1
|
Mekadim C, Mrazek J, Fliegerová KO, Sechovcová H, Mahayri TM, Jarošíková R, Husáková J, Wosková V, Tůma P, Polák J, Sojáková D, Němcová A, Dubský M, Fejfarová V. The effect of the administration form of antibiotic therapy on the gut microbiome in patients with infected diabetic foot ulcers - DFIATIM trial. BMC Microbiol 2025; 25:339. [PMID: 40437354 PMCID: PMC12117690 DOI: 10.1186/s12866-025-04041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 05/12/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Diabetic foot infections (DFIs) contribute to the global disability burden. Beta-lactams are the most commonly used antibiotics for treating DFIs. However, the use of antibiotics may lead to disruption of the healthy balance of the gut microbiota, causing dysbiosis. METHODS Patients with infected diabetic foot ulcers (iDFUs) were treated with two kinds of beta-lactams (amoxicillin/clavulanic acid or ceftazidime) according to microbial sensitivity of causative agents via bolus or continuous administration modes. Changes in the gut microbiome of patients were analyzed. Diabetic patients without iDFUs were used as a control group. 16 S ribosomal RNA gene amplicon sequencing was performed on stool samples collected from participants. RESULTS Alpha diversity and beta diversity of gut microbiota of treated patients did not show significant differences between bolus and continuous modes. However, significant differences were observed between gut microbiota diversity of treated patients and control group. PCoA plots showed individualized responses of the patient's gut microbiota to antibiotics at different times using both administration forms associated with the pre-treatment state of microbiota composition. Enterococcus, Sellimonas, and Lachnoclostridium were the common bacterial markers differentially abundant in the gut microbiota of antibiotic-treated patients with iDFUs while Roseburia, Dorea, and Monoglobus were mainly abundant in the gut microbiota of patients without iDFUs. Predicted pathways like "Transporters", "ABC transporters" and "Phosphotranspherase system (PTS)" were upregulated in the gut microbiome of patients treated with bolus regime which may lead to increased intestinal barrier permeability. CONCLUSION The present study reported alterations in gut microbiota composition and functionality and provided the bacterial markers as well as potential metabolic signatures associated with each administration mode in patients with iDFUs, which may be used as a reference set for future studies of the effect of antibiotics administration on the gut microbiome of patients with iDFUs. This study shed light on the importance of understanding the effect of antibiotic administration form on gut microbiome in patients with iDFUs. TRIAL REGISTRATION The DFIATIM Clinical Trial (Full title: "Rationalisation of ATB therapy in diabetic foot infection and its impact on the intestinal microbiota") is submitted to the European Union Clinical Trials Database under the EudraCT Number: 2019-001997-27. The date of registration is July 17th, 2020.
Collapse
Affiliation(s)
- Chahrazed Mekadim
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, v.v.i, Videnska 1083, Prague, 142 00, Czech Republic.
| | - Jakub Mrazek
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, v.v.i, Videnska 1083, Prague, 142 00, Czech Republic
| | - Kateřina Olša Fliegerová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, v.v.i, Videnska 1083, Prague, 142 00, Czech Republic
| | - Hana Sechovcová
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, v.v.i, Videnska 1083, Prague, 142 00, Czech Republic
| | - Tiziana Maria Mahayri
- Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, v.v.i, Videnska 1083, Prague, 142 00, Czech Republic
| | - Radka Jarošíková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Husáková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Veronika Wosková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Polák
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dominika Sojáková
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Andrea Němcová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Dubský
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimíra Fejfarová
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Prattico C, Gonzalez E, Dridi L, Jazestani S, Low KE, Abbott DW, Maurice CF, Castagner B. Identification of novel fructo-oligosaccharide bacterial consumers by pulse metatranscriptomics in a human stool sample. mSphere 2025; 10:e0066824. [PMID: 39699190 PMCID: PMC11774028 DOI: 10.1128/msphere.00668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
Dietary fibers influence the composition of the human gut microbiota and directly contribute to its downstream effects on host health. As more research supports the use of glycans as prebiotics for therapeutic applications, the need to identify the gut bacteria that metabolize glycans of interest increases. Fructo-oligosaccharide (FOS) is a common diet-derived glycan that is fermented by the gut microbiota and has been used as a prebiotic. Despite being well studied, we do not yet have a complete picture of all FOS-consuming gut bacterial taxa. To identify new bacterial consumers, we used a short exposure of microbial communities in a stool sample to FOS or galactomannan as the sole carbon source to induce glycan metabolism genes. We then performed metatranscriptomics, paired with whole metagenomic sequencing, and 16S amplicon sequencing. The short incubation was sufficient to cause induction of genes involved in carbohydrate metabolism, like carbohydrate-active enzymes (CAZymes), including glycoside hydrolase family 32 genes, which hydrolyze fructan polysaccharides like FOS and inulin. Interestingly, FOS metabolism transcripts were notably overexpressed in Blautia species not previously reported to be fructan consumers. We therefore validated the ability of different Blautia species to ferment fructans by monitoring their growth and fermentation in defined media. This pulse metatranscriptomics approach is a useful method to find novel consumers of prebiotics and increase our understanding of prebiotic metabolism by CAZymes in the gut microbiota. IMPORTANCE Complex carbohydrates are key contributors to the composition of the human gut microbiota and play an essential role in the microbiota's effects on host health. Understanding which bacteria consume complex carbohydrates, or glycans, provides a mechanistic link between dietary prebiotics and their beneficial health effects, an essential step for their therapeutic application. Here, we used a pulse metatranscriptomics pipeline to identify bacterial consumers based on glycan metabolism induction in a human stool sample. We identified novel consumers of fructo-oligosaccharide among Blautia species, expanding our understanding of this well-known glycan. Our approach can be applied to identify consumers of understudied glycans and expand our prebiotic repertoire. It can also be used to study prebiotic glycans directly in stool samples in distinct patient populations to help delineate the prebiotic mechanism.
Collapse
Affiliation(s)
- Catherine Prattico
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill Genome Centre, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada
| | - Lharbi Dridi
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Shiva Jazestani
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
| | - Kristin E. Low
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - D. Wade Abbott
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Corinne F. Maurice
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, Québec, Canada
| | - Bastien Castagner
- Department of Pharmacology & Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, Québec, Canada
| |
Collapse
|
3
|
Chong S, Lin M, Chong D, Jensen S, Lau NS. A systematic review on gut microbiota in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2025; 15:1486793. [PMID: 39897957 PMCID: PMC11782031 DOI: 10.3389/fendo.2024.1486793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025] Open
Abstract
Aims/hypothesis The gut microbiota play crucial roles in the digestion and degradation of nutrients, synthesis of biological agents, development of the immune system, and maintenance of gastrointestinal integrity. Gut dysbiosis is thought to be associated with type 2 diabetes mellitus (T2DM), one of the world's fastest growing diseases. The aim of this systematic review is to identify differences in the composition and diversity of the gut microbiota in individuals with T2DM. Methods A systematic search was conducted to identify studies reporting on the difference in gut microbiota composition between individuals with T2DM and healthy controls. Relevant studies were evaluated, and their characteristics and results were extracted using a standardized data extraction form. The studies were assessed for risk of bias and their findings were reported narratively. Results 58 observational studies published between 2010 and 2024 were included. Beta diversity was commonly reported to be different between individuals with T2DM and healthy individuals. Genera Lactobacillus, Escherichia-Shigella, Enterococcus, Subdoligranulum and Fusobacteria were found to be positively associated; while Akkermansia, Bifidobacterium, Bacteroides, Roseburia, Faecalibacteirum and Prevotella were found to be negatively associated with T2DM. Conclusions This systematic review demonstrates a strong association between T2DM and gut dysbiosis, as evidenced by differential microbial abundances and altered diversity indices. Among these taxa, Escherichia-Shigella is consistently associated with T2DM, whereas Faecalibacterium prausnitzii appears to offer a protective effect against T2DM. However, the heterogeneity and observational nature of these studies preclude the establishment of causative relationships. Future research should incorporate age, diet and medication-matched controls, and include functional analysis of these gut microbes. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023459937.
Collapse
Affiliation(s)
- Serena Chong
- South West Sydney Limb Preservation and Wound Research, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- South West Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Mike Lin
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Garvan Institute of Research, Sydney, NSW, Australia
| | - Deborah Chong
- Animal Health Laboratory, Department of Natural Resources and Environment Tasmania, Tasmania, TAS, Australia
| | - Slade Jensen
- South West Sydney Limb Preservation and Wound Research, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- Infectious Disease and Microbiology, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine Antibiotic Resistance and Mobile Elements Groups, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Namson S. Lau
- South West Sydney Limb Preservation and Wound Research, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- South West Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Liverpool Diabetes Collaboration, Ingham Institute of Applied Medical Research, Sydney, NSW, Australia
| |
Collapse
|
4
|
Zhang M, Yin YS, May KS, Wang S, Purcell H, Zhang XS, Blaser MJ, den Hartigh LJ. The role of intestinal microbiota in physiologic and body compositional changes that accompany CLA-mediated weight loss in obese mice. Mol Metab 2024; 89:102029. [PMID: 39293564 PMCID: PMC11447304 DOI: 10.1016/j.molmet.2024.102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
OBJECTIVE Obesity continues to be a major problem, despite known treatment strategies such as lifestyle modifications, pharmaceuticals, and surgical options, necessitating the development of novel weight loss approaches. The naturally occurring fatty acid, 10,12 conjugated linoleic acid (10,12 CLA), promotes weight loss by increasing fat oxidation and browning of white adipose tissue, leading to increased energy expenditure in obese mice. Coincident with weight loss, 10,12 CLA also alters the murine gut microbiota by enriching for microbes that produce short chain fatty acids (SCFAs), with concurrent elevations in fecal butyrate and plasma acetate. METHODS To determine if the observed microbiota changes are required for 10,12 CLA-mediated weight loss, adult male mice with diet-induced obesity were given broad-spectrum antibiotics (ABX) to perturb the microbiota prior to and during 10,12 CLA-mediated weight loss. Conversely, to determine whether gut microbes were sufficient to induce weight loss, conventionally-raised and germ-free mice were transplanted with cecal contents from mice that had undergone weight loss by 10,12 CLA supplementation. RESULTS While body weight was minimally modulated by ABX-mediated perturbation of gut bacterial populations, adult male mice given ABX were more resistant to the increased energy expenditure and fat loss that are induced by 10,12 CLA supplementation. Transplanting cecal contents from donor mice losing weight due to oral 10,12 CLA consumption into conventional or germ-free mice led to improved glucose metabolism with increased butyrate production. CONCLUSIONS These data suggest a critical role for the microbiota in diet-modulated changes in energy balance and glucose metabolism, and distinguish the metabolic effects of orally delivered 10,12 CLA from cecal transplantation of the resulting microbiota.
Collapse
Affiliation(s)
- Meifan Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Yue S Yin
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Karolline S May
- Department of Medicine: Metabolism, Endocrinology, and Nutrition, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Shari Wang
- Department of Medicine: Metabolism, Endocrinology, and Nutrition, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA
| | - Hayley Purcell
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Laura J den Hartigh
- Department of Medicine: Metabolism, Endocrinology, and Nutrition, Seattle, WA, USA; Diabetes Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Basak C, Chakraborty R. Effect of Hypoxia on the Gut Microflora of a Facultative Air-Breathing Loach Lepidocephalichthys guntea. Curr Microbiol 2024; 81:406. [PMID: 39402241 DOI: 10.1007/s00284-024-03924-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/24/2024] [Indexed: 11/21/2024]
Abstract
One of the main risks to fish health in an aquatic environment is hypoxia, which can either lead to respiratory failure or the emergence of various diseases in a fish population. This investigation examined the impact of hypoxia on the gut bacteria of a loach, Lepidocephalichthys guntea, which under the dissolve oxygen stress can gulp air from surface and breathe using its posterior intestine. High-throughput sequencing was used to examine the anterior and posterior parts of the gut of L. guntea during both normoxia and hypoxia. According to the community profiling of the gut bacteria, prolonged exposure to hypoxia increased the diversity and abundance of bacteria in the posterior part while decreasing both in the anterior part of the gut. Additionally, for both parts of the gut, the core microbiota showed a significant alteration during hypoxia. In correlation network analysis, a more interactive and intricate network was developed at normoxia. According to the comparative analyses of the gut bacteria, hypoxia causes more pronounced alterations in the posterior gut than the anterior gut at various taxonomic levels. As a consequence of hypoxia, several genera like Aeromonas, Pseudomonas, Plesiomonas, Acinetobacter, and Enterobacter were replaced by Streptococcus, Escherichia-Shigella, Janthinobacterium, and Clostridia. A surge in probiotic genera, including Bifidobacterium, Lactobacillus, Blautia, and Cetobacterium, was also seen. The fatty acid biosynthesis pathway was induced only in hypoxia, although all other metabolic pathways were present in both situations, albeit with fewer hits in hypoxia.
