1
|
Sharma R, Nath PC, Rustagi S, Sharma M, Inbaraj BS, Dikkala PK, Nayak PK, Sridhar K. Cold Plasma-A Sustainable Energy-Efficient Low-Carbon Food Processing Technology: Physicochemical Characteristics, Microbial Inactivation, and Industrial Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:4166141. [PMID: 40124845 PMCID: PMC11930388 DOI: 10.1155/ijfo/4166141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/16/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
Nonthermal technologies, mostly utilized for microbial inactivation and quality preservation in food, are attracting increased interest, particularly in nonthermal plasma. Cold plasma (CP) demonstrates favorable results, such as increased germination, enhanced functional and rheological characteristics, and the eradication of microorganisms. Consequently, CP is a novel technology in food processing that has significantly contributed to the prevention of food spoilage. This study highlights contemporary research on CP technology in food processing. This includes its use in microbial decontamination, shelf life extension, mycotoxin degradation, enzyme inactivation, and surface modification of food products. The CP generation techniques under low pressure, including glow discharge, radio frequency and microwave techniques, and atmospheric pressure, including dielectric barrier discharge (DBD), plasma jet, and corona discharge, are discussed. Additionally, the source for the generation of plasma-activated water (PAW) with its significant role in food processing is critically discussed. The CP is an effective method for the decontamination of several food materials like fruits, vegetables, meat, and low-moisture food products. Also, the review addressed the effects of CP on the physicochemical properties of foods and CP for pretreatment in various aspects of food processing, including drying of food, extraction of bioactive compounds, and oil hydrogenation. CP improved the drying kinetics of food, resulting in reduced processing time and improved product quality. Similarly, CP is effective in maintaining food safety and quality, removing the formation of biofilm, and also in reducing protein allergenicity. The review also underscored the importance of CP as a sterilizing agent for food packaging materials, emphasizing its role in enhancing the barrier characteristics of biopolymer-based food packaging materials. Therefore, it is concluded that CP is effective in the reduction of pathogenic microorganisms from food products. Moreover, it is effective in maintaining the nutritional and sensory properties of food products. Overall, it is effective for application in all aspects of food processing. There is a critical need for ongoing research on upscaling for commercial purposes.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Food Technology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, India
| | - Pinku Chandra Nath
- Research and Development Cell, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad, Haryana, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China
| | | | - Praveen Kumar Dikkala
- Department of Food Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, India
| |
Collapse
|
2
|
Damiano S, Longobardi C, De Marchi L, Piscopo N, Meucci V, Lenzi A, Ciarcia R. Detection of Ochratoxin A in Tissues of Wild Boars ( Sus scrofa) from Southern Italy. Toxins (Basel) 2025; 17:74. [PMID: 39998091 PMCID: PMC11860290 DOI: 10.3390/toxins17020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Ochratoxin A (OTA) is a secondary metabolite produced by fungi of the genera Aspergillus and Penicillium, known to contaminate various food substrates. Its toxic effects include direct nephrotoxicity, as well as observed teratogenic, immunogenic, and carcinogenic effects. Climate change may contribute to increased humidity and temperature, favouring fungal growth and, consequently, OTA spreading. Recent increases in wild boar populations, along with their omnivorous nature and their varied diet, define them as environmental bioindicators for contaminants like mycotoxins. This study aimed to assess the concentrations of OTA in kidney, liver, and muscle tissue samples from 74 wild boars that were hunted in different areas of Avellino, Campania region, between 2021 and 2022. Tissue samples underwent extraction, purification, and analysis using high-performance liquid chromatography (HPLC) coupled with a fluorescence detector. Results revealed OTA presence in 35.1% of tested wild boars. The highest OTA concentration was observed in the kidney and liver, with less in the muscle, indicating the presence of this mycotoxin in the wild boars and their surrounding environment. Consequently, there is a need to formulate rules for edible wildlife products. These findings emphasize the significant risk of OTA contamination in wild boar tissues, suggesting their potential as reliable environmental markers for mycotoxin prevalence and as a toxicological concern for human health.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino, 80137 Napoli, Italy; (S.D.); (C.L.); (N.P.); (R.C.)
| | - Consiglia Longobardi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino, 80137 Napoli, Italy; (S.D.); (C.L.); (N.P.); (R.C.)
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge, 56124 Pisa, Italy; (V.M.)
| | - Nadia Piscopo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino, 80137 Napoli, Italy; (S.D.); (C.L.); (N.P.); (R.C.)
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge, 56124 Pisa, Italy; (V.M.)
| | - Alessio Lenzi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge, 56124 Pisa, Italy; (V.M.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino, 80137 Napoli, Italy; (S.D.); (C.L.); (N.P.); (R.C.)
| |
Collapse
|
3
|
Qin M, Lin L, Wang L, Zhang Y, Zhang L, Song Y, Chen J. Disease Burden Estimation of Hepatocellular Carcinoma Attributable to Dietary Aflatoxin Exposure in Sichuan Province, China. Nutrients 2024; 16:4381. [PMID: 39771002 PMCID: PMC11677878 DOI: 10.3390/nu16244381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Aflatoxin B1 (AFB1), AFB2, AFG1, and AFG2 are Group 1 human carcinogens, with AFB1 notably increasing hepatocellular carcinoma (HCC) risk. Sichuan Province, China, with its subtropical monsoon climate, is susceptible to AF contamination in various food items. However, the HCC disease burden attributable to lifetime chronic dietary AF intake in Sichuan has not been investigated. METHODS The contamination data of AFB1, AFB2, AFG1, AFG2, and AFM1 across 20 food categories were analyzed from 2012 to 2023 in Sichuan. Along with the consumption data gathered from the 2011 China National Nutrition and Health Survey, the FDA-iRISK simulated the lifetime chronic dietary exposure patterns of ∑5AF and estimated the associated HCC burden using disability-adjusted life year (DALY) as the metric. RESULTS As for the mean AF contamination level in food from Sichuan, the estimated lifetime average daily dose (LADD) of ∑5AF intake was 9.77 ng/kg bw/day at minimum and 26.0 ng/kg bw/day at maximum, resulting in the lifetime HCC risks per person of 0.106% and 0.283%. The corresponding HCC burdens were 16.87 DALY/100,000 people/year and 44.95 DALY/100,000 people/year, respectively. In the same scenario, the LADD and the risk of HCC in males were higher than in females, but the PAF was higher in females. However, the high (P95) AF contamination level in food caused 2-3 times higher LADD and HCC burden than the mean level of AF occurrence. Among the studied food categories, grains and their products were the primary dietary sources of dietary AF exposure. CONCLUSIONS Sichuan population's lifetime exposure to ∑5AF results in an HCC burden higher than the global level. It is recommended to continuously monitor and control AF contamination in Sichuan, particularly those highly vulnerable food categories, and the HCC disease burden should remain a concern in future research efforts.
Collapse
Affiliation(s)
- Mei Qin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 600041, China; (M.Q.); (L.W.); (L.Z.)
- Chongqing Center for Disease Control and Prevention, Chongqing 400707, China
| | - Li Lin
- Sichuan Center for Disease Control and Prevention, Chengdu 600044, China; (L.L.); (Y.Z.)
| | - Liang Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 600041, China; (M.Q.); (L.W.); (L.Z.)
| | - Yu Zhang
- Sichuan Center for Disease Control and Prevention, Chengdu 600044, China; (L.L.); (Y.Z.)
| | - Lishi Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 600041, China; (M.Q.); (L.W.); (L.Z.)
| | - Yang Song
- Sichuan Center for Disease Control and Prevention, Chengdu 600044, China; (L.L.); (Y.Z.)
| | - Jinyao Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 600041, China; (M.Q.); (L.W.); (L.Z.)
| |
Collapse
|
4
|
Kim DB, Nam M, Kim YS, Kim MS. Optimization, Validation, and Application of Cleanup-Coupled Liquid Chromatography-Tandem Mass Spectrometry for the Simultaneous Analyses of 35 Mycotoxins and Their Derivatives in Cereals. Foods 2024; 13:3617. [PMID: 39594033 PMCID: PMC11594120 DOI: 10.3390/foods13223617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Mycotoxins occur singly or as co-contaminants and are primarily present in carbohydrate-rich foods such as cereals and cereal-based products. To effectively monitor mycotoxin co-contamination in cereals and cereal-based products, the simultaneous analysis of mycotoxins and their derivatives is required. Therefore, we coupled cleanup with LC-MS/MS for the rapid and robust quantitation of 35 analytes in wheat samples, including ergot alkaloids (EAs), which are rarely included in such analyses. To investigate the effects of different mycotoxin types on adsorbents, various dispersive solid-phase extraction sorbents were evaluated; a C18 end-capped sorbent exhibited the most effective cleanup performance. The method was validated by analyzing samples fortified with the mycotoxins at three concentration levels. The results exhibited high linearity, high recoveries, and repeatability. The methodology was applied for commercial cereal samples. The cereal samples were found to be 74% contaminated, and two samples measured levels of EAs at 609.63 μg/kg and 294.93 μg/kg, exceeding the limits defined by the EU for rye milling products. These findings highlight the validity of our novel method and the necessity of continuously monitoring mycotoxin levels in cereals to ensure food safety.
Collapse
Affiliation(s)
- Dan-Bi Kim
- Food Analysis Research Center, Korea Food Research Institute, Wanju 55365, Republic of Korea; (D.-B.K.); (M.N.)
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Miso Nam
- Food Analysis Research Center, Korea Food Research Institute, Wanju 55365, Republic of Korea; (D.-B.K.); (M.N.)
| | - Yong-Suk Kim
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Min-Sun Kim
- Food Analysis Research Center, Korea Food Research Institute, Wanju 55365, Republic of Korea; (D.-B.K.); (M.N.)
| |
Collapse
|
5
|
Zhou F, Zhou X, Jiao Y, Han A, Su H, Wang L, Zhou H, Li W, Liu R. Potential Mechanisms of Hexaconazole Resistance in Fusarium graminearum. PLANT DISEASE 2024; 108:3133-3145. [PMID: 38902883 DOI: 10.1094/pdis-04-24-0880-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Fusarium head blight (FHB) caused by Fusarium graminearum is a serious fungal disease that can dramatically impact wheat production. At present, disease control is mainly achieved by the use of chemical fungicides. Hexaconazole (IUPAC name: 2(2,4-dichlorophenyl)-1-(1,2,4-triazol-1-yl)hexan-2-ol) is a widely used triazole fungicide, but the sensitivity of F. graminearum to this compound has yet to be established. The current study found that the EC50 values of 83 field isolates of F. graminearum ranged between 0.06 and 4.33 μg/ml, with an average EC50 value of 0.78 μg/ml. Assessment of four hexaconazole-resistant laboratory mutants of F. graminearum revealed that their mycelial growth and pathogenicity were reduced compared with their parental isolates and that asexual reproduction was reduced by resistance to hexaconazole. Meanwhile, the mutants appeared to be more sensitive to abiotic stress associated with SDS and H2O2, while their tolerance to high concentrations of Congo red, and Na+ and K+ increased. Molecular analysis revealed numerous point mutations in the FgCYP51 target genes that resulted in amino acid substitutions, including L92P and N123S in FgCYP51A, as well as M331V, F62L, Q252R, A412V, and V488A in FgCYP51B, and S28L, S256A, V307A, D287G, and R515I in FgCYP51C, three of which (S28L, S256A, and V307A) were conserved in all of the resistant mutants. Furthermore, the expression of the FgCYP51 genes in resistant strains was found to be significantly (P < 0.05) reduced compared with their sensitive parental isolates. Positive cross-resistance was found between hexaconazole and metconazole and flutriafol, as well as with the diarylamine fungicide fluazinam, but not with propiconazole, and the phenylpyrrole fungicide fludioxonil, or with tebuconazole, which actually exhibited negative cross-resistance. These results provide valuable insight into resistant mechanisms to triazole fungicides in F. graminearum, as well as the appropriate selection of fungicide combinations for the control of FHB to ensure optimal wheat production.
