1
|
Xiang J, Liu M, Wang X, Yue M, Qin Z, Zhou J. Combined metabolic and enzymatic engineering for de novo biosynthesis of δ-tocotrienol in Yarrowia lipolytica. Synth Syst Biotechnol 2025; 10:719-727. [PMID: 40248488 PMCID: PMC12002712 DOI: 10.1016/j.synbio.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/26/2025] [Accepted: 02/18/2025] [Indexed: 04/19/2025] Open
Abstract
δ-Tocotrienol, an isomer of vitamin E with anti-inflammatory, neuroprotective and anti-coronary arteriosclerosis properties, is widely used in health care, medicine and other fields. Microbial synthesis of δ-tocotrienol offers significant advantages over plant extraction and chemical synthesis methods, including increased efficiency, cost-effectiveness and environmental sustainability. However, limited precursor availability and low catalytic efficiency of key enzymes remain major bottlenecks in the biosynthesis of δ-tocotrienol. In this study, we assembled the complete δ-tocotrienol biosynthetic pathway in Yarrowia lipolytica and enhanced the precursor supply, resulting in a titre of 102.8 mg/L. The catalytic efficiency of the rate-limiting steps in the pathway was then enhanced through various strategies, including fusion expression of key enzymes homogentisate phytyltransferaseand and tocopherol cyclase, semi-rational design of SyHPT and multi-copy integration of pathway genes. The final a δ-tocotrienol titre in a 5 L bioreactor was 466.8 mg/L following fed-batchfermentation. This study represents the first successful de novo biosynthesis of δ-tocotrienol in Y. lipolytica, providing valuable insights into the synthesis of vitamin E-related compounds.
Collapse
Affiliation(s)
- Jinbo Xiang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Mingyu Yue
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Zhijie Qin
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
2
|
Wang Y, Huang R, Gao S, Yue M, Zhang X, Zeng W, Tang B, Zhou J, Huang D, Xu S. Identification of two new flavone 4'- O-methyltransferases and their application in de novo biosynthesis of ( 2S)-hesperetin in Yarrowia lipolytica. Synth Syst Biotechnol 2025; 10:728-736. [PMID: 40248485 PMCID: PMC12002713 DOI: 10.1016/j.synbio.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/19/2025] Open
Abstract
Methyltransferases are pivotal enzymes in the biosynthesis of methylated flavonoids, including (2S)-hesperetin. However, existing flavonoid 4'-O-methyltransferase (F4'OMT) enzymes typically exhibit low substrate specificity and catalytic efficiency, which hinders microbial synthesis. To overcome this limitation, this study screened and identified two novel F4'OMTs, CrcOMT-2 and CgtOMT-3, from Chinese citrus varieties Citrus reticulata 'Chachiensis' (CZG) and Citrus grandis Tomentosa (HZY). These enzymes displayed high substrate specificity for (2S)-eriodictyol. A strain capable of de novo synthesis of (2S)-hesperetin was developed by integrating the novel F4'OMTs and other biosynthetic pathway genes at high copy numbers into Yarrowia lipolytica. The engineered strain achieved a remarkable production titre of (2S)-hesperetin (130.2 mg/L), surpassing the yields of previously reported F4'OMTs. Furthermore, availability of the cofactor S-adenosylmethionine (SAM) was optimised to enhance methyltransferase catalytic efficiency, enabling the engineered strain to produce 178.2 mg/L of (2S)-hesperetin during fed-batch fermentation with SAM supplementation, the highest yield reported to date. This study represents the first successful de novo biosynthesis of (2S)-hesperetin in Y. lipolytica, providing valuable insights into the synthesis of other O-methylated flavonoids.
Collapse
Affiliation(s)
- Yiyun Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Ruiqiu Huang
- Shenzhen Tianjiao Medical Technology Co., Ltd, GuangDong, Shenzhen, 518029, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Mingyu Yue
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Xuan Zhang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Dongliang Huang
- Shenzhen Tianjiao Medical Technology Co., Ltd, GuangDong, Shenzhen, 518029, China
| | - Sha Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
3
|
Khan MI, Polturak G. Biotechnological production and emerging applications of betalains: A review. Biotechnol Adv 2025; 81:108576. [PMID: 40204005 DOI: 10.1016/j.biotechadv.2025.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Betalains are food-grade hydrophilic pigments with antioxidant and biological activities, predominantly found in plants. Betanin is a red-violet betalain synthesized from tyrosine through L-DOPA formation, its subsequent aromatic ring-opening, spontaneous cyclization to betalamic acid, and then pH-dependent condensation with i) cyclo-DOPA-5-O-glucoside or ii) cyclo-DOPA followed by 5-O-glucosylation. This short pathway in plants for betanin biosynthesis has been heterologously expressed in other organisms (e.g. non-betalainic plants, yeasts, and fungi) using CYP76AD1, DOD1, and cDOPA5GT or B5GT, corresponding to the enzymatic steps mentioned above. For the red-violet color formation through heterologous expression of the pathway genes in non-betalainic plants, a simplified reporter gene called RUBY has been developed recently. Without any systems engineering, expression of RUBY in non-betalainic plants resulted in accumulation of up to 203 mg betalains/100 g fresh weight of peanut leaves. In yeasts, Saccharomyces cerevisiae and Yarrowia lipolytica, and fungus Fusarium venenatum, betanin production has been achieved through overexpression of the pathway genes, with productivity reaching up to 0.62 mg/L/h, 26 mg/L/h, and 26.4 mg/L/h from d-glucose as carbon source, respectively, after considerable systems engineering and gene copy number augmentation. This review critically analyzes recent biotechnological production of betalains to highlight the advancements and strategies for improvement in the technology. Also, emerging applications of betalain biosynthetic gene products or betalains as biosensors, fluorescent probes, meat analog colors, and others are discussed to strengthen the need for systems engineering and process optimization for large-scale industrial production of these pigments.
Collapse
Affiliation(s)
- Mohammad Imtiyaj Khan
- Biochemistry and Molecular Biology Lab, Department of Biotechnology, Gauhati University, Guwahati 781014, India.
| | - Guy Polturak
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| |
Collapse
|
4
|
Kumar KK, Deeba F, Pandey AK, Islam A, Paul D, Gaur NA. Sustainable lipid production by oleaginous yeasts: Current outlook and challenges. BIORESOURCE TECHNOLOGY 2025; 421:132205. [PMID: 39923863 DOI: 10.1016/j.biortech.2025.132205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Yeast lipid has gained prominence as a sustainable energy source and so various oleaginous yeasts are being investigated to create efficient lipogenic platforms. This review aims to assess the various biotechnological strategies for enhanced production of yeast lipids via agro-waste processing and media engineering including multiomic analyses, genetic engineering, random mutagenesis, and laboratory adaptive evolution. The review also emphasizes the role of cutting-edge omics technologies in pinpointing differentially expressed genes and enriched networks crucial for designing advanced metabolic engineering strategies for prominent oleaginous yeast species. The review addresses the challenges and future prospects of a viable lipid production industry that is possible through advancements in current technologies, strain improvement, media optimization and techno-economic and life cycle analyses at lab, pilot and industrial scales. This review comprehensively provides deep insights for enhancement of yeast lipid biosynthesis to reach industrially benchmarked standard of a lipid production platform.
Collapse
Affiliation(s)
- Kukkala Kiran Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi-1100067, India
| | - Farha Deeba
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi-1100067, India
| | - Ajay Kumar Pandey
- School of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur-208024, Uttar Pradesh, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Debarati Paul
- Amity Institute of Biotechnology, AUUP, Noida, sec-125, 201313, India.
| | - Naseem A Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi-1100067, India.
| |
Collapse
|
5
|
He W, Liu M, Yue M, Chen Q, Ye S, Zhou J, Zeng W, Xia Y. De Novo Biosynthesis of Chlorogenic Acid in Yarrowia lipolytica through Cis-Acting Element Optimization and NADPH Regeneration Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40025709 DOI: 10.1021/acs.jafc.4c12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Chlorogenic acid (CGA) is a natural hydroxycinnamic acid ester with significant applications in food preservation and nutritional health. However, extraction of CGA from plants is challenging, resulting in low purity that fails to meet increasing market demands. Furthermore, the broad substrate specificity of hydroxycinnamoyl-CoA:quinic acid transferase catalysis generating a plethora of byproducts, lack of NADPH regeneration, and the presence of degrading proteins impede microbial synthesis of CGA. This study achieved de novo synthesis of CGA in Yarrowia lipolytica by introducing hydroxylation and condensation modules based on screening synthetic pathway genes and optimizing parallel promoters. Additionally, an NADPH regeneration system was incorporated to enhance the efficiency of hydroxylation, thereby increasing the titer of CGA to 333.16 mg/L. From transcriptome data, 528 significantly upregulated genes were identified, and deletion of YALI0_B21824g significantly slowed the rate of CGA degradation, which increased the titer of CGA to 351.33 mg/L in shake flasks. Applying fed-batch fermentation in a 5 L bioreactor further increased CGA production to 4837.32 mg/L (64 mg/g DCW). This study established de novo synthesis of CGA in Y. lipolytica, providing a foundation for microbial production of coumaric acid and its derivatives.
Collapse
Affiliation(s)
- Wenjing He
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mingyu Yue
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qihang Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Sen Ye
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Yang Q, Tian M, Dong P, Zhao Y, Deng Y. Engineering Yarrowia lipolytica to Enhance the Production of Malonic Acid via Malonyl-CoA Pathway at High Titer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411665. [PMID: 39921326 PMCID: PMC11947988 DOI: 10.1002/advs.202411665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/27/2025] [Indexed: 02/10/2025]
Abstract
Malonic acid (MA) is a high-value-added chemical with significant applications in the polymers, pharmaceutical, and food industries. Microbial production of MA presents enzyme inefficiencies, competitive metabolic pathways, and dispersive carbon flux, which collectively limit its biosynthesis. Here, the non-conventional oleaginous yeast Yarrowia lipolytica is genetically engineered to enhance MA production. Initially, the malonyl-CoA pathway, comprising a malonyl-CoA hydrolase from Saccharomyces cerevisiae, is confirmed as the most efficient for MA production in Y. lipolytica. To further enhance MA production, two novel malonyl-CoA hydrolases exhibiting higher activity than the hydrolase from S. cerevisiae, are identified from Y. lipolytica and Fusarium oxysporum, respectively. The introduction of the malonyl-CoA hydrolase from F. oxysporum increases the MA titer to 6.3 g L-1. Subsequently, advanced metabolic engineering strategies are performed to ensure a sufficient flux of the precursors acetyl-CoA and malonyl-CoA for MA production, resulting in a production of 13.8 g L-1 MA in shaking-flasks. Finally, by employing the fermentation conditions and feeding strategies, a maximum concentration of 63.6 g L-1 of MA is achieved at 156 h with a productivity of 0.41 g L-1 h-1 in fed-batch fermentation. This study provides a new way for engineering Y. lipolytica to enhance MA production at high titer.
