggests that there is an additional negative feedback next to Rm´PER in cockroach morning oscillator cells.
Collapse
Affiliation(s)
- Achim Werckenthin
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Jannik Huber
- Department of Control and System Theory, University of Kassel, Kassel, Germany
| | - Thordis Arnold
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Susanne Koziarek
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Marcus J. A. Plath
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Jenny A. Plath
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | - Olaf Stursberg
- Department of Control and System Theory, University of Kassel, Kassel, Germany
| | - Hanspeter Herzel
- Department of Theoretical Biology, Charité Berlin, Berlin, Germany
| | - Monika Stengl
- Department of Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| |
Collapse
|
7
|
Helfrich‐Förster C, Bertolini E, Menegazzi P. Flies as models for circadian clock adaptation to environmental challenges. Eur J Neurosci 2020; 51:166-181. [PMID: 30269385 PMCID: PMC7027873 DOI: 10.1111/ejn.14180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/02/2023]
Abstract
Life on earth is assumed to have developed in tropical regions that are characterized by regular 24 hr cycles in irradiance and temperature that remain the same throughout the seasons. All organisms developed circadian clocks that predict these environmental cycles and prepare the organisms in advance for them. A central question in chronobiology is how endogenous clocks changed in order to anticipate very different cyclical environmental conditions such as extremely short and long photoperiods existing close to the poles. Flies of the family Drosophilidae can be found all over the world-from the tropics to subarctic regions-making them unprecedented models for studying the evolutionary processes that underlie the adaptation of circadian clocks to different latitudes. This review summarizes our current understanding of these processes. We discuss evolutionary changes in the clock genes and in the clock network in the brain of different Drosophilids that may have caused behavioural adaptations to high latitudes.
Collapse
Affiliation(s)
| | - Enrico Bertolini
- Neurobiology and GeneticsTheodor‐Boveri InstituteBiocentre, University of WürzburgWürzburgGermany
| | - Pamela Menegazzi
- Neurobiology and GeneticsTheodor‐Boveri InstituteBiocentre, University of WürzburgWürzburgGermany
| |
Collapse
|
8
|
De Nobrega AK, Lyons LC. Aging and the clock: Perspective from flies to humans. Eur J Neurosci 2020; 51:454-481. [PMID: 30269400 PMCID: PMC6441388 DOI: 10.1111/ejn.14176] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/10/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
Endogenous circadian oscillators regulate molecular, cellular and physiological rhythms, synchronizing tissues and organ function to coordinate activity and metabolism with environmental cycles. The technological nature of modern society with round-the-clock work schedules and heavy reliance on personal electronics has precipitated a striking increase in the incidence of circadian and sleep disorders. Circadian dysfunction contributes to an increased risk for many diseases and appears to have adverse effects on aging and longevity in animal models. From invertebrate organisms to humans, the function and synchronization of the circadian system weakens with age aggravating the age-related disorders and pathologies. In this review, we highlight the impacts of circadian dysfunction on aging and longevity and the reciprocal effects of aging on circadian function with examples from Drosophila to humans underscoring the highly conserved nature of these interactions. Additionally, we review the potential for using reinforcement of the circadian system to promote healthy aging and mitigate age-related pathologies. Advancements in medicine and public health have significantly increased human life span in the past century. With the demographics of countries worldwide shifting to an older population, there is a critical need to understand the factors that shape healthy aging. Drosophila melanogaster, as a model for aging and circadian interactions, has the capacity to facilitate the rapid advancement of research in this area and provide mechanistic insights for targeted investigations in mammals.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Lisa C Lyons
- Program in Neuroscience, Department of Biological Science, Florida State University, Tallahassee, Florida
| |
Collapse
|
9
|
Helfrich-Förster C. Light input pathways to the circadian clock of insects with an emphasis on the fruit fly Drosophila melanogaster. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:259-272. [PMID: 31691095 PMCID: PMC7069913 DOI: 10.1007/s00359-019-01379-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/19/2019] [Accepted: 10/26/2019] [Indexed: 12/26/2022]
Abstract
Light is the most important Zeitgeber for entraining animal activity rhythms to the 24-h day. In all animals, the eyes are the main visual organs that are not only responsible for motion and colour (image) vision, but also transfer light information to the circadian clock in the brain. The way in which light entrains the circadian clock appears, however, variable in different species. As do vertebrates, insects possess extraretinal photoreceptors in addition to their eyes (and ocelli) that are sometimes located close to (underneath) the eyes, but sometimes even in the central brain. These extraretinal photoreceptors contribute to entrainment of their circadian clocks to different degrees. The fruit fly Drosophila melanogaster is special, because it expresses the blue light-sensitive cryptochrome (CRY) directly in its circadian clock neurons, and CRY is usually regarded as the fly’s main circadian photoreceptor. Nevertheless, recent studies show that the retinal and extraretinal eyes transfer light information to almost every clock neuron and that the eyes are similarly important for entraining the fly’s activity rhythm as in other insects, or more generally spoken in other animals. Here, I compare the light input pathways between selected insect species with a focus on Drosophila’s special case.