Collapse
Affiliation(s)
- Feng Zhou
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaoli Zhou
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yan Jiao
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Aohui Han
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Haichuan Su
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Longhe Wang
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Huanhuan Zhou
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Weiguo Li
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Runqiang Liu
- Henan Engineering Research Center of Green Pesticide Creation and Pesticide Residue Monitoring by Intelligent Sensor, Henan Institute of Science and Technology, Xinxiang 453003, China
- Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
6
|
Rooney MK, Herrman TJ. Enhancing maize safety: the role of co-regulation as a regulatory strategy to manage fumonisin risk. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1187-1196. [PMID: 38976636 DOI: 10.1080/19440049.2024.2376159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/15/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
This study explores the implementation of the One Sample Strategy (OSS), a co-regulation program aimed at managing mycotoxin risk in Texas maize. Fumonisin-contaminated cereals and oilseeds that contain greater than 5 mg kg-1 of the toxin (B1, B2, and B3) are a risk for equids and rabbits, and levels greater than 60 mg kg-1 are a risk to ruminants. The OSS, previously successful in managing aflatoxin risk in Texas maize, was evaluated for its effectiveness in handling fumonisin risk in maize, specifically as it relates to ruminants. In 2017, 25 analysts across seven firms qualified to participate in the program. To ensure greater accuracy in testing, working control samples were provided to the participating OSS firms with the requirement that their results fall within +/- 20% of the target concentration. Ninety-four percent of the working controls met this specification. The capability to grind maize to the OSS prescribed particle size was met by 100% of participants. To verify testing accuracy, file samples collected from each OSS firm were analysed by UPLC-MS/MS. The 177 fumonisin verification samples analysed by Office of the Texas State Chemist (OTSC) were correlated (r = 0.93) with co-regulation laboratories. Results were plotted in an operating curve to depict type I and type II errors. Error analysis revealed a type I error rate of 13% and type II error rate of 2% for the 5 mg kg-1 guidance level, and 6% and 8%, respectively, for the 60 mg kg-1 guidance level. For 2017, 994 official reports of analysis for fumonisin in whole maize in the Texas High Plains were issued by the seven laboratories that employed 25 OTSC-credentialed analysts. The OSS co-regulation program, supported by a quality systems approach and government regulations, has proven effective in managing fumonisin risk in Texas maize, enhancing both market confidence and livestock safety.
Collapse
Affiliation(s)
- Megan K Rooney
- Office of the Texas State Chemist, Texas A&M AgriLife Research, College Station, TX, USA
| | - Timothy J Herrman
- Office of the Texas State Chemist, Texas A&M AgriLife Research, College Station, TX, USA
| |
Collapse
|
7
|
Boadu RO, Dankyi E, Apalangya VA, Osei-Safo D. Aflatoxins in maize and groundnuts on markets in Accra and consumers risk. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:213-222. [PMID: 38778671 DOI: 10.1080/19393210.2024.2351575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
This study presents the results of aflatoxin contamination of maize and groundnuts in major markets in Accra and assesses the population's exposure to aflatoxins. Raw maize and groundnuts from 6 major markets in Accra were sampled and analysed for their aflatoxin content. A total of 92 samples comprising 48 maize and 44 groundnuts were analysed using high-performance liquid chromatography, after extraction with methanol/water and cleanup on an immunoaffinity column. Total aflatoxins were quantified in 98% of the maize samples and 70% of the groundnut samples, with concentrations ranging from 0.60 to 1065 µg/kg and 0.20 to 627 µg/kg, respectively. Exposure assessment showed an estimated daily intake of 0.436 μg/kg bw/day and 0.0632 μg/kg bw/day for maize and groundnut consumption, respectively, suggesting significant health risks for consumers. The high prevalence and concentrations of aflatoxins call for an urgent need for measures to control exposure of the Ghanaian population.
Collapse
Affiliation(s)
| | - Enock Dankyi
- Department of Chemistry, University of Ghana, Accra, Ghana
| | - Vitus A Apalangya
- Department of Food Processing Engineering, University of Ghana, Accra, Ghana
| | | |
Collapse
|
8
|
Rooney MK, Herrman TJ. Field validation as a means for continual monitoring of approved test kit's fitness for purpose in the commercial market. Heliyon 2024; 10:e34768. [PMID: 39144979 PMCID: PMC11320311 DOI: 10.1016/j.heliyon.2024.e34768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Testing accuracy of a chemical contaminant requires use of a testing platform that conforms to validation criteria outlined in quality literature and standards. This study explores the application of commercial field data measured by qualified analysts using a United States Department of Agriculture - Federal Grain Inspection Service approved kit for measuring fumonisin in maize to augment method validation procedures. Analysts from seven grain testing facilities were qualified in official USDA sampling, sample preparation, and testing methodology using the Charm LF-FUMQ-WETS5. A duplicate sample was tested in the Office of the Texas State Chemist (OTSC) laboratory using UPLC-MS-MS. Data were subject to four statistical techniques using continuous and categorical methodology. This approach enabled researchers to explore if a single test or multiple comparisons were best suited to assess a field kit's fitness for purpose across facility, toxin level, and year. The study concluded that a paired t-test and correlation analysis provided a quick and meaningful evaluation of kit performance. The correct placement of samples within the correct bin (violative versus non-violative) aligns well with market forces and regulatory compliance. The results of this study also provide a useful tool to assess all field kits' performance at the beginning of the harvest season and subsequent years. The combination of statistical techniques presented in this research is an important tool in assessing mycotoxin field test kits fitness for purpose and represents a key step in a continuous improvement-quality systems process meant to protect the feed and food supply.
Collapse
Affiliation(s)
- Megan K. Rooney
- Office of the Texas State Chemist, Texas A&M AgriLife Research, College Station, TX, 77841, USA
| | - Timothy J. Herrman
- Office of the Texas State Chemist, Texas A&M AgriLife Research, College Station, TX, 77841, USA
| |
Collapse
|
9
|
Sica P, Domingues MA, Mota LA, Pinto AU, Baptista AAS, Horii J, Abdalla AL, Baptista AS. How does active yeast supplementation reduce the deleterious effects of aflatoxins in Wistar rats? A radiolabeled assay and histopathological study. World J Microbiol Biotechnol 2024; 40:164. [PMID: 38630373 PMCID: PMC11023971 DOI: 10.1007/s11274-024-03981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
The aim of this study was to investigate the mechanisms by which yeasts (Saccharomyces cerevisiae) control the toxic effects of aflatoxins, which are not yet fully understood. Radiolabeled aflatoxin B1 (AFB13H) was administered by gavage to Wistar rats fed with aflatoxin (AflDiet) and aflatoxin supplemented with active dehydrated yeast Y904 (AflDiet + Yeast). The distribution of AFB13H and its metabolites were analyzed at 24, 48 and 72 h by tracking back of the radioactivity. No significant differences were observed between the AflDiet and AflDiet + Yeast groups in terms of the distribution of labeled aflatoxin. At 72 h, for the AflDiet group the radiolabeled aflatoxin was distributed as following: feces (79.5%), carcass (10.5%), urine (1.7%), and intestine (7.4%); in the AflDiet + Yeast the following distribution was observed: feces (76%), carcass (15%), urine (2.9%), and intestine (4.9%). These values were below 1% in other organs. These findings indicate that even after 72 h considerable amounts of aflatoxins remains in the intestines, which may play a significant role in the distribution and metabolism of aflatoxins and its metabolites over time. The presence of yeast may not significantly affect this process. Furthermore, histopathological examination of hepatic tissues showed that the presence of active yeast reduced the severity of liver damage caused by aflatoxins, indicating that yeasts control aflatoxin damage through biochemical mechanisms. These findings contribute to a better understanding of the mechanisms underlying the protective effects of yeasts against aflatoxin toxicity.
Collapse
Affiliation(s)
- Pietro Sica
- Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsenvej, Frederiksberg, 1870, Denmark.
| | - Maria Antonia Domingues
- Department of Agri-food Industry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of Sao Paulo", Padua Dias Avenue, Piracicaba, Sao Paulo, 13418-900, Brazil
| | - Layna Amorim Mota
- Department of Agri-food Industry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of Sao Paulo", Padua Dias Avenue, Piracicaba, Sao Paulo, 13418-900, Brazil
| | - Alana Uchôa Pinto
- Department of Agri-food Industry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of Sao Paulo", Padua Dias Avenue, Piracicaba, Sao Paulo, 13418-900, Brazil
| | | | - Jorge Horii
- Department of Agri-food Industry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of Sao Paulo", Padua Dias Avenue, Piracicaba, Sao Paulo, 13418-900, Brazil
| | - Adibe Luiz Abdalla
- Center for Nuclear Energy in Agriculture (CENA), University of Sao Paulo, 303, Centenario Avenue, Piracicaba, Sao Paulo, 13400-970, Brazil
| | - Antonio Sampaio Baptista
- Department of Agri-food Industry, Food and Nutrition, College of Agriculture "Luiz de Queiroz", University of Sao Paulo", Padua Dias Avenue, Piracicaba, Sao Paulo, 13418-900, Brazil
| |
Collapse
|
10
|
Faria PB, Erasmus SW, Bruhn FRP, van Ruth SM. An account of the occurrence of residues from veterinary drugs and contaminants in animal-derived products: a case study on Brazilian supply chains. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:365-384. [PMID: 38346259 DOI: 10.1080/19440049.2024.2315140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/01/2024] [Indexed: 03/27/2024]
Abstract
Brazil plays an important role in ensuring its position on the international market by assuring high food safety standards for its products, and all products should meet the requirements for residues from veterinary drugs and contaminants in animal products. Statutory monitoring provides insights into the compliance of the Brazilian industry regarding these legal requirements. The objective of this study was to provide insight into the safety of Brazilian animal products by reporting the occurrence of residues from veterinary drugs and contaminants according to an analysis of an 11-year report published by the Brazilian Ministry of Agriculture, Livestock and Food Supply (MAPA). Between 2010 and 2021, 166,647 samples from animal-derived products were analyzed in Brazil, and 624 of those samples were non-compliant (0.37%) exceeding maximum residue limits (>MRLs) or showed the presence of prohibited substances. The most common types of substances found in the non-compliant samples were heavy metals, parasiticides, and antimicrobials, accounting for 82% of all documents from the MAPA. Among Brazilian products, the challenge related to occurrence of substances varied across the food supply chain, with highest incidence rates observed in the fish chain, followed by eggs, milk, equids, sheep/goat, honey, bovine, swine, and broilers chains in decreasing order. Considering the type of substance, heavy metals were found to be more prevalent in fish products, mainly arsenic in wild fish. The prevalence of contaminants and heavy metals decreased, while that of veterinary drugs increased in Brazilian products from 2010 to 2021. From these results, it can be concluded that the number of accidental incidents including those associated with environmental contaminants decreased over the last decade, opposed to those involving human adversaries and deliberate illegal actions, such as the abuse of veterinary drugs, increased. Future monitoring plans need to take this paradigm shift into account.
Collapse
Affiliation(s)
- Peter B Faria
- Department of Veterinary Science, Federal University of Lavras, Lavras, Brazil
| | - Sara W Erasmus
- Food Quality and Design, Wageningen University, Wageningen, The Netherlands
| | - Fabio R P Bruhn
- Department of Preventive Veterinary Medicine, Federal University of Pelotas, Capão Do Leão, Rio Grande Do Sul, Brazil
| | - Saskia M van Ruth
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
11
|
Jacobson T, Bae Y, Kler JS, Iyer R, Zhang R, Montgomery ND, Nunes D, Pleil JD, Funk WE. Advancing Global Health Surveillance of Mycotoxin Exposures using Minimally Invasive Sampling Techniques: A State-of-the-Science Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3580-3594. [PMID: 38354120 PMCID: PMC10903514 DOI: 10.1021/acs.est.3c04981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024]
Abstract
Mycotoxins are a heterogeneous group of toxins produced by fungi that can grow in staple crops (e.g., maize, cereals), resulting in health risks due to widespread exposure from human consumption and inhalation. Dried blood spot (DBS), dried serum spot (DSS), and volumetric tip microsampling (VTS) assays were developed and validated for several important mycotoxins. This review summarizes studies that have developed these assays to monitor mycotoxin exposures in human biological samples and highlights future directions to facilitate minimally invasive sampling techniques as global public health tools. A systematic search of PubMed (MEDLINE), Embase (Elsevier), and CINAHL (EBSCO) was conducted. Key assay performance metrics were extracted to provide a critical review of the available methods. This search identified 11 published reports related to measuring mycotoxins (ochratoxins, aflatoxins, and fumonisins) using DBS/DSS and VTS assays. Multimycotoxin assays adapted for DBS/DSS and VTS have undergone sufficient laboratory validation for applications in large-scale population health and human biomonitoring studies. Future work should expand the number of mycotoxins that can be measured in multimycotoxin assays, continue to improve multimycotoxin assay sensitivities of several biomarkers with low detection rates, and validate multimycotoxin assays across diverse populations with varying exposure levels. Validated low-cost and ultrasensitive minimally invasive sampling methods should be deployed in human biomonitoring and public health surveillance studies to guide policy interventions to reduce inequities in global mycotoxin exposures.
