1
|
Wang Y, Zhang J, Liu Y, Jiang H, Wu B, Zhao S, Ouyang W, Hu Y, Lu B, Su S. Low-dose radiation as a potential strategy for alleviating lung injury caused by radiotherapy combined with immunotherapy: A preclinical study. Radiother Oncol 2025; 206:110823. [PMID: 39993602 DOI: 10.1016/j.radonc.2025.110823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND AND PURPOSE Radiotherapy combined with immunotherapy has been shown to improve thoracic tumor outcomes while increasing the risk of lung injury. Low-dose radiotherapy (LD-RT) has been proven efficient in managing inflammatory diseases. This study aims to investigate whether LD-RT might alleviate lung injury induced by radiotherapy combined with immunotherapy, and attempt to explore its underlying mechanisms thereby offering novel insights for clinical application. METHODS To establish a mouse model of lung injury caused by radiotherapy combined with immunotherapy, C57 BL/6J mice received intraperitoneal injections of programmed death 1(PD-1) inhibitor weekly and a single dose of 15 Gy whole thoracic irradiation. Then they received a single dose of LD-RT at 1.0 Gy or 1.5 Gy on Day 14 or 28. The mice were euthanized on Day 42, and lung tissue samples were collected for HE, Masson's trichrome, and immunohistochemical staining to evaluate lung tissue damage, fibrosis, and lymphocyte infiltration. The expression levels of cytokine were quantified by the enzyme-linked immunosorbent assay. RESULTS Both low-dose of 1.0 Gy and 1.5 Gy attenuated lung injury caused by radiotherapy combined with PD-1 inhibitors, but 1.5 Gy was more effective. Compared with Day 14, LD-RT at 1.5 Gy on Day 28 was more effective in alleviating alveolar inflammation and reducing collagen deposition, and inhibiting lymphocyte infiltration and secretion of inflammatory cytokine in lung tissue. CONCLUSION Low-dose radiation alleviated lung injury caused by radiotherapy combined with PD-1 inhibitor, and the alleviating effect is closely related to the timing and dose of the radiotherapy administered.
Collapse
Affiliation(s)
- Yu Wang
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China; Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Jing Zhang
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China; Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Yao Liu
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China; Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Han Jiang
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China; Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Bibo Wu
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China; Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Shasha Zhao
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China; Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - WeiWei Ouyang
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China; Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Yinxiang Hu
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China; Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Bing Lu
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China; Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China
| | - Shengfa Su
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Department of Oncology, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China; Teaching and Research Department of Oncology, Clinical Medical College of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
2
|
Kim BG, Choi HS, Choe YH, Jeon HM, Heo JY, Cheon YH, Kang KM, Lee SI, Jeong BK, Kim M. Low-Dose Radiotherapy Attenuates Experimental Autoimmune Arthritis by Inducing Apoptosis of Lymphocytes and Fibroblast-Like Synoviocytes. Immune Netw 2024; 24:e32. [PMID: 39246617 PMCID: PMC11377951 DOI: 10.4110/in.2024.24.e32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Low-dose radiotherapy (LDRT) has been explored as a treatment option for various inflammatory diseases; however, its application in the context of rheumatoid arthritis (RA) is lacking. This study aimed to elucidate the mechanism underlying LDRT-based treatment for RA and standardize it. LDRT reduced the total numbers of immune cells, but increased the apoptotic CD4+ T and B220+ B cells, in the draining lymph nodes of collagen induced arthritis and K/BxN models. In addition, it significantly reduced the severity of various pathological manifestations, including bone destruction, cartilage erosion, and swelling of hind limb ankle. Post-LDRT, the proportion of apoptotic CD4+ T and CD19+ B cells increased significantly in the PBMCs derived from human patients with RA. LDRT showed a similar effect in fibroblast-like synoviocytes as well. In conclusion, we report that LDRT induces apoptosis in immune cells and fibro-blast-like synoviocytes, contributing to attenuation of arthritis.
Collapse
Affiliation(s)
- Bo-Gyu Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Hoon Sik Choi
- Department of Radiation Oncology, Gyeongsang National University Changwon Hospital, Changwon 51472, Korea
- Department of Radiation Oncology and Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Yong-ho Choe
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Veterinary Obstetrics, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
- Lillehei Heart Institute and Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN 55414, USA
| | - Hyun Min Jeon
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Ji Yeon Heo
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Yun-Hong Cheon
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Ki Mun Kang
- Department of Radiation Oncology, Gyeongsang National University Changwon Hospital, Changwon 51472, Korea
- Department of Radiation Oncology and Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Sang-Il Lee
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Bae Kwon Jeong
- Department of Radiation Oncology and Institute of Health Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Department of Radiation Oncology, Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Department of Internal Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
3
|
Park M, Ha J, Lee Y, Choi HS, Kim BS, Jeong YK. Low-moderate dose whole-brain γ-ray irradiation modulates the expressions of glial fibrillary acidic protein and intercellular adhesion molecule-1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease mouse model. Neurobiol Aging 2023; 132:175-184. [PMID: 37837733 DOI: 10.1016/j.neurobiolaging.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 10/16/2023]
Abstract
The anti-inflammatory efficacy of radiation therapy (RT) with single fractions below 1.0 Gy has been demonstrated in Alzheimer's disease mouse models. As neuroinflammation is also a major pathological feature of Parkinson's disease (PD), RT may also be effective in PD treatment. Therefore, this study aimed to investigate the anti-inflammatory effect of low-moderate dose RT (LMDRT, 0.6 Gy/single dose, for 5 days) exposure in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 30 mg/kg, intraperitoneally, for 5 consecutive days)-induced PD mouse model. Importantly, LMDRT reduced the levels of glial fibrillary acidic protein and intercellular adhesion molecule-1 (CD54) in the striatum region, which increased following MPTP administration. LMDRT also modulated inflammatory gene expression patterns in the substantia nigra region of the MPTP-treated mice. However, LMDRT had no direct effects on the severe loss of dopaminergic neurons and impaired motor behavior in the rotarod test. These results indicate that LMDRT has anti-inflammatory effects by modulating neuroinflammatory factors, including glial fibrillary acidic protein and intercellular adhesion molecule-1, but showed no behavioral improvements or neuroprotection in the MPTP-induced mouse model of PD.
