1
|
Nakazato M, Hirata T. Elemental and isotopic analyses of individual nanoparticles using single particle inductively coupled plasma mass spectrometry. ANAL SCI 2025:10.1007/s44211-025-00766-0. [PMID: 40251451 DOI: 10.1007/s44211-025-00766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/30/2025] [Indexed: 04/20/2025]
Abstract
Sensitive and rapid technique for elemental analysis of individual nanoparticles is increasingly desired in various research fields such as geochemical, environmental, clinical, and biochemical sciences. Among the techniques, single particle inductively coupled plasma mass spectrometry (spICP-MS) becomes one of the principal choices for the analytical method because of both the simple sample preparation and high analytical throughput, realizing the statistical treatments of the resulting data obtained from large numbers of particles. The analytical capability of the spICP-MS is further improved by the combination of ICP ion source with various types of mass spectrometers including quadrupole-type instrument, multiple collector system setup equipped on magnetic sector, or superfast mass scanning data acquisition utilizing time of flight-type mass spectrometers. In this article, both the principles and applications of size, elemental, and isotopic analysis of nanoparticles using spICP-MS are critically reviewed.
Collapse
Affiliation(s)
- Masaki Nakazato
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8560, Japan.
- Geochemical Research Center, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Takafumi Hirata
- Geochemical Research Center, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Zhang C, Prasad AK, Liu T, Jacobs TDB, Martini A. Effect of reversible dislocation-based deformation on nanoparticle strain at failure. NANOSCALE 2025; 17:9297-9307. [PMID: 40100087 DOI: 10.1039/d4nr05138f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Molecular dynamics simulations are used to isolate and quantify the reversible and irreversible mechanisms that contribute to deformation in platinum nanoparticles under compression. Quantitative analysis reveals how the nucleation and entanglement of dislocations can lead to reversible dislocation-based deformation. Simulations run at different temperatures and loading conditions show that the formation of entangled dislocations is more likely at higher temperatures and is facilitated by loading orientations where dislocations nucleate on intersecting slip planes. The presence of entangled dislocations increases the strain at failure due to the ability of those dislocations to accommodate strain reversibly. The results are corroborated by the observation of similar entangled dislocation loops during in situ compression experiments on nanoparticles of the same material. Overall, these findings provide insight into the role of dislocations in both reversible and irreversible deformation and their implications for nanoparticle stability and properties.
Collapse
Affiliation(s)
- Claire Zhang
- Department of Mechanical Engineering, University of California, Merced, Merced, CA 95340, USA.
| | - Amit Kumar Prasad
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ting Liu
- Department of Mechanical Engineering, University of California, Merced, Merced, CA 95340, USA.
| | - Tevis D B Jacobs
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ashlie Martini
- Department of Mechanical Engineering, University of California, Merced, Merced, CA 95340, USA.
| |
Collapse
|
3
|
Almarshad HA, Elderdery A, Alenazy FO, Elissidig SA. Impact of Gold Nanoparticles Intraperitoneal Injection on Mice's Erythrocytes and Renal Tissue. IEEE Trans Nanobioscience 2025; 24:174-179. [PMID: 39361453 DOI: 10.1109/tnb.2024.3471813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The purpose of this study was to investigate the effects of two different types of gold nanoparticles (AuNPs) delivered by intraperitoneal (IP) injection on blood and kidney tissue changes in a mouse model. Three groups of fifteen adult male BALB/c healthy mice, weighing approximately 25- 30 g, were used for the experiment and designated G1, G2, and G3, respectively. G1 mice received vehicle, whereas G2 and G3 received an IP injection of 10 mg/kg body weight of methoxy poly ethylene glycol gold nanoparticles (PEG-AuNPs) and fluorescently dye labeled gold nanoparticles (Dye-AuNPs), respectively. Hematological parameters were measured based on the standard complete blood cell count (CBC) technique. The two nanoparticles, i.e., PEG-AuNPs and Dye-AuNPs, significantly reduced most red blood cell (RBC) parameters in the groups with the exception of a nonsignificant effect on hemoglobin (HBG) levels. Both gold nanoparticles, i.e., PEG-AuNPs and Dye-AuNPs, led to a reduced RBC count, mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) level when compared with the control. Notably, Dye-AuNPs and PEG-AuNPs resulted in a considerably higher RBC distribution RDW- (CV % and SD fL). Glomerular injury was suggested based on the development of hydropic degeneration and the presence of a protein-rich fluid inside the tubules. Renal tissue and blood indices changed significantly in response to the two nanoparticles, suggesting possible organ injury.
Collapse
|
4
|
Jayasri A, Eswara Prasad P, Kala Kumar BDP, Padmaja K, Shivakumar P, Anil Kumar B, Vidya B. Green synthesis of silver and zinc oxide nanoparticles with Thespesia populnea extract and investigation of their antioxidant potential against mouse mastitis model. Front Vet Sci 2025; 12:1521143. [PMID: 40098888 PMCID: PMC11911465 DOI: 10.3389/fvets.2025.1521143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/13/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Bovine mastitis in dairy cattle is often complicated by antibiotic-resistant bacteria such as Staphylococcus aureus. Metal-based nanoparticles, especially plant-mediated nanoparticles have emerged as promising therapeutic tools for treating S. aureus-associated mastitis through the intramammary route. In this study, we synthesized, characterized, and assessed the antioxidant activity of Thespesia populnea nano silver particles (TPNS) and Thespesia populnea nano zinc oxide particles (TPNZ) derived from Thespesia populnea leaf extract (TPE). Silver nitrate and zinc acetate were reduced using TPE to synthesize TPNS and TPNZ, which were characterized by Scanning Electron Microscopy (SEM), UV-Visible Spectroscopy, Dynamic Light Scattering (DLS), and Zeta Potential analysis. The antioxidant activity of green-synthesized nanoparticles was evaluated in mastitis-induced mice. Methods Forty-eight female Swiss albino mice, 10-15 days of lactation, were divided into six groups (number of mice in each group-8). Group I served as the control, while mastitis was induced in groups II, III, IV, V and VI. Group III received T. populnea methanolic leaf extract (TPE); groups IV and V were treated with TPNS and TPNZ respectively; and group VI received Ceftriaxone. Results UV-Visible Spectroscopy confirmed the successful reduction of the metal ions to nanoparticles. SEM and DLS analysis revealed agglomerated morphologies with minimal variations in particle size. TPNS had a higher zeta potential than TPNZ, indicating a greater stability in the suspension. Mastitis-induced group showed significantly increased thiobarbituric acid reacting substances (TBARS) levels (p < 0.01) and significantly decreased Superoxide dismutase (SOD), Glutathione- S- transferase (GST), catalase (CAT), reduced glutathione (GSH), and glutathione peroxidase (GPx) activities (p < 0.01) compared to group I. Improvements were observed in groups IV, VI, V, and III. Conclusion The TPNS-treated group (IV) showed the highest restoration of antioxidant activity, followed by the ceftriaxone (VI), TPNZ (V), and TPE-treated groups (III). These findings suggest that phytogenic nanoparticles exhibit higher antioxidant activity than TPE extract alone.
Collapse
Affiliation(s)
- A Jayasri
- Department of Veterinary Biochemistry, College of Veterinary Science, Hyderabad, PVNRTVU Telangana, India
| | - P Eswara Prasad
- Department of Veterinary Biochemistry, College of Veterinary Science, Tirupati, SVVU, Andhra Pradesh, India
| | - B D P Kala Kumar
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Hyderabad, PVNRTVU, Telangana, India
| | - K Padmaja
- Department of Veterinary Biochemistry, College of Veterinary Science, Tirupati, SVVU, Andhra Pradesh, India
| | - P Shivakumar
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Mamnoor, Warangal, PVNRTVU, Telangana, India
| | - B Anil Kumar
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science, Korutla, PVNRTVU, Telangana, India
| | - B Vidya
- Department of Livestock Farm Complex, College of Veterinary Science, Hyderabad, PVNRTVU, Telangana, India
| |
Collapse
|
5
|
Waliaveettil FA, Jose J, Anila EI. PEGylated Platinum Nanoparticles: A Comprehensive Study of Their Analgesic and Anti-Inflammatory Effects. ACS APPLIED BIO MATERIALS 2025; 8:628-641. [PMID: 39746938 DOI: 10.1021/acsabm.4c01498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Pain and inflammation are common symptoms of a majority of the diseases. Chronic pain and inflammation, as well as related dreadful disorders, remain difficult to control due to a lack of safe and effective medications. In this work, biocompatible platinum nanoparticles with significant analgesic and anti-inflammatory action were synthesized through a wet chemical method using polyethylene glycol-400 as a capping agent and sodium borohydride as a reducing agent. The average particle size of these Pt nanospheres was determined to be 3.26 nm using TEM analysis, and X-ray diffraction confirmed their face-centered cubic crystalline structure. Fourier transform infrared and UV-visible spectroscopy confirm that Pt-NPs are coated with the PEG-400 molecule. The significantly negative zeta potential value (-26.8 mV) indicates the stability of the produced nanoparticles. In vitro cytotoxicity studies on normal cell lines show nontoxic behavior with over 96% cell viability at 100 μg/mL of the test sample. In vitro assays of inhibition of protein denaturation and DPPH free radical scavenging elucidated the anti-inflammatory and antioxidant properties of PEGylated Pt NPs with promising EC50 values 57.99 and 9.324 μg/mL, respectively. In vivo animal trials confirmed that PEG-capped Pt-NPs are more effective than conventional medicines. The in vivo hot plate assay for the analgesic study shows a maximum response time of 14.5 ± 1.22 s (92.54% analgesia) at a dosage of 50 mg/kg and 13.8 ± 0.71 s (86.05% analgesia) at a dosage of 25 mg/kg after 180 and 240 min of administration, respectively. In the rat paw edema model for anti-inflammatory activity, the PEG-capped Pt NPs exhibit significant inhibitory action, with the maximum percentage of edema inhibition at a dosage of 50 mg/kg identical to that of the aspirin-based standard medication administered at a higher dosage of 100 mg/kg, resulting in 42% inhibition, suggesting a versatile solution for inflammation and persistent pain.
Collapse
Affiliation(s)
| | - Jiya Jose
- Division of Microbiology, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Cochin, Kerala 683104, India
| | - E I Anila
- Department of Physics and Electronics, Christ University, Bengaluru, Karnataka, India 560029
| |
Collapse
|
6
|
Alidoust FA, Zahmatkesh H, Rasti B, Zamani H, Mirpour M, Mirzaie A. Zinc oxide fabricated by rutin as potent anti-leukemia nanostructure. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03724-1. [PMID: 39704806 DOI: 10.1007/s00210-024-03724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Treatment of chronic myeloid leukemia (CML) is a significant therapeutic challenge, and exploration of novel treatment approaches is an urgent necessity. This work investigates the anticancer properties of rutin-conjugated zinc oxide nanoparticles (Rut-ZnO NPs) against CML cells. Physicochemical properties of the NPs were studied by FT-IR, FE-SEM, XRD, zeta potential, and DLS analyses. The MTT, flow cytometry, and quantitative PCR assays were utilized to evaluate cell viability, apoptosis, and Bax/Bcl-2 ratio, respectively. The ZnO-Rut NPs were amorphous with an average size of 59.50 nm, and hydrodynamic size and zeta potential were 161.7nm and -34.3 mV, respectively. The ZnO-Rut NPs showed good cytocompatibility as the viability of peripheral blood mononuclear cells remained above 85% at concentrations up to 100 μg/mL. ZnO-Rut NPs reduced the viability of K562 cells from 92 to 31% at exposure concentrations from 3.125 to 400 μg/mL. The IC50 values for rutin, ZnO NPs, and ZnO-Rutin NPs against K562 cells were 501.8, 386.3, and 175.9 μg/mL, respectively. Following the exposure to ZnO-Rutin NPs, the percentage of early apoptosis increased slightly from 10.5% to 14.1%, and a significant increase (from 11% to 50.9%) in late apoptosis was observed. The mRNA level of the Bax elevated to 1.98 folds, and the Bcl-2 gene was downregulated to 0.33 folds, underscoring the mechanism by which ZnO-Rutin NPs promote apoptosis. This study highlights the efficient anticancer potential of ZnO-Rutin NPs against CML cells, providing the basis for further investigations into their clinical applicability and underlying mechanisms of action.
