1
|
Rodrigues ÉF, Verza FA, Nishimura FG, Beleboni RO, Hermans C, Janssens K, De Mol ML, Hulpiau P, Marins M. Exploring the Structural Diversity and Biotechnological Potential of the Rhodophyte Phycolectome. Mar Drugs 2024; 23:8. [PMID: 39852510 PMCID: PMC11766507 DOI: 10.3390/md23010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Lectins are non-covalent glycan-binding proteins found in all living organisms, binding specifically to carbohydrates through glycan-binding domains. Lectins have various biological functions, including cell signaling, molecular recognition, and innate immune responses, which play multiple roles in the physiological and developmental processes of organisms. Moreover, their diversity enables biotechnological exploration as biomarkers, biosensors, drug-delivery platforms, and lead molecules for anticancer, antidiabetic, and antimicrobial drugs. Lectins from Rhodophytes (red seaweed) have been extensively reported and characterized for their unique molecular structures, carbohydrate-binding specificities, and important biological activities. The increasing number of sequenced Rhodophyte genomes offers the opportunity to further study this rich source of lectins, potentially uncovering new ones with properties significantly different from their terrestrial plant counterparts, thus opening new biotechnological applications. We compiled literature data and conducted an in-depth analysis of the phycolectomes from all Rhodophyta genomes available in NCBI datasets. Using Hidden Markov Models capable of identifying lectin-type domains, we found at least six different types of lectin domains present in Rhodophytes, demonstrating their potential in identifying new lectins. This review integrates a computational analysis of the Rhodophyte phycolectome with existing information on red algae lectins and their biotechnological potential.
Collapse
Affiliation(s)
- Éllen F. Rodrigues
- Postgraduate Program in Environmental Technology, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil;
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
| | - Flavia Alves Verza
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
| | - Felipe Garcia Nishimura
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
| | - Renê Oliveira Beleboni
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
| | - Cedric Hermans
- Bioinformatics Knowledge Center (BiKC), Cluster Life Sciences, Campus Brugge Station, Howest University of Applied Sciences, Spoorwegstraat 4, 8200 Brugge, Belgium; (C.H.); (K.J.)
| | - Kaat Janssens
- Bioinformatics Knowledge Center (BiKC), Cluster Life Sciences, Campus Brugge Station, Howest University of Applied Sciences, Spoorwegstraat 4, 8200 Brugge, Belgium; (C.H.); (K.J.)
| | - Maarten Lieven De Mol
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| | - Paco Hulpiau
- Bioinformatics Knowledge Center (BiKC), Cluster Life Sciences, Campus Brugge Station, Howest University of Applied Sciences, Spoorwegstraat 4, 8200 Brugge, Belgium; (C.H.); (K.J.)
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
- Algastech Aquiculture, Research and Development, Ubatuba 11695-722, SP, Brazil
| |
Collapse
|
2
|
Wiggins J, Karim SU, Liu B, Li X, Zhou Y, Bai F, Yu J, Xiang SH. Identification of a Novel Antiviral Lectin against SARS-CoV-2 Omicron Variant from Shiitake-Mushroom-Derived Vesicle-like Nanoparticles. Viruses 2024; 16:1546. [PMID: 39459880 PMCID: PMC11512411 DOI: 10.3390/v16101546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Lectins are a class of carbohydrate-binding proteins that may have antiviral activity by binding to the glycans on the virion surface to interfere with viral entry. We have identified a novel lectin (named Shictin) from Shiitake mushroom (Lentinula edodes)-derived vesicle-like nanoparticles (VLNs, or exosomes) that exhibits strong activity against the SARS-CoV-2 Omicron variant with an IC50 value of 87 nM. Shictin contains 298 amino acids and consists of two unique domains (N-terminal and C-terminal domain). The N-terminal domain is the carbohydrate-binding domain (CBD) that is homologous with CBDs of other lectins, suggesting that Shictin inhibits SARS-CoV-2 infection by binding to the glycans on the virion surface to prevent viral entry. This finding demonstrates that exosomes of vegetables are a valuable source for the identification of antiviral lectins. Therefore, it is believed that lectins from vegetable VLNs have potential as antiviral therapeutic agents.
Collapse
Affiliation(s)
- Joshua Wiggins
- Nebraska Center for Virology, University of Nebraska-Lincoln, Morrison Center 143, 4240 Fair Street, Lincoln, NE 68583, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Shazeed-Ul Karim
- Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Baolong Liu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Xingzhi Li
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - You Zhou
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Fengwei Bai
- Department of Cell and Molecular Biology, School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Jiujiu Yu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Shi-Hua Xiang
- Nebraska Center for Virology, University of Nebraska-Lincoln, Morrison Center 143, 4240 Fair Street, Lincoln, NE 68583, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
3
|
Xu T, Wang YC, Ma J, Cui Y, Wang L. In silico discovery and anti-tumor bioactivities validation of an algal lectin from Kappaphycus alvarezii genome. Int J Biol Macromol 2024; 275:133311. [PMID: 38909728 DOI: 10.1016/j.ijbiomac.2024.133311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
Lectins are proteins that bind specifically and reversibly to carbohydrates, and some of them have significant anti-tumor activities. Compared to those of lectins from land plants, there are far fewer studies on algal lectins, despite of the high biodiversity of algae. However, canonical strategies based on chromatographic feature-oriented screening cannot satisfy the requirement for algal lectin discovery. In this study, prospecting for novel OAAH family lectins throughout 358 genomes of red algae and cyanobacteria was conducted. Then 35 candidate lectins and 1843 of their simulated mutated forms were virtually screened based on predicted binding specificities to characteristic carbohydrates on cancer cells inferred by a deep learning model. A new lectin, named Siye, was discovered in Kappaphycus alvarezii genome and further verified on different cancer cells. Without causing agglutination of erythrocytes, Siye showed significant cytotoxicity to four human cancer cell lines (IC50 values ranging from 0.11 to 3.95 μg/mL), including breast adenocarcinoma HCC1937, lung carcinoma A549, liver cancer HepG2 and romyelocytic leukemia HL60. And the cytotoxicity was induced through promoting apoptosis by regulating the caspase and the p53 pathway within 24 h. This study testifies the feasibility and efficiency of the genome mining guided by evolutionary theory and artificial intelligence in the discovery of algal lectins.
Collapse
Affiliation(s)
- Tongli Xu
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266071, China
| | - Yin-Chu Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; National Basic Science Data Center, Beijing 100190, China.
| | - Jiahao Ma
- Hong Kong University of Science and Technology, Clear Water Bay, 999077, Hong Kong
| | - Yulin Cui
- Binzhou Medical University, Yantai 264003, China.
| | - Lu Wang
- School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
4
|
Li W, Wang L, Qiang X, Song Y, Gu W, Ma Z, Wang G. Design, construction and application of algae-bacteria synergistic system for treating wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121720. [PMID: 38972186 DOI: 10.1016/j.jenvman.2024.121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
The wastewater treatment technology of algae-bacteria synergistic system (ABSS) is a promising technology which has the advantages of low energy consumption, good treatment effect and recyclable high-value products. In this treatment technology, the construction of an ABSS is a very important factor. At the same time, the emergence of some new technologies (such as microbial fuel cells and bio-carriers, etc.) has further enriched constructing the novel ABSS, which could improve the efficiency of wastewater treatment and the biomass harvesting rate. Thus, this review focuses on the construction of a novel ABSS in wastewater treatment in order to provide useful suggestions for the technology of wastewater treatment.