Collapse
|
10
|
Vafopoulou X, Hindley-Smith M, Steel CGH. Neuropeptide- and serotonin- cells in the brain of Rhodnius prolixus (Hemiptera) associated with the circadian clock. Gen Comp Endocrinol 2019; 278:25-41. [PMID: 30048647 DOI: 10.1016/j.ygcen.2018.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 11/24/2022]
Abstract
The neuronal pathways of the circadian clock in the brain of R. prolixus have been described in detail previously, but there is no information concerning the cells or their pathways which relay either inputs to the clock (e.g. for light entrainment), or outputs from it to driven rhythms. Here, we employ antisera to three neuropeptides (type A allatostatin-7, crustacean cardioactive peptide and FMRFamide), and serotonin in confocal laser scanning immunohistochemistry to analyze the distribution of cell bodies and their projections in relation to the principle circadian clock cells (lateral cells, LNs) for all four neuron types. LNs are revealed following labelling with anti- pigment dispersing factor in double labelled preparations. Regions of potential communication between ramifications of the LNs and each of the four other neuron types is described (identified by close superposition of their neurites in various brain regions), as is their detailed projections within the brain. Neuromodulation is sometimes suggested by close, but not intimate, proximity of varicosities of neurites. We infer that some neuron types comprise input pathways to the LNs, some are outputs to neuroendocrine or behavioral rhythms, and others participate in both input and output pathways, sometimes by the same neuron type but in different locations. For example, one retinula cell in each ommatidium is immunoreactive for allatostatin A; its axon projects to the medulla making superpositions with LNs, as do serotonin cells in the optic lobe, indicating roles of both neuron types in light input (entrainment) to the clock. But in other brain areas, these same types appear to mediate outputs from the clock. The accessory medulla has been widely reported as the principle center of integration in other insects; but we found sparse evidence of this in R. prolixus as it contains few neurites other than those from the clock cells. Rather, the importance of neural pathways involving the medulla and the superior protocerebrum is emphasized. We conclude that there is a vast and complex web of interactions in the brain with the LNs, which potentially receive multiple pathways of inputs and outputs that could drive rhythmicity in a multitude of downstream cells, rendering a host of output pathways rhythmic, notably hormone release from neurosecretory cells and behaviors.
Collapse
|
11
|
Li MT, Cao LH, Xiao N, Tang M, Deng B, Yang T, Yoshii T, Luo DG. Hub-organized parallel circuits of central circadian pacemaker neurons for visual photoentrainment in Drosophila. Nat Commun 2018; 9:4247. [PMID: 30315165 PMCID: PMC6185921 DOI: 10.1038/s41467-018-06506-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/20/2018] [Indexed: 12/20/2022] Open
Abstract
Circadian rhythms are orchestrated by a master clock that emerges from a network of circadian pacemaker neurons. The master clock is synchronized to external light/dark cycles through photoentrainment, but the circuit mechanisms underlying visual photoentrainment remain largely unknown. Here, we report that Drosophila has eye-mediated photoentrainment via a parallel pacemaker neuron organization. Patch-clamp recordings of central circadian pacemaker neurons reveal that light excites most of them independently of one another. We also show that light-responding pacemaker neurons send their dendrites to a neuropil called accessary medulla (aMe), where they make monosynaptic connections with Hofbauer–Buchner eyelet photoreceptors and interneurons that transmit compound-eye signals. Laser ablation of aMe and eye removal both abolish light responses of circadian pacemaker neurons, revealing aMe as a hub to channel eye inputs to central circadian clock. Taken together, we demonstrate that the central clock receives eye inputs via hub-organized parallel circuits in Drosophila. The central circadian clock in Drosophila is made up of ~ 150 anatomically distributed neurons; the circuits underlying photoentrainment is unclear. This study describes ex vivo patch-clamp recording of the eye-mediated light response of all known circadian clock neurons, and shows that they are organized in parallel circuits centered around a hub.
Collapse
Affiliation(s)
- Meng-Tong Li
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,PTN Graduate Program, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Li-Hui Cao
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Na Xiao
- IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Min Tang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,PTN Graduate Program, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Bowen Deng
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Tian Yang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Dong-Gen Luo
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, 100871, Beijing, China. .,IDG/McGovern Institute for Brain Research, Peking University, 100871, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China. .,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
| |
Collapse
|
12
|
Reflections on contributing to "big discoveries" about the fly clock: Our fortunate paths as post-docs with 2017 Nobel laureates Jeff Hall, Michael Rosbash, and Mike Young. Neurobiol Sleep Circadian Rhythms 2018; 5:58-67. [PMID: 31236512 PMCID: PMC6584674 DOI: 10.1016/j.nbscr.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 11/20/2022] Open
Abstract
In the early 1980s Jeff Hall and Michael Rosbash at Brandeis University and Mike Young at Rockefeller University set out to isolate the period (per) gene, which was recovered in a revolutionary genetic screen by Ron Konopka and Seymour Benzer for mutants that altered circadian behavioral rhythms. Over the next 15 years the Hall, Rosbash and Young labs made a series of groundbreaking discoveries that defined the molecular timekeeping mechanism and formed the basis for them being awarded the 2017 Nobel Prize in Physiology or Medicine. Here the authors recount their experiences as post-docs in the Hall, Rosbash and Young labs from the mid-1980s to the mid-1990s, and provide a perspective of how basic research conducted on a simple model system during that era profoundly influenced the direction of the clocks field and established novel approaches that are now standard operating procedure for studying complex behavior. 2017 Nobel Prize awarded to Hall, Rosbash and Young for circadian clock mechanisms. Work on fruit flies in the 1980s and 1990s were key to deciphering clock mechanisms. Authors recount their experiences as postdocs in the Hall, Rosbash and Young labs. The broad impacts of basic research on fruit fly clock genes.
