1
|
Czajkowski M, Słaba A, Milanowski B, Bauer-Brandl A, Brandl M, Skupin-Mrugalska P. Melt-extruded formulations of fenofibrate with various grades of hydrogenated phospholipid exhibit promising in-vitro biopharmaceutical behavior. Eur J Pharm Sci 2024; 203:106936. [PMID: 39414171 DOI: 10.1016/j.ejps.2024.106936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/30/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
In the current study, it was demonstrated that three commercially available grades of hydrogenated phospholipids (HPL) differing in their content of phosphatidylcholine may be used as components for hot melt-extruded binary (HPL as sole excipient) or ternary (in combination with copovidone) solid dispersions of fenofibrate (FEN) at mass fractions between 0.5 and 20% (ternary) or 80% (binary). X-ray powder diffraction indicated complete conversion of crystalline fenofibrate into the amorphous state by hot melt extrusion for all ternary blends. In contrast, both the binary blends (HPL- and copovidone-based) contained minor remaining crystallites. Irrespectively, all solid dispersions induced during dissolution studies a supersaturated state of FEN, where the ternary ASDs showed enhanced and more complete release of FEN as compared to the binary blends and, even more pronounced, in comparison to the marketed micronized and nano-milled formulations. In terms of the cumulated amount permeated, there were marginal differences between the various formulations when combined dissolution/permeation was done using FeSSIF as donor medium; with FaSSIF as donor medium, the binary HPL-ASD containing the grade with the highest phosphatidylcholine fraction performed best in terms of permeation, even significantly better than the marketed nano-crystal formulation. Otherwise, no significant differences were seen between the various grades of HPL when FEN dissolution and permeation were analyzed for ternary solid dispersions. In conclusion, the in-vitro biopharmaceutical behaviour of hydrogenated phospholipid-containing blends manufactured by hot melt extrusion appears promising. They can be a viable formulation option for poorly water-soluble and lipophilic drug compounds like FEN.
Collapse
Affiliation(s)
- Mikołaj Czajkowski
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Rokietnicka 3, Poznan 60-806, Poland; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Aleksandra Słaba
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Rokietnicka 3, Poznan 60-806, Poland; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Bartłomiej Milanowski
- Chair and Department of Pharmaceutical Technology, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Rokietnicka 3, Poznan 60-806, Poland; GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o.o., Na Kepie 3, Zbaszyn 64-360, Poland
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Martin Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark.
| | - Paulina Skupin-Mrugalska
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Rokietnicka 3, Poznan 60-806, Poland
| |
Collapse
|
2
|
Czajkowski M, Jacobsen AC, Bauer-Brandl A, Brandl M, Skupin-Mrugalska P. Hydrogenated phospholipid, a promising excipient in amorphous solid dispersions of fenofibrate for oral delivery: Preparation and in-vitro biopharmaceutical characterization. Int J Pharm 2023; 644:123294. [PMID: 37544387 DOI: 10.1016/j.ijpharm.2023.123294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Amorphous solid dispersions (ASD) represent a viable formulation strategy to improve dissolution and bioavailability of poorly soluble drugs. Our study aimed to evaluate the feasibility and potential role of hydrogenated phospholipid (HPL) as a matrix material and solubilizing additive for binary (alone) or ternary (in combination with polymers) solid dispersions, using fenofibrate (FEN) as the model drug. FEN, incorporated within ASDs by melting or freeze-drying (up to 20% m/m), stayed amorphous during short-term stability studies. The solubility enhancing potential of HPL depended on the dissolution medium. In terms of enhancing in vitro permeation, solid dispersions with HPL were found equally or slightly more potent as compared to the polymer-based ASD. For studied ASD, in vitro permeation was found substantially enhanced as compared to a suspension of crystalline FEN and at least equal compared to marketed formulations under comparable conditions (literature data). Additionally, while the permeation of neat FEN and FEN in binary solid dispersions was affected by the dissolution medium (i.e., the "prandial state"), for ternary solid dispersions the permeation was independent of the "prandial state" (FaSSIF = FeSSIF). This suggests that ternary solid dispersions containing both polymer and HPL may represent a viable formulation strategy to mitigate fenofibrate's food effect.
Collapse
Affiliation(s)
- Mikołaj Czajkowski
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Ann-Christin Jacobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Annette Bauer-Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Martin Brandl
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Paulina Skupin-Mrugalska
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
| |
Collapse
|
3
|
Atneriya U, Kapoor D, Sainy J, Maheshwari R. In vitro profiling of fenofibrate solid dispersion mediated tablet formulation to treat high blood cholesterol. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:284-299. [PMID: 36037932 DOI: 10.1016/j.pharma.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Fenofibrate (FNF), an anti-hyperlipidemic agent, suffers from poor water solubility (0.000707mg/ml) and belongs to class II drug as per BCS, shows a slow dissolution rate. The current investigation aimed to fabricate a fast-dissolving tablet of FNF (not available in the commercial market) using solid dispersion technique employing Vitamin E-D-α-Tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) as molecular biomaterial to enhance dissolution rate and reduce the time required to reach the systemic circulation. MATERIALS AND METHODS Firstly, carrier material was selected based on the release study via preparing solid dispersion using the melting method, and prepared solid dispersion was characterized. Secondly, fast-dissolving tablets from solid dispersion were fabricated using the direct compression tool and characterized for X-ray diffraction (XRD) pattern, friability, hardness, content uniformity, weight variation and in vitro disintegration test. RESULTS The X-ray diffraction study confirmed the successful formation of solid dispersion using vitamin E TPGS by analyzing the change in physical state. The fabricated solid dispersion exhibited higher drug content than a physical mixture of FNF. An excipient interference study was also performed in methanol and 0.75% w/v sodium lauryl sulphate. It revealed no significant alterations in the absorption peak of FNF as analyzed using UV spectroscopy at 287nm. In addition, water absorption ratio phase solubility and wetting time were also assessed. In -vitro release of FNF from developed tablets was found significantly higher (93.23%±3.11; p<0.001) as compared to prepared compressed tablet of pure FNF (12.21±2.34%). The dissolution rate was also determined, and data were then kept to various kinetic models such as zero-order chemical kinetic, first-order chemical kinetic, Hixon-Crowell and Higuchi chemical kinetic. CONCLUSION A complete and sequential in vitro and physicochemical characterization of developed formulation was carried out to set-up improved and effective treatment for high blood cholesterol.