Collapse
Affiliation(s)
- Weihao Li
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Lijun Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xi Qiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yuling Song
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Wenhui Gu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
5
|
Zhang X, Zhang T, Zhao Y, Jiang L, Sui X. Structural, extraction and safety aspects of novel alternative proteins from different sources. Food Chem 2024; 436:137712. [PMID: 37852073 DOI: 10.1016/j.foodchem.2023.137712] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
With rapid population growth and continued environmental degradation, it is no longer sustainable to rely on conventional proteins to meet human requirements. This has prompted the search for novel alternative protein sources of greater sustainability. Currently, proteins of non-conventional origin have been developed, with such alternative protein sources including plants, insects, algae, and even bacteria and fungi. Most of these protein sources have a high protein content, along with a balanced amino acid composition, and are regarded as healthy and nutritious sources of protein. While these novel alternative proteins have excellent nutritional, research on their structure are still at a preliminary stage, particularly so for insects, algae, bacteria, and fungi. Therefore, this review provides a comprehensive overview of promising novel alternative proteins developed in recent years with a focus on their nutrition, sustainability, classification, and structure. In addition, methods of extraction and potential safety factors for these proteins are summarized.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Ghallab DS, Ibrahim RS, Mohyeldin MM, Shawky E. Marine algae: A treasure trove of bioactive anti-inflammatory compounds. MARINE POLLUTION BULLETIN 2024; 199:116023. [PMID: 38211540 DOI: 10.1016/j.marpolbul.2023.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024]
Abstract
This comprehensive review examines the diverse classes of pharmacologically active compounds found in marine algae and their promising anti-inflammatory effects. The review covers various classes of anti-inflammatory compounds sourced from marine algae, including phenolic compounds, flavonoids, terpenoids, caretenoids, alkaloids, phlorotannins, bromophenols, amino acids, peptides, proteins, polysaccharides, and fatty acids. The anti-inflammatory activities of marine algae-derived compounds have been extensively investigated using in vitro and in vivo models, demonstrating their ability to inhibit pro-inflammatory mediators, such as cytokines, chemokines, and enzymes involved in inflammation. Moreover, marine algae-derived compounds have exhibited immunomodulatory properties, regulating immune cell functions and attenuating inflammatory responses. Specific examples of compounds with notable anti-inflammatory activities are highlighted. This review provides valuable insights for researchers in the field of marine anti-inflammatory pharmacology and emphasizes the need for further research to harness the pharmacological benefits of marine algae-derived compounds for the development of effective and safe therapeutic agents.
Collapse
Affiliation(s)
- Dina S Ghallab
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Reham S Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Mohamed M Mohyeldin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
7
|
Li H, Wang Z, Feng T, Guo Y, Lv J, Li N, Liu X, Liu J. A fungal-algal self-flocculation system and its application to treat filter sludge leachate in the sugar industry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122718. [PMID: 37821041 DOI: 10.1016/j.envpol.2023.122718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
The efficient and economical treatment of wastewater using microalgae has attracted much attention. However, harvesting microalgae cells from treated wastewater remains challenging. In the present study, a Chlorella vulgaris suspension containing filamentous fungi Aspergillus niger and Chaetomium gracile was successfully used to construct a self-flocculating system, with a microalgae flocculation efficiency of 99.6% achieved by gravity sedimentation within 4 h. The diameter of fungi played an important role in determining flocculation efficiency, and the optimal particle size was 10 mm. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) results indicated that the sweeping action of fungal mycelia and the interaction between the functional groups of fungi and the C. vulgaris surface contributed to improve flocculation. Co-cultivation of C. vulgaris and fungi could effectively remove 83.53%, 94.45% and 76.88% of total phosphorus, total nitrogen and chemical oxygen demand, respectively, from the sludge leachate from a sugar mill. The fungal-algal biomass reached 5.75 g/L. Herein, the constructed self-flocculation system had coupled efficient flocculation of C. vulgaris with removal of pollutants from wastewater in a short period of time, and providing a green, pollution-free, low-cost method for simultaneous wastewater treatment and the production of high quality biomass.
Collapse
Affiliation(s)
- Hongwei Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China; Academy of Sugarcane and Sugar Industry, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| | - Zhiqi Wang
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| | - Tingting Feng
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| | - Yan Guo
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| | - Jing Lv
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| | - Ning Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| | - Xinliang Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China; Academy of Sugarcane and Sugar Industry, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
8
|
Xu T, Cui Y, Qin S, Wang YC. Genome-wide analysis of lectins in cyanobacteria: from evolutionary mode to motif patterns. BMC Genomics 2023; 24:688. [PMID: 37974077 PMCID: PMC10655256 DOI: 10.1186/s12864-023-09790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
Lectins are glycoproteins that can bind to specific carbohydrates, and different lectin families exhibit different biological activities. They are also present in the cyanobacteria and many of them have shown excellent therapeutic effect, which deserve for bioprospecting. However, in comparison to those from terrestrial plants, the current knowledge on cyanobacterial lectins is very limited. To this end, genome-wide analyses were performed to find out their evolutionary mode and motif patterns in 316 genomes of representative taxa. In results, 196 putative cyanobacterial lectins were dig out and 105 of them were classified into known families. Seven lectins were found to be belonged to distinct two lectin families, and they may have the potential activities of both lectin families. Whereas no MFP-2, Chitin, and Nictaba family lectins were found. What's more, the Legume lectin-like lectin family was found to be the richest and most complex in cyanobacteria, which could be a main research direction for future cyanobacterial lectin bioprospecting and development. Our classification and prediction of cyanobacteria lectins is expected to provide assistance in the development of lectin-based medicine and provide solutions to the current thorny viral and tumor diseases in humans.
Collapse
Affiliation(s)
- Tongli Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250335, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yulin Cui
- Binzhou Medical University, Yantai, 264003, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Yin-Chu Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
- National Basic Science Data Center, Beijing, 100190, China.
| |
Collapse
|
9
|
Ou Y, Xu L, Chen M, Lu X, Guo Z, Zheng B. Structure and Antidiabetic Activity of a Glycoprotein from Porphyra haitanensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16763-16776. [PMID: 37877414 DOI: 10.1021/acs.jafc.3c04276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
A novel antidiabetic glycoprotein (PG) was isolated and purified from Porphyra haitanensis, and its structure and inhibiting activity on α-amylase and α-glucosidase were analyzed. The purity of the PG was 95.29 ± 0.21%, and its molecular weight was 163.024 ± 5.55 kDa. The PG had a tetramer structure with α- and β-subunits, and it contained 54.12 ± 0.86% protein (with highly hydrophobic amino acids) and 41.19% ± 0.64% carbohydrate (composed of galactose). The PG was linked via an O-glycosidic bond, exhibiting an α-helical structure and high stability. In addition, the PG inhibited the activities of α-amylase and α-glucosidase, by changing the enzyme's structure toward the PG's structure in a noncompetitive inhibition mode. Molecular docking results showed that the PG inhibited α-amylase activity by hydrophobic interaction, whereas it inhibited α-glucosidase activity by hydrogen bonds and hydrophobic interaction. Overall, the PG was linked to polysaccharides via O-glycosidic bonds, showing an α-helical configuration and a hydrophobic effect, which altered the configuration of α-amylase and α-glucosidase and exerted hypoglycemic activity. This study provides insights into analyzing the structure and antidiabetic activity of glycoproteins.