Collapse
|
13
|
Abstract
Sleep is essential for proper brain function in mammals and insects. During sleep, animals are disconnected from the external world; they show high arousal thresholds and changed brain activity. Sleep deprivation results in a sleep rebound. Research using the fruit fly, Drosophila melanogaster, has helped us understand the genetic and neuronal control of sleep. Genes involved in sleep control code for ion channels, factors influencing neurotransmission and neuromodulation, and proteins involved in the circadian clock. The neurotransmitters/neuromodulators involved in sleep control are GABA, dopamine, acetylcholine, serotonin, and several neuropeptides. Sleep is controlled by the interplay between sleep homeostasis and the circadian clock. Putative sleep-wake centers are located in higher-order brain centers that are indirectly connected to the circadian clock network. The primary function of sleep appears to be the downscaling of synapses that have been built up during wakefulness. Thus, brain homeostasis is maintained and learning and memory are assured.
Collapse
Affiliation(s)
- Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| |
Collapse
|
14
|
Abstract
The past decade has witnessed the development of powerful, genetically encoded tools for manipulating and monitoring neuronal function in freely moving animals. These tools are most readily deployed in genetic model organisms and efforts to map the circuits that govern behavior have increasingly focused on worms, flies, zebrafish, and mice. The traditional virtues of these animals for genetic studies in terms of small size, short generation times, and ease of animal husbandry in a laboratory setting have facilitated rapid progress, and the neural basis of an increasing number of behaviors is being established at cellular resolution in each of these animals. The depth and breadth of this analysis should soon offer a significantly more comprehensive understanding of how the circuitry underlying behavior is organized in particular animals and promises to help answer long-standing questions that have waited for such a brain-wide perspective on nervous system function. The comprehensive understanding achieved in genetic model animals is thus likely to make them into paradigmatic examples that will serve as touchstones for comparisons to understand how behavior is organized in other animals, including ourselves.
Collapse
Affiliation(s)
- Benjamin H White
- a Laboratory of Molecular Biology , National Institute of Mental Health, NIH , Bethesda , MD , USA
| |
Collapse
|
15
|
De Nobrega AK, Lyons LC. Drosophila: An Emergent Model for Delineating Interactions between the Circadian Clock and Drugs of Abuse. Neural Plast 2017; 2017:4723836. [PMID: 29391952 PMCID: PMC5748135 DOI: 10.1155/2017/4723836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/13/2017] [Indexed: 01/12/2023] Open
Abstract
Endogenous circadian oscillators orchestrate rhythms at the cellular, physiological, and behavioral levels across species to coordinate activity, for example, sleep/wake cycles, metabolism, and learning and memory, with predictable environmental cycles. The 21st century has seen a dramatic rise in the incidence of circadian and sleep disorders with globalization, technological advances, and the use of personal electronics. The circadian clock modulates alcohol- and drug-induced behaviors with circadian misalignment contributing to increased substance use and abuse. Invertebrate models, such as Drosophila melanogaster, have proven invaluable for the identification of genetic and molecular mechanisms underlying highly conserved processes including the circadian clock, drug tolerance, and reward systems. In this review, we highlight the contributions of Drosophila as a model system for understanding the bidirectional interactions between the circadian system and the drugs of abuse, alcohol and cocaine, and illustrate the highly conserved nature of these interactions between Drosophila and mammalian systems. Research in Drosophila provides mechanistic insights into the corresponding behaviors in higher organisms and can be used as a guide for targeted inquiries in mammals.
Collapse
Affiliation(s)
- Aliza K. De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C. Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
16
|
Gestrich J, Giese M, Shen W, Zhang Y, Voss A, Popov C, Stengl M, Wei H. Sensitivity to Pigment-Dispersing Factor (PDF) Is Cell-Type Specific among PDF-Expressing Circadian Clock Neurons in the Madeira Cockroach. J Biol Rhythms 2017; 33:35-51. [PMID: 29179611 DOI: 10.1177/0748730417739471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transplantation studies have pinpointed the circadian clock of the Madeira cockroach to the accessory medulla (AME) of the brain's optic lobes. The AME is innervated by approximately 240 adjacent neuropeptidergic neurons, including 12 pigment-dispersing factor (PDF)-expressing neurons anterior to the AME (aPDFMEs). Four of the aPDFMEs project contralaterally, controlling locomotor activity rhythms of the night-active cockroach. The present in vitro Ca2+ imaging analysis focuses on contralaterally projecting AME neurons and their responses to PDF, GABA, and acetylcholine (ACh). First, rhodamine-dextran backfills from the contralateral optic stalk identified contralaterally projecting AME neurons, which were then dispersed in primary cell cultures. After characterization of PDF, GABA, and ACh responses, PDF immunocytochemistry identified ipsilaterally and contralaterally projecting PDFMEs. All PDF-sensitive clock neurons, PDF-immunoreactive clock neurons, and the majority of ipsilaterally and contralaterally projecting cells were excited by ACh. GABA inhibited all PDF-expressing clock neurons, and about half of other ipsilaterally projecting and most contralaterally projecting clock neurons. For the first time, we identified PDF autoreceptors in PDF-secreting cockroach circadian pacemakers. The medium-sized aPDFMEs and all other contralaterally projecting PDF-sensitive clock cells were inhibited by PDF. The ipsilaterally remaining small PDF-sensitive clock cells were activated by PDF. Only the largest aPDFME did not express PDF autoreceptors. We hypothesize that opposing PDF signaling generates 2 different ensembles of clock cells with antiphasic activity, regulating and maintaining a constant phase relationship between rest and activity cycles of the night-active cockroach.
