1
|
Nascimento H, Martins TMM, Moreira R, Barbieri G, Pires P, Carvalho LN, Rosa LR, Almeida A, Araujo MS, Pessuti CL, Ferrer H, Pereira Gomes JÁ, Belfort R, Raia S. Current Scenario and Future Perspectives of Porcine Corneal Xenotransplantation. Cornea 2025; 44:387-404. [PMID: 39413247 DOI: 10.1097/ico.0000000000003723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/25/2024] [Indexed: 10/18/2024]
Abstract
ABSTRACT Corneal diseases represent a significant cause of blindness worldwide, with corneal transplantation being an effective treatment to prevent vision loss. Despite substantial advances in transplantation techniques, the demand for donor corneas exceeds the available supply, particularly in developing countries. Cornea xenotransplantation has emerged as a promising strategy to address the worldwide scarcity, notably using porcine corneas. In addition to the inherent immune privilege of the cornea, the low cost of porcine breeding and the anatomical and physiological similarities between humans and pigs have made porcine corneas a viable alternative. Nonetheless, ethical concerns, specifically the risk of xenozoonotic transmission and the necessity for stringent biosafety measures, remain significant obstacles. Moreover, the success of xenotransplantation is compromised by innate and adaptive immune responses, which requires meticulous consideration and further studies. Despite these challenges, recent breakthroughs have further contributed to reducing immunogenicity while preserving the corneal architecture. Advances in genetic engineering, such as the use of CRISPR-Cas9 to eliminate critical porcine antigens, have shown promise for mitigating immune reactions. Additionally, new immunosuppressive protocols, such as have techniques like decellularization and the use of porcine-derived acellular matrices, have greatly increased graft survival in preclinical models. Future research must focus on refining immunomodulatory strategies and improving graft preparation techniques to ensure the long-term survival and safety of porcine corneal xenotransplantation in clinical trials in humans.
Collapse
Affiliation(s)
- Heloisa Nascimento
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | - Thaís M M Martins
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
- Federal University of Viçosa (UFV), Viçosa, Brazil; and
| | | | - Gabriel Barbieri
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Pedro Pires
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | - Lucimeire N Carvalho
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Larissa R Rosa
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Augusto Almeida
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| | | | - Carmen Luz Pessuti
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | - Henrique Ferrer
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
| | | | - Rubens Belfort
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), Sao Paulo, Brazil
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
- Federal University of Viçosa (UFV), Viçosa, Brazil; and
- Vision Institute (IPEPO), Sao Paulo, Brazil
| | - Silvano Raia
- Faculty of Medicine, University of São Paulo (USP), Sao Paulo, Brazil
| |
Collapse
|
2
|
Chand R, Janarthanan G, Elkhoury K, Vijayavenkataraman S. Digital light processing 3D bioprinting of biomimetic corneal stroma equivalent using gelatin methacryloyl and oxidized carboxymethylcellulose interpenetrating network hydrogel. Biofabrication 2025; 17:025011. [PMID: 39819884 DOI: 10.1088/1758-5090/adab27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Corneal blindness, a leading cause of visual impairment globally, has created a pressing need for alternatives to corneal transplantation due to the severe shortage of donor tissues. In this study, we present a novel interpenetrating network hydrogel composed of gelatin methacryloyl (GelMA) and oxidized carboxymethyl cellulose (OxiCMC) for bioprinting a biomimetic corneal stroma equivalent. We tested different combinations of GelMA and OxiCMC to optimize printability and subsequently evaluated these combinations using rheological studies for gelation and other physical, chemical, and biological properties. Using digital light processing (DLP) bioprinting, with tartrazine as a photoabsorber, we successfully biofabricated three-dimensional constructs with improved shape fidelity, high resolution, and excellent reproducibility. The bioprinted constructs mimic the native corneal stroma's curvature, with central and peripheral thicknesses of 478.9 ± 56.5µm and 864.0 ± 79.3µm, respectively. The dual crosslinking strategy, which combines Schiff base reaction and photocrosslinking, showed an improved compressive modulus (106.3 ± 7.7 kPa) that closely matched that of native tissues (115.3 ± 13.6 kPa), without relying on synthetic polymers, toxic crosslinkers, or nanoparticles. Importantly, the optical transparency of tartrazine-containing corneal constructs was comparable to the native cornea following phosphate-buffered saline washing. Morphological analyses using scanning electron microscopy confirmed the improved porosity, interconnected network, and structural integrity of the GelMA-OxiCMC hydrogel, facilitating better nutrient diffusion and cell viability.In vitrobiological assays demonstrated high cell viability (>93%) and desirable proliferation of human corneal keratocytes within the biofabricated constructs. Our findings indicate that the GelMA-OxiCMC hydrogel system for DLP bioprinting presents a promising alternative for corneal tissue engineering, offering a potential solution to the donor cornea shortage and advancing regenerative medicine for corneal repair.
Collapse
Affiliation(s)
- Rashik Chand
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States of America
| | - Gopinathan Janarthanan
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kamil Elkhoury
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sanjairaj Vijayavenkataraman
- The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States of America
- Department of Mechanical & Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, United States of America
| |
Collapse
|
3
|
Walshe JA, Schmid KL, Toalster N, McGowan CC, Ekwe AP, McKirdy NC, Harkin DG. Current and emerging strategies for the manufacture, implantation, and clinical management of corneal tissue allografts. Clin Exp Optom 2024:1-12. [PMID: 39648366 DOI: 10.1080/08164622.2024.2434626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024] Open
Abstract
Approximately 40,000 Australians have received a donor corneal tissue transplant over the last 40 years, with the primary indications being keratoconus, Fuchs' endothelial dystrophy, bullous keratopathy, and failure of a prior corneal transplant. Although corneal cross-linking and rigid contact lenses have emerged as alternative strategies for the management of keratoconus, the demand for donor corneas is increasing in-line with the ageing population in Australia. Moreover, owing to the lack of tissue banking resources in less-developed countries, the global demand for donor corneas exceeds supply by 70-fold. These supply issues, combined with evolving tissue banking and surgical techniques, have led to the emergence of new strategies for the storage, processing and implantation of corneal cells and tissues. Organ culture techniques have been developed that support the storage of donor corneas for up to 30 days, facilitating improvements in tissue supply and surgery scheduling. Bespoke surgical methods have been developed that are tailored to the requirements of specific conditions, allowing reductions in both the volume of tissue required to be transplanted and the size of the necessary surgical incision. Further efficiencies and improvements in patient care may be achieved via exploitation of cell culture technologies as exemplified through use of cultured corneal epithelial cells for the treatment of limbal stem cell deficiency. Promising progress has also been made in developing a cultured corneal endothelial cell therapy for patients with corneal endothelial dysfunction. These evolving strategies are discussed with respect to their potential impact on the clinical presentation and management of patients who have received an implant of donor corneal tissue or cells.
Collapse
Affiliation(s)
- Jennifer A Walshe
- Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Katrina L Schmid
- Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nicholas Toalster
- Ophthalmology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Ceara C McGowan
- Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Adaeze P Ekwe
- Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Natalie C McKirdy
- Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Damien G Harkin
- Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Santra M, Hsu YMS, Khadem S, Radencic S, Funderburgh ML, Sawant OB, Dhaliwal DK, Jhanji V, Yam GH. A Full Good Manufacturing Practice-Compliant Protocol for Corneal Stromal Stem Cell Cultivation. Bio Protoc 2024; 14:e5074. [PMID: 39346761 PMCID: PMC11427334 DOI: 10.21769/bioprotoc.5074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 10/01/2024] Open
Abstract
Corneal scarring, a significant cause of global blindness, results from various insults, including trauma, infections, and genetic disorders. The conventional treatment to replace scarred corneal tissues includes partial or full-thickness corneal transplantation using healthy donor corneas. However, only 1 in 70 individuals with treatable corneal scarring can undergo surgery, due to the limited supply of transplantable donor tissue. Our research focuses on cell-based strategies, specifically ex vivo-expanded corneal stromal stem cells (CSSCs), to address corneal scarring. Preclinical studies have demonstrated the efficacy of CSSC treatment in reducing corneal inflammation and fibrosis, inhibiting scar formation, and regenerating native stromal tissue. Mechanisms include CSSC differentiation into stromal keratocytes and the expression of regenerative cytokines. Here, we present a good manufacturing practice (GMP)-compliant protocol to isolate and expand human CSSCs. This method paves the way to produce clinical-grade CSSCs for transplantation and clinical trials. Key features • This protocol utilizes surgical skills to dissect human corneal tissues for CSSC isolation. • The yield and features of CSSCs rely on donor tissue quality (freshness) and have donor-to-donor variability. • Up to 0.5 billion CSSCs can be generated from a single cornea specimen, and cells at passage 3 are suitable for treatment uses.
Collapse
Affiliation(s)
- Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yen-Michael S. Hsu
- Immunologic Monitoring and Cellular Products Laboratory, Hillman Cancer Centre, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Cell and Gene Therapy, Gift of Life Marrow Registry, Boca Raton, FL, USA
| | - Shaheen Khadem
- Immunologic Monitoring and Cellular Products Laboratory, Hillman Cancer Centre, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sydney Radencic
- Immunologic Monitoring and Cellular Products Laboratory, Hillman Cancer Centre, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martha L. Funderburgh
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Onkar B. Sawant
- Center for Vision and Eye Banking Research, Eversight, Cleveland, OH, USA
| | - Deepinder K. Dhaliwal
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vishal Jhanji
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gary H.F. Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Xu C, Guo R, Hou C, Ma M, Dong X, Ouyang C, Wu J, Huang T. Resveratrol regulates macrophage recruitment and M1 macrophage polarization and prevents corneal allograft rejection in rats. Front Med (Lausanne) 2023; 10:1250914. [PMID: 37937143 PMCID: PMC10626464 DOI: 10.3389/fmed.2023.1250914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Resveratrol is an immune modulator that can reduce M1 macrophage polarization in vitro. Reducing macrophage recruitment and M1 polarization can prevent corneal allograft rejection (CGR). In this study, rat corneal allograft rejection models were established to explore the effects of resveratrol on CGR and macrophages and the underlying mechanisms after corneal transplantation. Methods Corneal allograft models were established, and 100 mg/kg resveratrol was injected intraperitoneally. The corneal allografts were assessed clinically using the Holland rejection scoring system, anterior segment photography, and anterior segment optical coherence tomography. Corneal macrophages, pro-inflammatory cytokines, and corneal lymphatic vessels were detected using hematoxylin and eosin staining, immunofluorescence staining, and real-time quantitative polymerase chain reaction (qRT-PCR). Dendritic cells (DCs) in cervical lymph nodes were explored using flow cytometry. RNA sequencing experiments were conducted to identify the mechanisms through which resveratrol affected CGR. The results were verified using Simple Western analysis. Pro-inflammatory cytokines by macrophages in vitro were measured using qRT-PCR and enzyme-linked immunosorbent assays. Results Resveratrol significantly prolonged the survival of corneal grafts and reduced graft edema and central corneal thickness. Corneal macrophage recruitment and M1 macrophage polarization decreased significantly after corneal transplantation in the resveratrol group. Resveratrol also reduced pro-inflammatory cytokines in corneal grafts and suppressed the early generation of cornea lymphatic vessels and the recruitment of cornea inflammatory cells 14 days after surgery. Resveratrol decreased the proportion of DCs in ipsilateral cervical lymph nodes. The effect of resveratrol on CGR was related to the phosphatidylinositol 3-kinase/protein kinase-B (PI3K/Akt) pathway. Resveratrol reduced the secretion of pro-inflammatory cytokines by M1 macrophages in vitro. Conclusion Our findings suggest that resveratrol can reduce corneal macrophage recruitment and M1 macrophage polarization after corneal transplantation in rats and prevent CGR. The PI3K/Akt pathway may be an important mechanism that warrants further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ting Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
6
|
Dempsey MP, Conrady CD. The Host-Pathogen Interplay: A Tale of Two Stories within the Cornea and Posterior Segment. Microorganisms 2023; 11:2074. [PMID: 37630634 PMCID: PMC10460047 DOI: 10.3390/microorganisms11082074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Ocular infectious diseases are an important cause of potentially preventable vision loss and blindness. In the following manuscript, we will review ocular immunology and the pathogenesis of herpesviruses and Pseudomonas aeruginosa infections of the cornea and posterior segment. We will highlight areas of future research and what is currently known to promote bench-to-bedside discoveries to improve clinical outcomes of these debilitating ocular diseases.
