1
|
Li H, Li J, Song C, Yang H, Luo Q, Chen M. Brown adipose tissue: a potential target for aging interventions and healthy longevity. Biogerontology 2024; 25:1011-1024. [PMID: 39377866 DOI: 10.1007/s10522-024-10137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024]
Abstract
Brown Adipose Tissue (BAT) is a type of fat tissue that can generate heat and plays an important role in regulating body temperature and energy metabolism. Enhancing BAT activity through medication, exercise and other means has become a potential effective method for treating metabolic disorders. Recently, there has been increasing evidence suggesting a link between BAT and aging. As humans age, the volume and activity of BAT decrease, which may contribute to the development of age-related diseases. Multiple organelles signaling pathways have been reported to be involved in the aging process associated with BAT. Therefore, we aimed to review the evidence related to the association between aging process and BAT decreasing, analyze the potential of BAT as a predictive marker for age-related diseases, and explore potential therapeutic strategies targeting BAT for aging interventions and healthy longevity.
Collapse
Affiliation(s)
- Hongde Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, PR China
| | - Junli Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Chengxiang Song
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, PR China
| | - Haoran Yang
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, PR China
| | - Qiang Luo
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, PR China.
| | - Mao Chen
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, PR China.
| |
Collapse
|
2
|
Vecchie’ D, Wolter JM, Perry J, Jumbo-Lucioni P, De Luca M. The Impact of the Angiotensin-Converting Enzyme Inhibitor Lisinopril on Metabolic Rate in Drosophila melanogaster. Int J Mol Sci 2024; 25:10103. [PMID: 39337588 PMCID: PMC11432024 DOI: 10.3390/ijms251810103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Evidence suggests that angiotensin-converting enzyme inhibitors (ACEIs) may increase metabolic rate by promoting thermogenesis, potentially through enhanced fat oxidation and improved insulin. More research is, however, needed to understand this intricate process. In this study, we used 22 lines from the Drosophila Genetic Reference Panel to assess the metabolic rate of virgin female and male flies that were either fed a standard medium or received lisinopril for one week or five weeks. We demonstrated that lisinopril affects the whole-body metabolic rate in Drosophila melanogaster in a genotype-dependent manner. However, the effects of genotypes are highly context-dependent, being influenced by sex and age. Our findings also suggest that lisinopril may increase the Drosophila metabolic rate via the accumulation of a bradykinin-like peptide, which, in turn, enhances cold tolerance by upregulating Ucp4b and Ucp4c genes. Finally, we showed that knocking down Ance, the ortholog of mammalian ACE in Malpighian/renal tubules and the nervous system, leads to opposite changes in metabolic rate, and that the effect of lisinopril depends on Ance in these systems, but in a sex- and age-specific manner. In conclusion, our results regarding D. melanogaster support existing evidence of a connection between ACEI drugs and metabolic rate while offering new insights into this relationship.
Collapse
Affiliation(s)
- Denise Vecchie’
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (J.M.W.); (J.P.)
| | - Julia M. Wolter
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (J.M.W.); (J.P.)
| | - Jesse Perry
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (J.M.W.); (J.P.)
| | - Patricia Jumbo-Lucioni
- Department of Pharmaceutical, Social and Administrative Sciences, Samford University, Birmingham, AL 35229, USA;
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.V.); (J.M.W.); (J.P.)
| |
Collapse
|
3
|
Prapaharan B, Lea M, Beaudry JL. Weighing in on the role of brown adipose tissue for treatment of obesity. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13157. [PMID: 39087083 PMCID: PMC11290130 DOI: 10.3389/jpps.2024.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Brown adipose tissue (BAT) activation is an emerging target for obesity treatments due to its thermogenic properties stemming from its ability to shuttle energy through uncoupling protein 1 (Ucp1). Recent rodent studies show how BAT and white adipose tissue (WAT) activity can be modulated to increase the expression of thermogenic proteins. Consequently, these alterations enable organisms to endure cold-temperatures and elevate energy expenditure, thereby promoting weight loss. In humans, BAT is less abundant in obese subjects and impacts of thermogenesis are less pronounced, bringing into question whether energy expending properties of BAT seen in rodents can be translated to human models. Our review will discuss pharmacological, hormonal, bioactive, sex-specific and environmental activators and inhibitors of BAT to determine the potential for BAT to act as a therapeutic strategy. We aim to address the feasibility of utilizing BAT modulators for weight reduction in obese individuals, as recent studies suggest that BAT's contributions to energy expenditure along with Ucp1-dependent and -independent pathways may or may not rectify energy imbalance characteristic of obesity.
Collapse
Affiliation(s)
| | | | - Jacqueline L. Beaudry
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Markina NO, Matveev GA, Zasypkin GG, Golikova TI, Ryzhkova DV, Kononova YA, Danilov SD, Babenko AY. Role of Brown Adipose Tissue in Metabolic Health and Efficacy of Drug Treatment for Obesity. J Clin Med 2024; 13:4151. [PMID: 39064191 PMCID: PMC11277946 DOI: 10.3390/jcm13144151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis, and its activation has become a new object as both a determinant of metabolic health and a target for therapy. This study aimed to identify the relationships between the presence of BAT, parameters that characterize metabolic health (glucose, lipids, blood pressure (BP)), and the dynamics of body mass index (BMI) during weight-reducing therapy. (2) Methods: The study included 72 patients with obesity. We investigated metabolic parameters, anthropometric parameters, and BP. Dual-energy X-ray absorptiometry (DXA) and positron emission tomography and computed tomography (PET/CT) imaging with 18F-fluorodeoxyglucose (18F-FDG) were performed. (3) Results: Before weight-reducing therapy, BAT was revealed only in 19% patients with obesity. The presence of BAT was associated with a lower risk of metabolic deviations that characterize metabolic syndrome: shorter waist circumference (WC) (p = 0.02) and lower levels of glucose (p = 0.03) and triglycerides (p = 0.03). Thereafter, patients were divided into four groups according to the type of therapy (only lifestyle modification or with Liraglutide or Reduxin or Reduxin Forte). We did not find a relationship between the presence of BAT and response to therapy: percent weight reduction was 10.4% in patients with BAT and 8.5% in patients without BAT (p = 0.78) during six months of therapy. But we noted a significant positive correlation between the volume of BAT and the effectiveness of weight loss at 3 months (r = 0.52, p = 0.016). The dynamic analysis of BAT after 6 months of therapy showed a significant increase in the volume of cold-induced metabolically active BAT, as determined by PET/CT with 18F-FDG in the Liraglutide group (p = 0.04) and an increase in the activity of BAT standardized uptake value (SUV mean and SUV max) in the Reduxin (p = 0.02; p = 0.01, respectively) and Liraglutide groups (p = 0.02 in both settings). (4) Conclusions: The presence of brown adipose tissue is associated with a lower risk of metabolic abnormalities. In general, our study demonstrated that well-established drugs in the treatment of obesity (Liraglutide and Reduxin) have one more mechanism for implementing their effects. These drugs have the ability to increase the activity of BAT. A significant positive relationship between the total volume of BAT and the percentage of weight loss may further determine the priority mechanism of the weight-reducing effect of these medicaments.