Collapse
Affiliation(s)
- Julia Gestrich
- Department of Animal Physiology, University of Kassel, Germany
| | - Maria Giese
- Department of Animal Physiology, University of Kassel, Germany
| | - Wen Shen
- Department of Animal Physiology, University of Kassel, Germany
| | - Yi Zhang
- Institute of Nanostructure Technologies and Analytics, Center of Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Germany
| | - Alexandra Voss
- Institute of Nanostructure Technologies and Analytics, Center of Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Germany
| | - Cyril Popov
- Institute of Nanostructure Technologies and Analytics, Center of Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Germany
| | - Monika Stengl
- Department of Animal Physiology, University of Kassel, Germany
| | - HongYing Wei
- Department of Animal Physiology, University of Kassel, Germany
| |
Collapse
|
17
|
Gunawardhana KL, Hardin PE. VRILLE Controls PDF Neuropeptide Accumulation and Arborization Rhythms in Small Ventrolateral Neurons to Drive Rhythmic Behavior in Drosophila. Curr Biol 2017; 27:3442-3453.e4. [PMID: 29103936 DOI: 10.1016/j.cub.2017.10.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022]
Abstract
In Drosophila, the circadian clock is comprised of transcriptional feedback loops that control rhythmic gene expression responsible for daily rhythms in physiology, metabolism, and behavior. The core feedback loop, which employs CLOCK-CYCLE (CLK-CYC) activators and PERIOD-TIMELESS (PER-TIM) repressors to drive rhythmic transcription peaking at dusk, is required for circadian timekeeping and overt behavioral rhythms. CLK-CYC also activates an interlocked feedback loop, which uses the PAR DOMAIN PROTEIN 1ε (PDP1ε) activator and the VRILLE (VRI) repressor to drive rhythmic transcription peaking at dawn. Although Pdp1ε mutants disrupt activity rhythms without eliminating clock function, whether vri is required for clock function and/or output is not known. Using a conditionally inactivatable transgene to rescue vri developmental lethality, we show that clock function persists after vri inactivation but that activity rhythms are abolished. The inactivation of vri disrupts multiple output pathways thought to be important for activity rhythms, including PDF accumulation and arborization rhythms in the small ventrolateral neuron (sLNv) dorsal projection. These results demonstrate that vri acts as a key regulator of clock output and suggest that the primary function of the interlocked feedback loop in Drosophila is to drive rhythmic transcription required for overt rhythms.
Collapse
Affiliation(s)
- Kushan L Gunawardhana
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
18
|
A Neural Network Underlying Circadian Entrainment and Photoperiodic Adjustment of Sleep and Activity in Drosophila. J Neurosci 2017; 36:9084-96. [PMID: 27581451 DOI: 10.1523/jneurosci.0992-16.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/09/2016] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED A sensitivity of the circadian clock to light/dark cycles ensures that biological rhythms maintain optimal phase relationships with the external day. In animals, the circadian clock neuron network (CCNN) driving sleep/activity rhythms receives light input from multiple photoreceptors, but how these photoreceptors modulate CCNN components is not well understood. Here we show that the Hofbauer-Buchner eyelets differentially modulate two classes of ventral lateral neurons (LNvs) within the Drosophila CCNN. The eyelets antagonize Cryptochrome (CRY)- and compound-eye-based photoreception in the large LNvs while synergizing CRY-mediated photoreception in the small LNvs. Furthermore, we show that the large LNvs interact with subsets of "evening cells" to adjust the timing of the evening peak of activity in a day length-dependent manner. Our work identifies a peptidergic connection between the large LNvs and a group of evening cells that is critical for the seasonal adjustment of circadian rhythms. SIGNIFICANCE STATEMENT In animals, circadian clocks have evolved to orchestrate the timing of behavior and metabolism. Consistent timing requires the entrainment these clocks to the solar day, a process that is critical for an organism's health. Light cycles are the most important external cue for the entrainment of circadian clocks, and the circadian system uses multiple photoreceptors to link timekeeping to the light/dark cycle. How light information from these photorecptors is integrated into the circadian clock neuron network to support entrainment is not understood. Our results establish that input from the HB eyelets differentially impacts the physiology of neuronal subgroups. This input pathway, together with input from the compound eyes, precisely times the activity of flies under long summer days. Our results provide a mechanistic model of light transduction and integration into the circadian system, identifying new and unexpected network motifs within the circadian clock neuron network.