Collapse
MESH Headings
- Animals
- Mice
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use
- Brain/metabolism
- Brain/radiation effects
- Disease Models, Animal
- Dopaminergic Neurons/pathology
- Glial Fibrillary Acidic Protein/metabolism
- Intercellular Adhesion Molecule-1/metabolism
- Intercellular Adhesion Molecule-1/pharmacology
- Intercellular Adhesion Molecule-1/therapeutic use
- Mice, Inbred C57BL
- Parkinson Disease/metabolism
- Parkinson Disease/radiotherapy
- Substantia Nigra/metabolism
Collapse
Affiliation(s)
- Mijeong Park
- Radiological and Medical Support Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jimin Ha
- Radiological and Medical Support Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Division of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Yuri Lee
- Radiological and Medical Support Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Division of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Hoon-Seong Choi
- Research Animal Resource Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Byoung Soo Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Youn Kyoung Jeong
- Radiological and Medical Support Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Hussien SM. The immunomodulatory properties of low-level ionizing radiation as a potential treatment for COVID-19's life-threatening symptoms. Eur J Med Res 2023; 28:73. [PMID: 36774511 PMCID: PMC9918814 DOI: 10.1186/s40001-023-00999-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 01/06/2023] [Indexed: 02/13/2023] Open
Abstract
Public health experts are looking into the current coronavirus outbreak to see if there are any ways to prevent potentially fatal symptoms. Low-Dose Radiotherapy (LD-RT) induces anti-inflammatory cytokine responses that act as a counterweight to pro-inflammatory cytokines, potentially providing therapeutic benefits for COVID-19-related diseases associated with significant morbidity and mortality. This study will look into positive immuno-radiological reactions to see if they are feasible, practicable, and effective in lowering the critical inflammatory condition of the crucial stage COVID-19. This study aims to investigate the use of low-dose lung radiation in bacterial and viral pneumonia, as well as to provide a treatment plan for COVID-19-associated pneumonia. This article discusses the evidence for and against LD-RT theories in COVID-19 patients. The use of LD-RT at various stages of COVID-19 appears to be beneficial, with fewer side effects than other currently being studied treatments.
Collapse
Affiliation(s)
- Soha M. Hussien
- grid.429648.50000 0000 9052 0245Radiation Safety Department, Nuclear and Radiological Safety Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
5
|
Weissmann T, Rückert M, Zhou JG, Seeling M, Lettmaier S, Donaubauer AJ, Nimmerjahn F, Ott OJ, Hecht M, Putz F, Fietkau R, Frey B, Gaipl US, Deloch L. Low-Dose Radiotherapy Leads to a Systemic Anti-Inflammatory Shift in the Pre-Clinical K/BxN Serum Transfer Model and Reduces Osteoarthritic Pain in Patients. Front Immunol 2022; 12:777792. [PMID: 35046940 PMCID: PMC8763318 DOI: 10.3389/fimmu.2021.777792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/07/2021] [Indexed: 11/28/2022] Open
Abstract
Osteoarthritis (OA) is the leading degenerative joint disease in the western world and leads, if left untreated, to a progressive deterioration of joint functionality, ultimately reducing quality of life. Recent data has shown, that especially OA of the ankle and foot are among the most frequently affected regions. Current research in OA points towards a complex involvement of various cell and tissue types, often accompanied by inflammation. Low-dose radiotherapy (LDRT) is widely used for the treatment of degenerative and inflammatory diseases. While the reported analgesic effects are well known, the underlying molecular mechanisms are only poorly understood. We therefore correlated a clinical approach, looking at pain reduction in 196 patients treated with LDRT with a pre-clinical approach, utilizing the K/BxN serum transfer mouse model using flow cytometry and multiplex ELISA for analysis. While an improvement of symptoms in the majority of patients was found, patients suffering from symptoms within the tarsi transversa show a significantly lower level of improvement. Further, a significant impact of therapy success was detected depending on whether only one or both feet were affected. Further, patients of younger age showed a significantly better outcome than older ones while needing fewer treatment series. When looking on a cellular level within the mouse model, a systemic alteration of immune cells namely a shift from CD8+ to CD4+ T cells and reduced numbers of DCs was observed. A general reduction of inflammatory cytokines was detected, with significant alterations in IL-4 and IL-17 levels, all of which could potentially be responsible for the highly effective clinical improvement in patients. Taken together our data indicate that LDRT can be regarded as a highly effective treatment option for patients suffering from OA of the foot and ankle, in terms of analgesic effects, especially in younger patients. Furthermore, the observed effects are mediated by an interplay of cellular and soluble immune factors, as observed in the K/BxN serum transfer model. With this interdisciplinary approach we aim to encourage the usage of LDRT as an additive treatment strategy not only as a last resort, but also earlier in the course of disease.
Collapse
Affiliation(s)
- Thomas Weissmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Rückert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jian-Guo Zhou
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Oncology, The second affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Michaela Seeling
- Department of Biology, Institute of Genetics, Friedrich-Alexander-Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Lettmaier
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna-Jasmina Donaubauer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander-Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver J Ott
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Corrêa LB, de Oliveira Henriques MDGM, Rosas EC, Santos-Oliveira R. Intra-articular use of radium dichloride ([ 223Ra] RaCl 2) showed relevant anti-inflammatory response on experimental arthritis model. Eur J Nucl Med Mol Imaging 2021; 49:336-344. [PMID: 34370060 DOI: 10.1007/s00259-021-05515-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/28/2021] [Indexed: 01/15/2023]
Abstract
Rheumatoid arthritis (RA) is an inflammatory chronic autoimmune disease. The treatment of RA is difficult and, in many cases, ineffective, and the arsenal of drugs is limited. Due the longevity of the disease, RA may cause extreme musculoskeletal disorders with a high impact on quality of life. Also, RA is related with severe comorbidities decreasing the life expectancy. Finally, RA has been reported to impact in economy and healthy public. In this direction, the necessity to discover new strategies to efficiently treat RA is immediate. In this direction, we have reported the use of low doses of [223Ra] RaCl2 (radium dichloride) as intra-articular injection to treat RA. Mice were post-treated with [223Ra] RaCl2 (1.48 µCi; i.a.) 24 h after zymosan stimulus. Zymosan-induced arthrithis is responsible for leucocyte recruitment (total leukocytes, neutrophils, and mononuclear cells), which were inhibited by intra-articular injection of [223Ra] RaCl2 (69%, 77%, and 66%, respectively).
Collapse
Affiliation(s)
- Luana Barbosa Corrêa
- Laboratory of Nanoradiopharmaceticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906, Brazil
- National Institute for Science and Technology On Innovation On Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
- Laboratory of Applied Pharmacology, FarmanguinhosRio de Janeiro, Oswaldo Cruz Foundation, 21041361, Brazil
| | - Maria das Graças Muller de Oliveira Henriques
- National Institute for Science and Technology On Innovation On Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
- Laboratory of Applied Pharmacology, FarmanguinhosRio de Janeiro, Oswaldo Cruz Foundation, 21041361, Brazil
| | - Elaine Cruz Rosas
- National Institute for Science and Technology On Innovation On Diseases of Neglected Populations (INCT/IDPN), Oswaldo Cruz Foundation, Rio de Janeiro, 21041361, Brazil
- Laboratory of Applied Pharmacology, FarmanguinhosRio de Janeiro, Oswaldo Cruz Foundation, 21041361, Brazil
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906, Brazil.