Collapse
Affiliation(s)
- Natalia O. Markina
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| | - Georgy A. Matveev
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| | - German G. Zasypkin
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| | - Tatiana I. Golikova
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| | - Daria V. Ryzhkova
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| | - Yulia A. Kononova
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| | - Sergey D. Danilov
- Facility of Digital Transformation, ITMO University, Saint Petersburg 197101, Russia
| | - Alina Yu. Babenko
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| |
Collapse
|
5
|
Liang D, Li G. Pulling the trigger: Noncoding RNAs in white adipose tissue browning. Rev Endocr Metab Disord 2024; 25:399-420. [PMID: 38157150 DOI: 10.1007/s11154-023-09866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
White adipose tissue (WAT) serves as the primary site for energy storage and endocrine regulation in mammals, while brown adipose tissue (BAT) is specialized for thermogenesis and energy expenditure. The conversion of white adipocytes to brown-like fat cells, known as browning, has emerged as a promising therapeutic strategy for reversing obesity and its associated co-morbidities. Noncoding RNAs (ncRNAs) are a class of transcripts that do not encode proteins but exert regulatory functions on gene expression at various levels. Recent studies have shed light on the involvement of ncRNAs in adipose tissue development, differentiation, and function. In this review, we aim to summarize the current understanding of ncRNAs in adipose biology, with a focus on their role and intricate mechanisms in WAT browning. Also, we discuss the potential applications and challenges of ncRNA-based therapies for overweight and its metabolic disorders, so as to combat the obesity epidemic in the future.
Collapse
Affiliation(s)
- Dehuan Liang
- The Key Laboratory of Geriatrics, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China
- Fifth School of Clinical Medicine (Beijing Hospital), Peking University, Beijing, 100730, People's Republic of China
| | - Guoping Li
- The Key Laboratory of Geriatrics, Institute of Geriatric Medicine, Beijing Institute of Geriatrics, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, People's Republic of China.
| |
Collapse
|
6
|
Zhang H, Li Y, Ibáñez CF, Xie M. Perirenal adipose tissue contains a subpopulation of cold-inducible adipocytes derived from brown-to-white conversion. eLife 2024; 13:RP93151. [PMID: 38470102 PMCID: PMC10932542 DOI: 10.7554/elife.93151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Perirenal adipose tissue (PRAT) is a unique visceral depot that contains a mixture of brown and white adipocytes. The origin and plasticity of such cellular heterogeneity remains unknown. Here, we combine single-nucleus RNA sequencing with genetic lineage tracing to reveal the existence of a distinct subpopulation of Ucp1-&Cidea+ adipocytes that arises from brown-to-white conversion during postnatal life in the periureter region of mouse PRAT. Cold exposure restores Ucp1 expression and a thermogenic phenotype in this subpopulation. These cells have a transcriptome that is distinct from subcutaneous beige adipocytes and may represent a unique type of cold-recruitable adipocytes. These results pave the way for studies of PRAT physiology and mechanisms controlling the plasticity of brown/white adipocyte phenotypes.
Collapse
Affiliation(s)
- Houyu Zhang
- Chinese Institute for Brain Research, Zhongguancun Life Science ParkBeijingChina
- Peking University Academy for Advanced Interdisciplinary StudiesBeijingChina
| | - Yan Li
- Chinese Institute for Brain Research, Zhongguancun Life Science ParkBeijingChina
- Peking University Academy for Advanced Interdisciplinary StudiesBeijingChina
| | - Carlos F Ibáñez
- Chinese Institute for Brain Research, Zhongguancun Life Science ParkBeijingChina
- Peking University School of Life Sciences, Peking-Tsinghua Center for Life SciencesBeijingChina
- PKU-IDG/McGovern Institute for Brain ResearchBeijingChina
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | - Meng Xie
- PKU-IDG/McGovern Institute for Brain ResearchBeijingChina
- Peking University School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental HealthBeijingChina
- Department of Biosciences and Nutrition, Karolinska InstituteFlemingsbergSweden
| |
Collapse
|
7
|
Duerre DJ, Hansen JK, John S, Jen A, Carrillo N, Bui H, Bao Y, Fabregat M, Overmeyer K, Shishkova E, Keller MP, Anderson RA, Cryns VL, Attie AD, Coon JJ, Fan J, Galmozzi A. Heme biosynthesis regulates BCAA catabolism and thermogenesis in brown adipose tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568893. [PMID: 38076785 PMCID: PMC10705273 DOI: 10.1101/2023.11.28.568893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
With age, people tend to accumulate body fat and reduce energy expenditure 1 . Brown (BAT) and beige adipose tissue dissipate heat and increase energy expenditure via the activity of the uncoupling protein UCP1 and other thermogenic futile cycles 2,3 . The activity of brown and beige depots inversely correlates with BMI and age 4-11 , suggesting that promoting thermogenesis may be an effective approach for combating age-related metabolic disease 12-15 . Heme is an enzyme cofactor and signaling molecule that we recently showed to regulate BAT function 16 . Here, we show that heme biosynthesis is the primary contributor to intracellular heme levels in brown adipocytes. Inhibition of heme biosynthesis leads to mitochondrial dysfunction and reduction in UCP1. Although supplementing heme can restore mitochondrial function in heme-synthesis-deficient cells, the downregulation of UCP1 persists due to the accumulation of the heme precursors, particularly propionyl-CoA, which is a product of branched-chain amino acids (BCAA) catabolism. Cold exposure promotes BCAA uptake in BAT, and defects in BCAA catabolism in this tissue hinder thermogenesis 17 . However, BCAAs' contribution to the TCA cycle in BAT and WAT never exceeds 2% of total TCA flux 18 . Our work offers a way to integrate current literature by describing heme biosynthesis as an important metabolic sink for BCAAs.
Collapse
|
8
|
de Lange P, Lombardi A, Silvestri E, Cioffi F, Giacco A, Iervolino S, Petito G, Senese R, Lanni A, Moreno M. Physiological Approaches Targeting Cellular and Mitochondrial Pathways Underlying Adipose Organ Senescence. Int J Mol Sci 2023; 24:11676. [PMID: 37511435 PMCID: PMC10380998 DOI: 10.3390/ijms241411676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The adipose organ is involved in many metabolic functions, ranging from the production of endocrine factors to the regulation of thermogenic processes. Aging is a natural process that affects the physiology of the adipose organ, leading to metabolic disorders, thus strongly impacting healthy aging. Cellular senescence modifies many functional aspects of adipose tissue, leading to metabolic alterations through defective adipogenesis, inflammation, and aberrant adipocytokine production, and in turn, it triggers systemic inflammation and senescence, as well as insulin resistance in metabolically active tissues, leading to premature declined physiological features. In the various aging fat depots, senescence involves a multiplicity of cell types, including mature adipocytes and immune, endothelial, and progenitor cells that are aging, highlighting their involvement in the loss of metabolic flexibility, one of the common features of aging-related metabolic disorders. Since mitochondrial stress represents a key trigger of cellular senescence, and senescence leads to the accumulation of abnormal mitochondria with impaired dynamics and hindered homeostasis, this review focuses on the beneficial potential of targeting mitochondria, so that strategies can be developed to manage adipose tissue senescence for the treatment of age-related metabolic disorders.
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Assunta Lombardi
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
| | - Elena Silvestri
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Antonia Giacco
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Stefania Iervolino
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Giuseppe Petito
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Maria Moreno
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
9
|
Li M, Gao M, Jia M, Lu Y, Zhai Y, Lu H. ISRIB alleviates aging-associated brown fat UCP1 translational repression and thermogenic deficiency. Biochem Biophys Res Commun 2023; 673:179-186. [PMID: 37393756 DOI: 10.1016/j.bbrc.2023.06.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
Upon cold exposure, aged people with lower metabolic rate cannot rapidly increase the higher levels of heat production, and are seriously threatened by the hypothermia, extensive cold stress responses and risk of mortality. Here, we show that brown fat thermogenic activity is obviously deficient in aged mice, associating with reduction of UCP1 expression and inhibition of its mRNA translation. As we considered, aging aggravates brown fat oxidative stress and activates the integrated stress response (ISR), inducing the phosphorylation of eIF2α to block the global mRNA translation. Therefore, small-molecule ISR inhibitor (ISRIB) treatment attenuates the higher level of eIF2α phosphorylation, restores the repression of Ucp1 mRNA translation and improves UCP1-mediated thermogenic function to defend cold stress in aged mice. Furthermore, ISRIB treatment increases the relative lower metabolic rates, and alleviates glucose intolerance and insulin resistance in aged mice. Thus, we have uncovered a promising drug that reverses the aged-related the deficiency of UCP1-mediated thermogenesis to combat cold stress and associated metabolic diseases.