Collapse
Affiliation(s)
- Yujia Ou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Lijingting Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingrong Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaodan Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|
10
|
Rodrigues Reis CE, Milessi TS, Ramos MDN, Singh AK, Mohanakrishna G, Aminabhavi TM, Kumar PS, Chandel AK. Lignocellulosic biomass-based glycoconjugates for diverse biotechnological applications. Biotechnol Adv 2023; 68:108209. [PMID: 37467868 DOI: 10.1016/j.biotechadv.2023.108209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/05/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
Glycoconjugates are the ubiquitous components of mammalian cells, mainly synthesized by covalent bonds of carbohydrates to other biomolecules such as proteins and lipids, with a wide range of potential applications in novel vaccines, therapeutic peptides and antibodies (Ab). Considering the emerging developments in glycoscience, renewable production of glycoconjugates is of importance and lignocellulosic biomass (LCB) is a potential source of carbohydrates to produce synthetic glycoconjugates in a sustainable pathway. In this review, recent advances in glycobiology aiming on glycoconjugates production is presented together with the recent and cutting-edge advances in the therapeutic properties and application of glycoconjugates, including therapeutic glycoproteins, glycosaminoglycans (GAGs), and nutraceuticals, emphasizing the integral role of glycosylation in their function and efficacy. Special emphasis is given towards the potential exploration of carbon neutral feedstocks, in which LCB has an emerging role. Techniques for extraction and recovery of mono- and oligosaccharides from LCB are critically discussed and influence of the heterogeneous nature of the feedstocks and different methods for recovery of these sugars in the development of the customized glycoconjugates is explored. Although reports on the use of LCB for the production of glycoconjugates are scarce, this review sets clear that the potential of LCB as a source for the production of valuable glycoconjugates cannot be underestimated and encourages that future research should focus on refining the existing methodologies and exploring new approaches to fully realize the potential of LCB in glycoconjugate production.
Collapse
Affiliation(s)
| | - Thais Suzane Milessi
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil; Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Márcio Daniel Nicodemos Ramos
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Akhilesh Kumar Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| | - Gunda Mohanakrishna
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo 12602-810, Brazil.
| |
Collapse
|
11
|
Alvarez C, Félix C, Lemos MFL. The Antiviral Potential of Algal Lectins. Mar Drugs 2023; 21:515. [PMID: 37888450 PMCID: PMC10608189 DOI: 10.3390/md21100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Algae have emerged as fascinating subjects of study due to their vast potential as sources of valuable metabolites with diverse biotechnological applications, including their use as fertilizers, feed, food, and even pharmaceutical precursors. Among the numerous compounds found in algae, lectins have garnered special attention for their unique structures and carbohydrate specificities, distinguishing them from lectins derived from other sources. Here, a comprehensive overview of the latest scientific and technological advancements in the realm of algal lectins with a particular focus on their antiviral properties is provided. These lectins have displayed remarkable effectiveness against a wide range of viruses, thereby holding great promise for various antiviral applications. It is worth noting that several alga species have already been successfully commercialized for their antiviral potential. However, the discovery of a diverse array of lectins with potent antiviral capabilities suggests that the field holds immense untapped potential for further expansion. In conclusion, algae stand as a valuable and versatile resource, and their lectins offer an exciting avenue for developing novel antiviral agents, which may lead to the development of cutting-edge antiviral therapies.
Collapse
Affiliation(s)
| | | | - Marco F. L. Lemos
- MARE-Marine and Environmental Sciences Centre & ARNET—Aquatic Research Infrastructure Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (C.A.); (C.F.)
| |
Collapse
|
12
|
Liao F, Han C, Deng Q, Zhou Z, Bao T, Zhong M, Tao G, Li R, Han B, Qiao Y, Hu Y. Natural Products as Mite Control Agents in Animals: A Review. Molecules 2023; 28:6818. [PMID: 37836661 PMCID: PMC10574536 DOI: 10.3390/molecules28196818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Mites have been a persistent infectious disease affecting both humans and animals since ancient times. In veterinary clinics, the primary approach for treating and managing mite infestations has long been the use of chemical acaricides. However, the widespread use of these chemicals has resulted in significant problems, including drug resistance, drug residues, and environmental pollution, limiting their effectiveness. To address these challenges, researchers have shifted their focus towards natural products that have shown promise both in the laboratory and real-world settings against mite infestations. Natural products have a wide variety of chemical structures and biological activities, including acaricidal properties. This article offers a comprehensive review of the acaricidal capabilities and mechanisms of action of natural products like plant extracts, natural compounds, algae, and microbial metabolites against common animal mites.
Collapse
Affiliation(s)
- Fei Liao
- Department of Animal Husbandry and Fisheries, Guizhou Vocational College of Agriculture, Qingzhen 551400, China; (F.L.); (C.H.); (Q.D.); (M.Z.); (G.T.); (R.L.); (B.H.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Changquan Han
- Department of Animal Husbandry and Fisheries, Guizhou Vocational College of Agriculture, Qingzhen 551400, China; (F.L.); (C.H.); (Q.D.); (M.Z.); (G.T.); (R.L.); (B.H.)
| | - Qingsheng Deng
- Department of Animal Husbandry and Fisheries, Guizhou Vocational College of Agriculture, Qingzhen 551400, China; (F.L.); (C.H.); (Q.D.); (M.Z.); (G.T.); (R.L.); (B.H.)
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Taotao Bao
- Qiandongnan Center for Animal Disease Control and Prevention, Kaili 556000, China;
| | - Menghuai Zhong
- Department of Animal Husbandry and Fisheries, Guizhou Vocational College of Agriculture, Qingzhen 551400, China; (F.L.); (C.H.); (Q.D.); (M.Z.); (G.T.); (R.L.); (B.H.)
| | - Guangyao Tao
- Department of Animal Husbandry and Fisheries, Guizhou Vocational College of Agriculture, Qingzhen 551400, China; (F.L.); (C.H.); (Q.D.); (M.Z.); (G.T.); (R.L.); (B.H.)
| | - Renjun Li
- Department of Animal Husbandry and Fisheries, Guizhou Vocational College of Agriculture, Qingzhen 551400, China; (F.L.); (C.H.); (Q.D.); (M.Z.); (G.T.); (R.L.); (B.H.)
| | - Bo Han
- Department of Animal Husbandry and Fisheries, Guizhou Vocational College of Agriculture, Qingzhen 551400, China; (F.L.); (C.H.); (Q.D.); (M.Z.); (G.T.); (R.L.); (B.H.)
| | - Yanlong Qiao
- Department of Animal Husbandry and Fisheries, Guizhou Vocational College of Agriculture, Qingzhen 551400, China; (F.L.); (C.H.); (Q.D.); (M.Z.); (G.T.); (R.L.); (B.H.)