Collapse
Affiliation(s)
- Michael P. Dempsey
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Christopher D. Conrady
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
7
|
Wang X, Wang T, Lam E, Alvarez D, Sun Y. Ocular Vascular Diseases: From Retinal Immune Privilege to Inflammation. Int J Mol Sci 2023; 24:12090. [PMID: 37569464 PMCID: PMC10418793 DOI: 10.3390/ijms241512090] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The eye is an immune privileged tissue that insulates the visual system from local and systemic immune provocation to preserve homeostatic functions of highly specialized retinal neural cells. If immune privilege is breached, immune stimuli will invade the eye and subsequently trigger acute inflammatory responses. Local resident microglia become active and release numerous immunological factors to protect the integrity of retinal neural cells. Although acute inflammatory responses are necessary to control and eradicate insults to the eye, chronic inflammation can cause retinal tissue damage and cell dysfunction, leading to ocular disease and vision loss. In this review, we summarized features of immune privilege in the retina and the key inflammatory responses, factors, and intracellular pathways activated when retinal immune privilege fails, as well as a highlight of the recent clinical and research advances in ocular immunity and ocular vascular diseases including retinopathy of prematurity, age-related macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Tianxi Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Enton Lam
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - David Alvarez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| |
Collapse
|
8
|
Nakao T, Inomata T, Blanco T, Musayeva A, Tahvildari M, Amouzegar A, Yin J, Chauhan SK, Chen Y, Dana R. Amplified Natural Killer Cell Activity and Attenuated Regulatory T-cell Function Are Determinants for Corneal Alloimmunity in Very Young Mice. Transplantation 2023; 107:1302-1310. [PMID: 36584368 PMCID: PMC10205651 DOI: 10.1097/tp.0000000000004424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Corneal transplantation outcomes are generally less favorable in young children compared with adults. The purpose of this study was to determine the immunological mechanisms underlying this difference. METHODS A murine model of allogeneic corneal transplantation was used in the study, and graft survival was determined by evaluating opacity scores for 8 wk. Syngeneic transplantation in the very young host served as a surgical control. The frequencies of total and activated natural killer (NK) cells in cornea posttransplantation were kinetically evaluated using flow cytometry. The regulatory T cell (Treg) frequency and function in naive animals were assessed by flow cytometry and in vitro suppression assays, respectively. Finally, graft survival and immune responses were determined in NK cell-depleted, or adult naive Treg-transferred, young hosts. RESULTS Corneal allograft survival in the very young recipients was significantly lower than in adult hosts. The frequencies of total NK cells and their interferon gamma-expressing subset in the cornea were significantly higher in the very young mice posttransplantation. In ungrafted mice, frequencies of Treg in draining lymph nodes as well as their capabilities to suppress NK-cell secretion of interferon gamma were lower in the very young compared with adults. In NK cell-depleted or adult Treg--transferred very young recipients, the allograft survival was significantly improved along with the suppressed NK-cell response. CONCLUSIONS Our data demonstrate that amplified activity of NK cells, together with lower suppressive function of Treg, contributes to early rejection of corneal allografts in very young graft recipients.
Collapse
Affiliation(s)
- Takeshi Nakao
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Takenori Inomata
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Tomas Blanco
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Aytan Musayeva
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Maryam Tahvildari
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Jia Yin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Sunil K. Chauhan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
Musa M, Zeppieri M, Enaholo ES, Chukwuyem E, Salati C. An Overview of Corneal Transplantation in the Past Decade. Clin Pract 2023; 13:264-279. [PMID: 36826166 PMCID: PMC9955122 DOI: 10.3390/clinpract13010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The cornea is a transparent avascular structure located in the front of the eye that refracts light entering the eyes and also serves as a barrier between the outside world and the internal contents of the eye. Like every other body part, the cornea may suffer insult from trauma, infection, and inflammation. In the case of trauma, a prior infection that left a scar, or conditions such as keratoconus that warrant the removal of all or part of the cornea (keratoplasty), it is important to use healthy donor corneal tissues and cells that can replace the damaged cornea. The types of cornea transplant techniques employed currently include: penetrating keratoplasty, endothelial keratoplasty (EK), and artificial cornea transplant. Postoperative failure acutely or after years can result after a cornea transplant and may require a repeat transplant. This minireview briefly examines the various types of corneal transplant methodologies, indications, contraindications, presurgical protocols, sources of cornea transplant material, wound healing after surgery complications, co-morbidities, and the effect of COVID-19 in corneal transplant surgery.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Ehimare S. Enaholo
- Centre for Sight Africa, Nkpor, Onitsha 434112, Nigeria
- Africa Eye Laser Centre, Benin 300001, Nigeria
| | - Ekele Chukwuyem
- Centre for Sight Africa, Nkpor, Onitsha 434112, Nigeria
- Africa Eye Laser Centre, Benin 300001, Nigeria
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
10
|
Shiuey EJ, Zhang Q, Rapuano CJ, Ayres BD, Hammersmith KM, Nagra PK, Syed ZA. Prior Contralateral Penetrating Keratoplasty Is a Risk Factor for Second Eye Graft Rejection. Ocul Immunol Inflamm 2023; 31:257-262. [PMID: 35050842 DOI: 10.1080/09273948.2021.2024860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AIMS To determine whether prior penetrating keratoplasty (PK) in the contralateral eye increases risk of second eye PK graft rejection. METHODS Cohort study of 593 consecutive PKs in transplant-naïve eyes (500 unilateral cases, 93 second eyes). Outcomes were compared between PKs performed in eyes with versus without a history of prior contralateral eye PK. Risks of rejection and failure were estimated using Cox proportional hazards models. RESULTS Mean age was 53.7 ± 23.3 years; average follow-up was 4.00 ± 2.87 years. Rejection occurred in 211 (35.6%) grafts. The incidence of rejection was 34.0% in unilateral cases and 44.1% in second eyes with PK in the contralateral eye. Prior contralateral PK was a significant risk factor for graft rejection (HR = 1.42, 95% CI 1.01-2.01, p = .045). CONCLUSION Contralateral PK is associated with increased risk of second eye graft rejection. Loss of ocular immune privilege is a possible mechanism.
Collapse
Affiliation(s)
- Eric J Shiuey
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Qiang Zhang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Biostatistics Consulting Core, Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, Pennsylvania, USA
| | - Christopher J Rapuano
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Cornea Service, Wills Eye Hospital, Philadelphia, Pennsylvania, USA
| | - Brandon D Ayres
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Cornea Service, Wills Eye Hospital, Philadelphia, Pennsylvania, USA
| | - Kristin M Hammersmith
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Cornea Service, Wills Eye Hospital, Philadelphia, Pennsylvania, USA
| | - Parveen K Nagra
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Cornea Service, Wills Eye Hospital, Philadelphia, Pennsylvania, USA
| | - Zeba A Syed
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.,Cornea Service, Wills Eye Hospital, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Ghiasian L, Pourmousa Z, Hadi Y, Abdolalizadeh P. Corneal Allograft Endothelial Rejection after Sinopharm COVID-19 Vaccination; Report of Six Cases. Semin Ophthalmol 2023:1-7. [PMID: 36688666 DOI: 10.1080/08820538.2023.2169579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AIM To report the clinical characteristics of six patients with corneal allograft endothelial rejection after COVID-19 vaccination with Sinopharm and to review the literature. METHODS This is a prospective case series describing corneal allograft rejection among subjects having received Sinopharm (BBIBP-CorV) vaccine, coming to cornea clinic at a university-based hospital (Rassoul Akram Hospital, Tehran, Iran) from September 2021 to March 2022 for regular follow-up examinations. Data on demographics, vaccination (based on vaccine card), and graft condition (based on recent examination and previous medical documents) were recorded. RESULTS Out of 54 eyes (46 patients), 6 eyes (6 patients) had corneal allograft endothelial rejection after 3 to 117 days, post-vaccination. Three out of six rejections occurred within two weeks following vaccination. All of them were male with the mean age of 53.00 ± 19.66 years. The graft type of all patients was penetrating keratoplasty (PKP). The adverse event developed on average at 40.67 ± 34.33 months after surgery. Four patients were under maintenance treatment by topical steroid at the time of vaccination. One also received systemic immunomodulatory medication. Four grafts ended up with partial or complete graft failure. One case had received two doses of vaccine before undergoing the second corneal graft transplantation. CONCLUSION COVID-19 vaccination with Sinopharm may trigger corneal allograft endothelial rejection even in individuals with low-risk graft and under maintenance topical and/or systemic immunomodulatory medications.
Collapse
Affiliation(s)
- Leila Ghiasian
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Pourmousa
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Yasaman Hadi
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Parya Abdolalizadeh
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Quiescent innate and adaptive immune responses maintain the long-term integrity of corneal endothelium reconstituted through allogeneic cell injection therapy. Sci Rep 2022; 12:18072. [PMID: 36302875 PMCID: PMC9613641 DOI: 10.1038/s41598-022-22522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/17/2022] [Indexed: 01/11/2023] Open
Abstract
This study aims to clarify the immunogenicity in acquired and innate immune responses of cultured human corneal endothelial cells (hCECs) applied for cell injection therapy, a newly established modality for corneal endothelium failures. Thirty-four patients with corneal endothelial failure received injection of allogeneic hCEC suspension into anterior chamber. No sign of immunological rejection was observed in all 34 patients during the 5-8 years postoperative follow-up period. Cell injection therapy was successful in 2 patients treated for endothelial failure after penetrating keratoplasty and one patient with Descemet membrane stripping automated endothelial keratoplasty failure. ELISPOT assays performed in allo-mixed lymphocyte reaction to the alloantigen identical to that on the injected hCECs, elicited sparse IFN-γ-specific spots in the peripheral blood mononuclear cells of patients who received hCEC injection. The therapy generated simple and smooth graft-host junctions without wound stress. The injection of C57BL/6 CECs into the anterior chamber of BALB/c mice, which rejected C57BL/6 corneas 6 weeks ago, induced no sign of inflammatory reactions after the second challenge of alloantigen. Collectively, injection of the hCEC cell suspension in the aqueous humor induces immune tolerance that contributes to the survival of the reconstituted endothelium.
Collapse
|
13
|
Urbańska K, Woźniak M, Więsyk P, Konarska N, Bartos W, Biszewski M, Bielak M, Chorągiewicz T, Rejdak R. Management and Treatment Outcomes of High-Risk Corneal Transplantations. J Clin Med 2022; 11:jcm11195511. [PMID: 36233379 PMCID: PMC9572799 DOI: 10.3390/jcm11195511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 12/01/2022] Open
Abstract
Corneal transplantation is the most effective treatment for corneal blindness. Standard planned keratoplasties have a high success rate. Conditions such as active inflammation at the time of surgery, the presence of ocular surface disease, previous graft disease, or neovascularization make them more susceptible to rejection. These are so-called high-risk corneal transplantations. In our study, we selected 52 patients with a higher risk of graft rejection. A total of 78 procedures were performed. The main indications for the first keratoplasty were infections (59.6%) and traumas (21.2%). Visual acuity (VA) significantly improved from 2.05 logMAR on the day of keratoplasty to 1.66 logMAR in the latest examination (p = 0.003). An analysis of the graft survival showed a 1-year survival of 54% and a 5-year survival of 19.8% of grafts. The mean observation time without complications after the first, second, and third surgery was 23, 13, and 14 months, respectively. The best results were noted among patients with infectious indications for keratoplasty (p = 0.001). Among them, those with bacterial infection had the best visual outcomes (p = 0.047).
Collapse
|
14
|
Fujio K, Sung J, Nakatani S, Yamamoto K, Iwagami M, Fujimoto K, Shokirova H, Okumura Y, Akasaki Y, Nagino K, Midorikawa-Inomata A, Hirosawa K, Miura M, Huang T, Morooka Y, Kuwahara M, Murakami A, Inomata T. Characteristics and Clinical Ocular Manifestations in Patients with Acute Corneal Graft Rejection after Receiving the COVID-19 Vaccine: A Systematic Review. J Clin Med 2022; 11:jcm11154500. [PMID: 35956115 PMCID: PMC9369681 DOI: 10.3390/jcm11154500] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to determine the characteristics and clinical ocular manifestations of acute corneal graft rejection after coronavirus disease 2019 (COVID-19) vaccination. We conducted an online search of the PubMed and EMBASE databases. Data on recipients’ characteristics, corneal transplantation types, interval between vaccination and allograft rejection, clinical manifestations, and graft rejection medication were extracted. Thirteen articles on 21 patients (23 eyes) with acute corneal graft rejection after COVID-19 vaccination, published between April and December 2021, were included. The median (interquartile range) age at the onset of rejection was 68 (27–83) years. Types of transplantation included penetrating keratoplasty (12 eyes), Descemet membrane endothelial keratoplasty (six eyes), Descemet stripping automated endothelial keratoplasty (four eyes), and living-related conjunctival-limbal allograft (one eye). The interval between vaccination and rejection ranged from 1 day to 6 weeks. Corneal edema was the leading clinical manifestation (20 eyes), followed by keratic precipitates (14 eyes) and conjunctival or ciliary injection (14 eyes). Medications included frequently applied topical corticosteroids (12 eyes), followed by a combination of topical and oral corticosteroids (four eyes). In addition, the clinical characteristics of corneal allograft rejection after COVID-19 vaccination were identified. Corneal transplant recipients may require further vaccination, necessitating appropriate management and treatment.