Collapse
Affiliation(s)
- Qun Yang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of EducationJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- National Engineering Research Center of Cereal Fermentation and Food BiomanufacturingJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Mengzhen Tian
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of EducationJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Ping Dong
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of EducationJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Yunying Zhao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of EducationJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- National Engineering Research Center of Cereal Fermentation and Food BiomanufacturingJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Provincial Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Yu Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of EducationJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- National Engineering Research Center of Cereal Fermentation and Food BiomanufacturingJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Provincial Research Center for Bioactive Product Processing TechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| |
Collapse
|
7
|
Sun ML, Xu Y, Lin L, Gao J, Ledesma-Amaro R, Wang K, Ji XJ. Enhancing Precursor Supply and Engineering Efflux Systems to Improve Abscisic Acid Production and Secretion in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40011064 DOI: 10.1021/acs.jafc.4c10772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Abscisic acid is a sesquiterpene phytohormone with extensive applications in agriculture and human health. Currently, it is produced through fermentation of Botrytis cinerea, a plant pathogenic filamentous fungus. The process requires morphology controls, which complicates production and strain optimization. In this study, the abscisic acid production strain Yarrowia lipolytica SM309 was optimized by enhancing the precursor supply using a "push-pull-restrain" strategy focusing on acetyl-CoA, which increased abscisic acid production from 266.34 to 328.51 mg/L. Subsequently, in silico prediction and analysis were used to obtain the docking conformations and binding affinity of ABC transporters for abscisic acid. Overexpression of ABC transporter YlGcn20 further enhanced abscisic acid production by 10.88%, reaching 354.21 mg/L. Additionally, low temperature and dodecane addition were employed as auxiliary strategies to promote abscisic acid synthesis, resulting in a titer of 605.92 mg/L. Finally, the engineered strain achieved an abscisic acid titer of 2056.64 mg/L in a 5 L bioreactor, representing the highest titer reported for a yeast de novo synthesis system to date.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Yun Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jian Gao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Bezos Centre for Sustainable Protein, Microbial Food Hub and Centre for Synthetic Biology, Imperial College London, London SW72AZ, U.K
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| |
Collapse
|
8
|
Park HW, Mason Earles J, Nitin N. Deep learning enabled rapid classification of yeast species in food by imaging of yeast microcolonies. Food Res Int 2025; 201:115604. [PMID: 39849741 DOI: 10.1016/j.foodres.2024.115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/18/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Diverse species of yeasts are commonly associated with food and food production environments. The contamination of food products by spoilage yeasts poses significant challenges, leading to quality degradation and food loss. Similarly, the introduction of undesirable strains during fermentation can cause considerable challenges with the quality and progress of the fermentation process. Conventional detection methods require the isolation of visible yeast colonies for genetic or biochemical characterization, which takes 5-7 days and demands significant labor. This study presents a deep learning-based yeast classification approach that combines conventional cultivation methods, white light optical microscopy of microcolony, and deep learning techniques for rapidly detecting and classifying yeasts. Utilizing deep convolutional neural networks, the model accurately discriminates 7 different yeasts within 6 h, achieving a mPrecision of 96.0 % and a mRecall of 96.3 %. Synthetic image dataset generated by generative adversarial networks (GAN) model further improved the model performance for Debaryomyces hansenii and Wickerhamomyces anomalus, yeast species with lower initial classification performance. With the addition of synthetic images in the training process, Precision for W. anomalus and Recall for D. hansenii increased by 7.7 % and 5.6 %, respectively. The yeast classification model was validated in the presence of microscopic food debris using tomato and tomato juice as representative examples of fresh produce and processed juice. The model maintained high classification accuracy in the presence of food debris (mPrecision and mRecall >93.9 %). Overall, this methodology significantly accelerates the detection and classification of yeast species using conventional cultivation and simple white light microscopy in combination with deep learning. The simplicity, including low cost of the experimental approaches and the robustness of the deep learning model make it a highly applicable approach for routine yeast monitoring and yeast spoilage control in the food industry.
Collapse
Affiliation(s)
- Hyeon Woo Park
- Department of Food Science & Technology, University of California-Davis, Davis, CA 95616, USA
| | - J Mason Earles
- Department of Biological & Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA; Department of Viticulture & Enology, University of California-Davis, Davis, CA 95616, USA
| | - Nitin Nitin
- Department of Food Science & Technology, University of California-Davis, Davis, CA 95616, USA; Department of Biological & Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
9
|
Sun T, Sun ML, Lin L, Gao J, Wang K, Ji XJ. Advancing Succinic Acid Biomanufacturing Using the Nonconventional Yeast Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:100-109. [PMID: 39707966 DOI: 10.1021/acs.jafc.4c09990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Succinic acid is an essential bulk chemical with wide-ranging applications in materials, food, and pharmaceuticals. With the advancement of biotechnology, there has been a surge in focus on low-carbon sustainable microbial synthesis methods for producing biobased succinic acid. Due to its high intrinsic acid tolerance, Yarrowia lipolytica has gained recognition as a competitive chassis for the industrial manufacture of succinic acid. This review summarizes the research progress on succinic acid biomanufacturing using Y. lipolytica. First, it introduces the major metabolic routes for succinic acid biosynthesis and the pertinent engineering approaches for building efficient cell factories. Subsequently, we offer a review of methods employed for succinic acid synthesis by Y. lipolytica utilizing alternative substrates as well as the relevant optimization strategies for the fermentation process. Finally, future research directions for improving succinic acid biomanufacturing in Y. lipolytica are delineated in light of the recent progress, obstacles, and trends in this area.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jian Gao
- School of Marine and Bioengineering, Yancheng Institute of Technology, No. 211 Jianjun Road, Yancheng 224051, People's Republic of China
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
10
|
Zhou T, Park YK, Fu J, Hapeta P, Klemm C, Ledesma-Amaro R. Metabolic engineering of Yarrowia lipolytica for the production and secretion of the saffron ingredient crocetin. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:1. [PMID: 39773299 PMCID: PMC11706156 DOI: 10.1186/s13068-024-02598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Crocetin is a multifunctional apocarotenoid natural product derived from saffron, holding significant promises for protection against various diseases and other nutritional applications. Historically, crocetin has been extracted from saffron stigmas, but this method is hindered by the limited availability of high-quality raw materials and complex extraction processes. To overcome these challenges, metabolic engineering and synthetic biology can be applied to the sustainable production of crocetin. RESULTS We constructed a Yarrowia lipolytica strain using hybrid promoters and copy number adjustment, which was able to produce 2.66 g/L of β-carotene, the precursor of crocetin. Next, the crocetin biosynthetic pathway was introduced, and we observed both the production and secretion of crocetin. Subsequently, the metabolite profiles under varied temperatures were studied and we found that low temperature was favorable for crocetin biosynthesis in Y. lipolytica. Therefore, a two-step temperature-shift fermentation strategy was adopted to optimize yeast growth and biosynthetic enzyme activity, bringing a 2.3-fold increase in crocetin titer. Lastly, fermentation media was fine-tuned for an optimal crocetin output of 30.17 mg/L, bringing a 51% higher titer compared with the previous highest report in shake flasks. Concomitantly, we also generated Y. lipolytica strains capable of achieving substantial zeaxanthin production, yielding 1575.09 mg/L, doubling the previous highest reported titer. CONCLUSIONS Through metabolic engineering and fermentation optimization, we demonstrated the first de novo biosynthesis of crocetin in the industrial yeast Yarrowia lipolytica. In addition, we achieved a higher crocetin titer in flasks than all our known reports. This work not only represents a high production of crocetin, but also entails a significant simultaneous zeaxanthin production, setting the stage for sustainable and cost-effective production of these valuable compounds.
Collapse
Affiliation(s)
- Tingan Zhou
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Bezos Centre for Sustainable Protein, UKRI Engineering Biology Mission Hub on Microbial Food, Imperial College London, London, SW7 2AZ, UK
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Young-Kyoung Park
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Bezos Centre for Sustainable Protein, UKRI Engineering Biology Mission Hub on Microbial Food, Imperial College London, London, SW7 2AZ, UK.
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| | - Jing Fu
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Bezos Centre for Sustainable Protein, UKRI Engineering Biology Mission Hub on Microbial Food, Imperial College London, London, SW7 2AZ, UK
| | - Piotr Hapeta
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Bezos Centre for Sustainable Protein, UKRI Engineering Biology Mission Hub on Microbial Food, Imperial College London, London, SW7 2AZ, UK
| | - Cinzia Klemm
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Bezos Centre for Sustainable Protein, UKRI Engineering Biology Mission Hub on Microbial Food, Imperial College London, London, SW7 2AZ, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering, Imperial College Centre for Synthetic Biology, Bezos Centre for Sustainable Protein, UKRI Engineering Biology Mission Hub on Microbial Food, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
11
|
Lee S, Seekallu S, Venkataramaiah SB, Doreswamy CM, Umesh MC, Malleshappa S, Dev SJ, Chethankumara GP, Lohith N, Deshmukh GR, Premkumar B, Mahadevan B. The safety assessment of N- trans-feruloyltyramine using In vitro genotoxicity studies and 90-day toxicity study in rats. Hum Exp Toxicol 2025; 44:9603271251334452. [PMID: 40251750 DOI: 10.1177/09603271251334452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
IntroductionN-trans-feruloyltyramine (NFT) is a bioactive compound present in many plant sources. The purpose of the studies was to investigate adverse effects, if any, of NFT produced through precision fermentation.MethodsAn in vitro Ames test was performed with NFT using bacterial strains at concentrations up to 1580 µg/plate with and without S9. The in vitro micronucleus assay was performed in human peripheral blood cells in culture, with and without, metabolic activation at three different doses. In the subchronic toxicity study, adult Sprague Dawley rats (10/sex/group) were fed diets prepared with target doses of 0, 5000, 10,000 or 20,000 ppm of NFT for 90 days.ResultsIn the Ames assay, there were no NFT-related or concentration dependent increases in revertant colony numbers in any of the tester strains. In the in vitro micronucleus assay, there was no statistically significant increase in the number of binucleated cells with micronuclei compared to the vehicle control. NFT was found to be non-genotoxic when evaluated in the in vitro Ames and micronucleus assays. In the 90-day rodent study, NFT was well tolerated, with no related adverse findings observed at any of the dose levels tested. There were no NFT related adverse histopathological changes observed in the high dose group of both the sexes.ConclusionThe No observed adverse effect level of NFT was determined as 1474 mg/kg body weight/day in males and 1958 mg/kg body weight/day in females based on the actual intake at the dose levels tested and under the experimental conditions employed.