Collapse
Affiliation(s)
- Tyler
A. Jacobson
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Yeunook Bae
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Jasdeep S. Kler
- University
of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Ramsunder Iyer
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Runze Zhang
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Nathan D. Montgomery
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Denise Nunes
- Galter
Health Sciences Library, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Joachim D. Pleil
- Department
of Environmental Sciences and Engineering, Gillings School of Public
Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - William E. Funk
- Department
of Preventive Medicine, Northwestern University
Feinberg School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
12
|
Yang M, Lu H, Xiao N, Qin Y, Sun L, Sun R. Fumigation with dimethyl trisulfide to inhibit Aspergillus flavus growth, aflatoxin B1 production and virulence. FEMS Microbiol Lett 2024; 371:fnae102. [PMID: 39577849 DOI: 10.1093/femsle/fnae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/02/2024] [Accepted: 11/21/2024] [Indexed: 11/24/2024] Open
Abstract
Aspergillus flavus is a common saprophytic aerobic fungus in oil crops that poses a serious threat worldwide with the carcinogenic aflatoxin. Prevention of aflatoxin B1 contamination has great significance to ensure food safety and reduce the economic loss. The present work focuses on the antagonistic activity against A. flavus growth in peanuts by fumigation with dimethyl trisulfide. The results indicated that dimethyl trisulfide exhibits great antifungal activity against A. flavus. The conidial germination and mycelial growth of A. flavus were completely suppressed after exposure to 15 and 20 µl/l of dimethyl trisulfide, respectively. Numerous deformed conidia were found after exposure to dimethyl trisulfide at high concentration (≥20 µl/l). Scanning electron microscope observation demonstrated that dimethyl trisulfide induced severely shrinking mycelia of A. flavus. The results of OD-260 nm absorption and rhodamine-123 fluorescent staining indicated that cell membrane and mitochondria may be legitimate antifungal targets of dimethyl trisulfide. Dimethyl triethyl has a significant inhibitory effect on A. flavus infection in peanuts. In addition, dimethyl trisulfide could reduce the production of aflatoxin B1 via down-regulation of toxin synthesis and regulatory gene expression. Dimethyl trisulfide can be a tremendous potential agent for the biological control of A. flavus and deepened our understanding of the anti-fungal mechanisms of volatile organic compounds.
Collapse
Affiliation(s)
- Mingguan Yang
- College of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P.R. China
| | - Honggui Lu
- Shandong Provincial Forestry Protection and Development Service Center, Jinan 250014, P.R. China
| | - Nan Xiao
- Shandong Provincial Forestry Protection and Development Service Center, Jinan 250014, P.R. China
| | - Yongjian Qin
- Shandong Provincial Forestry Protection and Development Service Center, Jinan 250014, P.R. China
| | - Lei Sun
- Economic Forest Institute, Shandong Academy of Forestry Sciences, Jinan 250014, P.R. China
| | - Rui Sun
- College of Food Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P.R. China
| |
Collapse
|
13
|
Badmos FO, Muhammad HL, Dabara A, Adefolalu F, Salubuyi S, Abdulkadir A, Oyetunji VT, Apeh DO, Muhammad HK, Mwanza M, Monjerezi M, Matumba L, Makun HA. Assessment of dietary exposure and levels of mycotoxins in sorghum from Niger State of Nigeria. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:74-90. [PMID: 38109413 DOI: 10.1080/19440049.2023.2293998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
This study reports levels of mycotoxins in sorghum from Niger State, Nigeria, and provides a comprehensive assessment of their potential health risks by combining mycotoxin levels and dietary exposure assessment. A total of 240 samples of red and white sorghum were collected from both stores and markets across four microclimatic zones. Fungal species were identified using a dilution plate method. Aflatoxins (AFs), deoxynivalenol, nivalenol, and ochratoxin (OTA) were quantified using HPLC, whereas cyclopiazonic acid, fumonisins (FUMs) and zearalenone were quantified using ELISA. A. flavus and A. fumigatus were dominant fungal species followed by F. verticilloides, A. oryzae and P. verrucosum. Aflatoxins (mean: 29.97 µg/kg) were detected in all samples, whereas OTA (mean: 37.5 µg/kg) and FUMs (mean: 3269.8 µg/kg) were detected in 72% and 50% of the samples, respectively. Mycotoxins frequently co-occurred in binary mixtures of AFs + OTA and AFs + FUMs. Dietary exposure estimates were highest for FUMs at 230% of TDI and margin of exposures (MOEs) for both AFs and OTA (<10,000) indicating a potential risk associated with combined exposure to AFs and OTA. The Risk of hepatocellular carcinoma cases (HCC/year) attributable to AFs and OTA exposure from sorghum was estimated to be 5.99 × 105 and 0.24 × 105 cases for HBsAg + individuals based on 13.6% HBV incidence. Similarly, the HCC/year for AFs and OTA were assessed to be 3.59 × 105 and 0.14 × 105 at an 8.1% prevalence rate. Therefore, the results of this study demonstrate the high prevalence and dietary exposure to mycotoxins through sorghum consumption, raising public health and trade concerns.
Collapse
Affiliation(s)
- Fatimah Omolola Badmos
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Hadiza Lami Muhammad
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Achi Dabara
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Funmilola Adefolalu
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Susan Salubuyi
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Abdullahi Abdulkadir
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Victor Tope Oyetunji
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Daniel Ojochenemi Apeh
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
- Department of Biological Sciences, Confluence University of Science and Technology, Osara, Nigeria
| | - Hadiza Kudu Muhammad
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Mulunda Mwanza
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Animal Health, Northwest University, Mafikeng, South Africa
| | - Maurice Monjerezi
- Department of Animal Health, Northwest University, Mafikeng, South Africa
- Department of Chemistry and Chemical Engineering, University of Malawi, Zomba, Malawi
| | - Limbikani Matumba
- Centre for Resilient Agri-Food Systems (CRAFS), University of Malawi, Zomba, Malawi
- Food Technology and Nutrition Group-NRC, Lilongwe University of Agriculture and Natural Resources (LUANAR), Lilongwe, Malawi
| | - Hussaini Anthony Makun
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| |
Collapse
|
14
|
Manoj D, Rajendran S, Murphy M, Jalil AA, Sonne C. Recent progress and perspectives of metal organic frameworks (MOFs) for the detection of food contaminants. CHEMOSPHERE 2023; 340:139820. [PMID: 37586499 DOI: 10.1016/j.chemosphere.2023.139820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/05/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Over the past decades, increasing research in metal-organic frameworks (MOFs) being a large family of highly tunable porous materials with intrinsic physical properties, show propitious results for a wide range of applications in adsorption, separation, electrocatalysis, and electrochemical sensors. MOFs have received substantial attention in electrochemical sensors owing to their large surface area, active metal sites, high chemical and thermal stability, and tunable structure with adjustable pore diameters. Benefiting from the superior properties, MOFs and MOF-derived carbon materials act as promising electrode material for the detection of food contaminants. Although several reviews have been reported based on MOF and its nanocomposites for the detection of food contaminants using various analytical methods such as spectrometric, chromatographic, and capillary electrophoresis. But there no significant review has been devoted to MOF/and its derived carbon-based electrodes using electrochemical detection of food contaminants. Here we review and classify MOF-based electrodes over the period between 2017 and 2022, concerning synthetic procedures, electrode fabrication process, and the possible mechanism for detection of the food contaminants which include: heavy metals, antibiotics, mycotoxins, and pesticide residues. The merits and demerits of MOF as electrode material and the need for the fabrication of MOF and its composites/derivatives for the determination of food contaminants are discussed in detail. At last, the current opportunities, key challenges, and prospects in MOF for the development of smart sensing devices for future research in this field are envisioned.
Collapse
Affiliation(s)
- Devaraj Manoj
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile; Department of Chemical Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Manoharan Murphy
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - A A Jalil
- Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia; Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre (ARC), Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| |
Collapse
|
15
|
Su C, Li J, Pan L, Zhang M, Chen Z, Lu M. Immunotoxicity and the mechanisms of aflatoxin B1-induced growth retardation in shrimp and alleviating effects of bile acids. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132266. [PMID: 37595470 DOI: 10.1016/j.jhazmat.2023.132266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023]
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins prevalent in the environment and food chain, posing severe health risks to humans and animals. Bile acids are natural detergents synthesized from cholesterol and play a key role in the excretion of toxins in vertebrates. Here, pacific white shrimp (Litopenaeus vannamei) served as an animal model to examine the toxicity mechanisms of AFB1 and assess the potential alleviating effects of bile acids against AFB1. Our results revealed that AFB1 exposure significantly inhibited the growth performance and immune response of shrimp, accompanied by AFB1 accumulation and histological damage. Mechanistically, AFB1-induced DNA damage activated DNA repair mechanisms and induced the arrest of cell cycle via the ATR-cyclin B/cdc2 pathway. Additionally, AFB1 directly suppressed the immune response and growth performance of shrimp by inhibiting Toll and IMD pathways and the secretion of digestive enzymes. Notably, dietary bile acids significantly reduced AFB1 accumulation and alleviated AFB1-induced growth retardation and immunotoxicity in shrimp, and CCKAR, ATR, and Relish may be key mediators of the alleviating effects of bile acids. Our study provided new insights into the toxicity mechanisms of AFB1 in invertebrates and highlighted the potential of bile acids to alleviate AFB1 toxicity.
Collapse
Affiliation(s)
- Chen Su
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Jinbao Li
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Luqing Pan
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China.
| | - Mengyu Zhang
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Zhifei Chen
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| | - Mingxiang Lu
- The key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, Shandong 266003, China
| |
Collapse
|
16
|
Xiao S, Wu Y, Gao S, Zhou M, Liu Z, Xiong Q, Jiang L, Yuan G, Li L, Yang L. Deciphering the Hazardous Effects of AFB1 and T-2 Toxins: Unveiling Toxicity and Oxidative Stress Mechanisms in PK15 Cells and Mouse Kidneys. Toxins (Basel) 2023; 15:503. [PMID: 37624260 PMCID: PMC10467080 DOI: 10.3390/toxins15080503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
In China, animal feeds are frequently contaminated with a range of mycotoxins, with Aflatoxin B1 (AFB1) and T-2 toxin (T-2) being two highly toxic mycotoxins. This study investigates the combined nephrotoxicity of AFB1 and T-2 on PK15 cells and murine renal tissues and their related oxidative stress mechanisms. PK15 cells were treated with the respective toxin concentrations for 24 h, and oxidative stress-related indicators were assessed. The results showed that the combination of AFB1 and T-2 led to more severe cellular damage and oxidative stress compared to exposure to the individual toxins (p < 0.05). In the in vivo study, pathological examination revealed that the kidney tissue of mice exposed to the combined toxins showed signs of glomerular atrophy. The contents of oxidative stress-related indicators were significantly increased in the kidney tissue (p < 0.05). These findings suggest that the combined toxins cause significant oxidative damage to mouse kidneys. The study highlights the importance of considering the combined effects of mycotoxins in animal feed, particularly AFB1 and T-2, which can lead to severe nephrotoxicity and oxidative stress in PK15 cells and mouse kidneys. The findings have important implications for animal feed safety and regulatory policy.