| | - Yanchun Hu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| |
Collapse
|
13
|
Lee JH, Lee SB, Kim H, Shin JM, Yoon M, An HS, Han JW. Anticancer Activity of Mannose-Specific Lectin, BPL2, from Marine Green Alga Bryopsis plumosa. Mar Drugs 2022; 20:md20120776. [PMID: 36547923 PMCID: PMC9788543 DOI: 10.3390/md20120776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Lectin is a carbohydrate-binding protein that recognizes specific cells by binding to cell-surface polysaccharides. Tumor cells generally show various glycosylation patterns, making them distinguishable from non-cancerous cells. Consequently, lectin has been suggested as a good anticancer agent. Herein, the anticancer activity of Bryopsis plumosa lectins (BPL1, BPL2, and BPL3) was screened and tested against lung cancer cell lines (A549, H460, and H1299). BPL2 showed high anticancer activity compared to BPL1 and BPL3. Cell viability was dependent on BPL2 concentration and incubation time. The IC50 value for lung cancer cells was 50 μg/mL after 24 h of incubation in BPL2 containing medium; however, BPL2 (50 μg/mL) showed weak toxicity in non-cancerous cells (MRC5). BPL2 affected cancer cell growth while non-cancerous cells were less affected. Further, BPL2 (20 μg/mL) inhibited cancer cell invasion and migration (rates were ˂20%). BPL2 induced the downregulation of epithelial-to-mesenchymal transition-related genes (Zeb1, vimentin, and Twist). Co-treatment with BPL2 and gefitinib (10 μg/mL and 10 μM, respectively) showed a synergistic effect compared with monotherapy. BPL2 or gefitinib monotherapy resulted in approximately 90% and 70% cell viability, respectively, with concomitant treatment showing 40% cell viability. Overall, BPL2 can be considered a good candidate for development into an anticancer agent.
Collapse
|
14
|
Konozy EHE, Osman MEFM, Dirar AI, Ghartey-Kwansah G. Plant lectins: A new antimicrobial frontier. Biomed Pharmacother 2022; 155:113735. [PMID: 36152414 DOI: 10.1016/j.biopha.2022.113735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
Abstract
Pathogenic bacteria, viruses, fungi, parasites, and other microbes constantly change to ensure survival. Several pathogens have adopted strict and intricate strategies to fight medical treatments. Many drugs, frequently prescribed to treat these pathogens, are becoming obsolete and ineffective. Because pathogens have gained the capacity to tolerate or resist medications targeted at them, hence the term antimicrobial resistance (AMR), in that regard, many natural compounds have been routinely used as new antimicrobial agents to treat infections. Thus, plant lectins, the carbohydrate-binding proteins, have been targeted as promising drug candidates. This article reviewed more than 150 published papers on plant lectins with promising antibacterial and antifungal properties. We have also demonstrated how some plant lectins could express a synergistic action as adjuvants to boost the efficacy of obsolete or abandoned antimicrobial drugs. Emphasis has also been given to their plausible mechanism of action. The study further reports on the immunomodulatory effect of plant lectins and how they boost the immune system to curb or prevent infection.
Collapse
Affiliation(s)
| | | | - Amina I Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Mek Nimr Street, Khartoum, Sudan.
| | - George Ghartey-Kwansah
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana.
| |
Collapse
|
15
|
Maliki IM, Misson M, Teoh PL, Rodrigues KF, Yong WTL. Production of Lectins from Marine Algae: Current Status, Challenges, and Opportunities for Non-Destructive Extraction. Mar Drugs 2022; 20:102. [PMID: 35200632 PMCID: PMC8880576 DOI: 10.3390/md20020102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Marine algae are an excellent source of novel lectins. The isolation of lectins from marine algae expands the diversity in structure and carbohydrate specificities of lectins isolated from other sources. Marine algal lectins have been reported to have antiviral, antitumor, and antibacterial activity. Lectins are typically isolated from marine algae by grinding the algal tissue with liquid nitrogen and extracting with buffer and alcohol. While this method produces higher yields, it may not be sustainable for large-scale production, because a large amount of biomass is required to produce a minute amount of compound, and a significant amount of waste is generated during the extraction process. Therefore, non-destructive extraction using algal culture water could be used to ensure a continuous supply of lectins without exclusively disrupting the marine algae. This review discusses the traditional and recent advancements in algal lectin extraction methods over the last decade, as well as the steps required for large-scale production. The challenges and prospects of various extraction methods (destructive and non-destructive) are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Wilson Thau Lym Yong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (I.M.M.); (M.M.); (P.L.T.); (K.F.R.)
| |
Collapse
|
16
|
Algal and Cyanobacterial Lectins and Their Antimicrobial Properties. Mar Drugs 2021; 19:md19120687. [PMID: 34940686 PMCID: PMC8707200 DOI: 10.3390/md19120687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Lectins are proteins with a remarkably high affinity and specificity for carbohydrates. Many organisms naturally produce them, including animals, plants, fungi, protists, bacteria, archaea, and viruses. The present report focuses on lectins produced by marine or freshwater organisms, in particular algae and cyanobacteria. We explore their structure, function, classification, and antimicrobial properties. Furthermore, we look at the expression of lectins in heterologous systems and the current research on the preclinical and clinical evaluation of these fascinating molecules. The further development of these molecules might positively impact human health, particularly the prevention or treatment of diseases caused by pathogens such as human immunodeficiency virus, influenza, and severe acute respiratory coronaviruses, among others.
Collapse
|
17
|
Liu Z, Li L, Xue B, Zhao D, Zhang Y, Yan X. A New Lectin from Auricularia auricula Inhibited the Proliferation of Lung Cancer Cells and Improved Pulmonary Flora. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5597135. [PMID: 34337031 PMCID: PMC8289579 DOI: 10.1155/2021/5597135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022]
Abstract
Lectins are widely distributed in the natural world and are usually involved in antitumor activities. Auricularia auricula (A. auricula) is a medicinal and edible homologous fungus. A. auricula contains many active ingredients, such as polysaccharides, melanin, flavonoids, adenosine, sterols, alkaloids, and terpenes. In this study, we expected to isolate and purify lectin from A. auricula, determine the glycoside bond type and sugar-specific protein of A. auricula lectin (AAL), and finally, determine its antitumor activities. We used ammonium sulfate fractionation, ion exchange chromatography, and affinity chromatography to separate and purify lectin from A. auricula. The result was a 25 kDa AAL with a relative molecular mass of 18913.22. Protein identification results suggested that this lectin contained four peptide chains by comparing with the UniProt database. The FT-IR and β-elimination reaction demonstrated that the connection between the oligosaccharide and polypeptide of AAL was an N-glucoside bond. Analyses of its physical and chemical properties showed that AAL was a temperature-sensitive and acidic/alkaline-dependent glycoprotein. Additionally, the anticancer experiment manifested that AAL inhibited the proliferation of A549, and the IC50 value was 28.19 ± 1.92 μg/mL. RNA sequencing dataset analyses detected that AAL may regulate the expression of JUN, TLR4, and MYD88 to suppress tumor proliferation. Through the pulmonary flora analysis, the bacterial structure of each phylum in the lectin treatment group was more reasonable, and the colonization ability of the normal microflora was improved, indicating that lectin treatment could significantly improve the bacterial diversity characteristics.
