1
|
Wang D, Ghosh D, Islam SMT, Moorman CD, Thomason AE, Wilkinson DS, Mannie MD. IFN-β Facilitates Neuroantigen-Dependent Induction of CD25+ FOXP3+ Regulatory T Cells That Suppress Experimental Autoimmune Encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:2992-3007. [PMID: 27619998 PMCID: PMC5101178 DOI: 10.4049/jimmunol.1500411] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/07/2016] [Indexed: 12/11/2022]
Abstract
This study introduces a flexible format for tolerogenic vaccination that incorporates IFN-β and neuroantigen (NAg) in the Alum adjuvant. Tolerogenic vaccination required all three components, IFN-β, NAg, and Alum, for inhibition of experimental autoimmune encephalomyelitis (EAE) and induction of tolerance. Vaccination with IFN-β + NAg in Alum ameliorated NAg-specific sensitization and inhibited EAE in C57BL/6 mice in pretreatment and therapeutic regimens. Tolerance induction was specific for the tolerogenic vaccine Ag PLP178-191 or myelin oligodendrocyte glycoprotein (MOG)35-55 in proteolipid protein- and MOG-induced models of EAE, respectively, and was abrogated by pretreatment with a depleting anti-CD25 mAb. IFN-β/Alum-based vaccination exhibited hallmarks of infectious tolerance, because IFN-β + OVA in Alum-specific vaccination inhibited EAE elicited by OVA + MOG in CFA but not EAE elicited by MOG in CFA. IFN-β + NAg in Alum vaccination elicited elevated numbers and percentages of FOXP3+ T cells in blood and secondary lymphoid organs in 2D2 MOG-specific transgenic mice, and repeated boosters facilitated generation of activated CD44high CD25+ regulatory T cell (Treg) populations. IFN-β and MOG35-55 elicited suppressive FOXP3+ Tregs in vitro in the absence of Alum via a mechanism that was neutralized by anti-TGF-β and that resulted in the induction of an effector CD69+ CTLA-4+ IFNAR+ FOXP3+ Treg subset. In vitro IFN-β + MOG-induced Tregs inhibited EAE when transferred into actively challenged recipients. Unlike IFN-β + NAg in Alum vaccines, vaccination with TGF-β + MOG35-55 in Alum did not increase Treg percentages in vivo. Overall, this study indicates that IFN-β + NAg in Alum vaccination elicits NAg-specific, suppressive CD25+ Tregs that inhibit CNS autoimmune disease. Thus, IFN-β has the activity spectrum that drives selective responses of suppressive FOXP3+ Tregs.
Collapse
Affiliation(s)
- Duncheng Wang
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
| | - Debjani Ghosh
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
| | - S M Touhidul Islam
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
| | - Ashton E Thomason
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
| | - Daniel S Wilkinson
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
| | - Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834; and
- The Harriet and John Wooten Laboratory for Alzheimer's and Neurodegenerative Disease Research, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| |
Collapse
|
2
|
Kuo P, Scofield BA, Yu I, Chang F, Ganea D, Yen J. Interferon-β Modulates Inflammatory Response in Cerebral Ischemia. J Am Heart Assoc 2016; 5:e002610. [PMID: 26747000 PMCID: PMC4859377 DOI: 10.1161/jaha.115.002610] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/04/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Stroke is a leading cause of death in the world. In >80% of strokes, the initial acute phase of ischemic injury is due to the occlusion of a blood vessel resulting in severe focal hypoperfusion, excitotoxicity, and oxidative damage. Interferon-β (IFNβ), a cytokine with immunomodulatory properties, was approved by the US Food and Drug Administration for the treatment of relapsing-remitting multiple sclerosis for more than a decade. Its anti-inflammatory properties and well-characterized safety profile suggest that IFNβ has therapeutic potential for the treatment of ischemic stroke. METHODS AND RESULTS We investigated the therapeutic effect of IFNβ in the mouse model of transient middle cerebral artery occlusion/reperfusion. We found that IFNβ not only reduced infarct size in ischemic brains but also lessened neurological deficits in ischemic stroke animals. Further, multiple molecular mechanisms by which IFNβ modulates ischemic brain inflammation were identified. IFNβ reduced central nervous system infiltration of monocytes/macrophages, neutrophils, CD4(+) T cells, and γδ T cells; inhibited the production of inflammatory mediators; suppressed the expression of adhesion molecules on brain endothelial cells; and repressed microglia activation in the ischemic brain. CONCLUSIONS Our results demonstrate that IFNβ exerts a protective effect against ischemic stroke through its anti-inflammatory properties and suggest that IFNβ is a potential therapeutic agent, targeting the reperfusion damage subsequent to the treatment with tissue plasminogen activator.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Brain/drug effects
- Brain/immunology
- Brain/metabolism
- Brain/pathology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Adhesion Molecules/metabolism
- Cell Line
- Chemotaxis, Leukocyte/drug effects
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Infarction, Middle Cerebral Artery/immunology
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/prevention & control
- Inflammation Mediators/metabolism
- Interferon-beta/pharmacology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/drug effects
- Microglia/immunology
- Microglia/metabolism
- Neuroprotective Agents/pharmacology
- Neutrophil Infiltration/drug effects
- Neutrophils/drug effects
- Neutrophils/immunology
- Neutrophils/metabolism
- Receptor, Interferon alpha-beta/deficiency
- Receptor, Interferon alpha-beta/genetics
Collapse
Affiliation(s)
- Ping‐Chang Kuo
- Department of Microbiology and ImmunologyIndiana University School of MedicineFort WayneIN
| | - Barbara A. Scofield
- Department of Microbiology and ImmunologyIndiana University School of MedicineFort WayneIN
| | - I‐Chen Yu
- Department of Anatomy and Cell BiologyIndiana University School of MedicineFort WayneIN
| | - Fen‐Lei Chang
- Department of NeurologyIndiana University School of MedicineFort WayneIN
| | - Doina Ganea
- Department of Microbiology and ImmunologyTemple University School of MedicinePhiladelphiaPA
| | - Jui‐Hung Yen
- Department of Microbiology and ImmunologyIndiana University School of MedicineFort WayneIN
| |
Collapse
|
3
|
McPherson RC, Anderton SM. Adaptive immune responses in CNS autoimmune disease: mechanisms and therapeutic opportunities. J Neuroimmune Pharmacol 2013; 8:774-90. [PMID: 23568718 DOI: 10.1007/s11481-013-9453-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/13/2013] [Indexed: 01/20/2023]
Abstract
The processes underlying autoimmune CNS inflammation are complex, but key roles for autoimmune lymphocytes seem inevitable, based on clinical investigations in multiple sclerosis (MS) and related diseases such as neuromyelitis optica, together with the known pathogenic activity of T cells in experimental autoimmune encephalomyelitis (EAE) models. Despite intense investigation, the details of etiopathology in these diseases have been elusive. Here we describe recent advances in the rodent models that begin to allow a map of pathogenic and protective immunity to be drawn. This map might illuminate previous successful and unsuccessful therapeutic strategies targeting particular pathways, whilst also providing better opportunities for the future, leading to tailored intervention based on understanding the quality of each individual's autoimmune response.