Collapse
Affiliation(s)
- Fatemeh Azizi Alidoust
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Hossein Zahmatkesh
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
| | | | - Mirsasan Mirpour
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| |
Collapse
|
7
|
Smith NB, Garden AL. A Divide-and-Conquer Approach to Nanoparticle Global Optimisation Using Machine Learning. J Chem Inf Model 2024; 64:8743-8755. [PMID: 39546324 DOI: 10.1021/acs.jcim.4c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Global optimization of the structure of atomic nanoparticles is often hampered by the presence of many funnels on the potential energy surface. While broad funnels are readily encountered and easily exploited by the search, narrow funnels are more difficult to locate and explore, presenting a problem if the global minimum is situated in such a funnel. Here, a divide-and-conquer approach is applied to overcome the issue posed by the multifunnel effect using a machine learning approach, without using a priori knowledge of the potential energy surface. This approach begins with a truncated exploration to gather coarse-grained knowledge of the potential energy surface. This is then used to train a machine learning Gaussian mixture model to divide up the potential energy surface into separate regions, with each region then being explored in more detail (or conquered) separately. This scheme was tested on a variety of multifunnel systems and yielded significant improvements to the times taken to locate the global minima of Lennard-Jones (LJ) nanoparticles, LJ75 and LJ104, as well as two metallic systems, Au55 and Pd88. However, difficulties were encountered for LJ98, providing insight into how the scheme could be further improved.
Collapse
Affiliation(s)
- Nicholas B Smith
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Anna L Garden
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| |
Collapse
|
8
|
El-Fitiany RA, AlBlooshi A, Samadi A, Khasawneh MA. Phytosynthesis, Characterization, Phenolic and Biological Evaluation of Leptadenia pyrotechnica-Based Zn and Fe Nanoparticles Utilizing Two Different Extraction Techniques. Int J Nanomedicine 2024; 19:11003-11021. [PMID: 39502631 PMCID: PMC11537101 DOI: 10.2147/ijn.s480716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Phyto-nanotechnology offers a sustainable method for synthesizing biocompatible metal nanoparticles (NPs) with therapeutic potential. The diverse medicinal flora in the UAE, particularly Leptadenia pyrotechnica (LP), provides a vital resource for advancing this research area. This plant is historically valued in the region for its wide medicinal applications due to its abundance of bioactive compounds. Methods In this study, eco-friendly, straightforward, and low-temperature hydrothermal synthesis methods were applied to synthesize potentially therapeutic Zn and Fe NPs using LP extracts. The generated NPs were characterized using UV-VIS, FT-IR, SEM, EDX, XRD and DLS. Moreover, they were investigated for their total phenolic and flavonoid contents, along with their antioxidant and skin anticancer effects. Results The UV-Vis spectra disclosed absorption band at about 275 nm, and the FT-IR confirmed the successful coating of the NPs with the plants' phytochemicals, thus ensuring the successful bio-fabrication of the proposed NPs. SEM/EDX outcomes suggest a more potent reducing effect of the aqueous extract, while a more effective coating of the alcoholic extract. DLS revealed monodispersed NPs, with average sizes ranging from 43.82 to 207.8 nm. LFeC demonstrated the highest phenolic and flavonoid contents (49.96±4.76 μg of GAE/mg of DW and 43.89±2.89 μg of Qu/mg of DW, respectively) and the greatest potency against skin cancer cell lines (IC50=263.56 µg/mL). However, LZnC exhibited the strongest radical scavenging effect against DPPH and ABTS radicals (IC50=139.45µg/mL and 35.1µg/mL, respectively). Discussion The results of this study demonstrated that both extracts of LP are effective in the green synthesis of Fe and Zn nanoparticles for biomedical applications, with alcoholic extracts providing superior coating, capping, and stabilizing properties, leading to lower agglomeration, higher carbon content, total phenolic and flavonoid contents, along with enhanced anticancer and antioxidant effects. This work gives a showcase of sustainable materials that are promising for therapeutic applications.
Collapse
Affiliation(s)
- Rana Ahmed El-Fitiany
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Pharmacognosy Department, Faculty of Pharmacy, Egyptian Chinese University, Cairo, Egypt
| | - Afra AlBlooshi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammad A Khasawneh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
9
|
W FA, Jose J, E I A. Assessing anticancer properties of PEGylated platinum nanoparticles on human breast cancer cell lines using in-vitroassays. Biomed Phys Eng Express 2024; 10:065019. [PMID: 39260382 DOI: 10.1088/2057-1976/ad795d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
This study describes the in-vitro cytotoxic effects of PEG-400 (Polyethylene glycol-400)-capped platinum nanoparticles (PEGylated Pt NPs) on both normal and cancer cell lines. Structural characterization was carried out using x-ray diffraction and Raman spectroscopy with an average crystallite size 5.7 nm, and morphological assessment using Scanning electron microscopy (SEM) revealed the presence of spherical platinum nanoparticles. The results of energy-dispersive x-ray spectroscopy (EDX) showed a higher percentage fraction of platinum content by weight, along with carbon and oxygen, which are expected from the capping agent, confirming the purity of the platinum sample. The dynamic light scattering experiment revealed an average hydrodynamic diameter of 353.6 nm for the PEGylated Pt NPs. The cytotoxicity profile of PEGylated Pt NPs was assessed on a normal cell line (L929) and a breast cancer cell line (MCF-7) using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results revealed an IC50of 79.18 μg ml-1on the cancer cell line and non-toxic behaviour on the normal cell line. In the dual staining apoptosis assay, it was observed that the mortality of cells cultured in conjunction with platinum nanoparticles intensified and the proliferative activity of MCF-7 cells gradually diminished over time in correlation with the increasing concentration of the PEGylated Pt NPs sample. Thein vitroDCFH-DA assay for oxidative stress assessment in nanoparticle-treated cells unveiled the mechanistic background of the anticancer activity of PEGylated platinum nanoparticles as ROS-assisted mitochondrial dysfunction.
Collapse
Affiliation(s)
- Felicia Aswathy W
- Department of Physics and Electronics, Christ University, Bengaluru, Karnataka- 560029, India
| | - Jiya Jose
- Division of Microbiology, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Cochin, Kerala- 683104, India
| | - Anila E I
- Department of Physics and Electronics, Christ University, Bengaluru, Karnataka- 560029, India
| |
Collapse
|
10
|
Patel J, Kumar GS, Roy H, Maddiboyina B, Leporatti S, Bohara RA. From nature to nanomedicine: bioengineered metallic nanoparticles bridge the gap for medical applications. DISCOVER NANO 2024; 19:85. [PMID: 38724833 PMCID: PMC11082127 DOI: 10.1186/s11671-024-04021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
The escalating global challenge of antimicrobial resistance demands innovative approaches. This review delves into the current status and future prospects of bioengineered metallic nanoparticles derived from natural sources as potent antimicrobial agents. The unique attributes of metallic nanoparticles and the abundance of natural resources have sparked a burgeoning field of research in combating microbial infections. A systematic review of the literature was conducted, encompassing a wide range of studies investigating the synthesis, characterization, and antimicrobial mechanisms of bioengineered metallic nanoparticles. Databases such as PubMed, Scopus, Web of Science, ScienceDirect, Springer, Taylor & Francis online and OpenAthen were extensively searched to compile a comprehensive overview of the topic. The synthesis methods, including green and sustainable approaches, were examined, as were the diverse biological sources used in nanoparticle fabrication. The amalgamation of metallic nanoparticles and natural products has yielded promising antimicrobial agents. Their multifaceted mechanisms, including membrane disruption, oxidative stress induction, and enzyme inhibition, render them effective against various pathogens, including drug-resistant strains. Moreover, the potential for targeted drug delivery systems using these nanoparticles has opened new avenues for personalized medicine. Bioengineered metallic nanoparticles derived from natural sources represent a dynamic frontier in the battle against microbial infections. The current status of research underscores their remarkable antimicrobial efficacy and multifaceted mechanisms of action. Future prospects are bright, with opportunities for scalability and cost-effectiveness through sustainable synthesis methods. However, addressing toxicity, regulatory hurdles, and environmental considerations remains crucial. In conclusion, this review highlights the evolving landscape of bioengineered metallic nanoparticles, offering valuable insights into their current status and their potential to revolutionize antimicrobial therapy in the future.
Collapse
Affiliation(s)
- Jitendra Patel
- Gitam School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, Rudraram, Sangareddy, Hyderabad, TS, 502329, India
| | - G Shiva Kumar
- Gitam School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, Rudraram, Sangareddy, Hyderabad, TS, 502329, India
| | - Harekrishna Roy
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, 522503, India.
| | - Balaji Maddiboyina
- Department of Medical and Scientific Communications, Scientific Writing Services, Freyr Global Regulatory Solutions & Services, Phoenix SEZ, Hitech City, Gachibowli, Hyderabad, 500081, India.
| | - Stefano Leporatti
- CNR Nanotec-Istituto Di Nanotecnologia, C\O Campus EcotekneVia Monteroni, 3100, Lecce, Italy
| | - Raghvendra A Bohara
- D.Y. Patil Education Society (Deemed to be University), Kolhapur, MS, India.
- University of Galway, Galway, Ireland.
| |
Collapse
|
11
|
Rezaei N, Zarkesh I, Fotouhi A, Alikhani HK, Hassan M, Vosough M. Chitosan-coated nanoparticles in innovative cancer bio-medicine. Drug Dev Res 2024; 85:e22189. [PMID: 38678548 DOI: 10.1002/ddr.22189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
In the recent decade, nanoparticles (NPs) have had enormous implications in cancer biomedicine, including research, diagnosis, and therapy. However, their broad application still faces obstacles due to some practical limitations and requires further development. Recently, there has been more interest in the coated class of nanoparticles to address those challenges. Chitosan-coated NPs are simple to produce, biodegradable, biocompatible, exhibit antibacterial activity, and have less cytotoxicity. This study provides an updated and comprehensive overview of the application of chitosan-coated NPs as a promising class of NPs in cancer biomedicine. Additionally, we discussed chitosan-coated lipid, metal, and polymer-based nanoparticles in biomedical applications. Furthermore, different coating methods and production/characterization procedures were reviewed. Moreover, the biological and physicochemical advantages of chitosan-coated NPs, including facilitated controlled release, greater physicochemical stability, improved cell/tissue interaction, and enhanced bioavailability of medications, were highlighted. Finally, the prospects of chitosan-coated NPs in cancer biomedicine were discussed.
Collapse
Affiliation(s)
- Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ibrahim Zarkesh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alireza Fotouhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnique), Tehran, Iran
| | - Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
12
|
Zhu Y, Hu X, Qiao M, Zhao L, Dong C. Penicillium polonicum-mediated green synthesis of silver nanoparticles: Unveiling antimicrobial and seed germination advancements. Heliyon 2024; 10:e28971. [PMID: 38601517 PMCID: PMC11004220 DOI: 10.1016/j.heliyon.2024.e28971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Silver nanoparticles (AgNPs), widely recognized for their nanoscale geometric size and unique properties, such as large specific surface area, high permeability, and high safety, were synthesized using the endophytic fungus Penicillium polonicum PG21 through a green approach. Four key synthesis factors-48 h, 45 °C, pH 9.0, and 80 mM AgNPs concentration-were optimized. Characterization via ultraviolet-visible spectroscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction revealed the AgNPs as approximately 3-25 nm spherical particles with numerous functional groups ensuring stability. AgNPs were tested against various fungal and bacterial plant pathogens, including Botrytis cinerea (EB-1), Alternaria alternata (EB-2, EB-3), Fusarium solani (RG-1), Williamsia serinedens (SL-1), Sphingopyxis macrogoltabida (SL-2), Bacillus velezensis (SL-3), and Pseudomonas mediterranea (SL-4), causing agricultural challenges. PG21-synthesized AgNPs exhibited inhibition rates against all tested fungi, with 60 μg/mL AgNPs demonstrating optimal inhibition rates. Notably, EB-1 experienced a significant growth inhibition, reaching an inhibition rate reached of 74.22 ± 1.54%. Conversely, RG-1 exhibited the smallest inhibitory effect at 48.13 ± 0.92%. The effect of AgNPs on safflower seed germination and growth revealed notable increases in shoot length, fresh weight, stem length, and number of lateral roots-1.4, 1.4, 1.33, and 10.67 times higher than the control, respectively, at an AgNPs concentration of 80 μg/mL. In conclusion, green-synthesized AgNPs demonstrate pathogen toxicity, showcasing potential applications in disease management for industrial crops and promoting plant growth.