Collapse
Affiliation(s)
- ZhenDong Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
| | - Liang Li
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
| | - Bei Xue
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
| | - DanDan Zhao
- Sino-Russian Joint Laboratory of Bioactive Substance, College of Life Science, Heilongjiang University, 150080, China
| | - YanLong Zhang
- Sino-Russian Joint Laboratory of Bioactive Substance, College of Life Science, Heilongjiang University, 150080, China
| | - XiuFeng Yan
- College of Life and Environmental Science, Wenzhou University, Chashan University Town, Wenzhou 325035, China
| |
Collapse
|
18
|
Drabińska N, Ogrodowczyk A. Crossroad of Tradition and Innovation – The Application of Lactic Acid Fermentation to Increase the Nutritional and Health-Promoting Potential of Plant-Based Food Products – a Review. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/134282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
19
|
Lv H, Kim M, Park S, Baek K, Oh H, Polle JE, Jin E. Comparative transcriptome analysis of short-term responses to salt and glycerol hyperosmotic stress in the green alga Dunaliella salina. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Oliveira JP, Nampo FK, Souza MTS, Cercato LM, Camargo EA. The effect of natural products in animal models of temporomandibular disorders. J Appl Oral Sci 2020; 28:e20200272. [PMID: 32725048 PMCID: PMC7384486 DOI: 10.1590/1678-7757-2020-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/06/2020] [Indexed: 12/09/2022] Open
Abstract
Treatment of temporomandibular disorders (TMD) is a challenge for health care professionals. Therefore, new approaches have been investigated, such as the use of natural products.
Collapse
Affiliation(s)
- Janaíne Prata Oliveira
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | - Fernando Kenji Nampo
- Instituto Latino-Americano de Ciências Naturais, Universidade Federal de Integração Latino-Americana, Foz do Iguaçu, PR, Brasil
| | | | - Luana Mendonça Cercato
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| | - Enilton Aparecido Camargo
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal de Sergipe, São Cristóvão, SE, Brasil
| |
Collapse
|
21
|
Freitas e Silva KS, C. Silva L, Gonçales RA, Neves BJ, Soares CM, Pereira M. Setting New Routes for Antifungal Drug Discovery Against Pathogenic Fungi. Curr Pharm Des 2020; 26:1509-1520. [DOI: 10.2174/1381612826666200317125956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/11/2020] [Indexed: 01/08/2023]
Abstract
:Fungal diseases are life-threatening to human health and responsible for millions of deaths around the world. Fungal pathogens lead to a high number of morbidity and mortality. Current antifungal treatment comprises drugs, such as azoles, echinocandins, and polyenes and the cure is not guaranteed. In addition, such drugs are related to severe side effects and the treatment lasts for an extended period. Thus, setting new routes for the discovery of effective and safe antifungal drugs should be a priority within the health care system. The discovery of alternative and efficient antifungal drugs showing fewer side effects is time-consuming and remains a challenge. Natural products can be a source of antifungals and used in combinatorial therapy. The most important natural products are antifungal peptides, antifungal lectins, antifungal plants, and fungi secondary metabolites. Several proteins, enzymes, and metabolic pathways could be targets for the discovery of efficient inhibitor compounds and recently, heat shock proteins, calcineurin, salinomycin, the trehalose biosynthetic pathway, and the glyoxylate cycle have been investigated in several fungal species. HSP protein inhibitors and echinocandins have been shown to have a fungicidal effect against azole-resistant fungi strains. Transcriptomic and proteomic approaches have advanced antifungal drug discovery and pointed to new important specific-pathogen targets. Certain enzymes, such as those from the glyoxylate cycle, have been a target of antifungal compounds in several fungi species. Natural and synthetic compounds inhibited the activity of such enzymes and reduced the ability of fungal cells to transit from mycelium to yeast, proving to be promisor antifungal agents. Finally, computational biology has developed effective approaches, setting new routes for early antifungal drug discovery since normal approaches take several years from discovery to clinical use. Thus, the development of new antifungal strategies might reduce the therapeutic time and increase the quality of life of patients.
Collapse
Affiliation(s)
- Kleber S. Freitas e Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lívia C. Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Relber A. Gonçales
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bruno J. Neves
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-510, Brazil
| | - Célia M.A. Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
22
|
Singh RS, Walia AK, Kennedy JF. Mushroom lectins in biomedical research and development. Int J Biol Macromol 2020; 151:1340-1350. [DOI: 10.1016/j.ijbiomac.2019.10.180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
|
23
|
Alves MFDA, Barreto FKDA, Vasconcelos MAD, Nascimento Neto LGD, Carneiro RF, Silva LTD, Nagano CS, Sampaio AH, Teixeira EH. Antihyperglycemic and antioxidant activities of a lectin from the marine red algae, Bryothamnion seaforthii, in rats with streptozotocin-induced diabetes. Int J Biol Macromol 2020; 158:773-780. [PMID: 32360963 DOI: 10.1016/j.ijbiomac.2020.04.238] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 01/19/2023]
Abstract
The aim of the study was to assess the antihyperglycemic, antilipidemic, and antioxidant effects of a lectin isolated from Bryothamnion seaforthii (BSL), on rats with streptozotocin (STZ)-induced diabetes. The disease model was induced by low-dose injections of STZ. Diabetic rats were treated with NaCl 150 mM, metformin, and BSL at different concentrations. Blood collection was carried out at 0, 30, 60, 90, and 120 days after hyperglycemia confirmation via the assessment of seric glucose, total cholesterol, and triglycerides, assessment of the enzymatic levels of glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD), and the determination of insulin resistance by a homeostasis model of assessment-insulin resistance (HOMA-IR) as well as a homeostasis model of assessment of β-cells resistance (HOMA-β). The BSL-treated animals at all three concentrations showed a significant reduction in levels of glucose, cholesterol, total cholesterol, and triglycerides. Moreover, BSL increased the enzymatic activity of GPx and SOD. Index assessments of HOMA-IR and HOMA-β confirmed that BSL treatment significantly decreased insulin resistance and β-cell hypersecretion, respectively. In conclusion, BSL treatment might exert hypoglycemic and hypolipidemic effects, diminish insulin resistance, and ameliorate pancreatic β-cell function along with enzymatic activities toward oxidative stress caused by diabetes mellitus type 2 (T2DM).
Collapse
Affiliation(s)
- Mayara Freire de Alencar Alves
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Monsenhor Furtado, s/n, Fortaleza, Ceará 60430-160, Brazil
| | - Francisca Kalline de Almeida Barreto
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Monsenhor Furtado, s/n, Fortaleza, Ceará 60430-160, Brazil
| | - Mayron Alves de Vasconcelos
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Monsenhor Furtado, s/n, Fortaleza, Ceará 60430-160, Brazil; Faculdade de Ciências Exatas e Naturais, Universidade do Estado do Rio Grande do Norte, 59625-620 Mossoró, Rio Grande do Norte, Brazil; Universidade do Estado de Minas Gerais, Unidade de Divinópolis, Divinópolis, Minas Gerais 35501-170, Brazil
| | - Luiz Gonzaga do Nascimento Neto
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Monsenhor Furtado, s/n, Fortaleza, Ceará 60430-160, Brazil; Departamento do Núcleo Comum, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Campus Limoeiro do Norte, 62930-000 Limoeiro do Norte, Ceará, Brazil
| | - Rômulo Farias Carneiro
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, Fortaleza, Ceará 60440-970, Brazil
| | - Livia Torquato da Silva
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, Fortaleza, Ceará 60440-970, Brazil
| | - Celso Shiniti Nagano
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, Fortaleza, Ceará 60440-970, Brazil
| | - Alexandre Holanda Sampaio
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, Fortaleza, Ceará 60440-970, Brazil
| | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Monsenhor Furtado, s/n, Fortaleza, Ceará 60430-160, Brazil.