Collapse
Affiliation(s)
- U Atneriya
- School of Pharmacy Devi Ahilya Vishwavidhylaya, 452020 Indore, India
| | - D Kapoor
- Dr. Dayaram Patel Pharmacy College, SardarBaug, Station Road, 394601 Bardoli, Gujarat, India
| | - J Sainy
- School of Pharmacy Devi Ahilya Vishwavidhylaya, 452020 Indore, India
| | - R Maheshwari
- School of Pharmacy and Technology Management, SVKM'S NMIMS, Green Pharma Industrial Park, TSIIC, Jadcherla, 509301 Hyderabad, India.
| |
Collapse
|
4
|
Novel polymeric additives in the preparation and modification of polymeric membranes: A comprehensive review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Carrascal JJ, Pinal R, Carvajal T, Pérez LD, Baena Y. Benzoic acid complexes with Eudragit E100®: New alternative antimicrobial preservatives. Int J Pharm 2021; 607:120991. [PMID: 34390811 DOI: 10.1016/j.ijpharm.2021.120991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 10/20/2022]
Abstract
Given that the use of some preservatives in cosmetics has been restricted, novel alternative preservatives are needed. The aim of this study was to characterize the physicochemical and antimicrobial properties of two polyelectrolyte complexes (EuB100 and EuB75Cl25), which were developed through hot melt extrusion (HME) using benzoic acid (BA) and Eudragit E100. Based on phase diagrams and an experimental statistical design, the solubility of the acid in the polymer and the HME conditions were established. Intermolecular interactions were evaluated through Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRPD). Release behavior was determined for the systems. Antibacterial activity and ζ-potential were determined on Escherichia coli. FTIR revealed acid-base interaction, and XPS showed that the percentages of protonated nitrogen N1s were 13.5% for EuB100 and 20.3% for EuB75Cl25. The BA released showed a non-Fickian behavior, and a satisfactory antibacterial activity against E. coli was demonstrated at pH 6.9. The complexes modified ζ-potential, destabilizing the membrane functionality of E. coli. These complexes are potential antimicrobial preservatives with a greater spectrum of action, with bactericidal activity against E. coli in a wider pH range than uncomplexed BA, even at pH 6.9.
Collapse
Affiliation(s)
- Juan José Carrascal
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias -Departamento de Farmacia - Grupo de investigación Sistemas para liberación controlada de moléculas biológicamente activas, Carrera 30 # 45-03, Bogotá D.C, 111321, Colombia
| | - Rodolfo Pinal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907-2051, USA
| | - Teresa Carvajal
- Department of Agricultural & Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907-2093, USA
| | - León Darío Pérez
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias -Departamento de Química - Grupo de investigación en Macromoléculas, Carrera 30 # 45-03, Bogotá D.C 111321, Colombia
| | - Yolima Baena
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias -Departamento de Farmacia - Grupo de investigación Sistemas para liberación controlada de moléculas biológicamente activas, Carrera 30 # 45-03, Bogotá D.C, 111321, Colombia.
| |
Collapse
|
6
|
Yang L, Wu P, Xu J, Xie D, Wang Z, Wang Q, Chen Y, Li CH, Zhang J, Chen H, Quan G. Development of Apremilast Solid Dispersion Using TPGS and PVPVA with Enhanced Solubility and Bioavailability. AAPS PharmSciTech 2021; 22:142. [PMID: 33893566 DOI: 10.1208/s12249-021-02005-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/27/2021] [Indexed: 12/16/2022] Open
Abstract
Apremilast (APST) is an effective inhibitor of phosphodieasterase 4 (PDE4) which is the first oral drug for the treatment of adult patients with active psoriatic arthritis. However, Apremilast's low solubility restricts its dissolution and bioavailability. In this study, APST solid dispersion with D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and Poly(1-vinylpyrrolidone-co-vinyl acetate) (PVPVA) was developed to improve the dissolution and bioavailability of APST by spray drying. A series of TPGS were synthesized to elucidate the effect of the ratio of monoester to diester on solubilizing capacity. X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), and Fourier transform infrared spectrophotometry (FT-IR) were used to characterize the solid dispersion, and the results showed that APST was amorphous in solid dispersion. In vitro dissolution study showed that the dissolution rate of solid dispersion in phosphate buffered saline (pH 6.8) was remarkably increased, reaching a release of 90% within 10 min. Moreover, in vivo pharmacokinetics study revealed that the bioavailability of solid dispersion in rats had significant improvement. In particular, its Cmax and AUClast were nearly 22- and 12.9-fold greater as compared to APST form B, respectively. In conclusion, APST solid dispersion with TPGS and PVPVA is an alternative drug delivery system to improve the solubility and oral bioavailability of APST.
Collapse
Affiliation(s)
- Liuhong Yang
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China
| | - Penghui Wu
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China
| | - Jinchao Xu
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China
| | - Dihuan Xie
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China
| | - Zhongqing Wang
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China
| | - Qian Wang
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China
| | - Yong Chen
- HEC Research and Development Center, HEC Pharm Group, Dongguan, 523871, China.
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, College of Chemical Biology and Environmental Engineering, Xiangnan University, Chenzhou, 423043, China.
| | - Chuan Hua Li
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, College of Chemical Biology and Environmental Engineering, Xiangnan University, Chenzhou, 423043, China
| | - Jiaxin Zhang
- College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hangping Chen
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
7
|
Wu Q, Feng D, Huang Z, Chen M, Yang D, Pan X, Lu C, Quan G, Wu C. Supersaturable organic-inorganic hybrid matrix based on well-ordered mesoporous silica to improve the bioavailability of water insoluble drugs. Drug Deliv 2020; 27:1292-1300. [PMID: 32885715 PMCID: PMC7580725 DOI: 10.1080/10717544.2020.1815898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 12/01/2022] Open
Abstract
Mesoporous silica with uniform 2-D hexagonal pores has been newly employed as facile reservoir to impove the dissolution rate of water insoluble drugs. However, rapid drug release from mesoporous silica is usually accompanied by the generation of supersaturated solution, which leads to the drug precipitation and compromised absorption. To address this issue, a supersaturated ternary hybrid system was constructed in this study by utilizing inorganic mesoporous silica and organic precipitation inhibitor. Vinylprrolidone-vinylacetate copolymer (PVP VA64) with similar solubility parameter to model drug fenofibrate (FNB) was expected to well inhibit the precipitation. Mesoporous silica Santa Barbara amorphous-15 (SBA-15) was synthesized in acidic media and hybrid matrix was produced by hot melt extrusion technique. The results of in vitro supersaturation dissolution test obviously revealed that the presence of PVP VA64 could effectively sustain a higher apparent concentration. PVP VA64 was suggested to simultaneously reduce the rate of nucleation and crystal growth and subsequently maintain a metastable supersaturated state. The absorption of FNB delivered by the organic-inorganic hybrid matrix was remarkably enhanced in beagle dogs, and its AUC value was 1.92-fold higher than that of FNB loaded mesoporous silica without PVP VA 64. In conclusion, the supersaturated organic-inorganic hybrid matrix can serve as a modular strategy to enhance the oral availability of water insoluble drugs.