Collapse
Affiliation(s)
- Muze Li
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China; National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, China; School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Mengjie Gao
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, China; School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Meiqi Jia
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, China; School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yifan Lu
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China; School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Yue Zhai
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, China.
| | - Huanyu Lu
- Department of Occupational and Environmental Health, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
10
|
Karanfil AS, Louis F, Matsusaki M. Biofabrication of vascularized adipose tissues and their biomedical applications. MATERIALS HORIZONS 2023; 10:1539-1558. [PMID: 36789675 DOI: 10.1039/d2mh01391f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent advances in adipose tissue engineering and cell biology have led to the development of innovative therapeutic strategies in regenerative medicine for adipose tissue reconstruction. To date, the many in vitro and in vivo models developed for vascularized adipose tissue engineering cover a wide range of research areas, including studies with cells of various origins and types, polymeric scaffolds of natural and synthetic derivation, models presented using decellularized tissues, and scaffold-free approaches. In this review, studies on adipose tissue types with different functions, characteristics and body locations have been summarized with 3D in vitro fabrication approaches. The reason for the particular focus on vascularized adipose tissue models is that current liposuction and fat transplantation methods are unsuitable for adipose tissue reconstruction as the lack of blood vessels results in inadequate nutrient and oxygen delivery, leading to necrosis in situ. In the first part of this paper, current studies and applications of white and brown adipose tissues are presented according to the polymeric materials used, focusing on the studies which could show vasculature in vitro and after in vivo implantation, and then the research on adipose tissue fabrication and applications are explained.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| |
Collapse
|
11
|
Fernández-Peña C, Reimúndez A, Viana F, Arce VM, Señarís R. Sex differences in thermoregulation in mammals: Implications for energy homeostasis. Front Endocrinol (Lausanne) 2023; 14:1093376. [PMID: 36967809 PMCID: PMC10030879 DOI: 10.3389/fendo.2023.1093376] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/06/2023] [Indexed: 03/10/2023] Open
Abstract
Thermal homeostasis is a fundamental process in mammals, which allows the maintenance of a constant internal body temperature to ensure an efficient function of cells despite changes in ambient temperature. Increasing evidence has revealed the great impact of thermoregulation on energy homeostasis. Homeothermy requires a fine regulation of food intake, heat production, conservation and dissipation and energy expenditure. A great interest on this field of research has re-emerged following the discovery of thermogenic brown adipose tissue and browning of white fat in adult humans, with a potential clinical relevance on obesity and metabolic comorbidities. However, most of our knowledge comes from male animal models or men, which introduces unwanted biases on the findings. In this review, we discuss how differences in sex-dependent characteristics (anthropometry, body composition, hormonal regulation, and other sexual factors) influence numerous aspects of thermal regulation, which impact on energy homeostasis. Individuals of both sexes should be used in the experimental paradigms, considering the ovarian cycles and sexual hormonal regulation as influential factors in these studies. Only by collecting data in both sexes on molecular, functional, and clinical aspects, we will be able to establish in a rigorous way the real impact of thermoregulation on energy homeostasis, opening new avenues in the understanding and treatment of obesity and metabolic associated diseases.
Collapse
Affiliation(s)
| | - Alfonso Reimúndez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Félix Viana
- Institute of Neuroscience, University Miguel Hernández (UMH)-CSIC, Alicante, Spain
| | - Victor M. Arce
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Rosa Señarís, ; Victor M. Arce,
| | - Rosa Señarís
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Rosa Señarís, ; Victor M. Arce,
| |
Collapse
|
12
|
Silva GDN, Amato AA. Thermogenic adipose tissue aging: Mechanisms and implications. Front Cell Dev Biol 2022; 10:955612. [PMID: 35979379 PMCID: PMC9376969 DOI: 10.3389/fcell.2022.955612] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 12/27/2022] Open
Abstract
Adipose tissue undergoes significant anatomical and functional changes with aging, leading to an increased risk of metabolic diseases. Age-related changes in adipose tissue include overall defective adipogenesis, dysfunctional adipokine secretion, inflammation, and impaired ability to produce heat by nonshivering thermogenesis. Thermogenesis in adipose tissue is accomplished by brown and beige adipocytes, which also play a role in regulating energy homeostasis. Brown adipocytes develop prenatally, are found in dedicated depots, and involute in early infancy in humans. In contrast, beige adipocytes arise postnatally in white adipose tissue and persist throughout life, despite being lost with aging. In recent years, there have been significant advances in the understanding of age-related reduction in thermogenic adipocyte mass and function. Mechanisms underlying such changes are beginning to be delineated. They comprise diminished adipose precursor cell pool size and adipogenic potential, mitochondrial dysfunction, decreased sympathetic signaling, and altered paracrine and endocrine signals. This review presents current evidence from animal models and human studies for the mechanisms underlying thermogenic adipocyte loss and discusses potential strategies targeting brown and beige adipocytes to increase health span and longevity.
Collapse
|
13
|
Huang Z, Zhang Z, Moazzami Z, Heck R, Hu P, Nanda H, Ren K, Sun Z, Bartolomucci A, Gao Y, Chung D, Zhu W, Shen S, Ruan HB. Brown adipose tissue involution associated with progressive restriction in progenitor competence. Cell Rep 2022; 39:110575. [PMID: 35417710 DOI: 10.1016/j.celrep.2022.110575] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/10/2022] [Accepted: 03/04/2022] [Indexed: 11/03/2022] Open
Abstract
Human brown adipose tissue (BAT) undergoes progressive involution. This involution process is not recapitulated in rodents, and the underlying mechanisms are poorly understood. Here we show that the interscapular BAT (iBAT) of rabbits whitens rapidly during early adulthood. The transcriptomic remodeling and identity switch of mature adipocytes are accompanied by loss of brown adipogenic competence of progenitors. Single-cell RNA sequencing reveals that rabbit and human iBAT progenitors highly express the FSTL1 gene. When iBAT involutes in rabbits, adipocyte progenitors reduce FSTL1 expression and are refractory to brown adipogenic recruitment. Conversely, FSTL1 is constitutively expressed in mouse iBAT to sustain WNT signaling and prevent involution. Progenitor incompetence and iBAT paucity can be induced in mice by genetic deletion of the Fstl1 gene or ablation of Fstl1+ progenitors. Our results highlight the hierarchy and dynamics of the BAT progenitor compartment and implicate the functional incompetence of FSTL1-expressing progenitors in BAT involution.