| |
Collapse
|
24
|
Hwang HJ, Han JW, Jeon H, Cho K, Kim JH, Lee DS, Han JW. Characterization of a Novel Mannose-Binding Lectin with Antiviral Activities from Red Alga, Grateloupia chiangii. Biomolecules 2020; 10:E333. [PMID: 32092955 PMCID: PMC7072537 DOI: 10.3390/biom10020333] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/04/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Lectins have the ability to bind specific carbohydrates and they have potential applications as medical and pharmacological agents. The unique structure and usefulness of red algal lectin have been reported, but these lectins are limited to a few marine algal groups. In this study, a novel mannose-binding lectin from Grateloupia chiangii (G. chiangii lectin, GCL) was purified using antiviral screens and affinity chromatography. We characterized the molecular weight, agglutination activity, hemagglutination activity, and heat stability of GCL. To determine the carbohydrate specificity, a glycan microarray was performed. GCL showed strong binding affinity for Maltohexaose-β-Sp1 and Maltoheptaose-β-Sp1 with weak affinity for other monosaccharides and preferred binding to high-mannan structures. The N-terminal sequence and peptide sequence of GCL were determined using an Edman degradation method and LC-MS/MS, and the cDNA and peptide sequences were deduced. GCL was shown to consist of 231 amino acids (24.9 kDa) and the N-terminus methionine was eliminated after translation. GCL possessed a tandem repeat structure of six domains, similar to the other red algal lectins. The mannose binding properties and tandem repeat structure of GCL may confer it the potential to act as an antiviral agent for protection against viral infection.
Collapse
Affiliation(s)
- Hyun-Ju Hwang
- Department of Applied Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (H.-J.H.); (J.-W.H.); (H.J.); (K.C.)
| | - Jin-Wook Han
- Department of Applied Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (H.-J.H.); (J.-W.H.); (H.J.); (K.C.)
| | - Hancheol Jeon
- Department of Applied Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (H.-J.H.); (J.-W.H.); (H.J.); (K.C.)
| | - Kichul Cho
- Department of Applied Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (H.-J.H.); (J.-W.H.); (H.J.); (K.C.)
| | - Ju-hee Kim
- Department of Ecology and Conservation, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea;
| | - Dae-Sung Lee
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea;
| | - Jong Won Han
- Department of Applied Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (H.-J.H.); (J.-W.H.); (H.J.); (K.C.)
| |
Collapse
|
25
|
Singh RS, Thakur SR, Kennedy JF. Purification and characterisation of a xylose-specific mitogenic lectin from Fusarium sambucinum. Int J Biol Macromol 2020; 152:393-402. [PMID: 32084487 DOI: 10.1016/j.ijbiomac.2020.02.188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
A xylose-specific intracellular lectin, showing hemagglutination only with rabbit erythrocytes was purified from mycelium of Fusarium sambucinum which was designated as FSL. An array of anion exchange chromatography on Q-Sepharose and gel-exclusion chromatography on Sephadex G-100 resulted in 84.21% yield and 53.99-fold purification of lectin with specific activity of 169.53 titre/mg. Molecular weight of FSL determined by SDS-PAGE was 70.7 kDa, which was further confirmed by gel-exclusion chromatography. Native-PAGE analysis of FSL showed its monomeric nature. FSL was observed to be a glycoprotein containing 2.9% carbohydrate. Hapten inhibition profile of FSL displayed its strong affinity towards D-xylose (MIC 1.562 mM), L-fucose (MIC 6.25 mM), D-mannose (MIC 3.125 mM), fetuin (MIC 15.62 μg/mL), asialofetuin (MIC 125 μg/mL) and BSM (MIC 3.125 μg/mL). Affinity of FSL towards xylose is rare. FSL was found stable over a pH range 6.0-7.5 and upto 40 °C temperature. Hemagglutination activity of FSL remained unaffected by divalent ions. Lectin concentration of 5 μg/mL was found sufficient to stimulate proliferation of murine spleen cells and its concentration 75 μg/mL exhibited highest mitogenic potential. FSL exhibited maximum mitogenic stimulatory index of 14.35. The purification, characterisation and mitogenicity of F. sambucinum lectin has been reported first time.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, 147 002 Patiala, India.
| | - Shivani Rani Thakur
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, 147 002 Patiala, India
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8SG Tenbury Wells, United Kingdom
| |
Collapse
|
26
|
Mishra A, Behura A, Mawatwal S, Kumar A, Naik L, Mohanty SS, Manna D, Dokania P, Mishra A, Patra SK, Dhiman R. Structure-function and application of plant lectins in disease biology and immunity. Food Chem Toxicol 2019; 134:110827. [PMID: 31542433 PMCID: PMC7115788 DOI: 10.1016/j.fct.2019.110827] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Lectins are proteins with a high degree of stereospecificity to recognize various sugar structures and form reversible linkages upon interaction with glyco-conjugate complexes. These are abundantly found in plants, animals and many other species and are known to agglutinate various blood groups of erythrocytes. Further, due to the unique carbohydrate recognition property, lectins have been extensively used in many biological functions that make use of protein-carbohydrate recognition like detection, isolation and characterization of glycoconjugates, histochemistry of cells and tissues, tumor cell recognition and many more. In this review, we have summarized the immunomodulatory effects of plant lectins and their effects against diseases, including antimicrobial action. We found that many plant lectins mediate its microbicidal activity by triggering host immune responses that result in the release of several cytokines followed by activation of effector mechanism. Moreover, certain lectins also enhance the phagocytic activity of macrophages during microbial infections. Lectins along with heat killed microbes can act as vaccine to provide long term protection from deadly microbes. Hence, lectin based therapy can be used as a better substitute to fight microbial diseases efficiently in future.
Collapse
Affiliation(s)
- Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shradha Mawatwal
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Subhashree Subhasmita Mohanty
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Debraj Manna
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Puja Dokania
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342011, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
27
|
Singh RS, Walia AK. Purification of a potent mitogenic homodimeric Penicillium griseoroseum lectin and its characterisation. J Basic Microbiol 2019; 59:1238-1247. [PMID: 31613018 DOI: 10.1002/jobm.201900428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/14/2019] [Accepted: 09/29/2019] [Indexed: 11/08/2022]
Abstract
Penicillium griseoroseum lectin was 80-fold purified by successive DEAE Sepharose anion exchange and Sephadex G-100 gel permeation chromatography. P. griseoroseum lectin exhibited haemagglutination activity towards protease-treated rabbit erythrocytes. It showed specificity towards various carbohydrates such as d-mannose, N-acetyl-d-glucosamine, mucins, and so forth. P. griseoroseum lectin was found as a glycoprotein with glycan content of 4.33%. Purified P. griseoroseum lectin is homodimeric having a molecular mass of 57 kDa with subunit molecular mass of 28.6 kDa. Haemagglutination activity of purified P. griseoroseum lectin was completely stable from 25°C to 35°C at a pH range of 6-7.5. Lectin activity was not influenced by divalent metal ions and denaturants. P. griseoroseum lectin manifested mitogenicity towards mice splenocytes and activity reached a peak at 75 μg/ml of lectin concentration. P. griseoroseum lectin in microgram concentrations stimulated proliferation of mice splenocytes. Thus, P. griseoroseum lectin exhibits potential mitogenicity, which can be exploited for further biomedical applications.