Collapse
Affiliation(s)
- Chandana Basak
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, 734013, India
| | - Ranadhir Chakraborty
- OMICS Laboratory, Department of Biotechnology, University of North Bengal, Siliguri, West Bengal, 734013, India.
| |
Collapse
|
6
|
Yoneda S, Kobayashi T, Kikuchi K, Iwamoto S, Teramoto T, Chujo D, Otsuki K, Nakai A, Saito S. Prevention of Recurrent Spontaneous Preterm Delivery Using Probiotics (Clostridium butyricum, Enterococcus faecium, and Bacillus subtilis; PPP Trial): Protocol for a Prospective, Single-Arm, Nonblinded, Multicenter Trial. JMIR Res Protoc 2024; 13:e59928. [PMID: 39250784 PMCID: PMC11420576 DOI: 10.2196/59928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The rate of recurrent spontaneous preterm delivery (sPTD) ranges between 27% and 34% and is 22.3% in Japan. Although it currently remains unclear whether probiotics prevent sPTD, retrospective studies recently reported a reduction in the rate of recurrent sPTD with the administration of probiotics including Clostridium spp., which induce regulatory T cells that play an important role in maintaining pregnancy. OBJECTIVE The objective of this trial is to evaluate the preventative effects of available oral probiotics, including Clostridium butyricum, on recurrent sPTD. METHODS This is a prospective, single-arm, nonblinded, multicenter trial in Japan. The sample size required for this trial is 345 pregnant women with a history of sPTD, considering a clinically significant reduction in the relative risk of 30% (risk ratio=0.7). The primary endpoint is the rate of recurrent sPTD at <37 weeks of gestation. The secondary endpoints are the rate of sPTD at <34 weeks of gestation, the rate of recurrent sPTD at <28 weeks of gestation, the ratio of intestinal Clostridium spp. (detected by next-generation sequencing), and bacterial vaginosis (using the Nugent score). RESULTS The trial procedures were approved by the Clinical Research Review Board of Toyama University Hospital (SCR2020008) on March 31, 2021. The trial was registered on the Japan Registry of Clinical Trial website on April 28, 2021. Recruitment began on May 1, 2021, and the trial is estimated to finish on March 31, 2025. CONCLUSIONS The findings will clarify the rate of recurrent sPTD following probiotic administration including Clostridium butyricum. Outcomes from this trial will inform clinical practice and guide future randomized controlled trials. TRIAL REGISTRATION Japan Registry of Clinical Trials jRCTs041210014; https://jrct.niph.go.jp/latest-detail/jRCTs041210014. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/59928.
Collapse
Affiliation(s)
- Satoshi Yoneda
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, Japan
| | - Tohru Kobayashi
- Department of Data Science, Clinical Research Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kayoko Kikuchi
- Center for Translational Research, Translational Research Headquarters, Fujita Health University, Aichi, Japan
| | - Shintaro Iwamoto
- Biostatistics Unit, Department of Data Science, Clinical Research Center, National Center for Child Health and Development, Tokyo, Japan
| | - Tsuyoshi Teramoto
- Center for Clinical Research, Toyama University Hospital, Toyama, Japan
| | - Daisuke Chujo
- Center for Clinical Research, Toyama University Hospital, Toyama, Japan
| | - Katsufumi Otsuki
- Department of Obstetrics and Gynecology, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Akihito Nakai
- Department of Obstetrics and Gynecology, Nippon Medical School Tama-Nagayama Hospital, Tokyo, Japan
| | | |
Collapse
|
7
|
Deli CK, Fatouros IG, Poulios A, Liakou CA, Draganidis D, Papanikolaou K, Rosvoglou A, Gatsas A, Georgakouli K, Tsimeas P, Jamurtas AZ. Gut Microbiota in the Progression of Type 2 Diabetes and the Potential Role of Exercise: A Critical Review. Life (Basel) 2024; 14:1016. [PMID: 39202758 PMCID: PMC11355287 DOI: 10.3390/life14081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Type 2 diabetes (T2D) is the predominant metabolic epidemic posing a major threat to global health. Growing evidence indicates that gut microbiota (GM) may critically influence the progression from normal glucose tolerance, to pre-diabetes, to T2D. On the other hand, regular exercise contributes to the prevention and/or treatment of the disease, and evidence suggests that a possible way regular exercise favorably affects T2D is by altering GM composition toward health-promoting bacteria. However, research regarding this potential effect of exercise-induced changes of GM on T2D and the associated mechanisms through which these effects are accomplished is limited. This review presents current data regarding the association of GM composition and T2D and the possible critical GM differentiation in the progression from normal glucose, to pre-diabetes, to T2D. Additionally, potential mechanisms through which GM may affect T2D are presented. The effect of exercise on GM composition and function on T2D progression is also discussed.
Collapse
Affiliation(s)
- Chariklia K. Deli
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Poulios
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Christina A. Liakou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Dimitrios Draganidis
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Konstantinos Papanikolaou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Anastasia Rosvoglou
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Gatsas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Kalliopi Georgakouli
- Department of Dietetics and Nutrition, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece;
| | - Panagiotis Tsimeas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Science, School of Physical Education, Sport Science, and Dietetics, University of Thessaly, 42100 Trikala, Greece; (I.G.F.); (A.P.); (C.A.L.); (D.D.); (K.P.); (A.R.); (A.G.); (P.T.); (A.Z.J.)
| |
Collapse
|
8
|
Ota G, Inoue R, Saito A, Kono Y, Kitayama J, Sata N, Horie H. Reduced Abundance of Phocaeicola in Mucosa-associated Microbiota Is Associated with Distal Colorectal Cancer Metastases Possibly through an Altered Local Immune Environment. J Anus Rectum Colon 2024; 8:235-245. [PMID: 39086872 PMCID: PMC11286368 DOI: 10.23922/jarc.2024-014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 08/02/2024] Open
Abstract
Objectives The aim of this study was to identify the microbiota whose decrease in tumor area was associated with the metastatic process of distal colorectal cancer (CRC). Methods Twenty-eight consecutive patients with distal CRC undergoing surgical resection in our hospital were enrolled. Microbiota in 28 specimens from surgically resected colorectal cancers were analyzed using 16S ribosomal ribonucleic acid gene amplicon sequencing and the relative abundance (RA) of microbiota was evaluated. The densities of tumor-infiltrating lymphocytes (TIL) and tumor associated macrophages (TAM) in the colorectal cancers were immunohistochemically evaluated. Results Phocaeicola was the most abundant microbiota in normal mucosa. The RA of Phocaeicola in tumor tissues tended to be lower than that in normal mucosa although the difference was not significant (p=0.0732). The RA of Phocaeicola at tumor sites did not correlate either with depth of tumor invasion (pT-stage) or tumor size, however they were significantly reduced in patients with nodal metastases (p<0.05) and those with distant metastases (p<0.001). The RA of Phocaeicola at tumor sites showed positive correlation with the densities of CD3(+) or CD8(+) TIL. Since P. vulgatus was the most dominant species (47%) of the Phocaeicola, the RA of P. vulgatus and CRC metastasis and its association with TIL and TAM were also investigated. P. vulgatus showed a similar trend to genus Phocaeicola but was not statistically significant. Conclusions A relative reduction of Phocaeicola attenuates the local anti-tumor immune response in distal CRC, which may facilitate metastatic spread.
Collapse
Affiliation(s)
- Gaku Ota
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Japan
| | - Akira Saito
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Yoshihiko Kono
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Joji Kitayama
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
- Clinical Research Center, Division of Translational Research, Jichi Medical University, Shimotsuke, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Hisanaga Horie
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
- Department of Operating Room Management, Jichi Medical University Hospital, Shimotsuke, Japan
| |
Collapse
|
9
|
Alvarenga L, Kemp JA, Baptista BG, Ribeiro M, Lima LS, Mafra D. Production of Toxins by the Gut Microbiota: The Role of Dietary Protein. Curr Nutr Rep 2024; 13:340-350. [PMID: 38587573 DOI: 10.1007/s13668-024-00535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE OF REVIEW This narrative review will discuss how the intake of specific protein sources (animal and vegetable) providing specific amino acids can modulate the gut microbiota composition and generate toxins. A better understanding of these interactions could lead to more appropriate dietary recommendations to improve gut health and mitigate the risk of complications promoted by the toxic metabolites formed by the gut microbiota. RECENT FINDINGS Gut microbiota is vital in maintaining human health by influencing immune function and key metabolic pathways. Under unfavorable conditions, the gut microbiota can produce excess toxins, which contribute to inflammation and the breakdown of the integrity of the intestinal barrier. Genetic and environmental factors influence gut microbiota diversity, with diet playing a crucial role. Emerging evidence indicates that the gut microbiota significantly metabolizes amino acids from dietary proteins, producing various metabolites with beneficial and harmful effects. Amino acids such as choline, betaine, l-carnitine, tyrosine, phenylalanine, and tryptophan can increase the production of uremic toxins when metabolized by intestinal bacteria. The type of food source that provides these amino acids affects the production of toxins. Plant-based diets and dietary fiber are associated with lower toxin formation than animal-based diets due to the high amino acid precursors in animal proteins.
Collapse
Affiliation(s)
- Livia Alvarenga
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil.
- Graduate Program in Nutrition Science, Federal Fluminense University, Niteroi, Rio de Janeiro (RJ), Brazil.
| | - Julie A Kemp
- Graduate Program in Nutrition Science, Federal Fluminense University, Niteroi, Rio de Janeiro (RJ), Brazil
| | - Beatriz G Baptista
- Graduate Program in Medical Science, Federal Fluminense University, Niteroi, Rio de Janeiro (RJ), Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Ligia Soares Lima
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
- Graduate Program in Nutrition Science, Federal Fluminense University, Niteroi, Rio de Janeiro (RJ), Brazil
- Graduate Program in Medical Science, Federal Fluminense University, Niteroi, Rio de Janeiro (RJ), Brazil
| |
Collapse
|
10
|
Chai X, Chen X, Yan T, Zhao Q, Hu B, Jiang Z, Guo W, Zhang Y. Intestinal Barrier Impairment Induced by Gut Microbiome and Its Metabolites in School-Age Children with Zinc Deficiency. Nutrients 2024; 16:1289. [PMID: 38732540 PMCID: PMC11085614 DOI: 10.3390/nu16091289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Zinc deficiency affects the physical and intellectual development of school-age children, while studies on the effects on intestinal microbes and metabolites in school-age children have not been reported. School-age children were enrolled to conduct anthropometric measurements and serum zinc and serum inflammatory factors detection, and children were divided into a zinc deficiency group (ZD) and control group (CK) based on the results of serum zinc. Stool samples were collected to conduct metagenome, metabolome, and diversity analysis, and species composition analysis, functional annotation, and correlation analysis were conducted to further explore the function and composition of the gut flora and metabolites of children with zinc deficiency. Beta-diversity analysis revealed a significantly different gut microbial community composition between ZD and CK groups. For instance, the relative abundances of Phocaeicola vulgatus, Alistipes putredinis, Bacteroides uniformis, Phocaeicola sp000434735, and Coprococcus eutactus were more enriched in the ZD group, while probiotic bacteria Bifidobacterium kashiwanohense showed the reverse trend. The functional profile of intestinal flora was also under the influence of zinc deficiency, as reflected by higher levels of various glycoside hydrolases in the ZD group. In addition, saccharin, the pro-inflammatory metabolites, and taurocholic acid, the potential factor inducing intestinal leakage, were higher in the ZD group. In conclusion, zinc deficiency may disturb the gut microbiome community and metabolic function profile of school-age children, potentially affecting human health.
Collapse
Affiliation(s)
- Xiaoqi Chai
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Xiaohui Chen
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Tenglong Yan
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Qian Zhao
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Binshuo Hu
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Zhongquan Jiang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550000, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (X.C.); (X.C.); (T.Y.); (Q.Z.); (B.H.); (Z.J.)
| |
Collapse
|
11
|
Niu X, Lu P, Huang L, Sun Y, Jin M, Liu J, Li X. The effect of metformin combined with liraglutide on gut microbiota of Chinese patients with type 2 diabetes. Int Microbiol 2024; 27:265-276. [PMID: 37316616 DOI: 10.1007/s10123-023-00380-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/17/2022] [Accepted: 05/18/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Metformin (MET) is a first-line therapy for type-2 diabetes mellitus (T2DM). Liraglutide (LRG) is a glucagon-like peptide-1 receptor agonist used as a second-line therapy in combination with MET. METHODS We performed a longitudinal analysis comparing the gut microbiota of overweight and/or pre-diabetic participants (NCP group) with that of each following their progression to T2DM diagnosis (UNT group) using 16S ribosomal RNA gene sequencing of fecal bacteria samples. We also examined the effects of MET (MET group) and MET plus LRG (MET+LRG group) on the gut microbiota of these participants following 60 days of anti-diabetic drug therapy in two parallel treatment arms. RESULTS In the UNT group, the relative abundances of Paraprevotella (P = 0.002) and Megamonas (P = 0.029) were greater, and that of Lachnospira (P = 0.003) was lower, compared with the NCP group. In the MET group, the relative abundance of Bacteroides (P = 0.039) was greater, and those of Paraprevotella (P = 0.018), Blautia (P = 0.001), and Faecalibacterium (P = 0.005) were lower, compared with the UNT group. In the MET+LRG group, the relative abundances of Blautia (P = 0.005) and Dialister (P = 0.045) were significantly lower than in the UNT group. The relative abundance of Megasphaera in the MET group was significantly greater than in the MET+LRG group (P = 0.041). CONCLUSIONS Treatment with MET and MET+LRG results in significant alterations in gut microbiota, compared with the profiles of patients at the time of T2DM diagnosis. These alterations differed significantly between the MET and MET+LRG groups, which suggests that LRG exerted an additive effect on the composition of gut microbiota.