Collapse
Affiliation(s)
- Rhoanne C McPherson
- Centre for Inflammation Research and Centre for Multiple Sclerosis Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | |
Collapse
|
4
|
Fitzgerald DC, Fonseca-Kelly Z, Cullimore ML, Safabakhsh P, Saris CJM, Zhang GX, Rostami A. Independent and interdependent immunoregulatory effects of IL-27, IFN-β, and IL-10 in the suppression of human Th17 cells and murine experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2013; 190:3225-34. [PMID: 23455508 DOI: 10.4049/jimmunol.1200141] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IFN-β, IL-27, and IL-10 have been shown to exert a range of similar immunoregulatory effects in murine and human experimental systems, particularly in Th1- and Th17-mediated models of autoimmune inflammatory disease. In this study we sought to translate some of our previous findings in murine systems to human in vitro models and delineate the interdependence of these different cytokines in their immunoregulatory effects. We demonstrate that human IL-27 upregulates IL-10 in T cell-activated PBMC cultures and that IFN-β drives IL-27 production in activated monocytes. IFN-β-driven IL-27 is responsible for the upregulation of IL-10, but not IL-17 suppression, by IFN-β in human PBMCs. Surprisingly, IL-10 is not required for the suppression of IL-17 by either IL-27 or IFN-β in this model or in de novo differentiating Th17 cells, nor is IL-27 signaling required for the suppression of experimental autoimmune encephalomyelitis (EAE) by IFN-β in vivo. Furthermore, and even more surprisingly, IL-10 is not required for the suppression of Th17-biased EAE by IL-27, in sharp contrast to Th1-biased EAE. In conclusion, IFN-β and IL-27 both induce human IL-10, both suppress human Th17 responses, and both suppress murine EAE. However, IL-27 signaling is not required for the therapeutic effect of IFN-β in EAE. Suppression of Th17-biased EAE by IL-27 is IL-10-independent, in contrast to its mechanism of action in Th1-biased EAE. Taken together, these findings delineate a complex set of interdependent and independent immunoregulatory mechanisms of IFN-β, IL-27, and IL-10 in human experimental models and in murine Th1- and Th17-driven autoimmunity.
Collapse
Affiliation(s)
- Denise C Fitzgerald
- Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7AE, Northern Ireland, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
5
|
Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2012; 164:1079-106. [PMID: 21371012 DOI: 10.1111/j.1476-5381.2011.01302.x] [Citation(s) in RCA: 1086] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is the most commonly used experimental model for the human inflammatory demyelinating disease, multiple sclerosis (MS). EAE is a complex condition in which the interaction between a variety of immunopathological and neuropathological mechanisms leads to an approximation of the key pathological features of MS: inflammation, demyelination, axonal loss and gliosis. The counter-regulatory mechanisms of resolution of inflammation and remyelination also occur in EAE, which, therefore can also serve as a model for these processes. Moreover, EAE is often used as a model of cell-mediated organ-specific autoimmune conditions in general. EAE has a complex neuropharmacology, and many of the drugs that are in current or imminent use in MS have been developed, tested or validated on the basis of EAE studies. There is great heterogeneity in the susceptibility to the induction, the method of induction and the response to various immunological or neuropharmacological interventions, many of which are reviewed here. This makes EAE a very versatile system to use in translational neuro- and immunopharmacology, but the model needs to be tailored to the scientific question being asked. While creating difficulties and underscoring the inherent weaknesses of this model of MS in straightforward translation from EAE to the human disease, this variability also creates an opportunity to explore multiple facets of the immune and neural mechanisms of immune-mediated neuroinflammation and demyelination as well as intrinsic protective mechanisms. This allows the eventual development and preclinical testing of a wide range of potential therapeutic interventions.
Collapse
Affiliation(s)
- Cris S Constantinescu
- Division of Clinical Neurology, School of Clinical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | | | | | | |
Collapse
|
6
|
Brück W, Wegner C. Insight into the mechanism of laquinimod action. J Neurol Sci 2011; 306:173-9. [PMID: 21429524 DOI: 10.1016/j.jns.2011.02.019] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 10/11/2010] [Accepted: 02/16/2011] [Indexed: 12/12/2022]
Abstract
Laquinimod is a small, novel, orally active, well-tolerated molecule that significantly reduced gadolinium-enhancing lesions in patients with multiple sclerosis (MS). Orally administered laquinimod was found to be present within the central nervous system (CNS) in both healthy mice and mice with experimental autoimmune encephalomyelitis (EAE). Laquinimod inhibits development of both acute and chronic EAE. Furthermore, laquinimod minimizes inflammation, demyelination and axonal damage in MOG-induced EAE in mice treated at disease induction and following clinical disease onset. In vitro, laquinimod down-regulates secretion of pro-inflammatory cytokines and enhances production of anti-inflammatory cytokines from peripheral blood mononuclear cells (PBMCs) derived from healthy subjects and untreated relapsing remitting (RR) MS patients. Additionally, patients treated with laquinimod demonstrate up-regulation of brain-derived neurotrophic factor (BDNF) in the serum. In conclusion, treatment with laquinimod is effective in reducing inflammation, demyelination and axonal damage.