Collapse
Affiliation(s)
- Ram S Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, India
| | - Amandeep K Walia
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, India
| |
Collapse
|
28
|
Abstract
Cancer has high incidence and it will continue to increase over the next decades. Detection and quantification of cancer-associated biomarkers is frequently carried out for diagnosis, prognosis and treatment monitoring at various disease stages. It is well-known that glycosylation profiles change significantly during oncogenesis. Aberrant glycans produced during tumorigenesis are, therefore, valuable molecules for detection and characterization of cancer, and for therapeutic design and monitoring. Although glycoproteomics has benefited from the development of analytical tools such as high performance liquid chromatography, two-dimensional gel and capillary electrophoresis and mass spectrometry, these approaches are not well suited for rapid point-of-care (POC) testing easily performed by medical staff. Lectins are biomolecules found in nature with specific affinities toward particular glycan structures and bind them thus forming a relatively strong complex. Because of this characteristic, lectins have been used in analytical techniques for the selective capture or separation of certain glycans in complex samples, namely, in lectin affinity chromatography, or to characterize glycosylation profiles in diverse clinical situations, using lectin microarrays. Lectin-based biosensors have been developed for the detection of specific aberrant and cancer-associated glycostructures to aid diagnosis, prognosis and treatment assessment of these patients. The attractive features of biosensors, such as portability and simple use make them highly suitable for POC testing. Recent developments in lectin biosensors, as well as their potential and pitfalls in cancer glycan biomarker detection, are presented in this chapter.
Collapse
Affiliation(s)
- M Luísa S Silva
- Centre of Chemical Research, Autonomous University of Hidalgo State, Pachuca, Hidalgo, México.
| |
Collapse
|
29
|
Singh RS, Walia AK, Kennedy JF. Structural aspects and biomedical applications of microfungal lectins. Int J Biol Macromol 2019; 134:1097-1107. [DOI: 10.1016/j.ijbiomac.2019.05.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 11/17/2022]
|
30
|
Beaulieu L. Insights into the Regulation of Algal Proteins and Bioactive Peptides Using Proteomic and Transcriptomic Approaches. Molecules 2019; 24:E1708. [PMID: 31052532 PMCID: PMC6539653 DOI: 10.3390/molecules24091708] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 11/24/2022] Open
Abstract
Oceans abound in resources of various kinds for R&D and for commercial applications. Monitoring and bioprospecting allow the identification of an increasing number of key natural resources. Macroalgae are essential elements of marine ecosystems as well as a natural resource influenced by dynamic environmental factors. They are not only nutritionally attractive but have also demonstrated potential health benefits such as antioxidant, antihypertensive, and anti-inflammatory activities. Several bioactive peptides have been observed following enzymatic hydrolysis of macroalgal proteins. In addition, significant differences in protein bioactivities and peptide extracts of wild and cultivated macroalgae have been highlighted, but the metabolic pathways giving rise to these bioactive molecules remain largely elusive. Surprisingly, the biochemistry that underlies the environmental stress tolerance of macroalgae has not been well investigated and remains poorly understood. Proteomic and functional genomic approaches based on identifying precursor proteins and bioactive peptides of macroalgae through integrated multi-omics analysis can give insights into their regulation as influenced by abiotic factors. These strategies allow evaluating the proteomics profile of regulation of macroalgae in response to different growth conditions as well as establishing a comparative transcriptome profiling targeting structural protein-coding genes. Elucidation of biochemical pathways in macroalgae could provide an innovative means of enhancing the protein quality of edible macroalgae. This could be ultimately viewed as a powerful way to drive the development of a tailored production and extraction of high value molecules. This review provides an overview of algal proteins and bioactive peptide characterization using proteomics and transcriptomic analyses.
Collapse
Affiliation(s)
- Lucie Beaulieu
- Département des Sciences des Aliments, Institut sur la Nutrition et les Aliments Fonctionnels (INAF), 2425, rue de l'Agriculture, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
31
|
Purification and characterization of a heterodimeric mycelial lectin from Penicillium proteolyticum with potent mitogenic activity. Int J Biol Macromol 2019; 128:124-131. [DOI: 10.1016/j.ijbiomac.2019.01.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/17/2022]
|
32
|
Singh RS, Walia AK, Kennedy JF. Purification and characterization of a mitogenic lectin from Penicillium duclauxii. Int J Biol Macromol 2018; 116:426-433. [DOI: 10.1016/j.ijbiomac.2018.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 02/03/2023]
|
33
|
Singh RS, Walia AK. Lectins from red algae and their biomedical potential. JOURNAL OF APPLIED PHYCOLOGY 2017; 30:1833-1858. [PMID: 32214665 PMCID: PMC7088393 DOI: 10.1007/s10811-017-1338-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 05/08/2023]
Abstract
Lectins are unique proteins or glycoproteins of non-immune origin that bind specifically to carbohydrates. They recognise and interact reversibly to either free carbohydrates or glycoconjugates, without modifying their structure. Lectins are highly diverse and widely distributed in nature and have been extensively reported from various red algae species. Numerous red algae species have been reported to possess lectins having carbohydrate specificity towards complex glycoproteins or high-mannose N-glycans. These lectin-glycan interactions further trigger many biochemical responses which lead to their extensive use as valuable tools in biomedical research. Thus, owing to their exceptional glycan recognition property, red algae lectins are potential candidate for inhibition of various viral diseases. Hence, the present report integrates existing information on the red algae lectins, their carbohydrate specificity, and characteristics of purified lectins. Further, the review also reports the current state of research into their anti-viral activity against various enveloped viruses such as HIV, hepatitis, influenza, encephalitis, coronavirus and herpes simplex virus and other biomedical activities such as anti-cancer, anti-microbial, anti-inflammatory, anti-nociceptive and acaricidal activities.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002 India
| | - Amandeep Kaur Walia
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002 India
| |
Collapse
|
34
|
Chaves RP, Silva SRD, Nascimento Neto LG, Carneiro RF, Silva ALCD, Sampaio AH, Sousa BLD, Cabral MG, Videira PA, Teixeira EH, Nagano CS. Structural characterization of two isolectins from the marine red alga Solieria filiformis (Kützing) P.W. Gabrielson and their anticancer effect on MCF-7 breast cancer cells. Int J Biol Macromol 2017; 107:1320-1329. [PMID: 28970169 DOI: 10.1016/j.ijbiomac.2017.09.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022]
Abstract
As described in the literature, Solieria filiformis lectin (SfL) from the marine red alga S. filiformis was found to have antinociceptive and anti-inflammatory effects. In this study, we characterized two SfL variants, SfL-1 and SfL-2, with molecular mass of 27,552Da and 27,985Da, respectively. The primary structures of SfL-1 and SfL-2 consist of four tandem-repeat protein domains with 67 amino acids each. SfL-1 and -2 showed high similarity to OAAH-family lectins. 3D structure prediction revealed that SfL-1 and -2 are composed of two β-barrel-like domains formed by five antiparallel β-strands, which are connected by a short peptide linker. Furthermore, the mixture of isoforms (SfLs) showed anticancer effect against MCF-7 cells. Specifically, SfLs inhibited 50% of viability in MCF-7 cells after treatment at 125μg.mL-1, while the inhibition of Human Dermal Fibroblasts (HDF) was 34% with the same treatment. Finally, 24h after treatment, 25% of MCF-7 cells were in early apoptosis and 35% in late apoptosis. Evaluation of pro- and anti-apoptotic gene expression of MCF-7 cells revealed that SfLs induced caspase-dependent apoptosis within 24h.