Collapse
|
19
|
Selcho M, Millán C, Palacios-Muñoz A, Ruf F, Ubillo L, Chen J, Bergmann G, Ito C, Silva V, Wegener C, Ewer J. Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila. Nat Commun 2017; 8:15563. [PMID: 28555616 PMCID: PMC5459987 DOI: 10.1038/ncomms15563] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/10/2017] [Indexed: 12/31/2022] Open
Abstract
Animal circadian clocks consist of central and peripheral pacemakers, which are coordinated to produce daily rhythms in physiology and behaviour. Despite its importance for optimal performance and health, the mechanism of clock coordination is poorly understood. Here we dissect the pathway through which the circadian clock of Drosophila imposes daily rhythmicity to the pattern of adult emergence. Rhythmicity depends on the coupling between the brain clock and a peripheral clock in the prothoracic gland (PG), which produces the steroid hormone, ecdysone. Time information from the central clock is transmitted via the neuropeptide, sNPF, to non-clock neurons that produce the neuropeptide, PTTH. These secretory neurons then forward time information to the PG clock. We also show that the central clock exerts a dominant role on the peripheral clock. This use of two coupled clocks could serve as a paradigm to understand how daily steroid hormone rhythms are generated in animals.
Collapse
Affiliation(s)
- Mareike Selcho
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carola Millán
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| | - Angelina Palacios-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| | - Franziska Ruf
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lilian Ubillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| | - Jiangtian Chen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Gregor Bergmann
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Chihiro Ito
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Valeria Silva
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaiso, Gran Bretaña 1111, Valparaiso 2360102, Chile
| |
Collapse
|
20
|
Menegazzi P, Dalla Benetta E, Beauchamp M, Schlichting M, Steffan-Dewenter I, Helfrich-Förster C. Adaptation of Circadian Neuronal Network to Photoperiod in High-Latitude European Drosophilids. Curr Biol 2017; 27:833-839. [PMID: 28262491 DOI: 10.1016/j.cub.2017.01.036] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/14/2016] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
Abstract
The genus Drosophila contains over 2,000 species that, stemming from a common ancestor in the Old World Tropics, populate today very different environments [1, 2] (reviewed in [3]). We found significant differences in the activity pattern of Drosophila species belonging to the holarctic virilis group, i.e., D. ezoana and D. littoralis, collected in Northern Europe, compared to that of the cosmopolitan D. melanogaster, collected close to the equator. These behavioral differences might have been of adaptive significance for colonizing high-latitude habitats and hence adjust to long photoperiods. Most interestingly, the flies' locomotor activity correlates with the neurochemistry of their circadian clock network, which differs between low and high latitude for the expression pattern of the blue light photopigment cryptochrome (CRY) and the neuropeptide Pigment-dispersing factor (PDF) [4-6]. In D. melanogaster, CRY and PDF are known to modulate the timing of activity and to maintain robust rhythmicity under constant conditions [7-11]. We could partly simulate the rhythmic behavior of the high-latitude virilis group species by mimicking their CRY/PDF expression patterns in a laboratory strain of D. melanogaster. We therefore suggest that these alterations in the CRY/PDF clock neurochemistry might have allowed the virilis group species to colonize high-latitude environments.
Collapse
Affiliation(s)
- Pamela Menegazzi
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Elena Dalla Benetta
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Marta Beauchamp
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Matthias Schlichting
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Ingolf Steffan-Dewenter
- Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, 97074 Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany.
| |
Collapse
|
21
|
Kinoshita M, Homberg U. Insect Brains: Minute Structures Controlling Complex Behaviors. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-4-431-56469-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
An RNAi Screen To Identify Protein Phosphatases That Function Within the Drosophila Circadian Clock. G3-GENES GENOMES GENETICS 2016; 6:4227-4238. [PMID: 27784754 PMCID: PMC5144990 DOI: 10.1534/g3.116.035345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Circadian clocks in eukaryotes keep time via cell-autonomous transcriptional feedback loops. A well-characterized example of such a transcriptional feedback loop is in Drosophila, where CLOCK-CYCLE (CLK-CYC) complexes activate transcription of period (per) and timeless (tim) genes, rising levels of PER-TIM complexes feed-back to repress CLK-CYC activity, and degradation of PER and TIM permits the next cycle of CLK-CYC transcription. The timing of CLK-CYC activation and PER-TIM repression is regulated posttranslationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Previous behavioral screens identified several kinases that control CLK, PER, and TIM levels, subcellular localization, and/or activity, but two phosphatases that function within the clock were identified through the analysis of candidate genes from other pathways or model systems. To identify phosphatases that play a role in the clock, we screened clock cell-specific RNA interference (RNAi) knockdowns of all annotated protein phosphatases and protein phosphatase regulators in Drosophila for altered activity rhythms. This screen identified 19 protein phosphatases that lengthened or shortened the circadian period by ≥1 hr (p ≤ 0.05 compared to controls) or were arrhythmic. Additional RNAi lines, transposon inserts, overexpression, and loss-of-function mutants were tested to independently confirm these RNAi phenotypes. Based on genetic validation and molecular analysis, 15 viable protein phosphatases remain for future studies. These candidates are expected to reveal novel features of the circadian timekeeping mechanism in Drosophila that are likely to be conserved in all animals including humans.