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro, 23070200, Brazil.
| |
Collapse
|
7
|
Javadinia SA, Nazeminezhad N, Ghahramani-Asl R, Soroosh D, Fazilat-Panah D, PeyroShabany B, Saberhosseini SN, Mehrabian A, Taghizadeh-Hesary F, Nematshahi M, Dhawan G, Welsh JS, Calabrese EJ, Kapoor R. Low-dose radiation therapy for osteoarthritis and enthesopathies: a review of current data. Int J Radiat Biol 2021; 97:1352-1367. [PMID: 34259615 DOI: 10.1080/09553002.2021.1956000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Osteoarthritis (OA), the most common degenerative joint disease, is associated with severe functional limitation and impairment of quality of life. Numerous reports have documented the clinical efficacy of low-dose radiotherapy (LD-RT) in the management of various inflammatory disorders, including OA. In this paper, we assessed the clinical literature involving the use of LD-RT in the treatment of OA, its dose-response features, possible underlying mechanistic features, and optimal therapeutic dose range. METHODS We carried out a systematic review based on the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements and evaluated articles meeting the inclusion criteria for this review. RESULTS A total of 361 articles were identified from databases, such as Scopus, PubMed, Embase, and Science Direct out of which 224 articles were duplicates and were discarded. Of the remaining 137 articles, 74 articles were un-related, 27 articles were review articles, eight were conference abstracts, three were letters, two were editorials, two were notes, and one was a book chapter. Finally, 20 articles met all the inclusion criteria and were included in this systematic review. DISCUSSION Several single-arm retrospective/prospective studies showed advantages for LD-RT in the management of OA in terms of pain relief, improvement of mobility and function, and showed minimal side effects. Mechanistic considerations involve positive subcellular effects mediated by the activation of a nuclear factor erythroid 2-related transcription factor (Nrf2) mediated antioxidant response. Further research on both the short- and long-term effects of LD-RT on OA and other inflammatory disorders is recommended.
Collapse
Affiliation(s)
- Seyed Alireza Javadinia
- Clinical Research Development Unit, Hospital Research Development Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Ruhollah Ghahramani-Asl
- Clinical Research Development Unit, Hospital Research Development Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Soroosh
- Clinical Research Development Unit, Hospital Research Development Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Babak PeyroShabany
- Department of Internal Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Arezoo Mehrabian
- Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Nematshahi
- Department of Anesthesiology and Critical Care, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Gaurav Dhawan
- Sri Guru Ram Das University of Health Sciences, Amritsar, India
| | - James S Welsh
- Edward Hines Jr. VA Hospital, Loyola University Chicago Stritch School of Medicine, Chicago, IL, USA
| | - Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| |
Collapse
|
8
|
Calabrese EJ, Kozumbo WJ, Kapoor R, Dhawan G, Lara PC, Giordano J. Nrf2 activation putatively mediates clinical benefits of low-dose radiotherapy in COVID-19 pneumonia and acute respiratory distress syndrome (ARDS): Novel mechanistic considerations. Radiother Oncol 2021; 160:125-131. [PMID: 33932453 PMCID: PMC8080499 DOI: 10.1016/j.radonc.2021.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
Novel mechanistic insights are discussed herein that link a single, nontoxic, low-dose radiotherapy (LDRT) treatment (0.5-1.0 Gy) to (1) beneficial subcellular effects mediated by the activation of nuclear factor erythroid 2-related transcription factor (Nrf2) and to (2) favorable clinical outcomes for COVID-19 pneumonia patients displaying symptoms of acute respiratory distress syndrome (ARDS). We posit that the favorable clinical outcomes following LDRT result from potent Nrf2-mediated antioxidant responses that rebalance the oxidatively skewed redox states of immunological cells, driving them toward anti-inflammatory phenotypes. Activation of Nrf2 by ionizing radiation is highly dose dependent and conforms to the features of a biphasic (hormetic) dose-response. At the cellular and subcellular levels, hormetic doses of <1.0 Gy induce polarization shifts in the predominant population of lung macrophages, from an M1 pro-inflammatory to an M2 anti-inflammatory phenotype. Together, the Nrf2-mediated antioxidant responses and the subsequent shifts to anti-inflammatory phenotypes have the capacity to suppress cytokine storms, resolve inflammation, promote tissue repair, and prevent COVID-19-related mortality. Given these mechanistic considerations-and the historical clinical success of LDRT early in the 20th century-we opine that LDRT should be regarded as safe and effective for use at almost any stage of COVID-19 infection. In theory, however, optimal life-saving potential is thought to occur when LDRT is applied prior to the cytokine storms and before the patients are placed on mechanical oxygen ventilators. The administration of LDRT either as an intervention of last resort or too early in the disease progression may be far less effective in saving the lives of ARDS patients.
Collapse
Affiliation(s)
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, USA
| | - Gaurav Dhawan
- Sri Guru Ram Das University of Health Sciences, Amritsar, India.
| | - Pedro C Lara
- Department of Radiation Oncology, Hospital Universitario San Roque, Universidad Fernando Pessoa Canarias, Las Palmas Gran Canaria, Spain.
| | - James Giordano
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
9
|
Koosha F, Pourbagheri-Sigaroodi A, Bakhshandeh M, Bashash D. Low-dose radiotherapy (LD-RT) for COVID-19-induced pneumopathy: a worth considering approach. Int J Radiat Biol 2021; 97:302-312. [PMID: 33320755 DOI: 10.1080/09553002.2021.1864049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE It seems that 2020 would be always remembered by the name of novel coronavirus (designated as SARS-CoV-2), which exerted its deteriorating effects on the health care, economy, education, and political relationships. In August 2020 more than eight hundred thousand patients lost their lives due to acute respiratory syndrome. In the limited list of therapeutic approaches, the effectiveness of low-dose radiation therapy (LD-RT) for curing inflammatory-related diseases have sparkled a light that probably this approach would bring promising advantages for COVID-19 patients. LD-RT owns its reputation from its ability to modulate the host inflammatory responses by blocking the production of pro-inflammatory cytokines and hampering the activity of leukocytes. Moreover, the cost-effective and availability of this method allow it to be applied to a large number of patients, especially those who could not receive anti-IL-6 treatments in low-income countries. But enthusiasm for applying LD-RT for the treatment of COVID-19 patients has been muted yet. CONCLUSION In this review, we take a look at LD-RT mechanisms of action in the treatment of nonmalignant diseases, and then through studying both the dark and bright sides of this approach, we provide a thorough discussion if LD-RT might be a promising therapeutic approach in COVID-19 patients.