Collapse
Affiliation(s)
- Xiaohong Niu
- Department of Endocrinology, Changzhi Medical College Affiliated Heji Hospital, Changzhi, 046011, China
| | - Panpan Lu
- Department of Endocrinology, Changzhi Medical College, Changzhi, 046013, China
| | - Linqing Huang
- Department of Endocrinology, Changzhi Medical College, Changzhi, 046013, China
| | - Yan Sun
- Department of Endocrinology, Changzhi Medical College Affiliated Heji Hospital, Changzhi, 046011, China
| | - Miaomiao Jin
- Department of Endocrinology, Changzhi Medical College Affiliated Heji Hospital, Changzhi, 046011, China
| | - Jing Liu
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xing Li
- Department of Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
12
|
Elbere I, Orlovskis Z, Ansone L, Silamikelis I, Jagare L, Birzniece L, Megnis K, Leskovskis K, Vaska A, Turks M, Klavins K, Pirags V, Briviba M, Klovins J. Gut microbiome encoded purine and amino acid pathways present prospective biomarkers for predicting metformin therapy efficacy in newly diagnosed T2D patients. Gut Microbes 2024; 16:2361491. [PMID: 38868903 PMCID: PMC11178274 DOI: 10.1080/19490976.2024.2361491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Metformin is widely used for treating type 2 diabetes mellitus (T2D). However, the efficacy of metformin monotherapy is highly variable within the human population. Understanding the potential indirect or synergistic effects of metformin on gut microbiota composition and encoded functions could potentially offer new insights into predicting treatment efficacy and designing more personalized treatments in the future. We combined targeted metabolomics and metagenomic profiling of gut microbiomes in newly diagnosed T2D patients before and after metformin therapy to identify potential pre-treatment biomarkers and functional signatures for metformin efficacy and induced changes in metformin therapy responders. Our sequencing data were largely corroborated by our metabolic profiling and identified that pre-treatment enrichment of gut microbial functions encoding purine degradation and glutamate biosynthesis was associated with good therapy response. Furthermore, we identified changes in glutamine-associated amino acid (arginine, ornithine, putrescine) metabolism that characterize differences in metformin efficacy before and after the therapy. Moreover, metformin Responders' microbiota displayed a shifted balance between bacterial lipidA synthesis and degradation as well as alterations in glutamate-dependent metabolism of N-acetyl-galactosamine and its derivatives (e.g. CMP-pseudaminate) which suggest potential modulation of bacterial cell walls and human gut barrier, thus mediating changes in microbiome composition. Together, our data suggest that glutamine and associated amino acid metabolism as well as purine degradation products may potentially condition metformin activity via its multiple effects on microbiome functional composition and therefore serve as important biomarkers for predicting metformin efficacy.
Collapse
Affiliation(s)
- Ilze Elbere
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Zigmunds Orlovskis
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Laura Ansone
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Ivars Silamikelis
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Lauma Jagare
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Liga Birzniece
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kaspars Megnis
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kristaps Leskovskis
- Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
| | - Annija Vaska
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Maris Turks
- Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
| | - Kristaps Klavins
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Valdis Pirags
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Monta Briviba
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Janis Klovins
- Translational Omics Group, Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
13
|
Song H, Xue H, Zhang Z, Wang J, Li A, Zhang J, Luo P, Zhan M, Zhou X, Chen L, Fang Y. Amelioration of Type 2 Diabetes Using Four Strains of Lactobacillus Probiotics: Effects on Gut Microbiota Reconstitution-Mediated Regulation of Glucose Homeostasis, Inflammation, and Oxidative Stress in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20801-20814. [PMID: 37991826 DOI: 10.1021/acs.jafc.3c04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
This study aims to explore the preventive effects and underlying mechanisms of Lactobacillus fermentum CKCC1858 (CKCC1), L. fermentum CKCC1369 (CKCC2), Lactobacillus plantarum CKCC1312 (CKCC3), and Lactobacillus gasseri CKCC1913 (CKCC4) on high-fat diet combined with streptozotocin (HFD/STZ)-stimulated type 2 diabetes (T2D) in mice. Generally, the results indicated that most of the four probiotics reduced weight loss and liver and pancreas damage, significantly (p < 0.05) improved glucose metabolism by regulating glucagon-like peptide-1 (GLP-1), fasting glucose and insulin levels, and increasing expression of glucose transporters. Probiotics improved hyperlipemia, inflammation, and oxidative stress by reducing the secretion of blood lipids and proinflammatory cytokines, increasing antioxidant enzymes. Metagenomic results revealed that probiotics restored gut microbiota via enhancing (reducing) the relative abundance of beneficial bacteria (harmful bacteria) and altered specific metabolic pathways in T2D mice. CKCC1, CKCC3, and CKCC4 showed excellent effects compared to CKCC2. These results indicated that probiotics potentially prevented T2D, which is strain-specific.
Collapse
Affiliation(s)
- Hainan Song
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Hui Xue
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zeng Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jun Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ao Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Pengfei Luo
- ClassyKiss Dairy (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Meng Zhan
- ClassyKiss Dairy (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Xiaoli Zhou
- ClassyKiss Dairy (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Lihao Chen
- ClassyKiss Dairy (Shenzhen) Co., Ltd., Shenzhen 518000, China
| | - Yajing Fang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
14
|
Ribeiro PVDM, Veloso TG, de Oliveira LL, Mendes NP, Alfenas RDCG. Consumption of yacon flour and energy-restricted diet increased the relative abundance of intestinal bacteria in obese adults. Braz J Microbiol 2023; 54:3085-3099. [PMID: 37807018 PMCID: PMC10689717 DOI: 10.1007/s42770-023-01140-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023] Open
Abstract
Prebiotics can alter the gastrointestinal environment, favoring the growth of health-promoting bacteria. Although yacon is a functional food, with prebiotic properties (fructooligosaccharides), its effects on the intestinal microbiota have not been investigated yet. The objective of this study was to evaluate the effects of yacon flour consumption and energy-restricted diet in the intestinal microbiota in adults with excess body weight. Twenty-one adults with excess body weight were included in this randomized, parallel, double-blind, placebo-controlled, 6-week clinical trial. Subjects daily consumed at breakfast a drink containing 25 g of yacon flour (n = 11) or not containing yacon (n = 10) and received the prescription of energy-restricted diets. Fecal samples were collected on the first and on last day of the study. 16S rRNA sequencing was assessed to evaluate the effect of yacon fermentation on intestinal microbiota bacterial composition. There was an increase in the genera Bifidobacterium, Blautia, Subdoligranulum, and Streptococcus after the consumption of yacon and energy-restricted diet. In the yacon group, we also observed a positive correlation between the concentrations of short-chain fatty acids versus the genera Coprococcus and Howardella, besides a negative correlation between the concentrations of advanced glycation end products and early glycation products versus the genera Ruminococcus and Prevotella, respectively. Consumption of yacon flour and energy-restricted diet selectively changed the intestinal microbiota composition in adults with excess body weight. TRIAL REGISTRATION: Register number: RBR-6YH6BQ. Registered 23 January, 2018.
Collapse
Affiliation(s)
- Priscila Vaz de Melo Ribeiro
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Tomas Gomes Veloso
- Department of Microbiology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Leandro Licursi de Oliveira
- Department of General Biology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Nélia Pinheiro Mendes
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Rita de Cássia Gonçalves Alfenas
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
15
|
Mathrani A, Lu LW, Sequeira-Bisson IR, Silvestre MP, Hoggard M, Barnett D, Fogelholm M, Raben A, Poppitt SD, Taylor MW. Gut microbiota profiles in two New Zealand cohorts with overweight and prediabetes: a Tū Ora/PREVIEW comparative study. Front Microbiol 2023; 14:1244179. [PMID: 38033566 PMCID: PMC10687470 DOI: 10.3389/fmicb.2023.1244179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023] Open
Abstract
Obesity-related metabolic diseases such as type 2 diabetes (T2D) are major global health issues, affecting hundreds of millions of people worldwide. The underlying factors are both diverse and complex, incorporating biological as well as cultural considerations. A role for ethnicity - a measure of self-perceived cultural affiliation which encompasses diet, lifestyle and genetic components - in susceptibility to metabolic diseases such as T2D is well established. For example, Asian populations may be disproportionally affected by the adverse 'TOFI' (Thin on the Outside, Fat on the Inside) profile, whereby outwardly lean individuals have increased susceptibility due to excess visceral and ectopic organ fat deposition. A potential link between the gut microbiota and metabolic disease has more recently come under consideration, yet our understanding of the interplay between ethnicity, the microbiota and T2D remains incomplete. We present here a 16S rRNA gene-based comparison of the fecal microbiota of European-ancestry and Chinese-ancestry cohorts with overweight and prediabetes, residing in New Zealand. The cohorts were matched for mean fasting plasma glucose (FPG: mean ± SD, European-ancestry: 6.1 ± 0.4; Chinese-ancestry: 6.0 ± 0.4 mmol/L), a consequence of which was a significantly higher mean body mass index in the European group (BMI: European-ancestry: 37.4 ± 6.8; Chinese-ancestry: 27.7 ± 4.0 kg/m2; p < 0.001). Our findings reveal significant microbiota differences between the two ethnicities, though we cannot determine the underpinning factors. In both cohorts Firmicutes was by far the dominant bacterial phylum (European-ancestry: 93.4 ± 5.5%; Chinese-ancestry: 79.6 ± 10.4% of 16S rRNA gene sequences), with Bacteroidetes and Actinobacteria the next most abundant. Among the more abundant (≥1% overall relative sequence abundance) genus-level taxa, four zero-radius operational taxonomic units (zOTUs) were significantly higher in the European-ancestry cohort, namely members of the Subdoligranulum, Blautia, Ruminoclostridium, and Dorea genera. Differential abundance analysis further identified a number of additional zOTUs to be disproportionately overrepresented across the two ethnicities, with the majority of taxa exhibiting a higher abundance in the Chinese-ancestry cohort. Our findings underscore a potential influence of ethnicity on gut microbiota composition in the context of individuals with overweight and prediabetes.
Collapse
Affiliation(s)
- Akarsh Mathrani
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Louise W. Lu
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland, New Zealand
| | - Ivana R. Sequeira-Bisson
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland, New Zealand
| | - Marta P. Silvestre
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland, New Zealand
- Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS), NOVA University of Lisbon, Lisbon, Portugal
| | - Michael Hoggard
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Daniel Barnett
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Mikael Fogelholm
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Clinical Research, Copenhagen University Hospital – Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Sally D. Poppitt
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland, New Zealand
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Michael W. Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| |
Collapse
|
16
|
Ma L, Zhang L, Li J, Zhang X, Xie Y, Li X, Yang B, Yang H. The potential mechanism of gut microbiota-microbial metabolites-mitochondrial axis in progression of diabetic kidney disease. Mol Med 2023; 29:148. [PMID: 37907885 PMCID: PMC10617243 DOI: 10.1186/s10020-023-00745-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Diabetic kidney disease (DKD), has become the main cause of end-stage renal disease (ESRD) worldwide. Lately, it has been shown that the onset and advancement of DKD are linked to imbalances of gut microbiota and the abnormal generation of microbial metabolites. Similarly, a body of recent evidence revealed that biological alterations of mitochondria ranging from mitochondrial dysfunction and morphology can also exert significant effects on the occurrence of DKD. Based on the prevailing theory of endosymbiosis, it is believed that human mitochondria originated from microorganisms and share comparable biological characteristics with the microbiota found in the gut. Recent research has shown a strong correlation between the gut microbiome and mitochondrial function in the occurrence and development of metabolic disorders. The gut microbiome's metabolites may play a vital role in this communication. However, the relationship between the gut microbiome and mitochondrial function in the development of DKD is not yet fully understood, and the role of microbial metabolites is still unclear. Recent studies are highlighted in this review to examine the possible mechanism of the gut microbiota-microbial metabolites-mitochondrial axis in the progression of DKD and the new therapeutic approaches for preventing or reducing DKD based on this biological axis in the future.
Collapse
Affiliation(s)
- Leilei Ma
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Li Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Jing Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Xiaotian Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Yiran Xie
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Xiaochen Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China.
| |
Collapse
|
17
|
Mathrani A, Yip W, Sequeira-Bisson IR, Barnett D, Stevenson O, Taylor MW, Poppitt SD. Effect of a 12-Week Polyphenol Rutin Intervention on Markers of Pancreatic β-Cell Function and Gut Microbiota in Adults with Overweight without Diabetes. Nutrients 2023; 15:3360. [PMID: 37571297 PMCID: PMC10420824 DOI: 10.3390/nu15153360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Supplementation with prebiotic polyphenol rutin is a potential dietary therapy for type 2 diabetes prevention in adults with obesity, based on previous glycaemic improvement in transgenic mouse models. Gut microbiota are hypothesised to underpin these effects. We investigated the effect of rutin supplementation on pancreatic β-cell function measured as C-peptide/glucose ratio, and 16S rRNA gene-based gut microbiota profiles, in a cohort of individuals with overweight plus normoglycaemia or prediabetes. Eighty-seven participants were enrolled, aged 18-65 years with BMI of 23-35 kg/m2. This was a 12-week double-blind randomised controlled trial (RCT), with 3 treatments comprising (i) placebo control, (ii) 500 mg/day encapsulated rutin, and (iii) 500 mg/day rutin-supplemented yoghurt. A 2-h oral glucose tolerance test (OGTT) was performed at baseline and at the end of the trial, with faecal samples also collected. Compliance with treatment was high (~90%), but rutin in both capsule and dietary format did not alter pancreatic β-cell response to OGTT over 12 weeks. Gut bacterial community composition also did not significantly change, with Firmicutes dominating irrespective of treatment. Fasting plasma glucose negatively correlated with the abundance of the butyrate producer Roseburia inulinivorans, known for its anti-inflammatory capacity. This is the first RCT to investigate postprandial pancreatic β-cell function in response to rutin supplementation.
Collapse
Affiliation(s)
- Akarsh Mathrani
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| | - Wilson Yip
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand
| | - Ivana R. Sequeira-Bisson
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand
| | - Daniel Barnett
- Department of Statistics, University of Auckland, Auckland 1010, New Zealand; (D.B.); (O.S.)
| | - Oliver Stevenson
- Department of Statistics, University of Auckland, Auckland 1010, New Zealand; (D.B.); (O.S.)
| | - Michael W. Taylor
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
| | - Sally D. Poppitt
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand; (A.M.); (W.Y.); (I.R.S.-B.)