Collapse
Affiliation(s)
- Renata Pinheiro Chaves
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-900 Fortaleza, Ceará, Brazil
| | - Suzete Roberta da Silva
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-900 Fortaleza, Ceará, Brazil
| | - Luiz Gonzaga Nascimento Neto
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-900 Fortaleza, Ceará, Brazil; Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Monsenhor Furtado, s/n, 60430-160 Fortaleza, Ceará, Brazil
| | - Romulo Farias Carneiro
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-900 Fortaleza, Ceará, Brazil
| | - André Luis Coelho da Silva
- Laboratório de Biotecnologia Molecular - LabBMol, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, bloco 907, 60440-900, Fortaleza, Ceará, Brazil
| | - Alexandre Holanda Sampaio
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-900 Fortaleza, Ceará, Brazil
| | - Bruno Lopes de Sousa
- Faculdade de Filosofia Dom Aureliano Matos, Universidade Estadual do Ceará, Av. Dom Aureliano Matos, 2060, Limoeiro do Norte, CE, 62930-000, Brazil
| | | | - Paula Alexandra Videira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Monsenhor Furtado, s/n, 60430-160 Fortaleza, Ceará, Brazil
| | - Celso Shiniti Nagano
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-900 Fortaleza, Ceará, Brazil.
| |
Collapse
|
35
|
Singh RS, Walia AK, Khattar JS, Singh DP, Kennedy JF. Cyanobacterial lectins characteristics and their role as antiviral agents. Int J Biol Macromol 2017; 102:475-496. [PMID: 28437766 DOI: 10.1016/j.ijbiomac.2017.04.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022]
Abstract
Lectins are ubiquitous proteins/glycoproteins of non-immune origin that bind reversibly to carbohydrates in non-covalent and highly specific manner. These lectin-glycan interactions could be exploited for establishment of novel therapeutics, targeting the adherence stage of viruses and thus helpful in eliminating wide spread viral infections. Here the review focuses on the haemagglutination activity, carbohydrate specificity and characteristics of cyanobacterial lectins. Cyanobacterial lectins exhibiting high specificity towards mannose or complex glycans have potential role as anti-viral agents. Prospective role of cyanobacterial lectins in targeting various diseases of worldwide concern such as HIV, hepatitis, herpes, influenza and ebola viruses has been discussed extensively. The review also lays emphasis on recent studies involving structural analysis of glycan-lectin interactions which in turn influence their mechanism of action. Altogether, the promising approach of these cyanobacterial lectins provides insight into their use as antiviral agents.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147002, Punjab, India.
| | - Amandeep Kaur Walia
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147002, Punjab, India
| | | | - Davinder Pal Singh
- Department of Botany, Punjabi University, Patiala 147 002, Punjab, India
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science & Technology Institute, Kyrewood House, Tenbury Wells, Worcestershire WR1 8SG, UK
| |
Collapse
|
36
|
Ionic effects on microalgae harvest via microalgae-fungi co-pelletization. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2016.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
|
38
|
Singh RS, Walia AK, Kanwar JR. Protozoa lectins and their role in host–pathogen interactions. Biotechnol Adv 2016; 34:1018-1029. [DOI: 10.1016/j.biotechadv.2016.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 11/29/2022]
|
39
|
Pérez MJ, Falqué E, Domínguez H. Antimicrobial Action of Compounds from Marine Seaweed. Mar Drugs 2016; 14:E52. [PMID: 27005637 PMCID: PMC4820306 DOI: 10.3390/md14030052] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/18/2016] [Accepted: 02/25/2016] [Indexed: 12/12/2022] Open
Abstract
Seaweed produces metabolites aiding in the protection against different environmental stresses. These compounds show antiviral, antiprotozoal, antifungal, and antibacterial properties. Macroalgae can be cultured in high volumes and would represent an attractive source of potential compounds useful for unconventional drugs able to control new diseases or multiresistant strains of pathogenic microorganisms. The substances isolated from green, brown and red algae showing potent antimicrobial activity belong to polysaccharides, fatty acids, phlorotannins, pigments, lectins, alkaloids, terpenoids and halogenated compounds. This review presents the major compounds found in macroalga showing antimicrobial activities and their most promising applications.
Collapse
Affiliation(s)
- María José Pérez
- Departamento de Biología Funcional y Ciencias de la Salud, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Ourense 32004, Spain.
| | - Elena Falqué
- Departamento de Química Analítica, Facultad de Ciencias, Universidade de Vigo, As Lagoas, Ourense 32004, Spain.
| | - Herminia Domínguez
- Departamento de Enxeñería Química, Facultad de Ciencias. Universidade de Vigo, As Lagoas, Ourense 32004, Spain.
| |
Collapse
|
40
|
Singh RS, Kaur HP, Singh J. Purification and characterization of a mycelial mucin specific lectin from Aspergillus panamensis with potent mitogenic and antibacterial activity. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Singh RS, Kaur HP, Singh J. Purification and characterization of a mucin specific mycelial lectin from Aspergillus gorakhpurensis: application for mitogenic and antimicrobial activity. PLoS One 2014; 9:e109265. [PMID: 25286160 PMCID: PMC4186849 DOI: 10.1371/journal.pone.0109265] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 09/02/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Lectins are carbohydrate binding proteins or glycoproteins that bind reversibly to specific carbohydrates present on the apposing cells, which are responsible for their ability to agglutinate red blood cells, lymphocytes, fibroblasts, etc. Interest in lectins has been intensified due to their carbohydrate specificity as they can be valuable reagents for the investigation of cell surface sugars, purification and characterization of glycoproteins. The present study reports the purification, characterization and evaluation of mitogenic and antimicrobial potential of a mycelial lectin from Aspergillus gorakhpurensis. METHODS Affinity chromatography on mucin-sepharose column was carried out for purification of Aspergillus gorakhpurensis lectin. The lectin was characterized for physico-chemical parameters. Mitogenic potential of the lectin was evaluated against splenocytes of Swiss albino mice by MTT assay. Antimicrobial activity of the purified lectin has also been evaluated by disc diffusion assay. RESULTS Single-step affinity purification resulted in 18.6-fold purification of the mycelial lectin. The molecular mass of the lectin was found to be 70 kDa and it was composed of two subunits of 34.8 kDa as determined by gel filtration chromatography, SDS-PAGE and MALDI-TOF analysis. pH optima of the lectin was found to be 6.5-9.5, while optimum temperature for lectin activity was 20-30 °C. Lectin was stable within a pH range of 7.0-10.5 and showed fair thermostability. EDTA did not affect lectin activity whereas it was found susceptible to the denaturants tested. MTT assay revealed strong mitogenic potential of A. gorakhpurensis lectin at a concentration upto 150 µg/mL. Antimicrobial activity assay showed its potent antibacterial activity against Bacillus cereus, Staphylococcous aureus and Escherichia coli and marginal antifungal activity against Saccharomyces cerevisiae. CONCLUSION This is the first report on the mitogenic and antimicrobial potential of Aspergillus gorakhpurensis lectin. The results will provide useful guidelines for further research in clinical applications of this lectin.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab, India
| | - Hemant Preet Kaur
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab, India
| | - Jatinder Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|