1
|
Wang AYL, Chen KH, Lin HC, Loh CYY, Chang YC, Aviña AE, Lee CM, Chu IM, Wei FC. Sustained Release of Tacrolimus Embedded in a Mixed Thermosensitive Hydrogel for Improving Functional Recovery of Injured Peripheral Nerves in Extremities. Pharmaceutics 2023; 15:508. [PMID: 36839830 PMCID: PMC9960741 DOI: 10.3390/pharmaceutics15020508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Vascularized composite allotransplantation is an emerging strategy for the reconstruction of unique defects such as amputated limbs that cannot be repaired with autologous tissues. In order to ensure the function of transplanted limbs, the functional recovery of the anastomosed peripheral nerves must be confirmed. The immunosuppressive drug, tacrolimus, has been reported to promote nerve recovery in animal models. However, its repeated dosing comes with risks of systemic malignancies and opportunistic infections. Therefore, drug delivery approaches for locally sustained release can be designed to overcome this issue and reduce systemic complications. We developed a mixed thermosensitive hydrogel (poloxamer (PLX)-poly(l-alanine-lysine with Pluronic F-127) for the time-dependent sustained release of tacrolimus in our previous study. In this study, we demonstrated that the hydrogel drug degraded in a sustained manner and locally released tacrolimus in mice over one month without affecting the systemic immunity. The hydrogel drug significantly improved the functional recovery of injured sciatic nerves as assessed using five-toe spread and video gait analysis. Neuroregeneration was validated in hydrogel-drug-treated mice using axonal analysis. The hydrogel drug did not cause adverse effects in the mouse model during long-term follow-up. The local injection of encapsulated-tacrolimus mixed thermosensitive hydrogel accelerated peripheral nerve recovery without systemic adverse effects.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Kuan-Hung Chen
- Department of Physical Medicine & Rehabilitation, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiu-Chao Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Charles Yuen Yung Loh
- Department of Plastic Surgery, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0SP, UK
| | - Yun-Ching Chang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ana Elena Aviña
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chin-Ming Lee
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - I-Ming Chu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Fu-Chan Wei
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Plastic Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
2
|
Seixas SF, Forte GC, Magnus GA, Stanham V, Mattiello R, Silva JB. Effect of Tacrolimus and Cyclosporine Immunosuppressants on Peripheral Nerve Regeneration: Systematic Review and Meta-analysis. Rev Bras Ortop 2022; 57:207-213. [PMID: 35652029 PMCID: PMC9142254 DOI: 10.1055/s-0041-1736467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
Peripheral nerve damage is an important cause of seeking medical attention. It occurs when the continuity of structures is interrupted and the propagation of nervous impulses is blocked, affecting the functional capacity of individuals. To assess the effects of the immunosuppressants tacrolimus and cyclosporine on the regeneration of peripheral nerves, a systematic review of the literature was carried out. The articles included were published until September 2018 and proposed to evaluate the effects of the immunosuppressants tacrolimus and cyclosporine on nerve regeneration and neuroprotection, available in the MEDLINE, EMBASE, Cochrane Library, Web of Science, Oxford Pain Relief Database, and LILACS databases. The research analysed a total of 56 articles, of which 22 were included in the meta-analysis. Statistical analysis suggests the protective effect of tacrolimus in the regeneration of the number of myelinated axons (95% confidence interval [CI]: 0.93–2.39;
p
< 0.01); however, such effect was not observed in relation to cyclosporine (95%CI: - 0.38–1.18;
p
= 0.08) It also suggests that there is a significant relationship between the use of tacrolimus and myelin thickness (95%CI= 2.00–5.71;
p
< 0. 01). The use of immunosuppressants in the regeneration of peripheral nerve damage promotes an increase in the number of myelinated axons in general, regardless of the administered dose. In addition, it ensures greater myelin thickness, muscle weight and recovery of the sciatic functional index. However, heterogeneity was high in most analyses performed.