Collapse
Affiliation(s)
- W Brück
- Department of Neuropathology, University Medical Center, Georg-August University, Göttingen, Germany.
| | | |
Collapse
|
7
|
Farooqi N, Gran B, Constantinescu CS. Are current disease-modifying therapeutics in multiple sclerosis justified on the basis of studies in experimental autoimmune encephalomyelitis? J Neurochem 2010; 115:829-44. [DOI: 10.1111/j.1471-4159.2010.06982.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Wegner C, Stadelmann C, Pförtner R, Raymond E, Feigelson S, Alon R, Timan B, Hayardeny L, Brück W. Laquinimod interferes with migratory capacity of T cells and reduces IL-17 levels, inflammatory demyelination and acute axonal damage in mice with experimental autoimmune encephalomyelitis. J Neuroimmunol 2010; 227:133-43. [DOI: 10.1016/j.jneuroim.2010.07.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/24/2010] [Accepted: 07/09/2010] [Indexed: 12/01/2022]
|
9
|
Croxford AL, Kurschus FC, Waisman A. Mouse models for multiple sclerosis: historical facts and future implications. Biochim Biophys Acta Mol Basis Dis 2010; 1812:177-83. [PMID: 20600870 DOI: 10.1016/j.bbadis.2010.06.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 06/04/2010] [Accepted: 06/16/2010] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory and demyelinating condition of the CNS, characterized by perivascular infiltrates composed largely of T lymphocytes and macrophages. Although the precise cause remains unknown, numerous avenues of research support the hypothesis that autoimmune mechanisms play a major role in the development of the disease. Pathologically similar lesions to those seen in MS can be induced in laboratory rodents by immunization with CNS-derived antigens. This form of disease induction, broadly termed experimental autoimmune encephalomyelitis, is frequently the starting point in MS research with respect to studying pathogenesis and creating novel treatments. Many different EAE models are available, each mimicking a particular facet of MS. These models all have common ancestry, and have developed from a single concept of immunization with self-antigen. We will discuss the major changes in immunology research, which have shaped the EAE models we use today, and discuss how current animal models of MS have resulted in successful treatments and more open questions for researchers to address.
Collapse
MESH Headings
- Animals
- Autoantigens/history
- Autoantigens/immunology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/history
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Gene Targeting/history
- History, 20th Century
- History, 21st Century
- Humans
- Mice
- Multiple Sclerosis/etiology
- Multiple Sclerosis/immunology
- Multiple Sclerosis/therapy
- Th17 Cells/immunology
Collapse
Affiliation(s)
- Andrew L Croxford
- Institute for Molecualr Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Germany.
| | | | | |
Collapse
|
10
|
Abstract
Guillain-Barré syndrome (GBS) is an acute inflammatory demyelinating neuropathy that is associated with long-lasting morbidity and a substantial risk of mortality. The 2 reference treatments, plasma exchange and intravenous immunoglobulins (IVIg), do not change the functional prognosis for the most severely ill patients. The pathogenesis of GBS involves humoral and cellular immune dysfunctions that have only recently been characterised. Antibodies to nerve antigens may participate in complement activation, antibody-dependent macrophage cytotoxicity and reversible conduction failure. The cellular immune reaction is associated with increases in pro-inflammatory cytokines [such as tumour necrosis factor-alpha (TNFalpha)] and matrix metalloproteinases (MMPs; e.g. MMP-9), and a decrease in anti-inflammatory cytokines [such as transforming growth factor-beta1 (TGFbeta1)]. All the changes favour adhesion to and transmigration across the endothelium of immune cells, a key phenomenon associated with GBS. Recovery from GBS is characterised by the normalisation of these changes. Experimental allergic neuritis (EAN), the experimental model of GBS, has strikingly similar immunological characteristics. The usual treatment options for patients with GBS (plasma exchange and IVIg) mainly target the humoral component of the immune response. Interferon-beta (IFNbeta) is a cellular immunomodulator that inhibits antigen presentation and TNFalpha production and binding, and modulates macrophage properties. IFNbeta increases anti-inflammatory T cell functions and the production of anti-inflammatory cytokines, such as TGFbeta1. IFNbeta has important effects on leukodiapedesis, caused by modulating the expression of cell adhesion molecules and the MMP-9 proteinases. It has been used with success in EAN, in some patients with acute exacerbation of chronic inflammatory demyelinating polyneuropathy, and in 1 patient with GBS. The pathophysiology of patients with GBS, an understanding of IFNbeta properties and results of experimental studies support the investigation of IFNbeta in trials of patients with GBS.
Collapse
Affiliation(s)
- A Créange
- Réseau de Neuroimmunologie du Nerf Périphérique (AP/HP), Laboratoire Germen (Inserm E. 0011), Service de Neurologie, Centre Hospitalier Universitaire Henri Mondor, Créteil, France.
| |
Collapse
|
11
|
Interferon beta induces mature dendritic cell apoptosis through caspase-11/caspase-3 activation. Blood 2009; 114:1344-54. [PMID: 19531658 DOI: 10.1182/blood-2008-12-196592] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although interferon beta (IFNbeta) decreases relapse rate and disease activity in multiple sclerosis (MS), the mechanisms involved have not been elucidated. The present study is the first report on the apoptotic effect of IFNbeta in mature, but not immature, myeloid dendritic cells (DCs). Both exogenous IFNbeta added to DCs matured through exposure to proinflammatory cytokines and endogenous IFNbeta secreted after lipopolysaccharide stimulation induced DC cell death. Apoptosis of mature DCs required both NF-kappaB and STAT-1 activation, and was mediated through the induction of caspase-11 expression and activation of caspase-3. In vivo, we observed increased caspase-11 expression and a significant decrease in the number of splenic DCs after lipopolysaccharide administration in wt but not in STAT-1-deficient mice. Since mature DCs are major contributors to the inflammatory response and essential partners in the induction of adaptive immunity, IFNbeta-dependent elimination of activated DCs could play an essential role in re-establishing homeostasis, and might represent a new molecular mechanism for the therapeutic effect of IFNbeta in MS.