Collapse
Affiliation(s)
- Shuai Xiao
- College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (S.X.); (Y.W.); (S.G.); (M.Z.); (Q.X.); (L.J.); (G.Y.); (L.L.)
| | - Yingxin Wu
- College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (S.X.); (Y.W.); (S.G.); (M.Z.); (Q.X.); (L.J.); (G.Y.); (L.L.)
| | - Suisui Gao
- College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (S.X.); (Y.W.); (S.G.); (M.Z.); (Q.X.); (L.J.); (G.Y.); (L.L.)
| | - Mingxia Zhou
- College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (S.X.); (Y.W.); (S.G.); (M.Z.); (Q.X.); (L.J.); (G.Y.); (L.L.)
| | - Zhiwei Liu
- Wuhan Animal Disease Control Center, No. 170, Erqi Road, Jiang’an District, Wuhan 430014, China;
| | - Qianbo Xiong
- College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (S.X.); (Y.W.); (S.G.); (M.Z.); (Q.X.); (L.J.); (G.Y.); (L.L.)
| | - Lihuang Jiang
- College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (S.X.); (Y.W.); (S.G.); (M.Z.); (Q.X.); (L.J.); (G.Y.); (L.L.)
| | - Guoxiang Yuan
- College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (S.X.); (Y.W.); (S.G.); (M.Z.); (Q.X.); (L.J.); (G.Y.); (L.L.)
| | - Linfeng Li
- College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (S.X.); (Y.W.); (S.G.); (M.Z.); (Q.X.); (L.J.); (G.Y.); (L.L.)
| | - Lingchen Yang
- College of Veterinary Medicine, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (S.X.); (Y.W.); (S.G.); (M.Z.); (Q.X.); (L.J.); (G.Y.); (L.L.)
| |
Collapse
|
17
|
Huang N, Sheng W, Bai D, Sun M, Ren L, Wang S, Zhang W, Jin Z. Multiplex bio-barcode based fluorometric immunoassay for simultaneous determination of zearalenone, fumonisin B1, ochratoxin A, and aflatoxin B1 in cereals. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
18
|
Demirkapi EN, Ince S, Demirel HH, Arslan-Acaroz D, Acaroz U. Polydatin reduces aflatoxin-B1 induced oxidative stress, DNA damage, and inflammatory cytokine levels in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:70842-70853. [PMID: 37155108 DOI: 10.1007/s11356-023-27361-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
This study showed the protective effect of polydatin (PD), which has an antioxidant activity against oxidative stress in mice caused by aflatoxin B1 (AFB1). In this study, 36 male Swiss albino mice were divided equally into 6 groups: 0.2 mL of FTS was administered to the control group, 0.2 mL of olive oil to the second group, and 0.75 mg/kg AFB1 to the third group by intragastric gavage every day for 28 days. The fourth, fifth, and sixth groups were administered 50, 100, and 200 mg/kg PD and 0.75 mg/kg AFB1 intragastrically for 28 days, respectively. AFB1 administration increased plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, blood urea nitrogen, creatinine, and malondialdehyde levels in blood and tissue samples but decreased the level of glutathione and the activities of superoxide dismutase and catalase. On the other hand, it was determined that PD applications depending on the increasing doses brought these levels closer to normal. In addition, AFB1 administration increased the amount of ssDNA and liver COX-2, TNF-α, IL-6, NFκB, and Cyp3a11 mRNA expression levels; on the other hand, it decreased the IL-2 mRNA expression level. In contrast, increasing doses of PD application regulated the amount of ssDNA and these mRNA expression levels. Additionally, histopathological damage was observed in the liver and kidney tissues of the AFB1 group, while PD applications in a dose-dependent manner improved these damages. As a result, it was determined that PD reduced AFB1-induced oxidative stress, DNA damage, and inflammation and exhibited a protective effect on tissues in mice.
Collapse
Affiliation(s)
- Ezgi Nur Demirkapi
- Veterinary Faculty, Department of Physiology, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey.
| | - Sinan Ince
- Veterinary Faculty, Department of Pharmacology and Toxicology, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | | | - Damla Arslan-Acaroz
- Veterinary Faculty, Department of Biochemistry, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Ulas Acaroz
- Department of Food Hygiene and Technology, Afyon Kocatepe University, Veterinary Faculty, 03200, Afyonkarahisar, Turkey
| |
Collapse
|
19
|
Li J, Wang X, Feng Z, Huang G, Yan L, Ma J. Optimization of aflatoxin B 1 removal efficiency of DNA by resonance light scattering spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122398. [PMID: 36739664 DOI: 10.1016/j.saa.2023.122398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
In this paper, firstly, the resonance light scattering spectra of aflatoxin B1 (AFB1) and DNA were measured by resonance light scattering spectroscopy (RLS), and the DNA binding saturation value (DBSV) of AFB1 was calculated from their spectral results. Then the interaction intensity between DNA and AFB1 and the effects of some external factors on the interaction between DNA and AFB1 were evaluated by corresponding DBSVs, so as to establish and optimize a way for removing AFB1 by DNA. DBSV of AFB1 was 2.04 at 30℃ and pH 7.40. However, after adding sodium ion, calcium ion, vitamin E, vitamin C and D-glucose, DBSV of AFB1 was changed to 2.72, 3.17, 2.67, 1.68 and 1.33 respectively. Correspondingly, the removal efficiency of AFB1 by DNA was changed from 90.05% to 93.25%, 95.48%, 93.08%, 82.36% and 78.90% respectively. These results indicated that the external factors had a significant impact on the interaction between DNA and AFB1. Among them, some factors enhanced the interaction between DNA and AFB1, while some factors weakened the interaction between DNA and AFB1. The change of these external factors led to the corresponding changes in DBSV and the removal efficiency of AFB1. DBSV of AFB1 could really be used as an index to evaluate the intensity of the interaction between DNA and AFB1, and to optimize the removal efficiency of AFB1 by DNA. The experimental data also showed that the adsorption of AFB1 to DNA was consistent with the pseudo-second-order kinetic model and the Freundlich isothermal model, was an exothermic and spontaneous process. All these results will give good references for establishing and optimizing a way of AFB1 removal via DNA intercalation.
Collapse
Affiliation(s)
- Junsheng Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou 545006, Guangxi, PR China.
| | - Xiaoxue Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou 545006, Guangxi, PR China
| | - Zhen Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou 545006, Guangxi, PR China
| | - Guoxia Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou 545006, Guangxi, PR China
| | - Liujuan Yan
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou 545006, Guangxi, PR China
| | - Ji Ma
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Wenchang Road 2, Liuzhou 545006, Guangxi, PR China
| |
Collapse
|
20
|
Naqvi SIZ, Kausar H, Afzal A, Hashim M, Mujahid H, Javed M, Hano C, Anjum S. Antifungal Activity of Juglans-regia-Mediated Silver Nanoparticles (AgNPs) against Aspergillus-ochraceus-Induced Toxicity in In Vitro and In Vivo Settings. J Funct Biomater 2023; 14:jfb14040221. [PMID: 37103312 PMCID: PMC10141138 DOI: 10.3390/jfb14040221] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Aflatoxins produced by some species of Aspergillus are considered secondary toxic fungal by-products in feeds and food. Over the past few decades, many experts have focused on preventing the production of aflatoxins by Aspergillus ochraceus and also reducing its toxicity. Applications of various nanomaterials in preventing the production of these toxic aflatoxins have received a lot of attention recently. The purpose of this study was to ascertain the protective impact of Juglans-regia-mediated silver nanoparticles (AgNPs) against Aspergillus-ochraceus-induced toxicity by exhibiting strong antifungal activity in in vitro (wheat seeds) and in vivo (Albino rats) settings. For the synthesis of AgNPs, the leaf extract of J. regia enriched with high phenolic (72.68 ± 2.13 mg GAE/g DW) and flavonoid (18.89 ± 0.31 mg QE/g DW) contents was used. Synthesized AgNPs were characterized by various techniques, including TEM, EDX, FT-IR, and XRD, which revealed that the particles were spherical in shape with no agglomeration and fine particle size in the range of 16-20 nm. In vitro antifungal activity of AgNPs was tested on wheat grains by inhibiting the production of toxic aflatoxins by A. ochraceus. According to the results obtained from High-Performance Liquid Chromatography (HPLC) and Thin-Layer Chromatography (TLC) analyses, there was a correlation between the concentration of AgNPs and a decrease in the production of aflatoxin G1, B1, and G2. For in vivo antifungal activity, Albino rats were administrated with different doses of AgNPs in five groups. The results indicated that the feed concentration of 50 µg/kg feed of AgNPs was more effective in improving the disturbed levels of different functional parameters of the liver (alanine transaminase (ALT): 54.0 ± 3.79 U/L and aspartate transaminase (AST): 206 ± 8.69 U/L) and kidney (creatinine 0.49 ± 0.020 U/L and BUN 35.7 ± 1.45 U/L), as well as the lipid profile (LDL 22.3 ± 1.45 U/L and HDL 26.3 ± 2.33 U/L). Furthermore, the histopathological analysis of various organs also revealed that the production of aflatoxins was successfully inhibited by AgNPs. It was concluded that the harmful effects of aflatoxins produced by A. ochraceus can be successfully neutralized by using J. regia-mediated AgNPs.
Collapse
Affiliation(s)
- Syeda Itrat Zahra Naqvi
- Department of Biotechnology, Kinnaird College for Women, 92-Jail Road, Lahore 54000, Pakistan
| | - Humera Kausar
- Department of Biotechnology, Kinnaird College for Women, 92-Jail Road, Lahore 54000, Pakistan
| | - Arooj Afzal
- Institute of Biochemistry and Biotechnology, University of Veterinary & Animal Sciences, Lahore 54000, Pakistan
| | - Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, 92-Jail Road, Lahore 54000, Pakistan
| | - Huma Mujahid
- Institute of Biochemistry and Biotechnology, University of Veterinary & Animal Sciences, Lahore 54000, Pakistan
| | - Maryam Javed
- Institute of Biochemistry and Biotechnology, University of Veterinary & Animal Sciences, Lahore 54000, Pakistan
| | - Christophe Hano
- Department of Chemical Biology, Eure & Loir Campus, University of Orleans, 28000 Chartres, France
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, 92-Jail Road, Lahore 54000, Pakistan
| |
Collapse
|
21
|
Bacteriological Quality and Biotoxin Profile of Ready-to-Eat Foods Vended in Lagos, Nigeria. Foods 2023; 12:foods12061224. [PMID: 36981151 PMCID: PMC10048420 DOI: 10.3390/foods12061224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
A comprehensive study of bacterial and biotoxin contaminants of ready-to-eat (RTE) foods in Nigeria is yet to be reported. Hence, this study applied 16S rRNA gene sequencing and a dilute-and-shoot LC-MS/MS method to profile bacteria and biotoxins, respectively, in 199 RTE food samples comprising eko (n = 30), bread (n = 30), shawarma (n = 35), aadun (n = 35), biscuits (n = 34), and kokoro (n = 35). A total of 631 bacterial isolates, clustered into seven operational taxonomic units, namely Acinetobacter, Bacillus, Klebsiella, Proteus and Kosakonia, Kurthia, and Yokenella, that are reported for the first time were recovered from the foods. One hundred and eleven metabolites comprising mycotoxins and other fungal metabolites, phytoestrogenic phenols, phytotoxins, and bacterial metabolites were detected in the foods. Aflatoxins, fumonisins, and ochratoxins contaminated only the artisanal foods (aadun, eko, and kokoro), while deoxynivalenol and zearalenone were found in industrially-processed foods (biscuit, bread, and shawarma), and citrinin was present in all foods except eko. Mean aflatoxin (39.0 µg/kg) in artisanal foods exceeded the 10 µg/kg regulatory limit adopted in Nigeria by threefold. Routine surveillance, especially at the informal markets; food hygiene and safety education to food processors and handlers; and sourcing of high-quality raw materials are proposed to enhance RTE food quality and safeguard consumer health.
Collapse
|
22
|
Aberedew K, Ayelign A. Aflatoxin contamination in red pepper from producers in Addis Ababa. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2023; 16:1-7. [PMID: 35854632 DOI: 10.1080/19393210.2022.2102678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study was conducted to determine the occurrence and levels of aflatoxins in powder red pepper. Thirty powder red pepper samples commercially available in Addis Ababa market were collected and the level of aflatoxins (AFB1, AFB2, AFG1, and AFG2) was determined. Aflatoxins were detected in almost all of the samples at concentrations ranging from 0.4 to 52.3 µg/kg. AFB1 was detected in all of the red pepper samples, with levels ranging from 1.8 to 33.3 µg/kg. Out of all the AFB1 positive samples, 25 (83%) contained AFB1 above the EU limit of 5 µg/kg, while 29 (97%) of the samples exceeded the maximum limit of 10 µg/kg for total aflatoxins. Further, all the red pepper samples were contaminated by AFG1 with levels ranging from 0.7 to 52.3 µg/kg. Overall, the majority of the red pepper collected in Addis Ababa market was contaminated by aflatoxins above the EU limit.