Collapse
Affiliation(s)
- Zan Huang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Zengdi Zhang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Zahra Moazzami
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ryan Heck
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Hezkiel Nanda
- Institute for Health Informatics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kaiqun Ren
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; College of Medicine, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zequn Sun
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yan Gao
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Steven Shen
- Institute for Health Informatics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Clinical Translational Science Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
14
|
Roy A, Alam MA, Kim Y, Hashizume M. Association between daily ambient temperature and drug overdose in Tokyo: a time-series study. Environ Health Prev Med 2022; 27:36. [PMID: 36171116 PMCID: PMC9556974 DOI: 10.1265/ehpm.21-00044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 08/06/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Previous studies have reported that high ambient temperature is associated with increased risk of suicide; however, the association has not been extensively investigated with drug overdose which is the most common method of unsuccessful suicidal behavior in Japan. Therefore, this study aims to examine the short-term association between daily mean temperature and the incidence of self-harm attempts by drug overdose in Tokyo, Japan. METHODS We collected the emergency ambulance dispatch data and daily meteorological data in Tokyo from 2010 to 2014. A quasi-Poisson regression model incorporating a distributed lag non-linear function was applied to estimate the non-linear and delayed association between temperature and drug overdose, adjusting for relative humidity, seasonal and long-term trends, and days of the week. Sex, age and location-specific associations of ambient temperature with drug overdose was also estimated. RESULTS 12,937 drug overdose cases were recorded during the study period, 73.9% of which were female. We observed a non-linear association between temperature and drug overdose, with the highest risk observed at 21 °C. The highest relative risk (RR) was 1.30 (95% Confidence Interval (CI): 1.10-1.67) compared with the risk at the first percentile of daily mean temperature (2.9 °C) over 0-4 days lag period. In subgroup analyses, the RR of a drug overdose at 21 °C was 1.36 (95% CI: 1.02-1.81) for females and 1.07 (95% CI: 0.66-1.75) for males. Also, we observed that the risk was highest among those aged ≥65 years (RR = 2.54; 95% CI: 0.94-6.90), followed by those aged 15-34 years (RR = 1.25; 95% CI: 0.89-1.77) and those aged 35-64 years (RR = 1.15; 95% CI: 0.78-1.68). There was no evidence for the difference in RRs between urban (23 special wards) and sub-urban areas in Tokyo. CONCLUSIONS An increase in daily mean temperature was associated with increased drug overdose risk. This study indicated the positive non-linear association between temperature and incomplete attempts by drug overdose. The findings of this study may add further evidence of the association of temperature on suicidal behavior and suggests increasing more research and investigation of other modifying factors.
Collapse
Affiliation(s)
- Ananya Roy
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo
| | - Md Ashraful Alam
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo
| | - Yoonhee Kim
- Department of Global Environmental Health, Graduate School of Medicine, The University of Tokyo
| | - Masahiro Hashizume
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
15
|
Tournissac M, Leclerc M, Valentin-Escalera J, Vandal M, Bosoi CR, Planel E, Calon F. Metabolic determinants of Alzheimer's disease: A focus on thermoregulation. Ageing Res Rev 2021; 72:101462. [PMID: 34534683 DOI: 10.1016/j.arr.2021.101462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/09/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a complex age-related neurodegenerative disease, associated with central and peripheral metabolic anomalies, such as impaired glucose utilization and insulin resistance. These observations led to a considerable interest not only in lifestyle-related interventions, but also in repurposing insulin and other anti-diabetic drugs to prevent or treat dementia. Body temperature is the oldest known metabolic readout and mechanisms underlying its maintenance fail in the elderly, when the incidence of AD rises. This raises the possibility that an age-associated thermoregulatory deficit contributes to energy failure underlying AD pathogenesis. Brown adipose tissue (BAT) plays a central role in thermogenesis and maintenance of body temperature. In recent years, the modulation of BAT activity has been increasingly demonstrated to regulate energy expenditure, insulin sensitivity and glucose utilization, which could also provide benefits for AD. Here, we review the evidence linking thermoregulation, BAT and insulin-related metabolic defects with AD, and we propose mechanisms through which correcting thermoregulatory impairments could slow the progression and delay the onset of AD.
Collapse
|
16
|
FGF2 disruption enhances thermogenesis in brown and beige fat to protect against adiposity and hepatic steatosis. Mol Metab 2021; 54:101358. [PMID: 34710640 PMCID: PMC8605413 DOI: 10.1016/j.molmet.2021.101358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Fibroblast growth factor 2 (FGF2) has been reported to play divergent roles in white adipogenic differentiation, however, whether it regulates thermogenesis of fat tissues remains largely unknown. We therefore aimed to investigate the effect of FGF2 on fat thermogenesis and elucidate the underlying mechanisms. Methods FGF2-KO and wild-type (WT) mice were fed with chow diet and high-fat diet (HFD) for 14 weeks. The brown and white fat mass, thermogenic capability, respiratory exchange ratio, and hepatic fat deposition were determined. In vitro experiments were conducted to compare the thermogenic ability of FGF2-KO- with WT-derived brown and white adipocytes. Exogenous FGF2 was supplemented to in vitro-cultured WT brown and ISO-induced beige adipocytes. The FGFR inhibitor, PPARγ agonist, and PGC-1α expression lentivirus were used with the aid of technologies including Co-IP, ChIP, and luciferase reporter assay to elucidate the mechanisms underlying the FGF2 regulation of thermogenesis. Results FGF2 gene disruption results in increased thermogenic capability in both brown and beige fat, supporting by increased UCP1 expression, enhanced respiratory exchange ratio, and elevated thermogenic potential in response to cold exposure. Thus, the deletion of FGF2 protects mice from high fat-induced adiposity and hepatic steatosis. Mechanistically, in vitro investigations indicated FGF2 acts in autocrine/paracrine fashions. Exogenous FGF2 supplementation inhibits both PGC-1α and PPARγ expression, leading to suppression of UCP1 expression in brown and beige adipocytes. Conclusions These findings demonstrate that FGF2 is a novel thermogenic regulator, suggesting a viable potential strategy for using FGF2-selective inhibitors in combat adiposity and associated hepatic steatosis. FGF2-KO mice show potentiated stimulation on thermogenic capability under both basal and cold challenge stimulation. FGF2 disruption protected mice against HFD-induced adiposity and hepatic steatosis. FGF2 acts in autocrine/paracrine fashions in vitro. Both PPARγ and PGC-1α play roles in FGF2 suppression of thermogenesis.
Collapse
|
17
|
Abstract
The hypothalamic–pituitary–adrenal axis is a tightly regulated system that represents one of the body’s mechanisms for responding to acute and chronic stress. Prolonged stress and/or inadequate regulation of the stress system can lead to a condition of chronic hypercortisolism or, in some cases, a blunted cortisol response to stress, contributing to insulin resistance, increased adiposity and type 2 diabetes mellitus. Moreover, acute and chronic stress can exacerbate or worsen metabolic conditions by supporting an inflammatory state and a tight relationship between stress, inflammation and adipose tissue has been reported and has been a growing subject of interest in recent years. We reviewed and summarized the evidence supporting hypothalamic–pituitary–adrenal axis dysregulation as an important biological link between stress, obesity, inflammation and type 2 diabetes mellitus. Furthermore, we emphasized the possible role of infectious-related stress such as SarsCov2 infection in adrenal axis dysregulation, insulin resistance and diabetes in a bidirectional link. Understanding and better defining the links between stress and obesity or diabetes could contribute to further definition of the pathogenesis and the management of stress-related complications, in which the HPA axis dysregulation has a primary role.
Collapse
|
18
|
Li H, Dong M, Liu W, Gao C, Jia Y, Zhang X, Xiao X, Liu Q, Lin H. Peripheral IL-6/STAT3 signaling promotes beiging of white fat. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119080. [PMID: 34174290 DOI: 10.1016/j.bbamcr.2021.119080] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/03/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Interleukin-6 (IL-6) can reportedly centrally affect the thermogenesis of brown fat. However, whether the peripheral IL-6 signaling regulates beiging of white fat remains largely unknown. In vitro experiments indicated IL-6-KO-derived white adipocytes exhibited lower thermogenic gene expression compared to the WT, associating with reduced phosphorylation of STAT3 at Tyr705. Mechanistically, exogenous IL-6 application increased the p-STAT3Tyr705 level, thus the phosphorylated STAT3 bound to the promoter regions, and enhanced the transcription of Pparγ and Ucp1. The protein interaction of PGC-1α with PPARγ was increased by IL-6, which also contributed to stimulate Ucp1 expression. In vivo experiments demonstrated that IL-6 KO decreased the beiging potential of white fat with suppressed STAT3 Tyr705 phosphorylation. Accordingly, IL-6-KO mature mice were associated with disrupted glucose homeostasis and accelerated hepatic steatosis. Collectively, we identified a novel function of peripheral IL-6/STAT3 signaling which is essential for beiging of white fat, such ensuring fat and glucose homeostasis.