Collapse
|
12
|
Mannie MD, Abbott DJ, Blanchfield JL. Experimental autoimmune encephalomyelitis in Lewis rats: IFN-beta acts as a tolerogenic adjuvant for induction of neuroantigen-dependent tolerance. THE JOURNAL OF IMMUNOLOGY 2009; 182:5331-41. [PMID: 19380780 DOI: 10.4049/jimmunol.0803756] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokine-Ag fusion proteins represent a novel approach for induction of Ag-specific tolerance and may constitute an efficient therapy for autoimmune disease. This study addressed whether a fusion protein containing rat IFN-beta and the encephalitogenic 73-87 determinant of myelin basic protein (i.e., the neuroantigen, or NAg) could prevent or treat experimental autoimmune encephalomyelitis (EAE) in Lewis rats. The optimal structure of the fusion protein was comprised of the rat IFN-beta cytokine as the N-terminal domain with an enterokinase (EK) linker to the NAg domain. Both cytokine and NAg domains had full biological activity. Subcutaneous administration of 1 nmol of IFNbeta-NAg fusion protein in saline on days -21, -14, and -7 before encephalitogenic challenge on day 0 resulted in a substantial attenuation of EAE. In contrast, administration of IFN-beta or NAg alone did not affect susceptibility to EAE. The covalent attachment of IFN-beta and NAg was not necessary, because separate injections of IFN-beta and NAg at adjacent sites were as effective as injection of IFNbeta-NAg for prevention of disease. When treatment was initiated after disease onset, the rank order of inhibitory activity was as follows: the IFNbeta-NAg fusion protein > or = a mixture of IFN-beta plus NAg > IFN-beta > NAg. The novel finding that IFN-beta acts as a tolerogenic adjuvant as well as a tolerogenic fusion partner may have significance for development of tolerogenic vaccines.
Collapse
Affiliation(s)
- Mark D Mannie
- Department of Microbiology and Immunology, East Carolina University, Brody School of Medicine, Greenville, NC 27834, USA
| | | | | |
Collapse
|
13
|
Mirandola SR, Hallal DEM, Farias AS, Oliveira EC, Brandão CO, Ruocco HH, Damasceno BP, Santos LMB. Interferon-beta modifies the peripheral blood cell cytokine secretion in patients with multiple sclerosis. Int Immunopharmacol 2009; 9:824-30. [PMID: 19289181 DOI: 10.1016/j.intimp.2009.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 02/23/2009] [Accepted: 03/06/2009] [Indexed: 11/19/2022]
Abstract
Immunotherapy with Interferon-beta (IFNbeta) results in remarkably beneficial effects in patients with relapsing-remitting multiple sclerosis (MS), although the mechanisms by which it exerts these beneficial effects remain poorly understood. An investigation was made of the effects of IFNbeta on pro-inflammatory and anti-inflammatory cytokine production in peripheral blood cells in MS patients, both untreated and those undergoing immunotherapy, as well as in healthy controls. Results show a significant increase in the production of pro-inflammatory cytokines such as TNFalpha, IFNgamma and IL-12 in the plasma and in the supernatant of leukocyte cultures from MS patients with the untreated disease; IFNbeta administration significantly reduced the levels of TNFalpha and IFNgamma, with no changes in the level of IL-12. The Interferon-beta therapy also led to a significant increase in the production of IL-10, as well as a slight increase in that of TGFbeta. The reduction in pro-inflammatory cytokine production in the treated MS patient group, accompanied by a simultaneous increase in the production of anti-inflammatory cytokines and the reduction of relapse rates suggests that the beneficial effects of IFNbeta immunotherapy result, at least in part, from the modulation of cytokine patterns.
Collapse
Affiliation(s)
- Sandra R Mirandola
- Neuroimmunology-Unit, Department of Genetics, Evolution and Bioagents, UNICAMP, Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Martín-Saavedra FM, González-García C, Bravo B, Ballester S. Beta interferon restricts the inflammatory potential of CD4+ cells through the boost of the Th2 phenotype, the inhibition of Th17 response and the prevalence of naturally occurring T regulatory cells. Mol Immunol 2008; 45:4008-19. [DOI: 10.1016/j.molimm.2008.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 06/05/2008] [Accepted: 06/08/2008] [Indexed: 10/21/2022]
|
15
|
Martín-Saavedra FM, Flores N, Dorado B, Eguiluz C, Bravo B, García-Merino A, Ballester S. Beta-interferon unbalances the peripheral T cell proinflammatory response in experimental autoimmune encephalomyelitis. Mol Immunol 2007; 44:3597-607. [PMID: 17420051 DOI: 10.1016/j.molimm.2007.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 11/15/2022]
Abstract
Interferon beta (IFNbeta) is a widespread therapy for multiple sclerosis (MS). We have analyzed some critical features of the T cell activation process in lymph nodes after IFNbeta treatment of experimental autoimmune encephalomyelitis (EAE) in SJL mice. Prevention of clinical signs and drastic reduction of perivascular infiltrates in the central nervous system (CNS) were accompanied by alterations in nuclear DNA binding activity levels of NFkappaB and Stat6 transcription factors in lymph node cells (LNC). A decrease of active NFkappaB subunits in treated animals correlated with lower levels of the cytoplasmic phosphorylated form of IkappaBalpha. Results also showed that nuclear DNA binding activity of Stat6 was increased by IFNbeta treatment, as were the cytoplasmic levels of phosphorilated Stat6 (P-Stat6). These high levels of P-Stat6 in IFNbeta-treated animals were accompanied by an increase of IL-4 expression levels measured by real time PCR. In vitro experiments with the IL-4 producing clone D10.G4.1 indicates that the IFNbeta-mediated IL-4 induction is not an effect exclusive to MBP-reactive cells, and suggest that it could be mediated by mRNA stability enlargement. On the other hand, IFNbeta treatment of EAE produced no significant changes in peripheral IFNgamma expression and a striking decrease of IL-17. These findings suggest that the inhibition of NFkappaB activity, the increase of IL-4 expression and its signaling transduction, and the decrease of IL-17 may cooperate to some of the antiinflammatory effects of IFNbeta on EAE.