Collapse
Affiliation(s)
- Kidist Aberedew
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abebe Ayelign
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
23
|
Characteristics of Aflatoxin B 1 Degradation by Stenotrophomonas acidaminiphila and It's Combination with Black Soldier Fly Larvae. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010234. [PMID: 36676183 PMCID: PMC9865385 DOI: 10.3390/life13010234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Aflatoxin B1 (AFB1) is a common mycotoxin contaminant in cereals that causes severe economic losses and serious risks to the health of humans and animals. In this paper, we investigated the characteristics of AFB1 degradation by black soldier fly larvae (BSFL) combined with commensal intestinal microorganisms. Germ-free BSFL and non-sterile BSFL were reared on peanut meal spiked with AFB1 for 10 days. The result showed that germ-free BSFL and non-sterile BSFL could achieve 31.71% and 88.72% AFB1 degradation, respectively, which indicated the important role of larvae gut microbiota in AFB1 degradation. Furthermore, twenty-five AFB1-degrading bacteria were isolated from BSFL gut, and S. acidaminiphila A2 achieved the highest AFB1 degradation, by 94%. When S. acidaminiphila A2 was re-inoculated to BSFL, the detrimental effect of AFB1 on the growth performance of BSFL was alleviated, and complete AFB1 degradation in peanut meal was obtained. In conclusion, the present study may provide a strategy to degrade AFB1 in feedstuff through bioconversion with BSFL in combination with gut-originated AFB1-degrading bacteria, while providing a sustainable insect protein and fat source to animals.
Collapse
|
24
|
The Application of Cold Plasma Technology in Low-Moisture Foods. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-022-09329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Tong W, Xiong H, Fang H, Wu Y, Li H, Huang X, Leng Y, Xiong Y. Bifunctional M13 Phage as Enzyme Container for the Reinforced Colorimetric-Photothermal Dual-Modal Sensing of Ochratoxin A. Toxins (Basel) 2022; 15:5. [PMID: 36668825 PMCID: PMC9867381 DOI: 10.3390/toxins15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
"Point of care" (POC) methods without expensive instruments and special technicians are greatly needed for high-throughput analysis of mycotoxins. In comparison, the most widely used screening method of the conventional enzyme-linked immunosorbent assay (ELISA) confronts low sensitivity and harmful competing antigens. Herein, we develop a plasmonic-photothermal ELISA that allows precise readout by color-temperature dual-modal signals based on enzymatic reaction-induced AuNP aggregation for highly sensitive detection of ochratoxin A (OTA). The bifunctional M13 phage carrying OTA that mimics the mimotope on the end of p3 proteins and abundant biotin molecules on the major p8 proteins is adopted as an eco-friendly competing antigen and enzyme container for amplifying the signal intensity. Under optimal conditions, both colorimetric and photothermal signals enable good dynamic linearity for quantitative OTA detection with the limits of detection at 12.1 and 8.6 pg mL-1, respectively. Additionally, the proposed ELISA was adapted to visual determination with a cutoff limit of 78 pg mL-1 according to a vivid color change from deep blue to red. The recoveries of OTA-spiked corn samples indicate the high accuracy and robustness of the proposed method. In conclusion, our proposed strategy provides a promising method for eco-friendly and sensitive POC screening of OTA. Moreover, it can be easily applied to other analytes by changing the involved specific mimotope sequence.
Collapse
Affiliation(s)
- Weipeng Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hanpeng Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hao Fang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuhao Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Haichuan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
26
|
Impact of Volatile Organic Compounds on the Growth of Aspergillus flavus and Related Aflatoxin B1 Production: A Review. Int J Mol Sci 2022; 23:ijms232415557. [PMID: 36555197 PMCID: PMC9779742 DOI: 10.3390/ijms232415557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Volatile organic compounds (VOCs) are secondary metabolites of varied chemical nature that are emitted by living beings and participate in their interactions. In addition, some VOCs called bioactive VOCs cause changes in the metabolism of other living species that share the same environment. In recent years, knowledge on VOCs emitted by Aspergillus flavus, the main species producing aflatoxin B1 (AFB1), a highly harmful mycotoxin, has increased. This review presents an overview of all VOCs identified as a result of A. flavus toxigenic (AFB1-producing) and non-toxigenic (non AFB1-producing) strains growth on different substrates, and the factors influencing their emissions. We also included all bioactive VOCs, mixes of VOCs or volatolomes of microbial species that impact A. flavus growth and/or related AFB1 production. The modes of action of VOCs impacting the fungus development are presented. Finally, the potential applications of VOCs as biocontrol agents in the context of mycotoxin control are discussed.
Collapse
|
27
|
Yunus AW, Lindahl JF, Anwar Z, Ullah A, Ibrahim MNM. Farmer's knowledge and suggested approaches for controlling aflatoxin contamination of raw milk in Pakistan. Front Microbiol 2022; 13:980105. [PMID: 36338062 PMCID: PMC9630330 DOI: 10.3389/fmicb.2022.980105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
Monitoring of aflatoxin levels in milk is often complicated in developing countries due to the dominance of informal markets channeling milk in raw form. Farmer's awareness and voluntary participation in aflatoxin mitigation can be critical in such scenarios. Therefore, the present study was conducted to understand the perceptions of dairy farmers about aflatoxins and link it with aflatoxin mitigation programs on milk in Pakistan. Information was collected from 450 peri-urban dairy farmers in seven cities using questionnaires. Majority (77.9%) of the farmers were aware of the negative impact of moldy feed on animal health. However, only 40.6% of the farmers were aware of the transferability of the toxins from moldy feed to milk. The farmers had almost no awareness of aflatoxins as 95% never heard of the term. After receiving an onsite briefing on effects of the toxin on animal and human health, and its transferability to milk, 98.3% farmers showed willingness to buy aflatoxin-safe feedstuffs, while 88.5% showed willingness to control aflatoxin in milk. Around half of the farmers considered aflatoxin control programs as affordable. On average, farmers agreed to pay 10.1% higher price for aflatoxin certified oilseed cakes. Availability of feedstuffs certified of low aflatoxin content was suggested by 22% of the participants as the critical step in reducing aflatoxins in milk. Other important suggestions included; subsidy on quality feeds (18%), raising awareness (18%), and legislation and monitoring (16%). The present results suggest that the current practice of milk monitoring in the country can yield desirable results only if it is coupled with feed certification programs ensuing availability of aflatoxin-safe feeds. Further, awareness can positively impact participation of producers in aflatoxin control programs. In this regard, awareness about effects of aflatoxins on animal health was found to be a more powerful trigger of voluntary control compared with the awareness of the toxin's transferability to milk.
Collapse
Affiliation(s)
- Agha Waqar Yunus
- Animal Sciences Institute, National Agricultural Research Center, Islamabad, Pakistan
- Department of Animal Genomics and Biotechnology, PARC Institute of Advanced Studies in Agriculture, Islamabad, Pakistan
| | - Johanna Frida Lindahl
- International Livestock Research Institute, Hanoi, Vietnam
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Zahid Anwar
- Department of Animal Genomics and Biotechnology, PARC Institute of Advanced Studies in Agriculture, Islamabad, Pakistan
| | - Aman Ullah
- Animal Sciences Institute, National Agricultural Research Center, Islamabad, Pakistan
- Department of Animal Genomics and Biotechnology, PARC Institute of Advanced Studies in Agriculture, Islamabad, Pakistan
| | | |
Collapse
|
28
|
Osaili TM, Al-Abboodi AR, Awawdeh MAL, Jbour SAM. Assessment of mycotoxins (deoxynivalenol, zearalenone, aflatoxin B 1 and fumonisin B 1) in hen's eggs in Jordan. Heliyon 2022; 8:e11017. [PMID: 36325142 PMCID: PMC9618984 DOI: 10.1016/j.heliyon.2022.e11017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/03/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
The present study was carried out to evaluate the prevalence of mycotoxins (Deoxynivalenol (DON), Zearalenone (ZEA), Aflatoxin B1 (AFB1) and Fumonisin B1 (FB1)) in local hen's table eggs (white and yolk) as well as their stability upon refrigeration. Two hundred and fifty of fresh table eggs samples collected from Jordan governorates were analyzed using Liquid Chromatography- Mass Spectrophotometry (LC– MS/MS) More than half (67%) of the tested samples were positive for mycotoxins. The mean concentration of AFB1, FB1 and ZEA was 0.5 ± 0.4, 0.5 ± 0.2 and 3.2 ± 1.5 μg/kg, respectively. The overall prevalence of AFB1, ZEA, FB1 was 56.8, 16.0 and 7.6%, respectively. DON was not found in any of the samples. The highest prevalence was observed in Amman (85.7%) followed by Mafraq (78.6%), Karak (75.0%) and Zarqa'a (66.6%). None of the investigated mycotoxins were detected in egg whites. However, the prevalence of AFB1, ZEA, FB1 in egg yolk was 21.3, 16 and 7.6%, respectively. Refrigeration up to 4 weeks did not decrease the mycotoxin concentration significantly. Mycotoxin concentration in all investigated samples in this study were well below both the International and Jordanian acceptable limits. However, continuous exposure may lead to bioaccumulation over a long term and pose a threat to health.
Collapse
Affiliation(s)
- Tareq M. Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of, Sharjah, P. O. Box 27272 Sharjah, United Arab Emirates
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
- Corresponding author.
| | - Akram R. Al-Abboodi
- Department of Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Mofleh AL. Awawdeh
- Department of Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Samah Aref M.AL. Jbour
- Department of Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
29
|
Yan Y, Zhang X, Chen H, Huang W, Jiang H, Wang C, Xiao Z, Zhang Y, Xu J. Isolation and Aflatoxin B1-Degradation Characteristics of a Microbacterium proteolyticum B204 Strain from Bovine Faeces. Toxins (Basel) 2022; 14:toxins14080525. [PMID: 36006187 PMCID: PMC9415550 DOI: 10.3390/toxins14080525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Aflatoxin B1 (AFB1) is one of the most harmful mycotoxins, raising serious global health and economic problems. Searching for biological approaches for effective and safe AFB1 degradation is imminent. In our study, Microbacterium proteolyticum B204 isolated from bovine faeces degraded 77% of AFB1 after 24 h, becoming the first reported bacteria from the Microbacterium family to possess AFB1 degradation characteristics. Temperature variation showed little effect on its degradation ratio, demonstrating high thermostability of 75% and 79% after boiling and sterilization, respectively. We suppose that the components playing a key role during this process were proteins, considering the decreased degradation rate caused by Proteinase K. Cell viability detection on HepG2 cells indicated that the degradation products were much less toxic than pure AFB1. Furthermore, B204 cell-free culture supernatant also degraded AFB1-contaminated food, such as peanuts, corn and cheese. These results suggested that this strain with AFB1 degradation properties could be a prospective candidate for application in the food and feed industries.
Collapse
|
30
|
Wang W, Yang X, Li J, Dong Z, Zhao J, Shao T, Yuan X. Effects of hexanoic acid on microbial communities, fermentation, and hygienic quality of corn silages infested with toxigenic fungi. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3522-3534. [PMID: 34841530 DOI: 10.1002/jsfa.11696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/14/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND This study aims to reveal the effects of hexanoic acid on the microbial communities, fermentation, and the hygienic quality of corn silages with or without fungal infection. Fungal-infested (FI) and non-infested (NFI) whole-crop corn samples were separately ensiled without (control, CON) or with hexanoic acid (Hex, 90% purity) at 0.2 g·kg-1 fresh weight (FW). RESULT The addition of Hex accelerated the pH decline during the first 5 days of ensiling regardless of fungal infestation. The lactic acid (LA) concentration in Hex silages was lower than that in CON during 45 days of ensiling; however the FI-Hex silage had the highest LA concentration among treatments on day 90. The Hex silage showed lower aflatoxin B1 (AFB1 ), zearalenone (ZEA), and deoxynivalenol (DON) concentrations than CON for FI silages. On day 5, the addition of Hex decreased the relative abundance of Klebsiella, Pantoea, and Enterobacter compared with CON, regardless of fungal infestation. This inhibitory effect lasted until day 90 for NFI silages but disappeared for FI silages on day 90. The fungal infestation resulted in the accumulation of Candida (34.05%) and Wickerhamomyces (19.46%). Hex decreased the relative abundance of Asperigillus, Issatchenkia, and Penicillium for NFI silages on day 5; however, its inhibitory effects were not observed in FI silages on day 5. CONCLUSION Fungal infestation was associated with poor fermentation and hygienic quality of corn silage. Adding Hex accelerated the pH decline and maintained the antifungal activity until 90 days of ensiling, attenuating adverse effects of fungal infestation on the fermentation and preventing the accumulation of mycotoxins in corn silages. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenbo Wang
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Xin Yang
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Junfeng Li
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhihao Dong
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Xianjun Yuan
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
31
|
Sarvestani HK, Ramandi A, Getso MI, Razavyoon T, Javidnia J, Golrizi MB, Saboor-Yaraghi AA, Ansari S. Mass spectrometry in research laboratories and clinical diagnostic: a new era in medical mycology. Braz J Microbiol 2022; 53:689-707. [PMID: 35344203 PMCID: PMC9151960 DOI: 10.1007/s42770-022-00715-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Diagnosis by clinical mycology laboratory plays a critical role in patient care by providing definitive knowledge of the cause of infection and antimicrobial susceptibility data to physicians. Rapid diagnostic methods are likely to improve patient. Aggressive resuscitation bundles, adequate source control, and appropriate antibiotic therapy are cornerstones for success in the treatment of patients. Routine methods for identifying clinical specimen fungal pathogen are based on the cultivation on different media with the subsequent examination of its phenotypic characteristics comprising a combination of microscopic and colony morphologies. As some fungi cannot be readily identified using these methods, molecular diagnostic methods may be required. These methods are fast, but it can cost a lot. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs. It can be considered an alternative for conventional biochemical and molecular identification systems in a microbiological laboratory. The reliability and accuracy of this method have been scrutinized in many surveys and have been compared with several methods including sequencing and molecular methods. According to these findings, the reliability and accuracy of this method are very high and can be trusted. With all the benefits of this technique, the libraries of MALDI-TOF MS need to be strengthened to enhance its performance. This review provides an overview of the most recent research literature that has investigated the applications and usage of MT-MS to the identification of microorganisms, mycotoxins, antifungal susceptibility examination, and mycobiome research.