Collapse
Affiliation(s)
- Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Bakhshandeh
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Calabrese V, Scuto M, Salinaro AT, Dionisio G, Modafferi S, Ontario ML, Greco V, Sciuto S, Schmitt CP, Calabrese EJ, Peters V. Hydrogen Sulfide and Carnosine: Modulation of Oxidative Stress and Inflammation in Kidney and Brain Axis. Antioxidants (Basel) 2020; 9:antiox9121303. [PMID: 33353117 PMCID: PMC7767317 DOI: 10.3390/antiox9121303] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence indicates that the dysregulation of cellular redox homeostasis and chronic inflammatory processes are implicated in the pathogenesis of kidney and brain disorders. In this light, endogenous dipeptide carnosine (β-alanyl-L-histidine) and hydrogen sulfide (H2S) exert cytoprotective actions through the modulation of redox-dependent resilience pathways during oxidative stress and inflammation. Several recent studies have elucidated a functional crosstalk occurring between kidney and the brain. The pathophysiological link of this crosstalk is represented by oxidative stress and inflammatory processes which contribute to the high prevalence of neuropsychiatric disorders, cognitive impairment, and dementia during the natural history of chronic kidney disease. Herein, we provide an overview of the main pathophysiological mechanisms related to high levels of pro-inflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and neurotoxins, which play a critical role in the kidney–brain crosstalk. The present paper also explores the respective role of H2S and carnosine in the modulation of oxidative stress and inflammation in the kidney–brain axis. It suggests that these activities are likely mediated, at least in part, via hormetic processes, involving Nrf2 (Nuclear factor-like 2), Hsp 70 (heat shock protein 70), SIRT-1 (Sirtuin-1), Trx (Thioredoxin), and the glutathione system. Metabolic interactions at the kidney and brain axis level operate in controlling and reducing oxidant-induced inflammatory damage and therefore, can be a promising potential therapeutic target to reduce the severity of renal and brain injuries in humans.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
- Correspondence: (V.C.); (A.T.S.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
- Correspondence: (V.C.); (A.T.S.)
| | - Giuseppe Dionisio
- Department of Molecular Biology and Genetics, Research Center Flakkebjerg, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Valentina Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (M.S.); (S.M.); (M.L.O.); (V.G.); (S.S.)
| | - Claus Peter Schmitt
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (C.P.S.); (V.P.)
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - Verena Peters
- Centre for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany; (C.P.S.); (V.P.)
| |
Collapse
|
11
|
Mortezaee K, Najafi M. Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Crit Rev Oncol Hematol 2020; 157:103180. [PMID: 33264717 DOI: 10.1016/j.critrevonc.2020.103180] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is a common modality for more than half of cancer patients. Classically, radiation is known as a strategy to kill cancer cells via direct interaction with DNA or generation of free radicals. Nowadays, we know that modulation of immune system has a key role in the outcome of radiotherapy. Selecting an appropriate dose per fraction is important for stimulation of anti-tumor immunity. Unfortunately, cancer cells and other cells within tumor microenvironment (TME) promote some mechanisms implicated in the attenuation of anti-tumor immunity via exhaustion of CD8 + T lymphocytes and natural killer (NK) cells. Immunotherapy with immune checkpoint inhibitors (ICIs) has shown to be an interesting adjuvant for induction of more effective anti-tumor immunity. Clinical trial studies are ongoing for uncovering more knowledge about the efficacy of ICI combination with radiotherapy. Some newer pre-clinical studies show more effective therapeutic window for targeting PD-1 and some other targets in combination with hypofractionated radiotherapy. In this review, we explain cellular and molecular consequences in the TME following radiotherapy and promising immune targets to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
12
|
Dhawan G, Kapoor R, Dhawan R, Singh R, Monga B, Giordano J, Calabrese EJ. Low dose radiation therapy as a potential life saving treatment for COVID-19-induced acute respiratory distress syndrome (ARDS). Radiother Oncol 2020; 147:212-216. [PMID: 32437820 PMCID: PMC7206445 DOI: 10.1016/j.radonc.2020.05.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 01/22/2023]
Abstract
The new coronavirus COVID-19 disease caused by SARS-CoV-2 was declared a global public health emergency by WHO on Jan 30, 2020. Despite massive efforts from various governmental, health and medical organizations, the disease continues to spread globally with increasing fatality rates. Several experimental drugs have been approved by FDA with unknown efficacy and potential adverse effects. The exponentially spreading pandemic of COVID-19 deserves prime public health attention to evaluate yet unexplored arenas of management. We opine that one of these treatment options is low dose radiation therapy for severe and most critical cases. There is evidence in literature that low dose radiation induces an anti-inflammatory phenotype that can potentially afford therapeutic benefit against COVID-19-related complications that are associated with significant morbidity and mortality. Herein, we review the effects and putative mechanisms of low dose radiation that may be viable, useful and of value in counter-acting the acute inflammatory state induced by critical stage COVID-19.
Collapse
Affiliation(s)
- Gaurav Dhawan
- Human Research Protection Office, University of Massachusetts, Amherst, United States.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, United States
| | - Rajiv Dhawan
- Radiotherapy Department, Government Medical College, Amritsar, India
| | - Ravinder Singh
- MedSurg Urgent Care, Gilbertsville, Pennsylvania, United States
| | - Bharat Monga
- Division of Hospital Medicine, Mount Sinai Morningside Hospital, New York, United States
| | - James Giordano
- Department of Neurology and Biochemistry and Chief, Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States; Program in Biosecurity, Technology, and Ethics, US Naval War College, Newport, United States
| | - Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, United States
| |
Collapse
|
13
|
Dhawan G, Kapoor R, Dhamija A, Singh R, Monga B, Calabrese EJ. Necrotizing Fasciitis: Low-Dose Radiotherapy as a Potential Adjunct Treatment. Dose Response 2019; 17:1559325819871757. [PMID: 31496924 PMCID: PMC6716184 DOI: 10.1177/1559325819871757] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 12/27/2022] Open
Abstract
Necrotizing fasciitis (NF) is a rapidly spreading bacterial infection causing extensive tissue necrosis and destruction. Despite appropriate therapy, the disease results in significant morbidity/mortality and substantial treatment costs. Several studies published in the early 1900s demonstrated the effective use of low-dose X-ray radiotherapy (RT) for the treatment of many diverse inflammatory conditions and diseases (eg, gas gangrene, sinus infections, arthritis, tendonitis, and serious inflammatory lung conditions). The mechanism by which therapeutic RT doses produce positive patient outcomes is related at least in part to its capacity to induce tissue-based anti-inflammatory responses. This action is due to the polarization of macrophages to an anti-inflammatory or M2 phenotype via optimized low-dose RT. Low-dose RT has the potential to significantly reduce debilitating surgeries and aggressive treatments required for NF, providing a 3-prong benefit in terms of patient mortality, length of hospitalization stays, and cost of health care (both short term and long term). Low cost and easy availability of low-dose RT makes it a potentially useful option for patients of every age-group. In addition, low-dose RT may be a particularly useful option in countries treating many patients who are unable to afford surgeries, antibiotics, and hyperbaric oxygen.