Collapse
Affiliation(s)
- Kenta Fujio
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan; (K.F.); (J.S.); (S.N.); (K.F.); (H.S.); (Y.O.); (Y.A.); (K.H.); (M.M.); (T.H.); (Y.M.); (M.K.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
| | - Jaemyoung Sung
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan; (K.F.); (J.S.); (S.N.); (K.F.); (H.S.); (Y.O.); (Y.A.); (K.H.); (M.M.); (T.H.); (Y.M.); (M.K.); (A.M.)
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Satoru Nakatani
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan; (K.F.); (J.S.); (S.N.); (K.F.); (H.S.); (Y.O.); (Y.A.); (K.H.); (M.M.); (T.H.); (Y.M.); (M.K.); (A.M.)
| | - Kazuko Yamamoto
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki 852-8102, Japan;
| | - Masao Iwagami
- Department of Health Services Research, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Keiichi Fujimoto
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan; (K.F.); (J.S.); (S.N.); (K.F.); (H.S.); (Y.O.); (Y.A.); (K.H.); (M.M.); (T.H.); (Y.M.); (M.K.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
| | - Hurramhon Shokirova
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan; (K.F.); (J.S.); (S.N.); (K.F.); (H.S.); (Y.O.); (Y.A.); (K.H.); (M.M.); (T.H.); (Y.M.); (M.K.); (A.M.)
| | - Yuichi Okumura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan; (K.F.); (J.S.); (S.N.); (K.F.); (H.S.); (Y.O.); (Y.A.); (K.H.); (M.M.); (T.H.); (Y.M.); (M.K.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
| | - Yasutsugu Akasaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan; (K.F.); (J.S.); (S.N.); (K.F.); (H.S.); (Y.O.); (Y.A.); (K.H.); (M.M.); (T.H.); (Y.M.); (M.K.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
| | - Ken Nagino
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
| | - Akie Midorikawa-Inomata
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
| | - Kunihiko Hirosawa
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan; (K.F.); (J.S.); (S.N.); (K.F.); (H.S.); (Y.O.); (Y.A.); (K.H.); (M.M.); (T.H.); (Y.M.); (M.K.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
| | - Maria Miura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan; (K.F.); (J.S.); (S.N.); (K.F.); (H.S.); (Y.O.); (Y.A.); (K.H.); (M.M.); (T.H.); (Y.M.); (M.K.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
| | - Tianxiang Huang
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan; (K.F.); (J.S.); (S.N.); (K.F.); (H.S.); (Y.O.); (Y.A.); (K.H.); (M.M.); (T.H.); (Y.M.); (M.K.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
| | - Yuki Morooka
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan; (K.F.); (J.S.); (S.N.); (K.F.); (H.S.); (Y.O.); (Y.A.); (K.H.); (M.M.); (T.H.); (Y.M.); (M.K.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
| | - Mizu Kuwahara
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan; (K.F.); (J.S.); (S.N.); (K.F.); (H.S.); (Y.O.); (Y.A.); (K.H.); (M.M.); (T.H.); (Y.M.); (M.K.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan; (K.F.); (J.S.); (S.N.); (K.F.); (H.S.); (Y.O.); (Y.A.); (K.H.); (M.M.); (T.H.); (Y.M.); (M.K.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan; (K.F.); (J.S.); (S.N.); (K.F.); (H.S.); (Y.O.); (Y.A.); (K.H.); (M.M.); (T.H.); (Y.M.); (M.K.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan;
- AI Incubation Farm, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
- Correspondence: ; Tel.: +81-3-3813-3111; Fax: +81-3-3817-0260
| |
Collapse
|
15
|
Rallis KI, Ting DSJ, Said DG, Dua HS. Corneal graft rejection following COVID-19 vaccine. Eye (Lond) 2022; 36:1319-1320. [PMID: 34426655 PMCID: PMC8380858 DOI: 10.1038/s41433-021-01671-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Konstantinos I. Rallis
- grid.415598.40000 0004 0641 4263Department of Ophthalmology, Queen’s Medical Centre, Nottingham, UK
| | - Darren S. J. Ting
- grid.415598.40000 0004 0641 4263Department of Ophthalmology, Queen’s Medical Centre, Nottingham, UK ,grid.4563.40000 0004 1936 8868Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dalia G. Said
- grid.415598.40000 0004 0641 4263Department of Ophthalmology, Queen’s Medical Centre, Nottingham, UK ,grid.4563.40000 0004 1936 8868Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK ,grid.419139.70000 0001 0529 3322Research Institute of Ophthalmology, Cairo, Egypt
| | - Harminder S. Dua
- grid.415598.40000 0004 0641 4263Department of Ophthalmology, Queen’s Medical Centre, Nottingham, UK ,grid.4563.40000 0004 1936 8868Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
16
|
Loi JK, Alexandre YO, Senthil K, Schienstock D, Sandford S, Devi S, Christo SN, Mackay LK, Chinnery HR, Osborne PB, Downie LE, Sloan EK, Mueller SN. Corneal tissue-resident memory T cells form a unique immune compartment at the ocular surface. Cell Rep 2022; 39:110852. [PMID: 35613584 DOI: 10.1016/j.celrep.2022.110852] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/27/2022] [Accepted: 04/29/2022] [Indexed: 11/03/2022] Open
Abstract
The eye is considered immune privileged such that immune responses are dampened to protect vision. As the most anterior compartment of the eye, the cornea is exposed to pathogens and can mount immune responses that recruit effector T cells. However, presence of immune memory in the cornea is not defined. Here, we use intravital 2-photon microscopy to examine T cell responses in the cornea in mice. We show that recruitment of CD8+ T cells in response to ocular virus infection results in the formation of tissue-resident memory T (TRM) cells. Motile corneal TRM cells patrol the cornea and rapidly respond in situ to antigen rechallenge. CD103+ TRM cell generation requires antigen and transforming growth factor β. In vivo imaging in humans also reveals highly motile cells that patrol the healthy cornea. Our study finds that TRM cells form in the cornea where they can provide local protective immunity.
Collapse
Affiliation(s)
- Joon Keit Loi
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Yannick O Alexandre
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Kirthana Senthil
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Dominik Schienstock
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sarah Sandford
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sapna Devi
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Peregrine B Osborne
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; Division of Surgery, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
17
|
Silva RCMC, Panis C, Pires BRB. Lessons from transmissible cancers for immunotherapy and transplant. Immunol Med 2021; 45:146-161. [PMID: 34962854 DOI: 10.1080/25785826.2021.2018783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The emergence of horizontal transmission of cancer between vertebrates is an issue that interests scientists and medical society. Transmission requires: (i) a mechanism by which cancer cells can transfer to another organism and (ii) a repressed immune response on the part of the recipient. Transmissible tumors are unique models to comprehend the responses and mechanisms mediated by the major histocompatibility complex (MHC), which can be transposed for transplant biology. Here, we discuss the mechanisms involved in immune-mediated tissue rejection, making a parallel with transmissible cancers. We also discuss cellular and molecular mechanisms involved in cancer immunotherapy and anti-rejection therapies.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio De Janeiro, Brazil
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná, UNIOESTE, Francisco Beltrão, Brazil
| | | |
Collapse
|
18
|
Lasagni Vitar RM, Bonelli F, Rama P, Ferrari G. Immunity and pain in the eye: focus on the ocular surface. Clin Exp Immunol 2021; 207:149-163. [PMID: 35020868 PMCID: PMC8982975 DOI: 10.1093/cei/uxab032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/21/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023] Open
Abstract
Most ocular diseases are associated with pain. While pain has been generally considered a mere (deleterious) additional symptom, it is now emerging that it is a key modulator of innate/adaptive immunity. Because the cornea receives the highest nerve density of the entire body, it is an ideal site to demonstrate interactions between pain and the immune response. Indeed, most neuropeptides involved in pain generation are also potent regulators of innate and adaptive leukocyte physiology. On the other hand, most inflammatory cells can modulate the generation of ocular pain through release of specific mediators (cytokines, chemokines, growth factors, and lipid mediators). This review will discuss the reciprocal role(s) of ocular surface (and specifically: corneal) pain on the immune response of the eye. Finally, we will discuss the clinical implications of such reciprocal interactions in the context of highly prevalent corneal diseases.
Collapse
Affiliation(s)
- Romina Mayra Lasagni Vitar
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Bonelli
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rama
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Ferrari
- Cornea and Ocular Surface Disease Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy,Correspondence: Giulio Ferrari, Cornea and Ocular Surface Unit, Eye Repair Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy. E-mail:
| |
Collapse
|
19
|
Zhu J, Inomata T, Di Zazzo A, Kitazawa K, Okumura Y, Coassin M, Surico PL, Fujio K, Yanagawa A, Miura M, Akasaki Y, Fujimoto K, Nagino K, Midorikawa-Inomata A, Hirosawa K, Kuwahara M, Huang T, Shokirova H, Eguchi A, Murakami A. Role of Immune Cell Diversity and Heterogeneity in Corneal Graft Survival: A Systematic Review and Meta-Analysis. J Clin Med 2021; 10:jcm10204667. [PMID: 34682792 PMCID: PMC8537034 DOI: 10.3390/jcm10204667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
Corneal transplantation is one of the most successful forms of solid organ transplantation; however, immune rejection is still a major cause of corneal graft failure. Both innate and adaptive immunity play a significant role in allograft tolerance. Therefore, immune cells, cytokines, and signal-transduction pathways are critical therapeutic targets. In this analysis, we aimed to review the current literature on various immunotherapeutic approaches for corneal-allograft rejection using the PubMed, EMBASE, Web of Science, Cochrane, and China National Knowledge Infrastructure. Retrievable data for meta-analysis were screened and assessed. The review, which evaluated multiple immunotherapeutic approaches to prevent corneal allograft rejection, showed extensive involvement of innate and adaptive immunity components. Understanding the contribution of this immune diversity to the ocular surface is critical for ensuring corneal allograft survival.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Ophthalmology, Subei People’s Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
- Department of Ophthalmology, Faculty of Medicine, Juntendo University, Tokyo 1130033, Japan
- Correspondence: ; Tel.: +81-3-5802-1228
| | - Antonio Di Zazzo
- Ophthalmology Complex Operative Unit, Campus Bio-Medico University Hospital, 00128 Rome, Italy; (A.D.Z.); (M.C.); (P.L.S.)
| | - Koji Kitazawa
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 6020841, Japan;
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Yuichi Okumura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Marco Coassin
- Ophthalmology Complex Operative Unit, Campus Bio-Medico University Hospital, 00128 Rome, Italy; (A.D.Z.); (M.C.); (P.L.S.)
| | - Pier Luigi Surico
- Ophthalmology Complex Operative Unit, Campus Bio-Medico University Hospital, 00128 Rome, Italy; (A.D.Z.); (M.C.); (P.L.S.)
| | - Kenta Fujio
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Ai Yanagawa
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Maria Miura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Yasutsugu Akasaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Keiichi Fujimoto
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
- Department of Ophthalmology, Faculty of Medicine, Juntendo University, Tokyo 1130033, Japan
| | - Ken Nagino
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
| | - Akie Midorikawa-Inomata
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
| | - Kunihiko Hirosawa
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Mizu Kuwahara
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Tianxiang Huang
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Hurramhon Shokirova
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
| | - Atsuko Eguchi
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
- Department of Ophthalmology, Faculty of Medicine, Juntendo University, Tokyo 1130033, Japan
| |
Collapse
|
20
|
Time-Dependent Serial Changes of Antigen-Presenting Cell Subsets in the Ocular Surface Are Distinct between Corneal Sterile Inflammation and Allosensitization in a Murine Model. Cells 2021; 10:cells10092210. [PMID: 34571859 PMCID: PMC8467177 DOI: 10.3390/cells10092210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
The kinetics of antigen-presenting cells (APCs) vary depending on their resident tissues and the manner of immunization. We investigated the long-term changes in mature APC and T-cell subsets over 4 weeks in the ocular surface in murine models of corneal quiescent or potent sterile inflammation, and allosensitization using partial (PT), syngeneic (Syn), and allogeneic (Allo) corneal transplantation. In PT, CD11bintCD11chiMHCIIhiCD86hi cells increased until 4 weeks with an increase in IFNγhi T cells. In Syn, both CD11bintCD11chiMHCIIhiCD86hi and CD11bhiCD11chiMHCIIhiCD86hi APC subsets increased until 4 weeks with a brief increase in CD69hi T cells at 2 weeks. In Allo, CD11bintCD11chiMHCIIhiCD86hi and CD11bhiCD11chiMHCIIhiCD86hi APC subsets increased until 4 weeks, and an early increase in CD69hi T cells was observed at 2 weeks followed by a late increase in IFNγhi T cells at 4 weeks. The frequency of the IFNγhi T cell subset was positively correlated with the frequency of the CD11bintCD11chiMHCIIhiCD86hi subset, indicating the existence of APC–T cell interaction in the ocular surface. Together, the results indicate that allosensitization in mature APCs leads to T-cell activation in the ocular surface, whereas sterile inflammation merely induces a brief and non-specific T-cell activation in the ocular surface.