Collapse
|
23
|
Arendt A, Baz ES, Stengl M. Functions of corazonin and histamine in light entrainment of the circadian pacemaker in the Madeira cockroach,Rhyparobia maderae. J Comp Neurol 2016; 525:1250-1272. [DOI: 10.1002/cne.24133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/20/2016] [Accepted: 10/12/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Andreas Arendt
- Animal Physiology, Department of Biology; University of Kassel; 34132 Kassel Germany
| | - El-Sayed Baz
- Animal Physiology, Department of Biology; University of Kassel; 34132 Kassel Germany
- Department of Zoology, Faculty of Science; Suez Canal University; 41522 Ismailia Governorate Egypt
| | - Monika Stengl
- Animal Physiology, Department of Biology; University of Kassel; 34132 Kassel Germany
| |
Collapse
|
24
|
Senthilan PR, Helfrich-Förster C. Rhodopsin 7-The unusual Rhodopsin in Drosophila. PeerJ 2016; 4:e2427. [PMID: 27651995 PMCID: PMC5018682 DOI: 10.7717/peerj.2427] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/11/2016] [Indexed: 12/17/2022] Open
Abstract
Rhodopsins are the major photopigments in the fruit fly Drosophila melanogaster. Drosophila express six well-characterized Rhodopsins (Rh1–Rh6) with distinct absorption maxima and expression pattern. In 2000, when the Drosophila genome was published, a novel Rhodopsin gene was discovered: Rhodopsin 7 (Rh7). Rh7 is highly conserved among the Drosophila genus and is also found in other arthropods. Phylogenetic trees based on protein sequences suggest that the seven Drosophila Rhodopsins cluster in three different groups. While Rh1, Rh2 and Rh6 form a “vertebrate-melanopsin-type”–cluster, and Rh3, Rh4 and Rh5 form an “insect-type”-Rhodopsin cluster, Rh7 seem to form its own cluster. Although Rh7 has nearly all important features of a functional Rhodopsin, it differs from other Rhodopsins in its genomic and structural properties, suggesting it might have an overall different role than other known Rhodopsins.
Collapse
|
25
|
Stengl M, Arendt A. Peptidergic circadian clock circuits in the Madeira cockroach. Curr Opin Neurobiol 2016; 41:44-52. [PMID: 27575405 DOI: 10.1016/j.conb.2016.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/16/2016] [Accepted: 07/20/2016] [Indexed: 01/29/2023]
Abstract
Circadian clocks control physiology and behavior of organisms in synchrony with external light dark cycles in changing photoperiods. The Madeira cockroach Rhyparobia maderae was the first model organism in which an endogenous circadian clock in the brain was identified. About 240 neurons constitute the cockroach circadian pacemaker network in the accessory medulla. The expression of high concentrations of neuropeptides, among them the most prominent circadian coupling factor pigment-dispersing factor, as well as their ability to generate endogenous ultradian and circadian rhythms in electrical activity and clock gene expression distinguish these pacemaker neurons. We assume that entrainment to light-dark cycles and the control of 24h rest-activity rhythms is achieved via peptidergic circuits forming autoreceptive labeled lines.
Collapse
Affiliation(s)
- Monika Stengl
- University of Kassel, Biology, Animal Physiology, Heinrich Plett Str. 40, 34132 Kassel, Germany.
| | - Andreas Arendt
- University of Kassel, Biology, Animal Physiology, Heinrich Plett Str. 40, 34132 Kassel, Germany
| |
Collapse
|
26
|
The Drosophila Receptor Protein Tyrosine Phosphatase LAR Is Required for Development of Circadian Pacemaker Neuron Processes That Support Rhythmic Activity in Constant Darkness But Not during Light/Dark Cycles. J Neurosci 2016; 36:3860-70. [PMID: 27030770 DOI: 10.1523/jneurosci.4523-15.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/22/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED InDrosophila, a transcriptional feedback loop that is activated by CLOCK-CYCLE (CLK-CYC) complexes and repressed by PERIOD-TIMELESS (PER-TIM) complexes keeps circadian time. The timing of CLK-CYC activation and PER-TIM repression is regulated post-translationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Although kinases that control PER, TIM, and CLK levels, activity, and/or subcellular localization have been identified, less is known about phosphatases that control clock protein dephosphorylation. To identify clock-relevant phosphatases, clock-cell-specific RNAi knockdowns ofDrosophilaphosphatases were screened for altered activity rhythms. One phosphatase that was identified, the receptor protein tyrosine phosphatase leukocyte-antigen-related (LAR), abolished activity rhythms in constant darkness (DD) without disrupting the timekeeping mechanism in brain pacemaker neurons. However, expression of the neuropeptide pigment-dispersing factor (PDF), which mediates pacemaker neuron synchrony and output, is eliminated in the dorsal projections from small ventral lateral (sLNv) pacemaker neurons whenLarexpression is knocked down during development, but not in adults. Loss ofLarfunction eliminates sLNvdorsal projections, but PDF expression persists in sLNvand large ventral lateral neuron cell bodies and their remaining projections. In contrast to the defects in lights-on and lights-off anticipatory activity seen in flies that lack PDF,LarRNAi knockdown flies anticipate the lights-on and lights-off transition normally. Our results demonstrate thatLaris required for sLNvdorsal projection development and suggest that PDF expression in LNvcell bodies and their remaining projections mediate anticipation of the lights-on and lights-off transitions during a light/dark cycle. SIGNIFICANCE STATEMENT In animals, circadian clocks drive daily rhythms in physiology, metabolism, and behavior via transcriptional feedback loops. Because key circadian transcriptional activators and repressors are regulated by phosphorylation, we screened for phosphatases that alter activity rhythms when their expression was reduced. One such phosphatase, leukocyte-antigen-related (LAR), abolishes activity rhythms, but does not disrupt feedback loop function. Rather,Lardisrupts clock output by eliminating axonal processes from clock neurons that release pigment-dispersing factor (PDF) neuropeptide into the dorsal brain, but PDF expression persists in their cell bodies and remaining projections. In contrast to flies that lack PDF, flies that lackLaranticipate lights-on and lights-off transitions normally, which suggests that the remaining PDF expression mediates activity during light/dark cycles.