Collapse
Affiliation(s)
- Gaurav Dhawan
- Human Research Protection Office, University of Massachusetts, Amherst, MA, USA
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | | | | | - Bharat Monga
- Division of Hospital Medicine, Mount Sinai St Luke's Hospital, New York, NY, USA
| | - Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
14
|
Calabrese EJ, Dhawan G, Kapoor R, Kozumbo WJ. Radiotherapy treatment of human inflammatory diseases and conditions: Optimal dose. Hum Exp Toxicol 2019; 38:888-898. [DOI: 10.1177/0960327119846925] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the early part of the past century, hundreds of clinical studies involving more than 37,000 patients were conducted that showed radiotherapy (RT) to be a successful and safe alternative to drug therapy for the treatment of many diverse inflammatory conditions and diseases (e.g. tendonitis, bursitis, arthritis, and serious inflammatory lung conditions). Data from these studies were collected and analyzed with the intent of estimating an optimal dosing range for RT that would induce an efficacious treatment response. RT was reported to be frequently effective after only a single treatment, with a rapid (within 24 h) and often long-lasting (from months to years) relief from symptoms. Over a two-decade span from the 1920s to the 1940s, the therapeutic responses to a single RT treatment consistently improved as the dosing for multiple ailments decreased over time to between 30 roentgen (r) and 100 r. These findings are significant and in agreement with a number of contemporary reports from Germany where RT has been commonly and successfully employed in treating ailments with an inflammatory origin. A proposed mechanism by which RT mitigates inflammation and facilitates healing is via the polarization of macrophages to an anti-inflammatory or M2 phenotype.
Collapse
Affiliation(s)
- EJ Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - G Dhawan
- Mass Venture Center, Research Compliance, University of Massachusetts, Hadley, MA, USA
| | - R Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| | | |
Collapse
|
15
|
Calabrese EJ, Giordano JJ, Kozumbo WJ, Leak RK, Bhatia TN. Hormesis mediates dose-sensitive shifts in macrophage activation patterns. Pharmacol Res 2018; 137:236-249. [DOI: 10.1016/j.phrs.2018.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
|
16
|
Cheng J, Li F, Wang G, Guo W, Huang S, Wang B, Li C, Jiang Q, Cai L, Cui J. Optimal LDR to Protect the Kidney From Diabetes: Whole-Body Exposure to 25 mGy X-rays Weekly for 8 Weeks Efficiently Attenuates Renal Damage in Diabetic Mice. Dose Response 2018; 16:1559325818789843. [PMID: 30210268 PMCID: PMC6130090 DOI: 10.1177/1559325818789843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 12/18/2022] Open
Abstract
To explore an optimal frequency of whole-body low-dose radiation (LDR) to protect the kidney from diabetes, type 1 diabetic mice were induced with multiple injections of low-dose streptozotocin in male C57BL/6J mice. Diabetic or age-matched normal mice received whole-body exposure to 12.5 or 25 mGy either every other day or weekly for 4 or 8 weeks. Diabetes decreased the urinary creatinine and increased the microalbumin in urine, renal accumulation of 3-nitrotyrosine and 4-hydroxynonenal, and renal expression of collagen IV and fibronectin. All these renal pathological and functional changes in diabetic mice were significantly attenuated by exposure to LDR at all regimens. However, whole-body exposure of diabetic mice to 25 mGy weekly and to 12.5 mGy every other day for 8 weeks provided a better prevention of diabetic nephropathy than other LDR regimens. Furthermore, whole-body exposure to 25 mGy weekly for 8 weeks showed no detectable effect on the kidney of normal mice, but whole-body exposure to normal mice at 12.5 mGy every other day for 8 weeks increased urinary microalbumin and renal expression of collagen IV and fibronectin. These results suggest that whole-body exposure to LDR at 25 mGy weekly is the optimal condition of LDR to protect the kidney from diabetes.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengsheng Li
- Department of Pediatrics, Pediatric Research Institute, the University of Louisville, Louisville, KY, USA.,The General Hospital of the PLA Rocket Force, Beijing, China
| | - Guanjun Wang
- The First Hospital of Jilin University, Changchun, China
| | - Weiying Guo
- Department of Pediatrics, Pediatric Research Institute, the University of Louisville, Louisville, KY, USA.,The First Hospital of Jilin University, Changchun, China
| | - Shan Huang
- Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Brain Wang
- Department of Radiation Oncology, the University of Louisville, Louisville, KY, USA
| | - Cai Li
- The First Hospital of Jilin University, Changchun, China
| | - Qisheng Jiang
- The General Hospital of the PLA Rocket Force, Beijing, China
| | - Lu Cai
- Department of Pediatrics, Pediatric Research Institute, the University of Louisville, Louisville, KY, USA.,Department of Radiation Oncology, the University of Louisville, Louisville, KY, USA
| | - Jiuwei Cui
- The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Kojima S, Thukimoto M, Cuttler JM, Inoguchi K, Ootaki T, Shimura N, Koga H, Murata A. Recovery From Rheumatoid Arthritis Following 15 Months of Therapy With Low Doses of Ionizing Radiation: A Case Report. Dose Response 2018; 16:1559325818784719. [PMID: 30013458 PMCID: PMC6043934 DOI: 10.1177/1559325818784719] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease that occurs commonly in old people. Hot spring radon therapy is widely practiced in Central Europe and Japan for relief from the painful symptoms. The usual duration of a spa treatment is a week or two, and the relief is temporary. This article reports on the near-complete recovery of a patient who had been suffering from RA for 10 years. The patient received 15 months of low-dose radon and γ-radiation therapy in a room that reproduced the conditions of a radon spa. The daily 40-minute exposure in the therapy room was supplemented by ten 6-minute radio-nebulizer treatments. The inflammation markers C-reactive protein and matrix metalloproteinase 3 declined strongly to the normal level of 0.07 mg/dL and the near-normal level of 48.9 ng/mL, respectively. After the patient's return to good health, the frequency of the visits was reduced to twice each month. The patient's protection systems appear to have adapted to stimulated conditions, sufficiently to sustain the recovery from RA. Such a long-term course of treatments and follow-up maintenance could be carried out in any hospital that has these low-dose radiation therapy rooms. The therapy could be scheduled to suit patient availability.