Collapse
Affiliation(s)
- Sungwon Lee
- Brightseed Inc., South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shin SH, Moon HY, Park HE, Nam GJ, Baek JH, Jeon CO, Jung H, Cha MS, Choi S, Han JJ, Hou CY, Park CS, Kang HA. Elucidation and engineering of Sphingolipid biosynthesis pathway in Yarrowia lipolytica for enhanced production of human-type sphingoid bases and glucosylceramides. Metab Eng 2025; 87:68-85. [PMID: 39603335 DOI: 10.1016/j.ymben.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/10/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Sphingolipids are vital membrane components in in mammalian cells, plants, and various microbes. We aimed to explore and exploit the sphingolipid biosynthesis pathways in an oleaginous and dimorphic yeast Yarrowia lipolytica by constructing and characterizing mutant strains with specific gene deletions and integrating exogenous genes to enhance the production of long-chain bases (LCBs) and glucosylceramides (GlcCers). To block the fungal/plant-specific phytosphingosine (PHS) pathway, we deleted the SUR2 gene encoding a sphinganine C4-hydroxylase, resulting in a remarkably elevated secretory production of dihydrosphingosine (DHS) and sphingosine (So) without acetylation. The Y. lipolytica SUR2 deletion (Ylsur2Δ) strain displayed retarded growth, increased pseudohyphal formation and stress sensitivity, along with the altered profiles of inositolphosphate-containing ceramides, GlcCers, and sterols. The subsequent disruption of the SLD1 gene, encoding a fungal/plant-specific Δ8 sphingolipid desaturase, restored filamentous growth in the Ylsur2Δ strain to a yeast-type form and further increased the production of human-type GlcCers. Additional introduction of mouse alkaline ceramidase 1 (maCER1) into the Ylsur2Δsld1Δ double mutants considerably increased DHS and So production while decreasing GlcCers. The production yields of LCBs from the Ylsur2Δsld1Δ/maCER1 strain increased in proportion to the C/N ratio in the N-source optimized medium, leading to production of 1.4 g/L non-acetylated DHS at the 5 L fed-batch fermentation with glucose feeding. This study highlights the feasibility of using the engineered Y. lipolytica strains as a cell factory for valuable sphingolipid derivatives for pharmaceuticals, cosmeceuticals, and nutraceuticals.
Collapse
Affiliation(s)
- Seo Hyeon Shin
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Hye Yun Moon
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Hae Eun Park
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Gi Jeong Nam
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea
| | - Hyunwook Jung
- GF Fermentech, Bugang-myeon, Sejong-si, 30077, South Korea
| | | | - Sol Choi
- GF Fermentech, Bugang-myeon, Sejong-si, 30077, South Korea
| | - Jeong Jun Han
- GF Fermentech, Bugang-myeon, Sejong-si, 30077, South Korea
| | - Chen Yuan Hou
- LCS Biotech, Cheoin-gu, Yongin-si, Gyeonggi-do, 17130, South Korea
| | - Chang Seo Park
- LCS Biotech, Cheoin-gu, Yongin-si, Gyeonggi-do, 17130, South Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
13
|
Shi JT, Wu YY, Sun RZ, Hua Q, Wei LJ. Synthesis of β-ionone from xylose and lignocellulosic hydrolysate in genetically engineered oleaginous yeast Yarrowia lipolytica. Biotechnol Lett 2024; 46:1219-1236. [PMID: 39377872 DOI: 10.1007/s10529-024-03534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
β-ionone, an apocarotenoid derived from a C40 terpenoid has an intense, woody smell and a low odor threshold that has been widely used in as an ingredient in food and cosmetics. Yarrowia lipolytica is a promising host for β-ionone production because of its oleaginous nature, its ability to produce high levels of acetyl-CoA (an important precursor for terpenoids), and the availability of synthetic biology tools to engineer the organism. In this study, β-carotene-producing Y. lipolytica strain XK17 was employed for β-ionone biosynthesis. First, we explored the effect of different sources of carotenoid cleavage dioxygenase (CCD) genes on β-ionone production. A high-yielding strain rUinO-D14 with 122 mg/L of β-ionone was obtained by screening promoters combined with rDNA mediated multi-round iterative transformations to optimize the expression of the CCD gene of Osmanthus fragrans. Second, to further develop a high-level production strain for β-ionone, we optimized key genes in the mevalonate pathway by multi-round iterative transformations mediated by non-homologous end joining, combined with a protein tagging strategy. Finally, the introduction of a heterologous oxidoreductase pathway enabled the engineered Y. lipolytica strain to use xylose as a sole carbon source and produce β-ionone. In addition, the potential for use of lignocellulosic hydrolysate as the carbon source for β-ionone production showed that the NHA-A31 strain had a high β-ionone productivity level. This study demonstrates that engineered Y. lipolytica can be used for the efficient, green and sustainable production of β-ionone.
Collapse
Affiliation(s)
- Jiang-Ting Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying-Ying Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Rong-Zi Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
14
|
Karlo J, Carrasco-Navarro V, Koistinen A, Singh SP. Tracking trash to treasure: in situ monitoring of single microbial cell oil biosynthesis from waste cooking oil using Raman spectroscopy and imaging. RSC Adv 2024; 14:33323-33331. [PMID: 39435003 PMCID: PMC11493132 DOI: 10.1039/d4ra05187d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Waste cooking oil is a major pollutant that contaminates terrestrial and aquatic bodies which is generated from household kitchens and eateries. The bioremediation of waste cooking oil (WCO) into microbial oil, also known as single microbial cell oil (SMCO), can be accomplished by oleaginous microbes. Conventional methods excel in SMCO analysis but lack efficacy for in situ or lysis-free monitoring of nascent SMCO synthesis and turnover. To bridge this knowledge gap, this study shows the applicability of Raman reverse stable isotope probing (RrSIP) in monitoring time-dependent nascent SMCO synthesis and assimilation in Yarrowia lipolytica, an oleaginous yeast grown in hydrophilic (glucose) as well as hydrophobic carbon sources (cooking oil and waste cooking oil). This study also combines the RrSIP approach with Raman imaging for temporal visualization of the distribution and turnover dynamics of the SMCO pool in a single cell. Our finding provides a unique perspective utilizing optical spectroscopy methods for lysis-free SMCO analysis and holds potential for prospective utility as an adjunct tool in bioprocess and biofuel industries.
Collapse
Affiliation(s)
- Jiro Karlo
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad Dharwad 580011 Karnataka India
| | - Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus Yliopistonranta 8 Kuopio 70210 Finland
| | - Arto Koistinen
- Department of Technical Physics, University of Eastern Finland Kuopio 70210 Finland
| | - Surya Pratap Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad Dharwad 580011 Karnataka India
| |
Collapse
|
15
|
Wijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, de A. Santiago ALCM, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assunção AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Błaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, da Silva SBG, de Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan X, Felix JRB, Galappaththi MCA, Groenewald M, Han LS, Huang B, Hurdeal VG, Ignatieva AN, Jerônimo GH, de Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li Q, Lima JLR, Liu XY, Lu W, Lumbsch HT, Madrid H, Magurno F, Marson G, McKenzie EHC, Menkis A, Mešić A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawłowska J, Peintner U, Pozdnyakov IR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkumar KC, Raza M, Roy N, Samarakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selçuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP, Suwannarach N, Tanaka K, Tibpromma S, Tomás EO, Ulukapı M, Van Vooren N, Wanasinghe DN, Weber E, Wu Q, Yang EF, Yoshioka R, et alWijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, de A. Santiago ALCM, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assunção AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Błaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, da Silva SBG, de Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan X, Felix JRB, Galappaththi MCA, Groenewald M, Han LS, Huang B, Hurdeal VG, Ignatieva AN, Jerônimo GH, de Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li Q, Lima JLR, Liu XY, Lu W, Lumbsch HT, Madrid H, Magurno F, Marson G, McKenzie EHC, Menkis A, Mešić A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawłowska J, Peintner U, Pozdnyakov IR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkumar KC, Raza M, Roy N, Samarakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selçuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP, Suwannarach N, Tanaka K, Tibpromma S, Tomás EO, Ulukapı M, Van Vooren N, Wanasinghe DN, Weber E, Wu Q, Yang EF, Yoshioka R, Youssef NH, Zandijk A, Zhang GQ, Zhang JY, Zhao H, Zhao R, Zverkov OA, Thines M, Karpov SA. Classes and phyla of the kingdom Fungi. FUNGAL DIVERS 2024; 128:1-165. [DOI: 10.1007/s13225-024-00540-z] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/03/2024] [Indexed: 01/05/2025]
Abstract
AbstractFungi are one of the most diverse groups of organisms with an estimated number of species in the range of 2–3 million. The higher-level ranking of fungi has been discussed in the framework of molecular phylogenetics since Hibbett et al., and the definition and the higher ranks (e.g., phyla) of the ‘true fungi’ have been revised in several subsequent publications. Rapid accumulation of novel genomic data and the advancements in phylogenetics now facilitate a robust and precise foundation for the higher-level classification within the kingdom. This study provides an updated classification of the kingdom Fungi, drawing upon a comprehensive phylogenomic analysis of Holomycota, with which we outline well-supported nodes of the fungal tree and explore more contentious groupings. We accept 19 phyla of Fungi, viz. Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota, Sanchytriomycota, and Zoopagomycota. In the phylogenies, Caulochytriomycota resides in Chytridiomycota; thus, the former is regarded as a synonym of the latter, while Caulochytriomycetes is viewed as a class in Chytridiomycota. We provide a description of each phylum followed by its classes. A new subphylum, Sanchytriomycotina Karpov is introduced as the only subphylum in Sanchytriomycota. The subclass Pneumocystomycetidae Kirk et al. in Pneumocystomycetes, Ascomycota is invalid and thus validated. Placements of fossil fungi in phyla and classes are also discussed, providing examples.
Collapse
|
16
|
Jenjitwanich A, Marx H, Sauer M. Characterization of the metabolism of the yeast Yarrowia lipolytica growing as a biofilm. FEMS MICROBES 2024; 5:xtae026. [PMID: 39529679 PMCID: PMC11552517 DOI: 10.1093/femsmc/xtae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024] Open
Abstract
Yarrowia lipolytica is a well-characterized yeast with remarkable metabolic adaptability. It is capable of producing various products from different carbon sources and easily switching between planktonic and biofilm states. A biofilm represents a natural means of cell immobilization that could support continuous cultivation and production processes, such as perfusion cultivation. However, the metabolic activities of Y. lipolytica in biofilms have not yet been studied in detail. Therefore, this study aimed to compare the metabolic activities of Y. lipolytica in biofilm and planktonic states. Conventionally, a stirred tank bioreactor was used to cultivate Y. lipolytica in a planktonic state. On the other hand, a trickle bed bioreactor system was used for biofilm cultivation. The low pH at 3 was maintained to favor polyol production. The accumulation of citric acid was observed over time only in the biofilm state, which significantly differed from the planktonic state. Although the biofilm cultivation process has lower productivity, it has been observed that the production rate remains constant and the total product yield is comparable to the planktonic state when supplied with 42% oxygen-enriched air. This finding indicates that the biofilm state has the potential for continuous bioprocessing applications and is possibly a feasible option.
Collapse
Affiliation(s)
- Akarawit Jenjitwanich
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Hans Marx
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- Research Area: Biochemical Engineering, Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Michael Sauer
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- OMV AG, Trabrennstraße 6–8, 1020 Vienna, Austria
| |
Collapse
|
17
|
Gu X, Shi Y, Luo C, Cheng J. Establishment of Saccharomyces cerevisiae as a cell factory for efficient de novo production of monogalactosyldiacylglycerol. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:111. [PMID: 39129014 PMCID: PMC11318150 DOI: 10.1186/s13068-024-02560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Monogalactosyldiacylglycerol (MGDG), a predominant photosynthetic membrane lipid derived from plants and microalgae, has important applications in feed additives, medicine, and other fields. The low content and various structural stereoselectivity differences of MGDG in plants limited the biological extraction or chemical synthesis of MGDG, resulting in a supply shortage of monogalactosyldiacylglycerol with a growing demand. Herein, we established Saccharomyces cerevisiae as a cell factory for efficient de novo production of monogalactosyldiacylglycerol for the first time. Heterologous production of monogalactosyldiacylglycerol was achieved by overexpression of codon-optimized monogalactosyldiacylglycerol synthase gene MGD1, the key Kennedy pathway genes (i.e. GAT1, ICT1, and PAH1), and multi-copy integration of the MGD1 expression cassette. The final engineered strain (MG-8) was capable of producing monogalactosyldiacylglycerol with titers as high as 16.58 nmol/mg DCW in a shake flask and 103.2 nmol/mg DCW in a 5 L fed-batch fermenter, respectively. This is the first report of heterologous biosynthesis of monogalactosyldiacylglycerol in microorganisms, which will provide a favorable reference for study on heterologous production of monogalactosyldiacylglycerol in yeasts.