Collapse
Affiliation(s)
- Stéphanie Farias Seixas
- Serviço de Cirurgia da Mão e Microcirurgia Reconstrutiva, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Gabriele Carra Forte
- Departamento de Radiologia, Pontifícia Universidade Católica do Rio Grande do Sul, RS, Brasil
| | - Gabriela Agne Magnus
- Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS Brasil
| | - Valentina Stanham
- Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS Brasil
| | - Rita Mattiello
- Programa de Pós-graduação em Pediatria e Saúde da Criança; Programa de Pós-graduação em Medicina e Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Jefferson Braga Silva
- Serviço de Cirurgia da Mão e Microcirurgia Reconstrutiva, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
3
|
Zuo KJ, Shafa G, Chan K, Zhang J, Hawkins C, Tajdaran K, Gordon T, Borschel GH. Local FK506 drug delivery enhances nerve regeneration through fresh, unprocessed peripheral nerve allografts. Exp Neurol 2021; 341:113680. [PMID: 33675777 DOI: 10.1016/j.expneurol.2021.113680] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/29/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Nerve allografts offer many advantages in the reconstruction of peripheral nerve gaps: they retain their native microstructure, contain pro-regenerative Schwann cells, are widely available, and avoid donor site morbidity. Unfortunately, clinical use of nerve allografts is limited by the need for systemic immunosuppression and its adverse effects. To eliminate the toxicity of the systemic immunosuppressant FK506, we developed a local FK506 drug delivery system (DDS) to provide drug release over 28 days. The study objective was to investigate if the local FK506 DDS enhances nerve regeneration in a rodent model of nerve gap defect reconstruction with immunologically-disparate nerve allografts. METHODS In male Lewis rats, a common peroneal nerve gap defect was reconstructed with either a 20 mm nerve isograft from a donor Lewis rat or a 20 mm fresh, unprocessed nerve allograft from an immunologically incompatible donor ACI rat. After 4 weeks of survival, nerve regeneration was evaluated using retrograde neuronal labelling, quantitative histomorphometry, and serum cytokine profile. RESULTS Treatment with both systemic FK506 and the local FK506 DDS significantly improved motor and sensory neuronal regeneration, as well as histomorphometric indices including myelinated axon number. Rats with nerve allografts treated with either systemic or local FK506 had significantly reduced serum concentrations of the pro-inflammatory cytokine IL-12 compared to untreated vehicle control rats with nerve allografts. Serum FK506 levels were undetectable in rats with local FK506 DDS. INTERPRETATION The local FK506 DDS improved motor and sensory nerve regeneration through fresh nerve allografts to a level equal to that of either systemic FK506 or nerve isografting. This treatment may be clinically translatable in peripheral nerve reconstruction or vascularized composite allotransplantation.
Collapse
Affiliation(s)
- Kevin J Zuo
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada; Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Canada.
| | - Golsa Shafa
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada.
| | - Katelyn Chan
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada; Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, Canada.
| | - Jennifer Zhang
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada.
| | - Cynthia Hawkins
- Division of Pathology, The Hospital for Sick Children, Toronto, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Canada.
| | - Kasra Tajdaran
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada.
| | - Tessa Gordon
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada; Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, Canada; Program in Neuroscience, SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada.
| | - Gregory H Borschel
- Division of Plastic & Reconstructive Surgery, The Hospital for Sick Children, Toronto, Canada; Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Canada; Program in Neuroscience, SickKids Research Institute, The Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
4
|
Meena P, Kakkar A, Kumar M, Khatri N, Nagar RK, Singh A, Malhotra P, Shukla M, Saraswat SK, Srivastava S, Datt R, Pandey S. Advances and clinical challenges for translating nerve conduit technology from bench to bed side for peripheral nerve repair. Cell Tissue Res 2020; 383:617-644. [PMID: 33201351 DOI: 10.1007/s00441-020-03301-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Injuries to the peripheral nervous system remain a large-scale clinical problem. These injuries often lead to loss of motor and/or sensory function that significantly affects patients' quality of life. The current neurosurgical approach for peripheral nerve repair involves autologous nerve transplantation, which often leads to clinical complications. The most pressing need is to increase the regenerative capacity of existing tubular constructs in the repair of large nerve gaps through development of tissue-engineered approaches that can surpass the performance of autografts. To fully realize the clinical potential of nerve conduit technology, there is a need to reconsider design strategies, biomaterial selection, fabrication techniques and the various potential modifications to optimize a conduit microenvironment that can best mimic the natural process of regeneration. In recent years, a significant progress has been made in the designing and functionality of bioengineered nerve conduits to bridge long peripheral nerve gaps in various animal models. However, translation of this work from lab to commercial scale has not been achieve. The current review summarizes recent advances in the development of tissue engineered nerve guidance conduits (NGCs) with regard to choice of material, novel fabrication methods, surface modifications and regenerative cues such as stem cells and growth factors to improve regeneration performance. Also, the current clinical potential and future perspectives to achieve therapeutic benefits of NGCs will be discussed in context of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Poonam Meena
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Anupama Kakkar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Mukesh Kumar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Nitin Khatri
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Rakesh Kumar Nagar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Aarti Singh
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Poonam Malhotra
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Manish Shukla
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Sumit Kumar Saraswat
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Supriya Srivastava
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Rajan Datt
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Siddharth Pandey
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India.