Collapse
Affiliation(s)
- Qiaoli Wu
- College of Pharmacy, Jinan University, Guangzhou, China
- Department of Pharmacy, Zengcheng District People’s Hospital, Guangzhou, China
| | - Disang Feng
- College of Pharmacy, Jinan University, Guangzhou, China
| | | | - Minglong Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan Yang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Dhaval M, Sharma S, Dudhat K, Chavda J. Twin-Screw Extruder in Pharmaceutical Industry: History, Working Principle, Applications, and Marketed Products: an In-depth Review. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Ghosh MK, Wahed MII, Khan RI, Habib A, Barman RK. Pharmacological screening of fenofibrate-loaded solid dispersion in fructose-induced diabetic rat. J Pharm Pharmacol 2020; 72:909-915. [PMID: 32306394 DOI: 10.1111/jphp.13267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/14/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Hyperlipidaemia is a common phenomenon in diabetes mellitus. Fenofibrate (FF) is a good candidate for the treatment of lipid abnormalities in patients with type 2 diabetes. But the bioavailability as well as therapeutic efficacy of this drug is limited to its dissolution behaviour. Here, the authors assess the therapeutic efficacy of a newly formulated solid dispersion of fenofibrate (SDF) having enhanced dissolution profiles in contrast to pure FF using fructose-induced diabetic rat model. METHODS Fructose-induced diabetic rat model was developed to assess the pharmacological efficacy of the formulated SDF, and the results were compared with the effects of conventional FF therapy. KEY FINDINGS The 14 days treatment showed better improvement in lipid-lowering potency of SDF than pure FF. SDF containing one-third dose of pure FF showed similar effect in terms of triglyceride, total cholesterol and low-density lipoprotein lowering efficacy, whereas increased high-density lipoprotein at same extent. The similar dose of SDF produced more prominent effect than FF. Histological studies also demonstrated the enhanced lipid clearance from liver by SDF than FF that was concordant with the biochemical results. CONCLUSIONS This newly formulated SDF would be a promising alternative for conventional fenofibrate in treating hyperlipidaemia.
Collapse
Affiliation(s)
- Milon Kumar Ghosh
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh.,Department of Pharmacy, Islamic University, Kushtia, Bangladesh
| | | | | | - Anwar Habib
- Department of Pharmacology, Rajshahi Medical College, Rajshahi, Bangladesh
| | | |
Collapse
|
10
|
Price DJ, Nair A, Kuentz M, Dressman J, Saal C. Calculation of drug-polymer mixing enthalpy as a new screening method of precipitation inhibitors for supersaturating pharmaceutical formulations. Eur J Pharm Sci 2019; 132:142-156. [DOI: 10.1016/j.ejps.2019.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/08/2019] [Accepted: 03/10/2019] [Indexed: 11/24/2022]
|
11
|
Design and synthesis of polymeric membranes using water-soluble pore formers: an overview. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2616-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Cao YN, Baiyisaiti A, Wong CW, Hsu SH, Qi R. Polyurethane Nanoparticle-Loaded Fenofibrate Exerts Inhibitory Effects on Nonalcoholic Fatty Liver Disease in Mice. Mol Pharm 2018; 15:4550-4557. [PMID: 30188729 DOI: 10.1021/acs.molpharmaceut.8b00548] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyurethane (PU) nanoparticles are potential drug carriers. We aimed to study the in vitro and in vivo efficacy of biodegradable PU nanoparticles loaded with fenofibrate (FNB-PU) on nonalcoholic fatty liver disease (NAFLD). FNB-PU was prepared by a green process, and its preventive effects on NAFLD were investigated on HepG2 cells and mice. FNB-PU showed sustained in vitro FNB release profile. Compared to FNB crude drug, FNB-PU significantly decreased triglyceride content in HepG2 cells incubated with oleic acid and in livers of mice with NAFLD induced by a methionine choline deficient diet, and increased plasma FNB concentration of the mice. FNB-PU increased absorption of FNB and therefore enhanced the inhibitory effects of FNB on NAFLD.
Collapse
Affiliation(s)
- Yi-Ni Cao
- Peking University Institute of Cardiovascular Sciences , Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems , Beijing , China
| | - Asiya Baiyisaiti
- School of Pharmacy , Shihezi University , Shihezi , Xinjiang , China
| | - Chui-Wei Wong
- Institute of Polymer Science and Engineering , National Taiwan University , Taipei , Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering , National Taiwan University , Taipei , Taiwan
| | - Rong Qi
- Peking University Institute of Cardiovascular Sciences , Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems , Beijing , China
| |
Collapse
|
13
|
Yousaf AM, Ramzan M, Shahzad Y, Mahmood T, Jamshaid M. Fabrication and in vitro characterization of fenofibric acid-loaded hyaluronic acid–polyethylene glycol polymeric composites with enhanced drug solubility and dissolution rate. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1466137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | - Muhammad Ramzan
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University, Lahore, Pakistan
| | - Tariq Mahmood
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | | |
Collapse
|
14
|
Tipduangta P, Takieddin K, Fábián L, Belton P, Qi S. Towards controlling the crystallisation behaviour of fenofibrate melt: triggers of crystallisation and polymorphic transformation. RSC Adv 2018; 8:13513-13525. [PMID: 35542519 PMCID: PMC9079832 DOI: 10.1039/c8ra01182f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/05/2018] [Indexed: 12/01/2022] Open
Abstract
Fenofibrate (FEN) is a dyslipidemia treatment agent which is poorly soluble in water. FEN has tendency to form polymorphs and its crystallisation behaviour is difficult to predict. The nucleation process can be initiated by mechanical disruption such as ball milling or surface scratching which may result in different crystallisation behaviour to that observed in the unperturbed system. This study has obtained insights into the controllability of FEN crystallisation by means of regulating the exposed surface and growth temperatures during its crystallisation. The availability of an open top surface (OTS) during the crystallisation of the FEN melt resulted in a mixture containing FEN form I and IIa (I ≫ IIa) at room temperature, and in the range 40 to 70 °C. Covering the surface led to significant increases in the yield of form IIa at room temperature and at 40 and 50 °C. These temperatures also yielded the highest amount of form IIa in the OTS samples whilst crystallisation at 70 °C led to only FEN form I crystals regardless of the availability of the free surface. The metastable FEN form IIa transforms to the stable form I under the influence of a mechanical stress. Additionally, the introduction of OTS before the completion of crystallisation of form IIa led to a 'switch' of from IIa growth to form I. This study demonstrates that the polymorph selection of FEN can be obtained by the manipulation of the crystallisation conditions.