Collapse
Affiliation(s)
- Hasti Kamali Sarvestani
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ramandi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Ibrahim Getso
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Bayero University, PMB, Kano, 3011, Nigeria
| | - Taraneh Razavyoon
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Javidnia
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Miaad Banay Golrizi
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali-Akbar Saboor-Yaraghi
- Department of Nutrition and Biochemistry, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saham Ansari
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Salisu B, Anua SM, Wan Rosli WI, Mazlan N, Haron R. Ultra-fast RP-HPLC-FD-DAD for quantification of total aflatoxins in maize, rice, wheat, peanut and poultry feed without sample clean up, and population exposure risk assessment in Katsina, Nigeria: an optimization study. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:541-553. [PMID: 35531950 DOI: 10.1080/03601234.2022.2073151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study reports the development and validation of a simple, yet efficient method called the ultra-fast reverse phase high-performance liquid chromatography with fluorescence and photodiode array detector (UF-RP-HPLC-FD-DAD) to extract and quantify the total aflatoxin from grains and poultry feed. The proposed method is used to determine the total aflatoxin content in 150 samples of maize, rice, wheat, peanut and poultry feed obtained from open markets in a state in Nigeria. The extent of consumer exposure to aflatoxins and the risk of developing hepatocellular carcinoma (HCC) are evaluated. The UF-RP-HPLC-FD-DAD method was found to be satisfactorily accurate, sensitive and reliable as ascertained by its excellent validation outcomes (R2 > 0.999, LoD < 0.08 ng g-1, LoQ < 0.2 ng g-1, recovery = 90-102%). The aflatoxin levels in food grains and poultry feed samples obtained in this study implied a moderate dietary exposure of between 10.67 and 20.77 ng/kg BW/day, in which the risk of developing HCC was estimated to be between 6.27 and 21.40% per 100,000 adults/year. Hence, greater monitoring of marketed food and feed is required, besides the deployment of strict controls and preventive techniques to minimize the population's exposure to a high dietary level of aflatoxins.
Collapse
Affiliation(s)
- Baha'uddeen Salisu
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Department of Microbiology, Umaru Musa Yar'adua University, Katsina, Nigeria
| | - Siti Marwanis Anua
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Wan Ishak Wan Rosli
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Nurzafirah Mazlan
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Rosliza Haron
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
33
|
Maggira M, Sakaridis I, Ioannidou M, Samouris G. Comparative Evaluation of Three Commercial Elisa Kits Used for the Detection of Aflatoxins B1, B2, G1, and G2 in Feedstuffs and Comparison with an HPLC Method. Vet Sci 2022; 9:vetsci9030104. [PMID: 35324831 PMCID: PMC8952571 DOI: 10.3390/vetsci9030104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
Various analytical techniques for detecting mycotoxins have been developed in order to control their concentration in food and feed. Conventional analytical approaches for mycotoxin identification include thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and gas chromatography (GC). Rapid methods for mycotoxin analysis are also becoming increasingly relevant. One of the most common rapid methods for determining these compounds is the enzyme-linked immunosorbent assay (ELISA). The current study aimed to compare three available ELISA kits for the detection and quantification of aflatoxins B1, B2, G1, and G2 in spiked feed samples at known quantities. All three ELISA kits were validated and showed good performance with high recovery rates and LOD and LOQ values lower than the MRL. The developed HPLC-FL method was validated for all the compounds determining the accuracy, precision, linearity, decision limit, and detection capability with fairly good results. Unknown feed samples (corn, silage, pellet, barley, wheat, soya, and sunflower) were also tested using the best ELISA kit and HPLC, and the results were compared. Both ELISA and HPLC were proven to be suitable methods for mycotoxin analysis. The analytical technique should be determined primarily by the availability and number of samples.
Collapse
|
34
|
In-syringe dispersive micro-solid phase extraction method for the HPLC-fluorescence determination of aflatoxins in milk. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
Bhardwaj H, Rajesh, Sumana G. Recent advances in nanomaterials integrated immunosensors for food toxin detection. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:12-33. [PMID: 35068548 PMCID: PMC8758883 DOI: 10.1007/s13197-021-04999-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 01/03/2023]
Abstract
For the management and prevention of many chronic and acute diseases, the rapid quantification of toxicity in food and feed products have become a significant concern. Technology advancements in the area of biosensors, bioelectronics, miniaturization techniques, and microfluidics have shown a significant impact than conventional methods which have given a boost to improve the sensing performance towards food analyte detection. In this article, recent literature of Aflatoxin B1 (AFB1), worldwide permissible limits, major outbreaks and severe impact on healthy life have been discussed. An improvement achieved in detection range, limit of detection, shelf-life of the biosensor by integrated dimensional nanomaterials such as zero-dimension, one-dimension and two-dimension for AFB1 detection using electrical and optical transduction mechanism has been summarized. A critical overview of the latest trends using paper-based and micro-spotted array integrated with the anisotropic shape of nanomaterials, portable microfluidic devices have also been described together with future perspectives for further advancements.
Collapse
Affiliation(s)
- Hema Bhardwaj
- CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Rajesh
- CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012 India
| | - Gajjala Sumana
- CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
36
|
Seyed Toutounchi N, Braber S, van’t Land B, Thijssen S, Garssen J, Kraneveld AD, Folkerts G, Hogenkamp A. Exposure to Deoxynivalenol During Pregnancy and Lactation Enhances Food Allergy and Reduces Vaccine Responsiveness in the Offspring in a Mouse Model. Front Immunol 2021; 12:797152. [PMID: 34975906 PMCID: PMC8718709 DOI: 10.3389/fimmu.2021.797152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
Deoxynivalenol (DON), a highly prevalent contaminant of grain-based products, is known to induce reproductive- and immunotoxicities. Considering the importance of immune development in early life, the present study investigated the effects of perinatal DON exposure on allergy development and vaccine responsiveness in the offspring. Pregnant mice received control or DON-contaminated diets (12.5 mg/kg diet) during pregnancy and lactation. After weaning, female offspring were sensitized to ovalbumin (OVA) by oral administration of OVA with cholera toxin (CT). Male offspring were injected with Influvac vaccine. OVA-specific acute allergic skin response (ASR) in females and vaccine-specific delayed-type hypersensitivity (DTH) in males were measured upon intradermal antigen challenge. Immune cell populations in spleen and antigen-specific plasma immunoglobulins were analyzed. In female CT+OVA-sensitized offspring of DON-exposed mothers ASR and OVA-specific plasma immunoglobulins were significantly higher, compared to the female offspring of control mothers. In vaccinated male offspring of DON-exposed mothers DTH and vaccine-specific antibody levels were significantly lower, compared to the male offspring of control mothers. In both models a significant reduction in regulatory T cells, Tbet+ Th1 cells and Th1-related cytokine production of the offspring of DON-exposed mothers was observed. In conclusion, early life dietary exposure to DON can adversely influence immune development in the offspring. Consequently, the immune system of the offspring may be skewed towards an imbalanced state, resulting in an increased allergic immune response to food allergens and a decreased immune response to vaccination against influenza virus in these models.
Collapse
Affiliation(s)
- Negisa Seyed Toutounchi
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Belinda van’t Land
- Danone Nutricia Research, Utrecht, Netherlands
- Center of Translational Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Suzan Thijssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research, Utrecht, Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
37
|
Antifungal Susceptibility of Aspergillus flavus, Aspergillus ochraceus, and Fusarium graminearum to Ganoderma lucidum Extract. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.115715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Ganoderma lucidum is a well-known fungus that has been widely used in traditional medicine around the world, especially in East Asia, due to its various health promotion properties. Recently, researchers have drawn attention to the biologically active compounds found in this fungus, and this fungus has become very popular due to its pharmaceutical properties. Objectives: The aim of this study was to investigate the antifungal properties of the Iranian strain of G. lucidum as a natural antifungal agent against harmful filamentous fungi common in the food industry. Methods: Three filamentous fungi, including Aspergillus flavus, Aspergillus ochraceus, and Fusarium graminearum, were used in this study for the antifungal evaluation of ethanolic, hydroalcoholic, and two aqueous extracts of G. lucidum with different concentrations by the broth microdilution method. Results: The results showed that only the ethanolic and hydroalcoholic extracts completely inhibited the growth of A. flavus at 2 and 3.5 mg/mL, respectively. Also, no antifungal activity was observed for the aqueous extract for all the three studied fungi. In addition, A. flavus was found to be more sensitive to G. lucidum extracts compared to the two other studied fungi. Conclusions: The ethanolic extract of G. lucidum was effective on A. flavus and can be used as a natural antifungal agent to prevent the growth of this harmful filamentous fungus.
Collapse
|
38
|
Dramatically Enhancing the Sensitivity of Immunoassay for Ochratoxin A Detection by Cascade-Amplifying Enzyme Loading. Toxins (Basel) 2021; 13:toxins13110781. [PMID: 34822566 PMCID: PMC8674760 DOI: 10.3390/toxins13110781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Enzyme-linked immunosorbent assay (ELISA) is widely used in the routine screening of mycotoxin contamination in various agricultural and food products. Herein, a cascade-amplifying system was introduced to dramatically promote the sensitivity of an immunoassay for ochratoxin A (OTA) detection. Specifically, a biotinylated M13 bacteriophage was introduced as a biofunctional competing antigen, in which a seven-peptide OTA mimotope fused on the p3 protein of M13 was used to specifically recognize an anti-OTA monoclonal antibody, and the biotin molecules modified on capsid p8 proteins were used in loading numerous streptavidin-labeled polymeric horseradish peroxidases (HRPs). Owing to the abundance of biotinylated p8 proteins in M13 and the high molar ratio between HRP and streptavidin in streptavidin-polyHRP, the loading amount of HRP enzymes on the M13 bacteriophage were greatly boosted. Hence, the proposed method exhibited high sensitivity, with a limit of detection of 2.0 pg/mL for OTA detection, which was 250-fold lower than that of conventional ELISA. In addition, the proposed method showed a slight cross-reaction of 2.3% to OTB, a negligible cross-reaction for other common mycotoxins, and an acceptable accuracy for OTA quantitative detection in real corn samples. The practicability of the method was further confirmed with a traditional HRP-based ELISA method. In conclusion, the biotinylated bacteriophage and polyHRP structure showed potential as a cascade-amplifying enzyme loading system for ultra-trace OTA detemination, and its application can be extended to the detection of other analytes by altering specific mimic peptide sequences.