| |
Collapse
|
5
|
Wang AYL, Loh CYY, Shen HH, Hsieh SY, Wang IK, Lee CM, Lin CH. Human Wharton's Jelly Mesenchymal Stem Cell-Mediated Sciatic Nerve Recovery Is Associated with the Upregulation of Regulatory T Cells. Int J Mol Sci 2020; 21:6310. [PMID: 32878186 PMCID: PMC7504196 DOI: 10.3390/ijms21176310] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
The acceleration of peripheral nerve regeneration is crucial for functional nerve recovery. Our previous study demonstrated that human Wharton's jelly-derived mesenchymal stem cells (hWJ-MSC) promote sciatic nerve recovery and regeneration via the direct upregulation and release of neurotrophic factors. However, the immunomodulatory role of hWJ-MSC in sciatic nerve recovery remains unclear. The effects of hWJ-MSC on innate immunity, represented by macrophages, natural killer cells, and dendritic cells, as well as on adaptive immunity, represented by CD4+ T, CD8+ T, B, and regulatory T cells (Tregs), were examined using flow cytometry. Interestingly, a significantly increased level of Tregs was detected in blood, lymph nodes (LNs), and nerve-infiltrating cells on POD7, 15, 21, and 35. Anti-inflammatory cytokines, such as IL-4 and IL-10, were significantly upregulated in the LNs and nerves of hWJ-MSC-treated mice. Treg depletion neutralized the improved effects of hWJ-MSC on sciatic nerve recovery. In contrast, Treg administration promoted the functional recovery of five-toe spread and gait stance. hWJ-MSC also expressed high levels of the anti-inflammatory cytokines TGF-β and IL-35. This study indicated that hWJ-MSC induce Treg development to modulate the balance between pro- and anti-inflammation at the injured sciatic nerve by secreting higher levels of anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (C.-M.L.); (C.-H.L.)
| | | | - Hsin-Hsin Shen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan; (H.-H.S.); (S.-Y.H.); (I.-K.W.)
| | - Sing-Ying Hsieh
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan; (H.-H.S.); (S.-Y.H.); (I.-K.W.)
| | - Ing-Kae Wang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan; (H.-H.S.); (S.-Y.H.); (I.-K.W.)
| | - Chin-Ming Lee
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (C.-M.L.); (C.-H.L.)
| | - Chia-Hsien Lin
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (C.-M.L.); (C.-H.L.)
| |
Collapse
|
6
|
Li Z, Zhang S, Li J, Zeng H, Wang Y, Huang Y. Nerve regeneration in rat peripheral nerve allografts: Evaluation of cold-inducible RNA-binding protein in nerve storage and regeneration. J Comp Neurol 2019; 527:2885-2895. [PMID: 31116410 DOI: 10.1002/cne.24716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 01/26/2023]
Abstract
The prevalence of peripheral nerve injury has attracted increased attention. Allografting has been proposed as a potential treatment strategy for peripheral nerve injury. Moreover, cryopreservation may provide almost unlimited graft material. We investigated whether cold-inducible RNA-binding protein (CIRP) could protect peripheral nerves during cryopreservation to promote regeneration postoperation. First, CIRP was highly expressed after pretreatment at 32°C. After 4 weeks of cryopreservation, the increased live cells, low Bax/Bcl-2 ratio and high nerve growth factor and glial cell-derived neurotrophic factor levels in the 32°C group demonstrated high nerve graft viability. At 4 weeks postoperation, 32°C-Allo group demonstrated low plasma levels of interleukin-6 and interferon-gamma and a diminished cellular immune response. At 20 weeks postoperation, nerve regeneration in the 32°C-Allo group was similar to that in the fresh isograft group and superior to that in the 4°C-Allo and 15°C-Allo groups. Moreover, the compound muscle action potential and the motor nerve conduction velocity of the 32°C-Allo group were equal to those of the fresh isograft group. In conclusion, CIRP induction increased Schwann cell biological activity, inhibited cell apoptosis, reduced immune rejection, and promoted recipient nerve regeneration. Thus, CIRP could exert protective effects during nerve storage and stimulate regeneration in peripheral nerve reconstruction.