Collapse
Affiliation(s)
- Pratchaya Tipduangta
- School of Pharmacy, University of East Anglia Norwich Norfolk NR4 7TJ UK
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University Chiang Mai Thailand 50200
| | - Khaled Takieddin
- School of Pharmacy, University of East Anglia Norwich Norfolk NR4 7TJ UK
| | - László Fábián
- School of Pharmacy, University of East Anglia Norwich Norfolk NR4 7TJ UK
| | - Peter Belton
- School of Chemistry, University of East Anglia Norwich Norfolk NR4 7TJ UK
| | - Sheng Qi
- School of Pharmacy, University of East Anglia Norwich Norfolk NR4 7TJ UK
| |
Collapse
|
15
|
Szklarz G, Adrjanowicz K, Dulski M, Knapik J, Paluch M. Dielectric Relaxation Study at Ambient and Elevated Pressure of the Modeled Lipophilic Drug Fenofibrate. J Phys Chem B 2016; 120:11298-11306. [DOI: 10.1021/acs.jpcb.6b08511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Grzegorz Szklarz
- Institute of Physics, University of Silesia, ulica Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education
and Interdisciplinary Research, ulica
75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Karolina Adrjanowicz
- Institute of Physics, University of Silesia, ulica Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education
and Interdisciplinary Research, ulica
75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Mateusz Dulski
- Silesian Center for Education
and Interdisciplinary Research, ulica
75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
- Institute of Material
Science, Univeristy of Silesia, ulica 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Justyna Knapik
- Institute of Physics, University of Silesia, ulica Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education
and Interdisciplinary Research, ulica
75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - Marian Paluch
- Institute of Physics, University of Silesia, ulica Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education
and Interdisciplinary Research, ulica
75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| |
Collapse
|
16
|
Wei X, Li P, Liu M, Du Y, Wang M, Zhang J, Wang J, Liu H, Liu X. Absolute oral bioavailability of fenofibric acid and choline fenofibrate in rats determined by ultra-performance liquid chromatography tandem mass spectrometry. Biomed Chromatogr 2016; 31. [DOI: 10.1002/bmc.3832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/23/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Xudan Wei
- Department of Biopharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Ping Li
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd; Lianyungang China
| | - Meina Liu
- Dalian Huirui Pharmaceutical Co. Ltd; Dalian China
| | - Yuqian Du
- Department of Biopharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Menglin Wang
- Department of Biopharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Jinling Zhang
- Department of Biopharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Jing Wang
- Department of Biopharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Hongzhuo Liu
- Department of Biopharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| | - Xiaohong Liu
- Department of Biopharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; Shenyang China
| |
Collapse
|
17
|
Amorphous Solid Dispersions or Prodrugs: Complementary Strategies to Increase Drug Absorption. J Pharm Sci 2016; 105:2498-2508. [DOI: 10.1016/j.xphs.2015.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Yousaf AM, Kim DW, Kim DS, Kim JO, Youn YS, Cho KH, Yong CS, Choi HG. Influence of polyvinylpyrrolidone quantity on the solubility, crystallinity and oral bioavailability of fenofibrate in solvent-evaporated microspheres. J Microencapsul 2016; 33:365-71. [PMID: 27283260 DOI: 10.1080/02652048.2016.1194906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The objective of this study is to explore the influence of polyvinylpyrrolidone (PVP) quantity on the solubility, crystallinity and oral bioavailability of poorly water-soluble fenofibrate in solvent-evaporated microspheres. Numerous microspheres were prepared with fenofibrate, sodium lauryl sulphate (SLS) and PVP using the spray-drying technique. Their aqueous solubility, dissolution, physicochemical properties and pharmacokinetics in rats were assessed. The drug in the solvent-evaporated microspheres composed of fenofibrate, PVP and SLS at the weight ratio of 1:0.5:0.25 was not entirely changed to the amorphous form and partially in the microcrystalline state. However, the microspheres at the weight ratio of 1:4:0.25 provided the entire conversion to the amorphous form. The latter microspheres, with an improvement of about 115 000-fold in aqueous solubility and 5.6-fold improvement in oral bioavailability compared with the drug powder, gave higher aqueous solubility and oral bioavailability compared with the former. Thus, PVP quantity played an important role in these properties of fenofibrate in the solvent-evaporated microspheres.
Collapse
Affiliation(s)
- Abid Mehmood Yousaf
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea ;,b Faculty of Pharmacy , University of Central Punjab , Johar , Lahore , Pakistan
| | - Dong Wuk Kim
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| | - Dong Shik Kim
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| | - Jong Oh Kim
- c College of Pharmacy, Yeungnam University , Gyongsan , South Korea
| | - Yu Seok Youn
- d School of Pharmacy, Sungkyunkwan University , Suwon , South Korea
| | - Kwan Hyung Cho
- e College of Pharmacy, Inje University , Gimhae , South Korea
| | - Chul Soon Yong
- c College of Pharmacy, Yeungnam University , Gyongsan , South Korea
| | - Han-Gon Choi
- a College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University , Ansan , South Korea
| |
Collapse
|
19
|
Eggenreich K, Windhab S, Schrank S, Treffer D, Juster H, Steinbichler G, Laske S, Koscher G, Roblegg E, Khinast J. Injection molding as a one-step process for the direct production of pharmaceutical dosage forms from primary powders. Int J Pharm 2016; 505:341-51. [DOI: 10.1016/j.ijpharm.2016.03.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/25/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
|
20
|
Mitra A, Li L, Marsac P, Marks B, Liu Z, Brown C. Impact of polymer type on bioperformance and physical stability of hot melt extruded formulations of a poorly water soluble drug. Int J Pharm 2016; 505:107-14. [PMID: 27012984 DOI: 10.1016/j.ijpharm.2016.03.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/13/2016] [Accepted: 03/20/2016] [Indexed: 01/17/2023]
Abstract
Amorphous solid dispersion formulations have been widely used to enhance bioavailability of poorly soluble drugs. In these formulations, polymer is included to physically stabilize the amorphous drug by dispersing it in the polymeric carrier and thus forming a solid solution. The polymer can also maintain supersaturation and promote speciation during dissolution, thus enabling better absorption as compared to crystalline drug substance. In this paper, we report the use of hot melt extrusion (HME) to develop amorphous formulations of a poorly soluble compound (FaSSIF solubility=1μg/mL). The poor solubility of the compound and high dose (300mg) necessitated the use of amorphous formulation to achieve adequate bioperformance. The effect of using three different polymers (HPMCAS-HF, HPMCAS-LF and copovidone), on the dissolution, physical stability, and bioperformance of the formulations was demonstrated. In this particular case, HPMCAS-HF containing HME provided the highest bioavailability and also had better physical stability as compared to extrudates using HPMCAS-LF and copovidone. The data demonstrated that the polymer type can have significant impact on the formulation bioperformance and physical stability. Thus a thorough understanding of the polymer choice is imperative when designing an amorphous solid dispersion formulation, such that the formulation provides robust bioperformance and has adequate shelf life.