- High-Value Nutrition National Science Challenge, Auckland 1010, New Zealand
- Human Nutrition Unit, University of Auckland, Auckland 1024, New Zealand
- Department of Medicine, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
18
|
Liu J, Liu J, Zhang J, Liu C, Qu C, Na L. Vitamin D deficiency in early life regulates gut microbiome composition and leads to impaired glucose tolerance in adult and offspring rats. Food Funct 2023. [PMID: 37285306 DOI: 10.1039/d3fo00503h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vitamin D has been found to be involved in glucose metabolism in recent years. Its deficiency is very common, especially in children. Whether vitamin D deficiency in early life affects adult diabetes risk is unknown. In this study, a rat model of early life vitamin D deficiency (F1 Early-VDD) was established by depriving it of vitamin D from the 0 to the 8th week. Further, some rats were switched to normal feeding conditions and sacrificed at the 18th week. Other rats were mated randomly to generate offspring rats (F2 Early-VDD), and F2 rats were fed under normal conditions and sacrificed at the 8th week. Serum 25(OH)D3 level decreased in F1 Early-VDD at the 8th week and returned to normal at the 18th week. Serum 25(OH)D3 level in F2 Early-VDD at the 8th week was also lower than that in control rats. Impaired glucose tolerance was observed in F1 Early-VDD at the 8th week and 18th week and also in F2 Early-VDD at the 8th week. The gut microbiota composition in F1 Early-VDD at the 8th week significantly changed. Among the top ten genera with a rich difference, Desulfovibrio, Roseburia, Ruminiclostridium, Lachnoclostridium, A2, GCA-900066575, Peptococcus, Lachnospiraceae_FCS020_ group, and Bilophila increased owing to vitamin D deficiency, whereas Blautia decreased. There were 108 significantly changed metabolites in F1 Early-VDD at the 8th week, of which 63 were enriched in known metabolic pathways. Correlations between gut microbiota and metabolites were analyzed. Blautia was positively related to 2-picolinic acid, whereas Bilophila was negatively related to indoleacetic acid. Moreover, some of the changes in microbiota, metabolites, and enriched metabolic pathways still existed in F1 Early-VDD rats at the 18th week and F2 Early-VDD rats at the 8th week. In conclusion, vitamin D deficiency in early life leads to impaired glucose tolerance in adult and offspring rats. This effect may be partly achieved by regulating gut microbiota and their co-metabolites.
Collapse
Affiliation(s)
- Jing Liu
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Junyi Liu
- Department of Clinical Nutrition, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jingyi Zhang
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Chunyan Liu
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Chunbo Qu
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Lixin Na
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, China.
- Collaborative Innovation Center of Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
19
|
Liao J, Zhang Y, Ma C, Wu G, Zhang W. Microbiome-metabolome reveals that the Suxiao Jiuxin pill attenuates acute myocardial infarction associated with fatty acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116529. [PMID: 37086873 DOI: 10.1016/j.jep.2023.116529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Suxiao Jiuxin pill (SJP) is a Chinese medical patent drug on the national essential drug list of China, with well-established cardiovascular protective effects in the clinic. However, the mechanisms underlying the protective effects of SJP on cardiovascular disease have not yet been elucidated clearly, especially its relationship with the gut microbiota. AIM OF THE STUDY This study aimed to investigate the cardioprotective effect of SJP against isoproterenol-induced acute myocardial infarction (AMI) by integrating the gut microbiome and metabolome. METHODS A rat model of AMI was generated using isoproterenol. Firstly, the effect of antibiotic (ABX) treatment on the blood absorption and excretion of the main components of SJP were studied. Secondly, 16S rRNA sequencing and untargeted metabolomics were used to discover the improvement of SJP treatment on gut microbiota and host metabolism in AMI rats. Finally, targeted metabolomics was used to verify the effects of SJP treatment on host metabolism in AMI rats. RESULT The results showed that ABX treatment could affect the blood absorption and fecal excretion of the main active components of SJP. At the same time, SJP can restore the richness and diversity of gut microbiota, and multiple gut microbiota (including Jeotgalicoccus, Lachnospiraceae, and Blautia) are significantly associated with fatty acids. Untargeted metabolomics also found that SJP could restore the levels of various fatty acid metabolites in serum and cecal contents (p < 0.01, FC > 1.5 and VIP >1). Targeted metabolomics further confirmed that 41, 21, and 39 fatty acids were significantly altered in serum, cecal contents, and heart samples, respectively. Interestingly, these fatty acids belong to the class of eicosanoids, and SJP can significantly downregulate these eicosanoids in AMI rats. CONCLUSION The results of this study suggest that SJP may exert its cardioprotective effects by remodeling the gut microbiota and host fatty acid metabolism.
Collapse
Affiliation(s)
- Jingyu Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong, 510006, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuhao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chi Ma
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Gaosong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Weidong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangdong, 510006, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
20
|
Mao B, Guo W, Liu X, Cui S, Zhang Q, Zhao J, Tang X, Zhang H. Potential Probiotic Properties of Blautia producta Against Lipopolysaccharide-Induced Acute Liver Injury. Probiotics Antimicrob Proteins 2023; 15:785-796. [PMID: 36790661 DOI: 10.1007/s12602-023-10044-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
Blautia is a genus of anaerobic microbe extensively present in the intestine and feces of mammals. This study aims to investigate the influence of Blautia producta to prevent lipopolysaccharide (LPS)-induced acute liver injury (ALI) and elaborate on its hepatoprotective mechanisms. B. producta D4 and DSM2950 pretreatment decreased the activities of serum aspartate transferase (AST), and alanine transaminase (ALT) in mice with LPS treatment significantly decreased the levels of inflammatory tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) and increased the activities of antioxidative superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px). Compared with the model group, B. producta D4 and B. producta DSM2950 pretreatment slightly increased the levels of cecal propionic acid, isobutyric acid, butyric acid, valeric acid, and isovaleric acid (p > 0.05). Metagenomic analysis showed that B. producta D4 and DSM2950 pretreatment remarkably increased the relative abundance of [Eubacterium] xylanophilum group, Lachnospira, Ruminiclostridium, Ruminiclostridium 9, Coprococcus 2, Odoribacter, Roseburia, Alistipes, and Desulfovibrio in ALI mice, and their abundance is negatively related to the levels of inflammatory TNF-α, IL-1β, and IL-6 as revealed by Spearman's correlation analysis. Moreover, transcription and immunohistochemistry analysis revealed that B. producta D4 and B. producta DSM2950 intervention remarkably suppressed the transcription and expression levels of hepatic Tlr4, MyD88, and caspase-3 (p < 0.05). These data indicated that B. producta may be a good candidate for probiotics in the prevention of ALI.
Collapse
Affiliation(s)
- Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Xuemei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, People's Republic of China
| |
Collapse
|
21
|
Wu S, Yang X, Gao H, Shi C, Wang L, Lu D, Li Y, Zhang J, Zhang W, Wen P. Research on bacterial community characteristics of traditional fermented yak milk in the Tibetan Plateau based on high-throughput sequencing. PeerJ 2023; 11:e14733. [PMID: 36718443 PMCID: PMC9884033 DOI: 10.7717/peerj.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/21/2022] [Indexed: 01/26/2023] Open
Abstract
Background The Tibetan Plateau has an abundance of yak milk resources. The complex microbiota found in traditional fermented yak milk produced and sold by local Tibetans endows the yak milk with unique quality characteristics such as tissue morphology, flavor, and function. However, the diversity of bacterial flora in traditional fermented yak milk have not been elucidated. Methods In this study, 15 samples of fermented yak milk were collected for 16S rRNA high-throughput sequencing to analyze the bacterial community composition and function. Results After filtering for quality, 792,642 high-quality sequences were obtained, and 13 kinds of different phyla and 82 kinds of different genera were identified, of which the phylum Firmicutes (98.94%) was the dominant phylum, Lactobacillus (64.73%) and Streptococcus (28.48%) were identified as the dominant genus, in addition, the bacterial community richness and diversity were higher in Manang Village, followed by Bola Village. Bacterial community richness and diversity in Huage Village were relatively low. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classification, the microorganisms in traditional fermented yak milk have rich metabolic functions (77.60%). These findings suggest that a large number of bacteria in traditional fermented yak milk contain abundant metabolic genes and can carry out a variety of growth and metabolic activities. This study established a theoretical foundation for further exploring the microbial flora of traditional fermented yak milk in Gannan.
Collapse
Affiliation(s)
- Shifang Wu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaoli Yang
- Gansu Institute of Business and Technology, Lanzhou, Gansu, China
| | - Haina Gao
- School of Food and Health, Beijing Technology & Business University, Beijing, Beijing, China
| | - Chengrui Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Longlin Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Deyuan Lu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yiheng Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jinliang Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Weibing Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Pengcheng Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
22
|
High-fat diet and estrogen modulate the gut microbiota in a sex-dependent manner in mice. Commun Biol 2023; 6:20. [PMID: 36624306 PMCID: PMC9829864 DOI: 10.1038/s42003-022-04406-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
A high-fat diet can lead to gut microbiota dysbiosis, chronic intestinal inflammation, and metabolic syndrome. Notably, resulting phenotypes, such as glucose and insulin levels, colonic crypt cell proliferation, and macrophage infiltration, exhibit sex differences, and females are less affected. This is, in part, attributed to sex hormones. To investigate if there are sex differences in the microbiota and if estrogenic ligands can attenuate high-fat diet-induced dysbiosis, we used whole-genome shotgun sequencing to characterize the impact of diet, sex, and estrogenic ligands on the microbial composition of the cecal content of mice. We here report clear host sex differences along with remarkably sex-dependent responses to high-fat diet. Females, specifically, exhibited increased abundance of Blautia hansenii, and its levels correlated negatively with insulin levels in both sexes. Estrogen treatment had a modest impact on the microbiota diversity but altered a few important species in males. This included Collinsella aerofaciens F, which we show correlated with colonic macrophage infiltration. In conclusion, male and female mice exhibit clear differences in their cecal microbial composition and in how diet and estrogens impact the composition. Further, specific microbial strains are significantly correlated with metabolic parameters.
Collapse
|
23
|
Ahmed LA, Al-Massri KF. Gut Microbiota Modulation for Therapeutic Management of Various Diseases: A New Perspective Using Stem Cell Therapy. Curr Mol Pharmacol 2023; 16:43-59. [PMID: 35196976 DOI: 10.2174/1874467215666220222105004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
Dysbiosis has been linked to various diseases ranging from cardiovascular, neurologic, gastrointestinal, respiratory, and metabolic illnesses to cancer. Restoring of gut microbiota balance represents an outstanding clinical target for the management of various multidrug-resistant diseases. Preservation of gut microbial diversity and composition could also improve stem cell therapy which now has diverse clinical applications in the field of regenerative medicine. Gut microbiota modulation and stem cell therapy may be considered a highly promising field that could add up towards the improvement of different diseases, increasing the outcome and efficacy of each other through mutual interplay or interaction between both therapies. Importantly, more investigations are required to reveal the cross-talk between microbiota modulation and stem cell therapy to pave the way for the development of new therapies with enhanced therapeutic outcomes. This review provides an overview of dysbiosis in various diseases and their management. It also discusses microbiota modulation via antibiotics, probiotics, prebiotics, and fecal microbiota transplant to introduce the concept of dysbiosis correction for the management of various diseases. Furthermore, we demonstrate the beneficial interactions between microbiota modulation and stem cell therapy as a way for the development of new therapies in addition to limitations and future challenges regarding the applications of these therapies.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Khaled F Al-Massri
- Department of Pharmacy and Biotechnology, Faculty of Medicine and Health Sciences, University of Palestine, Gaza, Palestine
| |
Collapse
|
24
|
Kondo Y, Hashimoto Y, Hamaguchi M, Kaji A, Sakai R, Inoue R, Kashiwagi S, Mizushima K, Uchiyama K, Takagi T, Naito Y, Fukui M. Effects of Smoking on the Gut Microbiota in Individuals with Type 2 Diabetes Mellitus. Nutrients 2022; 14:nu14224800. [PMID: 36432487 PMCID: PMC9695173 DOI: 10.3390/nu14224800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Smoking affects eating habits; however, few studies on smoking and the gut microbiota have reported the effects of diet in detail. This cross-sectional study aimed to determine the association between smoking and the gut microbiota, considering the impact of smoking on dietary intake. Dietary habits and the composition of the gut microbiota were assessed in 195 men with type 2 diabetes (164 non-current smokers and 31 current smokers) using a brief self-administered diet history questionnaire and 16S ribosomal RNA gene sequencing of fecal samples. The data were compared according to the current smoking status of the participants. Current smokers had high alcohol and sugar/sweetener intake and low fruit intake. The proportion of the Coprococcus genus was higher among current smokers. Multiple regression analysis adjusted for current smoking, age, exercise habits, alcohol intake, sugar and sweetener intake, and fruit intake showed that smoking was associated with the proportion of the Coprococcus genus. Current smoking was associated with both dietary intake and composition of the gut microbiota. Although dietary intake should be considered when investigating the association between smoking and the gut microbiota, the results suggest that the direct effect of smoking is more significant.