Collapse
Affiliation(s)
- Xiaosong Gu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hubei Province Key Lab Yeast Function, Yichang, 443003, China
| | - Yumei Shi
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, China
| | - Changxin Luo
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, China.
| | - Jintao Cheng
- Xianghu Laboratory, Hangzhou, 310027, China.
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
18
|
Fu J, Zaghen S, Lu H, Konzock O, Poorinmohammad N, Kornberg A, Ledesma-Amaro R, Koseto D, Wentzel A, Di Bartolomeo F, Kerkhoven EJ. Reprogramming Yarrowia lipolytica metabolism for efficient synthesis of itaconic acid from flask to semipilot scale. SCIENCE ADVANCES 2024; 10:eadn0414. [PMID: 39121230 PMCID: PMC11313960 DOI: 10.1126/sciadv.adn0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/03/2024] [Indexed: 08/11/2024]
Abstract
Itaconic acid is an emerging platform chemical with extensive applications. Itaconic acid is currently produced by Aspergillus terreus through biological fermentation. However, A. terreus is a fungal pathogen that needs additional morphology controls, making itaconic acid production on industrial scale problematic. Here, we reprogrammed the Generally Recognized As Safe (GRAS) yeast Yarrowia lipolytica for competitive itaconic acid production. After preventing carbon sink into lipid accumulation, we evaluated itaconic acid production both inside and outside the mitochondria while fine-tuning its biosynthetic pathway. We then mimicked the regulation of nitrogen limitation in nitrogen-replete conditions by down-regulating NAD+-dependent isocitrate dehydrogenase through weak promoters, RNA interference, or CRISPR interference. Ultimately, we optimized fermentation parameters for fed-batch cultivations and produced itaconic acid titers of 130.1 grams per liter in 1-liter bioreactors and 94.8 grams per liter in a 50-liter bioreactor on semipilot scale. Our findings provide effective approaches to harness the GRAS microorganism Y. lipolytica for competitive industrial-scale production of itaconic acid.
Collapse
Affiliation(s)
- Jing Fu
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Simone Zaghen
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Hongzhong Lu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Oliver Konzock
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Naghmeh Poorinmohammad
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Alexander Kornberg
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Deni Koseto
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim N-7465, Norway
| | - Alexander Wentzel
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim N-7465, Norway
| | | | - Eduard J. Kerkhoven
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg 412 96, Sweden
- SciLifeLab, Chalmers University of Technology, Göteborg 412 96, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
19
|
Tullio V. Probiotic Yeasts: A Developing Reality? J Fungi (Basel) 2024; 10:489. [PMID: 39057374 PMCID: PMC11277836 DOI: 10.3390/jof10070489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Yeasts are gaining increasing attention for their potential health benefits as probiotics in recent years. Researchers are actively searching for new yeast strains with probiotic properties (i.e, Debaryomyces hansenii; Kluyveromyces marxianus; Yarrowia lipolytica; Pichia hudriavzevii; and Torulaspora delbrueckii) from various sources, including traditional fermented foods, the human gut, and the environment. This exploration is expanding the pool of potential probiotic yeasts beyond the well-studied Saccharomyces boulardii. Research suggests that specific yeast strains possess properties that could be beneficial for managing conditions like inflammatory bowel disease, irritable bowel syndrome, skin disorders, and allergies. Additionally, probiotic yeasts may compete with pathogenic bacteria for adhesion sites and nutrients, thereby inhibiting their growth and colonization. They might also produce antimicrobial compounds that directly eliminate harmful bacteria. To achieve these goals, the approach that uses probiotics for human health is changing. Next-generation yeast probiotics are emerging as a powerful new approach in the field of live biotherapeutics. By using genetic engineering, scientists are able to equip these tools with specialized capabilities. However, most research on these probiotic yeasts is still in its early stages, and more clinical trials are needed to confirm their efficacy and safety for various health conditions. This review could provide a brief overview of the situation in this field.
Collapse
Affiliation(s)
- Vivian Tullio
- Department of Public Health and Pediatrics, University of Turin, via Santena 9; 10126 Turin, Italy
| |
Collapse
|
20
|
Park YK, Rossignol T. Broadening the application of Yarrowia lipolytica synthetic biology tools to explore the potential of Yarrowia clade diversity. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001472. [PMID: 38913407 PMCID: PMC11261841 DOI: 10.1099/mic.0.001472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
Yeasts have established themselves as prominent microbial cell factories, and the availability of synthetic biology tools has led to breakthroughs in the rapid development of industrial chassis strains. The selection of a suitable microbial host is critical in metabolic engineering applications, but it has been largely limited to a few well-defined strains. However, there is growing consideration for evaluating strain diversity, as a wide range of specific traits and phenotypes have been reported even within a specific yeast genus or species. Moreover, with the advent of synthetic biology tools, non-type strains can now be easily and swiftly reshaped. The yeast Yarrowia lipolytica has been extensively studied for various applications such as fuels, chemicals, and food. Additionally, other members of the Yarrowia clade are currently being evaluated for their industrial potential. In this study, we demonstrate the versatility of synthetic biology tools originally developed for Y. lipolytica by repurposing them for engineering other yeasts belonging to the Yarrowia clade. Leveraging the Golden Gate Y. lipolytica tool kit, we successfully expressed fluorescent proteins as well as the carotenoid pathway in at least five members of the clade, serving as proof of concept. This research lays the foundation for conducting more comprehensive investigations into the uncharacterized strains within the Yarrowia clade and exploring their potential applications in biotechnology.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Tristan Rossignol
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
21
|
Makopa TP, Ncube T, Alwasel S, Boekhout T, Zhou N. Yeast-insect interactions in southern Africa: Tapping the diversity of yeasts for modern bioprocessing. Yeast 2024; 41:330-348. [PMID: 38450792 DOI: 10.1002/yea.3935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Yeast-insect interactions are one of the most interesting long-standing relationships whose research has contributed to our understanding of yeast biodiversity and their industrial applications. Although insect-derived yeast strains are exploited for industrial fermentations, only a limited number of such applications has been documented. The search for novel yeasts from insects is attractive to augment the currently domesticated and commercialized production strains. More specifically, there is potential in tapping the insects native to southern Africa. Southern Africa is home to a disproportionately high fraction of global biodiversity with a cluster of biomes and a broad climate range. This review presents arguments on the roles of the mutualistic relationship between yeasts and insects, the presence of diverse pristine environments and a long history of spontaneous food and beverage fermentations as the potential source of novelty. The review further discusses the recent advances in novelty of industrial strains of insect origin, as well as various ancient and modern-day industries that could be improved by use yeasts from insect origin. The major focus of the review is on the relationship between insects and yeasts in southern African ecosystems as a potential source of novel industrial yeast strains for modern bioprocesses.
Collapse
Affiliation(s)
- Tawanda P Makopa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Thembekile Ncube
- Department of Biology and Biochemistry, Faculty of Applied Science, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Teun Boekhout
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
22
|
Wu Y, Li S, Sun B, Guo J, Zheng M, Li A. Enhancing Gastrodin Production in Yarrowia lipolytica by Metabolic Engineering. ACS Synth Biol 2024; 13:1332-1342. [PMID: 38563122 DOI: 10.1021/acssynbio.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Gastrodin, 4-hydroxybenzyl alcohol-4-O-β-D-glucopyranoside, has been widely used in the treatment of neurogenic and cardiovascular diseases. Currently, gastrodin biosynthesis is being achieved in model microorganisms. However, the production levels are insufficient for industrial applications. In this study, we successfully engineered a Yarrowia lipolytica strain to overproduce gastrodin through metabolic engineering. Initially, the engineered strain expressing the heterologous gastrodin biosynthetic pathway, which comprises chorismate lyase, carboxylic acid reductase, phosphopantetheinyl transferase, endogenous alcohol dehydrogenases, and a UDP-glucosyltransferase, produced 1.05 g/L gastrodin from glucose in a shaking flask. Then, the production was further enhanced to 6.68 g/L with a productivity of 2.23 g/L/day by overexpressing the key node DAHP synthases of the shikimate pathway and alleviating the native tryptophan and phenylalanine biosynthetic pathways. Finally, the best strain, Gd07, produced 13.22 g/L gastrodin in a 5 L fermenter. This represents the highest reported production of gastrodin in an engineered microorganism to date, marking the first successful de novo production of gastrodin using Y. lipolytica.
Collapse
Affiliation(s)
- Yuanqing Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Shuocheng Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Baijian Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Jingyi Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Meiyi Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan 430062, P. R. China
| |
Collapse
|
23
|
Rajput SD, Pandey N, Sahu K. A comprehensive report on valorization of waste to single cell protein: strategies, challenges, and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26378-26414. [PMID: 38536571 DOI: 10.1007/s11356-024-33004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 03/16/2024] [Indexed: 05/04/2024]
Abstract
The food insecurity due to a vertical increase in the global population urgently demands substantial advancements in the agricultural sector and to identify sustainable affordable sources of nutrition, particularly proteins. Single-cell protein (SCP) has been revealed as the dried biomass of microorganisms such as algae, yeast, and bacteria cultivated in a controlled environment. Production of SCP is a promising alternative to conventional protein sources like soy and meat, due to quicker production, minimal land requirement, and flexibility to various climatic conditions. In addition to protein production, it also contributes to waste management by converting it into food and feed for both human and animal consumption. This article provides an overview of SCP production, including its benefits, safety, acceptability, and cost, as well as limitations that constrains its maximum use. Furthermore, this review criticizes the downstream processing of SCP, encompassing cell wall disruption, removal of nucleic acid, harvesting of biomass, drying, packaging, storage, and transportation. The potential applications of SCP, such as in food and feed as well as in the production of bioplastics, emulsifiers, and as flavoring agents for baked food, soup, and salad, are also discussed.