Collapse
|
21
|
Hou Y, Bock F, Hos D, Cursiefen C. Lymphatic Trafficking in the Eye: Modulation of Lymphatic Trafficking to Promote Corneal Transplant Survival. Cells 2021; 10:1661. [PMID: 34359831 PMCID: PMC8306557 DOI: 10.3390/cells10071661] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
(Lymph)angiogenesis into the cornea prior to and after corneal transplantation is a critical risk factor for allograft rejection. Lymphatic vessels even more than blood vessels seem important in mediating immune responses, as they facilitate allograft sensitization in the draining lymph nodes. Thus, the concept of modulating lymphatic trafficking to promote corneal graft survival seems promising. A variety of approaches has been developed to inhibit progressive lymphangiogenesis in experimental settings. Recently, additionally to pharmacological approaches, clinically available techniques such as UVA-based corneal collagen crosslinking and fine needle diathermy were reported to be effective in regressing lymphatic vessels and to experimentally promote graft survival. Clinical pilot studies also suggest the efficacy of blocking antigen presenting cell trafficking to regional lymph nodes by regressing corneal lymphatic vessels to enhance allograft survival in high-risk eyes. In this article, we will give an overview of current strategies to modulate lymphatic trafficking with a special focus on recently reported strategies, which may be easy to translate into clinical practice. This novel concept of temporary, pretransplant regression of lymphatic vessels at the site of transplantation to promote subsequent corneal transplant survival ("lymphangioregressive preconditioning") may also be applicable to other transplantation sites later.
Collapse
Grants
- German Research Foundation (DFG) FOR2240 "(Lymph)angiogenesis and Cellular Immunity in Inflammatory Diseases of the Eye", HO 5556/1-2 (DH), Cu 47/4-2 (CC), Cu 47/6-1 (CC), Cu 47/9-1 (CC), Cu 47/12-1(www.for2240.de); German Research Foundation (DFG) FOR2240 "(Lymph)angiogenesis and Cellular Immunity in Inflammatory Diseases of the Eye", HO 5556/1-2 (DH), Cu 47/4-2 (CC), Cu 47/6-1 (CC), Cu 47/9-1 (CC), Cu 47/12-1(www.for2240.de);
- EU COST BM1302 EU COST BM1302 (DH, CC; www.biocornea.eu);
- EU Horizon 2020 ARREST BLINDNESS (CC; www.arrestblindness.eu); EU Horizon 2020 ARREST BLINDNESS (CC; www.arrestblindness.eu);
- EU COST Aniridia (CC; www.aniridia-net.eu); EU COST Aniridia (CC; www.aniridia-net.eu);
- Center for Molecular Medicine Cologne, University of Cologne (DH, CC; www.cmmc-uni-koeln.de/home/); Center for Molecular Medicine Cologne, University of Cologne (DH, CC; www.cmmc-uni-koeln.de/home/);
- Shanghai Sailing Program Shanghai Sailing Program
Collapse
Affiliation(s)
- Yanhong Hou
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Disease, National Clinical Research Center for Eye Diseases, Shanghai 200080, China
| | - Felix Bock
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
22
|
Fisenko NV, Trufanov SV, Avetisov KS, Vtorushina VV, Subbot AM. [Evaluation of aqueous cytokine levels in eyes with Fuchs endothelial corneal dystrophy and bullous keratopathy]. Vestn Oftalmol 2021; 137:13-18. [PMID: 34156773 DOI: 10.17116/oftalma202113703113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE To evaluate cytokine levels in the aqueous humor (AH) of patients with Fuchs endothelial corneal dystrophy (FECD) and bullous keratopathy (BK). MATERIAL AND METHODS The study included 74 patients (74 eyes). The first group consisted of 31 patients (72.7±9.2 years) with FECD; the second group included 35 patients (72.4±9.1 years) with BK. The control group comprised 8 patients (74.3±4.1 years) with immature cataract. Before surgery, patients underwent pachymetry of the central cornea (RTvue-100 OCT, Optovue, USA). Patients of groups 1 and 2 underwent endothelial keratoplasty (DSAEK or DMEK), or penetrating corneal transplantation. Patients of the control group underwent phacoemulsification with implantation of intraocular lens. The initial stage of the surgery involved AH sample collection for evaluation of cytokine levels (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12(p70), IL-13, IL-17, G-CSF, GM-CSF, IFNγ, MCP-1, MIP-1β and TNF-α) by fluorescent flow cytometry using the Bio-Plex Pro Human Cytokine Panel, 17-plex (Bio-Rad, USA). RESULTS Multiplex analysis of the AH content did not show any statistically significant differences in cytokine levels between decompensated FECD and BK eyes. The levels of IL-6, IL-8, GM-CSF, IFNγ, MCP-1, MIP-1β were significantly elevated in FECD and BK eyes compared with healthy control. An insignificant deviation of IL-4 and IL-13 levels was detected in FECD and BK eyes compared with healthy controls. There were no significant differences in IL-1β and TNF-α (indicators of acute inflammation) between the study groups. CONCLUSION The obtained data confirm that FECD and BK are associated with disruption of ocular immune privilege that leads to chronic local inflammation, which in turn causes remodeling of the corneal tissues resulting in fibrosis.
Collapse
Affiliation(s)
- N V Fisenko
- Research Institute of Eye Diseases, Moscow, Russia
| | - S V Trufanov
- Research Institute of Eye Diseases, Moscow, Russia
| | - K S Avetisov
- Research Institute of Eye Diseases, Moscow, Russia
| | - V V Vtorushina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Moscow, Russia
| | - A M Subbot
- Research Institute of Eye Diseases, Moscow, Russia
| |
Collapse
|
23
|
Niederkorn JY. "Corneal Nerves, CD11c + Dendritic Cells and Their Impact on Ocular Immune Privilege". Front Immunol 2021; 12:701935. [PMID: 34220866 PMCID: PMC8253307 DOI: 10.3389/fimmu.2021.701935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 11/19/2022] Open
Abstract
The eye and the brain have limited capacities for regeneration and as such, immune-mediated inflammation can produce devastating consequences in the form of neurodegenerative diseases of the central nervous system or blindness as a result of ocular inflammatory diseases such as uveitis. Accordingly, both the eye and the brain are designed to limit immune responses and inflammation - a condition known as "immune privilege". Immune privilege is sustained by physiological, anatomical, and regulatory processes that conspire to restrict both adaptive and innate immune responses.
Collapse
Affiliation(s)
- Jerry Y. Niederkorn
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
24
|
Brockmann T, Walckling M, Brockmann C, Fuchsluger TMA, Pleyer U. [Corneal wound healing-Pathophysiology and principles]. Ophthalmologe 2021; 118:1167-1177. [PMID: 34106316 DOI: 10.1007/s00347-021-01423-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 01/09/2023]
Abstract
The cornea forms the anterior border of the eye and significantly contributes to a sharp optical image quality on the retina through its transparency, avascular nature and curvature. Because of its anatomical structure and as a barrier to the environment, the cornea is particularly exposed to various external factors, such as injuries and pathogens. A correct wound healing without the formation of light diverging scarring is therefore essential to preserve the integrity and function of the cornea. Misguided wound healing is of outstanding clinical relevance and can lead to corneal fibrogenesis. Corneal fibrosis results in scarring with a loss of optical transparency, which significantly reduces eyesight and can lead to blindness. Understanding the pathophysiological mechanisms of wound healing and fibrogenesis is of great importance for the diagnostics, treatment and evaluation of the subsequent healing process in order to prevent permanent damage as far as possible.
Collapse
Affiliation(s)
- Tobias Brockmann
- Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Doberaner Straße 140, 18057, Rostock, Deutschland.
| | - Marcus Walckling
- Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Doberaner Straße 140, 18057, Rostock, Deutschland
| | - Claudia Brockmann
- Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Doberaner Straße 140, 18057, Rostock, Deutschland
| | - Tho Mas A Fuchsluger
- Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Doberaner Straße 140, 18057, Rostock, Deutschland
| | - Uwe Pleyer
- Klinik und Poliklinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Berlin Institute of Health, Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, Berlin, 13353, Deutschland
| |
Collapse
|
25
|
Islam R, Islam MM, Nilsson PH, Mohlin C, Hagen KT, Paschalis EI, Woods RL, Bhowmick SC, Dohlman CH, Espevik T, Chodosh J, Gonzalez-Andrades M, Mollnes TE. Combined blockade of complement C5 and TLR co-receptor CD14 synergistically inhibits pig-to-human corneal xenograft induced innate inflammatory responses. Acta Biomater 2021; 127:169-179. [PMID: 33785451 DOI: 10.1016/j.actbio.2021.03.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/18/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022]
Abstract
Inadequate supplies of donor corneas have evoked an escalating interest in corneal xenotransplantation. However, innate immune responses contribute significantly to the mechanism of xenograft rejection. We hypothesized that complement component C5 and TLR co-receptor CD14 inhibition would inhibit porcine cornea induced innate immune responses. Therefore, we measured cytokine release in human blood, induced by three forms of corneal xenografts with or without inhibitors. Native porcine cornea (NPC) induced interleukins (IL-1β, IL-2, IL-6, IL-8, IL-1ra), chemokines (MCP-1, MIP-1α, MIP-1β) and other cytokines (TNF, G-CSF, INF-γ, FGF-basic). Decellularized (DPC) and gamma-irradiated cornea (g-DPC) elevated the release of those cytokines. C5-blockade by eculizumab inhibited all the cytokines except G-CSF when induced by NPC. However, C5-blockade failed to reduce DPC and g-DPC induced cytokines. Blockade of CD14 inhibited DPC-induced cytokines except for IL-8, MCP-1, MIP-1α, and G-CSF, while it inhibited all of them when induced by g-DPC. Combined blockade of C5 and CD14 inhibited the maximum number of cytokines regardless of the xenograft type. Finally, by using the TLR4 specific inhibitor Eritoran, we showed that TLR4 activation was the basis for the CD14 effect. Thus, blockade of C5, when combined with TLR4 inhibition, may have therapeutic potential in pig-to-human corneal xenotransplantation. STATEMENT OF SIGNIFICANCE: Bio-engineered corneal xenografts are on the verge of becoming a viable alternative to allogenic human-donor-cornea, but the host's innate immune response is still a critical barrier for graft acceptance. By overruling this barrier, limited graft availability would no longer be an issue for treating corneal diseases. We showed that the xenograft induced inflammation is initiated by the complement system and toll-like receptor activation. Intriguingly, the inflammatory response was efficiently blocked by simultaneously targeting bottleneck molecules in the complement system (C5) and the TLR co-receptor CD14 with pharmaceutical inhibitors. We postulate that a combination of C5 and CD14 inhibition could have a great therapeutic potential to overcome the immunologic barrier in pig-to-human corneal xenotransplantation.