Collapse
Affiliation(s)
- Francisco M Martín-Saavedra
- Unidad de Regulación Génica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo Km 2, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Sättler MB, Demmer I, Williams SK, Maier K, Merkler D, Gadjanski I, Stadelmann C, Bähr M, Diem R. Effects of interferon-beta-1a on neuronal survival under autoimmune inflammatory conditions. Exp Neurol 2006; 201:172-81. [PMID: 16764858 DOI: 10.1016/j.expneurol.2006.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 03/17/2006] [Accepted: 04/04/2006] [Indexed: 01/03/2023]
Abstract
Interferon-beta-1a (IFN-beta-1a) is an approved treatment for multiple sclerosis (MS). It improves the disease course by reducing the relapse rate as well as the persistent neurological deficits. Recent MRI and post-mortem studies revealed that neuronal and axonal damage are most relevant for chronic disability in MS patients. We have characterized previously time course and mechanisms of neuronal apoptosis in a rat model of myelin oligodendrocyte glycoprotein (MOG)-induced optic neuritis. In this animal model, application of IFN-beta-1a three times per week slightly decreases the loss of retinal ganglion cells (RGCs), the neurons that form the axons within the optic nerve. In contrast to neurotrophic factors, this cytokine does not directly protect cultured RGCs from apoptosis. We conclude that IFN-beta-1a is a suitable candidate to be combined with a directly neuroprotective agent in order to further decrease axonal and neuronal degeneration in MS patients.
Collapse
MESH Headings
- Animals
- Antibodies/blood
- Apoptosis/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Enzyme-Linked Immunosorbent Assay
- Female
- Humans
- Interferon beta-1a
- Interferon-beta/pharmacology
- Mitogen-Activated Protein Kinase 1/metabolism
- Myelin Proteins
- Myelin-Associated Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein
- Nerve Degeneration/metabolism
- Nerve Degeneration/pathology
- Nerve Degeneration/prevention & control
- Neuritis, Autoimmune, Experimental/immunology
- Neuritis, Autoimmune, Experimental/metabolism
- Neuritis, Autoimmune, Experimental/prevention & control
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Phosphorylation/drug effects
- Rats
- Rats, Inbred BN
- Retinal Ganglion Cells/drug effects
- Retinal Ganglion Cells/metabolism
- Retinal Ganglion Cells/pathology
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Muriel B Sättler
- Neurologische Universitätsklinik, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Miyake M, Sasaki K, Ide K, Matsukura Y, Shijima K, Fujiwara D. Highly Oligomeric Procyanidins Ameliorate Experimental Autoimmune Encephalomyelitis via Suppression of Th1 Immunity. THE JOURNAL OF IMMUNOLOGY 2006; 176:5797-804. [PMID: 16670285 DOI: 10.4049/jimmunol.176.10.5797] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Extracts of Jatoba, a South American herb, when injected i.p. into a mouse model of experimental autoimmune encephalomyelitis (EAE), inhibited the aggravation of clinical symptoms. At the same time, production of myelin oligodendrocyte glycoprotein Ag-specific IFN-gamma and TNF-alpha by spleen cells was markedly suppressed. After administration of Jatoba there was minimal evidence of the demyelination that is characteristic of the EAE model. Decreases in clinical scores were observed when Jatoba extracts were injected just before Ag. The purified active compounds are likely to be polyphenols that are absorbable to polyvinylpolypyrrolidone. The active compounds were polymerized polyphenol polymers (procyanidins) and at least five degrees of polymerization were necessary for activity. In addition, extracts of other plant materials containing such procyanidins had similar activity. After administration of highly polymerized procyanidins, there was a decrease in both dendritic and CD4(+) T cells. Although macrophages were increased in number, the expression of CD80 and MHC class II molecules was depressed indicating that the macrophages were immature. The results indicate that the suppression of development of EAE by the highly polymerized procyanidins resulted from an inhibition of Th1 and the effects might be associated with depression of Ag-presenting capability.
Collapse
Affiliation(s)
- Mika Miyake
- Central Laboratories for Key Technology, Kirin Brewery, 1-13-5 Fukuura, Kanazawa, Yokohama-shi, Kanagawa 236-0004, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Runström A, Leanderson T, Ohlsson L, Axelsson B. Inhibition of the development of chronic experimental autoimmune encephalomyelitis by laquinimod (ABR-215062) in IFN-beta k.o. and wild type mice. J Neuroimmunol 2006; 173:69-78. [PMID: 16472873 DOI: 10.1016/j.jneuroim.2005.11.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
Laquinimod is a novel oral immunomodulatory substance, which is currently developed for the treatment of multiple sclerosis (MS). The ability of laquinimod to inhibit disease development was investigated in chronic experimental autoimmune encephalomyelitis (chEAE) in IFN-beta k.o. mice and wild type mice. Laquinimod was shown to inhibit both disease development and histopathological changes in the CNS. Furthermore, laquinimod was found to be independent of endogenous IFN-beta for its effect in chEAE. When laquinimod was combined with exogenous IFN-beta, a synergistic disease inhibitory effect was seen. These findings using laquinimod in preclinical disease models for MS emphasize the potential of laquinimod in the future treatment of MS also in patients that do not respond to IFN-beta monotherapy. Furthermore, the results indicate that laquinimod may favourably be combined with IFN-beta.
Collapse
|
19
|
McCoy L, Tsunoda I, Fujinami RS. Multiple sclerosis and virus induced immune responses: autoimmunity can be primed by molecular mimicry and augmented by bystander activation. Autoimmunity 2006; 39:9-19. [PMID: 16455578 DOI: 10.1080/08916930500484799] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polymicrobial infections have been associated with plausible immune mediated diseases, including multiple sclerosis (MS). Virus infection can prime autoimmune T cells specific for central nervous system (CNS) antigens, if virus has molecular mimicry with CNS proteins. On the other hand, infection of irrelevant viruses will induce two types of cytokine responses. Infection with a virus such as lymphocytic choriomeningitis virus (LCMV), can induce interferon (IFN)-alpha/beta production and suppress autoimmunity, while infection with a virus, such as murine cytomegalovirus (MCMV), can activate natural killer (NK), NKT and dendritic cells, resulting in interleukin (IL)-12 and IFN-gamma production. These cytokines can cause bystander activation of autoreactive T cells. We established an animal model, where mice infected with vaccinia virus encoding myelin protein can mount autoimmune responses. However, the mice develop clinical disease only after irrelevant immune activation either with complete Freund's adjuvant or MCMV infection. In this review, we propose that a combination of two mechanisms, molecular mimicry and bystander activation, induced by virus infection, can lead to CNS demyelinating diseases, including MS. Viral proteins having molecular mimicry with self-proteins in the CNS can prime genetically susceptible individuals. Once this priming has occurred, an immunologic challenge could result in disease through bystander activation by cytokines.