Collapse
Affiliation(s)
- Sharda Devi Rajput
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India
| | - Neha Pandey
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India
| | - Keshavkant Sahu
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492 010, India.
| |
Collapse
|
24
|
Zhu J, Yang S, Cao Q, Li X, Jiao L, Shi Y, Yan Y, Xu L, Yang M, Xie X, Madzak C, Yan J. Engineering Yarrowia lipolytica as a Cellulolytic Cell Factory for Production of p-Coumaric Acid from Cellulose and Hemicellulose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5867-5877. [PMID: 38446418 DOI: 10.1021/acs.jafc.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
De novo biosynthesis of high-value added food additive p-coumaric acid (p-CA) direct from cellulose/hemicellulose is a more sustainable route compared to the chemical route, considering the abundant cellulose/hemicellulose resources. In this study, a novel factory was constructed for the production of p-CA in Yarrowia lipolytica using cellulose/hemicellulose as the sole carbon source. Based on multicopy integration of the TAL gene and reprogramming the shikimic acid pathway, the engineered strain produced 1035.5 ± 67.8 mg/L p-CA using glucose as a carbon source. The strains with overexpression of cellulases and hemicellulases produced 84.3 ± 2.4 and 65.3 ± 4.6 mg/L p-CA, using cellulose (carboxymethyl-cellulose) or hemicellulose (xylan from bagasse) as the carbon source, respectively. This research demonstrated the feasibility of conversion of cost-effective cellulose/hemicellulose into a value-added product and provided a sustainable cellulolytic cell factory for the utilization of cellulose/hemicellulose.
Collapse
Affiliation(s)
- Jiarui Zhu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Shu Yang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | | | - Xiaoyan Li
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Liangcheng Jiao
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yuanxing Shi
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yunjun Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Li Xu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Min Yang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiaoman Xie
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Catherine Madzak
- UMR 782 SayFood, INRAE, AgroParisTech, Paris-Saclay University, Palaiseau 91400, France
| | - Jinyong Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
25
|
Qin Z, Liu M, Ren X, Zeng W, Luo Z, Zhou J. De Novo Biosynthesis of Lutein in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5348-5357. [PMID: 38412053 DOI: 10.1021/acs.jafc.3c09080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Lutein is a high-value tetraterpenoid carotenoid that is widely used in feed, cosmetics, food, and drugs. Microbial synthesis of lutein is an important method for green and sustainable production, serving as an alternative to plant extraction methods. However, an inadequate precursor supply and low catalytic efficiency of key pathway enzymes are the main reasons for the low efficacy of microbial synthesis of lutein. In this study, some strategies, such as enhancing the MVA pathway and localizing α-carotene synthase OluLCY within the subcellular organelles in Yarrowia lipolytica, were adopted to enhance the synthesis of precursor α-carotene, which resulted in a 10.50-fold increase in α-carotene titer, reaching 38.50 mg/L. Subsequently, by improving hydroxylase activity with truncated N-terminal transport peptide and locating hydroxylases to subcellular organelles, the final strain L9 producing 75.25 mg/L lutein was obtained. Eventually, a lutein titer of 675.40 mg/L (6.13 mg/g DCW) was achieved in a 5 L bioreactor by adding the antioxidant 2,6-ditert-butyl-4-methylphenol. This study realizes de novo synthesis of lutein in Y. lipolytica for the first time and achieves the highest lutein titer reported so far.
Collapse
Affiliation(s)
- Zhilei Qin
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xuefeng Ren
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhengshan Luo
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
26
|
Li T, Liu X, Xiang H, Zhu H, Lu X, Feng B. Two-Phase Fermentation Systems for Microbial Production of Plant-Derived Terpenes. Molecules 2024; 29:1127. [PMID: 38474639 PMCID: PMC10934027 DOI: 10.3390/molecules29051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Microbial cell factories, renowned for their economic and environmental benefits, have emerged as a key trend in academic and industrial areas, particularly in the fermentation of natural compounds. Among these, plant-derived terpenes stand out as a significant class of bioactive natural products. The large-scale production of such terpenes, exemplified by artemisinic acid-a crucial precursor to artemisinin-is now feasible through microbial cell factories. In the fermentation of terpenes, two-phase fermentation technology has been widely applied due to its unique advantages. It facilitates in situ product extraction or adsorption, effectively mitigating the detrimental impact of product accumulation on microbial cells, thereby significantly bolstering the efficiency of microbial production of plant-derived terpenes. This paper reviews the latest developments in two-phase fermentation system applications, focusing on microbial fermentation of plant-derived terpenes. It also discusses the mechanisms influencing microbial biosynthesis of terpenes. Moreover, we introduce some new two-phase fermentation techniques, currently unexplored in terpene fermentation, with the aim of providing more thoughts and explorations on the future applications of two-phase fermentation technology. Lastly, we discuss several challenges in the industrial application of two-phase fermentation systems, especially in downstream processing.
Collapse
Affiliation(s)
- Tuo Li
- Correspondence: (T.L.); (B.F.)
| | | | | | | | | | - Baomin Feng
- College of Life and Health, Dalian University, Dalian 116622, China; (X.L.); (H.X.); (H.Z.); (X.L.)
| |
Collapse
|
27
|
Liu M, Wu J, Yue M, Ning Y, Guan X, Gao S, Zhou J. YaliCMulti and YaliHMulti: Stable, efficient multi-copy integration tools for engineering Yarrowia lipolytica. Metab Eng 2024; 82:29-40. [PMID: 38224832 DOI: 10.1016/j.ymben.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Yarrowia lipolytica is widely used in biotechnology to produce recombinant proteins, food ingredients and diverse natural products. However, unstable expression of plasmids, difficult and time-consuming integration of single and low-copy-number plasmids hampers the construction of efficient production pathways and application to industrial production. Here, by exploiting sequence diversity in the long terminal repeats (LTRs) of retrotransposons and ribosomal DNA (rDNA) sequences, a set of vectors and methods that can recycle multiple and high-copy-number plasmids was developed that can achieve stable integration of long-pathway genes in Y. lipolytica. By combining these sequences, amino acids and antibiotic tags with the Cre-LoxP system, a series of multi-copy site integration recyclable vectors were constructed and assessed using the green fluorescent protein (HrGFP) reporter system. Furthermore, by combining the consensus sequence with the vector backbone of a rapidly degrading selective marker and a weak promoter, multiple integrated high-copy-number vectors were obtained and high levels of stable HrGFP expression were achieved. To validate the universality of the tools, simple integration of essential biosynthesis modules was explored, and 7.3 g/L of L-ergothioneine and 8.3 g/L of (2S)-naringenin were achieved in a 5 L fermenter, the highest titres reported to date for Y. lipolytica. These novel multi-copy genome integration strategies provide convenient and effective tools for further metabolic engineering of Y. lipolytica.
Collapse
Affiliation(s)
- Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Junjun Wu
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Mingyu Yue
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Yang Ning
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Xin Guan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
28
|
Taratynova MO, Tikhonova EE, Fedyaeva IM, Dementev DA, Yuzbashev TV, Solovyev AI, Sineoky SP, Yuzbasheva EY. Boosting Geranyl Diphosphate Synthesis for Linalool Production in Engineered Yarrowia lipolytica. Appl Biochem Biotechnol 2024; 196:1304-1315. [PMID: 37392322 DOI: 10.1007/s12010-023-04581-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/03/2023]
Abstract
Linalool is a pleasant-smelling monoterpenoid widely found in the essential oils of most flowers. Due to its biologically active properties, linalool has considerable commercial potential, especially in the food and perfume industries. In this study, the oleaginous yeast Yarrowia lipolytica was successfully engineered to produce linalool de novo. The (S)-linalool synthase (LIS) gene from Actinidia argute was overexpressed to convert geranyl diphosphate (GPP) into linalool. Flux was diverted from farnesyl diphosphate (FPP) synthesis to GPP by introducing a mutated copy of the native ERG20F88W-N119W gene, and CrGPPS gene from Catharanthus roseus on its own and as part of a fusion with LIS. Disruption of native diacylglycerol kinase enzyme, DGK1, by oligo-mediated CRISPR-Cas9 inactivation further increased linalool production. The resulting strain accumulated 109.6 mg/L of linalool during cultivation in shake flasks with sucrose as a carbon source. CrGPPS expression in Yarrowia lipolytica increased linalool accumulation more efficiently than the ERG20F88W-N119W expression, suggesting that the increase in linalool production was predominantly influenced by the level of GPP precursor supply.
Collapse
Affiliation(s)
- Maria O Taratynova
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia.
| | - Ekaterina E Tikhonova
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Iuliia M Fedyaeva
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Dmitry A Dementev
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Tigran V Yuzbashev
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, West Common, UK
| | - Andrey I Solovyev
- Gamaleya National Research Center of Epidemiology and Microbiology, Russian Ministry of Health, Gamaleya St. 18, Moscow, 123098, Russia
| | - Sergey P Sineoky
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Evgeniya Y Yuzbasheva
- BioMediCan Inc, 40471 Encyclopedia Circle, Fremont, CA, 94538, USA
- BioKai Inc, 40471 Encyclopedia Circle, Fremont, CA, 94538, USA
| |
Collapse
|
29
|
Yue M, Liu M, Gao S, Ren X, Zhou S, Rao Y, Zhou J. High-Level De Novo Production of (2 S)-Eriodictyol in Yarrowia Lipolytica by Metabolic Pathway and NADPH Regeneration Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4292-4300. [PMID: 38364826 DOI: 10.1021/acs.jafc.3c08861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
(2S)-Eriodictyol, a polyphenolic flavonoid, has found widespread applications in health supplements and food additives. However, the limited availability of plant-derived (2S)-eriodictyol cannot meet the market demand. Microbial production of (2S)-eriodictyol faces challenges, including the low catalytic efficiency of flavone 3'-hydroxylase/cytochrome P450 reductase (F3'H/CPR), insufficient precursor supplementation, and inadequate NADPH regeneration. This study systematically engineered Yarrowia lipolytica for high-level (2S)-eriodictyol production. In doing this, the expression of F3'H/CPR was balanced, and the supply of precursors was enhanced by relieving feedback inhibition of the shikimate pathway, promoting fatty acid β-oxidation, and increasing the copy number of synthetic pathway genes. These strategies, combined with NADPH regeneration, achieved an (2S)-eriodictyol titer of 423.6 mg/L. Finally, in fed-batch fermentation, a remarkable 6.8 g/L (2S)-eriodictyol was obtained, representing the highest de novo microbial titer reported to date and paving the way for industrial production.
Collapse
Affiliation(s)
- Mingyu Yue
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Mengsu Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xuefeng Ren
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shenghu Zhou
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yijian Rao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
30
|
Zipori D, Hollmann J, Rigling M, Zhang Y, Weiss A, Schmidt H. Rapid Acidification and Off-Flavor Reduction of Pea Protein by Fermentation with Lactic Acid Bacteria and Yeasts. Foods 2024; 13:588. [PMID: 38397565 PMCID: PMC10888418 DOI: 10.3390/foods13040588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Pea protein is widely used as an alternative protein source in plant-based products. In the current study, we fermented pea protein to reduce off-flavor compounds, such as hexanal, and to produce a suitable fermentate for further processing. Laboratory fermentations using 5% (w/v) pea protein suspension were carried out using four selected lactic acid bacteria (LAB) strains, investigating their growth and acidification capabilities in pea protein. Rapid acidification of pea protein was achieved with Lactococcus lactis subsp. lactis strain LTH 7123. Next, this strain was co-inoculated together with either the yeasts Kluyveromyces lactis LTH 7165, Yarrowia lipolytica LTH 6056, or Kluyveromyces marxianus LTH 6039. Fermentation products of the mixed starter cultures and of the single strains were further analyzed by gas chromatography coupled with mass spectrometry to quantify selected volatile flavor compounds. Fermentation with L. lactis LTH 7123 led to an increase in compounds associated with the "beany" off-flavors of peas, including hexanal. However, significant reduction in those compounds was achieved after fermentation with Y. lipolytica LTH 6056 with or without L. lactis LTH 7123. Thus, fermentation using co-cultures of LAB and yeasts strains could prove to be a valuable method for enhancing quality attributes of pea protein-based products.