Collapse
|
26
|
Mousa HM, Saban DR, Perez VL. The cornea IV immunology, infection, neovascularization, and surgery chapter 1: Corneal immunology. Exp Eye Res 2021; 205:108502. [PMID: 33607075 PMCID: PMC8462940 DOI: 10.1016/j.exer.2021.108502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE of Review: This review offers an informed and up-to-date insight on the immune profile of the cornea and the factors that govern the regulation of such a unique immune environment. SUMMARY The cornea is a unique tissue that performs the specialized task of allowing light to penetrate for visual interpretation. To accomplish this, the ocular surface requires a distinct immune environment that is achieved through unique structural, cellular and molecular factors. Not only must the cornea be able to fend off invasive infectious agents but also control the inflammatory response as to avoid collateral, and potentially blinding damage; particularly of post-mitotic cells such as the corneal endothelium. To combat infections, both innate and adaptive arms of the inflammatory immune response are at play in the cornea. Dendritic cells play a critical role in coordinating both these responses in order to fend off infections. On the other side of the spectrum, the ocular surface is also endowed with a variety of anatomic and physiologic components that aid in regulating the immune response to prevent excessive, potentially damaging, inflammation. This attenuation of the immune response is termed immune privilege. The balance between pro and anti-inflammatory reactions is key for preservation of the functional integrity of the cornea. RECENT FINDINGS The understanding of the molecular and cellular factors governing corneal immunology and its response to antigens is a growing field. Dendritic cells in the normal cornea play a crucial role in combating infections and coordinating the inflammatory arms of the immune response, particularly through coordination with T-helper cells. The role of neuropeptides is recently becoming more highlighted with different factors working on both sides of the inflammatory balance.
Collapse
Affiliation(s)
- Hazem M Mousa
- Foster Center for Ocular Immunology at Duke Eye Center, Duke University Medical Center, Durham, NC, USA
| | - Daniel R Saban
- Foster Center for Ocular Immunology at Duke Eye Center, Duke University Medical Center, Durham, NC, USA; Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Victor L Perez
- Foster Center for Ocular Immunology at Duke Eye Center, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
27
|
Gregory-Ksander M, Marshak-Rothstein A. The FasLane to ocular pathology-metalloproteinase cleavage of membrane-bound FasL determines FasL function. J Leukoc Biol 2021; 110:965-977. [PMID: 33565149 DOI: 10.1002/jlb.3ri1220-834r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Fas ligand (FasL) is best known for its ability to induce cell death in a wide range of Fas-expressing targets and to limit inflammation in immunoprivileged sites such as the eye. In addition, the ability of FasL to induce a much more extensive list of outcomes is being increasingly explored and accepted. These outcomes include the induction of proinflammatory cytokine production, T cell activation, and cell motility. However, the distinct and opposing functions of membrane-associated FasL (mFasL) and the C-terminal soluble FasL fragment (sFasL) released by metalloproteinase cleavage is less well documented and understood. Both mFasL and sFasL can form trimers that engage the trimeric Fas receptor, but only mFasL can form a multimeric complex in lipid rafts to trigger apoptosis and inflammation. By contrast, a number of reports have now documented the anti-apoptotic and anti-inflammatory activity of sFasL, pointing to a critical regulatory function of the soluble molecule. The immunomodulatory activity of FasL is particularly evident in ocular pathology where elimination of the metalloproteinase cleavage site and the ensuing increased expression of mFasL can severely exacerbate the extent of inflammation and cell death. By contrast, both homeostatic and increased expression of sFasL can limit inflammation and cell death. The mechanism(s) responsible for the protective activity of sFasL are discussed but remain controversial. Nevertheless, it will be important to consider therapeutic applications of sFasL for the treatment of ocular diseases such as glaucoma.
Collapse
Affiliation(s)
- Meredith Gregory-Ksander
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Ann Marshak-Rothstein
- Department of Medicine/Rheumatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
28
|
Guérin LP, Le-Bel G, Desjardins P, Couture C, Gillard E, Boisselier É, Bazin R, Germain L, Guérin SL. The Human Tissue-Engineered Cornea (hTEC): Recent Progress. Int J Mol Sci 2021; 22:ijms22031291. [PMID: 33525484 PMCID: PMC7865732 DOI: 10.3390/ijms22031291] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Each day, about 2000 U.S. workers have a job-related eye injury requiring medical treatment. Corneal diseases are the fifth cause of blindness worldwide. Most of these diseases can be cured using one form or another of corneal transplantation, which is the most successful transplantation in humans. In 2012, it was estimated that 12.7 million people were waiting for a corneal transplantation worldwide. Unfortunately, only 1 in 70 patients received a corneal graft that same year. In order to provide alternatives to the shortage of graftable corneas, considerable progress has been achieved in the development of living corneal substitutes produced by tissue engineering and designed to mimic their in vivo counterpart in terms of cell phenotype and tissue architecture. Most of these substitutes use synthetic biomaterials combined with immortalized cells, which makes them dissimilar from the native cornea. However, studies have emerged that describe the production of tridimensional (3D) tissue-engineered corneas using untransformed human corneal epithelial cells grown on a totally natural stroma synthesized by living corneal fibroblasts, that also show appropriate histology and expression of both extracellular matrix (ECM) components and integrins. This review highlights contributions from laboratories working on the production of human tissue-engineered corneas (hTECs) as future substitutes for grafting purposes. It overviews alternative models to the grafting of cadaveric corneas where cell organization is provided by the substrate, and then focuses on their 3D counterparts that are closer to the native human corneal architecture because of their tissue development and cell arrangement properties. These completely biological hTECs are therefore very promising as models that may help understand many aspects of the molecular and cellular mechanistic response of the cornea toward different types of diseases or wounds, as well as assist in the development of novel drugs that might be promising for therapeutic purposes.
Collapse
Affiliation(s)
- Louis-Philippe Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Gaëtan Le-Bel
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Pascale Desjardins
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Camille Couture
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Elodie Gillard
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Élodie Boisselier
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Richard Bazin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Germain
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- CUO-Recherche, Médecine Régénératrice—Centre de Recherche du CHU de Québec, Université Laval, Québec, QC G1S 4L8, Canada; (L.-P.G.); (G.L.-B.); (P.D.); (C.C.); (E.G.); (É.B.); (R.B.); (L.G.)
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-682-7565
| |
Collapse
|
29
|
Mölzer C, Heissigerova J, Wilson HM, Kuffova L, Forrester JV. Immune Privilege: The Microbiome and Uveitis. Front Immunol 2021; 11:608377. [PMID: 33569055 PMCID: PMC7868421 DOI: 10.3389/fimmu.2020.608377] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/04/2020] [Indexed: 02/03/2023] Open
Abstract
Immune privilege (IP), a term introduced to explain the unpredicted acceptance of allogeneic grafts by the eye and the brain, is considered a unique property of these tissues. However, immune responses are modified by the tissue in which they occur, most of which possess IP to some degree. The eye therefore displays a spectrum of IP because it comprises several tissues. IP as originally conceived can only apply to the retina as it contains few tissue-resident bone-marrow derived myeloid cells and is immunologically shielded by a sophisticated barrier – an inner vascular and an outer epithelial barrier at the retinal pigment epithelium. The vascular barrier comprises the vascular endothelium and the glia limitans. Immune cells do not cross the blood-retinal barrier (BRB) despite two-way transport of interstitial fluid, governed by tissue oncotic pressure. The BRB, and the blood-brain barrier (BBB) mature in the neonatal period under signals from the expanding microbiome and by 18 months are fully established. However, the adult eye is susceptible to intraocular inflammation (uveitis; frequency ~200/100,000 population). Uveitis involving the retinal parenchyma (posterior uveitis, PU) breaches IP, while IP is essentially irrelevant in inflammation involving the ocular chambers, uveal tract and ocular coats (anterior/intermediate uveitis/sclerouveitis, AU). Infections cause ~50% cases of AU and PU but infection may also underlie the pathogenesis of immune-mediated “non-infectious” uveitis. Dysbiosis accompanies the commonest form, HLA-B27–associated AU, while latent infections underlie BRB breakdown in PU. This review considers the pathogenesis of uveitis in the context of IP, infection, environment, and the microbiome.
Collapse
Affiliation(s)
- Christine Mölzer
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jarmila Heissigerova
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lucia Kuffova
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - John V Forrester
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
30
|
Wei C, Ma L, Chi H, Li L, Zhang S, Yin W, Liu T, Gao H, Shi W. The NLRP3 inflammasome regulates corneal allograft rejection through enhanced phosphorylation of STAT3. Am J Transplant 2020; 20:3354-3366. [PMID: 32583615 DOI: 10.1111/ajt.16071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
The success of corneal transplantation is limited by allograft rejection, but the pathogenic mechanisms of this disease remain poorly defined. In this study, we showed that the NOD, LRR-and pyrin domain-containing protein3 (NLRP3) inflammasome-mediated interleukin-1β (IL-1β) production exacerbated corneal allograft rejection. Extracellular ATP contributed to the NLRP3 inflammasome-mediated IL-1β release, which in turn was preferentially skewed toward Th17 differentiation via enhanced phosphorylation of STAT3. Pharmacological inhibition of IL-1β/IL-6-STAT3 signaling significantly delayed corneal allograft rejection. Thus, the identification of NLRP3 inflammasome's key role sheds new light on the pathogenesis of corneal allograft rejection and opens a potential new avenue for treating or preventing corneal allograft rejection.
Collapse
Affiliation(s)
- Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Hao Chi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
| | - Lin Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Sai Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China
| | - Wenhui Yin
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Department of Medicine, Qingdao University, Qingdao, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| |
Collapse
|
31
|
Wolf J, Zhuang X, Hildebrand A, Boneva S, Schwämmle M, Kammrath Betancor P, Fan J, Böhringer D, Maier P, Lange C, Reinhard T, Schlunck G, Lapp T. Corneal tissue induces transcription of metallothioneins in monocyte-derived human macrophages. Mol Immunol 2020; 128:188-194. [PMID: 33137607 DOI: 10.1016/j.molimm.2020.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/06/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Immune reactions following corneal transplantation are the most common cause of transplant failure. However, the underlying mechanisms of corneal graft rejection are not yet fully understood but increasing evidence points to a crucial role of the innate immune system in this context. Using a human in vitro model, we aimed to assess the response of human macrophages to stimulation with human corneal tissue and whether corneal endothelial cells (CEC) have immune-modulating properties. METHODS Human monocytes were isolated from peripheral blood mononuclear cells and differentiated into monocyte-derived macrophages (MDM). A standardized protocol was used for disaggregation of human corneas into fragments of defined sizes. MDMs were stimulated using processed corneal material with or without CEC. Lipopolysaccharide (LPS) or interferon-gamma (IFNγ) served as controls. RNA sequencing was applied to analyze the impact of differential stimulation of MDMs on their transcriptional profile. RNA sequencing results were validated using digital PCR. RESULTS The transcriptional profile of MDMs was significantly modulated by the type of stimulus used for MDM activation as well as by the individual MDM donor. LPS- or IFNγ-stimulation resulted in distinct transcriptional alterations compared to unstimulated MDMs including an upregulation of various cytokines such as CCL3, 4, 5, 19 or CXCL9. Corneal tissue induced the differential expression of 45 genes when compared to unstimulated MDMs, with several metallothioneins (MTs) among the upregulated factors (MT1A, MT1E, MT1F, MT1G, MT1H, MT1L, MT1M, MT1X, MT2A). This effect was independent of the presence or absence of CEC. PCR validation confirmed induction of 3 different metallothioneins (MT1G, MT1H and MT2A) in MDMs stimulated by corneal tissue. CONCLUSIONS The MDM in vitro model proved to be a robust tool to study the effects of LPS, IFNγ and corneal tissue homogenates on the transcriptional activity of MDM. Human macrophages showed a distinct upregulation of various MTs when challenged with human corneal allogen with or without corneal endothelium, which might have an immune-modulatory effect. As a general observation, it appears that in MDM-based studies a significant donor-dependent effect on the transcriptional profile of MDMs needs to be considered and adjusted before downstream analysis.
Collapse
Affiliation(s)
- Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Germany.
| | - Xinyu Zhuang
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Antonia Hildebrand
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Stefaniya Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Melanie Schwämmle
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | | | - Jiaqi Fan
- Department of Radiation Oncology and Cyberknife Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Daniel Böhringer
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Philip Maier
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Thabo Lapp
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
32
|
Bertolini M, McElwee K, Gilhar A, Bulfone‐Paus S, Paus R. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol 2020; 29:703-725. [DOI: 10.1111/exd.14155] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Kevin McElwee
- Monasterium Laboratory Münster Germany
- Centre for Skin Sciences University of Bradford Bradford UK
- Department of Dermatology and Skin Science University of British Columbia Vancouver British Columbia Canada
| | - Amos Gilhar
- Laboratory for Skin Research Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Silvia Bulfone‐Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
| | - Ralf Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| |
Collapse
|
33
|
Salabarria AC, Koch M, Schönberg A, Zinser E, Hos D, Hamdorf M, Imhof T, Braun G, Cursiefen C, Bock F. Topical VEGF-C/D Inhibition Prevents Lymphatic Vessel Ingrowth into Cornea but Does Not Improve Corneal Graft Survival. J Clin Med 2020; 9:jcm9051270. [PMID: 32353986 PMCID: PMC7287580 DOI: 10.3390/jcm9051270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/27/2022] Open
Abstract
Vascular endothelial growth factor-C/D (VEGF-C/D) regulates lymphangiogenesis. Ingrowth of lymphatic vessels is negatively associated with corneal transplantation success. In this study, we therefore analyzed the effect local blockade of VEGF-C/D has on inflamed corneas. We used the murine model of suture-induced neovascularization and subsequent high-risk corneal transplantation. Mice were treated with a VEGF-C/D trap prior to transplantation. Topical inhibition of VEGF-C/D significantly reduced lymphatic vessel ingrowth, but increased Macrophage numbers in the cornea. Furthermore, corneal transplantation success was not improved by the topical application of the compound. This study demonstrates that local VEGF-C/D inhibition is insufficient to increases corneal transplantation success, likely due to interaction with immune cells.