Collapse
|
39
|
Huang DT, Fu HJ, Huang JJ, Luo L, Lei HT, Shen YD, Chen ZJ, Wang H, Xu ZL. Mimotope-Based Immunoassays for the Rapid Analysis of Mycotoxin: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11743-11752. [PMID: 34583509 DOI: 10.1021/acs.jafc.1c04169] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mycotoxins are toxic contaminants in foods and feeds that are naturally occurring and largely unavoidable. Determining their contents in these products is essential to protect humans from harm. Immunoassays of mycotoxins have been well-established because they are fast, sensitive, simple, and cost-effective. However, a major limitation of immunoassays is the requirement of toxic mycotoxins as competing antigens, standards, or competing tracers. Mimotopes are peptides or proteins that can specifically bind to antibodies and compete with analytes for binding sites by mimicking antigenic epitopes. They can be employed as substitutes for competing antigens, standards, or competing tracers to avoid use of mycotoxins. This review summarizes the production and functionalization of the two main kinds of mimotopes, mimic peptides and anti-idiotypic antibodies (Ab2), and their applications in rapid analysis of mycotoxins.
Collapse
Affiliation(s)
- Dan-Tong Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Jun Fu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jia-Jia Huang
- Guangdong Food and Drug Vocational College, Guangzhou 510665, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
40
|
Josselin L, De Clerck C, De Boevre M, Moretti A, Jijakli MH, Soyeurt H, Fauconnier ML. Volatile Organic Compounds Emitted by Aspergillus flavus Strains Producing or Not Aflatoxin B1. Toxins (Basel) 2021; 13:705. [PMID: 34678998 PMCID: PMC8539470 DOI: 10.3390/toxins13100705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Aspergillus flavus is a phytopathogenic fungus able to produce aflatoxin B1 (AFB1), a carcinogenic mycotoxin that can contaminate several crops and food commodities. In A. flavus, two different kinds of strains can co-exist: toxigenic and non-toxigenic strains. Microbial-derived volatile organic compounds (mVOCs) emitted by toxigenic and non-toxigenic strains of A. flavus were analyzed by solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) in a time-lapse experiment after inoculation. Among the 84 mVOCs emitted, 44 were previously listed in the scientific literature as specific to A. flavus, namely alcohols (2-methylbutan-1-ol, 3-methylbutan-1-ol, 2-methylpropan-1-ol), aldehydes (2-methylbutanal, 3-methylbutanal), hydrocarbons (toluene, styrene), furans (2,5-dimethylfuran), esters (ethyl 2-methylpropanoate, ethyl 2-methylbutyrate), and terpenes (epizonaren, trans-caryophyllene, valencene, α-copaene, β-himachalene, γ-cadinene, γ-muurolene, δ-cadinene). For the first time, other identified volatile compounds such as α-cadinol, cis-muurola-3,5-diene, α-isocomene, and β-selinene were identified as new mVOCs specific to the toxigenic A. flavus strain. Partial Least Square Analysis (PLSDA) showed a distinct pattern between mVOCs emitted by toxigenic and non-toxigenic A. flavus strains, mostly linked to the diversity of terpenes emitted by the toxigenic strains. In addition, the comparison between mVOCs of the toxigenic strain and its non-AFB1-producing mutant, coupled with a semi-quantification of the mVOCs, revealed a relationship between emitted terpenes (β-chamigrene, α-corocalene) and AFB1 production. This study provides evidence for the first time of mVOCs being linked to the toxigenic character of A. flavus strains, as well as terpenes being able to be correlated to the production of AFB1 due to the study of the mutant. This study could lead to the development of new techniques for the early detection and identification of toxigenic fungi.
Collapse
Affiliation(s)
- Laurie Josselin
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium;
| | - Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium;
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium;
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, 70126 Bari, Italy;
| | - M. Haïssam Jijakli
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium;
| | - Hélène Soyeurt
- Statistic, Informatic and Applied Modelling, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium;
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium;
| |
Collapse
|
41
|
|
42
|
Helvacıoğlu S, Charehsaz M, Güzelmeriç E, Oçkun MA, Ayran İ, Kırmızıbekmez H, Kan Y, Aydın A, Yeşilada E. Protective Effect of Nigella sativa and Nigella damascena Fixed Oils Against Aflatoxin Induced Mutagenicity in the Classical and Modified Ames Test. Chem Biodivers 2021; 18:e2000936. [PMID: 34432933 DOI: 10.1002/cbdv.202000936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 08/03/2021] [Indexed: 01/28/2023]
Abstract
The antioxidant and mutagenic/antimutagenic activities of the fixed oils from Nigella sativa (NSO) and Nigella damascena (NDO) seeds, obtained by cold press-extraction from the cultivar samples, were comparatively investigated for the first time. The antimutagenicity test was carried out using classical and modified Ames tests. The fatty acid composition of the fixed oils was characterized by gas chromatography-mass spectrometry (GC-MS) while the quantification of thymoquinone in the fixed oils was determined by UPC2 . The main components of the NSO and NDO were found to be linoleic acid, oleic acid, and palmitic acid. The results of the Ames test confirmed the safety of NSO and NDO from the viewpoint of mutagenicity. The results of the three antioxidant test methods were correlated with each other, indicating NDO as having a superior antioxidant activity, when compared to the NSO. Both NSO and NDO exhibited a significant protective effect against the mutagenicity induced by aflatoxin B1 in Salmonella typhimurium TA98 and TA100 strains. When microsomal metabolism was terminated after metabolic activation of the mycotoxin, a significant increase in antimutagenic activity was observed, suggesting that the degradation of aflatoxin B1 epoxides by these oils may be a possible antimutagenic mechanism. It is worthy to note that this is the first study to assess the mutagenicity of NSO and NDO according to the OECD 471 guideline and to investigate antimutagenicity of NDO in comparison to NSO against aflatoxin.
Collapse
Affiliation(s)
- Sinem Helvacıoğlu
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Turkey
| | - Mohammad Charehsaz
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Turkey
| | - Etil Güzelmeriç
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Turkey
| | - Mehmet Ali Oçkun
- Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Turkey
| | - İrem Ayran
- Selçuk University, Agriculture Faculty, Department of Medicinal Plants, 42130, Konya, Turkey
| | - Hasan Kırmızıbekmez
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Turkey
| | - Yüksel Kan
- Selçuk University, Agriculture Faculty, Department of Medicinal Plants, 42130, Konya, Turkey
| | - Ahmet Aydın
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Turkey
| | - Erdem Yeşilada
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Turkey
| |
Collapse
|
43
|
A Non-label Electrochemical Aptasensor Based on Cu Metal–Organic Framework to Measure Aflatoxin B1 in Wheat Flour. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02109-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Patyal A, Gill JPS, Bedi JS, Aulakh RS. Assessment of aflatoxin contamination in dairy animal concentrate feed from Punjab, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37705-37715. [PMID: 33723771 DOI: 10.1007/s11356-021-13321-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Aflatoxins are one of the major environmental contaminants in animal feed and pose a potential threat to human health due to their secretion in the milk of lactating animals. The present study was conducted with the objectives to determine the occurrence of aflatoxins (B1, B2, G1, and G2) in dairy animal concentrate feed and to evaluate the effect of season, spatial variation, and dairy farm size on the levels of aflatoxins contamination. A total of 189 dairy animal concentrate feed samples were tested for aflatoxins with enzyme-linked immunosorbent assay (ELISA) as screening and high-performance liquid chromatography with fluorescence detection (HPLC-FLD) as confirmatory techniques. Of the total, 59% feed samples were found positive for aflatoxins, while 44% samples were detected with total aflatoxins levels higher than the tolerance limit established by the Food and Drug Administration (FDA) and 58% samples were found with aflatoxins B1 (AFB1) levels above the European Commission (EC) legal limit. AFB1 levels in dairy animal concentrate feed were found significantly higher during rainy (41.6 μg kg-1) and winter (35.9 μg kg-1) seasons as compared to the summer season (25.5 μg kg-1). The theoretical extrapolation of the AFB1 carry-over from animal feed to milk (aflatoxins M1) in different seasons may lead to 50-100% contamination of milk at levels above the EC tolerance limit. The incidence and levels of aflatoxins especially AFB1 in animal feed, not only pose a direct effect on animals but may also pose a concern for food safety in relation to the occurrence of aflatoxins M1 in milk. Therefore, continuous surveillance of aflatoxins in dairy animal feeds is required to reduce animal and consequently human exposure.
Collapse
Affiliation(s)
- Anil Patyal
- School of Public Health and Zoonoses, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India.
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Science and A. H., CGKV, Anjora, Durg, Chhattisgarh, 491001, India.
| | - Jatinder Paul Singh Gill
- School of Public Health and Zoonoses, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Jasbir Singh Bedi
- School of Public Health and Zoonoses, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - Rabinder Singh Aulakh
- School of Public Health and Zoonoses, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
45
|
Maurya A, Prasad J, Das S, Dwivedy AK. Essential Oils and Their Application in Food Safety. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.653420] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Food industries are facing a great challenge due to contamination of food products with different microbes such as bacteria, fungi, viruses, parasites, etc. These microbes deteriorate food items by producing different toxins during pre- and postharvest processing. Mycotoxins are one of the most potent and well-studied toxic food contaminants of fungal origin, causing a severe health hazard to humans. The application of synthetic chemicals as food preservatives poses a real scourge in the present scenario due to their bio-incompatibility, non-biodegradability, and environmental non-sustainability. Therefore, plant-based antimicrobials, including essential oils, have developed cumulative interest as a potential alternative to synthetic preservatives because of their ecofriendly nature and generally recognized as safe status. However, the practical utilization of essential oils as an efficient antimicrobial in the food industry is challenging due to their volatile nature, less solubility, and high instability. The recent application of different delivery strategies viz. nanoencapsulation, active packaging, and polymer-based coating effectively addressed these challenges and improved the bioefficacy and controlled release of essential oils. This article provides an overview of essential oils for the preservation of stored foods against bacteria, fungi, and mycotoxins, along with the specialized mechanism of action and technological advancement by using different delivery systems for their effective application in food and agricultural industries smart green preservative.
Collapse
|
46
|
Joutsjoki VV, Korhonen HJ. Management strategies for aflatoxin risk mitigation in maize, dairy feeds and milk value chains—case study Kenya. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Widespread aflatoxin contamination of a great number of food and feed crops has important implications on global trade and health. Frequent occurrence of aflatoxin in maize and milk poses serious health risks to consumers because these commodities are staple foods in many African countries. This situation calls for development and implementation of rigorous aflatoxin control measures that encompass all value chains, focusing on farms where food and feed-based commodities prone to aflatoxin contamination are cultivated. Good agricultural practices (GAP) have proven to be an effective technology in mitigation and management of the aflatoxin risk under farm conditions. The prevailing global climate change is shown to increase aflatoxin risk in tropical and subtropical regions. Thus, there is an urgent need to devise and apply novel methods to complement GAP and mitigate aflatoxin contamination in the feed, maize and milk value chains. Also, creation of awareness on aflatoxin management through training of farmers and other stakeholders and enforcement of regular surveillance of aflatoxin in food and feed chains are recommended strategies. This literature review addresses the current situation of aflatoxin occurrence in maize, dairy feeds and milk produced and traded in Kenya and current technologies applied to aflatoxin management at the farm level. Finally, a case study in Kenya on successful application of GAP for mitigation of aflatoxin risk at small-scale farms will be reviewed.
Collapse
|
47
|
Anyango G, Kagera I, Mutua F, Kahenya P, Kyallo F, Andang’o P, Grace D, Lindahl JF. Effectiveness of Training and Use of Novasil Binder in Mitigating Aflatoxins in Cow Milk Produced in Smallholder Farms in Urban and Periurban Areas of Kenya. Toxins (Basel) 2021; 13:281. [PMID: 33920858 PMCID: PMC8071220 DOI: 10.3390/toxins13040281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022] Open
Abstract
Aflatoxins, which commonly contaminate animal feeds and human food, present a major public health challenge in sub-Saharan Africa. After ingestion by cows, aflatoxin B1 is metabolized to aflatoxin M1 (AFM1), some of which is excreted in milk. This study involved smallholder dairy farms in urban and periurban areas of Nairobi and Kisumu, Kenya. The objective was to determine the effectiveness of training and providing farmers with aflatoxin binder (NovaSil®) on AFM1 contamination in raw milk. A baseline survey was undertaken and 30 farmers whose milk had AFM1 levels above 20 ppt were randomly selected for inclusion in the study. Of these, 20 farmers were part of the intervention, and were given training on the usage of the NovaSil® binder, while 10 served as a control group. All farmers were visited biweekly for three months for interviews and milk samples were collected to measure the AFM1 levels. The AFM1 levels were quantified by enzyme linked immunosorbent assay. The NovaSil® binder significantly reduced AFM1 concentrations in the raw milk produced by the farmers in the intervention group over the duration of the study (p < 0.01). The control farms were more likely to have milk with AFM1 levels exceeding the regulatory limit of 50 ppt compared to the intervention farms (p < 0.001) (odds ratio = 6.5). The farmers in the intervention group perceived that there was an improvement in milk yield, and in cow health and appetite. These farmers also felt that the milk they sold, as well as the one they used at home, was safer. In conclusion, the use of binders by dairy farmers can be effective in reducing AFM1 in milk. Further research is needed to understand their effectiveness, especially when used in smallholder settings.