Collapse
Affiliation(s)
- Amitava Mitra
- Biopharmaceutics, Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc., West Point, PA 19486, United States.
| | - Li Li
- Analytical Sciences, Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc., West Point, PA 19486, United States
| | - Patrick Marsac
- Preformulation, Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc., West Point, PA 19486, United States; College of Pharmacy, University of Kentucky, United States
| | - Brian Marks
- Analytical Sciences, Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc., West Point, PA 19486, United States
| | - Zhen Liu
- Preformulation, Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc., West Point, PA 19486, United States
| | - Chad Brown
- Formulation Sciences, Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc., West Point, PA 19486, United States
| |
Collapse
|
21
|
Patil H, Tiwari RV, Repka MA. Hot-Melt Extrusion: from Theory to Application in Pharmaceutical Formulation. AAPS PharmSciTech 2016; 17:20-42. [PMID: 26159653 PMCID: PMC4766118 DOI: 10.1208/s12249-015-0360-7] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/19/2015] [Indexed: 11/30/2022] Open
Abstract
Hot-melt extrusion (HME) is a promising technology for the production of new chemical entities in the developmental pipeline and for improving products already on the market. In drug discovery and development, industry estimates that more than 50% of active pharmaceutical ingredients currently used belong to the biopharmaceutical classification system II (BCS class II), which are characterized as poorly water-soluble compounds and result in formulations with low bioavailability. Therefore, there is a critical need for the pharmaceutical industry to develop formulations that will enhance the solubility and ultimately the bioavailability of these compounds. HME technology also offers an opportunity to earn intellectual property, which is evident from an increasing number of patents and publications that have included it as a novel pharmaceutical formulation technology over the past decades. This review had a threefold objective. First, it sought to provide an overview of HME principles and present detailed engineered extrusion equipment designs. Second, it included a number of published reports on the application of HME techniques that covered the fields of solid dispersions, microencapsulation, taste masking, targeted drug delivery systems, sustained release, films, nanotechnology, floating drug delivery systems, implants, and continuous manufacturing using the wet granulation process. Lastly, this review discussed the importance of using the quality by design approach in drug development, evaluated the process analytical technology used in pharmaceutical HME monitoring and control, discussed techniques used in HME, and emphasized the potential for monitoring and controlling hot-melt technology.
Collapse
Affiliation(s)
- Hemlata Patil
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Roshan V Tiwari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, School of Pharmacy, The University of Mississippi, Oxford, Mississippi, 38677, USA.
| |
Collapse
|
22
|
Boroujeni HC, Gharib F. Thermodynamic study on solubility of deferiprone at different ionic strengths and various temperatures. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1615-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Kitak T, Dumičić A, Planinšek O, Šibanc R, Srčič S. Determination of Solubility Parameters of Ibuprofen and Ibuprofen Lysinate. Molecules 2015; 20:21549-68. [PMID: 26633347 PMCID: PMC6332216 DOI: 10.3390/molecules201219777] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022] Open
Abstract
In recent years there has been a growing interest in formulating solid dispersions, which purposes mainly include solubility enhancement, sustained drug release and taste masking. The most notable problem by these dispersions is drug-carrier (in)solubility. Here we focus on solubility parameters as a tool for predicting the solubility of a drug in certain carriers. Solubility parameters were determined in two different ways: solely by using calculation methods, and by experimental approaches. Six different calculation methods were applied in order to calculate the solubility parameters of the drug ibuprofen and several excipients. However, we were not able to do so in the case of ibuprofen lysinate, as calculation models for salts are still not defined. Therefore, the extended Hansen’s approach and inverse gas chromatography (IGC) were used for evaluating of solubility parameters for ibuprofen lysinate. The obtained values of the total solubility parameter did not differ much between the two methods: by the extended Hansen’s approach it was δt = 31.15 MPa0.5 and with IGC it was δt = 35.17 MPa0.5. However, the values of partial solubility parameters, i.e., δd, δp and δh, did differ from each other, what might be due to the complex behaviour of a salt in the presence of various solvents.
Collapse
Affiliation(s)
- Teja Kitak
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | | | - Odon Planinšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Rok Šibanc
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Stanko Srčič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
24
|
A Ashour E, Kulkarni V, Almutairy B, Park JB, Shah SP, Majumdar S, Lian Z, Pinto E, Bi V, Durig T, Martin ST, Repka MA. Influence of pressurized carbon dioxide on ketoprofen-incorporated hot-melt extruded low molecular weight hydroxypropylcellulose. Drug Dev Ind Pharm 2015; 42:123-130. [PMID: 25997363 DOI: 10.3109/03639045.2015.1035282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The aim of the current research project was to investigate the effect of pressurized carbon dioxide (P-CO2) on the physico-mechanical properties of ketoprofen (KTP)-incorporated hydroxypropylcellulose (HPC) (Klucel™ ELF, EF, and LF) produced using hot-melt extrusion (HME) techniques and to assess the plasticization effect of P-CO2 on the various polymers tested. METHODS The physico-mechanical properties of extrudates with and without injection of P-CO2 were examined and compared with extrudates with the addition of 5% liquid plasticizer of propylene glycol (PG). The extrudates were milled and compressed into tablets. Tablet characteristics of the extrudates with and without injection of P-CO2 were evaluated. RESULTS AND CONCLUSION P-CO2 acted as a plasticizer for tested polymers, which allowed for the reduction in extrusion processing temperature. The microscopic morphology of the extrudates was changed to a foam-like structure due to the expansion of the CO2 at the extrusion die. The foamy extrudates demonstrated enhanced KTP release compared with the extrudates processed without P-CO2 due to the increase of porosity and surface area of those extrudates. Furthermore, the hardness of the tablets prepared by foamy extrudates was increased and the percent friability was decreased. Thus, the good binding properties and compressibility of the extrudates were positively influenced by utilizing P-CO2 processing.
Collapse
Affiliation(s)
- Eman A Ashour
- a Department of Pharmaceutics and Drug Delivery , School of Pharmacy, The University of Mississippi, University , MS , USA
| | - Vijay Kulkarni
- a Department of Pharmaceutics and Drug Delivery , School of Pharmacy, The University of Mississippi, University , MS , USA
| | - Bjad Almutairy
- a Department of Pharmaceutics and Drug Delivery , School of Pharmacy, The University of Mississippi, University , MS , USA
| | - Jun-Bom Park
- a Department of Pharmaceutics and Drug Delivery , School of Pharmacy, The University of Mississippi, University , MS , USA
| | - Sejal P Shah
- a Department of Pharmaceutics and Drug Delivery , School of Pharmacy, The University of Mississippi, University , MS , USA
| | - Soumyajit Majumdar
- a Department of Pharmaceutics and Drug Delivery , School of Pharmacy, The University of Mississippi, University , MS , USA.,d Pii Center for Pharmaceutical Technology, The University of Mississippi, University , MS , USA
| | - Zhuoyang Lian
- b Ashland Specialty Ingredients, Global Pharma R&D , Wilmington , DE , USA
| | - Elanor Pinto
- b Ashland Specialty Ingredients, Global Pharma R&D , Wilmington , DE , USA
| | - Vivian Bi
- b Ashland Specialty Ingredients, Global Pharma R&D , Wilmington , DE , USA
| | - Thomas Durig
- b Ashland Specialty Ingredients, Global Pharma R&D , Wilmington , DE , USA
| | | | - Michael A Repka
- a Department of Pharmaceutics and Drug Delivery , School of Pharmacy, The University of Mississippi, University , MS , USA.,d Pii Center for Pharmaceutical Technology, The University of Mississippi, University , MS , USA
| |
Collapse
|
25
|
Stanković M, Frijlink HW, Hinrichs WLJ. Polymeric formulations for drug release prepared by hot melt extrusion: application and characterization. Drug Discov Today 2015; 20:812-23. [PMID: 25660507 DOI: 10.1016/j.drudis.2015.01.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/08/2015] [Accepted: 01/27/2015] [Indexed: 12/15/2022]
Abstract
Over the past few decades hot melt extrusion (HME) has emerged as a powerful processing technology for the production of pharmaceutical solid dosage forms in which an active pharmaceutical ingredient (API) is dispersed into polymer matrices. It has been shown that formulations using HME can provide time-controlled, sustained and targeted drug delivery, and improved bioavailability of poorly soluble drugs. In this review, the basic principles of the HME process are described together with an overview of some of the most common biodegradable and nonbiodegradable polymers used for the preparation of different formulations using this method. Further, the applications of HME in drug delivery and analytical techniques employed to characterize HME products are addressed.