Collapse
Affiliation(s)
- Yunhao Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, PR China
| | - Xiangxiang Hu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
| | - Mengyi Qiao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
| | - Le Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
| | - Chengming Dong
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, PR China
| |
Collapse
|
13
|
Kim D, Kim H. Analysis of Optimal Treatment Starting Time for Photothermal Therapy Through Analysis of Diffusion Behavior of Gold Nanoparticles. Int J Nanomedicine 2024; 19:3167-3186. [PMID: 38585473 PMCID: PMC10999192 DOI: 10.2147/ijn.s452470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/28/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Due to its distinct advantage of non-invasive application in treatment, photothermal therapy (PTT) is being studied by many researchers to reduce the need for surgical incisions. It is characterized by the injection of nanoparticles into biological tissue as photothermal agents (PTAs) which diffuse within the tissue. In this study, the diffusion behavior of various doses of gold nanoparticles (AuNPs) injected into tumor tissues is analyzed and the effectiveness of PTT at each elapsed time after injection is confirmed by numerical analysis. Methods The diffusion behavior of AuNPs within biological tissues is assessed using the convection-diffusion equation, while the temperature distribution is determined using the Pennes bioheat transfer equation. In addition, the effect of the diffusion behavior of AuNPs on the effectiveness of PTT is quantitatively confirmed by analyzing the temperature distribution in the medium through the apoptotic variable. Numerical simulation parameters are selected with doses ranging from 100 to 400 μg/mL, elapsed time after injection from 1 min to 24 h, and laser power ranging from 0 to 1 W. Results After evaluating PTT's efficacy in every situation, it was discovered that a dosage of 100-300 μg/mL produced the best therapeutic result, with the highest impact occurring 12 hours after injection. In contrast, when the dosage was 400 μg/mL, the highest therapeutic effect was achieved after 18 hours post-injection. Additionally, it was discovered that the ideal laser power at each injection dose was 0.22, 0.14, 0.12, and 0.12 W, respectively. Conclusion The conditions required to achieve the optimal treatment effect at each dosage, presented here, are expected to accelerate the commercialization of PTT.
Collapse
Affiliation(s)
- Donghyuk Kim
- Department of Mechanical Engineering, Ajou University, Suwon-si, Gyeonggi-do, 16499, Korea
| | - Hyunjung Kim
- Department of Mechanical Engineering, Ajou University, Suwon-si, Gyeonggi-do, 16499, Korea
| |
Collapse
|
14
|
Wierzbicki M, Kot M, Lange A, Kalińska A, Gołębiewski M, Jaworski S. Evaluation of the Antimicrobial, Cytotoxic, and Physical Properties of Selected Nano-Complexes in Bovine Udder Inflammatory Pathogen Control. Nanotechnol Sci Appl 2024; 17:77-94. [PMID: 38523648 PMCID: PMC10961027 DOI: 10.2147/nsa.s447810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/06/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose Mastitis in dairy cows is a worldwide problem faced by dairy producers. Treatment mainly involves antibiotic therapy, however, due to widespread antibiotic resistance among bacteria, such treatments are no longer effective. For this reason, scientists are searching for new solutions to combat mastitis, which is caused by bacteria, fungi, and algae. One of the most promising solutions, nanotechnology, is attracting research due to its biocidal properties. The purpose of this research was to determine the biocidal properties of nanocomposites as a potential alternative to antibiotics in the control of mastitis, as well as to determine whether the use of nanoparticles and what concentration is safe for the breeder and the animal. Patients and Methods In this study, the effects of Ag, Au, Cu, Fe, and Pt nanoparticles and their complexes were evaluated in relation to the survival of bacteria and fungi isolated from cattle diagnosed with mastitis, their physicochemical properties, and their toxicity to bovine and human mammary epithelial cells BME-UV1 and HMEC (human microvascular endothelial cells). Moreover, E. coli, S. aureus, C. albicans, and Prototheca sp. invasion was assessed using the alginate bead (bioprinted) model. The NPs were tested at concentrations of 25, 12.5, 6.25, 3.125, 1.56 mg/l for Au, Ag, Cu and Fe NPs, and 10, 5, 2.5, 1.25, 0.625 mg/l for Pt. Results With the exception of Fe and Pt, all exhibited biocidal properties against isolates, while the AgCu complex had the best effect. In addition, nanoparticles showed synergistic effects, while the low concentrations had no toxic effect on BME-UV1 and HMEC cells. Conclusion Synergistic effects of nanoparticles and no toxicity to bovine and human cells might, in the future, be an effective alternative in the fight against microorganisms responsible for mastitis, and the implementation of research results in practice would reduce the percentage of dairy cows suffering from mastitis. The problem of increasing antibiotic resistance is posing a global threat to human's and animal's health, and requires comprehensive research to evaluate the potential use of nanoparticles - especially their complexes - as well as to determine whether nanoparticles are safe for the breeders and the animals. The conducted series of studies allows further consideration of the use of the obtained results in practice, creating a potentially new alternative to antibiotics in the treatment and prevention of mastitis in dairy cattle.
Collapse
Affiliation(s)
- Mateusz Wierzbicki
- Department of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Magdalena Kot
- Animal Breeding Department, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Agata Lange
- Department of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Aleksandra Kalińska
- Animal Breeding Department, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Marcin Gołębiewski
- Animal Breeding Department, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| |
Collapse
|
15
|
Tamboli QY, Patange SM, Mohanta YK, Patil AD, Ali R, Bushnak I, Zakde K. Moringa oleifera Gum-Assisted Synthesis and Characterization of CoAg xFe 2-xO 4: Insight into Structural, Magnetic, Optical, and Biomedical Properties. ACS OMEGA 2024; 9:3835-3845. [PMID: 38284047 PMCID: PMC10809381 DOI: 10.1021/acsomega.3c06578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024]
Abstract
The sol-gel method was employed to prepare nano CoFe2O4 and silver-substituted CoFe2O4 nanohybrids (CoAgxFe2-xO4, x = 0, 0.1, 0.2, 0.3, 0.4) utilizing Moringa oleifera gum as biofuel. The morphology, size, shape, magnetic, optical, and functional groups of the crystallites were determined using various techniques such as UV-visible, Fourier transform infrared, X-ray diffraction, Rietveld, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, and photoluminescence. The produced nanoferrite has a spherical shape with cubic spinal structures. The optical properties were investigated in two different bands in the photoluminescence emission spectra at 469 and 493 nm. Saturation magnetization (Ms) and coercivity (Hc) decrease as the Ag content increases significantly. Furthermore, antibacterial (Gram-positive bacteria bacterial strains, Bacillus subtilis and Staphylococcus aureus, and Gram-negative bacterial strains, Pseudomonas aeruginosa, and Escherichia coli), antibiofilm activity (E. coli), and antioxidant (DPPH) activities were investigated. The substantial increase in the silver content offers a constructive impact on studied biomedical activities. These findings encourage additional research into the use of hybrid nanoparticles (an amalgamation of ferrite and a noble metal) in biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Qudsiya Y Tamboli
- Department of Basic and Applied Science, MGM University, Aurangabad 431001, Maharashtra, India
| | - Sunil M Patange
- Materials Science Research Laboratory, SKM, Gunjoti, Osmanabad 413613, Maharashtra, India
| | - Yugal Kishore Mohanta
- Nano-Biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Baridua, Ri-Bhoi, Techno City 793101, Meghalaya, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Asha D Patil
- Deshbhakt Anandrao Balawantrao Naik Art's and Science College, Chikhali, Sangli 415408, Maharashtra, India
| | - Rizwan Ali
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh 14811, Saudi Arabia
| | - Ibraheem Bushnak
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh 14811, Saudi Arabia
| | - Kranti Zakde
- Department of Basic and Applied Science, MGM University, Aurangabad 431001, Maharashtra, India
| |
Collapse
|
16
|
Xie F, Zhu C, Gong L, Zhu N, Ma Q, Yang Y, Zhao X, Qin M, Lin Z, Wang Y. Engineering core-shell chromium nanozymes with inflammation-suppressing, ROS-scavenging and antibacterial properties for pulpitis treatment. NANOSCALE 2023; 15:13971-13986. [PMID: 37606502 DOI: 10.1039/d3nr02930a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Oral diseases are usually caused by inflammation and bacterial infection. Reactive oxygen species (ROS), which come from both autologous inflammation tissue and bacterial infection, play an important role in this process. Thus, the elimination of excessive intracellular ROS can be a promising strategy for anti-inflammatory treatment. With the rapid development of nanomedicines, nanozymes, which can maintain the intracellular redox balance and protect cells against oxidative damage, have shown great application prospects in the treatment of inflammation-related diseases. However, their performance in pulpitis and their related mechanisms have yet to be explored. Herein, we prepared dozens of metallic nanoparticles with core-shell structures, and among them, chromium nanoparticles (NanoCr) were selected for their great therapeutic potential for pulpitis disease. NanoCr showed a broad antibacterial spectrum and strong anti-inflammatory function. Antibacterial assays showed that NanoCr could effectively inhibit a variety of common pathogens of oral infection. In vitro experiments offered evidence of the multienzyme activity of NanoCr and its function in suppressing ROS-induced inflammation reactions. The experimental results show that NanoCr has optimal antibacterial and anti-inflammatory properties in in vitro cell models, showing great potential for the treatment of pulpitis. Therefore, the use of NanoCr could become a new therapeutic strategy for clinical pulpitis.
Collapse
Affiliation(s)
- Fei Xie
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China.
| | - Chuanda Zhu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P.R. China.
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Lidong Gong
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Ningxin Zhu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China.
| | - Qiang Ma
- Institute of Environment and Sustainable Development in Agriculture, Chinese academy of Agriculture, Beijing 100081, P.R. China
| | - Yuanyuan Yang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Xinrong Zhao
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Man Qin
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China.
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing 100081, P.R. China.
| |
Collapse
|
17
|
Subbotina J, Rouse I, Lobaskin V. In silico prediction of protein binding affinities onto core-shell PEGylated noble metal nanoparticles for rational design of drug nanocarriers. NANOSCALE 2023; 15:13371-13383. [PMID: 37530535 DOI: 10.1039/d3nr03264g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Polymer-coated nanoparticles (NP) are commonly used as drug carriers or theranostic agents. Their uptake rates are modulated by the interactions with essential serum proteins such as transferrin and albumin. Understanding the control parameters of these interactions is crucial for improving the efficiency of these nanoscale devices. In this work, we perform a multiscale computational study of protein adsorption onto polyethylene glycol (PEG) coated gold and silver NPs, producing protein-NP adsorption rankings as a function of PEG grafting density, which are validated against previously reported experimental protein-NP binding constants. Furthermore, the applied nano-docking method provides information on the preferred orientation of proteins immobilised on the surface of NPs. We propose a method of construction of model core-shell NPs in silico. The presented protocol can provide molecular level insights for the experimental development of biosensors, nanocarriers, or other nanoplatforms where information on the preferred orientation of protein at the bio-nano interface is crucial, and enables fast in silico prescreening of assays of various nanocarriers, i.e., combinations of proteins, NPs, and coatings.