Collapse
Affiliation(s)
- Shuji Kojima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Noda-shi, Chiba, Japan
| | - Mitsutoshi Thukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Noda-shi, Chiba, Japan
| | | | | | | | - Noriko Shimura
- Faculty of Pharmaceutical Sciences, Ohu University, Koriyama, Japan
| | - Hironobu Koga
- Lead and Company Co, Ltd, Minami-ku, Yokohama, Japan
| | | |
Collapse
|
18
|
Balneotherapy, Immune System, and Stress Response: A Hormetic Strategy? Int J Mol Sci 2018; 19:ijms19061687. [PMID: 29882782 PMCID: PMC6032246 DOI: 10.3390/ijms19061687] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022] Open
Abstract
Balneotherapy is a clinically effective complementary approach in the treatment of low-grade inflammation- and stress-related pathologies. The biological mechanisms by which immersion in mineral-medicinal water and the application of mud alleviate symptoms of several pathologies are still not completely understood, but it is known that neuroendocrine and immunological responses—including both humoral and cell-mediated immunity—to balneotherapy are involved in these mechanisms of effectiveness; leading to anti-inflammatory, analgesic, antioxidant, chondroprotective, and anabolic effects together with neuroendocrine-immune regulation in different conditions. Hormesis can play a critical role in all these biological effects and mechanisms of effectiveness. The hormetic effects of balneotherapy can be related to non-specific factors such as heat—which induces the heat shock response, and therefore the synthesis and release of heat shock proteins—and also to specific biochemical components such as hydrogen sulfide (H2S) in sulfurous water and radon in radioactive water. Results from several investigations suggest that the beneficial effects of balneotherapy and hydrotherapy are consistent with the concept of hormesis, and thus support a role for hormesis in hydrothermal treatments.
Collapse
|
19
|
Abstract
X-ray therapy was used to treat pertussis/whooping cough during a 13-year period from 1923 to 1936 in North America and Europe. Twenty studies from clinicians in the United States reported that approximately 1500 cases of pertussis were treated by X-ray therapy usually with less than 0.5 erythema dose. Young children (<3 years) comprised about 70% to 80% of the cases, with the age of cases ranging from as young as 1 month to 50 years. In general, symptoms of severe coughing, vomiting episodes, and spasms were significantly relieved in about 85% of cases following up to 3 treatments, while about 15% of the cases showed nearly full relief after only 1 treatment. The X-ray therapy was also associated with a marked reduction in mortality of young (<3 years) children by over 90%. Despite such reported clinical success from a wide range of experienced researchers, the use of X-rays for the treatment of pertussis in young children was controversial, principally due to concerns of exposure to the thymus and thyroid even with the availability of lead shielding. By the mid-1930s, the treatment of pertussis cases via vaccine therapy came to dominate the therapeutic arena, and the brief era of a radiotherapy option for the treatment of pertussis ended.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Gaurav Dhawan
- Research Compliance, University of Massachusetts, Mass Venture Center, Hadley, MA, USA
| | | |
Collapse
|
20
|
Hormesis, cellular stress response and neuroinflammation in schizophrenia: Early onset versus late onset state. J Neurosci Res 2016; 95:1182-1193. [DOI: 10.1002/jnr.23967] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022]
|
21
|
Calabrese V, Giordano J, Ruggieri M, Berritta D, Trovato A, Ontario M, Bianchini R, Calabrese E. Hormesis, cellular stress response, and redox homeostasis in autism spectrum disorders. J Neurosci Res 2016; 94:1488-1498. [DOI: 10.1002/jnr.23893] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/18/2016] [Accepted: 08/01/2016] [Indexed: 01/09/2023]
Affiliation(s)
- V. Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - J. Giordano
- Department of Clinical and Experimental Medicine, School of Medicine; University of Catania; Catania Italy
| | - M. Ruggieri
- Departments of Neurology and Biochemistry and Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics; Georgetown University Medical Center; Washington DC
| | - D. Berritta
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - A. Trovato
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - M.L. Ontario
- Department of Biomedical and Biotechnological Sciences, School of Medicine; University of Catania; Catania Italy
| | - R. Bianchini
- Departments of Neurology and Biochemistry and Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics; Georgetown University Medical Center; Washington DC
- Service of Child Neuropsychiatry, ASP Siracusa, Italy
| | - E.J. Calabrese
- Environmental Health Sciences Division, School of Public Health; University of Massachusetts; Amherst Massachusetts
| |
Collapse
|
22
|
Calabrese EJ, Dhawan G, Kapoor R. The Use of X Rays in the Treatment of Bronchial Asthma: A Historical Assessment. Radiat Res 2015. [PMID: 26207685 DOI: 10.1667/rr14080.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This article provides a historical assessment of the role of X-ray therapy in the treatment of bronchial asthma. This analysis revealed that X-ray therapy in the treatment of bronchial asthma spanned the first six decades of the 20th century, and involved nearly 6,000 patients in published clinical case studies. Patients selected typically had at least moderate to severe asthma and were refractory to other commonly employed treatments. The results of more than 60 studies indicated that about 70% of patients had rapid and marked reductions in clinical symptoms with about half of these patients showing complete symptom relief. The duration of the beneficial responses was variable but was approximately 1-6 months for about 50% of the benefited patients, and between 1 to 4 years for the upper 25% of benefited patients. The use of X rays to treat such patients fell into disfavor during the 1950s due to mounting concerns over possible enhanced risks of cancer that coincided with the discoveries and use of antihistamine medications, antibiotics and the methyl xanthine bronchodilators aminophylline and theophylline.
Collapse
Affiliation(s)
| | | | - Rachna Kapoor
- b Public Health, University of Massachusetts, Amherst, Massachusetts, 01003
| |
Collapse
|
23
|
Adachi N, Kubota Y, Kosaka K, Akita S, Sasahara Y, Kira T, Kuroda M, Mitsukawa N, Bujo H, Satoh K. Low-dose radiation pretreatment improves survival of human ceiling culture-derived proliferative adipocytes (ccdPAs) under hypoxia via HIF-1 alpha and MMP-2 induction. Biochem Biophys Res Commun 2015; 463:1176-83. [PMID: 26086098 DOI: 10.1016/j.bbrc.2015.06.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 11/19/2022]
Abstract
Poor survival is a major problem of adipocyte transplantation. We previously reported that VEGF and MMPs secreted from transplanted adipocytes are essential for angiogenesis and adipogenesis. Pretreatment with low-dose (5 Gy) radiation (LDR) increased VEGF, MMP-2, and HIF-1 alpha mRNA expression in human ceiling culture-derived proliferative adipocytes (hccdPAs). Gene expression after LDR differed between adipose-derived stem cells (hASCs) and hccdPAs. Pretreatment with LDR improved the survival of hccdPAs under hypoxia, which is inevitable in the early stages after transplantation. Upregulation of VEGF and MMP-2 after LDR in hccdPAs is mediated by HIF-1 alpha expression. Our results suggest that pretreatment with LDR may improve adipocyte graft survival in a clinical setting through upregulation of VEGF and MMP-2 via HIF-1 alpha.