Collapse
Affiliation(s)
- Haifang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Mei Dong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Wenhui Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Cheng Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yanxin Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xinzhi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xue Xiao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Hai Lin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
19
|
Zu Y, Zhao L, Hao L, Mechref Y, Zabet-Moghaddam M, Keyel PA, Abbasi M, Wu D, Dawson JA, Zhang R, Nie S, Moustaid-Moussa N, Kolonin MG, Daquinag AC, Brandi L, Warraich I, San Francisco SK, Sun X, Fan Z, Wang S. Browning white adipose tissue using adipose stromal cell-targeted resveratrol-loaded nanoparticles for combating obesity. J Control Release 2021; 333:339-351. [PMID: 33766692 DOI: 10.1016/j.jconrel.2021.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/06/2021] [Accepted: 03/16/2021] [Indexed: 01/01/2023]
Abstract
Enhancing thermogenic energy expenditure via promoting the browning of white adipose tissue (WAT) is a potential therapeutic strategy to manage energy imbalance and the consequent comorbidities associated with excess body weight. Adverse effects and toxicities of currently available methods to induce browning of WAT have retarded exploration of this promising therapeutic approach. Targeted delivery of browning agents to adipose stromal cells (ASCs) in subcutaneous WAT to induce differentiation into beige adipocytes may overcome these barriers. Herein, we report for the first time, ASC-targeted delivery of trans-resveratrol (R), a representative agent, using ligand-coated R-encapsulated nanoparticles (L-Rnano) that selectively bind to glycanation site-deficient decorin receptors on ASCs. After biweekly intravenous administration of L-Rnano to obese C57BL/6 J mice for 5 weeks targeted R delivery significantly induced ASCs differentiation into beige adipocytes, which subsequently resulted in 40% decrease in fat mass, accompanied by improved glucose homeostasis and decreased inflammation. Our results suggest that the ASC-targeted nanoparticle delivery of browning agents could be a transformative technology in combating obesity and its comorbidities with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Yujiao Zu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Lei Hao
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA
| | - Masoud Zabet-Moghaddam
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA; Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Peter A Keyel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mehrnaz Abbasi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Dayong Wu
- Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - John A Dawson
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences and Drug Discovery Institute, University of Houston, Houston, TX 77204, USA
| | - Shufang Nie
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Mikhail G Kolonin
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Alexes C Daquinag
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Luis Brandi
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 70430, USA
| | - Irfan Warraich
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 70430, USA
| | - Susan K San Francisco
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA
| | - Xiaocun Sun
- Research Computing Support, University of Tennessee, Knoxville, TN 37996, USA
| | - Zhaoyang Fan
- Department of Electrical & Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX 79409, USA; School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA; College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.
| |
Collapse
|
20
|
Kaikaew K, Grefhorst A, Visser JA. Sex Differences in Brown Adipose Tissue Function: Sex Hormones, Glucocorticoids, and Their Crosstalk. Front Endocrinol (Lausanne) 2021; 12:652444. [PMID: 33927694 PMCID: PMC8078866 DOI: 10.3389/fendo.2021.652444] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive fat accumulation in the body causes overweight and obesity. To date, research has confirmed that there are two types of adipose tissue with opposing functions: lipid-storing white adipose tissue (WAT) and lipid-burning brown adipose tissue (BAT). After the rediscovery of the presence of metabolically active BAT in adults, BAT has received increasing attention especially since activation of BAT is considered a promising way to combat obesity and associated comorbidities. It has become clear that energy homeostasis differs between the sexes, which has a significant impact on the development of pathological conditions such as type 2 diabetes. Sex differences in BAT activity may contribute to this and, therefore, it is important to address the underlying mechanisms that contribute to sex differences in BAT activity. In this review, we discuss the role of sex hormones in the regulation of BAT activity under physiological and some pathological conditions. Given the increasing number of studies suggesting a crosstalk between sex hormones and the hypothalamic-pituitary-adrenal axis in metabolism, we also discuss this crosstalk in relation to sex differences in BAT activity.
Collapse
Affiliation(s)
- Kasiphak Kaikaew
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
| | - Jenny A. Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- *Correspondence: Jenny A. Visser,
| |
Collapse
|
21
|
Aging and Immunometabolic Adaptations to Thermogenesis. Ageing Res Rev 2020; 63:101143. [PMID: 32810648 DOI: 10.1016/j.arr.2020.101143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/20/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Abstract
Brown and subcutaneous adipose tissues play a key role in non-shivering thermogenesis both in mice and human, and their activation by adrenergic stimuli promotes energy expenditure, reduces adiposity, and protects against age-related metabolic diseases such as type 2 diabetes (T2D). Low-grade inflammation and insulin resistance characterize T2D. Even though the decline of thermogenic adipose tissues is well-established during ageing, the mechanisms by which this event affects immune system and contributes to the development of T2D is still poorly defined. It is emerging that activation of thermogenic adipose tissues promotes type 2 immunity skewing, limiting type 1 inflammation. Of note, metabolic substrates sustaining type 1 inflammation (e.g. glucose and succinate) are also used by activated adipocytes to promote thermogenesis. Keeping in mind this aspect, a nutrient competition between adipocytes and adipose tissue immune cell infiltrates could be envisaged. Herein, we reviewed the metabolic rewiring of adipocytes during thermogenesis in order to give important insight into the anti-inflammatory role of thermogenic adipose tissues and delineate how their decline during ageing may favor the setting of low-grade inflammatory states that predispose to type 2 diabetes in elderly. A brief description about the contribution of adipokines secreted by thermogenic adipocytes in modulation of immune cell activation is also provided. Finally, we have outlined experimental flow chart procedures and provided technical advices to investigate the physiological processes leading to thermogenic adipose tissue impairment that are behind the immunometabolic decline during aging.
Collapse
|
22
|
Ruan HB. Developmental and functional heterogeneity of thermogenic adipose tissue. J Mol Cell Biol 2020; 12:775-784. [PMID: 32569352 PMCID: PMC7816678 DOI: 10.1093/jmcb/mjaa029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/11/2020] [Accepted: 06/12/2020] [Indexed: 12/18/2022] Open
Abstract
The obesity epidemic continues to rise as a global health challenge. Thermogenic brown and beige adipocytes dissipate chemical energy as heat, providing an opportunity for developing new therapeutics for obesity and related metabolic diseases. Anatomically, brown adipose tissue is distributed as discrete depots, while beige adipocytes exist within certain depots of white adipose tissue. Developmentally, brown and beige adipocytes arise from multiple embryonic progenitor populations that are distinct and overlapping. Functionally, they respond to a plethora of stimuli to engage uncoupling protein 1-dependent and independent thermogenic programs, thus improving systemic glucose homeostasis, lipid metabolism, and the clearance of branched-chain amino acids. In this review, we highlight recent advances in our understanding of the molecular and cellular mechanisms that contribute to the developmental and functional heterogeneity of thermogenic adipose tissue.