Collapse
Affiliation(s)
- Milica Stanković
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands; Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, A-8010, Graz, Austria.
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
26
|
Tran TH, Ramasamy T, Truong DH, Choi HG, Yong CS, Kim JO. Preparation and characterization of fenofibrate-loaded nanostructured lipid carriers for oral bioavailability enhancement. AAPS PharmSciTech 2014; 15:1509-15. [PMID: 25035071 DOI: 10.1208/s12249-014-0175-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/09/2014] [Indexed: 11/30/2022] Open
Abstract
The aim of this study is to investigate the potential of nanostructured lipid carriers (NLCs) in improving the oral bioavailability of a lipid lowering agent, fenofibrate (FEN). FEN-loaded NLCs (FEN-NLCs) were prepared by hot homogenization followed by an ultrasonication method using Compritol 888 ATO as a solid lipid, Labrafil M 1944CS as a liquid lipid, and soya lecithin and Tween 80 as emulsifiers. NLCs were characterized in terms of particle size and zeta potential, surface morphology, encapsulation efficiency, and physical state properties. Bioavailability studies were carried out in rats by oral administration of FEN-NLC. NLCs exhibited a spherical shape with a small particle size (84.9 ± 4.9 nm). The drug entrapment efficiency was 99% with a loading capacity of 9.93 ± 0.01% (w/w). Biphasic drug release manner with a burst release initially, followed by prolonged release was depicted for in vitro drug release studies. After oral administration of the FEN-NLC, drug concentration in plasma and AUCt-∞ was fourfold higher, respectively, compared to the free FEN suspension. According to these results, FEN-NLC could be a potential delivery system for improvement of loading capacity and control of drug release, thus prolonging drug action time in the body and enhancing the bioavailability.
Collapse
|
27
|
Jain S, Patel N, Lin S. Solubility and dissolution enhancement strategies: current understanding and recent trends. Drug Dev Ind Pharm 2014; 41:875-87. [PMID: 25342479 DOI: 10.3109/03639045.2014.971027] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Identification of lead compounds with higher molecular weight and lower aqueous solubility has become increasingly prevalent with the advent of high throughput screening. Poor aqueous solubility of these lipophilic compounds can drastically affect the dissolution rate and subsequently the drug absorbed in the systemic circulation, imposing a significant burden of time and money during drug development process. Various pre-formulation and formulation strategies have been applied in the past that can improve the aqueous solubility of lipophilic compounds by manipulating either the crystal lattice properties or the activity coefficient of a solute in solution or both, if possible. However, despite various strategies available in the armor of formulation scientist, solubility issue still remains an overriding problem in the drug development process. It is perhaps due to the insufficient conceptual understanding of solubility and dissolution phenomenon that hinders the judgment in selecting suitable strategy for improving aqueous solubility and/or dissolution rate. This article, therefore, focuses on (i) revisiting the theoretical and mathematical concepts associated with solubility and dissolution, (ii) their application in making rationale decision for selecting suitable pre-formulation and formulation strategies and (iii) the relevant research performed in this field in past decade.
Collapse
Affiliation(s)
- Shashank Jain
- College of Pharmacy and Health Sciences, St. John's University , Queens, NY , USA
| | | | | |
Collapse
|
28
|
Dierickx L, Van Snick B, Monteyne T, De Beer T, Remon J, Vervaet C. Co-extruded solid solutions as immediate release fixed-dose combinations. Eur J Pharm Biopharm 2014; 88:502-9. [DOI: 10.1016/j.ejpb.2014.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/05/2014] [Accepted: 06/14/2014] [Indexed: 10/25/2022]
|
29
|
Li X, Jiang C, Pan L, Zhang H, Hu L, Li T, Yang X. Effects of preparing techniques and aging on dissolution behavior of the solid dispersions of NF/Soluplus/Kollidon SR: identification and classification by a combined analysis by FT-IR spectroscopy and computational approaches. Drug Dev Ind Pharm 2014; 41:2-14. [DOI: 10.3109/03639045.2014.938080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Zhang Y, Luo R, Chen Y, Ke X, Hu D, Han M. Application of carrier and plasticizer to improve the dissolution and bioavailability of poorly water-soluble baicalein by hot melt extrusion. AAPS PharmSciTech 2014; 15:560-8. [PMID: 24570374 DOI: 10.1208/s12249-013-0071-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 12/14/2013] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to develop a suitable formulation for baicalein (a poorly water-soluble drug exhibiting high melting point) to prepare solid dispersions using hot melt extrusion (HME). Proper carriers and plasticizers were selected by calculating the Hansen solubility parameters, evaluating melting processing condition, and measuring the solubility of obtained melts. The characteristic of solid dispersions prepared by HME was evaluated. The dissolution performance of the extrudates was compared to the pure drug and the physical mixtures. Physicochemical properties of the extrudates were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). Relative bioavailability after oral administration in beagle dogs was assessed. As a result, Kollidon VA64 and Eudragit EPO were selected as two carriers; Cremophor RH was used as the plasticizer. The dissolution of all the extrudates was significantly improved. DSC and PXRD results suggested that baicalein in the extrudates was amorphous. FTIR spectroscopy revealed the interaction between drug and polymers. After oral administration, the relative bioavailability of solid dispersions with VA64 and EPO was comparative, about 2.4- and 2.9-fold greater compared to the pure drug, respectively.
Collapse
|
31
|
Thomas N, Richter K, Pedersen TB, Holm R, Müllertz A, Rades T. In vitro lipolysis data does not adequately predict the in vivo performance of lipid-based drug delivery systems containing fenofibrate. AAPS JOURNAL 2014; 16:539-49. [PMID: 24687210 DOI: 10.1208/s12248-014-9589-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/11/2014] [Indexed: 11/30/2022]
Abstract
The present study investigated the utility of in vitro lipolysis performance indicators drug solubilization and maximum supersaturation ratio (SR(M)) for their predictive use for the in vivo performance in a minipig model. The commercial Lipanthyl formulation and a series of LbDDS based on identical self-nanoemulsifying drug delivery systems (SNEDDS) containing 200 mg of fenofibrate, either dissolved or suspended, were subjected to combined gastric (pH 2) and intestinal (pH 6.5) in vitro lipolysis. Based on the solubilization profiles and SRM the rank-order SNEDDS (75% drug load) > super-SNEDDS (150% drug load, dissolved) = SNEDDS suspension (150% drug load, partially suspended) > Lipanthyl was established, with an increased likelihood of drug precipitation above SR(M) > 3. The in vitro performance, however, was not reproduced in vivo in a minipig model as the mean plasma concentration over time curves of all LbDDS were comparable, independent of the initial physical state of the drug. There was no correlation between the area under the solubilization-time curves (AUC(in vitro)) of the intestinal step and the AUC(in vivo). The study suggests careful interpretation of in vitro performance criteria and revision of LbDDS optimization towards increased solubilization.