Collapse
|
27
|
Eck S, Helfrich-Förster C, Rieger D. The Timed Depolarization of Morning and Evening Oscillators Phase Shifts the Circadian Clock of Drosophila. J Biol Rhythms 2016; 31:428-42. [PMID: 27269519 DOI: 10.1177/0748730416651363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phase response curves (PRCs) for light or temperature stimuli have been shown to be most valuable in understanding how circadian clocks are entrained to daily environmental cycles. Nowadays, PRC experiments in which clock neurons are manipulated in a temporally restricted manner by thermogenetic or optogenetic tools are also useful to comprehend clock network properties. Here, we temporally depolarized specific clock neurons of Drosophila melanogaster by activating temperature-sensitive dTrpA1 channels to unravel their role in phase shifting the flies' activity rhythm. The depolarization of all clock neurons caused a PRC resembling the flies' light PRC, with strong phase delays in the first half of the subjective night and modest phase advances in its second half. However, the activation of the flies' pigment-dispersing factor (PDF)-positive morning (M) neurons (s-LNvs) only induced phase advances, and these reached into the subjective day, where the light PRC has its dead zone. This indicates that the M neurons are very potent in accelerating the clock, which is in line with previous observations. In contrast, the evening (E) neurons together with the PDF-positive l-LNvs appear to mediate phase delays. Most interestingly, the molecular clock (Period protein cycling) of the depolarized clock neurons was shifted in parallel to the behavior, and this shift was already visible within the first cycle after the temperature pulse. We identified cAMP response element binding protein B (CREB) as a putative link between membrane depolarization and the molecular clock.
Collapse
Affiliation(s)
- Saskia Eck
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Germany
| | | | - Dirk Rieger
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Germany
| |
Collapse
|
28
|
De Nobrega AK, Lyons LC. Circadian Modulation of Alcohol-Induced Sedation and Recovery in Male and Female Drosophila. J Biol Rhythms 2016; 31:142-60. [PMID: 26833081 DOI: 10.1177/0748730415627067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Delineating the factors that affect behavioral and neurological responses to alcohol is critical to facilitate measures for preventing or treating alcohol abuse. The high degree of conserved molecular and physiological processes makes Drosophila melanogaster a valuable model for investigating circadian interactions with alcohol-induced behaviors and examining sex-specific differences in alcohol sensitivity. We found that wild-type Drosophila exhibited rhythms in alcohol-induced sedation under light-dark and constant dark conditions with considerably greater alcohol exposure necessary to induce sedation during the late (subjective) day and peak sensitivity to alcohol occurring during the late (subjective) night. The circadian clock also modulated the recovery from alcohol-induced sedation with flies regaining motor control significantly faster during the late (subjective) day. As predicted, the circadian rhythms in sedation and recovery were absent in flies with a mutation in the circadian gene period or arrhythmic flies housed in constant light conditions. Flies lacking a functional circadian clock were more sensitive to the effects of alcohol with significantly longer recovery times. Similar to other animals and humans, Drosophila exhibit sex-specific differences in alcohol sensitivity. We investigated whether the circadian clock modulated the rhythms in the loss-of-righting reflex, alcohol-induced sedation, and recovery differently in males and females. We found that both sexes demonstrated circadian rhythms in the loss-of-righting reflex and sedation with the differences in alcohol sensitivity between males and females most pronounced during the late subjective day. Recovery of motor reflexes following alcohol sedation also exhibited circadian modulation in male and female flies, although the circadian clock did not modulate the difference in recovery times between the sexes. These studies provide a framework outlining how the circadian clock modulates alcohol-induced behaviors in Drosophila and identifies sexual dimorphisms in the circadian modulation of alcohol behaviors.
Collapse
Affiliation(s)
- Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL
| |
Collapse
|
29
|
Arendt A, Neupert S, Schendzielorz J, Predel R, Stengl M. The neuropeptide SIFamide in the brain of three cockroach species. J Comp Neurol 2015; 524:1337-60. [DOI: 10.1002/cne.23910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/14/2015] [Accepted: 10/01/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Andreas Arendt
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| | - Susanne Neupert
- Department of Biology; Institute of Zoology, University of Cologne; 50674 Cologne Germany
| | - Julia Schendzielorz
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| | - Reinhard Predel
- Department of Biology; Institute of Zoology, University of Cologne; 50674 Cologne Germany
| | - Monika Stengl
- Department of Biology; Animal Physiology, University of Kassel; 34132 Kassel Germany
| |
Collapse
|
30
|
Schlichting M, Grebler R, Menegazzi P, Helfrich-Förster C. Twilight Dominates Over Moonlight in Adjusting Drosophila’s Activity Pattern. J Biol Rhythms 2015; 30:117-28. [DOI: 10.1177/0748730415575245] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Light is the most important zeitgeber for the synchronization of the Drosophila melanogaster circadian clock. In nature, there is twilight, and the nights are rarely completely dark, a fact that is usually disregarded in lab experiments. Recent studies showed contrary effects of simulated twilight and moonlight on fly locomotor activity, with twilight shifting morning and evening activity into the day and moonlight shifting it into the night. A currently unanswered question is, what may happen to locomotor activity when flies are exposed to more natural conditions in which both moonlight and twilight are simulated? Our data demonstrate that flies are able to integrate twilight and moonlight. However, twilight seems to dominate over moonlight as both, morning and evening activity peaks, take place at dawn or at dusk, respectively, and not during the night. Furthermore, nocturnal activity decreases in the presence of twilight. The compound eyes are essential for this behavior, and by investigating different photoreceptor mutants, we unraveled the importance of photoreceptor cells 7 and 8 for wild-type phases of the activity peaks. To adjust nocturnal activity levels to a wild-type manner, all photoreceptor cells work together in a complex way, with rhodopsin 6 having a prominent role.