Collapse
Affiliation(s)
- Julia Subbotina
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Ian Rouse
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Vladimir Lobaskin
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
18
|
Anjum S, Vyas A, Sofi T. Fungi-mediated synthesis of nanoparticles: characterization process and agricultural applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4727-4741. [PMID: 36781932 DOI: 10.1002/jsfa.12496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/31/2022] [Accepted: 02/13/2023] [Indexed: 06/08/2023]
Abstract
In the field of nanotechnology, the use of biologically active products from fungi for the reduction and synthesis of nanoparticles as an alternative to toxic chemicals has received extensive attention, due to their production of large quantities of proteins, high yields, easy handling, and the low toxicity of the residues. Fungi have become valuable tools for the manufacture of nanoparticles in comparison with other biological systems because of their enhanced growth control and diversity of metabolites, including enzymes, proteins, peptides, polysaccharides, and other macro-molecules. The ability to use different species of fungi and to perform the synthesis under different conditions enables the production of nanoparticles with different physicochemical characteristics. Fungal nanotechnology has been used to develop and offer products and services in the agricultural, medicinal, and industrial sectors. Agriculturally, it has found applications in plant disease management, crop improvement, biosensing, and the production of environmentally friendly, non-toxic pesticides and fertilizers to enhance agricultural production in general. The subject of this review is the application of fungi in the synthesis of inorganic nanoparticles, characterization, and possible applications of fungal nanoparticles in the diverse agricultural sector. The literature shows potential uses of fungi in biogenic synthesis, enabling the production of nanoparticles with different physiognomies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shahnaz Anjum
- Department of Botany, Lovely Professional University, Phagwara, India
- Division of Plant Pathology, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, India
| | - Ashish Vyas
- Department of Microbiology and Biochemistry, Lovely Professional University, Phagwara, India
| | - Tariq Sofi
- Division of Plant Pathology, FoH, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, India
| |
Collapse
|
19
|
Hesabizadeh T, Sung K, Park M, Foley S, Paredes A, Blissett S, Guisbiers G. Synthesis of Antibacterial Copper Oxide Nanoparticles by Pulsed Laser Ablation in Liquids: Potential Application against Foodborne Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2206. [PMID: 37570524 PMCID: PMC10421107 DOI: 10.3390/nano13152206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023]
Abstract
Spherical copper oxide nanoparticles (CuO/Cu2O NPs) were synthesized by pulsed laser ablation in liquids (PLAL). The copper target was totally submerged in deionized (DI) water and irradiated by an infrared laser beam at 1064 nm for 30 min. The NPs were then characterized by dynamic light scattering (DLS) and atomic emission spectroscopy (AES) to determine their size distribution and concentration, respectively. The phases of copper oxide were identified by Raman spectroscopy. Then, the antibacterial activity of CuO/Cu2O NPs against foodborne pathogens, such as Salmonella enterica subsp. enterica serotype Typhimurium DT7, Escherichia coli O157:H7, Shigella sonnei ATCC 9290, Yersinia enterocolitica ATCC 27729, Vibrio parahaemolyticus ATCC 49398, Bacillus cereus ATCC 11778, and Listeria monocytogenes EGD, was tested. At a 3 ppm concentration, the CuO/Cu2O NPs exhibited an outstanding antimicrobial effect by killing most bacteria after 5 h incubation at 25 °C. Field emission scanning electron microscope (FESEM) confirmed that the CuO/Cu2O NPs destructed the bacterial cell wall.
Collapse
Affiliation(s)
- Tina Hesabizadeh
- Department of Physics and Astronomy, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA; (T.H.); (S.B.)
| | - Kidon Sung
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (K.S.); (M.P.); (S.F.)
| | - Miseon Park
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (K.S.); (M.P.); (S.F.)
| | - Steven Foley
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA; (K.S.); (M.P.); (S.F.)
| | - Angel Paredes
- NCTR-ORA Nanotechnology Core Facility, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA;
| | - Stephen Blissett
- Department of Physics and Astronomy, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA; (T.H.); (S.B.)
| | - Gregory Guisbiers
- Department of Physics and Astronomy, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, USA; (T.H.); (S.B.)
| |
Collapse
|
20
|
Sharma A, Mondal S, Ahuja T, Karmakar T, Siddhanta S. Ion-Mediated Protein Stabilization on Nanoscopic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1227-1237. [PMID: 36622301 DOI: 10.1021/acs.langmuir.2c03010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The emergence of nanoparticles in biomedical applications has made their interactions with proteins inevitable. Nanoparticles conjugated with proteins and peptide-based constructs form an integral part of nanotherapeutics and have recently shown promise in treating a myriad of diseases. The proper functioning of proteins is critical to achieve their biological functions. However, interface issues result in the denaturation of proteins, and the loss of orientation and steric hindrance can adversely affect the function of the conjugate. Furthermore, surface-induced denaturation also triggers protein aggregation, resulting in amyloid-like species. Understanding the mechanistic underpinnings of protein-nanoparticle interactions and controlling their interfacial characteristics are critical and challenging due to the complex nature of the conjugates. In this milieu, we demonstrate that ionic liquids can be suitable candidates for stabilizing protein-nanoparticle interactions by virtue of their excellent protein-preserving properties. We also probe the previously unexplored mechanism of ion-mediated stabilization of the protein molecules on the nanoparticle surface. The protein-nanoparticle conjugates consist of lysozyme and choline-based ionic liquids characterized by optical and electron microscopy techniques combined with surface-sensitive plasmon-enhanced Raman spectroscopy. Furthermore, atomistic molecular dynamics simulations of the conjugates delineate interfacial interactions of the protein molecules and the modulation by the ions, particularly the conformational changes and the dynamic correlation when the protein and specific ionic liquid molecules are adsorbed on the nanoparticle surface. The combined experimental and computational studies showed the synergistic behavior of the ions of the ionic liquids, specifically the orientation and coverage of the anions aided by the cations to control the surface interactions and hence the overall protein stability. These studies pave the way for using ionic liquids, particularly their biocompatible counterparts in nanoparticle-based complexes, as stabilizing agents for biomedical applications.
Collapse
Affiliation(s)
- Arti Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi110016, India
| | - Soumya Mondal
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi110016, India
| | - Tripti Ahuja
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi110016, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi110016, India
| | - Soumik Siddhanta
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi110016, India
| |
Collapse
|
21
|
Yang X, Fan S, Ma Y, Chen H, Xu JF, Pi J, Wang W, Chen G. Current progress of functional nanobiosensors for potential tuberculosis diagnosis: The novel way for TB control? Front Bioeng Biotechnol 2022; 10:1036678. [PMID: 36588948 PMCID: PMC9798010 DOI: 10.3389/fbioe.2022.1036678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB), induced by the foxy Mycobacterium tuberculosis (Mtb), is still one of the top killers worldwide among infectious diseases. Although several antibiotics have been developed to significantly relieve the tuberculosis epidemics worldwide, there are still several important scientific challenges for tuberculosis. As one of the most critical issues for tuberculosis control, the accurate and timely diagnosis of tuberculosis is critical for the following therapy of tuberculosis and thus responsible for the effective control of drug-resistant tuberculosis. Current tuberculosis diagnostic methods in clinic are still facing the difficulties that they can't provide the rapid diagnostic results with high sensitivity and accuracy, which therefore requires the development of more effective novel diagnostic strategies. In recent decades, nanomaterials have been proved to show promising potentials for novel nanobiosensor construction based on their outstanding physical, chemical and biological properties. Taking these promising advantages, nanomaterial-based biosensors show the potential to allow the rapid, sensitive and accurate tuberculosis diagnosis. Here, aiming to increase the development of more effective tuberculosis diagnostic strategy, we summarized the current progress of nanobiosensors for potential tuberculosis diagnosis application. We discussed the different kind diagnostic targets for tuberculosis diagnosis based on nanobiosensors, ranging from the detection of bacterial components from M. tuberculosis, such as DNA and proteins, to the host immunological responses, such as specific cytokine production, and to the direct whole cell detection of M. tuberculosis. We believe that this review would enhance our understandings of nanobiosensors for potential tuberculosis diagnosis, and further promote the future research on nanobiosensor-based tuberculosis diagnosis to benefit the more effective control of tuberculosis epidemic.
Collapse
Affiliation(s)
- Xuran Yang
- Department of Clinical Medicine Laboratory, Affiliated Xiaolan Hospital, Southern Medical University, Zhongshan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hui Chen
- Department of Clinical Medicine Laboratory, Affiliated Xiaolan Hospital, Southern Medical University, Zhongshan, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China,*Correspondence: Jiang Pi, ; Wandang Wang, ; Guanghui Chen,
| | - Wandang Wang
- Department of Clinical Medicine Laboratory, Affiliated Xiaolan Hospital, Southern Medical University, Zhongshan, China,*Correspondence: Jiang Pi, ; Wandang Wang, ; Guanghui Chen,
| | - Guanghui Chen
- Department of Clinical Medicine Laboratory, Affiliated Xiaolan Hospital, Southern Medical University, Zhongshan, China,*Correspondence: Jiang Pi, ; Wandang Wang, ; Guanghui Chen,
| |
Collapse
|
22
|
Joudeh N, Saragliadis A, Koster G, Mikheenko P, Linke D. Synthesis methods and applications of palladium nanoparticles: A review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1062608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Palladium (Pd) is a key component of many catalysts. Nanoparticles (NPs) offer a larger surface area than bulk materials, and with Pd cost increasing 5-fold in the last 10 years, Pd NPs are in increasing demand. Due to novel or enhanced physicochemical properties that Pd NPs exhibit at the nanoscale, Pd NPs have a wide range of applications not only in chemical catalysis, but also for example in hydrogen sensing and storage, and in medicine in photothermal, antibacterial, and anticancer therapies. Pd NPs, on the industrial scale, are currently synthesized using various chemical and physical methods. The physical methods require energy-intensive processes that include maintaining high temperatures and/or pressure. The chemical methods usually involve harmful solvents, hazardous reducing or stabilizing agents, or produce toxic pollutants and by-products. Lately, more environmentally friendly approaches for the synthesis of Pd NPs have emerged. These new approaches are based on the use of the reducing ability of phytochemicals and other biomolecules to chemically reduce Pd ions and form NPs. In this review, we describe the common physical and chemical methods used for the synthesis of Pd NPs and compare them to the plant- and bacteria-mediated biogenic synthesis methods. As size and shape determine many of the unique properties of Pd NPs on the nanoscale, special emphasis is given to the control of these parameters, clarifying how they impact current and future applications of this exciting nanomaterial.
Collapse
|
23
|
Dun X, Liu S, Ge N, Liu M, Li M, Zhang J, Bao H, Li B, Zhang H, Cui L. Photothermal effects of CuS-BSA nanoparticles on H22 hepatoma-bearing mice. Front Pharmacol 2022; 13:1029986. [PMID: 36313308 PMCID: PMC9596806 DOI: 10.3389/fphar.2022.1029986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to evaluate the in vivo application and photothermal ablation effects and mechanism of copper sulfide nanoparticles (CuS NPs) in hepatocellular carcinoma (HCC). Sheet-like CuS-BSA NPs with a particle size of 30 nm were synthesized using bovine serum albumin (BSA) as a biological modifier, and were physically characterized. To provide a reference range for the biosafety dose of CuS-BSA NPs, 36 male Kunming mice were randomly assigned into six groups. Different one-time doses of CuS-BSA NPs were injected via tail vein injection, and the potential damages of liver, kidney and spleen were observed 14 days later. To evaluate the in vivo photothermal effect of CuS-BSA NPs, 48 male Kunming mice were used to establish the H22 hepatoma-bearing mouse model and were randomly assigned into six groups. CuS-BSA NPs (600 μg/kg) were injected via tail vein or intratumoral injection. Irradiations were performed 30 min after injection, with a 980 nm near-infrared laser (2.0 W/cm2) for 10 min once a week for 3 weeks. The results indicated that the CuS-BSA NPs had good dispersibility in three different solvents and had a strong absorption peak at 980 nm. The heating curves demonstrated that the photothermal effects of CuS-BSA NPs aqueous solution exhibited concentration dependence and power density dependence. In the in vivo experiment, when the doses of CuS-BSA NPs were in the range of 1800–7,200 μg/kg, the thymus index and spleen index of mice were not significantly different from those of the control group, and the structures of liver, kidney and spleen were intact without remarkable pathological changes. A lower dose of CuS-BSA NPs (600 μg/kg) could effectively inhibit tumor growth in H22 hepatoma-bearing mice at 980 nm NIR. Moreover, under the near-infrared laser irradiation, both in the tail vein injection group and the intratumoral injection group, a large area of necrosis in the tumor tissue, as well as the up-regulation of apoptotic proteins including cleaved caspase-3 and cleaved caspase-9 were observed. CuS-BSA NPs are promising photothermal agents in the photothermal therapy of cancer.