Collapse
Affiliation(s)
- Dor Zipori
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany; (D.Z.); (J.H.)
| | - Jana Hollmann
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany; (D.Z.); (J.H.)
| | - Marina Rigling
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (M.R.); (Y.Z.)
| | - Yanyan Zhang
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstrasse 12, 70599 Stuttgart, Germany; (M.R.); (Y.Z.)
| | - Agnes Weiss
- Food Microbiology, Hamburg School of Food Science, University of Hamburg, Ohnhorstsrasse 18, 22609 Hamburg, Germany;
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany; (D.Z.); (J.H.)
| |
Collapse
|
31
|
Walker C, Mortensen M, Poudel B, Cotter C, Myers R, Okekeogbu IO, Ryu S, Khomami B, Giannone RJ, Laursen S, Trinh CT. Proteomes reveal metabolic capabilities of Yarrowia lipolytica for biological upcycling of polyethylene into high-value chemicals. mSystems 2023; 8:e0074123. [PMID: 37882587 PMCID: PMC10734471 DOI: 10.1128/msystems.00741-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Sustainable processes for biological upcycling of plastic wastes in a circular bioeconomy are needed to promote decarbonization and reduce environmental pollution due to increased plastic consumption, incineration, and landfill storage. Strain characterization and proteomic analysis revealed the robust metabolic capabilities of Yarrowia lipolytica to upcycle polyethylene into high-value chemicals. Significant proteome reallocation toward energy and lipid metabolisms was required for robust growth on hydrocarbons with n-hexadecane as the preferential substrate. However, an apparent over-investment in these same categories to utilize complex depolymerized plastic (DP) oil came at the expense of protein biosynthesis, limiting cell growth. Taken together, this study elucidates how Y. lipolytica activates its metabolism to utilize DP oil and establishes Y. lipolytica as a promising host for the upcycling of plastic wastes.
Collapse
Affiliation(s)
- Caleb Walker
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Max Mortensen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Bindica Poudel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Christopher Cotter
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Ryan Myers
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Ikenna O. Okekeogbu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Seunghyun Ryu
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Bamin Khomami
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Richard J. Giannone
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Siris Laursen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Cong T. Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
32
|
Zhang Y, Li M, Zhu R, Xin Y, Guo Z, Gu Z, Guo Z, Zhang L. Installing xylose assimilation and cellodextrin phosphorolysis pathways in obese Yarrowia lipolytica facilitates cost-effective lipid production from lignocellulosic hydrolysates. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:186. [PMID: 38031183 PMCID: PMC10688077 DOI: 10.1186/s13068-023-02434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Yarrowia lipolytica, one of the most charming chassis cells in synthetic biology, is unable to use xylose and cellodextrins. RESULTS Herein, we present work to tackle for the first time the engineering of Y. lipolytica to produce lipids from cellodextrins and xylose by employing rational and combinatorial strategies. This includes constructing a cellodextrin-phosphorolytic Y. lipolytica by overexpressing Neurospora crassa cellodextrin transporter, Clostridium thermocellum cellobiose/cellodextrin phosphorylase and Saccharomyces cerevisiae phosphoglucomutase. The effect of glucose repression on xylose consumption was relieved by installing a xylose uptake facilitator combined with enhanced PPP pathway and increased cytoplasmic NADPH supply. Further enhancing lipid production and interrupting its consumption conferred the obese phenotype to the engineered yeast. The strain is able to co-ferment glucose, xylose and cellodextrins efficiently, achieving a similar μmax of 0.19 h-1, a qs of 0.34 g-s/g-DCW/h and a YX/S of 0.54 DCW-g/g-s on these substrates, and an accumulation of up to 40% of lipids on the sugar mixture and on wheat straw hydrolysate. CONCLUSIONS Therefore, engineering Y. lipolytica capable of assimilating xylose and cellodextrins is a vital step towards a simultaneous saccharification and fermentation (SSF) process of LC biomass, allowing improved substrate conversion rate and reduced production cost due to low demand of external glucosidase.
Collapse
Affiliation(s)
- Yiran Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, People's Republic of China
| | - Moying Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Rui Zhu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Yu Xin
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Zitao Guo
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Jingkou District, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Zhenghua Gu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Zhongpeng Guo
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China.
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, People's Republic of China.
| | - Liang Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, People's Republic of China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, People's Republic of China
| |
Collapse
|
33
|
Ostrowski G, Jaworska D, Płecha M, Przybylski W, Sałek P, Sawicki K, Pawłowska J. Cold adapted and closely related mucoraceae species colonise dry-aged beef (DAB). Fungal Biol 2023; 127:1397-1404. [PMID: 37993251 DOI: 10.1016/j.funbio.2023.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/11/2023] [Accepted: 09/28/2023] [Indexed: 11/24/2023]
Abstract
The dry ageing is a historically relevant method of meat preservation, now used as a way to produce the dry-aged beef (DAB) known for its pronounced flavour. Partially responsible for the taste of the DAB may be various microorganisms that grow on the surface of the meat. Historically, the fungal species colonising the DAB were described as members of the genera Thamnidium and Mucor. In this study we used both culture based approach as well as ITS2 rDNA metabarcoding analysis to investigate the fungal community of the DAB, with special emphasis on the mucoralean taxa. Isolated fungi were members of 6 different species from the family Mucoraceae, belonging to the genera Mucor and Helicostylum. Metabarcoding data provided supplementary information regarding the presence of other fungi including those from the Thamnidium genus. In both approaches used in this study isolates closely related to the Mucor flavus strain CBS 992.68 dominated.
Collapse
Affiliation(s)
- Grzegorz Ostrowski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland.
| | - Danuta Jaworska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Magdalena Płecha
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland; Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Wiesław Przybylski
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Piotr Sałek
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska 166, 02-787, Warsaw, Poland
| | | | - Julia Pawłowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| |
Collapse
|
34
|
Dietrich D, Jovanovic-Gasovic S, Cao P, Kohlstedt M, Wittmann C. Refactoring the architecture of a polyketide gene cluster enhances docosahexaenoic acid production in Yarrowia lipolytica through improved expression and genetic stability. Microb Cell Fact 2023; 22:199. [PMID: 37773137 PMCID: PMC10540379 DOI: 10.1186/s12934-023-02209-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Long-chain polyunsaturated fatty acids (LC-PUFAs), such as docosahexaenoic acid (DHA), are essential for human health and have been widely used in the food and pharmaceutical industries. However, the limited availability of natural sources, such as oily fish, has led to the pursuit of microbial production as a promising alternative. Yarrowia lipolytica can produce various PUFAs via genetic modification. A recent study upgraded Y. lipolytica for DHA production by expressing a four-gene cluster encoding a myxobacterial PKS-like PUFA synthase, reducing the demand for redox power. However, the genetic architecture of gene expression in Y. lipolytica is complex and involves various control elements, offering space for additional improvement of DHA production. This study was designed to optimize the expression of the PUFA cluster using a modular cloning approach. RESULTS Expression of the monocistronic cluster with each gene under the control of the constitutive TEF promoter led to low-level DHA production. By using the minLEU2 promoter instead and incorporating additional upstream activating UAS1B4 sequences, 5' promoter introns, and intergenic spacers, DHA production was increased by 16-fold. The producers remained stable over 185 h of cultivation. Beneficially, the different genetic control elements acted synergistically: UAS1B elements generally increased expression, while the intron caused gene-specific effects. Mutants with UAS1B16 sequences within 2-8 kb distance, however, were found to be genetically unstable, which limited production performance over time, suggesting the avoidance of long repetitive sequence blocks in synthetic multigene clusters and careful monitoring of genetic stability in producing strains. CONCLUSIONS Overall, the results demonstrate the effectiveness of synthetic heterologous gene clusters to drive DHA production in Y. lipolytica. The combinatorial exploration of different genetic control elements allowed the optimization of DHA production. These findings have important implications for developing Y. lipolytica strains for the industrial-scale production of valuable polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Demian Dietrich
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Peng Cao
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
35
|
Gu X, Huang L, Lian J. Biomanufacturing of γ-linolenic acid-enriched galactosyldiacylglycerols: Challenges in microalgae and potential in oleaginous yeasts. Synth Syst Biotechnol 2023; 8:469-478. [PMID: 37692201 PMCID: PMC10485790 DOI: 10.1016/j.synbio.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 09/12/2023] Open
Abstract
γ-Linolenic acid-enriched galactosyldiacylglycerols (GDGs-GLA), as the natural form of γ-linolenic acid in microalgae, have a range of functional activities, including anti-inflammatory, antioxidant, and anti-allergic properties. The low abundance of microalgae and the structural stereoselectivity complexity impede microalgae extraction or chemical synthesis, resulting in a lack of supply of GDGs-GLA with a growing demand. At present, there is a growing interest in engineering oleaginous yeasts for mass production of GDGs-GLA based on their ability to utilize a variety of hydrophobic substrates and a high metabolic flux toward fatty acid and lipid (triacylglycerol, TAG) production. Here, we first introduce the GDGs-GLA biosynthetic pathway in microalgae and challenges in the engineering of the native host. Subsequently, we describe in detail the applications of oleaginous yeasts with Yarrowia lipolytica as the representative for GDGs-GLA biosynthesis, including the development of synthetic biology parts, gene editing tools, and metabolic engineering of lipid biosynthesis. Finally, we discuss the development trend of GDGs-GLA biosynthesis in Y. lipolytica.
Collapse
Affiliation(s)
- Xiaosong Gu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
36
|
Gorczyca M, Nicaud JM, Celińska E. Transcription factors enhancing synthesis of recombinant proteins and resistance to stress in Yarrowia lipolytica. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12607-z. [PMID: 37318637 DOI: 10.1007/s00253-023-12607-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Resistance to environmental stress and synthesis of recombinant proteins (r-Prots) are both complex, strongly interconnected biological traits relying on orchestrated contribution of multiple genes. This, in turn, makes their engineering a challenging task. One of the possible strategies is to modify the operation of transcription factors (TFs) associated with these complex traits. The aim of this study was to examine the potential implications of selected five TFs (HSF1-YALI0E13948g, GZF1-YALI0D20482g, CRF1-YALI0B08206g, SKN7-YALI0D14520g, and YAP-like-YALI0D07744g) in stress resistance and/or r-Prot synthesis in Yarrowia lipolytica. The selected TFs were over-expressed or deleted (OE/KO) in a host strain synthesizing a reporter r-Prot. The strains were subjected to phenotype screening under different environmental conditions (pH, oxygen availability, temperature, and osmolality), and the obtained data processing was assisted by mathematical modeling. The results demonstrated that growth and the r-Prot yields under specific conditions can be significantly increased or decreased due to the TFs' engineering. Environmental factors "awakening" individual TFs were indicated, and their contribution was mathematically described. For example, OE of Yap-like TF was proven to alleviate growth retardation under high pH, while Gzf1 and Hsf1 were shown to serve as universal enhancers of r-Prot production in Y. lipolytica. On the other hand, KO of SKN7 and HSF1 disabled growth under hyperosmotic stress. This research demonstrates the usefulness of the TFs engineering approach in the manipulation of complex traits and evidences newly identified functions of the studied TFs. KEY POINTS: • Function and implication in complex traits of 5 TFs in Y. lipolytica were studied. • Gzf1 and Hsf1 are the universal r-Prots synthesis enhancers in Y. lipolytica. • Yap-like TF's activity is pH-dependent; Skn7 and Hsf1 act in osmostress response.