Collapse
Affiliation(s)
- Nicky Thomas
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen, 2100, Denmark
| | | | | | | | | | | |
Collapse
|
32
|
Lang B, McGinity JW, Williams RO. Hot-melt extrusion – basic principles and pharmaceutical applications. Drug Dev Ind Pharm 2014; 40:1133-55. [DOI: 10.3109/03639045.2013.838577] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Vaka SRK, Bommana MM, Desai D, Djordjevic J, Phuapradit W, Shah N. Excipients for Amorphous Solid Dispersions. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1007/978-1-4939-1598-9_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Li Y, Pang H, Guo Z, Lin L, Dong Y, Li G, Lu M, Wu C. Interactions between drugs and polymers influencing hot melt extrusion. J Pharm Pharmacol 2013; 66:148-66. [DOI: 10.1111/jphp.12183] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/15/2013] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
Hot melt extrusion (HME) as a technique for producing amorphous solid dispersion (ASD) has been widely used in pharmaceutical research. The biggest challenge for the application of HME is the thermal degradation of drug, poor physical stability of ASD and precipitation of drug during dissolution. Interactions between drugs and polymers may play an important role in overcoming these barriers. In this review, influence of drug–polymer interactions on HME and the methods for characterizing the drug–polymer interactions were reviewed.
Key findings
Strong drug–polymer interactions, especially ionic interactions and hydrogen bonds, are helpful to improving the thermal stability of drug during HME, enhancing the physical stability of ASD during storage and maintaining supersaturated solution after dissolution in gastrointestinal tract. The interactions can be quantitatively and qualitatively characterized by many analysing methods.
Conclusions
As many factors collectively determine the properties of HME products, drug–polymer interactions play an extremely important role. However, the action mechanisms of drug–polymer interactions need intensive investigation to provide more useful information for optimizing the formulation and the process parameters of HME.
Collapse
Affiliation(s)
- Yongcheng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huishi Pang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhefei Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ling Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yixuan Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ge Li
- Research and Development Center of Pharmaceutical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Ming Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chuangbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Research and Development Center of Pharmaceutical Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Vo CLN, Park C, Lee BJ. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm 2013; 85:799-813. [DOI: 10.1016/j.ejpb.2013.09.007] [Citation(s) in RCA: 422] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/29/2013] [Accepted: 09/09/2013] [Indexed: 11/24/2022]
|
36
|
Chen C, Xie X, Li Y, Zhou C, Song Y, Yan Z, Yang X. Influence of different polymers on crystallization tendency and dissolution behavior of cilnidipine in solid dispersions. Drug Dev Ind Pharm 2013; 40:441-51. [DOI: 10.3109/03639045.2013.767825] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Mohammed NN, Majumdar S, Singh A, Deng W, Murthy NS, Pinto E, Tewari D, Durig T, Repka MA. Klucel™ EF and ELF polymers for immediate-release oral dosage forms prepared by melt extrusion technology. AAPS PharmSciTech 2012; 13:1158-69. [PMID: 22961411 DOI: 10.1208/s12249-012-9834-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/24/2012] [Indexed: 11/30/2022] Open
Abstract
The objective of this research work was to evaluate Klucel™ hydroxypropylcellulose (HPC) EF and ELF polymers, for solubility enhancement as well as to address some of the disadvantages associated with solid dispersions. Ketoprofen (KPR), a Biopharmaceutics Classification System class II drug with poor solubility, was utilized as a model compound. Preliminary thermal studies were performed to confirm formation of a solid solution/dispersion of KPR in HPC matrix and also to establish processing conditions for hot-melt extrusion. Extrudates pelletized and filled into capsules exhibited a carrier-dependent release with ELF polymer exhibiting a faster release. Tablets compressed from milled extrudates exhibited rapid release owing to the increased surface area of the milled extrudate. Addition of mannitol (MNT) further enhanced the release by forming micro-pores and increasing the porosity of the extrudates. An optimized tablet formulation constituting KPR, MNT, and ELF in a 1:1:1 ratio exhibited 90% release in 15 min similar to a commercial capsule formulation. HPC polymers are non-ionic hydrophilic polymers that undergo polymer-chain-length-dependent solubilization and can be used to enhance solubility or dissolution rate of poorly soluble drugs. Dissolution/release rate could be tailored for rapid-release applications by selecting a suitable HPC polymer and altering the final dosage form. The release obtained from pellets was carrier-dependent and not drug-dependent, and hence, such a system can be effectively utilized to address solubility or precipitation issues with poorly soluble drugs in the gastrointestinal environment.
Collapse
|
38
|
Abstract
Melt extrusion (ME) over recent years has found widespread application as a viable drug delivery option in the drug development process. ME applications include taste masking, solid-state stability enhancement, sustained drug release and solubility enhancement. While ME can result in amorphous or crystalline solid dispersions depending upon several factors, solubility enhancement applications are centered around generating amorphous dispersions, primarily because of the free energy benefits they offer. In line with the purview of the current issue, this review assesses the utility of ME as a means of enhancing solubility of poorly soluble drugs/chemicals. The review describes major processing aspects of ME technology, definition and understanding of the amorphous state, manufacturability, analytical characterization and biopharmaceutical performance testing to better understand the strength and weakness of this formulation strategy for poorly soluble drugs. In addition, this paper highlights the potential advantages of employing a fusion of techniques, including pharmaceutical co-crystals and spray drying/solvent evaporation, facilitating the design of formulations of API exhibiting specific physico-chemical characteristics. Finally, the review presents some successful case studies of commercialized ME based products.