Collapse
Affiliation(s)
- Lori McCoy
- University of Utah School of Medicine, Department of Neurology, 30 North 1900 East, Room 3R330, Salt Lake City, UT 84132-2305, USA
| | | | | |
Collapse
|
20
|
Yang JS, Xu LY, Xiao BG, Hedlund G, Link H. Laquinimod (ABR-215062) suppresses the development of experimental autoimmune encephalomyelitis, modulates the Th1/Th2 balance and induces the Th3 cytokine TGF-beta in Lewis rats. J Neuroimmunol 2004; 156:3-9. [PMID: 15465591 DOI: 10.1016/j.jneuroim.2004.02.016] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 02/10/2004] [Accepted: 02/11/2004] [Indexed: 12/12/2022]
Abstract
The new orally active drug laquinimod (ABR-215062) was evaluated in experimental autoimmune encephalomyelitis (EAE) in the Lewis rat. EAE shares important immunological and clinical features with multiple sclerosis (MS). Doses of 16, 1.6 and 0.16 mg/kg/day laquinimod dose-dependently inhibited disease and showed better disease inhibitory effects as compared to roquinimex (Linomide). Furthermore, laquinimod inhibited the inflammation of both CD4+ T cells and macrophages into central nervous tissues, i.e. the spinal cord. It also changed the cytokine balance in favour of TH2/TH3 cytokines IL-4, IL-10 and TGF-beta. Laquinimod therefore represents a new orally active immunoregulatory drug without general immunosuppressive properties with a potential for the treatment of severe autoimmune diseases like MS.
Collapse
Affiliation(s)
- Jian-She Yang
- Division of Neuroimmunology, NEUROTEC Department, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
21
|
Tadokoro CE, Vallochi AL, Rios LS, Martins GA, Schlesinger D, Mosca T, Kuchroo VK, Rizzo LV, Abrahamsohn IA. Experimental autoimmune encephalomyelitis can be prevented and cured by infection with Trypanosoma cruzi. J Autoimmun 2004; 23:103-15. [PMID: 15324929 DOI: 10.1016/j.jaut.2004.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 04/29/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
Trypanosoma cruzi is an intracellular parasite that induces a strong Th1-type response and immunosuppression during the acute phase of infection. To study how the infection with T. cruzi would modulate the development of an autoimmune disease, we immunized C57BL/6 mice and IL-10 or iNOS knock-out mice of the same background with the encephalitogenic MOG 35-55 peptide and infected them with T. cruzi. Our results demonstrate that infection with T. cruzi completely prevents EAE development and furthermore induces complete and lasting remission in mice that were infected with this parasite after they had developed clinical EAE. Nitric oxide and IL-10 participate in triggering the mechanisms associated with EAE suppression by the infection. Decreased lymphoproliferation and increased frequencies of Annexin-positive cells and of T cells bearing CD95, CD95L or CTLA-4 were observed in the spleen from immunized/infected mice, as well as lower IL-2 and increased TGF-beta production in comparison with only immunized mice. Our results indicate that several effector and regulatory mechanisms of the immune response that arise during the acute phase of T. cruzi infection lastingly affect the expansion and/or effector functions of encephalitogenic cells, preventing the onset or inducing complete remission of EAE.
Collapse
MESH Headings
- Animals
- Antigens, CD/analysis
- Autoimmunity
- Cell Proliferation
- Chagas Disease/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/parasitology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Glycoproteins
- Interleukin-10/genetics
- Interleukin-10/physiology
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin-Oligodendrocyte Glycoprotein
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/physiology
- Nitric Oxide Synthase Type II
- Peptide Fragments
- Remission Induction/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Trypanosoma cruzi/immunology
Collapse
Affiliation(s)
- Carlos E Tadokoro
- Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, Av. Prof. Lineu Prestes, 1730, ICB/USP - Ed. BIO IV, 05508-900 São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mastronardi FG, Min W, Wang H, Winer S, Dosch M, Boggs JM, Moscarello MA. Attenuation of Experimental Autoimmune Encephalomyelitis and Nonimmune Demyelination by IFN-β plus Vitamin B12: Treatment to Modify Notch-1/Sonic Hedgehog Balance. THE JOURNAL OF IMMUNOLOGY 2004; 172:6418-26. [PMID: 15128833 DOI: 10.4049/jimmunol.172.10.6418] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interferon-beta is a mainstay therapy of demyelinating diseases, but its effects are incomplete in human multiple sclerosis and several of its animal models. In this study, we demonstrate dramatic improvements of clinical, histological, and laboratory parameters in in vivo mouse models of demyelinating disease through combination therapy with IFN-beta plus vitamin B(12) cyanocobalamin (B(12)CN) in nonautoimmune primary demyelinating ND4 (DM20) transgenics, and in acute and chronic experimental autoimmune encephalomyelitis in SJL mice. Clinical improvement (p values <0.0001) was paralleled by near normal motor function, reduced astrocytosis, and reduced demyelination. IFN-beta plus B(12)CN enhanced in vivo and in vitro oligodendrocyte maturation. In vivo and in vitro altered expression patterns of reduced Notch-1 and enhanced expression of sonic hedgehog and its receptor were consistent with oligodendrocyte maturation and remyelination. IFN-beta-B(12)CN combination therapy may be promising for the treatment of multiple sclerosis.