Collapse
Affiliation(s)
- Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
23
|
Lee DH, Chang SH, Yang DK, Song NJ, Yun UJ, Park KW. Sesamol Increases Ucp1 Expression in White Adipose Tissues and Stimulates Energy Expenditure in High-Fat Diet-Fed Obese Mice. Nutrients 2020; 12:nu12051459. [PMID: 32443555 PMCID: PMC7284577 DOI: 10.3390/nu12051459] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Sesamol found in sesame oil has been shown to ameliorate obesity by regulating lipid metabolism. However, its effects on energy expenditure and the underlying molecular mechanism have not been clearly elucidated. In this study, we show that sesamol increased the uncoupling protein 1 (Ucp1) expression in adipocytes. The administration of sesamol in high-fat diet (HFD)-fed mice prevented weight gain and improved metabolic derangements. The three-week sesamol treatment of HFD-fed mice, when the body weights were not different between the sesamol and control groups, increased energy expenditure, suggesting that an induced energy expenditure is a primary contributing factor for sesamol’s anti-obese effects. Consistently, sesamol induced the expression of energy-dissipating thermogenic genes, including Ucp1, in white adipose tissues. The microarray analysis showed that sesamol dramatically increased the Nrf2 target genes such as Hmox1 and Atf3 in adipocytes. Moreover, 76% (60/79 genes) of the sesamol-induced genes were also regulated by tert-butylhydroquinone (tBHQ), a known Nrf2 activator. We further verified that sesamol directly activated the Nrf2-mediated transcription. In addition, the Hmox1 and Ucp1 induction by sesamol was compromised in Nrf2-deleted cells, indicating the necessity of Nrf2 in the sesamol-mediated Ucp1 induction. Together, these findings demonstrate the effects of sesamol in inducing Ucp1 and in increasing energy expenditure, further highlighting the use of the Nrf2 activation in stimulating thermogenic adipocytes and in increasing energy expenditure in obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Dong Ho Lee
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon 16419, Korea; (D.H.L.); (S.-H.C.); (N.-J.S.); (U.J.Y.)
| | - Seo-Hyuk Chang
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon 16419, Korea; (D.H.L.); (S.-H.C.); (N.-J.S.); (U.J.Y.)
| | - Dong Kwon Yang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeollabuk-do 54596, Korea;
| | - No-Joon Song
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon 16419, Korea; (D.H.L.); (S.-H.C.); (N.-J.S.); (U.J.Y.)
| | - Ui Jeong Yun
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon 16419, Korea; (D.H.L.); (S.-H.C.); (N.-J.S.); (U.J.Y.)
| | - Kye Won Park
- Department of Food Science and Biotechnology, Food Clinical Research Center, Sungkyunkwan University, Suwon 16419, Korea; (D.H.L.); (S.-H.C.); (N.-J.S.); (U.J.Y.)
- Correspondence: ; Tel.: +82-031-290-7804; Fax: +82-031-290-7882
| |
Collapse
|
24
|
Cui X, Xiao W, You L, Zhang F, Cao X, Feng J, Shen D, Li Y, Wang Y, Ji C, Guo X. Age-induced oxidative stress impairs adipogenesis and thermogenesis in brown fat. FEBS J 2019; 286:2753-2768. [PMID: 30963699 DOI: 10.1111/febs.14838] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/14/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022]
Abstract
It is well-established that the mass and function of human brown adipose tissue (BAT) declines with age. A key factor involved in age-related impairment of BAT is oxidative stress; however, there is a paucity of studies to date that have explored this relationship. Here, we characterized the age-related molecular and functional alterations in BAT in vivo in mice of different ages, and treated human brown adipocytes with H2 O2 to dissect the direct effect of oxidative stress in vitro. We further explored the structural and functional changes in BAT in an oxidative stress-induced mouse model of aging. We found that the progressive deterioration of BAT was linked to oxidative stress, and observed that the adipogenesis and thermogenic program were significantly impaired upon H2 O2 treatment in vitro. Moreover, antioxidant supplementation (e.g., vitamin E) attenuated oxidative stress and rescued BAT activity decline, suggesting that age-related injury in BAT function can be partly alleviated by antioxidant treatment. Finally, we found that oxidative stress-induced BAT dysfunction is linked to the enhancement of autophagy. These results point to oxidative stress as being an important factor in age-dependent functional impairment of BAT.
Collapse
Affiliation(s)
- Xianwei Cui
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, China
| | - Wen Xiao
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, China.,JiangSu Second Normal University, Nanjing, China
| | - Lianghui You
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, China
| | - Fan Zhang
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, China.,Department of Neonatal Screening, Nantong Maternal and Child Health Hospital, Nantong, China
| | - Xinguo Cao
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, China
| | - Jie Feng
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, China
| | - Dan Shen
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, China
| | - Yun Li
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, China
| | - Yan Wang
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, China
| | - Chenbo Ji
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, China
| | - Xirong Guo
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, China
| |
Collapse
|
25
|
Zoico E, Rubele S, De Caro A, Nori N, Mazzali G, Fantin F, Rossi A, Zamboni M. Brown and Beige Adipose Tissue and Aging. Front Endocrinol (Lausanne) 2019; 10:368. [PMID: 31281288 PMCID: PMC6595248 DOI: 10.3389/fendo.2019.00368] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/23/2019] [Indexed: 01/24/2023] Open
Abstract
Across aging, adipose tissue (AT) changes its quantity and distribution: AT becomes dysfunctional with an increase in production of inflammatory peptides, a decline of those with anti-inflammatory activity and infiltration of macrophages. Adipose organ dysfunction may lead to age-related metabolic alterations. Aging is characterized by an increase in adiposity and a decline in brown adipose tissue (BAT) depots and activity, and UCP1 expression. There are many possible links to age-associated involution of BAT, including the loss of mitochondrial function, impairment of the sympathetic nervous system, age-induced alteration of brown adipogenic stem/progenitor cell function and changes in endocrine signals. Aging is also associated with a reduction in beige adipocyte formation. Beige adipocytes are known to differentiate from a sub-population of progenitors resident in white adipose tissue (WAT); a defective ability of progenitor cells to proliferate and differentiate has been hypothesized with aging. The loss of beige adipocytes with age may be caused by changes in trophic factors in the adipose tissue microenvironment, which regulate progenitor cell proliferation and differentiation. This review focuses on possible mechanisms involved in the reduction of BAT and beige activity with aging, along with possible targets for age-related metabolic disease therapy.
Collapse
Affiliation(s)
- Elena Zoico
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
- *Correspondence: Elena Zoico
| | - Sofia Rubele
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Annamaria De Caro
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Nicole Nori
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Gloria Mazzali
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Francesco Fantin
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Andrea Rossi
- Division of Geriatric Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Zamboni
- Division of Geriatric Medicine, Department of Surgery, Dentistry, Pediatric and Gynecology, University of Verona, Verona, Italy
| |
Collapse
|
26
|
Conte M, Martucci M, Sandri M, Franceschi C, Salvioli S. The Dual Role of the Pervasive "Fattish" Tissue Remodeling With Age. Front Endocrinol (Lausanne) 2019; 10:114. [PMID: 30863366 PMCID: PMC6400104 DOI: 10.3389/fendo.2019.00114] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Human aging is characterized by dramatic changes in body mass composition that include a general increase of the total fat mass. Within the fat mass, a change in the proportions of adipose tissues also occurs with aging, affecting body metabolism, and playing a central role in many chronic diseases, including insulin resistance, obesity, cardiovascular diseases, and type II diabetes. In mammals, fat accumulates as white (WAT) and brown (BAT) adipose tissue, which differ both in morphology and function. While WAT is involved in lipid storage and immuno-endocrine responses, BAT is aimed at generating heat. With advancing age BAT declines, while WAT increases reaching the maximum peak by early old age and changes its distribution toward a higher proportion of visceral WAT. However, lipids tend to accumulate also within lipid droplets (LDs) in non-adipose tissues, including muscle, liver, and heart. The excess of such ectopic lipid deposition and the alteration of LD homeostasis contribute to the pathogenesis of the above-mentioned age-related diseases. It is not clear why age-associated tissue remodeling seems to lean toward lipid deposition as a "default program." However, it can be noted that such remodeling is not inevitably detrimental. In fact, such a programmed redistribution of fat throughout life could be considered physiological and even protective, in particular at extreme old age. In this regard, it has to be considered that an excessive decrease of subcutaneous peripheral fat is associated with a pro-inflammatory status, and a decrease of LD is associated with lipotoxicity leading to an increased risk of insulin resistance, type II diabetes and cardiovascular diseases. At variance, a balanced rate of fat content and distribution has beneficial effects for health and metabolic homeostasis, positively affecting longevity. In this review, we will summarize the present knowledge on the mechanisms of the age-related changes in lipid distribution and we will discuss how fat mass negatively or positively impacts on human health and longevity.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Interdepartmental Centre “L. Galvani” (CIG), University of Bologna, Bologna, Italy
- *Correspondence: Maria Conte
| | - Morena Martucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Interdepartmental Centre “L. Galvani” (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|
27
|
Circulating Pro-Uroguanylin Levels In Children And Their Relation To Obesity, Sex And Puberty. Sci Rep 2018; 8:14541. [PMID: 30266914 PMCID: PMC6162323 DOI: 10.1038/s41598-018-32767-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 09/07/2018] [Indexed: 01/13/2023] Open
Abstract
Uroguanylin is a 16 amino acid peptide that constitutes a key component of the gut- brain axis with special relevance in body weight regulation. In childhood and adolescence, periods of life with notable metabolic changes; limited data exist, with measurements of pro-uroguanylin in adolescence but not in prepubertal children. This study investigates pro-uroguanylin circulating levels in children with obesity and its relationship with obesity, sex and pubertal development. We analyzed circulating prouroguanylin levels in 117 children (62) and adolescents (55), including 73 with obesity and 44 with normal weight. The pro-uroguanylin concentration is higher in lean girls during pre-puberty versus lean boys (1111 vs 635, p < 0.001). During puberty, pro-uroguanylin levels are higher in lean males with respect to lean females (1060 vs 698, p < 0.01). In girls, a negative correlation exists between pro-uroguanylin and age, Tanner stage, weight, height, BMI (body mass index), waist circumference and plasma levels of leptin and testosterone; a positive correlation was found between pro-uroguanylin and free triiodothyronine. In boys, a positive correlation was found between pro-uroguanylin and BMI and waist circumference and a negative correlation was found with high density lipoprotein-cholesterol. We conclude that a sexual dimorphism exists in circulating pro-uroguanylin levels with respect to BMI. Uroguanylin presents also an opposed circulating pattern during puberty in both sexes.