Collapse
Affiliation(s)
- Maria Gorczyca
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-637, Poznań, Poland.
| |
Collapse
|
37
|
Delgado J, Álvarez M, Cebrián E, Martín I, Roncero E, Rodríguez M. Biocontrol of Pathogen Microorganisms in Ripened Foods of Animal Origin. Microorganisms 2023; 11:1578. [PMID: 37375080 PMCID: PMC10301060 DOI: 10.3390/microorganisms11061578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Ripened foods of animal origin comprise meat products and dairy products, being transformed by the wild microbiota which populates the raw materials, generating highly appreciated products over the world. Together with this beneficial microbiota, both pathogenic and toxigenic microorganisms such as Listeria monocytogenes, Salmonella enterica, Staphylococcus aureus, Clostridium botulinum, Escherichia coli, Candida spp., Penicillium spp. and Aspergillus spp., can contaminate these products and pose a risk for the consumers. Thus, effective strategies to hamper these hazards are required. Additionally, consumer demand for clean label products is increasing. Therefore, the manufacturing sector is seeking new efficient, natural, low-environmental impact and easy to apply strategies to counteract these microorganisms. This review gathers different approaches to maximize food safety and discusses the possibility of their being applied or the necessity of new evidence, mainly for validation in the manufacturing product and its sensory impact, before being implemented as preventative measures in the Hazard Analysis and Critical Control Point programs.
Collapse
Affiliation(s)
| | | | | | | | | | - Mar Rodríguez
- Higiene y Seguridad Alimentaria, Instituto de Investigación de Carne y Productos Cárnicos (IProCar), Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain; (J.D.); (M.Á.); (E.C.); (I.M.); (E.R.)
| |
Collapse
|
38
|
Xu M, Xie W, Luo Z, Li CX, Hua Q, Xu J. Improving solubility and copy number of taxadiene synthase to enhance the titer of taxadiene in Yarrowia lipolytica. Synth Syst Biotechnol 2023; 8:331-338. [PMID: 37215159 PMCID: PMC10196790 DOI: 10.1016/j.synbio.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023] Open
Abstract
Taxadiene is an important precursor for the biosynthesis of highly effective anticancer drug paclitaxel, but its microbial biosynthesis yield is very low. In this study, we employed Yarrowia lipolytica as a microbial host to produce taxadiene. First, a "push-pull" strategy was adopted to increase taxadiene production by 234%. Then taxadiene synthase was fused with five solubilizing tags respectively, leading a maximum increase of 62.3% in taxadiene production when fused with SUMO. Subsequently, a multi-copy iterative integration method was used to further increase taxadiene titer, achieving the maximum titer of 23.7 mg/L in shake flask culture after three rounds of integration. Finally, the taxadiene titer was increased to 101.4 mg/L by optimization of the fed-batch fermentation conditions. This is the first report of taxadiene biosynthesis accomplished in Y. lipolytica, serving as a good example for the sustainable production of taxadiene and other terpenoids in this oleaginous yeast.
Collapse
Affiliation(s)
- Man Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenliang Xie
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jianhe Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
39
|
Shang Y, Zhang P, Wei W, Li J, Ye BC. Metabolic engineering for the high-yield production of polydatin in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2023; 381:129129. [PMID: 37146696 DOI: 10.1016/j.biortech.2023.129129] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Polydatin, a glycosylated derivative of resveratrol, has better structural stability and biological activity than resveratrol. Polydatin is the extract of Polygonum cuspidatum, which has various pharmacological effects. Owing to its Crabtree-negative characteristics and high supply of malonyl-CoA, Yarrowia lipolytica was selected to produce polydatin. Initially, the resveratrol synthetic pathway was established in Y. lipolytica. By enhancing the shikimate pathway flow, redirecting carbon metabolism, and increasing the copies of key genes, a resveratrol yield of 487.77 mg/L was obtained. In addition, by blocking the degradation of polydatin, its accumulation was successfully achieved. Finally, by optimizing the glucose concentration and supplementing with two nutritional marker genes, a high polydatin yield of 6.88 g/L was obtained in Y. lipolytica, which is the highest titer of polydatin produced in a microbial host to date. Overall, this study demonstrates that Y. lipolytica has great potential for glycoside synthesis.
Collapse
Affiliation(s)
- Yanzhe Shang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Wei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Jin Li
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
40
|
Georgiadis I, Tsiligkaki C, Patavou V, Orfanidou M, Tsoureki A, Andreadelli A, Theodosiou E, Makris AM. Identification and Construction of Strong Promoters in Yarrowia lipolytica Suitable for Glycerol-Based Bioprocesses. Microorganisms 2023; 11:1152. [PMID: 37317126 DOI: 10.3390/microorganisms11051152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Abstract
Yarrowia lipolytica is a non-pathogenic aerobic yeast with numerous industrial biotechnology applications. The organism grows in a wide variety of media, industrial byproducts, and wastes. A need exists for molecular tools to improve heterologous protein expression and pathway reconstitution. In an effort to identify strong native promoters in glycerol-based media, six highly expressed genes were mined from public data, analyzed, and validated. The promoters from the three most highly expressed (H3, ACBP, and TMAL) were cloned upstream of the reporter mCherry in episomal and integrative vectors. Fluorescence was quantified by flow cytometry and promoter strength was benchmarked with known strong promoters (pFBA1in, pEXP1, and pTEF1in) in cells growing in glucose, glycerol, and synthetic glycerol media. The results show that pH3 > pTMAL > pACBP are very strong promoters, with pH3 exceeding all other tested promoters. Hybrid promoters were also constructed, linking the Upstream Activating Sequence 1B (UAS1B8) with H3(260) or TMAL(250) minimal promoters, and compared to the UAS1B8-TEF1(136) promoter. The new hybrid promoters exhibited far superior strength. The novel promoters were utilized to overexpress the lipase LIP2, achieving very high secretion levels. In conclusion, our research identified and characterized several strong Y. lipolytica promoters that expand the capacity to engineer Yarrowia strains and valorize industrial byproducts.
Collapse
Affiliation(s)
- Ioannis Georgiadis
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
- School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Christina Tsiligkaki
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
- School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Victoria Patavou
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
- School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Maria Orfanidou
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
- Department of Chemical Engineering, School of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Antiopi Tsoureki
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Aggeliki Andreadelli
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Eleni Theodosiou
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Antonios M Makris
- Institute of Applied Biosciences, Centre for Research & Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| |
Collapse
|
41
|
Ciurko D, Neuvéglise C, Szwechłowicz M, Lazar Z, Janek T. Comparative Analysis of the Alkaline Proteolytic Enzymes of Yarrowia Clade Species and Their Putative Applications. Int J Mol Sci 2023; 24:ijms24076514. [PMID: 37047486 PMCID: PMC10095220 DOI: 10.3390/ijms24076514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Proteolytic enzymes are commercially valuable and have multiple applications in various industrial sectors. The most studied proteolytic enzymes produced by Yarrowia lipolytica, extracellular alkaline protease (Aep) and extracellular acid protease (Axp), were shown to be good candidates for different biotechnological applications. In this study, we performed a comprehensive analysis of the alkaline proteolytic enzymes of Yarrowia clade species, including phylogenetic studies, synteny analysis, and protease production and application. Using a combination of comparative genomics approaches based on sequence similarity, synteny conservation, and phylogeny, we reconstructed the evolutionary scenario of the XPR2 gene for species of the Yarrowia clade. Furthermore, except for the proteolytic activity of the analyzed Yarrowia clade strains, the brewers’ spent grain (BSG) was used as a substrate to obtain protein hydrolysates with antioxidant activity. For each culture, the degree of hydrolysis was calculated. The most efficient protein hydrolysis was observed in the cultures of Y. lipolytica, Y. galli, and Y. alimentaria. In contrast, the best results obtained using the 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) method were observed for the culture medium after the growth of Y. divulgata, Y. galli, and Y. lipolytica on BSG.
Collapse
Affiliation(s)
- Dominika Ciurko
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Cécile Neuvéglise
- SPO, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | - Maciej Szwechłowicz
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
- Correspondence: (Z.L.); (T.J.); Tel.: +48-71-320-7735 (Z.L.); +48-71-320-7734 (T.J.)
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
- Correspondence: (Z.L.); (T.J.); Tel.: +48-71-320-7735 (Z.L.); +48-71-320-7734 (T.J.)
| |
Collapse
|
42
|
Theodosiou E. Engineering Strategies for Efficient Bioconversion of Glycerol to Value-Added Products by Yarrowia lipolytica. Catalysts 2023. [DOI: 10.3390/catal13040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Yarrowia lipolytica has been a valuable biotechnological workhorse for the production of commercially important biochemicals for over 70 years. The knowledge gained so far on the native biosynthetic pathways, as well as the availability of numerous systems and synthetic biology tools, enabled not only the regulation and the redesign of the existing metabolic pathways, but also the introduction of novel synthetic ones; further consolidating the position of the yeast in industrial biotechnology. However, for the development of competitive and sustainable biotechnological production processes, bioengineering should be reinforced by bioprocess optimization strategies. Although there are many published reviews on the bioconversion of various carbon sources to value-added products by Yarrowia lipolytica, fewer works have focused on reviewing up-to-date strain, medium, and process engineering strategies with an aim to emphasize the significance of integrated engineering approaches. The ultimate goal of this work is to summarize the necessary knowledge and inspire novel routes to manipulate at a systems level the yeast biosynthetic machineries by combining strain and bioprocess engineering. Due to the increasing surplus of biodiesel-derived waste glycerol and the favored glycerol-utilization metabolic pathways of Y. lipolytica over other carbon sources, the present review focuses on pure and crude glycerol-based biomanufacturing.
Collapse
|
43
|
Peng QQ, Guo Q, Chen C, Song P, Wang YT, Ji XJ, Ye C, Shi TQ. High-Level Production of Patchoulol in Yarrowia lipolytica via Systematic Engineering Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4638-4645. [PMID: 36883816 DOI: 10.1021/acs.jafc.3c00222] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Patchoulol is an important sesquiterpene alcohol with a strong and lasting odor, which has led to prominent applications in perfumes and cosmetics. In this study, systematic metabolic engineering strategies were adopted to create an efficient yeast cell factory for patchoulol overproduction. First, a baseline strain was constructed by selecting a highly active patchoulol synthase. Subsequently, the mevalonate precursor pool was expanded to boost patchoulol synthesis. Moreover, a method for downregulating squalene synthesis based on Cu2+-repressible promoter was optimized, which significantly improved the patchoulol titer by 100.9% to 124 mg/L. In addition, a protein fusion strategy resulted in a final titer of 235 mg/L in shake flasks. Finally, 2.864 g/L patchoulol could be produced in a 5 L bioreactor, representing a remarkable 1684-fold increase compared to the baseline strain. To our knowledge, this is the highest patchoulol titer reported so far.