Collapse
Affiliation(s)
- Ann-Charlott Salabarria
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Manuel Koch
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
- Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, University of Cologne, 50937 Cologne, Germany
| | - Alfrun Schönberg
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Elisabeth Zinser
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrixch-Alexander-Universität Erlangen-Nuremberg, D-91052 Erlangen, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Matthias Hamdorf
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Thomas Imhof
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
- Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, University of Cologne, 50937 Cologne, Germany
| | - Gabriele Braun
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
- Correspondence: ; Tel.: +49-221-478-97789
| |
Collapse
|
34
|
Haworth R, Sharpe M. Accept or Reject: The Role of Immune Tolerance in the Development of Stem Cell Therapies and Possible Future Approaches. Toxicol Pathol 2020; 49:1308-1316. [PMID: 32319357 DOI: 10.1177/0192623320918241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In 2011, Goldring and colleagues published a review article describing the potential safety issues of novel stem cell-derived treatments. Immunogenicity and immunotoxicity of the administered cell product were considered risks in the light of clinical experience of transplantation. The relative immunogenicity of mesenchymal stem cells, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) was being addressed through in vitro and in vivo models. But the question arose as to whether the implanted cells needed to be identical to the recipient in every respect, including epigenetically, to evade immune recognition? If so, this set a high bar which may preclude use of many cells derived from iPSCs which have vestiges of a fetal phenotype and epigenetic memory of their cell of origin. However, for autologous iPSCs, the immunogenicity reduces once the surface antigen expression profile becomes close to that of the parent somatic cells. Therefore, a cell product containing incompletely differentiated cells could be more immunogenic. The properties of the administered cells, the immune privilege of the administration site, and the host immune status influence graft success or failure. In addition, the various approaches available to characterize potential immunogenicity of a cell therapy will be discussed.
Collapse
|
35
|
Subbannayya Y, Pinto SM, Mohanty V, Dagamajalu S, Prasad TSK, Murthy KR. What Makes Cornea Immunologically Unique and Privileged? Mechanistic Clues from a High-Resolution Proteomic Landscape of the Human Cornea. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:129-139. [PMID: 32125911 DOI: 10.1089/omi.2019.0190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Success rates of corneal transplantation are particularly high owing to its unique, innate immune privilege derived from a phenomenon known as Anterior Chamber-Associated Immune Deviation (ACAID). Of note, cornea is a transparent, avascular structure that acts as a barrier along with sclera to protect the eye and contributes to optical power. Molecular and systems biology mechanisms underlying ACAID and the immunologically unique and privileged status of cornea are not well known. We report here a global unbiased proteomic profiling of the human cornea and the identification of 4824 proteins, the largest catalog of human corneal proteins identified to date. Moreover, signaling pathway analysis revealed enrichment of spliceosome, phagosome, lysosome, and focal adhesion pathways, thereby demonstrating the protective functions of corneal proteins. We observed an enrichment of neutrophil-mediated immune response processes in the cornea as well as proteins belonging to the complement and ER-Phagosome pathways that are suggestive of active immune and inflammatory surveillance response. This study provides a key expression map of the corneal proteome repertoire that should enable future translational medicine studies on the pathological conditions of the cornea and the mechanisms by which cornea immunology are governed. Molecular mechanisms of corneal immune privilege have broad relevance to understand and anticipate graft rejection in the field of organ transplantation.
Collapse
Affiliation(s)
- Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Varshasnata Mohanty
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Krishna R Murthy
- Vittala International Institute of Ophthalmology, Bangalore, India.,Prabha Eye Clinic and Research Centre, Bangalore, India.,Institute of Bioinformatics, International Technology Park, Bangalore, India.,Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
36
|
Are Corneal Patients Accepting the Transplantation? The Cases of University of Gondar, Tertiary Eye Care and Training Center, Ethiopia. J Ophthalmol 2020; 2019:4560649. [PMID: 31915540 PMCID: PMC6930795 DOI: 10.1155/2019/4560649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 11/18/2022] Open
Abstract
Background For so long, corneal diseases have been known as one of the leading causes to blindness in the global. This blindness might be due to failure to accept the corneal transplantation. Therefore, this study aimed to determine the prevalence and the root challenges for corneal transplantation acceptance at the University of Gondar tertiary eye care and training center, Ethiopia. Methods An institution-based cross-sectional study was conducted among patients who had an indication for corneal transplantation at the University of Gondar tertiary eye care and training center since January 1, 2017, up to October 30, 2018. A structured questionnaire was used to collect the data and entered into Epi-Info 7 software and analyzed using SPSS version 20. Simple logistic regression was used to identify the associated factors of corneal transplantation acceptance. Associations between outcome and exposure variables were expressed by the adjusted odds ratio with a 95% confidence interval and p value <0.05. Result A total of 116 patients with a mean age of 51 (±21) years participated in the study. The overall acceptance level of corneal transplantation was only 38.8% (95% CI: 29.93, 47.66). Patients with poor knowledge [AOR = 2.41; 95% CI: 1.90, 6.48] and an unfavorable attitude [AOR = 6.33; 95% CI: 2.42, 16.54] were significantly associated with the acceptance of corneal transplantation. Conclusion The study revealed that the corneal transplantation acceptance level was very low. Hence, the government and other concerned stakeholders should give due emphasis to the awareness creation and behavior change communication strategies to increase the acceptance level of corneal transplantation.
Collapse
|
37
|
Wu XS, Lu XL, Wu J, Ma M, Yu J, Zhang ZY. Tocilizumab promotes corneal allograft survival in rats by modulating Treg-Th17 balance. Int J Ophthalmol 2019; 12:1823-1831. [PMID: 31850163 DOI: 10.18240/ijo.2019.12.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/27/2019] [Indexed: 02/08/2023] Open
Abstract
AIM To examine the therapeutic effects of tocilizumab on experimental corneal transplantation and its effect on Treg/Th17 balance. METHODS Allograft corneal graft was performed between host Sprague Dawley and Wistar donor rats. The rats were randomly divided into four groups: normal, autograft, allograft, and allograft treated with tocilizumab. Kaplan-Meier was performed to draw the survival curve. The protein levels of interleukin-17A (IL-17A), vascular endothelial growth factor (VEGF), and forkhead box protein 3 (Foxp3) were measured by immunohistochemistry. The mRNA levels of IL-17A, VEGF, retinoid-related orphan receptor gammat (RORγt), interleukin-6 (IL-6) and Foxp3 were detected by reverse transcription real-time polymerase chain reaction (RT-PCR). The Treg and Th17 cells were investigated by flow cytometry. RESULTS The survival time of tocilizumab group was (24±1.27d) longer than that of allograft group (10±0.55d). Moreover, immunohistochemical examination revealed that IL-17A and VEGF protein levels in the allograft group were significantly higher than that of tocilizumab group (P<0.01), while Foxp3 levels in the allograft group was significantly lower than that of the tocilizumab treated group (P<0.001). Flow cytometry showed that the number of Th17 cells in allograft group was significantly higher than that in tocilizumab group (P<0.001). Meanwhile, the number of Tregs was significantly lower than in tocilizumab group (P<0.001). Simultaneously, Foxp3 mRNA expression level in corneal tissues of tocilizumab treated group was significantly higher than other groups (P<0.001). CONCLUSION These findings suggest that tocilizumab may promote corneal allograft survival, possibly by modulating Treg-Th17 balance.
Collapse
Affiliation(s)
- Xiao-Song Wu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xiao-Li Lu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jing Wu
- Department of Huiqiao Building, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ming Ma
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Jian Yu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Zhen-Yu Zhang
- Guangdong Women And Children Hospital, Guangzhou 511400, Guangdong Province, China
| |
Collapse
|
38
|
Park J, Lee K, Kim H, Park S, Wijesinghe RE, Lee J, Han S, Lee S, Kim P, Cho D, Jang J, Kim HK, Jeon M, Kim J. Biocompatibility evaluation of bioprinted decellularized collagen sheet implanted in vivo cornea using swept-source optical coherence tomography. JOURNAL OF BIOPHOTONICS 2019; 12:e201900098. [PMID: 31240872 PMCID: PMC7065634 DOI: 10.1002/jbio.201900098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/26/2019] [Accepted: 06/25/2019] [Indexed: 05/04/2023]
Abstract
Corneal transplantation by full-thickness penetrating keratoplasty with human donor tissue is a widely accepted treatment for damaged or diseased corneas. Although corneal transplantation has a high success rate, a shortage of high-quality donor tissue is a considerable limitation. Therefore, bioengineered corneas could be an effective solution for this limitation, and a decellularized extracellular matrix comprises a promising scaffold for their fabrication. In this study, three-dimensional bioprinted decellularized collagen sheets were implanted into the stromal layer of the cornea of five rabbits. We performed in vivo noninvasive monitoring of the rabbit corneas using swept-source optical coherence tomography (OCT) after implanting the collagen sheets. Anterior segment OCT images and averaged amplitude-scans were acquired biweekly to monitor corneal thickness after implantation for 1 month. The averaged cornea thickness in the control images was 430.3 ± 5.9 μm, while the averaged thickness after corneal implantation was 598.5 ± 11.8 μm and 564.5 ± 12.5 μm at 2 and 4 weeks, respectively. The corneal thickness reduction of 34 μm confirmed the biocompatibility through the image analysis of the depth-intensity profile base. Moreover, hematoxylin and eosin staining supported the biocompatibility evaluation of the bioprinted decellularized collagen sheet implantation. Hence, the developed bioprinted decellularized collagen sheets could become an alternative solution to human corneal donor tissue, and the proposed image analysis procedure could be beneficial to confirm the success of the surgery.
Collapse
Affiliation(s)
- Jaeseok Park
- School of Electronic Engineering, College of IT EngineeringKyungpook National UniversityDaeguSouth Korea
| | - Kyoung‐Pil Lee
- Department of Ophthalmology, School of MedicineKyungpook National UniversityDaeguSouth Korea
- Bio‐Medical InstituteKyungpook National University HospitalDaeguSouth Korea
| | - Hyeonji Kim
- Department of Mechanical EngineeringPohang University of Science and TechnologyPohangSouth Korea
| | - Sungjo Park
- Laser Application Center, Institute of Advanced Convergence TechnologyKyungpook National UniversityDaeguSouth Korea
| | - Ruchire E. Wijesinghe
- Department of Biomedical Engineering, College of EngineeringKyungil UniversityGyeongsanSouth Korea
| | - Jaeyul Lee
- School of Electronic Engineering, College of IT EngineeringKyungpook National UniversityDaeguSouth Korea
| | - Sangyeob Han
- School of Electronic Engineering, College of IT EngineeringKyungpook National UniversityDaeguSouth Korea
| | - Sangbong Lee
- School of Electronic Engineering, College of IT EngineeringKyungpook National UniversityDaeguSouth Korea
| | - Pilun Kim
- Institute of Biomedical Engineering, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Dong‐Woo Cho
- Department of Mechanical EngineeringPohang University of Science and TechnologyPohangSouth Korea
| | - Jinah Jang
- Department of Creative IT EngineeringPohang University of Science and TechnologyPohangSouth Korea
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and TechnologyPohangSouth Korea
| | - Hong K. Kim
- Department of Ophthalmology, School of MedicineKyungpook National UniversityDaeguSouth Korea
- Bio‐Medical InstituteKyungpook National University HospitalDaeguSouth Korea
| | - Mansik Jeon
- School of Electronic Engineering, College of IT EngineeringKyungpook National UniversityDaeguSouth Korea
| | - Jeehyun Kim
- School of Electronic Engineering, College of IT EngineeringKyungpook National UniversityDaeguSouth Korea
| |
Collapse
|
39
|
Isidan A, Liu S, Li P, Lashmet M, Smith LJ, Hara H, Cooper DK, Ekser B. Decellularization methods for developing porcine corneal xenografts and future perspectives. Xenotransplantation 2019; 26:e12564. [PMID: 31659811 PMCID: PMC6908750 DOI: 10.1111/xen.12564] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/11/2019] [Accepted: 10/13/2019] [Indexed: 12/23/2022]
Abstract
Corneal transplantation is the only option to cure corneal opacities. However, there is an imbalance between supply and demand of corneal tissues in the world. To solve the problem of corneal shortage, corneal xenotransplantation studies have been implemented in the past years using porcine corneas. The corneal xenografts could come from (a) wild-type pigs, (b) genetically engineered pigs, (c) decellularized porcine corneas, and (d) decellularized porcine corneas that are recellularized with human corneal cells, eventually with patients' own cells, as in all type of xenografts. All approaches except, the former would reduce or mitigate recipient immune responses. Although several techniques in decellularization have been reported, there is still no standardized protocol for the complete decellularization of corneal tissue. Herein, we reviewed different decellularization methods for porcine corneas based on the mechanism of action, decellularization efficacy, biocompatibility, and the undesirable effects on corneal ultrastructure. We compared 9 decellularization methods including: (a) sodium dodecyl sulfate, (b) triton x-100, (c) hypertonic saline, (d) human serum with electrophoresis, (e) high hydrostatic pressure, (f) freeze-thaw, (h) nitrogen gas, (h) phospholipase A2 , and (i) glycerol with chemical crosslinking methods. It appears that combined methods could be more useful to perform efficient corneal decellularization.