Collapse
|
28
|
Abstract
During the last decades, research on adipose tissues has spread in parallel with the extension of obesity. Several observations converged on the idea that adipose tissues are organized in a large organ with endocrine and plastic properties. Two parenchymal components: white (WATs) and brown adipose tissues (BATs) are contained in subcutaneous and visceral compartments. Although both have endocrine properties, their function differs: WAT store lipids to allow intervals between meals, BAT burns lipids for thermogenesis. In spite of these opposite functions, they share the ability for reciprocal reversible transdifferentiation to tackle special physiologic needs. Thus, chronic need for thermogenesis induces browning and chronic positive energy balance induce whitening. Lineage tracing and data from explant studies strongly suggest other remodeling properties of this organ. During pregnancy and lactation breast WAT transdifferentiates into milk-secreting glands, composed by cells with abundant cytoplasmic lipids (pink adipocytes) and in the postlactation period pink adipocytes transdifferentiate back into WAT and BAT. The plastic properties of mature adipocytes are supported also by a liposecretion process in vitro where adult cell in culture transdifferentiate to differentiated fibroblast-like elements able to give rise to different phenotypes (rainbow adipocytes). In addition, the inflammasome system is activated in stressed adipocytes from obese adipose tissue. These adipocytes die and debris are reabsorbed by macrophages inducing a chronic low-grade inflammation, potentially contributing to insulin resistance and T2 diabetes. Thus, the plastic properties of this organ could open new therapeutic perspectives in the obesity-related metabolic disease and in breast pathologies. © 2018 American Physiological Society. Compr Physiol 8:1357-1431, 2018.
Collapse
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
29
|
PI3Ka-Akt1-mediated Prdm4 induction in adipose tissue increases energy expenditure, inhibits weight gain, and improves insulin resistance in diet-induced obese mice. Cell Death Dis 2018; 9:876. [PMID: 30158592 PMCID: PMC6115456 DOI: 10.1038/s41419-018-0904-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022]
Abstract
Stimulation of white adipose tissue (WAT) browning is considered as a potential approach to treat obesity and metabolic diseases. Our previous studies have shown that phytochemical butein can stimulate WAT browning through induction of Prdm4 in adipocytes. Here, we investigated the effects of butein on diet-induced obesity and its underlying molecular mechanism. Treatment with butein prevented weight gains and improved metabolic profiles in diet-induced obese mice. Butein treatment groups also displayed higher body temperature, increased energy expenditure, and enhanced expression of thermogenic genes in adipose tissue. Butein also suppressed body weight gains and improved glucose and insulin tolerance in mice housed at thermoneutrality (30 °C). These effects were associated with adipose-selective induction of Prdm4, suggesting the role of Prdm4 in butein-mediated anti-obese effects. To directly assess the in vivo role of Prdm4, we generated aP2-Prdm4 transgenic mouse lines overexpressing Prdm4 in adipose tissues. Adipose-specific transgenic expression of Prdm4 recapitulated the butein’s actions in stimulating energy expenditure, cold tolerance, and thermogenic gene expression, resulting in prevention of obesity and improvement of metabolism. Mechanistically, direct inhibition of PI3Kα activity followed by selective suppression of its downstream Akt1 mirrored butein’s effect on Ucp1 expression and oxygen consumption. In addition, effects of butein were completely abolished in Akt1 KO mouse embryonic fibroblasts. Together, these studies demonstrate the role of butein in obesity and metabolic diseases, further highlighting that adipose PI3Kα–Akt1–Prdm4 axis is a regulator of energy expenditure.
Collapse
|
30
|
Stem Cell and Obesity: Current State and Future Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1089:1-22. [DOI: 10.1007/5584_2018_227] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Abstract
PURPOSE OF REVIEW Bone marrow fat expresses mixed characteristics, which could correspond to white, brown, and beige types of fat. Marrow fat could act as either energy storing and adipokine secreting white fat or as a source of energy for hematopoiesis and bone metabolism, thus acting as brown fat. However, there is also a negative interaction between marrow fat and other elements of the bone marrow milieu, which is known as lipotoxicity. In this review, we will describe the good and bad roles of marrow fat in the bone, while focusing on the specific components of the negative effect of marrow fat on bone metabolism. RECENT FINDINGS Lipotoxicity in the bone is exerted by bone marrow fat through the secretion of adipokines and free fatty acids (FFA) (predominantly palmitate). High levels of FFA found in the bone marrow of aged and osteoporotic bone are associated with decreased osteoblastogenesis and bone formation, decreased hematopoiesis, and increased osteoclastogenesis. In addition, FFA such as palmitate and stearate induce apoptosis and dysfunctional autophagy in the osteoblasts, thus affecting their differentiation and function. Regulation of marrow fat could become a therapeutic target for osteoporosis. Inhibition of the synthesis of FFA by marrow fat could facilitate osteoblastogenesis and bone formation while affecting osteoclastogenesis. However, further studies testing this hypothesis are still required.
Collapse
Affiliation(s)
- Lakshman Singh
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Level 3 WCHRE, 176 Furlong Road, St. Albans, VIC, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Sonia Tyagi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Level 3 WCHRE, 176 Furlong Road, St. Albans, VIC, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Damian Myers
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Level 3 WCHRE, 176 Furlong Road, St. Albans, VIC, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Level 3 WCHRE, 176 Furlong Road, St. Albans, VIC, 3021, Australia.