Collapse
MESH Headings
- Acute Disease
- Animals
- Brain/drug effects
- Brain/metabolism
- Cell Line
- Chronic Disease
- Demyelinating Diseases/genetics
- Demyelinating Diseases/metabolism
- Demyelinating Diseases/prevention & control
- Drug Synergism
- Drug Therapy, Combination
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Hedgehog Proteins
- Humans
- Interferon-beta/therapeutic use
- Mice
- Mice, Inbred Strains
- Mice, Transgenic
- Oligodendroglia/cytology
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Peptide Fragments/biosynthesis
- Receptor, Notch1
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/metabolism
- Stem Cells/drug effects
- Stem Cells/metabolism
- Trans-Activators/biosynthesis
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors
- Vitamin B 12/therapeutic use
Collapse
Affiliation(s)
- Fabrizio G Mastronardi
- Department of Structural Biology and Biochemistry, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Rempel JD, Murray SJ, Meisner J, Buchmeier MJ. Differential regulation of innate and adaptive immune responses in viral encephalitis. Virology 2004; 318:381-92. [PMID: 14972563 PMCID: PMC7126141 DOI: 10.1016/j.virol.2003.09.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Revised: 08/22/2003] [Accepted: 09/09/2003] [Indexed: 11/16/2022]
Abstract
Viral encephalitis is a global health concern. The ability of a virus to modulate the immune response can have a pivotal effect on the course of disease and the fate of the infected host. In this study, we sought to understand the immunological basis for the fatal encephalitis following infection with the murine coronavirus, mouse hepatitis virus (MHV)-JHM, in contrast with the more attenuated MHV-A59. Distinct glial cell cytokine and chemokine response patterns were observed within 3 days after infection, became progressively more polarized during the course of infection and with the infiltration of leukocytes. In the brain, MHV-JHM infection induced strong accumulation of IFNbeta mRNA relative to IFNgamma mRNA. This trend was reversed in MHV-A59 infection and was accompanied by increased CD8 T cell infiltration into brain compared to MHV-JHM infection. Increased apoptosis appeared to contribute to the diminished presence of CD8 T cells in MHV-JHM-infected brain with the consequence of a lower potential for IFNgamma production and antiviral activity. MHV-JHM infection also induced sustained mRNA accumulation of the innate immune response products interleukin (IL)-6 and IL-1. Furthermore, high levels of macrophage-inflammatory protein (MIP)-1alpha, MIP-1beta, and MIP-2 mRNA were observed at the onset of MHV-JHM infection and correlated with a marked elevation in the number of macrophages in the brain on day 7 compared to MHV-A59 infection. These observations indicate that differences in the severity of viral encephalitis may reflect the differential ability of viruses to stimulate innate immune responses within the CNS and subsequently the character of infiltrating leukocyte populations.
Collapse
Affiliation(s)
- Julia D Rempel
- Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
24
|
Hallal DEM, Farias AS, Oliveira EC, Diaz-Bardales BM, Brandão CO, Protti GG, Pereira FG, Metze IL, Santos LMB. Costimulatory molecule expression on leukocytes from mice with experimental autoimmune encephalomyelitis treated with IFN-beta. J Interferon Cytokine Res 2003; 23:293-8. [PMID: 12859855 DOI: 10.1089/107999003766628133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferon-beta (IFN-beta) is of benefit in the treatment of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), but the mechanisms by which it exerts this beneficial effect remain uncertain. The present data demonstrate that IFN-beta therapy impairs the proliferative response to concanavalin A (ConA) and myelin basic protein (MBP), decreases expression of the CD80 molecule on leukocytes of treated mice, and may thereby impede the Th1 cell activation-promoting anergy in EAE. Moreover, IFN-beta therapy increases expression of the CTLA4 molecule, which induces a counterregulatory Th2 response. The reduction of CD80 expression with concomitant increase of CTLA4 expression alters the course of EAE and may be useful as a monitor in therapy with IFN-beta.
Collapse
Affiliation(s)
- Dannie E M Hallal
- Neuroimmunology Unit-Department of Microbiology and Immunology, and University of Campinas (UNICAMP), Campinas-SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Peltoniemi J, Setälä N, Broberg E, Röyttä M, Hukkanen V, Salmi AA, Erälinna JP. Semliki Forest virus infection is enhanced in Th1-prone SJL mice but not in Th2-prone BALB/c mice during Linomide-induced immunomodulation. J Neuroimmunol 2002; 132:83-92. [PMID: 12417437 DOI: 10.1016/s0165-5728(02)00312-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Linomide (quinoline-3-carboxamide) is an immunomodulator with diverse effects on the immune system. Its beneficial effects on experimental autoimmune disease models have been linked to downregulation of Th1 cytokines and altered macrophage functions. We studied this effect of downregulation of Th1-type of immune response on Semliki Forest A7 virus infection in experimental autoimmune encephalomyelitis (EAE) susceptible Th1-prone SJL mice and in EAE-resistant Th2-prone BALB/c mice. We aimed at addressing the target-cell population of Linomide responsible for this Th1 downregulation. Treatment with Linomide led to increased virus infection in brain and this effect coincided with decreased production of IL-12 and IFN-gamma from stimulated spleen cells in SJL mice. In contrast, IL-12 and IFN-gamma expression were increased in Linomide-treated BALB/c mice. Treatment of infected SJL mice resulted in decreased percentage of CD11b+ and CD11c+ cells. Thus, the target cell population of Linomide may be antigen-presenting cells (APC) which are considered as candidates for regulatory cells of Th1/Th2 balance.