Collapse
Affiliation(s)
- Xinyu Dun
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Shuliang Liu
- Weihai Center for Disease Control and Prevention, Weihai, Shandong, China
| | - Nan Ge
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Meng Liu
- Department of Occupational Medicine, The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Ming Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials and Devices, College of Physics, Qingdao University, Qingdao, China
| | - Hongxu Bao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Benying Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Hua Zhang
- Department of Occupational Medicine, The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
- *Correspondence: Hua Zhang, ; Lianhua Cui,
| | - Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
- *Correspondence: Hua Zhang, ; Lianhua Cui,
| |
Collapse
|
24
|
Gutiérrez de la Rosa SY, Muñiz Diaz R, Villalobos Gutiérrez PT, Patakfalvi R, Gutiérrez Coronado Ó. Functionalized Platinum Nanoparticles with Biomedical Applications. Int J Mol Sci 2022; 23:9404. [PMID: 36012670 PMCID: PMC9409011 DOI: 10.3390/ijms23169404] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/21/2022] Open
Abstract
Functionalized platinum nanoparticles have been of considerable interest in recent research due to their properties and applications, among which they stand out as therapeutic agents. The functionalization of the surfaces of nanoparticles can overcome the limits of medicine by increasing selectivity and thereby reducing the side effects of conventional drugs. With the constant development of nanotechnology in the biomedical field, functionalized platinum nanoparticles have been used to diagnose and treat diseases such as cancer and infections caused by pathogens. This review reports on physical, chemical, and biological methods of obtaining platinum nanoparticles and the advantages and disadvantages of their synthesis. Additionally, applications in the biomedical field that can be utilized once the surfaces of nanoparticles have been functionalized with different bioactive molecules are discussed, among which antibodies, biodegradable polymers, and biomolecules stand out.
Collapse
Affiliation(s)
| | | | | | | | - Óscar Gutiérrez Coronado
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Jalisco, Mexico
| |
Collapse
|
25
|
Quinson J. Osmium and OsO x nanoparticles: an overview of syntheses and applications. OPEN RESEARCH EUROPE 2022; 2:39. [PMID: 37645302 PMCID: PMC10446100 DOI: 10.12688/openreseurope.14595.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 08/31/2023]
Abstract
Precious metal nanoparticles are key for a range of applications ranging from catalysis and sensing to medicine. While gold (Au), silver (Ag), platinum (Pt), palladium (Pd) or ruthenium (Ru) nanoparticles have been widely studied, other precious metals are less investigated. Osmium (Os) is one of the least studied of the precious metals. However, Os nanoparticles are interesting materials since they present unique features compared to other precious metals and Os nanomaterials have been reported to be useful for a range of applications, catalysis or sensing for instance. With the increasing availability of advanced characterization techniques, investigating the properties of relatively small Os nanoparticles and clusters has become easier and it can be expected that our knowledge on Os nanomaterials will increase in the coming years. This review aims to give an overview on Os and Os oxide materials syntheses and applications.
Collapse
Affiliation(s)
- Jonathan Quinson
- Chemistry, University of Copenhagen, Copenhagen, Denmark
- Biochemical and Chemical Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
26
|
Abstract
Nanomaterials are promising in the development of innovative therapeutic options that include tissue and organ replacement, as well as bone repair and regeneration. The expansion of new nanoscaled biomaterials is based on progress in the field of nanotechnologies, material sciences, and biomedicine. In recent decades, nanomaterial systems have bridged the line between the synthetic and natural worlds, leading to the emergence of a new science called nanomaterial design for biological applications. Nanomaterials replicating bone properties and providing unique functions help in bone tissue engineering. This review article is focused on nanomaterials utilized in or being explored for the purpose of bone repair and regeneration. After a brief overview of bone biology, including a description of bone cells, matrix, and development, nanostructured materials and different types of nanoparticles are discussed in detail.
Collapse
|
27
|
Treasure on the Earth—Gold Nanoparticles and Their Biomedical Applications. MATERIALS 2022; 15:ma15093355. [PMID: 35591689 PMCID: PMC9105202 DOI: 10.3390/ma15093355] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023]
Abstract
Recent advances in the synthesis of metal nanoparticles (NPs) have led to tremendous expansion of their potential applications in different fields, ranging from healthcare research to microelectronics and food packaging. Among the approaches for exploiting nanotechnology in medicine, gold nanomaterials in particular have been found as the most promising due to their unique advantages, such as in sensing, image enhancement, and as delivery agents. Although, the first scientific article on gold nanoparticles was presented in 1857 by Faraday, during the last few years, the progress in manufacturing these nanomaterials has taken an enormous step forward. Due to the nanoscale counterparts of gold, which exhibit distinct properties and functionality compared to bulk material, gold nanoparticles stand out, in particular, in therapy, imaging, detection, diagnostics, and precise drug delivery. This review summarizes the current state-of-the-art knowledge in terms of biomedical applications of gold nanoparticles. The application of AuNPs in the following aspects are discussed: (i) imaging and diagnosing of specific target; (ii) treatment and therapies using AuNPs; and (iii) drug delivery systems with gold nanomaterials as a carrier. Among the different approaches in medical imaging, here we either consider AuNPs as a contrast agent in computed tomography (CT), or as a particle used in optical imaging, instead of fluorophores. Moreover, their nontoxic feature, compared to the gadolinium-based contrast agents used in magnetic resonance imaging, are shown. The tunable size, shape, and functionality of gold nanoparticles make them great carriers for targeted delivery. Therefore, here, we summarize gold-based nanodrugs that are FDA approved. Finally, various approaches to treat the specific diseases using AuNPs are discussed, i.e., photothermal or photodynamic therapy, and immunotherapy.
Collapse
|
28
|
Liu Z, Zhou D, Liao L. pH/Redox/Lysozyme-Sensitive Hybrid Nanocarriers With Transformable Size for Multistage Drug Delivery. Front Bioeng Biotechnol 2022; 10:882308. [PMID: 35480969 PMCID: PMC9035699 DOI: 10.3389/fbioe.2022.882308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The majority of current nanocarriers in cancer treatment fail to deliver encapsulated cargos to their final targets at therapeutic levels, which decreases the ultimate efficacy. In this work, a novel core–shell nanocarrier with a biodegradable property was synthesized for efficient drug release and subcellular organelle delivery. Initially, silver nanoparticles (AgNPs) were grafted with terminal double bonds originating from N, N′-bisacrylamide cystamine (BAC). Then, the outer coatings consisting of chitosan (CTS) and polyvinyl alcohol (PVA) were deposited on the surface of modified AgNPs using an emulsion method. To improve the stability, disulfide-containing BAC was simultaneously reintroduced to cross-link CTS. The as-prepared nanoparticles (CAB) possessed the desired colloidal stability and exhibited a high drug loading efficiency of cationic anticancer agent doxorubicin (DOX). Furthermore, CAB was tailored to transform their size into ultrasmall nanovehicles responding to weak acidity, high glutathione (GSH) levels, and overexpressed enzymes. The process of transformation was accompanied by sufficient DOX release from CAB. Due to the triple sensitivity, CAB enabled DOX to accumulate in the nucleus, leading to a great effect against malignant cells. In vivo assays demonstrated CAB loading DOX held excellent biosafety and superior antitumor capacity. Incorporating all the benefits, this proposed nanoplatform may provide valuable strategies for efficient drug delivery.
Collapse
Affiliation(s)
- Zhe Liu
- The Affiliated Stomatological Hospital, Nanchang University, Nanchang, China
- The Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
| | - Dong Zhou
- College of Chemistry, Nanchang University, Nanchang, China
| | - Lan Liao
- The Affiliated Stomatological Hospital, Nanchang University, Nanchang, China
- The Key Laboratory of Oral Biomedicine, Nanchang, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, China
- *Correspondence: Lan Liao,
| |
Collapse
|
29
|
A Novel Biosynthesized ZnFe2O4@Ag Nanocomposite: Implications for Cytotoxicity, Gene Expression and Antiproliferative Studies in Breast Cancer Cell Line. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Widatalla HA, Yassin LF, Alrasheid AA, Rahman Ahmed SA, Widdatallah MO, Eltilib SH, Mohamed AA. Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. NANOSCALE ADVANCES 2022; 4:911-915. [PMID: 36131825 PMCID: PMC9419201 DOI: 10.1039/d1na00509j] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/17/2021] [Indexed: 05/23/2023]
Abstract
The use of nanoparticles in medicine, nanomedicine, is very important to diagnose and treat diseases; among the various metallic nanoparticles, silver nanoparticles (AgNPs) are very popular due to their physical, chemical, and biological properties, encompassing a range of activities such as antiviral, antifungal, anti-inflammatory, and anticancer activities. In this study, the synthesis of AgNPs was conducted by the use of a nontoxic, ecofriendly method. Green tea (GT) leaf extract was used as a reducing agent to convert silver ions into free AgNPs. The UV-vis spectrum showed a peak at 410 nm, confirming the presence of AgNPs. A Fourier-transform infrared (FTIR) analysis of the GT extract and GT AgNPs display spectra that is identical to those of polyphenols, polysaccharides, and proteins. All the vibrational peaks in the GT extract spectrum were shifted in the AgNP spectrum, becoming narrower after the encapsulation of nanoparticles. The scanning electron microscopy (SEM) images confirm the presence of AgNPs with different sizes, ranging from 15 to 33 nm. Furthermore, the antibacterial activity of the synthesized AgNPs in three different concentrations (10, 20, and 50 mg ml-1) showed appreciable inhibition of bacterial growth against Staphylococcus aureus and Klebsiella sp. From the above findings, we can recommend the use of AgNPs from GT leaf extracts as an antimicrobial agent to treat chronic infections.
Collapse
Affiliation(s)
- Hiba Abbas Widatalla
- Department of Pharmacology, Faculty of Pharmacy, University of Medical Sciences and Technology Khartoum Sudan
| | - Layla Fathi Yassin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medical Sciences and Technology Khartoum Sudan
| | - Ayat Ahmed Alrasheid
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medical Sciences and Technology Khartoum Sudan
| | - Shimaa Abdel Rahman Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medical Sciences and Technology Khartoum Sudan
| | - Marvit Osman Widdatallah
- Department of Pharmacology, Faculty of Pharmacy, University of Medical Sciences and Technology Khartoum Sudan
| | - Sahar Hussein Eltilib
- Department of Pharmacology, Faculty of Pharmacy, University of Medical Sciences and Technology Khartoum Sudan
| | - Alaa Abdulmoneim Mohamed
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medical Sciences and Technology Khartoum Sudan
| |
Collapse
|
31
|
Banerjee S, Vishakha K, Das S, Sangma PD, Mondal S, Ganguli A. Oxidative stress, DNA, and membranes targets as modes of antibacterial and antibiofilm activity of facile synthesized biocompatible keratin-copper nanoparticles against multidrug resistant uro-pathogens. World J Microbiol Biotechnol 2022; 38:20. [PMID: 34989880 DOI: 10.1007/s11274-021-03187-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
Escherichia coli and Enterococcus faecalis are two of the most prevalent uro-pathogens and are difficult to treat as they acquire multidrug-resistant traits. In this study, the main objective was to develop biocompatible copper nanoparticles using chicken feather keratin protein (CuNPs-K) and to investigate their impact on multidrug-resistant (MDR) uro-pathogens, E. coli and E. faecalis, under both single and mixed culture conditions. CuNPs-K were characterised by UV-Vis spectroscopy, dynamic light scattering, X-ray diffraction, Fourier transform infrared spectroscopy, and docking experiments. The MIC values of CuNPs-K against single and mixed planktonic cultures were 50 μg/ml and 75 μg/ml, respectively. CuNPs-K efficiently disrupted the biofilm of single and mixed uro-pathogen cultures by eliminating sessile cells. This biofilm disruption may be attributed to a decline in the production of extracellular polymeric substances in both single and mixed bacterial cultures treated with CuNPs-K. Moreover, selective antimicrobial activity was determined by selectivity assays using T24 cells. CuNPs-K targets both the bacterial membrane and DNA with elevated reactive oxygen species (ROS) as their bactericidal mode of action. This comprehensive antimicrobial activity of CuNPs-K was further confirmed in vivo by using the zebra fish model. In this study, CuNPs-K effectively reduced bacterial load with increased survivability of infected zebrafish. All these results suggest that CuNPs-K can be explored as an exceptional antibacterial agent against MDR uro-pathogenic E. coli and E. faecalis.