Collapse
Affiliation(s)
- Gladys Anyango
- Department of Animal and Human Health, International Livestock Research Institute, Nairobi 00100, Kenya; (G.A.); (I.K.); (F.M.); (D.G.)
- Department of Public Health, Maseno University, Kisumu 40100, Kenya;
| | - Irene Kagera
- Department of Animal and Human Health, International Livestock Research Institute, Nairobi 00100, Kenya; (G.A.); (I.K.); (F.M.); (D.G.)
- Department of Human Nutrition Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi 00200, Kenya;
| | - Florence Mutua
- Department of Animal and Human Health, International Livestock Research Institute, Nairobi 00100, Kenya; (G.A.); (I.K.); (F.M.); (D.G.)
| | - Peter Kahenya
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi 00200, Kenya;
| | - Florence Kyallo
- Department of Human Nutrition Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi 00200, Kenya;
| | - Pauline Andang’o
- Department of Public Health, Maseno University, Kisumu 40100, Kenya;
| | - Delia Grace
- Department of Animal and Human Health, International Livestock Research Institute, Nairobi 00100, Kenya; (G.A.); (I.K.); (F.M.); (D.G.)
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime ME4 4TB, UK
| | - Johanna F. Lindahl
- Department of Animal and Human Health, International Livestock Research Institute, Nairobi 00100, Kenya; (G.A.); (I.K.); (F.M.); (D.G.)
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Zoonosis Science Centre, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
48
|
Al-Jaal B, Latiff A, Salama S, Hussain HM, Al-Thani NA, Al-Naimi N, Al-Qasmi N, Horvatovich P, Jaganjac M. Analysis of Multiple Mycotoxins in the Qatari Population and Their Relation to Markers of Oxidative Stress. Toxins (Basel) 2021; 13:toxins13040267. [PMID: 33917988 PMCID: PMC8068385 DOI: 10.3390/toxins13040267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are naturally occurring food toxins worldwide that can cause serious health effects. The measurement of mycotoxin biomarkers in biological fluids is needed to assess individuals' exposure. The aim of this study was to investigate the incidence of mycotoxins in the Qatari population. Serum samples from 412 adults and urinary samples from 559 adults were analyzed for the presence of mycotoxin biomarkers. Multimycotoxin approaches have been applied, using liquid chromatography mass spectrometry methods. Samples were further analyzed for the oxidative stress markers and compared with regard to the incidence of mycotoxins. The presence of mycotoxins was identified in 37% of serum samples and in less than 20% of urine samples. It was found that 88% of positive of the samples were positive for only one mycotoxin, while 12% of positive samples had two or more mycotoxins. Trichothecenes and zearalenone metabolites were most commonly detected mycotoxins, followed by aflatoxins, roquefortine C and mycophenolic acid. The presence of mycotoxins was found to positively correlate with oxidative stress markers. The obtained results illustrate the importance of mycotoxin biomonitoring studies in humans and the need to elucidate the underlying mechanisms of mycotoxin-induced toxicity.
Collapse
Affiliation(s)
- Belqes Al-Jaal
- Anti-Doping Lab Qatar, Sport City Road, Doha P.O. Box 27775, Qatar; (B.A.-J.); (S.S.); (H.M.H.); (N.A.A.-T.); (N.A.-N.); (N.A.-Q.)
| | - Aishah Latiff
- School of Pharmaceutical Sciences, University of Science Malaysia, Gelugor 11700, Pulau Pinang, Malaysia;
| | - Sofia Salama
- Anti-Doping Lab Qatar, Sport City Road, Doha P.O. Box 27775, Qatar; (B.A.-J.); (S.S.); (H.M.H.); (N.A.A.-T.); (N.A.-N.); (N.A.-Q.)
| | - Huda Mohamed Hussain
- Anti-Doping Lab Qatar, Sport City Road, Doha P.O. Box 27775, Qatar; (B.A.-J.); (S.S.); (H.M.H.); (N.A.A.-T.); (N.A.-N.); (N.A.-Q.)
| | - Noora Abdulaziz Al-Thani
- Anti-Doping Lab Qatar, Sport City Road, Doha P.O. Box 27775, Qatar; (B.A.-J.); (S.S.); (H.M.H.); (N.A.A.-T.); (N.A.-N.); (N.A.-Q.)
| | - Noor Al-Naimi
- Anti-Doping Lab Qatar, Sport City Road, Doha P.O. Box 27775, Qatar; (B.A.-J.); (S.S.); (H.M.H.); (N.A.A.-T.); (N.A.-N.); (N.A.-Q.)
| | - Noof Al-Qasmi
- Anti-Doping Lab Qatar, Sport City Road, Doha P.O. Box 27775, Qatar; (B.A.-J.); (S.S.); (H.M.H.); (N.A.A.-T.); (N.A.-N.); (N.A.-Q.)
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Morana Jaganjac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
49
|
Mahmoud Amer E, Saber SH, Abo Markeb A, Elkhawaga AA, Mekhemer IMA, Zohri ANA, Abujamel TS, Harakeh S, Abd-Allah EA. Enhancement of β-Glucan Biological Activity Using a Modified Acid-Base Extraction Method from Saccharomyces cerevisiae. Molecules 2021; 26:2113. [PMID: 33917024 PMCID: PMC8067753 DOI: 10.3390/molecules26082113] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Beta glucan (β-glucan) has promising bioactive properties. Consequently, the use of β-glucan as a food additive is favored with the dual-purpose potential of increasing the fiber content of food products and enhancing their health properties. Our aim was to evaluate the biological activity of β-glucan (antimicrobial, antitoxic, immunostimulatory, and anticancer) extracted from Saccharomyces cerevisiae using a modified acid-base extraction method. The results demonstrated that a modified acid-base extraction method gives a higher biological efficacy of β-glucan than in the water extraction method. Using 0.5 mg dry weight of acid-base extracted β-glucan (AB extracted) not only succeeded in removing 100% of aflatoxins, but also had a promising antimicrobial activity against multidrug-resistant bacteria, fungi, and yeast, with minimum inhibitory concentrations (MIC) of 0.39 and 0.19 mg/mL in the case of resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, respectively. In addition, AB extract exhibited a positive immunomodulatory effect, mediated through the high induction of TNFα, IL-6, IFN-γ, and IL-2. Moreover, AB extract showed a greater anticancer effect against A549, MDA-MB-232, and HepG-2 cells compared to WI-38 cells, at high concentrations. By studying the cell death mechanism using flow-cytometry, AB extract was shown to induce apoptotic cell death at higher concentrations, as in the case of MDA-MB-231 and HePG-2 cells. In conclusion, the use of a modified AB for β-glucan from Saccharomyces cerevisiae exerted a promising antimicrobial, immunomodulatory efficacy, and anti-cancer potential. Future research should focus on evaluating β-glucan in various biological systems and elucidating the underlying mechanism of action.
Collapse
Affiliation(s)
- Enas Mahmoud Amer
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71515, Egypt; (E.M.A.); (A.-N.A.Z.)
| | - Saber H. Saber
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut 71515, Egypt;
| | - Ahmad Abo Markeb
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt; (A.A.M.); (I.M.A.M.)
| | - Amal A. Elkhawaga
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Islam M. A. Mekhemer
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt; (A.A.M.); (I.M.A.M.)
| | - Abdel-Naser A. Zohri
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71515, Egypt; (E.M.A.); (A.-N.A.Z.)
| | - Turki S. Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center (KFMRC), King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Steve Harakeh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| | - Elham A. Abd-Allah
- Zoology Department, Faculty of Science, New Valley University, El-Kharga 72511, Egypt;
| |
Collapse
|
50
|
Mehta RV, Wenndt AJ, Girard AW, Taneja S, Ranjan S, Ramakrishnan U, Martorell R, Ryan PB, Rangiah K, Young MF. Risk of dietary and breastmilk exposure to mycotoxins among lactating women and infants 2-4 months in northern India. MATERNAL & CHILD NUTRITION 2021; 17:e13100. [PMID: 33200580 PMCID: PMC7988843 DOI: 10.1111/mcn.13100] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 09/29/2020] [Indexed: 02/01/2023]
Abstract
Mycotoxins are carcinogenic secondary metabolites of fungi that have been linked to infant growth faltering. In this study, we quantified co-occurring mycotoxins in breast milk and food samples from Haryana, India, and characterized determinants of exposure. Deterministic risk assessment was conducted for mothers and infants. We examined levels of eight mycotoxins (Aflatoxin B1 , B2 , G1 , G2 , M1 , M2 ; Ochratoxin A, B) in 100 breast milk samples (infants 2-4 months) using ultra-high-performance liquid chromatography tandem mass spectrometry. Aflatoxin B1 (AFB1 ), fumonisin B1 (FB1 ) and deoxynivalenol (DON) were detected in several food items (n = 298) using enzyme-linked immunosorbent assays. We report novel data on the presence of mycotoxins in breast milk samples from India. Whereas breast milk concentrations (AFM1 median: 13.7; range: 3.9-1200 ng/L) remain low, AFM1 was detected above regulatory limits in 27% of animal milk samples. Additionally, 41% of infants were above provisional maximum tolerable daily intake (PMTDI) limits for AFM1 due to consumption of breast milk (mean: 3.04, range: 0.26-80.7 ng kg-1 bw day-1 ). Maternal consumption of breads (p < 0.05) was associated with breast milk AFM1 exposure. AFB1 (μg/kg) was detected in dried red chilies (15.7; 0-302.3), flour (3.13; 0-214.9), groundnuts (0; 0-249.1), maize (56.0; 0-836.7), pearl millet (1.85; 0-160.2), rice (0; 0-195.6), wheat (1.9; 0-196.0) and sorghum (0; 0-63.5). FB1 (mg/kg) was detected in maize (0; 0-61.4), pearl millet (0; 0-35.4) and sorghum (0.95; 0-33.2). DON was not detected in food samples. Mothers in our study exceeded PMTDI recommendations for AFB1 due to consumption of rice and flour (mean: 75.81; range: 35.2-318.2 ng kg-1 bw day-1 ). Our findings show the presence of Aflatoxin B1 and M1 at various levels of the food chain and in breast milk, with estimated intakes exceeding PMTDI recommendations. Aflatoxins are known carcinogens and have also been linked to stunting in children. Their presence across the food system and in breast milk is concerning, thus warranting further research to replicate and expand on our findings and to understand implications for maternal and child health.
Collapse
Affiliation(s)
- Rukshan V. Mehta
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate SchoolEmory UniversityAtlantaGeorgiaUSA
- The Hubert Department of Global Health, Rollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| | - Anthony J. Wenndt
- School of Integrative Plant Science & Tata Cornell InstituteCornell UniversityIthacaNew YorkUSA
| | - Amy Webb Girard
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate SchoolEmory UniversityAtlantaGeorgiaUSA
- The Hubert Department of Global Health, Rollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| | - Sunita Taneja
- Centre for Health Research and DevelopmentSociety for Applied StudiesNew DelhiIndia
| | - Samriddhi Ranjan
- Centre for Health Research and DevelopmentSociety for Applied StudiesNew DelhiIndia
| | - Usha Ramakrishnan
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate SchoolEmory UniversityAtlantaGeorgiaUSA
- The Hubert Department of Global Health, Rollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| | - Reynaldo Martorell
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate SchoolEmory UniversityAtlantaGeorgiaUSA
- The Hubert Department of Global Health, Rollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| | - P. Barry Ryan
- Department of Environmental Health, Rollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| | - Kannan Rangiah
- Council for Scientific and Industrial ResearchCentral Food Technological Research InstituteMysuruIndia
| | - Melissa F. Young
- Doctoral Program in Nutrition and Health Sciences, Laney Graduate SchoolEmory UniversityAtlantaGeorgiaUSA
- The Hubert Department of Global Health, Rollins School of Public HealthEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|