Collapse
Affiliation(s)
- J Peltoniemi
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520, Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Brunmark C, Runström A, Ohlsson L, Sparre B, Brodin T, Aström M, Hedlund G. The new orally active immunoregulator laquinimod (ABR-215062) effectively inhibits development and relapses of experimental autoimmune encephalomyelitis. J Neuroimmunol 2002; 130:163-72. [PMID: 12225898 DOI: 10.1016/s0165-5728(02)00225-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A new orally active drug, laquinimod (ABR-215062), was shown to completely inhibit the development of murine acute experimental autoimmune encephalomyelitis (EAE). Furthermore, leukocyte infiltration into the central nervous system (CNS) was abolished in the laquinimod-treated animals. By direct comparison based on dose and total exposure, laquinimod was approximately 20 times more potent than the immunomodulator roquinimex. Laquinimod also had clear therapeutic effect when given after clinical onset in a chronic relapsing EAE model. It therefore represents a new orally active immunoregulatory drug without general immunosuppressive properties for the treatment of the autoimmune disease multiple sclerosis.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Animals
- Anti-Inflammatory Agents/pharmacology
- B-Lymphocytes/cytology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Cells, Cultured
- Central Nervous System/drug effects
- Central Nervous System/immunology
- Central Nervous System/physiopathology
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/immunology
- Dexamethasone/pharmacology
- Dose-Response Relationship, Drug
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Hydroxyquinolines/pharmacology
- Immunosuppression Therapy
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/immunology
- Multiple Sclerosis/physiopathology
- Neuroimmunomodulation/drug effects
- Neuroimmunomodulation/immunology
- Quinolones
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
|
27
|
Ossege LM, Sindern E, Patzold T, Malin JP. Immunomodulatory effects of interferon-beta-1b in patients with multiple sclerosis. Int Immunopharmacol 2001; 1:1085-100. [PMID: 11407304 DOI: 10.1016/s1567-5769(01)00039-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mechanisms by which IFN beta-1b acts in the treatment of patients with multiple sclerosis (MS) are not completely known. Immunomodulatory effects of IFN beta-1b were investigated in patients with relapsing-remitting (RR) MS in vivo and in vitro. Compared to baseline and controls, defined as patients with RR-MS without immunomodulatory therapy, the expression of TGF beta-1-mRNA by peripheral blood mononuclear cells (PBMC) was persistently increased at week 6, month 3 and month 6 (p < or = 0.05), that of the TGF beta-1 receptor type II from day 5 up to month 6 (p < 0.01). The expression of TNF alpha-mRNA decreased from day 1 to month 3 compared to day 0 and the controls (p < 0.01). The in vitro investigations performed on isolated peripheral blood lymphocytes demonstrated that these effects were dose-dependent. The mRNA and protein expression of TNF alpha-R-I (55 kD-receptor) was only temporarily elevated at the beginning of the therapy in vivo. The expression of TNF alpha-R-I-mRNA increased dose-dependently after stimulation with IFN beta-1b for 24 h in vitro. Serum levels of soluble vascular cell adhesion molecule (sVCAM) were increased during the whole time of in vivo treatment (p < 0.01). The CD8CD38 lymphocyte subpopulation was continuously elevated from day 5 up to month 6 (p < 0.01) in the MS patients treated with IFN beta-1b in vivo. No persistent, significant changes were demonstrable concerning the percentage of total CD4, CD8, CD19 nor in CD4 subpopulations (CD4CD29, CD4CD45RA). The present data suggest that IFN beta-1b induces the mRNA expression of TGF beta-1 and TGF beta-R-II by PBMC, decreases that of TNF alpha and increases levels of sVCAM-1 and of circulating activated CD8 cells (CD8CD38) in blood. These might be other mechanisms by which IFN beta-1b mediates its positive effects in the treatment of MS patients.
Collapse
Affiliation(s)
- L M Ossege
- Department of Neurology, Ruhr-University of Bochum, BG Kliniken Bergmannsheil, 44789 Bochum, Germany.
| | | | | | | |
Collapse
|
28
|
Hedlund G, Link H, Zhu J, Xiao BG. Effects of Linomide on immune cells and cytokines inhibit autoimmune pathologies of the central and peripheral nervous system. Int Immunopharmacol 2001; 1:1123-30. [PMID: 11407306 DOI: 10.1016/s1567-5769(01)00041-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Linomide (roquinimex, LS 2616) is a quinoline-3-carboxamide with pleiotropic immune modulating capacity and it has therapeutic effects in several experimental animal models of autoimmune diseases. Linomide has been evaluated in clinical trials for multiple sclerosis, and was indeed shown to have disease inhibitory effects. However, due to unexpected side effects recorded in patients treated with Linomide, premature termination of clinical trials was required. The basic mechanism(s) of action of Linomide in inducing beneficial effects in autoimmune diseases is still elusive. Some experimental evidence indicates that Linomide influences the regulation of the cytokine profile, resulting in the inhibition of autoimmune and inflammation pathologies. This review focuses on Linomide applied in models for autoimmune and inflammation pathologies of the central and the peripheral nervous system, and summarises its very encouraging disease inhibitory effects and their potential pharmacological basis. The beneficial effects recorded with Linomide in both experimental and clinical trials emphasise the possible value of substances with Linomide-like activity for clinical use in autoimmune and inflammation pathologies in the near future.
Collapse
Affiliation(s)
- G Hedlund
- Active Biotech Research AB, Box 724, S-220 07 Lund, Sweden.
| | | | | | | |
Collapse
|
29
|
Tuohy VK, Yu M, Yin L, Mathisen PM, Johnson JM, Kawczak JA. Modulation of the IL-10/IL-12 cytokine circuit by interferon-beta inhibits the development of epitope spreading and disease progression in murine autoimmune encephalomyelitis. J Neuroimmunol 2000; 111:55-63. [PMID: 11063821 DOI: 10.1016/s0165-5728(00)00384-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
IFN-beta has been shown to be effective in the treatment of multiple sclerosis (MS). However, the primary mechanism by which IFN-beta mediates its therapeutic effect remains unclear. Recent studies indicate that under defined conditions, IFN-beta may downregulate DC expression of IL-12. We and others have shown that IFN-beta may also downregulate IL-10. In light of the recently proposed paradigm that an IL-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease, we examined the effect of IFN-beta on the development and behavior of the autoreactive T cell repertoire during experimental autoimmune encephalomyelitis (EAE), an animal model sharing many features with MS. SWXJ mice were immunized with the immunodominant p139-151 determinant of myelin proteolipid protein (PLP), and at onset of EAE were treated every other day with IFN-beta. After eight weeks of treatment, we assessed autoreactivity and observed no significant IFN-beta effect on splenocyte proliferation or splenocyte production of IFN-gamma, IL-2, IL-4, or IL-5 in response to the priming determinant used to initiate disease. However, in IFN-beta treated mice, the cytokine profile in response to the priming immunogen was significantly skewed toward an increased production of IL-10 and a concurrent decreased production of IL-12. Moreover, the in vivo modulation of the IL-10/IL-12 immunoregulatory circuit in response to the priming immunogen was accompanied by an aborted development of epitope spreading. Our results indicate that IFN-beta induces a reciprocal modulation of the IL-10/IL-12 cytokine circuit in vivo. This skewed autoreactivity establishes an inflammatory microenvironment that effectively prevents endogenous self-priming thereby inhibiting the progression of disease associated with epitope spreading.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Animals
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Immunization
- Interferon-beta/pharmacology
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Interleukin-12/immunology
- Interleukin-12/metabolism
- Mice
- Mice, Inbred Strains
- Myelin Proteolipid Protein/immunology
- Myelin Proteolipid Protein/pharmacology
- Peptide Fragments/immunology
- Peptide Fragments/pharmacology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th2 Cells/drug effects
- Th2 Cells/immunology
Collapse
Affiliation(s)
- V K Tuohy
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, 44195, Cleveland, OH, USA.
| | | | | | | | | | | |
Collapse
|