Collapse
Affiliation(s)
- Abdulkadir Isidan
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shaohui Liu
- Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ping Li
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew Lashmet
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lester J. Smith
- Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- 3D Bioprinting Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Birmingham at Alabama, Birmingham, AL, USA
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Birmingham at Alabama, Birmingham, AL, USA
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
40
|
Salabarria AC, Braun G, Heykants M, Koch M, Reuten R, Mahabir E, Cursiefen C, Bock F. Local VEGF-A blockade modulates the microenvironment of the corneal graft bed. Am J Transplant 2019; 19:2446-2456. [PMID: 30821887 DOI: 10.1111/ajt.15331] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 01/25/2023]
Abstract
The microenvironment plays an important role in several immunological processes. Vascular endothelial growth factor-A (VEGF-A) not only regulates angiogenesis, but is known as a modulator of the immune microenvironment. Modulating the site of transplantation might be beneficial for subsequent transplant survival. In this study, we therefore analyzed the effect that a local blockade of VEGF-A in the inflamed cornea as the graft receiving tissue has on the immune system. We used the murine model of suture-induced neovascularization and subsequent high-risk corneal transplantation, which is an optimal model for local drug application. Mice were treated with VEGFR1/R2 trap prior to transplantation. We analyzed corneal gene expression, as well as protein levels in the cornea and serum on the day of transplantation, 2 and 8 weeks later. Local VEGF depletion prior to transplantation increases the expression of pro-inflammatory as well as immune regulatory cytokines only in the corneal microenvironment, but not in the serum. Furthermore, local VEGFR1/R2 trap treatment significantly inhibits the infiltration of CD11c+ dendritic cells into the cornea. Subsequent increased corneal transplantation success was accompanied by a local upregulation of Foxp3 gene expression. This study demonstrates that locally restricted VEGF depletion increases transplantation success by modulating the receiving corneal microenvironment and inducing tolerogenic mechanisms.
Collapse
Affiliation(s)
| | - Gabriele Braun
- Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany
| | - Malte Heykants
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Raphael Reuten
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Esther Mahabir
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
41
|
Gao X, Guo K, Santosa SM, Montana M, Yamakawa M, Hallak JA, Han KY, Doh SJ, Rosenblatt MI, Chang JH, Azar DT. Application of corneal injury models in dual fluorescent reporter transgenic mice to understand the roles of the cornea and limbus in angiogenic and lymphangiogenic privilege. Sci Rep 2019; 9:12331. [PMID: 31444394 PMCID: PMC6707148 DOI: 10.1038/s41598-019-48811-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/08/2019] [Indexed: 12/31/2022] Open
Abstract
The role of the corneal epithelium and limbus in corneal avascularity and pathological neovascularization (NV) is not well understood. To investigate the contributions of the corneal and limbal epithelia in angiogenic and lymphangiogenic privilege, we designed five injury models involving debridement of different portions of the cornea and limbus and applied them to the dual-fluorescence reporter Prox1-GFP/Flt1-DsRed mouse, which permits in vivo imaging of blood and lymphatic vessels via fluorescence microscopy. Debridement of the whole cornea resulted in significant hemangiogenesis (HA) and lymphangiogenesis (LA), while that of the whole limbus yielded minimal corneal HA or LA. Following hemilimbal plus whole corneal debridement, corneal NV occurred only through the non-injured aspect of the limbus. Overall, these results suggest that the integrity of the corneal epithelium is important for (lymph)angiogenic privilege, whereas the limbus does not act as a physical or physiologic barrier to invading vessels. In CDh5-CreERT2VEGFR2lox/PGFD mice, conditional deletion of vascular endothelial growth factor receptor 2 in vascular endothelial cells abolished injury-induced HA and LA, demonstrating the utility of this transgenic mouse line for identifying important factors in the process of neovascularization.
Collapse
Affiliation(s)
- Xinbo Gao
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mario Montana
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joelle A Hallak
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Susan J Doh
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
42
|
Zhao HX, Li XY, Guan WY, Han XT. Impact of co-blocking the costimulatory signals on immune-related genes after high-risk rabbit corneal allograft using 2nd-generation DNA sequencing technology. Genet Mol Biol 2019; 42:472-479. [PMID: 31323080 PMCID: PMC6726163 DOI: 10.1590/1678-4685-gmb-2018-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/15/2018] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to evaluate the impact and mechanism of co-blocking of costimulatory signals CD28-B7-CD40-CD40L during immune allograft rejection. Forty-eight recipient rabbits were prepared as a high-risk corneal allograft model. After surgery, the animals were randomly divided into: control group, MR1 group, anti-B7 group, and co-blocking group (n=12, each group). Subconjunctival injection was first performed on the allograft surgery day until post-surgery day five. Four weeks later, or when immune rejection occurred, the cornea was sampled to detect and analyze the gene spectrum. The survival time in the co-blocking group was significantly longer than that in the other three groups (p < 0.05). Gene expression analysis revealed that the expression of genes associated with immune rejection, interleukin (IL)-1α, IL-1β, intercellular cell adhesion molecule-1, and IL-2 was down-regulated in the co-blocking group, while IL-10 was up-regulated, but the changes in nuclear factor-κB and interferon-γ were not significant. In conclusion, the co-blocking of costimulatory signals can significantly reduce genes that promote corneal allograft rejection. The inhibition of corneal allograft rejection gene expression was significantly enhanced. These gene expression results can explain the conclusion of previous work at the genetic level.
Collapse
Affiliation(s)
- Hai-Xia Zhao
- Center of Myopia, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xin-Yu Li
- Center of Myopia, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen-Ying Guan
- Center of Myopia, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiao-Tong Han
- Center of Myopia, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
43
|
Murphy N, Treacy O, Lynch K, Morcos M, Lohan P, Howard L, Fahy G, Griffin MD, Ryan AE, Ritter T. TNF-α/IL-1β-licensed mesenchymal stromal cells promote corneal allograft survival via myeloid cell-mediated induction of Foxp3 + regulatory T cells in the lung. FASEB J 2019; 33:9404-9421. [PMID: 31108041 DOI: 10.1096/fj.201900047r] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal stromal cells (MSCs) have shown promise as a therapy for immune-mediated disorders, including transplant rejection. Our group previously demonstrated the efficacy of pretransplant, systemic administration of allogeneic but not syngeneic MSCs in a rat cornea transplant model. The aim of this study was to enhance the immunomodulatory capacity of syngeneic MSCs. In vitro, MSCs licensed with TNF-α/IL-1β (MSCsTNF-α/IL-1β) suppress syngeneic lymphocyte proliferation via NO production. In vivo, when administered post-transplantation, nonlicensed syngeneic MSCs improved graft survival from 0 to 50% and MSCsTNF-α/IL-1β, in an NO-dependent manner, improved survival to 70%. Improved survival was associated with increased CD4+CD25+forkhead box P3+ regulatory T (Treg) cells and decreased proinflammatory cytokine expression in the draining lymph node. MSCsTNF-α/IL-1β demonstrated a more potent immunomodulatory capacity compared with nonlicensed MSCs, promoting an immune-regulatory CD11b+B220+ monocyte/macrophage population and significantly expanding Treg cells in the lungs and spleen. Ex vivo, we observed that lung-derived myeloid cells act as intermediaries of MSC immunomodulatory function. MSC-conditioned myeloid cells suppressed stimulated lymphocyte proliferation and promoted expansion of Treg cells from naive lymphocytes. This work illustrates how syngeneic MSC therapy can be enhanced by licensing and optimization of timing strategies and further highlights the important role of myeloid cells in mediating MSC immunomodulatory capacity.-Murphy, N., Treacy, O., Lynch, K., Morcos, M., Lohan, P., Howard, L., Fahy, G., Griffin, M. D., Ryan, A. E., Ritter, T. TNF-α/IL-1β-licensed mesenchymal stromal cells promote corneal allograft survival via myeloid cell-mediated induction of Foxp3+ regulatory T cells in the lung.
Collapse
Affiliation(s)
- Nick Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland
| | - Oliver Treacy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland
| | - Kevin Lynch
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland
| | - Maurice Morcos
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland
| | - Paul Lohan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland
| | - Linda Howard
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland
| | - Gerry Fahy
- Department of Ophthalmology, University Hospital Galway, National University of Ireland-Galway, Galway, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland
| | - Aideen E Ryan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland
| |
Collapse
|
44
|
Reuer T, Schneider AC, Cakir B, Bühler AD, Walz JM, Lapp T, Lange C, Agostini H, Schlunck G, Cursiefen C, Reinhard T, Bock F, Stahl A. Semaphorin 3F Modulates Corneal Lymphangiogenesis and Promotes Corneal Graft Survival. Invest Ophthalmol Vis Sci 2019; 59:5277-5284. [PMID: 30383199 DOI: 10.1167/iovs.18-24287] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Corneal vascularization significantly increases the risk for graft rejection after keratoplasty. Semaphorin 3F (Sema3F) is a known modulator of physiologic avascularity in the outer retina. The aim of this study was to investigate whether Sema3F is involved in maintaining corneal avascularity and can reduce the risk for corneal graft rejection. Methods Corneal Sema3F expression was investigated using immunohistochemistry and qPCR in human and murine tissue. Pathologic invasion of blood and lymph vessels into corneal tissue was analyzed in the murine corneal suture and high-risk keratoplasty model. The anti-lymphangiogenic effects of Sema3F were further investigated using an in vitro spheroidal sprouting model with supernatant from isolated primary human corneal epithelial cells (hCECs). Results Sema3F is constitutively expressed in human and murine corneal epithelium. In the corneal suture model, lymphangiogenesis was significantly suppressed by topical Sema3F treatment (P = 0.0003). In the murine high-risk keratoplasty model, pretreatment by topical Sema3F in the inflammation phase significantly promoted subsequent graft survival (P = 0.0006). In this model, both lymph- and blood angiogenesis were reduced (P < 0.05). In vitro, hCEC supernatant had a direct anti-lymphangiogenic effect on human lymphatic endothelial cells (P < 0.01). This effect was completely abolished by addition of anti-Sema3F antibodies. Conclusions Sema3F is a novel mediator of corneal avascularity with potent anti-lymphangiogenic properties. Topical treatment with Sema3F eye drops may help to limit corneal vascularization and improve outcomes in high-risk keratoplasty patients.