Collapse
Affiliation(s)
- Yuriko Kondo
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, Moriguchi 570-8540, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Correspondence: ; Tel.: +81-75-251-5505; Fax: +81-75-252-3721
| | - Ayumi Kaji
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Ryosuke Sakai
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata 573-0101, Japan
| | - Saori Kashiwagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
25
|
Kumar S, Raj VS, Ahmad A, Saini V. Amoxicillin modulates gut microbiota to improve short-term high-fat diet induced pathophysiology in mice. Gut Pathog 2022; 14:40. [PMID: 36229889 PMCID: PMC9563906 DOI: 10.1186/s13099-022-00513-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND A high-fat diet (HFD) induced perturbation of gut microbiota is a major contributory factor to promote the pathophysiology of HFD-associated metabolic syndrome. The HFD could also increase the susceptibility to the microbial infections warranting the use of antibiotics which are independently capable of impacting both gut microbiota and metabolic syndrome. Further, the usage of antibiotics in individuals consuming HFD can impact mitochondrial function that can be associated with an elevated risk of chronic conditions like inflammatory bowel disease (IBD). Despite this high propensity to infections in individuals on HFD, the link between duration of HFD and antibiotic treatment, and its impact on diversity of the gut microbiome and features of metabolic syndrome is not well established. In this study, we have addressed these knowledge gaps by examining how the gut microbiota profile changes in HFD-fed mice receiving antibiotic intervention in the form of amoxicillin. We also determine whether antibiotic treatment in HFD-fed mice may adversely impact the ability of immune cells to clear microbial infections. METHODS AND RESULTS We have subjected mice to HFD and chow diet (CD) for 3 weeks, and a subset of these mice on both diets received antibiotic intervention in the form of amoxicillin in the 3rd week. Body weight and food intake were recorded for 3 weeks. After 21 days, all animals were weighted and sacrificed. Subsequently, these animals were evaluated for basic haemato-biochemical and histopathological attributes. We used 16S rRNA sequencing followed by bioinformatics analysis to determine changes in gut microbiota in these mice. We observed that a HFD, even for a short-duration, could successfully induce the partial pathophysiology typical of a metabolic syndrome, and substantially modulated the gut microbiota in mice. The short course of amoxicillin treatment to HFD-fed mice resulted in beneficial effects by significantly reducing fasting blood glucose and skewing the number of thrombocytes towards a normal range. Remarkably, we observed a significant remodelling of gut microbiota in amoxicillin-treated HFD-fed mice. Importantly, some gut microbes associated with improved insulin sensitivity and recovery from metabolic syndrome only appeared in amoxicillin-treated HFD-fed mice reinforcing the beneficial effects of antibiotic treatment in the HFD-associated metabolic syndrome. Moreover, we also observed the presence of gut-microbiota unique to amoxicillin-treated HFD-fed mice that are also known to improve the pathophysiology associated with metabolic syndrome. However, both CD-fed as well as HFD-fed mice receiving antibiotics showed an increase in intestinal pathogens as is typically observed for antibiotic treatment. Importantly though, infection studies with S. aureus and A. baumannii, revealed that macrophages isolated from amoxicillin-treated HFD-fed mice are comparable to those isolated from mice receiving only HFD or CD in terms of susceptibility, and progression of microbial infection. This finding clearly indicated that amoxicillin treatment does not introduce any additional deficits in the ability of macrophages to combat microbial infections. CONCLUSIONS Our results showed that amoxicillin treatment in HFD-fed mice exert a beneficial influence on the pathophysiological attributes of metabolic syndrome which correlates with a significant remodelling of gut microbiota. A novel observation was the increase in microbes known to improve insulin sensitivity following amoxicillin treatment during short-term intake of HFD. Even though there is a minor increase in gut-resistant intestinal pathogens in amoxicillin-treated groups, there is no adverse impact on macrophages with respect to their susceptibility and ability to control infections. Taken together, this study provides a proof of principle for the exploration of amoxicillin treatment as a potential therapy in the people affected with metabolic syndrome.
Collapse
Affiliation(s)
- Suresh Kumar
- National Institute of Biologicals, Ministry of Health & Family Welfare, Govt. of India, Noida, 201309, India.
| | - V Samuel Raj
- Center for Drug, Design, Discovery and Development (C4D), SRM University, Delhi-NCR, 131029, Sonepat, Haryana, India
| | - Ayaan Ahmad
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Vikram Saini
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India.
- Biosafety Laboratory-3, Centralized Core Research Facility (CCRF), All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
26
|
Palmnäs-Bédard MSA, Costabile G, Vetrani C, Åberg S, Hjalmarsson Y, Dicksved J, Riccardi G, Landberg R. The human gut microbiota and glucose metabolism: a scoping review of key bacteria and the potential role of SCFAs. Am J Clin Nutr 2022; 116:862-874. [PMID: 36026526 PMCID: PMC9535511 DOI: 10.1093/ajcn/nqac217] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 01/26/2023] Open
Abstract
The gut microbiota plays a fundamental role in human nutrition and metabolism and may have direct implications for type 2 diabetes and associated preconditions. An improved understanding of relations between human gut microbiota and glucose metabolism could lead to novel opportunities for type 2 diabetes prevention, but human observational studies reporting on such findings have not been extensively reviewed. Here, we review the literature on associations between gut microbiota and markers and stages of glucose dysregulation and insulin resistance in healthy adults and in adults with metabolic disease and risk factors. We present the current evidence for identified key bacteria and their potential roles in glucose metabolism independent of overweight, obesity, and metabolic drugs. We provide support for SCFAs mediating such effects and discuss the role of diet, as well as metabolites derived from diet and gut microbiota interactions. From 5983 initially identified PubMed records, 45 original studies were eligible and reviewed. α Diversity and 45 bacterial taxa were associated with selected outcomes. Six taxa were most frequently associated with glucose metabolism: Akkermansia muciniphila, Bifidobacterium longum, Clostridium leptum group, Faecalibacterium prausnitzii, and Faecalibacterium (inversely associated) and Dorea (directly associated). For Dorea and A. muciniphila, associations were independent of metabolic drugs and body measures. For A. muciniphila and F. prausnitzii, limited evidence supported SCFA mediation of potential effects on glucose metabolism. We conclude that observational studies applying metagenomics sequencing to identify species-level relations are warranted, as are studies accounting for confounding factors and investigating SCFA and postprandial glucose metabolism. Such advances in the field will, together with mechanistic and prospective studies and investigations into diet-gut microbiota interactions, have the potential to bring critical insight into roles of gut microbiota and microbial metabolites in human glucose metabolism and to contribute toward the development of novel prevention strategies for type 2 diabetes, including precision nutrition.
Collapse
Affiliation(s)
- Marie S A Palmnäs-Bédard
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Giuseppina Costabile
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Claudia Vetrani
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Sebastian Åberg
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Yommine Hjalmarsson
- Department of Communication and Learning in Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Rikard Landberg
- Department of Biology and Biological Engineering, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
27
|
Bai J, Wan Z, Zhang Y, Wang T, Xue Y, Peng Q. Composition and diversity of gut microbiota in diabetic retinopathy. Front Microbiol 2022; 13:926926. [PMID: 36081798 PMCID: PMC9445585 DOI: 10.3389/fmicb.2022.926926] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveDiabetic retinopathy (DR) is one of the most common complications of type 2 diabetes mellitus. The current study investigates the composition, structure, and function of gut microbiota in DR patients and explores the correlation between gut microbiota and clinical characteristics of DR.MethodsA total of 50 stool samples were collected from 50 participants, including 25 DR patients and 25 healthy controls (HCs). 16S ribosomal RNA gene sequencing was used to analyze the gut microbial composition in these two groups. DNA was extracted from the fecal samples using the MiSeq platform.ResultsThe microbial structure and composition of DR patients were different from that of HCs. The microbial richness of gut microbiota in DR was higher than that of normal individuals. The alterations of microbiome of DR patients were associated with disrupted Firmicutes, Bacteroidetes, Synergistota, and Desulfobacterota phyla. In addition, increased levels of Bacteroides, Megamonas, Ruminococcus_torques_group, Lachnoclostridium, and Alistipes, and decreased levels of Blautia, Eubacterium_ hallii_group, Collinsella, Dorea, Romboutsia, Anaerostipes, and Fusicatenibacter genera were observed in the DR groups. Additionally, a stochastic forest model was developed to identify a set of biomarkers with seven bacterial genera that can differentiate patients with DR from those HC. The microbial communities exhibited varied functions in these two groups because of the alterations of the above-mentioned bacterial genera.ConclusionThe altered composition and function of gut microbiota in DR patients indicated that gut microbiome could be used as non-invasive biomarkers, improve clinical diagnostic methods, and identify putative therapeutic targets for DR.
Collapse
|
28
|
Human supplementation with Pediococcus acidilactici GR-1 decreases heavy metals levels through modifying the gut microbiota and metabolome. NPJ Biofilms Microbiomes 2022; 8:63. [PMID: 35974020 PMCID: PMC9381558 DOI: 10.1038/s41522-022-00326-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Exposure to heavy metals (HMs) is a threat to human health. Although probiotics can detoxify HMs in animals, their effectiveness and mechanism of action in humans have not been studied well. Therefore, we conducted this randomized, double-blind, controlled trial on 152 occupational workers from the metal industry, an at-risk human population, to explore the effectiveness of probiotic yogurt in reducing HM levels. Participants were randomly assigned to two groups: one consumed probiotic yogurt containing the HM-resistant strain Pediococcus acidilactici GR-1 and the other consumed conventional yogurt for 12 weeks. Analysis of metal contents in the blood revealed that the consumption of probiotic yogurt resulted in a higher and faster decrease in copper (34.45%) and nickel (38.34%) levels in the blood than the consumption of conventional yogurt (16.41% and 27.57%, respectively). Metagenomic and metabolomic studies identified a close correlation between gut microbiota (GM) and host metabolism. Significantly enriched members of Blautia and Bifidobacterium correlated positively with the antioxidant capacities of GM and host. Further murine experiments confirmed the essential role of GM and protective effect of GR-1 on the antioxidative role of the intestine against copper. Thus, the use of probiotic yogurt may be an effective and affordable approach for combating toxic metal exposure through the protection of indigenous GM in humans. ClinicalTrials.gov identifier: ChiCTR2100053222
Collapse
|
29
|
Zheng J, Zhang L, Gao Y, Wu H, Zhang J. The dynamic effects of maternal high-calorie diet on glycolipid metabolism and gut microbiota from weaning to adulthood in offspring mice. Front Nutr 2022; 9:941969. [PMID: 35928844 PMCID: PMC9343994 DOI: 10.3389/fnut.2022.941969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Dysbiosis of gut microbiota can contribute to the progression of diabetes and obesity. Previous studies have shown that maternal high-fat (HF) diet during the perinatal period can alter the microbiota and induce metabolic disorders at weaning. However, whether dysbiosis of gut microbiota and metabolism could be recovered by a normal diet after weaning and the dynamic changes of gut microbiota have not been fully studied. In this study, C57BL/6J female mice were fed with a normal chow (NC) or HF diet for 4 weeks preconception, during gestation, and until pup weaning. After weaning, male offspring were fed with an NC diet until 9 weeks of age. The microbiota of offspring at weaning and 9 weeks of age was collected for 16S rRNA gene amplicon sequencing. We found that dams fed with an HF diet showed glucose intolerance after lactation. Compared with the offspring from NC dams, the offspring from HF dams exhibited a higher body weight, hyperglycemia, glucose intolerance, hyperinsulinemia, hypercholesterolemia, and leptin resistance and lower adiponectin at weaning. Fecal analysis indicated altered microbiota composition between the offspring of the two groups. The decrease in favorable bacteria (such as norank f Bacteroidales S24-7 group) and increase in unfavorable bacteria (such as Lachnoclostridium and Desulfovibrio) were strongly associated with a disturbance of glucose and lipid metabolism. After 6 weeks of normal diet, no difference in body weight, glucose, and lipid profiles was observed between the offspring of the two groups. However, the microbiota composition of offspring in the HF group was still different from that in the NC group, and microbiota diversity was lower in offspring of the HF group. The abundance of Lactobacillus was lower in the offspring of the HF group. In conclusion, a maternal HF diet can induce metabolic homeostasis and gut microbiota disturbance in offspring at weaning. Gut microbiota dysbiosis can persist into adulthood in the offspring, which might have a role in the promotion of susceptibility to obesity and diabetes in the later life of the offspring.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ling Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Ying Gao
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Honghua Wu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
30
|
Sugimura Y, Kanda A, Sawada K, Wai KM, Tanabu A, Ozato N, Midorikawa T, Hisada T, Nakaji S, Ihara K. Association between Gut Microbiota and Body Composition in Japanese General Population: A Focus on Gut Microbiota and Skeletal Muscle. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127464. [PMID: 35742712 PMCID: PMC9224415 DOI: 10.3390/ijerph19127464] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023]
Abstract
This study aimed to investigate the gut microbial genera associated with skeletal muscle mass, using a large-scale survey from the standpoint of preventing sarcopenia. A total of 848 participants were included in the analysis. The mean (SD) ages of men (n = 353) and women (n = 495) were 50.0 (12.9) years and 50.8 (12.8) years, respectively. Body composition was assessed using appendicular skeletal muscle mass/body weight (ASM/BW), ASM, and BW. Additionally, the relationship between gut microbial genera and body composition was analyzed. The means (SD) of ASM/BW were 34.9 (2.4) % in men and 29.4 (2.9) % in women. Blautia and Bifidobacterium were positively associated with ASM/BW only in men (Blautia: β = 0.0003, Bifidobacterium: β = 0.0001). However, Blautia was negatively associated with BW (β = -0.0017). Eisenbergiella was positively associated with ASM/BW (β = 0.0209) and negatively associated with BW (β = -0.0769) only in women. Our results indicate that Blautia, Bifidobacterium and Eisenbergiella, which are positively associated with ASM/BW, might help increase skeletal muscle mass. ASM/BW may clarify the relationship between gut microbiota and skeletal muscle mass without being affected by obesity or excess body fat mass.
Collapse
Affiliation(s)
- Yoshikuni Sugimura
- Department of Innovation Center for Health Promotion, Graduate School of Medicine, Hirosaki University 5 Zaifu-cho, Hirosaki 036-8562, Japan; (Y.S.); (S.N.)