Collapse
Affiliation(s)
- Qian-Qian Peng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia, Nanjing 210023, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia, Nanjing 210023, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Cheng Chen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia, Nanjing 210023, People's Republic of China
| | - Ping Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia, Nanjing 210023, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia, Nanjing 210023, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia, Nanjing 210023, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia, Nanjing 210023, People's Republic of China
| |
Collapse
|
44
|
Song Z, Lin W, Duan X, Song L, Wang C, Yang H, Lu X, Ji X, Tian Y, Liu H. Increased Cordycepin Production in Yarrowia lipolytica Using Combinatorial Metabolic Engineering Strategies. ACS Synth Biol 2023; 12:780-787. [PMID: 36791366 DOI: 10.1021/acssynbio.2c00570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
As the first nucleoside antibiotic discovered in fungi, cordycepin, with its various biological activities, has wide applications. At present, cordycepin is mainly obtained from the natural fruiting bodies of Cordyceps militaris. However, due to long production periods, low yields, and low extraction efficiency, harvesting cordycepin from natural C. militaris is not ideal, making it difficult to meet market demands. In this study, an engineered Yarrowia lipolytica YlCor-18 strain, constructed by combining metabolic engineering strategies, achieved efficient de novo cordycepin production from glucose. First, the cordycepin biosynthetic pathway derived from C. militaris was introduced into Y. lipolytica. Furthermore, metabolic engineering strategies including promoter, protein, adenosine triphosphate, and precursor engineering were combined to enhance the synthetic ability of engineered strains of cordycepin. Fermentation conditions were also optimized, after which, the production titer and yields of cordycepin in the engineered strain YlCor-18 under fed-batch fermentation were improved to 4362.54 mg/L and 213.85 mg/g, respectively, after 168 h. This study demonstrates the potential of Y. lipolytica as a cell factory for cordycepin synthesis, which will serve as the model for the green biomanufacturing of other nucleoside antibiotics using artificial cell factories.
Collapse
Affiliation(s)
- Zeqi Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Wenbo Lin
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Xiyu Duan
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Liping Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Hui Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Xiaojun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| |
Collapse
|
45
|
Zhang TL, Yu HW, Ye LD. Metabolic Engineering of Yarrowia lipolytica for Terpenoid Production: Tools and Strategies. ACS Synth Biol 2023; 12:639-656. [PMID: 36867718 DOI: 10.1021/acssynbio.2c00569] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Terpenoids are a diverse group of compounds with isoprene units as basic building blocks. They are widely used in the food, feed, pharmaceutical, and cosmetic industries due to their diverse biological functions such as antioxidant, anticancer, and immune enhancement. With an increase in understanding the biosynthetic pathways of terpenoids and advances in synthetic biology techniques, microbial cell factories have been built for the heterologous production of terpenoids, with the oleaginous yeast Yarrowia lipolytica emerging as an outstanding chassis. In this paper, recent progress in the development of Y. lipolytica cell factories for terpenoid production with a focus on the advances in novel synbio tools and metabolic engineering strategies toward enhanced terpenoid biosynthesis is reviewed.
Collapse
Affiliation(s)
- Tang-Lei Zhang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China
| | - Hong-Wei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China.,Zhejiang Key Laboratory of Smart Biomaterials, 310058 Hangzhou, China
| | - Li-Dan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, 310058 Hangzhou, China.,Zhejiang Key Laboratory of Smart Biomaterials, 310058 Hangzhou, China
| |
Collapse
|
46
|
Kamzolova SV, Samoilenko VA, Lunina JN, Morgunov IG. Large-Scale Production of Isocitric Acid Using Yarrowia lipolytica Yeast with Further Down-Stream Purification. BIOTECH 2023; 12:biotech12010022. [PMID: 36975312 PMCID: PMC10046092 DOI: 10.3390/biotech12010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Isocitric acid (ICA) refers to a group of promising regulators of energy metabolism which has antistress, antihypoxic, and antioxidant activities. In this paper, we reported a process of ICA production from rapeseed oil using yeast Yarrowia lipolytica VKM Y-2373 in a 500-L fermentor. The producer synthesized 64.1 g/L ICA with a product yield of 0.72 g/g and a productivity 0.54 g/L·h. We also developed an effective purification method, including a cell separation, clarification, concentration, acidification, and crystallization process, which resulted in the formation of the crystals of monopotassium salt of ICA with a purity of 99.0–99.9%. To the best of our knowledge, this is the first report on an ICA production process at an upscaled bioreactor level.
Collapse
|
47
|
Homologous High-Level Lipase and Single-Cell Protein Production with Engineered Yarrowia lipolytica via Scale-Up Fermentation for Industrial Applications. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Yarrowia lipolytica is a promising feed additives. Here, we aimed to produce extracellular lipases and single-cell proteins (SCPs) at high levels simultaneously through fed-batch fermentation of engineered Y. lipolytica. The parameters for 500 mL shake flask cultures were optimized with a single factorial design. The resultant activity of lipase reached 880.6 U/mL after 84 h of fermentation, and 32.0 g/L fermentation broth of dry SCP was obtained at 120 h. To attain high SCP and lipase productivity, the high-density fed-batch fermentation of Y. lipolytica was scaled up in 10 L, 30 L, and 100 L fermentors. Using glycerol as the sole carbon source, the lipase activity peaked to 8083.3 U/mL, and the final dry SCP weight was 183.1 g/L at 94.6 h in 10 L fermentors. The extracellular lipase activity and SCP weight reached 11,100.0 U/mL and 173.3 g of dry SCP/L at 136 h in 30 L fermentors, respectively. Following 136 h of fed-batch fermentation, the extracellular lipase activity and dry SCP weight reached 8532.0 U/mL and 170.3 g/L in 100 L fermentors, respectively. A balance between the lipase secretion and growth of Y. lipolytica recombinant strain was achieved, indicating that an efficient fermentation strategy could promote further scale-up for industrial SCP production from engineered Y. lipolytica.
Collapse
|
48
|
Profiling the composition and metabolic functions of microbial community in pellicle-forming radish paocai. Int J Food Microbiol 2023; 388:110087. [PMID: 36689828 DOI: 10.1016/j.ijfoodmicro.2023.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Pellicle formation is an obvious indicator of spoilage and is followed by a loss of flavor in a variety of fermented vegetables. In this study, the pellicle-forming microorganisms were isolated using culture-dependent approaches, then a comparative analysis between the pellicle-forming (PF) radish paocai and normal fermented paocai in the diversity and function of microbial community was conducted by metagenome sequencing. Based on a pairwise t-test and OPLS-DA analysis, diallyl sulfide, (z)-1-allyl-2-(prop-1-en-1-yl) disulfane, and terpineol were considered to be the main components responsible for the unpleasant flavor of PF paocai. Yarrowia spp., Enterobacter spp., and Pichia spp. were the main pellicle-forming microorganisms. All 17 isolated Enterobacter strains showed pectinase-producing and cellulase-producing abilities, and 3 isolated Pichia strains showed gas-producing capacity. According to LEfSe analysis based on metagenomes, unclassified_g__Citrobacter and Yarrowia lipolytica were the uppermost biomarkers that distinguished the PF paocai from normal paocai. Unclassified_g__Lactobacillus and Lactobacillus plantarum were found to be actively engaged in starch and sucrose metabolism, cysteine and methionine metabolism, galactose metabolism, fructose and mannose metabolism, lysine biosynthesis, fatty acid biosynthesis, and arginine biosynthesis, all of which contributed to the flavor formation of paocai. Combining the results of metagenome sequencing with the data obtained based on the culture-dependent method, we could deduce that the growth of Yarrowia lipolytica first promoted the increase of pH and the formation of pellicle, which provided a suitable niche for the growth of some harmful bacteria such as Enterobacter, Citrobacter, and Serratia. These hazardous bacteria then worked in concert to induce the odorous stench and texture softening of paocai, as well as more pellicle formation.
Collapse
|
49
|
Philp J. Bioeconomy and net-zero carbon: lessons from Trends in Biotechnology, volume 1, issue 1. Trends Biotechnol 2023; 41:307-322. [PMID: 36272819 DOI: 10.1016/j.tibtech.2022.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Many biotechnology applications tend to be for low production volumes and relatively high-value products such as insulin and vaccines. More difficult to perfect at scale are bioprocesses for high-volume products with lower value, especially if the target product is a reduced chemical such as a solvent or a plastic. Historically, industrial microbiology succeeded under special circumstances when fossil feedstocks were either unavailable or expensive. Inevitably, as these circumstances relaxed, bioprocesses struggled to compete with petrochemistry. Why try to compete? Fossil resources will be phased out in the coming decades in the struggle with climate change. To reach net-zero carbon by 2050 will require all sectors to transition, not only energy and transportation. This may herald a new opportunity for industrial bioprocesses with much better tools.
Collapse
Affiliation(s)
- Jim Philp
- Organization for Economic Cooperation and Development (OECD), Paris, France.
| |
Collapse
|
50
|
Madzak C, Poiret S, Salomé Desnoulez S, Foligné B, Lafont F, Daniel C. Study of the persistence and dynamics of recombinant mCherry-producing Yarrowia lipolytica strains in the mouse intestine using fluorescence imaging. Microb Biotechnol 2023; 16:618-631. [PMID: 36541039 PMCID: PMC9948224 DOI: 10.1111/1751-7915.14178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Yarrowia lipolytica is a dimorphic oleaginous non-conventional yeast widely used as a powerful host for expressing heterologous proteins, as well as a promising source of engineered cell factories for various applications. This microorganism has a documented use in Feed and Food and a GRAS (generally recognized as safe) status. Moreover, in vivo studies demonstrated a beneficial effect of this yeast on animal health. However, despite the focus on Y. lipolytica for the industrial manufacturing of heterologous proteins and for probiotic effects, its potential for oral delivery of recombinant therapeutic proteins has seldom been evaluated in mammals. As the first steps towards this aim, we engineered two Y. lipolytica strains, a dairy strain and a laboratory strain, to produce the model fluorescent protein mCherry. We demonstrated that both Y. lipolytica strains transiently persisted for at least 1 week after four daily oral administrations and they maintained the active expression of mCherry in the mouse intestine. We used confocal microscopy to image individual Y. lipolytica cells of freshly collected intestinal tissues. They were found essentially in the lumen and they were rarely in contact with epithelial cells while transiting through the ileum, caecum and colon of mice. Taken as a whole, our results have shown that fluorescent Y. lipolytica strains constitute novel tools to study the persistence and dynamics of orally administered yeasts which could be used in the future as oral delivery vectors for the secretion of active therapeutic proteins in the gut.
Collapse
Affiliation(s)
- Catherine Madzak
- INRAE, AgroParisTech, Paris-Saclay University, UMR 782 SayFood, Thiverval-Grignon, France
| | - Sabine Poiret
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille, Lille, France
| | - Sophie Salomé Desnoulez
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, France
| | - Benoit Foligné
- Univ. Lille, INSERM, CHU Lille, U1286 - Infinite - Institute for Translational Research in Inflammation, Lille, France
| | - Frank Lafont
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille, Lille, France.,Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, France
| | - Catherine Daniel
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|