Collapse
Affiliation(s)
- Satarupa Banerjee
- Department of Microbiology, Techno India University, EM-4 Sector-V, Saltlake City, Calcutta, West Bengal, 700091, India
| | - Kumari Vishakha
- Department of Microbiology, Techno India University, EM-4 Sector-V, Saltlake City, Calcutta, West Bengal, 700091, India
| | - Shatabdi Das
- Department of Microbiology, Techno India University, EM-4 Sector-V, Saltlake City, Calcutta, West Bengal, 700091, India
| | - Priyanka D Sangma
- Department of Microbiology, Techno India University, EM-4 Sector-V, Saltlake City, Calcutta, West Bengal, 700091, India
| | - Sandhimita Mondal
- Department of Microbiology, Techno India University, EM-4 Sector-V, Saltlake City, Calcutta, West Bengal, 700091, India
| | - Arnab Ganguli
- Department of Microbiology, Techno India University, EM-4 Sector-V, Saltlake City, Calcutta, West Bengal, 700091, India.
| |
Collapse
|
32
|
Quazi MZ, Lee U, Park S, Shin S, Sim E, Son H, Park N. Cancer Cell-Specific Enhanced Raman Imaging and Photothermal Therapeutic Effect Based on Reversibly pH-Responsive Gold Nanoparticles. ACS APPLIED BIO MATERIALS 2021; 4:8377-8385. [PMID: 35005927 DOI: 10.1021/acsabm.1c00946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stimuli-responsive nanoparticles are favorable for improving the selective delivery and rational vocation that easily avoids the undesirable barriers or side effects, leading to a further improved therapeutic efficiency. Furthermore, multifunctional nanomaterials have been extensively developed as attractive candidates for theranostic reagents for cancer treatment. In this article, we developed reversibly pH-responsive gold nanoparticles (AuNPs) with an enhanced Raman scattering signal as well as an efficient photothermal effect and demonstrated their applications as a theranostic reagent for cancer treatment. Surfaces of these AuNPs were modified with mixed layers of Cy3-modified single-stranded DNA (ssDNA-Cy3) for Raman probing and a negative charge supply and cytochrome C (Cyt C) for pH-responsive charge inversion. This combination of pH-responsive ligands and Raman probes played an important role in inducing the assembly or disassembly of AuNPs corresponding to the neighboring pH, accompanied by an additional highly distinguished Raman signal intensity. An operative reversible response of the AuNPs to pH is endowed with the characteristic behavior of AuNPs with the cancerous cell's acidic microenvironment of low pH. The responsive aggregation of AuNPs in a lower pH medium provides highly amplified signals attributed to well-formed hot spots between the particle surfaces that deliver better Raman scattering signals. The acidic pH-responsive aggregation of the particles also provided efficient photothermal treatments using a long-wavelength laser light with the benefit of deeper penetration for cancer cells. In vitro experiments employing cancer cells and control normal cells well-demonstrated the specificity of the particles to cancer cells in terms of highly enhanced Raman imaging and therapeutic efficiency.
Collapse
Affiliation(s)
- Mohzibudin Z Quazi
- Department of Chemistry and The Natural Science Research Institute, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Ukjae Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sanghak Park
- Department of Chemistry and The Natural Science Research Institute, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Seonhye Shin
- Department of Chemistry and The Natural Science Research Institute, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Eunseop Sim
- Department of Chemistry and The Natural Science Research Institute, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| | - Hyungbin Son
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Nokyoung Park
- Department of Chemistry and The Natural Science Research Institute, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggi-do 17058, Republic of Korea
| |
Collapse
|
33
|
Bakr MM, Al-Ankily MM, Shogaa SM, Shamel M. Attenuating Effect of Vitamin E against Silver Nano Particles Toxicity in Submandibular Salivary Glands. Bioengineering (Basel) 2021; 8:219. [PMID: 34940372 PMCID: PMC8698723 DOI: 10.3390/bioengineering8120219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Silver nanoparticles (AgNPs) are extensively used in many industries due to their superior antimicrobial properties. However, it is evident from many studies that AgNPs has cytotoxic potential through its effect on excessive formation of reactive oxygen species (ROS). The aim of this study was to examine the toxic effect of AgNPs on the submandibular salivary glands and the attenuating effect of vitamin E, as a natural antioxidant, against this toxicity. Thirty Albino rats were divided into 3 groups (n = 10): control group, AgNPs group receiving 2 mg/kg daily for 28 days, and AgNPs and vitamin E group receiving AgNPs the same as the previous group in addition to vitamin E at a dose of 100 mg/kg. Microscopic, ultrastructural, and cytokeratin immune-reactivity examination of the glands were performed. The AgNPs group showed noticeable degeneration in all structures of the gland as evident in the histological and ultrastructural examination. The AgNPs and vitamin E group revealed an improvement of the glandular elements. A significant increase in cytokeratin immune expression was found after comparison of both groups (p = 0.01). This current study shows that vitamin E has powerful antioxidant properties, which can combat the cytotoxic effect caused by AgNPs. Further studies are deemed necessary to confirm this finding using other immunohistochemical markers, such as myosin and E-cadherin.
Collapse
Affiliation(s)
- Mahmoud M. Bakr
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Mahmoud M. Al-Ankily
- Faculty of Dentistry, The British University in Egypt, Cairo 11837, Egypt; (M.M.A.-A.); (S.M.S.); (M.S.)
| | - Sara M. Shogaa
- Faculty of Dentistry, The British University in Egypt, Cairo 11837, Egypt; (M.M.A.-A.); (S.M.S.); (M.S.)
| | - Mohamed Shamel
- Faculty of Dentistry, The British University in Egypt, Cairo 11837, Egypt; (M.M.A.-A.); (S.M.S.); (M.S.)
| |
Collapse
|
34
|
Lachowicz JI, Lecca LI, Meloni F, Campagna M. Metals and Metal-Nanoparticles in Human Pathologies: From Exposure to Therapy. Molecules 2021; 26:6639. [PMID: 34771058 PMCID: PMC8587420 DOI: 10.3390/molecules26216639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 01/13/2023] Open
Abstract
An increasing number of pathologies correlates with both toxic and essential metal ions dyshomeostasis. Next to known genetic disorders (e.g., Wilson's Disease and β-Thalassemia) other pathological states such as neurodegeneration and diabetes are characterized by an imbalance of essential metal ions. Metal ions can enter the human body from the surrounding environment in the form of free metal ions or metal-nanoparticles, and successively translocate to different tissues, where they are accumulated and develop distinct pathologies. There are no characteristic symptoms of metal intoxication, and the exact diagnosis is still difficult. In this review, we present metal-related pathologies with the most common onsets, biomarkers of metal intoxication, and proper techniques of metal qualitative and quantitative analysis. We discuss the possible role of drugs with metal-chelating ability in metal dyshomeostasis, and present recent advances in therapies of metal-related diseases.
Collapse
Affiliation(s)
| | | | | | - Marcello Campagna
- Division of Occupational Medicine, Department of Medical Sciences and Public Health, University of Cagliari, 09048 Monserrato, CA, Italy; (J.I.L.); (L.I.L.); (F.M.)
| |
Collapse
|
35
|
Adebayo EA, Azeez MA, Alao MB, Oke AM, Aina DA. Fungi as veritable tool in current advances in nanobiotechnology. Heliyon 2021; 7:e08480. [PMID: 34901509 PMCID: PMC8640478 DOI: 10.1016/j.heliyon.2021.e08480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/06/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
Fungi have great prospects for synthesis, applications and developing new products in nanotechnology. In recent times, fungi use in nanotechnology is gaining more attention because of the ecological friendly state of their metabolite-mediated nanoparticles, their safety, amenability and applications in diverse fields. The diversity of the metabolites such as enzymes, polysaccharide, polypeptide, protein and other macro-molecules has made fungi a veritable tool for nanoparticles synthesis. Mechanism of fungal nano-biosynthesis from the molecular perspective has been extensively studied through various investigations on its green synthesized metal nanoparticles. Fungal nanobiotechnology has been applied in agricultural, medical and industrial sectors for goods and services improvement and delivery to mankind. Agriculturally, it has found applications in plant disease management and production of environmentally friendly, non-toxic insecticides, fungicides to enhance agricultural production in general. Medically, diagnosis and treatment of diseases, especially of microbial origin have been improved with fungal nanoparticles through more efficient drug delivery systems with great benefits to pharmaceutical industries. This review therefore explored fungal nanobiotechnology; mechanism of synthesis, characterization and potential applications in various fields of human endeavours for goods and services delivery.
Collapse
Affiliation(s)
- Elijah A. Adebayo
- Department of Pure and Applied Biology, Ladoke Akintola University, P.M.B 4000, Ogbomoso, Nigeria
- LAUTECH Nanotechnology Research Group, Nigeria
| | - Musibau A. Azeez
- Department of Pure and Applied Biology, Ladoke Akintola University, P.M.B 4000, Ogbomoso, Nigeria
- LAUTECH Nanotechnology Research Group, Nigeria
| | - Micheal B. Alao
- Department of Pure and Applied Biology, Ladoke Akintola University, P.M.B 4000, Ogbomoso, Nigeria
| | - Abel M. Oke
- Department of Pure and Applied Biology, Ladoke Akintola University, P.M.B 4000, Ogbomoso, Nigeria
| | - Daniel A. Aina
- Department of Microbiology, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| |
Collapse
|
36
|
Farkaš B, de Leeuw NH. A Perspective on Modelling Metallic Magnetic Nanoparticles in Biomedicine: From Monometals to Nanoalloys and Ligand-Protected Particles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3611. [PMID: 34203371 PMCID: PMC8269646 DOI: 10.3390/ma14133611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
The focus of this review is on the physical and magnetic properties that are related to the efficiency of monometallic magnetic nanoparticles used in biomedical applications, such as magnetic resonance imaging (MRI) or magnetic nanoparticle hyperthermia, and how to model these by theoretical methods, where the discussion is based on the example of cobalt nanoparticles. Different simulation systems (cluster, extended slab, and nanoparticle models) are critically appraised for their efficacy in the determination of reactivity, magnetic behaviour, and ligand-induced modifications of relevant properties. Simulations of the effects of nanoscale alloying with other metallic phases are also briefly reviewed.
Collapse
Affiliation(s)
- Barbara Farkaš
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK;
| | - Nora H. de Leeuw
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK;
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
37
|
Bunyatova U, Hammouda MB, Zhang J. Novel light-driven functional AgNPs induce cancer death at extra low concentrations. Sci Rep 2021; 11:13258. [PMID: 34168242 PMCID: PMC8225844 DOI: 10.1038/s41598-021-92689-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/27/2021] [Indexed: 11/09/2022] Open
Abstract
The current study is aimed at preparing light-driven novel functional AgNPs- bio-hydrogel and evaluating anticancer potency against human melanoma cells. With an average size of 16-18 nm, the hydrogel nano-silver particle composite (AgNPs@C_MA_O) was synthesized using a soft white LED approach and analyzed by UV-Vis, DLS, FTIR, X-ray, SEM-EDX and TEM techniques. The anticancer activity of the obtained novel functionalized AgNPs@C_MA_O was tested in-vitro in the A375 melanoma cell line. Dose-response analysis showed that AgNPs at 0.01 mg/mL and 0.005 mg/mL doses reduced the viability of A375 cells by 50% at 24 and 48-h time-points, respectively. A375 cells treated with AgNPs@C_MA_O for 24 h at IC50 displayed abnormal morphology such as detachment edges and feet, shrinkage, membrane damage, and the loss of contact with adjacent cells. Our work is the first study showing that non-ionizing radiation mediated biofunctionalized AgNPs have an anti-tumoral effect at such a low concentration of 0.01 mg/mL. Our approach of using harmless wLED increased synergy between soft biopolymer compounds and AgNPs, and enhanced anticancer efficiency of the AgNPs@C_MA_O biohydrogel. Ultimately, the AgNPs accessed through the use of the wLED approach in colloidal syntheses can open new applications and combinatorial advanced cancer treatments and diagnostics.
Collapse
Affiliation(s)
- Ulviye Bunyatova
- Biomedical Department, Engineering Facility, Baskent University, Ankara, Turkey.
- Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA.
| | - Manel Ben Hammouda
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, USA
| | - Jennifer Zhang
- Department of Dermatology, School of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
38
|
Andleeb A, Andleeb A, Asghar S, Zaman G, Tariq M, Mehmood A, Nadeem M, Hano C, Lorenzo JM, Abbasi BH. A Systematic Review of Biosynthesized Metallic Nanoparticles as a Promising Anti-Cancer-Strategy. Cancers (Basel) 2021; 13:cancers13112818. [PMID: 34198769 PMCID: PMC8201057 DOI: 10.3390/cancers13112818] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the foremost causes of death worldwide. Cancer develops because of mutation in genes that regulate normal cell cycle and cell division, thereby resulting in uncontrolled division and proliferation of cells. Various drugs have been used to treat cancer thus far; however, conventional chemotherapeutic drugs have lower bioavailability, rapid renal clearance, unequal delivery, and severe side effects. In the recent years, nanotechnology has flourished rapidly and has a multitude of applications in the biomedical field. Bio-mediated nanoparticles (NPs) are cost effective, safe, and biocompatible and have got substantial attention from researchers around the globe. Due to their safe profile and fewer side effects, these nanoscale materials offer a promising cure for cancer. Currently, various metallic NPs have been designed to cure or diagnose cancer; among these, silver (Ag), gold (Au), zinc (Zn) and copper (Cu) are the leading anti-cancer NPs. The anticancer potential of these NPs is attributed to the production of reactive oxygen species (ROS) in cellular compartments that eventually leads to activation of autophagic, apoptotic and necrotic death pathways. In this review, we summarized the recent advancements in the biosynthesis of Ag, Au, Zn and Cu NPs with emphasis on their mechanism of action. Moreover, nanotoxicity, as well as the future prospects and opportunities of nano-therapeutics, are also highlighted.
Collapse
Affiliation(s)
- Anisa Andleeb
- Plant Cell and Tissue Culture Lab, Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.A.); (G.Z.)
| | - Aneeta Andleeb
- Proteomics Lab, School of Biochemistry & Biotechnology, University of the Punjab, Lahore 54590, Pakistan;
| | - Salman Asghar
- Media and Production Group, Centre for Media and Communication Studies, University of Gujrat, Gujrat 50700, Pakistan;
| | - Gouhar Zaman
- Plant Cell and Tissue Culture Lab, Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.A.); (G.Z.)
| | - Muhammad Tariq
- Nanobiotechnology Group, Department of Biotechnology, Mirpur University of Science and Technology, Mirpur 10250, Pakistan;
| | - Azra Mehmood
- Stem Cell & Regenerative Medicine Lab, National Centre of Excellence in Molecular Biology, University of Punjab, 87-West Canal Bank Road, Lahore 53700, Pakistan;
| | - Muhammad Nadeem
- Department of Biotechnology, Institute of Integrative Biosciences, Peshawar 25100, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328 Université ď Orléans, CEDEX 2, 45067 Orléans, France;
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia no 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Bilal Haider Abbasi
- Plant Cell and Tissue Culture Lab, Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.A.); (G.Z.)
- Correspondence: ; Tel./Fax: +92-51-9064-4121
| |
Collapse
|
39
|
Recent Advances on Properties and Utility of Nanomaterials Generated from Industrial and Biological Activities. CRYSTALS 2021. [DOI: 10.3390/cryst11060634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Today is the era of nanoscience and nanotechnology, which find applications in the field of medicine, electronics, and environmental remediation. Even though nanotechnology is in its emerging phase, it continues to provide solutions to numerous challenges. Nanotechnology and nanoparticles are found to be very effective because of their unique chemical and physical properties and high surface area, but their high cost is one of the major hurdles to its wider application. So, the synthesis of nanomaterials, especially 2D nanomaterials from industrial, agricultural, and other biological activities, could provide a cost-effective technique. The nanomaterials synthesized from such waste not only minimize pollution, but also provide an eco-friendly approach towards the utilization of the waste. In the present review work, emphasis has been given to the types of nanomaterials, different methods for the synthesis of 2D nanomaterials from the waste generated from industries, agriculture, and their application in electronics, medicine, and catalysis.
Collapse
|
40
|
Chandraker SK, Ghosh MK, Lal M, Shukla R. A review on plant-mediated synthesis of silver nanoparticles, their characterization and applications. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/ac0355] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
For decades, silver has been used as a non-toxic inorganic antimicrobial agent. Silver has a lot of potential in a variety of biological/chemical applications, particularly in the form of nanoparticles (NPs). Eco-friendly synthesis approach for NPs are becoming more common in nanobiotechnology, and the demand for biological synthesis methods is growing, with the goal of eliminating hazardous and polluting agents. Cultures of bacteria, fungi, and algae, plant extracts, and other biomaterials are commonly used for NP synthesis in the ‘green synthesis’ process. Plant-based green synthesis is a simple, fast, dependable, cost-effective, environmentally sustainable, and one-step method that has a significant advantage over microbial synthesis due to the lengthy process of microbial isolation and pure culture maintenance. In this report, we focussed on phytosynthesis of silver nanoparticles (AgNPs) and their characterization using various techniques such as spectroscopy (UV–vis, FTIR), microscopy (TEM, SEM), X-Ray diffraction (XRD), and other particle analysis. The potential applications of AgNPs in a variety of biological and chemical fields are discussed.
Collapse
|
41
|
Guanidinium and Phosphonium Scaffolds Loaded with Silver Nanoparticles: Synthesis, Characterization, In Vitro Assessment of the Antibacterial Potential and Toxicity. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Chang SY, Huang KY, Chao TL, Kao HC, Pang YH, Lu L, Chiu CL, Huang HC, Cheng TJR, Fang JM, Yang PC. Nanoparticle composite TPNT1 is effective against SARS-CoV-2 and influenza viruses. Sci Rep 2021; 11:8692. [PMID: 33888738 PMCID: PMC8062499 DOI: 10.1038/s41598-021-87254-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
A metal nanoparticle composite, namely TPNT1, which contains Au-NP (1 ppm), Ag-NP (5 ppm), ZnO-NP (60 ppm) and ClO2 (42.5 ppm) in aqueous solution was prepared and characterized by spectroscopy, transmission electron microscopy, dynamic light scattering analysis and potentiometric titration. Based on the in vitro cell-based assay, TPNT1 inhibited six major clades of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with effective concentration within the range to be used as food additives. TPNT1 was shown to block viral entry by inhibiting the binding of SARS-CoV-2 spike proteins to the angiotensin-converting enzyme 2 (ACE2) receptor and to interfere with the syncytium formation. In addition, TPNT1 also effectively reduced the cytopathic effects induced by human (H1N1) and avian (H5N1) influenza viruses, including the wild-type and oseltamivir-resistant virus isolates. Together with previously demonstrated efficacy as antimicrobials, TPNT1 can block viral entry and inhibit or prevent viral infection to provide prophylactic effects against both SARS-CoV-2 and opportunistic infections.
Collapse
Affiliation(s)
- Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd., Taipei, 10002, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Chung-Shan South Rd., No. 7, Taipei, 10002, Taiwan
| | - Kuo-Yen Huang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd., Taipei, 10002, Taiwan
| | - Han-Chieh Kao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd., Taipei, 10002, Taiwan
| | - Yu-Hao Pang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd., Taipei, 10002, Taiwan
| | - Lin Lu
- Tripod Nano Technology, No. 171, Sec. 1, Mei Shi Rd., Yang Mei District, Taoyuan, 32656, Taiwan
| | - Chun-Lun Chiu
- Tripod Nano Technology, No. 171, Sec. 1, Mei Shi Rd., Yang Mei District, Taoyuan, 32656, Taiwan
| | - Hsin-Chang Huang
- Tripod Nano Technology, No. 171, Sec. 1, Mei Shi Rd., Yang Mei District, Taoyuan, 32656, Taiwan
| | - Ting-Jen Rachel Cheng
- The Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Jim-Min Fang
- The Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan.
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10607, Taiwan.
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Rd., Taipei, 10002, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan.
| |
Collapse
|
43
|
Ghosh S, Ahmad R, Zeyaullah M, Khare SK. Microbial Nano-Factories: Synthesis and Biomedical Applications. Front Chem 2021; 9:626834. [PMID: 33937188 PMCID: PMC8085502 DOI: 10.3389/fchem.2021.626834] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
In the recent times, nanomaterials have emerged in the field of biology, medicine, electronics, and agriculture due to their immense applications. Owing to their nanoscale sizes, they present large surface/volume ratio, characteristic structures, and similar dimensions to biomolecules resulting in unique properties for biomedical applications. The chemical and physical methods to synthesize nanoparticles have their own limitations which can be overcome using biological methods for the synthesis. Moreover, through the biogenic synthesis route, the usage of microorganisms has offered a reliable, sustainable, safe, and environmental friendly technique for nanosynthesis. Bacterial, algal, fungal, and yeast cells are known to transport metals from their environment and convert them to elemental nanoparticle forms which are either accumulated or secreted. Additionally, robust nanocarriers have also been developed using viruses. In order to prevent aggregation and promote stabilization of the nanoparticles, capping agents are often secreted during biosynthesis. Microbial nanoparticles find biomedical applications in rapid diagnostics, imaging, biopharmaceuticals, drug delivery systems, antimicrobials, biomaterials for tissue regeneration as well as biosensors. The major challenges in therapeutic applications of microbial nanoparticles include biocompatibility, bioavailability, stability, degradation in the gastro-intestinal tract, and immune response. Thus, the current review article is focused on the microbe-mediated synthesis of various nanoparticles, the different microbial strains explored for such synthesis along with their current and future biomedical applications.
Collapse
Affiliation(s)
- Shubhrima Ghosh
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Science, King Khalid University (KKU), Khamis Mushait, Abha, Saudi Arabia
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
44
|
Lotfy WA, Alkersh BM, Sabry SA, Ghozlan HA. Biosynthesis of Silver Nanoparticles by Aspergillus terreus: Characterization, Optimization, and Biological Activities. Front Bioeng Biotechnol 2021; 9:633468. [PMID: 33937214 PMCID: PMC8081910 DOI: 10.3389/fbioe.2021.633468] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, mycelial filtrate of Aspergillus terreus BA6 was used to reduce AgNO3 to form silver nanoparticles (AgNPs). The effect of seven independent variables on the diameter of AgNPs was studied by applying design of experiments (DOE). At optimal conditions, the diameter of AgNPs was reduced by approximately 26.7% compared to the basal culture condition and AgNO3 concentration was found to be the most significant factor affecting the diameter of AgNPs. A. terreus nano-Ag was characterized using UV-visible spectroscopy, transmission electron microscopy, energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Zeta potential. The maximum UV absorption was obtained at 420 nm and the microscopic results showed particles with narrow size distribution ranging from 7 to 23 nm. XRD pattern of AgNPs revealed four diffraction peaks of metallic silver and the EDX spectrum showed a strong signal attributed to Ag nano-crystals. AgNPs mycofabricated by A. terreus showed potent minimum inhibitory concentration (MIC) and broad minimum bactericidal/fungicidal concentration (MBC/MFC) against 12 reference microorganisms. The MIC and MBC/MFC values of AgNPs were 0.312 to 1.25 μg/ml and 0.625 to 10 μg/ml, respectively. Nevertheless, AgNPs did not demonstrate any antagonistic activity against Coxsackie B virus. The in vitro cytotoxicity of the mycosynthesized AgNPs showed significant antitumor activity against adenocarcinoma epithelial cells from human breast cancer (Mcf-7) cell line with an inhibitory concentration (IC50) of 87.5 μg/ml.