- Department of Social Medicine, Graduate School of Medicine, Hirosaki University 5 Zaifu-cho, Hirosaki 036-8562, Japan; (K.S.); (K.M.W.); (A.T.); (T.M.)
| | - Akira Kanda
- Department of Nutrition, Faculty of Health Sciences, Aomori University of Health and Welfare, 58-1 Mase, Hamadate, Aomori 030-8505, Japan;
| | - Kaori Sawada
- Department of Social Medicine, Graduate School of Medicine, Hirosaki University 5 Zaifu-cho, Hirosaki 036-8562, Japan; (K.S.); (K.M.W.); (A.T.); (T.M.)
| | - Kyi Mar Wai
- Department of Social Medicine, Graduate School of Medicine, Hirosaki University 5 Zaifu-cho, Hirosaki 036-8562, Japan; (K.S.); (K.M.W.); (A.T.); (T.M.)
| | - Asano Tanabu
- Department of Social Medicine, Graduate School of Medicine, Hirosaki University 5 Zaifu-cho, Hirosaki 036-8562, Japan; (K.S.); (K.M.W.); (A.T.); (T.M.)
| | - Naoki Ozato
- Health & Wellness Products Research Laboratories, Kao Corporation, 2-1-3 Bunka, Sumida-ku, Tokyo 131-8501, Japan;
| | - Tatsuyuki Midorikawa
- Department of Social Medicine, Graduate School of Medicine, Hirosaki University 5 Zaifu-cho, Hirosaki 036-8562, Japan; (K.S.); (K.M.W.); (A.T.); (T.M.)
- Research and Development Headquarters, Lion Corporation, Odawara 256-0811, Japan
| | - Takayoshi Hisada
- TechnoSuruga Laboratory Co., Ltd., 388-1 Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan;
| | - Shigeyuki Nakaji
- Department of Innovation Center for Health Promotion, Graduate School of Medicine, Hirosaki University 5 Zaifu-cho, Hirosaki 036-8562, Japan; (Y.S.); (S.N.)
- Department of Social Medicine, Graduate School of Medicine, Hirosaki University 5 Zaifu-cho, Hirosaki 036-8562, Japan; (K.S.); (K.M.W.); (A.T.); (T.M.)
| | - Kazushige Ihara
- Department of Social Medicine, Graduate School of Medicine, Hirosaki University 5 Zaifu-cho, Hirosaki 036-8562, Japan; (K.S.); (K.M.W.); (A.T.); (T.M.)
- Correspondence: ; Tel.: +81-172-39-5040
| |
Collapse
|
31
|
Kitae H, Takagi T, Naito Y, Inoue R, Azuma Y, Torii T, Mizushima K, Doi T, Inoue K, Dohi O, Yoshida N, Kamada K, Uchiyama K, Ishikawa T, Konishi H, Itoh Y. Gut Microbiota Associated with Clinical Relapse in Patients with Quiescent Ulcerative Colitis. Microorganisms 2022; 10:1044. [PMID: 35630486 PMCID: PMC9144486 DOI: 10.3390/microorganisms10051044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022] Open
Abstract
The microbiota associated with relapse in patients with quiescent ulcerative colitis (qUC) remains unclear. Our objective was to analyze the fecal microbiota of Japanese patients with qUC and identify the relapse-associated microbiota. In this study, 59 patients with qUC and 59 healthy controls (HCs) were enrolled (UMIN 000019486), and their fecal microbiota was compared using 16S rRNA gene amplicon sequencing. We followed their clinical course up to 3.5 years and analyzed the relapse-associated microbiota. Potential functional changes in the fecal microbiota were evaluated using PICRUSt software and the Kyoto Encyclopedia of Genes and Genomes database. There were significant differences in fecal microbiota diversity between HC and qUC subjects, with 13 taxa characterizing each subject. Despite no significant difference in variation of microbiota in a single sample (α diversity) between patients in sustained remission and relapsed patients, the variation in microbial communities between samples (β diversity) was significantly different. Prevotella was more abundant in the sustained remission patients, whereas Faecalibacterium and Bifidobacterium were more abundant in the relapsed patients. We clustered the entire cohort into four clusters, and Kaplan-Meier analysis revealed the subsequent clinical course of each cluster was different. We identified 48 metabolic pathways associated with each cluster using linear discriminant analysis effect size. We confirmed the difference in microbiota between patients with qUC and HCs and identified three genera associated with relapse. We found that the clusters based on these genera had different subsequent clinical courses and activated different metabolic pathways.
Collapse
Affiliation(s)
- Hiroaki Kitae
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Tomohisa Takagi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
- Department for Medical Innovation and Translational Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka 573-0101, Japan;
| | - Yuka Azuma
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Takashi Torii
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Katsura Mizushima
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Toshifumi Doi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Ken Inoue
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Naohisa Yoshida
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Kazuhiro Kamada
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Kazuhiko Uchiyama
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Takeshi Ishikawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Hideyuki Konishi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; (H.K.); (Y.A.); (T.T.); (K.M.); (T.D.); (K.I.); (O.D.); (N.Y.); (K.K.); (K.U.); (T.I.); (H.K.); (Y.I.)
| |
Collapse
|
32
|
Sun S, Lei OK, Nie J, Shi Q, Xu Y, Kong Z. Effects of Low-Carbohydrate Diet and Exercise Training on Gut Microbiota. Front Nutr 2022; 9:884550. [PMID: 35592627 PMCID: PMC9110973 DOI: 10.3389/fnut.2022.884550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/31/2022] [Indexed: 01/04/2023] Open
Abstract
ObjectiveThis study was aimed to evaluate the effects of low-carbohydrate diet (LC) and incorporated high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT) on gut microbiota, and the associations between changes in gut microbiota and cardiometabolic health-related profiles.MethodsFifty overweight/obese Chinese females (age 22.2 ± 3.3 years, body mass index 25.1 ± 3.1 kg/m–2) were randomized to the groups of LC, LC and HIIT (LC-HIIT, 10 repetitions of 6-s sprints and 9-s rest), and LC and MICT group (LC-MICT, cycling at 50–60% V̇O2peak for 30 min). The LC-HIIT and LC-MICT experienced 20 training sessions over 4 weeks.ResultsThe 4-week LC intervention with/without additional training failed to change the Shannon, Chao 1, and Simpson indexes (p > 0.05), LC increased Phascolarctobacterium genus, and LC-HIIT reduced Bifidobacterium genus after intervention (p < 0.05). Groups with extra exercise training increased short-chain fatty acid-producing Blautia genus (p < 0.05) and reduced type 2 diabetes-related genus Alistipes (p < 0.05) compared to LC. Sutterella (r = −0.335) and Enterobacter (r = 0.334) were associated with changes in body composition (p < 0.05). Changes in Ruminococcus, Eubacterium, and Roseburia genera were positively associated with blood pressure (BP) changes (r = 0.392–0.445, p < 0.05), whereas the changes in Bacteroides, Faecalibacterium, and Parabacteroides genera were negatively associated with BP changes (r = −0.567 to −0.362, p < 0.05).ConclusionLC intervention did not change the α-diversity and overall structure of gut microbiota. Combining LC with exercise training may have additional benefits on gut physiology. Specific microbial genera were associated with LC- and exercise-induced regulation of cardiometabolic health.
Collapse
Affiliation(s)
- Shengyan Sun
- Institute of Physical Education, Huzhou University, Huzhou, China
| | - On Kei Lei
- Faculty of Education, University of Macau, Macao, Macao SAR, China
| | - Jinlei Nie
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, Macao SAR, China
| | - Qingde Shi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, Macao, Macao SAR, China
| | - Yuming Xu
- College of Physical Education, Hangzhou Normal University, Hangzhou, China
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, Macao SAR, China
- *Correspondence: Zhaowei Kong,
| |
Collapse
|
33
|
Liu J, Ding L, Zhai X, Wang D, Xiao C, Hui X, Sun T, Yu M, Zhang Q, Li M, Xiao X. Maternal Dietary Betaine Prevents High-Fat Diet-Induced Metabolic Disorders and Gut Microbiota Alterations in Mouse Dams and Offspring From Young to Adult. Front Microbiol 2022; 13:809642. [PMID: 35479641 PMCID: PMC9037091 DOI: 10.3389/fmicb.2022.809642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/24/2022] [Indexed: 12/20/2022] Open
Abstract
Early life is a critical window for preventing the intergenerational transmission of metabolic diseases. Betaine has been proven to play a role in improving glucose and lipid metabolism disorders in animal models. However, whether maternal betaine supplementation plays a role in regulating gut microbiota in both dams and offspring remains unclear. In this study, C57BL/6 female mice were fed with control diet (Ctr), high-fat diet (HF), and high-fat with betaine supplementation (0.3% betaine in the diet, HFB) from 3 weeks prior to mating and lasted throughout pregnancy and lactation. After weaning, the offspring got free access to normal chow diet until 20 weeks of age. We found that maternal dietary betaine supplementation significantly improved glucose and insulin resistance, as well as reduced free fatty acid (FFA) concentration in dams and offspring from young to adult. When compared to the HF group, Intestinimonas and Acetatifactor were reduced by betaine supplementation in dams; Desulfovibrio was reduced in 4-week-old offspring of the HFB group; and Lachnoclostridium was enriched in 20-week-old offspring of the HFB group. Moreover, the persistent elevated genus Romboutsia in both dams and offspring in the HFB group was reported for the first time. Overall, maternal betaine could dramatically alleviate the detrimental effects of maternal overnutrition on metabolism in both dams and offspring. The persistent alterations in gut microbiota might play critical roles in uncovering the intergenerational metabolic benefits of maternal betaine, which highlights evidence for combating generational metabolic diseases.
Collapse
Affiliation(s)
- Jieying Liu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lu Ding
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Zhai
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dongmei Wang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Cheng Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiangyi Hui
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianshu Sun
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Kono Y, Inoue R, Teratani T, Tojo M, Kumagai Y, Morishima S, Koinuma K, Lefor AK, Kitayama J, Sata N, Horie H. The Regional Specificity of Mucosa-Associated Microbiota in Patients with Distal Colorectal Cancer. Digestion 2022; 103:141-149. [PMID: 34619680 DOI: 10.1159/000519487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/06/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS Recent studies have demonstrated that the populations of several microbes are significantly increased in fecal samples from patients with colorectal cancer (CRC), suggesting their involvement in the development of CRC. The aim of this study was to identify microbes which are increased in distal CRCs and to identify the specific location of microbes increased in mucosal tissue around the tumor. METHODS Tissue specimens were collected from surgical resections of 28 distal CRCs. Five samples were collected from each specimen (location A: tumor, B: adjacent normal mucosa, C: normal mucosa 1 cm proximal to the tumor, D: normal mucosa 3 cm proximally, and E: normal mucosa 6 cm proximally). The microbiota in the sample were analyzed using 16S rRNA gene amplicon sequencing and the relative abundance (RA) of microbiota compared among the 5 locations. RESULTS At the genus level, the RA of Fusobacterium and Streptococcus at location A was the highest among the 5 locations, significantly different from that in location E. The dominant species of each genus was Fusobacterium nucleatum and Streptococcus anginosus. The RAs of these species gradually decreased from locations B to E with a statistically significant difference in F. nucleatum. The genus Peptostreptococcus also showed a similar trend, and the RA of Peptostreptococcus stomatis in location A was significantly associated with depth of tumor invasion and tumor size. CONCLUSION Although the clinical relevance is not clear yet, these results suggest that F. nucleatum, S. anginosus, and P. stomatis can spread to the adjacent normal tissues and may change the surrounding microenvironment to support the progression of CRC.
Collapse
Affiliation(s)
- Yoshihiko Kono
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Takumi Teratani
- Center for Development of Advanced Technology, Jichi Medical University, Shimotsuke, Japan
| | - Mineyuki Tojo
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Yuko Kumagai
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - So Morishima
- Department of Agriculture and Life Science, Kyoto Prefectural University, Kyoto, Japan
| | - Koji Koinuma
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | | | - Joji Kitayama
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Hisanaga Horie
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan.,Department of Operating Room Management, Jichi Medical University Hospital, Shimotsuke, Japan
| |
Collapse
|
35
|
Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, Zhao J, Zhang H, Chen W. Blautia-a new functional genus with potential probiotic properties? Gut Microbes 2022; 13:1-21. [PMID: 33525961 PMCID: PMC7872077 DOI: 10.1080/19490976.2021.1875796] [Citation(s) in RCA: 785] [Impact Index Per Article: 261.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Blautia is a genus of anaerobic bacteria with probiotic characteristics that occur widely in the feces and intestines of mammals. Based on phenotypic and phylogenetic analyses, some species in the genera Clostridium and Ruminococcus have been reclassified as Blautia, so to date, there are 20 new species with valid published names in this genus. An extensive body of research has recently focused on the probiotic effects of this genus, such as biological transformation and its ability to regulate host health and alleviate metabolic syndrome. This article reviews the origin and biological characteristics of Blautia and the factors that affect its abundance and discusses its role in host health, thus laying a theoretical foundation for the development of new functional microorganisms with probiotic properties.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,CONTACT Bingyong Mao
| | - Jiayu Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiaying Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,Shumao Cui School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China,Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
36
|
Li S, Zhou L, Zhang Q, Yu M, Xiao X. Genistein improves glucose metabolism and promotes adipose tissue browning through modulating gut microbiota in mice. Food Funct 2022; 13:11715-11732. [DOI: 10.1039/d2fo01973f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genistein improves glucose metabolism and promotes adipose tissue browning through modulating gut microbiota in mice.
Collapse
Affiliation(s)
- Shunhua Li
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyuan Zhou
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
37
|
Chen T, Ding R, Chen X, Lu Y, Shi J, Lü Y, Tang B, Zhang W, Ye C, Yuan M, Yang Z. Firmicutes and Blautia in gut microbiota lessened in chronic liver diseases and hepatocellular carcinoma patients: a pilot study. Bioengineered 2021; 12:8233-8246. [PMID: 34592890 PMCID: PMC8806631 DOI: 10.1080/21655979.2021.1982273] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota system plays a vital role in liver diseases. This study aimed to address the diversity of gut microbiota and its correlations with clinical parameters in healthy individuals, chronic liver disease (CLD), and hepatocellular carcinoma (HCC) patients. Fecal specimens of nine healthy individuals, 11 CLD, and 21 HCC were collected. The diversity of gut microbiota was examined by PCR and Illumina MiSeq sequencing and analyzed using 16S rRNA gene sequencing database. The correlations between gut microbiota and the clinical parameters of participants were also addressed. Compared to healthy individuals, Firmicutes at a phylum level decreased in CLD and HCC patients and Proteobacteria increased (p < 0.05). The composition of Blautia on a genus level in CLD and HCC patients significantly decreased compared to healthy controls (p < 0.05). Firmicutes composition was negatively associated with age and number of males (p < 0.05) and was positively associated with monocytes, high-density lipoprotein cholesterol (HDL-C), and estimated glomerular filtration rate (eGFR) levels (p < 0.05). At a genus level, Blautia composition was negatively associated with cirrhosis, age, and number of males (p < 0.01), while it was positively associated with red blood cells (RBCs), triglycerides, HDL-C, and lymphocyte levels (p < 0.05). Conclusively, there was a significant compositional difference in gut microbiota in CLD and HCC patients compared with healthy subjects. Firmicutes and Blautia in gut microbiota system lessened in CLD and HCC patients. Clinical biochemical parameters have an impact on the diversity of gut microbiota in liver diseases.