Collapse
Affiliation(s)
- Naoki Adachi
- Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677, Japan
| | - Yoshitaka Kubota
- Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677, Japan.
| | - Kentarou Kosaka
- Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677, Japan
| | - Shinsuke Akita
- Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677, Japan
| | - Yoshitarou Sasahara
- Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677, Japan
| | - Tomoe Kira
- Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677, Japan
| | - Masayuki Kuroda
- Center for Advanced Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677, Japan
| | - Nobuyuki Mitsukawa
- Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677, Japan
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, 564-1 Shimoshizu, Sakura-shi, Chiba, #285-8741, Japan
| | - Kaneshige Satoh
- Department of Plastic Surgery, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba-city, Chiba, #260-8677, Japan
| |
Collapse
|
24
|
Radiation-hormesis phenotypes, the related mechanisms and implications for disease prevention and therapy. J Cell Commun Signal 2014; 8:341-52. [PMID: 25324149 DOI: 10.1007/s12079-014-0250-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/08/2014] [Indexed: 01/20/2023] Open
Abstract
Humans are continuously exposed to ionizing radiation throughout life from natural sources that include cosmic, solar, and terrestrial. Much harsher natural radiation and chemical environments existed during our planet's early years. Mammals survived the harsher environments via evolutionarily-conserved gifts ̶ a continuously evolving system of stress-induced natural protective measures (i.e., activated natural protection [ANP]). The current protective system is differentially activated by stochastic (i.e., variable) low-radiation-dose thresholds and when optimally activated in mammals includes antioxidants, DNA damage repair, p53-related apoptosis of severely-damaged cells, reactive-oxygen-species (ROS)/reactive-nitrogen-species (RNS)- and cytokine-regulated auxiliary apoptosis that selectively removes aberrant cells (e.g., precancerous cells), suppression of disease promoting inflammation, and immunity against cancer cells. The intercellular-signaling-based protective system is regulated at least in part via epigenetic reprogramming of adaptive-response genes. When the system is optimally activated, it protects against cancer and some other diseases, thereby leading to hormetic phenotypes (e.g., reduced disease incidence to below the baseline level; reduced pain from inflammation-related problems). Here, some expressed radiation hormesis phenotypes and related mechanisms are discussed along with their implications for disease prevention and therapy.
Collapse
|
25
|
Use of X-rays to treat shoulder tendonitis/bursitis: a historical assessment. Arch Toxicol 2014; 88:1503-17. [DOI: 10.1007/s00204-014-1295-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
|
26
|
Cornelius C, Koverech G, Crupi R, Di Paola R, Koverech A, Lodato F, Scuto M, Salinaro AT, Cuzzocrea S, Calabrese EJ, Calabrese V. Osteoporosis and alzheimer pathology: Role of cellular stress response and hormetic redox signaling in aging and bone remodeling. Front Pharmacol 2014; 5:120. [PMID: 24959146 PMCID: PMC4050335 DOI: 10.3389/fphar.2014.00120] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/06/2014] [Indexed: 12/24/2022] Open
Abstract
Alzheimer’s disease (AD) and osteoporosis are multifactorial progressive degenerative disorders. Increasing evidence shows that osteoporosis and hip fracture are common complication observed in AD patients, although the mechanisms underlying this association remain poorly understood. Reactive oxygen species (ROS) are emerging as intracellular redox signaling molecules involved in the regulation of bone metabolism, including receptor activator of nuclear factor-κB ligand-dependent osteoclast differentiation, but they also have cytotoxic effects that include lipoperoxidation and oxidative damage to proteins and DNA. ROS generation, which is implicated in the regulation of cellular stress response mechanisms, is an integrated, highly regulated, process under control of redox sensitive genes coding for redox proteins called vitagenes. Vitagenes, encoding for proteins such as heat shock proteins (Hsps) Hsp32, Hsp70, the thioredoxin, and the sirtuin protein, represent a systems controlling a complex network of intracellular signaling pathways relevant to life span and involved in the preservation of cellular homeostasis under stress conditions. Consistently, nutritional anti-oxidants have demonstrated their neuroprotective potential through a hormetic-dependent activation of vitagenes. The biological relevance of dose–response affects those strategies pointing to the optimal dosing to patients in the treatment of numerous diseases. Thus, the heat shock response has become an important hormetic target for novel cytoprotective strategies focusing on the pharmacological development of compounds capable of modulating stress response mechanisms. Here we discuss possible signaling mechanisms involved in the activation of vitagenes which, relevant to bone remodeling and through enhancement of cellular stress resistance provide a rationale to limit the deleterious consequences associated to homeostasis disruption with consequent impact on the aging process.
Collapse
Affiliation(s)
- Carolin Cornelius
- Department of Chemistry, University of Catania Catania, Italy ; Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine Messina, Italy
| | - Guido Koverech
- Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Rosalia Crupi
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine Messina, Italy
| | - Rosanna Di Paola
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine Messina, Italy
| | - Angela Koverech
- Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Francesca Lodato
- Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Maria Scuto
- Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Angela T Salinaro
- Department of Biomedical Sciences, University of Catania Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine Messina, Italy ; University of Manchester Manchester, UK
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health, University of Massachusetts Amherst, MA, USA
| | | |
Collapse
|
27
|
MacFarlane PD, Tute AS, Alderson B. Therapeutic options for the treatment of chronic pain in dogs. J Small Anim Pract 2014; 55:127-34. [PMID: 24467556 DOI: 10.1111/jsap.12176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic pain is a widely recognised problem in humans and is being increasingly recognised as a significant problem in dogs. Whilst a large number of therapies are described and utilised to treat chronic pain in dogs, there is a severe shortage of evidence to guide practitioners in selection of treatments. Until more evidence becomes available, practitioners should adopt a cautious approach, utilising licensed treatments first when possible. Non-pharmacological therapies should be incorporated into the chronic pain management plan whenever possible. Given the probable prevalence of chronic pain in dogs there is an urgent need for research to identify effective treatments.