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia.
| |
Collapse
|
32
|
Gilsanz V, Wren TAL, Ponrartana S, Mora S, Rosen CJ. Sexual Dimorphism and the Origins of Human Spinal Health. Endocr Rev 2018; 39:221-239. [PMID: 29385433 PMCID: PMC5888211 DOI: 10.1210/er.2017-00147] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
Recent observations indicate that the cross-sectional area (CSA) of vertebral bodies is on average 10% smaller in healthy newborn girls than in newborn boys, a striking difference that increases during infancy and puberty and is greatest by the time of sexual and skeletal maturity. The smaller CSA of female vertebrae is associated with greater spinal flexibility and could represent the human adaptation to fetal load in bipedal posture. Unfortunately, it also imparts a mechanical disadvantage that increases stress within the vertebrae for all physical activities. This review summarizes the potential endocrine, genetic, and environmental determinants of vertebral cross-sectional growth and current knowledge of the association between the small female vertebrae and greater risk for a broad array of spinal conditions across the lifespan.
Collapse
Affiliation(s)
- Vicente Gilsanz
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027.,Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Tishya A L Wren
- Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Skorn Ponrartana
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Stefano Mora
- Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074
| |
Collapse
|
33
|
Dong M, Lin J, Lim W, Jin W, Lee HJ. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Front Med 2017; 12:130-138. [PMID: 29119382 DOI: 10.1007/s11684-017-0555-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 04/29/2017] [Indexed: 02/07/2023]
Abstract
Brown adipose tissue (BAT) plays a fundamental role in maintaining body temperature by producing heat. BAT that had been know to exist only in mammals and the human neonate has received great attention for the treatment of obesity and diabetes due to its important function in energy metabolism, ever since it is recently reported that human adults have functional BAT. In addition, beige adipocytes, brown adipocytes in white adipose tissue (WAT), have also been shown to take part in whole body metabolism. Multiple lines of evidence demonstrated that transplantation or activation of BAT or/and beige adipocytes reversed obesity and improved insulin sensitivity. Furthermore, many genes involved in BATactivation and/or the recruitment of beige cells have been found, thereby providing new promising strategies for future clinical application of BAT activation to treat obesity and metabolic diseases. This review focuses on recent advances of BAT function in the metabolic aspect and the relationship between BAT and cancer cachexia, a pathological process accompanied with decreased body weight and increased energy expenditure in cancer patients. The underlying possible mechanisms to reduce BAT mass and its activity in the elderly are also discussed.
Collapse
Affiliation(s)
- Meng Dong
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,The University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Lin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,The University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju, 363-764, Republic of Korea
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hyuek Jong Lee
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
34
|
Abstract
Brown and beige adipocytes arise from distinct developmental origins. Brown adipose tissue (BAT) develops embryonically from precursors that also give to skeletal muscle. Beige fat develops postnatally and is highly inducible. Beige fat recruitment is mediated by multiple mechanisms, including de novo beige adipogenesis and white-to-brown adipocyte transdifferentiaiton. Beige precursors reside around vasculatures, and proliferate and differentiate into beige adipocytes. PDGFRα+Ebf2+ precursors are restricted to beige lineage cells, while another PDGFRα+ subset gives rise to beige adipocytes, white adipocytes, or fibrogenic cells. White adipocytes can be reprogramed and transdifferentiated into beige adipocytes. Brown and beige adipocytes display many similar properties, including multilocular lipid droplets, dense mitochondria, and expression of UCP1. UCP1-mediated thermogenesis is a hallmark of brown/beige adipocytes, albeit UCP1-independent thermogenesis also occurs. Development, maintenance, and activation of BAT/beige fat are guided by genetic and epigenetic programs. Numerous transcriptional factors and coactivators act coordinately to promote BAT/beige fat thermogenesis. Epigenetic reprograming influences expression of brown/beige adipocyte-selective genes. BAT/beige fat is regulated by neuronal, hormonal, and immune mechanisms. Hypothalamic thermal circuits define the temperature setpoint that guides BAT/beige fat activity. Metabolic hormones, paracrine/autocrine factors, and various immune cells also play a critical role in regulating BAT/beige fat functions. BAT and beige fat defend temperature homeostasis, and regulate body weight and glucose and lipid metabolism. Obesity is associated with brown/beige fat deficiency, and reactivation of brown/beige fat provides metabolic health benefits in some patients. Pharmacological activation of BAT/beige fat may hold promise for combating metabolic diseases. © 2017 American Physiological Society. Compr Physiol 7:1281-1306, 2017.
Collapse
Affiliation(s)
- Liangyou Rui
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Aging and brown adipose tissue activity decline in human: does the brain extinguish the fire? Aging Clin Exp Res 2016; 28:579-81. [PMID: 27106900 DOI: 10.1007/s40520-016-0572-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
|
36
|
Continuous intake of the Chaga mushroom (Inonotus obliquus) aqueous extract suppresses cancer progression and maintains body temperature in mice. Heliyon 2016; 2:e00111. [PMID: 27441282 PMCID: PMC4946216 DOI: 10.1016/j.heliyon.2016.e00111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/20/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
AIMS Cancer is a leading cause of morbidity and mortality worldwide; therefore, effective measures for cancer prevention and treatment are in constant demand. The extracts of Inonotus obliquus (Chaga mushroom) demonstrate potent anti-tumor activities and have been used to treat cancer in several countries; however, the actual effect and underlying mechanisms are still unclear. In the present study, we aimed to investigate the effects of continuous intake of aqueous extract from I. obliquus on tumor suppression. MAIN METHODS Anticancer activity of the I. obliquus extract was examined in mouse models of Lewis lung carcinoma growth and spontaneous metastasis after 3 weeks of continuous extract intake at the dose of 6 mg/kg/day, which corresponded to that ingested daily with Chaga infusion in Japan. KEY FINDINGS The extract of I. obliquus caused significant tumor suppressive effects in both models. Thus, in tumor-bearing mice, 60% tumor reduction was observed, while in metastatic mice, the number of nodules decreased by 25% compared to the control group. Moreover, I. obliquus extract-treated mice demonstrated the increase in tumor agglomeration and inhibition of vascularization. Interestingly, I. obliquus intake decreased body weight in middle-aged mice and increased body temperature in response to light-dark switching in mature adult mice. Furthermore, I. obliquus prevented temperature drop in mice after tumor implantation. SIGNIFICANCE Our findings suggest that the I. obliquus extract could be used as a natural remedy for cancer suppression by promoting energy metabolism.
Collapse
|
37
|
Hardouin P, Rharass T, Lucas S. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue? Front Endocrinol (Lausanne) 2016; 7:85. [PMID: 27445987 PMCID: PMC4928601 DOI: 10.3389/fendo.2016.00085] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022] Open
Abstract
Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues, this review addresses the originality of the BMAT with regard to its development, anatomy, metabolic properties, and response to physiological cues.
Collapse
Affiliation(s)
- Pierre Hardouin
- Laboratory of Pathophysiology of Inflammatory Bone Diseases PMOI, University of Littoral-Opale Coast ULCO, Boulogne sur Mer, France
| | - Tareck Rharass
- Laboratory of Pathophysiology of Inflammatory Bone Diseases PMOI, University of Littoral-Opale Coast ULCO, Boulogne sur Mer, France
| | - Stéphanie Lucas
- Laboratory of Pathophysiology of Inflammatory Bone Diseases PMOI, University of Littoral-Opale Coast ULCO, Boulogne sur Mer, France
- *Correspondence: Stéphanie Lucas,
| |
Collapse
|
38
|
Abstract
Circadian clocks have evolved a slowing-down mechanism. Temperature may be the original and universal time-giver to the organism. Brown adipose tissue generates heat and guides the circadian rhythm of core body temperature. The cryptochrome proteins regulate the temperature entrainability, and their dysfunction may let the activation of brown adipose tissue affect the brain more easily. Therefore, the activity of brown adipose tissue may compromise the slowing-down mechanism and thereby contribute to the emergence of mood disorders and the increase in suicide mortality around the time of puberty.
Collapse
Affiliation(s)
- Timo Partonen
- a National Institute for Health and Welfare , Department of Health , Helsinki , Finland
| |
Collapse
|