Collapse
Affiliation(s)
- Sejal Shah
- Department of Pharmaceutics, Pii Center for Pharmaceutical Technology, School of Pharmacy, The University of Mississippi, University, MS 38677-1848, United States
| | | | | | | |
Collapse
|
39
|
Yoshida T, Kurimoto I, Yoshihara K, Umejima H, Ito N, Watanabe S, Sako K, Kikuchi A. Effect of aminoalkyl methacrylate copolymer E/HCl on in vivo absorption of poorly water-soluble drug. Drug Dev Ind Pharm 2012; 39:1698-705. [PMID: 23062024 DOI: 10.3109/03639045.2012.730525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study aimed to investigate in vivo absorption of tacrolimus formulated as a solid dispersion using Eudragit E®/HCl (E-SD). E-SD is an aminoalkyl methacrylate copolymer that can be dissolved under neutral pH conditions. E-SD was used alone as a solid dispersion carrier and/or was mixed with tacrolimus primarily dispersed with hydroxypropylmethylcellulose (HPMC). Tacrolimus was formulated with E-SD at several different ratios. Formulations with tacrolimus/E-SD ratio of 1/3 showed higher in vivo absorption, compared to tacrolimus dispersed in the excipients (primarily HPMC) found in commercially available tacrolimus capsules, using a rat in situ closed loop method. Good correlation was observed between in vitro drug solubility and in vivo drug absorption. In vitro solubility tests and rat oral absorption studies of tacrolimus/HPMC solid dispersion formulations were also conducted after mixing the HPMC dispersion with several ratios of E-SD. E-SD/tacrolimus/HPMC formulations yielded high in vitro drug solubility but comparatively low in vivo absorption. Dog oral absorption studies were conducted using capsules containing a formulation of tacrolimus/E-SD at a ratio of 1/5. The E-SD formulation-containing capsule showed higher in vivo drug absorption than tacrolimus dispersed in the standard HPMC capsule. These studies report enhancement of the in vivo absorption of a poorly water-soluble drug following dispersion with E-SD when compared to formulation in HPMC.
Collapse
Affiliation(s)
- Takatsune Yoshida
- Pharmaceutical Research and Technology Labs , Astellas Pharma, Inc., 180 Ozumi, Yaizu, Shizuoka , Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Dave RH, Patel HH, Donahue E, Patel AD. To evaluate the change in release from solid dispersion using sodium lauryl sulfate and model drug sulfathiazole. Drug Dev Ind Pharm 2012; 39:1562-72. [DOI: 10.3109/03639045.2012.725731] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Petrovic AA, Petricevic SM, Ristic SM, Ibric SR, Simic SS, Djuric ZR, Popovic RB. Preliminary evaluation of thein vitrorelease andin vivoabsorption in rabbits of the modified-release dosage forms. Drug Dev Ind Pharm 2012; 39:889-900. [DOI: 10.3109/03639045.2012.713364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Kalivoda A, Fischbach M, Kleinebudde P. Application of mixtures of polymeric carriers for dissolution enhancement of fenofibrate using hot-melt extrusion. Int J Pharm 2012; 429:58-68. [DOI: 10.1016/j.ijpharm.2012.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/29/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
|
43
|
Deng W, Majumdar S, Singh A, Shah S, Mohammed NN, Jo S, Pinto E, Tewari D, Durig T, Repka MA. Stabilization of fenofibrate in low molecular weight hydroxypropylcellulose matrices produced by hot-melt extrusion. Drug Dev Ind Pharm 2012; 39:290-8. [DOI: 10.3109/03639045.2012.679280] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci 2012; 101:1355-77. [DOI: 10.1002/jps.23031] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/21/2011] [Accepted: 12/07/2011] [Indexed: 01/23/2023]
|
45
|
Yang M, Wang P, Gogos C. Prediction of acetaminophen's solubility in poly(ethylene oxide) at room temperature using the Flory-Huggins theory. Drug Dev Ind Pharm 2012; 39:102-8. [PMID: 22356356 DOI: 10.3109/03639045.2012.659188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Solid dispersion technologies such as hot-melt extrusion and spray drying are often used to enhance the solubility of poorly soluble drugs. The biggest challenge associated with solid dispersion systems is that amorphous drugs may phase-separate from the polymeric matrix and recrystallize during storage. A more fundamental understanding of drug-polymer mixtures is needed for the industry to embrace the solid dispersion technologies. In this study, a theoretical model based on Flory-Huggins lattice theory was utilized to predict the solubility of a model drug acetaminophen (APAP) in a semi-crystalline polymer poly(ethylene oxide) (PEO) at 300 K. The interaction parameter χ was calculated to be -1.65 from the depression of drug's melting temperature determined from rheological and differential scanning calorimetry analysis. The equilibrium solubility in amorphous PEO was estimated to be 11.7% at 300 K. Assuming no APAP molecules dissolve in the crystalline part of PEO, the adjusted theoretical solubility is around 2.3% considering PEO being 80% crystalline. The solubility of APAP in PEG 400 was calculated to be 14.6% by using the same χ value, close to the experimental measurement 17.1%. The drug's solubility could be altered noticeably by the change of both χ and polymer molecular weight. The study also suggests that the depression of drug's melting point is a good indicator for preliminary polymer screening. The polymer that reduces the melting point the most is likely to be most miscible with the drug.
Collapse
Affiliation(s)
- Min Yang
- The Otto H. York Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | | | | |
Collapse
|
46
|
Ryu JK, Yoo SD. Preparation and evaluation of bicyclol microemulsions for enhanced oral bioavailability. Drug Dev Ind Pharm 2012; 38:1313-8. [DOI: 10.3109/03639045.2011.650643] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
|
48
|
Feng J, Xu L, Gao R, Luo Y, Tang X. Evaluation of polymer carriers with regard to the bioavailability enhancement of bifendate solid dispersions prepared by hot-melt extrusion. Drug Dev Ind Pharm 2011; 38:735-43. [DOI: 10.3109/03639045.2011.623703] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Design of fenofibrate microemulsion for improved bioavailability. Int J Pharm 2011; 420:251-5. [PMID: 21907776 DOI: 10.1016/j.ijpharm.2011.08.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 07/04/2011] [Accepted: 08/28/2011] [Indexed: 11/21/2022]
Abstract
The objective of the present study was to formulate a microemulsion system for oral administration to improve the solubility and bioavailability of fenofibrate. Various formulations were prepared using different ratios of oils, surfactants and co-surfactants (S&CoS). Pseudo-ternary phase diagrams were constructed to evaluate the microemulsification existence area. The formulations were characterized by solubility of the drug in the vehicles, mean droplet size, and drug content. The stability was also investigated by store for 3 months under 4°C, 25°C and 40°C and diluted 100 times for 3 days. The optimal formulation consists of 25% Capryol 90, 27.75% Cremophore EL, 9.25% Transcutol P and 38% water (w/w), with a maximum solubility of fenofibrate up to ∼40.96 mg/mL. The microemulsion was physicochemical stable and mean droplet size was about 32.5-41.7 nm. The pharmacokinetic study was performed in dogs and compared with Lipanthy capsule. The result showed that microemulsion has significantly increased the C(max) and AUC compared to that of Lipanthy capsule (p<0.05). The oral bioavailability of fenofibrate microemulsions (FEN-MEs) in ME-3 and ME-4 were 1.63 and 1.30-fold higher than that of the capsule. Our results indicated that the microemulsions could be used as an effective formulation for enhancing the oral bioavailability of fenofibrate.
Collapse
|
50
|
Srinarong P, de Waard H, Frijlink HW, Hinrichs WLJ. Improved dissolution behavior of lipophilic drugs by solid dispersions: the production process as starting point for formulation considerations. Expert Opin Drug Deliv 2011; 8:1121-40. [DOI: 10.1517/17425247.2011.598147] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|