Collapse
Affiliation(s)
- Tristan Reuer
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Bertan Cakir
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anima D Bühler
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johanna M Walz
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thabo Lapp
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Andreas Stahl
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
45
|
Jia Z, Li F, Zeng X, Lv Y, Zhao S. The effects of local administration of mesenchymal stem cells on rat corneal allograft rejection. BMC Ophthalmol 2018; 18:139. [PMID: 29884142 PMCID: PMC5994063 DOI: 10.1186/s12886-018-0802-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 05/30/2018] [Indexed: 12/21/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) have been reported to promote long-term cellular and organ transplant acceptance due to their immunotherapeutic characteristics. Previous work from our lab using a rat allograft model has shown that systemic infusion of MSCs inhibited corneal allograft rejection and prolonged graft survival. Here, we further investigated the effects of local MSCs administration in the same animal model. Methods Donor-derived MSCs were isolated and cultured while corneal grafts obtained from Wistar rats were transplanted into Lewis rat hosts. Hosts were then randomly separated into four groups and treated with previously cultured MSCs at different times and doses. Graft survival was clinically assessed using slit-lamp biomicroscopy and the median survival time (MST) was calculated. Grafts were examined histologically using hematoxylin-eosin (H-E) staining and immunohistochemically using antibodies against CD4. A comprehensive graft analysis of IL-2, IL-4, IL-10, and IFN-γ expression was also conducted using both real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Results Postoperative MSCs injection prolonged graft survival time when compared with controls (MST 9.8 ± 1.2 days). Injection twice of MSCs (MST 12.6 ± 1.4 days) was more effective than a single injection (MST 10.8 ± 1.3 days). MSCs-treated groups also showed suppression of inflammatory cell as well as CD4 + T cell infiltration in the allograft region. IL-4 and IL-10 levels were significantly increased in grafts obtained from postoperative twice MSCs-treated rats when compared with controls. There were no significant differences in IL-2 or IFN-γ expression across groups. Conclusions Subconjunctival injection of MSCs in rats was effective in prolonging corneal allograft survival. This effect was mediated by inhibition of inflammatory and immune responses, indicating an anti-inflammatory shift in the balance of T helper (Th)1 to T helper(Th) 2. Electronic supplementary material The online version of this article (10.1186/s12886-018-0802-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhe Jia
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No. 251, Fukang R., Nankai Dist, Tianjin, China
| | - Fei Li
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No. 251, Fukang R., Nankai Dist, Tianjin, China
| | - Xiaoyu Zeng
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No. 251, Fukang R., Nankai Dist, Tianjin, China
| | - Ying Lv
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No. 251, Fukang R., Nankai Dist, Tianjin, China
| | - Shaozhen Zhao
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute & Tianjin Medical University School of Optometry and Ophthalmology, No. 251, Fukang R., Nankai Dist, Tianjin, China.
| |
Collapse
|
46
|
Benson RA, Garcon F, Recino A, Ferdinand JR, Clatworthy MR, Waldmann H, Brewer JM, Okkenhaug K, Cooke A, Garside P, Wållberg M. Non-Invasive Multiphoton Imaging of Islets Transplanted Into the Pinna of the NOD Mouse Ear Reveals the Immediate Effect of Anti-CD3 Treatment in Autoimmune Diabetes. Front Immunol 2018; 9:1006. [PMID: 29867981 PMCID: PMC5968092 DOI: 10.3389/fimmu.2018.01006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/23/2018] [Indexed: 12/16/2022] Open
Abstract
We present a novel and readily accessible method facilitating cellular time-resolved imaging of transplanted pancreatic islets. Grafting of islets to the mouse ear pinna allows non-invasive, in vivo longitudinal imaging of events in the islets and enables improved acquisition of experimental data and use of fewer experimental animals than is possible using invasive techniques, as the same mouse can be assessed for the presence of islet infiltrating cells before and after immune intervention. We have applied this method to investigating therapeutic protection of beta cells through the well-established use of anti-CD3 injection, and have acquired unprecedented data on the nature and rapidity of the effect on the islet infiltrating T cells. We demonstrate that infusion of anti-CD3 antibody leads to immediate effects on islet infiltrating T cells in islet grafts in the pinna of the ear, and causes them to increase their speed and displacement within 20 min of infusion. This technique overcomes several technical challenges associated with intravital imaging of pancreatic immune responses and facilitates routine study of beta islet cell development, differentiation, and function in health and disease.
Collapse
Affiliation(s)
- Robert A. Benson
- College of Medical, Veterinary & Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Fabien Garcon
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Asha Recino
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John R. Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Menna R. Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Herman Waldmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - James M. Brewer
- College of Medical, Veterinary & Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Paul Garside
- College of Medical, Veterinary & Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Maja Wållberg
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
47
|
Chakraborty J, Roy S, Murab S, Ravani R, Kaur K, Devi S, Singh D, Sharma S, Mohanty S, Dinda AK, Tandon R, Ghosh S. Modulation of Macrophage Phenotype, Maturation, and Graft Integration through Chondroitin Sulfate Cross-Linking to Decellularized Cornea. ACS Biomater Sci Eng 2018; 5:165-179. [PMID: 33405862 DOI: 10.1021/acsbiomaterials.8b00251] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Decellularized corneas obtained from other species have gained intense popularity in the field of tissue engineering due to its role to serve as an alternative to the limited availability of high-quality donor tissues. However, the decellularized cornea is found to evoke an immune response inspite of the removal of the cellular contents and antigens due to the distortion of the collagen fibrils that exposes certain antigenic sites, which often lead to graft rejection. Therefore, in this study we tested the hypothesis that cross-linking the decellularized corneas with chondroitin sulfate may help in restoring the distorted conformationation changes of fibrous matrix and thus help in reducing the occurrence of graft rejection. Cross-linking of the decellularized cornea with oxidized chondroitin sulfate was validated by ATR-FTIR analysis. An in vitro immune response study involving healthy monocytes and differentiated macrophages with their surface marker analysis by pHrodo red, Lysotracker red, ER tracker, and CD63, LAMP-2 antibodies confirmed that the cross-linked decellularized matrices elicited the least immune response compared to the decellularized ones. We implanted three sets of corneal scaffolds obtained from goat, i.e., native, decellularized, and decellularized corneas conjugated with chondroitin sulfate into the rabbit stroma. Histology analysis, three months after implantation into the rabbit corneal stromal region, confirmed the restoration of the collagen fibril conformation and the migration of cells to the implanted constructs, affirming proper graft integration. Hence we conclude that the chondroitin sulfate cross-linked decellularized corneal matrix may serve as an efficient alternative to the allograft and human cadaveric corneas.
Collapse
Affiliation(s)
- Juhi Chakraborty
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Subhadeep Roy
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sumit Murab
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | | | - Kulwinder Kaur
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | | | | | | | | | | | | | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
48
|
Zhang T, Li Z, Liu T, Li S, Gao H, Wei C, Shi W. Cyclosporine a drug-delivery system for high-risk penetrating keratoplasty: Stabilizing the intraocular immune microenvironment. PLoS One 2018; 13:e0196571. [PMID: 29734357 PMCID: PMC5937766 DOI: 10.1371/journal.pone.0196571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/16/2018] [Indexed: 12/25/2022] Open
Abstract
Cyclosporine A (CsA) is an essential medication used to prevent corneal allograft rejection. Our preliminary studies revealed that CsA drug-delivery system (DDS) was more effective in preventing high-risk corneal allograft rejection than topical CsA application. However, the impacts of CsA DDS on the intraocular immune microenvironment were not fully elucidated. In the present study, we investigated the effect of CsA DDS on the cornea allograft, aqueous humor, and iris-ciliary body using a rabbit model of high-risk penetrating keratoplasty. New Zealand white rabbits were divided into four groups: a normal control group, an untreated group, a CsA eye drop group and a CsA DDS group. Graft survival was monitored for 12 weeks, and the therapeutic effects of CsA DDS were evaluated at 3 and 12 weeks after high-risk keratoplasty. In the CsA DDS group, the mean graft survival time was significantly prolonged when compared with the untreated and CsA eye drop groups. At all time-points, Langerhans cell density, inflammatory cell density, and central corneal thickness in the CsA DDS group were much lower(all p < 0.01) than the untreated and CsA eye drop groups, in which their parameters were significantly higher than the normal control group (all p < 0.01). Compared with the untreated and CsA eye drop groups, an implanted CsA DDS markedly decreased the CD11b+ and CD8+ T cell infiltration in the corneal grafts. CsA DDS treatment also greatly reduced the CD4+ T cell density and the expression of interferon-gamma, interleukin-2 (IL-2), IL-6, CD80, and CD86 mRNA both in the corneal graft and iris-ciliary body (all p < 0.01). Moreover, CsA DDS significantly reduced the IL-2 level in aqueous humor (p < 0.01). Taken together, our results suggest that CsA DDS implanted into the anterior chamber create a relative immunosuppressive microenvironment in the corneal graft, iris-ciliary body, and aqueous humor. Stabilizing the intraocular immune microenvironment could partially elucidate the mechanism of CsA DDS in suppressing corneal graft rejection.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
- Shandong Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Zhiyuan Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Suxia Li
- Shandong Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Hua Gao
- Shandong Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Jinan, China
| | - Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
- * E-mail: (CW); (WS)
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
- Shandong Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Jinan, China
- * E-mail: (CW); (WS)
| |
Collapse
|
49
|
Abstract
PURPOSE To assess the effect of dry eye disease (DED) in graft donors on dendritic cell (DC) maturation, host T-cell sensitization, and corneal allograft rejection. METHODS Corneas of control (healthy donor) and DED mice (C57BL/6) were transplanted onto fully allogeneic naive BALB/c recipients (n = 10 mice/group). Long-term allograft survival was evaluated for 8 weeks. Corneas and draining lymph nodes (dLNs) were harvested at posttransplantation day 14 (n = 5 mice/group). The frequencies of MHCII CD11c DCs in the donor corneas and host dLNs and the frequencies of interferon (IFN)-γ and IL-17 CD4 T cells and Foxp3 expression by Tregs in host dLNs were investigated using flow cytometry. The enzyme-linked immunospot assay was used to assess host T-cell allosensitization through direct and indirect pathways (n = 3/group). RESULTS Recipients of DED donor corneas showed significantly reduced graft survival (10%) compared with control mice (50% survival, P = 0.022), and had significantly increased frequencies of mature DCs in the grafted cornea (DED donor 44.0% ± 0.36% vs. healthy donor 35.4 ± 0.5%; P < 0.0001) and host dLNs (DED donor 25.1% ± 0.66% vs. healthy donor 13.7% ± 1.6%; P = 0.005). Frequencies of IFN-γ and IL-17 T cells were increased in the dLNs of recipients of DED corneas, whereas the expression (mean fluorescence intensity) of Foxp3 in Tregs was decreased significantly in these mice (DED donor 6004 ± 193 vs. healthy donor 6806 ± 81; P = 0.0002). Enzyme-linked immunospot analysis showed that the direct pathway of allosensitization was significantly amplified in recipients of grafts with DED (P = 0.0146). CONCLUSIONS Our results indicate that DED in the donor is a significant risk factor for subsequent corneal allograft rejection.
Collapse
|
50
|
Corneal lymphangiogenesis facilitates ocular surface inflammation and cell trafficking in dry eye disease. Ocul Surf 2018; 16:306-313. [PMID: 29601983 DOI: 10.1016/j.jtos.2018.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 02/05/2018] [Accepted: 03/26/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE While the normal cornea has limited innervation by the lymphatic system, chronic immune-inflammatory disorders such as dry eye (DE) can induce lymphangiogenesis in the ocular surface. Using a conditional knock-down murine model, Lyve-1Cre;VEGFR2flox mice, this study investigated the role of lymphangiogenesis in the pathophysiology of DE. METHODS DE was induced in both wild type (WT) B6 and Lyve-1Cre;VEGFR2flox mice. Tissue immunostaining and volumetric gross measurements were used to assess changes in the ocular surface, skin, and lymph nodes (LNs). The expression of lymphangiogenic factors (TNF-α, IL-6/-8/-12/-17, VEGF-C/-D, IFN-γ, VEGFR-2/-3, Lyve-1, and podoplanin) and the frequency of immune cells (CD4, CD11b, and CD207) on the ocular surface and lacrimal glands were quantified by real-time polymerase chain reaction and flow cytometry. RESULTS Compared to WT mice, there were fewer lymphatic vessels and a reduction in lymphangiogenic markers in the ocular surface and skin of Lyve-1Cre;VEGFR2flox mice. After DE induction, mRNA levels of TNF-α, IL-8, and IFN-γ were significantly reduced in Lyve-1Cre;VEGFR2flox mice compared to WT mice (p < .01). Surprisingly, the LNs from Lyve-1Cre;VEGFR2flox mice with DE were significantly smaller and populated by fewer dendritic cells and effector T cells than those from WT mice (p < .001). Furthermore, immunostaining showed corneal nerves in the DE-induced Lyve-1Cre;VEGFR2flox mice were notably intact like in the naïve condition. CONCLUSIONS Inhibition of lymphangiogenesis in the cornea effectively attenuates not only the inflammatory response including trafficking of immune cells but also preserves corneal nerves under desiccating stress. Corneal lymphangiogenesis might be a contributing factor in deterioration on the ocular surface homeostasis.
Collapse
|