Collapse
Affiliation(s)
- Tianyou Chen
- Department of Interventional Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Rongrong Ding
- Department of Hepatobiliary Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaorong Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yunfei Lu
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jia Shi
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ying Lü
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bozong Tang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wensi Zhang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Chen Ye
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Yuan
- Department of Interventional Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Díaz-Perdigones CM, Muñoz-Garach A, Álvarez-Bermúdez MD, Moreno-Indias I, Tinahones FJ. Gut microbiota of patients with type 2 diabetes and gastrointestinal intolerance to metformin differs in composition and functionality from tolerant patients. Biomed Pharmacother 2021; 145:112448. [PMID: 34844104 DOI: 10.1016/j.biopha.2021.112448] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/30/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Metformin modifies the gut microbiome in type 2 diabetes and gastrointestinal tolerance to metformin could be mediated by the gut microbiome. METHODS We enrolled 35 patients with type 2 diabetes not receiving treatment with metformin due to suspected gastrointestinal intolerance. Metformin was reintroduced at 425 mg, increasing 425 mg every two weeks until reaching 1700 mg per day. According to the occurrence of metformin-related gastrointestinal symptoms, patients were classified into three groups: early intolerance, non-tolerant, and tolerant. Gut microbiota was profiled with 16 S rRNA. This sequencing aimed to determine the differences in the baseline gut microbiota in all groups and prospectively in the tolerant and non-tolerant groups. RESULTS The classification resulted in 15 early intolerant, 10 tolerant, and 10 non-tolerant subjects. Early tolerance was characterized by a higher abundance of Subdoligranulum; while Veillonella and Serratia were higher in the non-tolerant group. The tolerant group showed enrichment of Megamonas, Megamonas rupellensis, and Phascolarctobacterium spp; Ruminococcus gnavus was lower in the longitudinal analysis. At the end point Prevotellaceae, Prevotella stercorea, Megamonas funiformis, Bacteroides xylanisolvens, and Blautia producta had a higher relative abundance in the tolerant group compared to the non-tolerant group. Subdoligranulum, Ruminococcus torques_1, Phascolarctobacterium faecium, and Eubacterium were higher in the non-tolerant group. The PICRUSt analysis showed a lower activity of the amino acid biosynthesis pathways and a higher sugar degradation pathway in the intolerant groups. CONCLUSIONS Gut microbiota of subjects with gastrointestinal intolerance depicted taxonomic and functional differences compared to tolerant patients, and this changed differently after metformin administration.
Collapse
Affiliation(s)
- Cristina Ma Díaz-Perdigones
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain; University of Málaga, Program in Biomedicine, Translational Research and New Technologies, Spain
| | - Araceli Muñoz-Garach
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain
| | - María Dolores Álvarez-Bermúdez
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain; University of Málaga, Program in Biomedicine, Translational Research and New Technologies, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain
| | - Isabel Moreno-Indias
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain.
| | - Francisco J Tinahones
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of the Biomedical Research Institute of Málaga, Virgen de la Victoria University Hospital, Universidad de Málaga, Málaga, Spain; University of Málaga, Program in Biomedicine, Translational Research and New Technologies, Spain; Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición, Instituto Salud Carlos III, Madrid, Spain.
| |
Collapse
|
39
|
Unique Habitual Food Intakes in the Gut Microbiota Cluster Associated with Type 2 Diabetes Mellitus. Nutrients 2021; 13:nu13113816. [PMID: 34836072 PMCID: PMC8621098 DOI: 10.3390/nu13113816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
This cross-sectional study aimed to clarify the characteristic gut microbiota of Japanese patients with type 2 diabetes (T2DM) using t-distributed stochastic neighbor embedding analysis and the k-means method and to clarify the relationship with background data, including dietary habits. The gut microbiota data of 383 patients with T2DM and 114 individuals without T2DM were classified into red, blue, green, and yellow groups. The proportions of patients with T2DM in the red, blue, green, and yellow groups was 86.8% (112/129), 69.8% (81/116), 76.3% (90/118), and 74.6% (100/134), respectively; the red group had the highest prevalence of T2DM. There were no intergroup differences in sex, age, or body mass index. The red group had higher percentages of the Bifidobacterium and Lactobacillus genera and lower percentages of the Blautia and Phascolarctobacterium genera. Higher proportions of patients with T2DM in the red group used α-glucosidase inhibitors and glinide medications and had a low intake of fermented soybean foods, including miso soup, than those in the other groups. The gut microbiota pattern of the red group may indicate characteristic changes in the gut microbiota associated with T2DM in Japan. These results also suggest that certain diabetes drugs and fermented foods may be involved in this change. Further studies are needed to confirm the relationships among traditional dietary habits, the gut microbiota, and T2DM in Japan.
Collapse
|
40
|
Que Y, Cao M, He J, Zhang Q, Chen Q, Yan C, Lin A, Yang L, Wu Z, Zhu D, Chen F, Chen Z, Xiao C, Hou K, Zhang B. Gut Bacterial Characteristics of Patients With Type 2 Diabetes Mellitus and the Application Potential. Front Immunol 2021; 12:722206. [PMID: 34484230 PMCID: PMC8415158 DOI: 10.3389/fimmu.2021.722206] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disorder comprehensively influenced by genetic and environmental risk, and research increasingly has indicated the role of microbial dysbiosis in T2DM pathogenesis. However, studies comparing the microbiome characteristics between T2DM and healthy controls have reported inconsistent results. To further identify and describe the characteristics of the intestinal flora of T2DM patients, we performed a systematic review and meta-analysis of stool microbial profiles to discern and describe microbial dysbiosis in T2DM and to explore heterogeneity among 7 studies (600 T2DM cases, 543 controls, 1143 samples in total). Using a random effects model and a fixed effects model, we observed significant differences in beta diversity, but not alpha diversity, between individuals with T2DM and controls. We identified various operational taxonomic unit (OTUs) and bacterial genera with significant odds ratios for T2DM. The T2DM signatures derived from a single study by stepwise feature selection could be applied in other studies. By training on multiple studies, we improved the detection accuracy and disease specificity for T2DM. We also discuss the relationship between T2DM-enriched or T2DM-depleted genera and probiotics and provide new ideas for diabetes prevention and improvement.
Collapse
Affiliation(s)
- Yanyan Que
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Man Cao
- Department of Mathematics and Numerical Simulation and High-Performance Computing Laboratory, School of Sciences, Nanchang University, Nanchang, China
| | - Jianquan He
- Department of Rehabilitation, Zhongshan Hospital Xiamen University, Xiamen, China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qiang Zhang
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Qiongyun Chen
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Changsheng Yan
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Aiqiang Lin
- Department of Research and Development, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China
| | - Luxi Yang
- School of Medicine, Xiamen University, Xiamen, China
| | - Zezhen Wu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, China.,Graduate School, Medical College of Shantou University, Shantou, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Fengwu Chen
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Zhangran Chen
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Chuanxing Xiao
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,School of Medicine, Xiamen University, Xiamen, China
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou, China
| | - Bangzhou Zhang
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China.,School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
41
|
Zaky A, Glastras SJ, Wong MYW, Pollock CA, Saad S. The Role of the Gut Microbiome in Diabetes and Obesity-Related Kidney Disease. Int J Mol Sci 2021; 22:9641. [PMID: 34502562 PMCID: PMC8431784 DOI: 10.3390/ijms22179641] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetic kidney disease (DKD) is a progressive disorder, which is increasing globally in prevalence due to the increased incidence of obesity and diabetes mellitus. Despite optimal clinical management, a significant number of patients with diabetes develop DKD. Hence, hitherto unrecognized factors are likely to be involved in the initiation and progression of DKD. An extensive number of studies have demonstrated the role of microbiota in health and disease. Dysregulation in the microbiota resulting in a deficiency of short chain fatty acids (SCFAs) such as propionate, acetate, and butyrate, by-products of healthy gut microbiota metabolism, have been demonstrated in obesity, type 1 and type 2 diabetes. However, it is not clear to date whether such changes in the microbiota are causative or merely associated with the diseases. It is also not clear which microbiota have protective effects on humans. Few studies have investigated the centrality of reduced SCFA in DKD development and progression or the potential therapeutic effects of supplemental SCFAs on insulin resistance, inflammation, and metabolic changes. SCFA receptors are expressed in the kidneys, and emerging data have demonstrated that intestinal dysbiosis activates the renal renin-angiotensin system, which contributes to the development of DKD. In this review, we will summarize the complex relationship between the gut microbiota and the kidney, examine the evidence for the role of gut dysbiosis in diabetes and obesity-related kidney disease, and explore the mechanisms involved. In addition, we will describe the role of potential therapies that modulate the gut microbiota to prevent or reduce kidney disease progression.
Collapse
Affiliation(s)
- Amgad Zaky
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia; (A.Z.); (S.J.G.); (M.Y.W.W.); (C.A.P.)
| | - Sarah J. Glastras
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia; (A.Z.); (S.J.G.); (M.Y.W.W.); (C.A.P.)
- Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - May Y. W. Wong
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia; (A.Z.); (S.J.G.); (M.Y.W.W.); (C.A.P.)
- Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Carol A. Pollock
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia; (A.Z.); (S.J.G.); (M.Y.W.W.); (C.A.P.)
- Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | - Sonia Saad
- Renal Research Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia; (A.Z.); (S.J.G.); (M.Y.W.W.); (C.A.P.)
| |
Collapse
|
42
|
Li M, Yu L, Zhao J, Zhang H, Chen W, Zhai Q, Tian F. Role of dietary edible mushrooms in the modulation of gut microbiota. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104538] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
43
|
Shi XQ, Zhu ZH, Yue SJ, Tang YP, Chen YY, Pu ZJ, Tao HJ, Zhou GS, Duan JA. Studies on blood enrichment and anti-tumor effects of combined Danggui Buxue Decoction, Fe and rhEPO based on colon cancer-related anemia model and gut microbiota modulation. Chin J Nat Med 2021; 19:422-431. [PMID: 34092293 DOI: 10.1016/s1875-5364(21)60041-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 11/17/2022]
Abstract
Colon cancer-related anemia (CCRA) is mainly caused by systemic inflammation, intestinal bleeding, iron deficiency and chemotherapy-induced myelosuppression in colon cancer. However, the best therapeutic schedule and related mechanism on CCRA were still uncertain. Studies on blood enrichment and anti-tumor effects of combined Danggui Buxue Decoction (DBD), Fe and rhEPO based on CCRA and gut microbiota modulation were conducted in this paper. Here, CCRA model was successfully induced by subcutaneous inoculation of CT-26 and i.p. oxaliplatin, rhEPO + DBD high dosage + Fe (EDF) and rhEPO + DBD high dosage (ED) groups had the best blood enrichment effect. Attractively, EDF group also showed antitumor activity. The sequencing results of gut microbiota showed that compared to P group, the relative abundances of Lachnospiraceae and opportunistic pathogen (Odoribacter) in ED and EDF groups were decreased. Interestingly, EDF also decreased the relative abundances of cancer-related bacteria (Helicobacter, Lactococcus, Alloprevotella) and imbalance-inducing bacteria (Escherichia-Shigella and Parabacteroides) and increased the relative abundances of butyrate-producing bacteria (Ruminococcaceae_UCG-014), however, ED showed the opposite effects to EDF, this might be the reason of the smaller tumor volume in EDF group. Our findings proposed the best treatment combination of DBD, rhEPO and Fe in CCRA and provided theoretical basis and literature reference for CCRA-induced intestinal flora disorder and the regulatory mechanism of EDF.
Collapse
Affiliation(s)
- Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhen-Hua Zhu
- Institute of Mental Health, Suzhou Psychiatric Hospital, Soochow University Affiliated Guangji Hospital, Suzhou 215100, China
| | - Shi-Jun Yue
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Yu-Ping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Yan-Yan Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Zong-Jin Pu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui-Juan Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
44
|
Morishima S, Aoi W, Kawamura A, Kawase T, Takagi T, Naito Y, Tsukahara T, Inoue R. Intensive, prolonged exercise seemingly causes gut dysbiosis in female endurance runners. J Clin Biochem Nutr 2021. [PMID: 34025029 DOI: 10.3164/jcbn.20.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intensive, prolonged exercise is known to induce gastrointestinal disorders such as diarrhea, with gut dysbiosis suggested as being one of the causatives. In the present study, we wanted to investigate the relationship between intensive exercise and the gut microbiota status. To that end, the microbiota, the moisture content and the bacterial metabolites (e.g., organic acids) of female endurance runners (n = 15) and those of non-athletic but healthy, age-matching female controls (n = 14) were compared. The analysis of the gut microbiota analysis showed that, unlike control subjects, female endurance runners had distinct microbiotas, with some bacteria found in higher abundances likely being involved in gut inflammation. The concentration of succinate, a gut bacterial metabolite regarded as undesirable when accumulated in the lumen, was significantly (p<0.05) higher in the female endurance runners. Faecalibacterium, that was significantly (p<0.05) abundant in female endurance runners, can produce succinate in certain environments and hence may contribute to succinate accumulation, at least partly. The present work suggested that the gut microbiotas of female endurance runners are seemingly dysbiotic when compared with those of control subjects. Further investigation of the mechanism by which intensive, prolonged exercise affects the gut microbiota is recommended.