Collapse
Affiliation(s)
- P D MacFarlane
- Langford Veterinary Services, The University of Bristol, Langford, BS40 5DU
| | | | | |
Collapse
|
28
|
Abstract
Purpose: This article provides an historical assessment of the role of radiotherapy in the treatment of inner ear infections. Materials and methods: The research utilized a literature-based evaluation of the use of x-rays during the first half of the 20th century on the treatment of otitis media (OM), mastoiditis, and cervical adenitis and their impact on the occurrence of deafness. Results: X-Rays were consistently found to be effective as a treatment modality at relatively low doses, in the range of 10–20% of the skin erythema dose, rapidly reducing inflammation, and accelerating the healing process. The mechanistic basis of the clinical successes, while addressed by contemporary researchers, is evaluated in the present article in light of current molecular biology advances, which indicate that clinically effective low doses of ionizing radiation act via the creation of an anti-inflammatory phenotype in highly inflamed tissue. Conclusions: X-Ray treatment of OM, mastoiditis, and cervical adenitis was widely accepted in the first half of the 20th century by clinicians as an effective treatment when administered within an appropriate dosage range.
Collapse
Affiliation(s)
- EJ Calabrese
- Department of Public Health, Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - G Dhawan
- Department of Public Health, Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
29
|
Calabrese EJ. Low doses of radiation can enhance insect lifespans. Biogerontology 2013; 14:365-81. [PMID: 23793937 DOI: 10.1007/s10522-013-9436-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/30/2013] [Indexed: 01/14/2023]
Abstract
This paper assesses the capacity of ionizing radiation to extend the lifespans of experimental insect models based on the peer-reviewed literature. Ionizing radiation biphasically affects the lifespans of adult males and females for a broad range of insect models with high doses reducing lifespan whereas lower doses can enhance lifespan, typically in the 20-60 % range. The average adult insect lifespan can be increased when ionizing radiation exposure is administered during early developmental stages or during the adult stage. The effective dose inducing the average adult insect lifespan enhancement may vary considerably depending upon which life stage is exposed. Recent findings have identified specific genes affecting anti-oxidant defenses, DNA repair, apoptosis and heat shock proteins as well as several cell signaling pathways that mediate the longevity enhancing hormetic response.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Public Health, Division of Environmental Health Sciences, University of Massachusetts, Amherst, 01003, USA.
| |
Collapse
|
30
|
Abstract
Approximately 160,000 people evacuated the area around the Fukushima Dai-ichi NPP shortly after it was damage by the earthquake and tsunami. The evacuation order applied to 70,000 of them, while the other 90,000 left voluntarily and returned soon afterward. After more than two years, most of the 70,000 are still not allowed to return to their homes. The 1100 disaster-related deaths caused by the evacuation order show that this pre-cautionary action, taken to minimize cancer risks, was not "conservative." In this paper, recent studies are reviewed on the consequences of the radioactive releases and on the benefits of many medical treatments with low doses of radiation that were carried out until the 1950s, before the radiation scare was created. Recent research has shed light on the high rate of spontaneous double-strand breaks in DNA and the adaptive protections in cells, tissues and humans that are up-regulated by low radiation. These defences prevent, repair, remove and replace damage, from all causes including external agents. Cancer mortality is reduced. The ICRP's concept of radiation risk is wrong. It should revert to its 1934 concept, which was a tolerance dose of 0.2 roentgen (r) per day based on more than 35 years of medical experience.
Collapse
|
31
|
Cornelius C, Perrotta R, Graziano A, Calabrese EJ, Calabrese V. Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: Mitochondria as a "chi". Immun Ageing 2013; 10:15. [PMID: 23618527 PMCID: PMC3644272 DOI: 10.1186/1742-4933-10-15] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/13/2013] [Indexed: 01/01/2023]
Abstract
Understanding mechanisms of aging and determinants of life span will help to reduce age-related morbidity and facilitate healthy aging. Average lifespan has increased over the last centuries, as a consequence of medical and environmental factors, but maximal life span remains unchanged. Extension of maximal life span is currently possible in animal models with measures such as genetic manipulations and caloric restriction (CR). CR appears to prolong life by reducing reactive oxygen species (ROS)-mediated oxidative damage. But ROS formation, which is positively implicated in cellular stress response mechanisms, is a highly regulated process controlled by a complex network of intracellular signaling pathways. By sensing the intracellular nutrient and energy status, the functional state of mitochondria, and the concentration of ROS produced in mitochondria, the longevity network regulates life span across species by coordinating information flow along its convergent, divergent and multiply branched signaling pathways, including vitagenes which are genes involved in preserving cellular homeostasis during stressful conditions. Vitagenes encode for heat shock proteins (Hsp) Hsp32, Hsp70, the thioredoxin and the sirtuin protein systems. Dietary antioxidants, have recently been demonstrated to be neuroprotective through the activation of hormetic pathways, including vitagenes. The hormetic dose-response, challenges long-standing beliefs about the nature of the dose-response in a lowdose zone, having the potential to affect significantly the design of pre-clinical studies and clinical trials as well as strategies for optimal patient dosing in the treatment of numerous diseases. Given the broad cytoprotective properties of the heat shock response there is now strong interest in discovering and developing pharmacological agents capable of inducing stress responses. Here we focus on possible signaling mechanisms involved in the activation of vitagenes resulting in enhanced defense against energy and stress resistance homeostasis dysiruption with consequent impact on longevity processes.
Collapse
Affiliation(s)
- Carolin Cornelius
- Department of Chemistry University of Catania, Viale Andrea Doria, 95100 Catania, Italy
| | - Rosario Perrotta
- Department of Medicine and Surgery, University of Catania, Viale Andrea Doria, Catania, 95100, Italy
| | - Antonio Graziano
- Department of Medicine and Surgery, University of Catania, Viale Andrea Doria, Catania, 95100, Italy
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, MA, USA
| | - Vittorio Calabrese
- Department of Chemistry University of Catania, Viale Andrea Doria, 95100 Catania, Italy
| |
Collapse
|
32
|
Abstract
The aim of this paper is to assess the historical role of radiotherapy in the treatment of sinus infections. This assessment involved a literature-based review of how radiotherapy was used to treat sinus infections in the first half of the 20(th) century. Low doses of x-rays were used with considerable success to treat nearly 3,000 patients of sinus infection in a span of 12 years with these cases being reported in leading medical journals as case studies. The mechanism of x-ray induced reduction of inflammation and increased tissue repair is uncertain but appears to be related to the development of a multifactorial and integrative anti-inflammatory phenotype.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Public Health, Environmental Health Sciences, University of Massachusetts, Amherst, MA
| | | |
Collapse
|
33
|
Calabrese EJ, Calabrese V. Low dose radiation therapy (LD-RT) is effective in the treatment of arthritis: Animal model findings. Int J Radiat Biol 2012; 89:287-94. [DOI: 10.3109/09553002.2013.752595] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|