Collapse
Affiliation(s)
- Matthias Schlichting
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Rudi Grebler
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Pamela Menegazzi
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
31
|
Hermann-Luibl C, Helfrich-Förster C. Clock network in Drosophila. CURRENT OPINION IN INSECT SCIENCE 2015; 7:65-70. [PMID: 32846682 DOI: 10.1016/j.cois.2014.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/14/2014] [Accepted: 11/19/2014] [Indexed: 06/11/2023]
Abstract
The circadian clock consists of a network of peptidergic neurons in the brain of all animals. The function of this peptidergic network has been largely revealed in the fruit fly Drosophila melanogaster due to the relatively few well characterized clock neurons and because these neurons can be genetically manipulated. Here we review the neuronal organization of the circadian network and the role of individual clock neurons and neuropeptides in it.
Collapse
Affiliation(s)
- Christiane Hermann-Luibl
- Department of Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Department of Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Germany.
| |
Collapse
|
32
|
Schlichting M, Helfrich-Förster C. Photic entrainment in Drosophila assessed by locomotor activity recordings. Methods Enzymol 2014; 552:105-23. [PMID: 25707274 DOI: 10.1016/bs.mie.2014.10.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Light is the most important Zeitgeber to entrain the circadian clock of the fruit fly Drosophila melanogaster to the 24-h cycle on earth. The fruit fly's circadian clock is very light sensitive, mainly because about half of the 150 clock neurons in the fly's brain express the blue-light photopigment, Cryptochrome, which provokes an immediate degradation of the clock protein Timeless upon activation by light. Consequently, Drosophila's molecular clock can reset very fast to measure the changes in environmental-lighting conditions. However, usually the responses of the molecular clock to light are not directly measured, but conclusions about entrainment of the circadian clock are drawn from recording the flies' locomotor activity rhythms. Here, we review how the flies' locomotor activity can be recorded under different light regimes and how entrainment can be analyzed and properly judged. We also summarize the influence of different recording and lighting methods on the flies' activity pattern, highlight their advantages and disadvantages, and stress general pitfalls.
Collapse
Affiliation(s)
- Matthias Schlichting
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
33
|
Wei H, Yasar H, Funk NW, Giese M, Baz ES, Stengl M. Signaling of pigment-dispersing factor (PDF) in the Madeira cockroach Rhyparobia maderae. PLoS One 2014; 9:e108757. [PMID: 25269074 PMCID: PMC4182629 DOI: 10.1371/journal.pone.0108757] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/05/2014] [Indexed: 11/19/2022] Open
Abstract
The insect neuropeptide pigment-dispersing factor (PDF) is a functional ortholog of vasoactive intestinal polypeptide, the coupling factor of the mammalian circadian pacemaker. Despite of PDF's importance for synchronized circadian locomotor activity rhythms its signaling is not well understood. We studied PDF signaling in primary cell cultures of the accessory medulla, the circadian pacemaker of the Madeira cockroach. In Ca²⁺ imaging studies four types of PDF-responses were distinguished. In regularly bursting type 1 pacemakers PDF application resulted in dose-dependent long-lasting increases in Ca²⁺ baseline concentration and frequency of oscillating Ca²⁺ transients. Adenylyl cyclase antagonists prevented PDF-responses in type 1 cells, indicating that PDF signaled via elevation of intracellular cAMP levels. In contrast, in type 2 pacemakers PDF transiently raised intracellular Ca²⁺ levels even after blocking adenylyl cyclase activity. In patch clamp experiments the previously characterized types 1-4 could not be identified. Instead, PDF-responses were categorized according to ion channels affected. Application of PDF inhibited outward potassium or inward sodium currents, sometimes in the same neuron. In a comparison of Ca²⁺ imaging and patch clamp experiments we hypothesized that in type 1 cells PDF-dependent rises in cAMP concentrations block primarily outward K⁺ currents. Possibly, this PDF-dependent depolarization underlies PDF-dependent phase advances of pacemakers. Finally, we propose that PDF-dependent concomitant modulation of K⁺ and Na⁺ channels in coupled pacemakers causes ultradian membrane potential oscillations as prerequisite to efficient synchronization via resonance.
Collapse
Affiliation(s)
- Hongying Wei
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - Hanzey Yasar
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - Nico W. Funk
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - Maria Giese
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - El-Sayed Baz
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - Monika Stengl
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
- * E-mail:
| |
Collapse
|