Collapse
Affiliation(s)
- Walid A Lotfy
- Department of Microbiology, Faculty of Dentistry, Pharos University in Alexandria, Alexandria, Egypt
| | - Basma M Alkersh
- Marine Environment Division, National Institute of Oceanography and Fisheries, Alexandria, Egypt
| | - Soraya A Sabry
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hanan A Ghozlan
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
45
|
You J, Liu L, Huang W, Manners I, Dou H. Redox-Active Micelle-Based Reaction Platforms for In Situ Preparation of Noble Metal Nanocomposites with Photothermal Conversion Capability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13648-13657. [PMID: 33688724 DOI: 10.1021/acsami.0c21925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyferrocenylsilane (PFS)-based polymers are an attractive family of organometallic polymers with unique redox-active properties. Herein, we report a novel amphiphilic redox-active PFS-based homopolymer, poly(ferrocenylmethylethylthiocarboxypropylsilane) (PFC), with a hydrophobic backbone chain and hydrophilic carboxylic acid side groups in each repeating unit. Self-assembly was induced by addition of water to a molecularly dispersed solution of PFC in DMSO. Spherical PFC micelles with controllable hydrodynamic diameters (60-180 nm) were obtained under various conditions. These PFC micelles could be readily endocytosed by A549 cells and HUVEC cells and show no significant cytotoxicity toward them at the concentration of 200 μg/mL. On this basis, Au nanoparticles (AuNPs) were prepared through in situ reduction of HAuCl4 by PFC micelles as nanoreactors without requiring any other reductants. The PFC/Au nanocomposites (NCs) were found to exhibit significant photothermal behavior. Moreover, PFC micelles could also act as nanoreactors for other noble metals such as Ag, Pd, and Pt. By taking advantage of properties of the nanostructures and noble metal nanoparticles comprising these materials, the PFC micelles and PFC/noble metal NCs may have great potential in biomedical or catalytic applications.
Collapse
Affiliation(s)
- Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Lingshan Liu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Wanqiu Huang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
46
|
Giráldez-Pérez RM, Grueso E, Domínguez I, Pastor N, Kuliszewska E, Prado-Gotor R, Requena-Domenech F. Biocompatible DNA/5-Fluorouracil-Gemini Surfactant-Functionalized Gold Nanoparticles as Promising Vectors in Lung Cancer Therapy. Pharmaceutics 2021; 13:423. [PMID: 33801142 PMCID: PMC8004209 DOI: 10.3390/pharmaceutics13030423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
The design and preparation of novel nanocarriers to transport cancer drugs for chemotherapy purposes is an important line of research in the medical field. A new 5-fluorouracil (5-Fu) transporter was designed based on the use of two new biocompatible gold nanosystems: (i) a gold nanoparticle precursor, Au@16-Ph-16, stabilized with the positively charged gemini surfactant 16-Ph-16, and (ii) the compacted nanocomplexes formed by the precursor and DNA/5-Fu complexes, Au@16-Ph-16/DNA-5-Fu. The physicochemical properties of the obtained nanosystems were studied by using UV-visible spectroscopy, TEM, dynamic light scattering, and zeta potential techniques. Method tuning also requires the use of circular dichroism, atomic force microscopy, and fluorescence spectroscopy techniques for the prior selection of the optimal relative Au@16-Ph-16 and DNA concentrations (R = CAu@16-Ph-16/CDNA), biopolymer compaction/decompaction, and 5-Fu release from the DNA/5-Fu complex. TEM experiments revealed the effective internalization of the both precursor and Au@16-Ph-16/DNA-5-Fu-compacted nanosystems into the cells. Moreover, cytotoxicity assays and internalization experiments using TEM and confocal microscopy showed that the new strategy for 5-Fu administration enhanced efficacy, biocompatibility and selectivity against lung cancer cells. The differential uptake among different formulations is discussed in terms of the physicochemical properties of the nanosystems.
Collapse
Affiliation(s)
- Rosa M. Giráldez-Pérez
- Departments of Cellular Biology, Physiology and Immunology, University of Córdoba, 14014 Córdoba, Spain;
| | - Elia Grueso
- Department of Physical Chemistry, University of Seville, 41012 Seville, Spain;
| | - Inmaculada Domínguez
- Department of Biology and Cellular Biology, University of Seville, 41012 Seville, Spain; (I.D.); (N.P.)
| | - Nuria Pastor
- Department of Biology and Cellular Biology, University of Seville, 41012 Seville, Spain; (I.D.); (N.P.)
| | | | - Rafael Prado-Gotor
- Department of Physical Chemistry, University of Seville, 41012 Seville, Spain;
| | - Francisco Requena-Domenech
- Departments of Cellular Biology, Physiology and Immunology, University of Córdoba, 14014 Córdoba, Spain;
| |
Collapse
|
47
|
Chandraker SK, Lal M, Dhruve P, Singh RP, Shukla R. Cytotoxic, Antimitotic, DNA Binding, Photocatalytic, H 2O 2 Sensing, and Antioxidant Properties of Biofabricated Silver Nanoparticles Using Leaf Extract of Bryophyllum pinnatum (Lam.) Oken. Front Mol Biosci 2021; 7:593040. [PMID: 33585553 PMCID: PMC7876318 DOI: 10.3389/fmolb.2020.593040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023] Open
Abstract
Bryophyllum pinnatum is a perennial herb traditionally used in ethnomedicine. In the present report, silver nanoparticles (AgNPs) were synthesized using B. pinnatum leaf extract. BP-AgNPs were confirmed following UV-Vis spectroscopy with SPR peak at 412 nm and further characterized by FTIR, XRD, SEM-EDX, and TEM. Microscopic images confirmed the spherical shape and ~15 nm average size of nanostructures. BP-AgNPs were evaluated for photocatalytic degradation of hazardous dyes (methylene blue and Rhodamine-B) and showed their complete reduction within 100 and 110 min., respectively. BP-AgNPs have emerged as a unique SPR-based novel sensor for the detection of H2O2, which may deliver exciting prospects in clinical and industrial areas. DPPH and ABTS free radical scavenging activity were studied with respective IC50 values of 89 and 259 μg/mL. A strong intercalating interaction of CT-DNA with BP-AgNPs was investigated. Observed chromosomal abnormalities confirm the antimitotic potential of BP-AgNPs in the meristematic root tip. The cytotoxicity of BP-AgNPs against B16F10 (melanoma cell line) and A431 (squamous cell carcinoma cell line), was assessed with respective IC50 values of 59.5 and 96.61 μg/ml after 24 h of treatment. The presented green synthetic approach provides a novel and new door for environmental, industrial, and biomedical applications.
Collapse
Affiliation(s)
- Sandip Kumar Chandraker
- Laboratory of Bio-Resource Technology, Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| | - Mishri Lal
- Laboratory of Bio-Resource Technology, Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| | - Preeti Dhruve
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P. Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ravindra Shukla
- Laboratory of Bio-Resource Technology, Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
48
|
Morad R, Akbari M, Rezaee P, Koochaki A, Maaza M, Jamshidi Z. First principle simulation of coated hydroxychloroquine on Ag, Au and Pt nanoparticles. Sci Rep 2021; 11:2131. [PMID: 33483539 PMCID: PMC7822900 DOI: 10.1038/s41598-021-81617-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/06/2021] [Indexed: 12/27/2022] Open
Abstract
From the first month of the COVID-19 pandemic, the potential antiviral properties of hydroxychloroquine (HCQ) and chloroquine (CQ) against SARS-CoV-2 suggested that these drugs could be the appropriate therapeutic candidates. However, their side effects directed clinical tests towards optimizing safe utilization strategies. The noble metal nanoparticles (NP) are promising materials with antiviral and antibacterial properties that can deliver the drug to the target agent, thereby reducing the side effects. In this work, we applied both the quantum mechanical and classical atomistic molecular dynamics approaches to demonstrate the adsorption properties of HCQ/CQ on Ag, Au, AgAu, and Pt nanoparticles. We found the adsorption energies of HCQ/CQ towards nanoparticles have the following trend: PtNP > AuNP > AuAgNP > AgNP. This shows that PtNP has the highest affinity in comparison to the other types of nanoparticles. The (non)perturbative effects of this drug on the plasmonic absorption spectra of AgNP and AuNP with the time-dependent density functional theory. The effect of size and composition of NPs on the coating with HCQ and CQ were obtained to propose the appropriate candidate for drug delivery. This kind of modeling could help experimental groups to find efficient and safe therapies.
Collapse
Affiliation(s)
- Razieh Morad
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.,Material Research Division, Nanoscience African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, 7129, South Africa
| | - Mahmood Akbari
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.,Material Research Division, Nanoscience African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, 7129, South Africa
| | - Parham Rezaee
- Chemistry Department, Sharif University of Technology, 11155-9516, Tehran, Iran
| | - Amin Koochaki
- Chemistry Department, Sharif University of Technology, 11155-9516, Tehran, Iran
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology (U2ACN2), College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa. .,Material Research Division, Nanoscience African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, 7129, South Africa.
| | - Zahra Jamshidi
- Chemistry Department, Sharif University of Technology, 11155-9516, Tehran, Iran.
| |
Collapse
|
49
|
Application of Selected Nanomaterials and Ozone in Modern Clinical Dentistry. NANOMATERIALS 2021; 11:nano11020259. [PMID: 33498453 PMCID: PMC7909445 DOI: 10.3390/nano11020259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
This review is an attempt to summarize current research on ozone, titanium dioxide (TiO2), silver (Ag), copper oxide CuO and platinum (Pt) nanoparticles (NPs). These agents can be used in various fields of dentistry such as conservative dentistry, endodontic, prosthetic or dental surgery. Nanotechnology and ozone can facilitate the dentist’s work by providing antimicrobial properties to dental materials or ensuring a decontaminated work area. However, the high potential of these agents for use in medicine should be confirmed in further research due to possible side effects, especially in long duration of observation so that the best way to apply them can be obtained.
Collapse
|
50
|
Bakr EA, El-Nahass MN, Hamada WM, Fayed TA. Facile synthesis of superparamagnetic Fe 3O 4@noble metal core-shell nanoparticles by thermal decomposition and hydrothermal methods: comparative study and catalytic applications. RSC Adv 2020; 11:781-797. [PMID: 35746920 PMCID: PMC9134218 DOI: 10.1039/d0ra08230a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Herein, we report on developing a facile synthetic route for reusable nanocatalysts based on a combination of the supermagnetic properties of magnetite with the unique optical and catalytic properties of noble metal hybrid nanomaterials. We compare two different synthetic methods, to find out which is best from synthetic and application points of view, for the synthesis of Fe3O4 and Fe3O4@M (M = Ag or Au) core-shell hybrid nanostructures. The two different single-step synthetic methods are: thermal decomposition and hydrothermal. The structural, morphological and magnetic properties of the obtained Fe3O4 and Fe3O4@M nanoparticles were characterized by various techniques. XRD of the Fe3O4 nanoparticles exhibited sharp and strong diffraction peaks, confirming the highly crystalline structure of the Fe3O4 particles synthesized by the hydrothermal method, while broad and weak peaks were observed on using the thermal decomposition method. Both Fe3O4@Ag and Fe3O4@Au core-shells obtained by the hydrothermal method showed the reflection planes of Fe3O4 and additional planes of Ag or Au. But on the formation of Fe3O4@Ag/Au by the thermal decomposition method the peak for Fe3O4 disappeared and only the diffraction peaks of Ag or Au appeared. According to TEM analysis there was a broad particle-size distribution, random near-spherical shapes and slight particle agglomeration for Fe3O4 synthesized by the thermal decomposition method. However, there was a moderate size distribution, spherical shapes and well-dispersed particles without large aggregations for the hydrothermal method. TEM images of the synthesized nanoparticles by the two methods used showed a pronounced difference in both size and morphological shape. The catalytic performance of the synthesized nanoparticles was examined for the reduction of Congo red dye in the presence of NaBH4. The Fe3O4 nanocatalyst maintained its catalytic activity for only one cycle. In the cases of Fe3O4@Au and Fe3O4@Ag, the catalytic activity was conserved for four and ten successive cycles, respectively. Based on the obtained results, it was concluded that the hydrothermal synthesis of Fe3O4, Fe3O4@Ag and Fe3O4@Au nanostructures is highly recommended due to their selectivity and merits.
Collapse
Affiliation(s)
- Eman A Bakr
- Department of Chemistry, Faculty of Science, Tanta University 31527 Tanta Egypt +20-403350804 +20-403344352
| | - Marwa N El-Nahass
- Department of Chemistry, Faculty of Science, Tanta University 31527 Tanta Egypt +20-403350804 +20-403344352
| | - Wafaa M Hamada
- Department of Chemistry, Faculty of Science, Tanta University 31527 Tanta Egypt +20-403350804 +20-403344352
| | - Tarek A Fayed
- Department of Chemistry, Faculty of Science, Tanta University 31527 Tanta Egypt +20-403350804 +20-403344352
| |
Collapse
|