Collapse
Affiliation(s)
- So Morishima
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.,Laboratory of Animal Science, Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Wataru Aoi
- Laboratory of Nutrition Science, Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Aki Kawamura
- Sports Science Research Promotion Center, Nippon Sport Science University, 7-1-1 Fukasawa, Setagaya-ku, Tokyo 158-8508, Japan
| | - Takahiro Kawase
- Kyoto Institute of Nutrition & Pathology, Ujitawara, Kyoto 610-0231, Japan
| | - Tomohisa Takagi
- Department for Medical Innovation and Translational Medical Science, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan.,Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan.,Laboratory of Animal Science, Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
45
|
Dall'Agnol B, McCulloch JA, Mayer FQ, Souza U, Webster A, Antunes P, Doyle RL, Reck J, Ferreira CAS. Molecular characterization of bacterial communities of two neotropical tick species (Amblyomma aureolatum and Ornithodoros brasiliensis) using rDNA 16S sequencing. Ticks Tick Borne Dis 2021; 12:101746. [PMID: 34091278 DOI: 10.1016/j.ttbdis.2021.101746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022]
Abstract
Ticks are one of the main vectors of pathogens for humans and animals worldwide. However, they harbor non-pathogenic microorganisms that are important for their survival, facilitating both their nutrition and immunity. We investigated the bacterial communities associated with two neotropical tick species of human and veterinary potential health importance from Brazil: Amblyomma aureolatum and Ornithodoros brasiliensis. In A. aureolatum (adult ticks collected from wild canids from Southern Brazil), the predominant bacterial phyla were Proteobacteria (98.68%), Tenericutes (0.70%), Bacteroidetes (0.14%), Actinobacteria (0.13%), and Acidobacteria (0.05%). The predominant genera were Francisella (97.01%), Spiroplasma (0.70%), Wolbachia (0.51%), Candidatus Midichloria (0.25%), and Alkanindiges (0.13%). The predominant phyla in O. brasiliensis (adults, fed and unfed nymphs collected at the environment from Southern Brazil) were Proteobacteria (90.27%), Actinobacteria (7.38%), Firmicutes (0.77%), Bacteroidetes (0.44%), and Planctomycetes (0.22%). The predominant bacterial genera were Coxiella (87.71%), Nocardioides (1.73%), Saccharopolyspora (0.54%), Marmoricola (0.42%), and Staphylococcus (0.40%). Considering the genera with potential importance for human and animal health which can be transmitted by ticks, Coxiella sp. was found in all stages of O. brasiliensis, Francisella sp. in all stages of A. aureolatum and in unfed nymphs of O. brasiliensis, and Rickettsia sp. in females of A. aureolatum from Banhado dos Pachecos (BP) in Viamão municipality, Brazil, and in females and unfed nymphs of O. brasiliensis. These results deepen our understanding of the tick-microbiota relationship in Ixodidae and Argasidae, driving new studies with the focus on the manipulation of tick microbiota to prevent outbreaks of tick-borne diseases in South America.
Collapse
Affiliation(s)
- Bruno Dall'Agnol
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| | | | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - Ugo Souza
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - Anelise Webster
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - Paola Antunes
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - Rovaina Laureano Doyle
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil
| | - José Reck
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, RS, Brazil.
| | | |
Collapse
|
46
|
Xiao Y, Niu Y, Mao M, Lin H, Wang B, Wu E, Zhao H, Li S. [Correlation analysis between type 2 diabetes and core gut microbiota]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:358-369. [PMID: 33849826 DOI: 10.12122/j.issn.1673-4254.2021.03.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To analyze the species, abundance and structure differences of intestinal flora between patients with type 2 diabetes mellitus (T2D) and healthy individuals and explore the correlation between intestinal flora changes and T2D. OBJECTIVE We collected a total of 133 clinical fecal samples from 78 healthy individuals and 55 patients with T2D. Hiseq2500 was used for high-throughput sequencing of the V3+V4 regions of the 16S rRNA gene. Usearch and QIIME were used for data splicing and filtering, classification and species annotation. The Alpha diversity index and Beta diversity index of the samples were analyzed using R language data packets to compare the richness and diversity of the sample flora. The flora differences were compared between the two groups and the disease marker flora was screened after correction of the relevant factors. PICRUST software was used to predict the function of different flora. OBJECTIVE There was significant difference in the intestinal flora diversity between the two groups. Cluster analysis showed that Fimicutes and Bacteroidetes were the dominant species at the phylum level. LefSe analysis showed that significant differences in the relative abundance between the two groups in 2 phyla, 3 classes, 3 orders, 4 families and 10 genera. After correction for the influence of related factors, the markers of T2Drelated bacteria groups were identified, including Bifidobacterium, Bifidobacteriales, Bifidobacteriaceae, Actinobacteria, Bacilli, Lactobacillales, Lactobacillaceae and Lactobacillus. On this basis, analysis of KEGG metabolic pathways of the differential flora revealed significant differences in 36 KEGG metabolic pathways between the two groups, and the citric acid cycle, lipopolysaccharide biosynthesis and other metabolic pathways were all up-regulated in T2D group. OBJECTIVE The composition and abundance of intestinal flora were different between T2D group and the normal group, and T2D group showed the characteristics of ecological imbalance.
Collapse
Affiliation(s)
- Y Xiao
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine, Ministry of Education, Beijing 100081, China
| | - Y Niu
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine, Ministry of Education, Beijing 100081, China
| | - M Mao
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine, Ministry of Education, Beijing 100081, China
| | - H Lin
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine, Ministry of Education, Beijing 100081, China
| | - B Wang
- School Hospital, Minzu University of China, Beijing 100081, China
| | - E Wu
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine, Ministry of Education, Beijing 100081, China
| | - H Zhao
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine, Ministry of Education, Beijing 100081, China
| | - S Li
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine, Ministry of Education, Beijing 100081, China
| |
Collapse
|
47
|
Wang P, Wang T, Zheng X, Cui W, Shang J, Zhao Z. Gut microbiota, key to unlocking the door of diabetic kidney disease. Nephrology (Carlton) 2021; 26:641-649. [PMID: 33715272 PMCID: PMC8360003 DOI: 10.1111/nep.13874] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022]
Abstract
This review discusses the influence of gut microbiota dysbiosis on diabetic kidney disease through metabolite profile changes and immune and inflammatory mechanisms. We also elaborate on the mechanism of dysbiosis in the onset and development of other kidney diseases. This review presents scientific evidence on the pathophysiologic links between gut microbiota and diabetic kidney disease (DKD), highlighting the influence of gut microbiota dysbiosis on DKD through metabolite profile changes and immunologic mechanisms.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Ting Wang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xuejun Zheng
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Wen Cui
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jin Shang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Zhanzheng Zhao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
48
|
Diet- and sex-related changes of gut microbiota composition and functional profiles after 4 months of weight loss intervention. Eur J Nutr 2021; 60:3279-3301. [PMID: 33591390 DOI: 10.1007/s00394-021-02508-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Obesity has been related to intestinal dysbiosis and the modification of gut microbiota composition by dietary strategies becomes a promising strategy to help manage obesity. The aim of the current study was to evaluate the effect of two weight-loss diets on the composition and functional profile of gut microbiota. METHODS 55 men and 124 women with BMI > 25 kg/m2 were randomly assigned to moderately high-protein (MHP) or low-fat (LF) diet. Differences in fecal bacteria abundance (based on 16 s rRNA sequencing) between before and after 4 months of calorie restriction was analyzed using EdgeR tool in MicrobiomeAnalyst platform. Bacterial functional profile was predicted using Tax4Fun and metagenomeSeq analysis. Significant KEGG Orthology (KO) terms were selected for the metabolomic study using chromatography. RESULTS After the intervention, MHP-men showed a significant decrease in Negativicutes, Selenomonadales, Dielma and Dielma fastidiosa. LF-men showed a significant increase in Bacilli, Lactobacillales, Christensenellaceae, Peptococcaceae, and Streptococcaceae, Peptococcus, Streptococcus and Christensenella, Duncaniella dubosii_CP039396_93.49%, Roseburia sp_AB744234_98.96% and Alistipes inops_KJ572413_99.57%. MHP-women increased Pasteurellales, Phascolarctobacterium succinatutens, Ruthenibacterium lactatiformans_LR215981_99.55% and decreased in Phascolarctobacterium succinatutens_NR112902_99.56%. Finally, LF-women presented a significant decrease in Bacteroides clarus and Erysipelothrix inopinata_CP060715_84.4%. Surprisingly, no matching bacterial changes were found between these four groups. A total of 42 KO, 10 metabolic pathways and 107 related metabolites related were found implicated in these bacterial changes. Seven metabolites were confirmed in plasma. CONCLUSION Weight-loss-related-changes in gut microbiome composition and the functional profile occur in a sex- and diet-related manner, showing that women and men could differentially benefit from the consumption of MHP and LF diets. TRIAL REGISTRATION NCT02737267, 10th March 2016 retrospectively registered.
Collapse
|
49
|
Shi T, Kobara H, Oura K, Masaki T. Mechanisms Underlying Hepatocellular Carcinoma Progression in Patients with Type 2 Diabetes. J Hepatocell Carcinoma 2021; 8:45-55. [PMID: 33604315 PMCID: PMC7886236 DOI: 10.2147/jhc.s274933] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) ranks third in cancer-related deaths from solid tumors worldwide. The incidence of type 2 diabetes mellitus (T2DM) has increased worldwide in conjunction with the expansion of the Western lifestyle. Furthermore, patients with T2DM have been documented to have an increased risk of HCC, as well as bile tract cancer. Growing evidence shows that T2DM is a strong additive metabolic risk factor for HCC, but how diabetes affects the incidence of HCC requires additional investigation. In this review, we discuss the underlying mechanisms of HCC in patients with T2DM. Topics covered include abnormal glucose and lipid metabolism, hyperinsulinemia, and insulin resistance; the effect of activated platelets; hub gene expression associated with HCC; inflammation and signaling pathways; miRNAs; altered gut microbiota and immunomodulation. The evidence suggests that reducing obesity, diabetes, and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis through efficient measures of prevention may lead to decreased rates of T2DM-related HCC.
Collapse
Affiliation(s)
- Tingting Shi
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa, 761-0793, Japan
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa, 761-0793, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa, 761-0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kida, Kagawa, 761-0793, Japan
| |
Collapse
|
50
|
Zhang L, Chen X, Wang H, Huang H, Li M, Yao L, Ma S, Zhong Z, Yang H, Wang H. "Adjusting Internal Organs and Dredging Channel" Electroacupuncture Ameliorates Insulin Resistance in Type 2 Diabetes Mellitus by Regulating the Intestinal Flora and Inhibiting Inflammation. Diabetes Metab Syndr Obes 2021; 14:2595-2607. [PMID: 34135611 PMCID: PMC8200173 DOI: 10.2147/dmso.s306861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Traditional Chinese acupuncture has been demonstrated to be beneficial for treatment of type 2 diabetes mellitus (T2DM). The mechanism of acupuncture on T2DM is crucial for their biological activity as well as their usefulness as tools in biology and medicine. However, its mechanism is poorly understood. METHODS In an effort to explore the mechanism, eight db/db mice (a type of spontaneous T2DM mouse) were treated with adjusting internal organs and dredging channel electroacupuncture (AODCEA) for 2 weeks. Another eight db/db mice were fed as T2DM group (T2DMG), and eight db/m mice were set as normal control group (NCG). Lipopolysaccharide (LPS), interleukin-6 (IL-6), and diabetes-related indicators, such as fasting blood glucose (FBG) and triglyceride (TG), were detected by enzyme-linked immune sorbent assay (ELISA). The V4 region of 16S rRNA gene was analyzed by Illumina sequencing to evaluate the effect of AODCEA on intestinal flora. The amount of short-chain fatty acids (SCFAs) in the feces were determined by gas chromatography-mass spectrometry (GC-MS). RESULTS Our results indicate that AODCEA treatment can reduce diabetes-related indicators. We observed the increased probiotics such as Blautia and Lactobacillus and decreased opportunist pathogens (Alistipes, Helicobacter, Prevotella) by AODCEA interventions. Importantly, the total amount of SCFAs in the feces of T2DM mice was promoted by AODCEA. Finally, obviously alleviated systemic inflammation was exhibited through AODCEA treatment by detection of lipopolysaccharide (LPS) and interleukin-6 (IL-6) in serum. CONCLUSION AODCEA can reshape the structure of intestinal flora, which can increase intestinal SCFAs, affect the circulating LPS level, and reduce the inflammatory response.
Collapse
Affiliation(s)
- Liying Zhang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, People’s Republic of China
| | - Xinhua Chen
- Department of Acupuncture and Moxibustion, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, 130021, People’s Republic of China
| | - Haili Wang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, People’s Republic of China
| | - Haipeng Huang
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, People’s Republic of China
| | - Mengyuan Li
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, People’s Republic of China
| | - Lin Yao
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, People’s Republic of China
| | - Shiqi Ma
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, People’s Republic of China
| | - Zhen Zhong
- School of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, People’s Republic of China
| | - Hongmei Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Jilin, 130117, People’s Republic of China
- Correspondence: Hongmei Yang; Hongfeng Wang Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, People’s Republic of ChinaTel/Fax +86 431 86763992 Email
| | - Hongfeng Wang
- Northeast Asia Institute of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, 130117, People's Republic of China
- Hongfeng Wang Northeast Asia Institute of Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, People's Republic of ChinaTel/Fax +86 431 89912521 Email
| |
Collapse
|