Collapse
Affiliation(s)
- Zijian Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China.,Nanchong Hospital of Traditional Chinese Medicine, Nanchong, China
| | - Song Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Jinxiu Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China.,Nanchong Hospital of Traditional Chinese Medicine, Nanchong, China
| | - Huanhuan Zeng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Yi Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Yingru Huang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Labroo P, Hilgart D, Davis B, Lambert C, Sant H, Gale B, Shea JE, Agarwal J. Drug-delivering nerve conduit improves regeneration in a critical-sized gap. Biotechnol Bioeng 2018; 116:143-154. [PMID: 30229866 DOI: 10.1002/bit.26837] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/03/2023]
Abstract
Autologous nerve grafts are the current "gold standard" for repairing large nerve gaps. However, they cause morbidity at the donor nerve site and only a limited amount of nerve can be harvested. Nerve conduits are a promising alternative to autografts and can act as guidance cues for the regenerating axons, without the need to harvest donor nerve. Separately, it has been shown that localized delivery of GDNF can enhance axon growth and motor recovery. FK506, an FDA approved small molecule, has also been shown to enhance peripheral nerve regeneration. This paper describes the design of a novel hole-based drug delivery apparatus integrated with a polytetrafluoroethylene (PTFE) nerve conduit for controlled local delivery of a protein such as GDNF or a small molecule such as FK506. The PTFE devices were tested in a diffusion chamber, and the bioactivity of the released media was evaluated by measuring neurite growth of dorsal root ganglions (DRGs) exposed to the released drugs. The drug delivering nerve guide was able to release bioactive concentrations of FK506 or GDNF. Following these tests, optimized drug releasing nerve conduits were implanted across 10 mm sciatic nerve gaps in a BL6 yellow fluorescent protein (YFP) mouse model, where they demonstrated significant improvement in muscle mass, compound muscle action potential, and axon myelination in vivo as compared with nerve conduits without the drug. The drug delivery nerve guide could release drug for extended periods of time and enhance axon growth in vitro and in vivo.
Collapse
Affiliation(s)
- Pratima Labroo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah
| | - David Hilgart
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
| | - Brett Davis
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
| | - Christopher Lambert
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah
| | - Himanshu Sant
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah
| | - Bruce Gale
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah
| | - Jill E Shea
- Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Jayant Agarwal
- Department of Surgery, University of Utah, Salt Lake City, Utah
| |
Collapse
|
8
|
Alvites R, Rita Caseiro A, Santos Pedrosa S, Vieira Branquinho M, Ronchi G, Geuna S, Varejão AS, Colette Maurício A. Peripheral nerve injury and axonotmesis: State of the art and recent advances. COGENT MEDICINE 2018. [DOI: 10.1080/2331205x.2018.1466404] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto (REQUIMTE/LAQV), R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sílvia Santos Pedrosa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Mariana Vieira Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Giulia Ronchi
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Stefano Geuna
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Artur S.P. Varejão
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Orbassano, Turin, Italy
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Yamakawa T, Kakinoki R, Ikeguchi R, Nakayama K, Morimoto Y, Nakamura T. Nerve Regeneration Promoted in a Tube with Vascularity Containing Bone Marrow-Derived Cells. Cell Transplant 2017; 16:811-22. [DOI: 10.3727/000000007783465226] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bone marrow-derived cells (BMCs) are multipotent cells that have the potential to differentiate into bone, cartilage, fat, muscle, or neuronal lineages such as neurons and glial cells. A silicone tube model containing reverse-pedicled sural vessels was created in the sciatic nerves of Lewis rats. About 1 × 107 BMCs, removed from the bone marrow of synergetic rat femurs and cultured in vitro, were transplanted into the 15-mm-long chambers of the silicone tubes. Nerve regeneration in vessel-containing tubes that had received BMCs was significantly greater at 12 and 24 weeks after surgery than in tubes that did not receive cells. Transplantation of fibroblasts instead of BMCs into the vessel-containing tube resulted in reduced axonal regeneration, which was inferior to regeneration in the vessel-containing tube that did not receive cells. Polymerase chain reaction (PCR) studies revealed that in vessel-containing tubes containing transplanted BMCs, about 29% of cells in the regenerated nerve originated from BMCs. Cells identified by in situ hybridization and PKH26 prelabeling as being of BMC origin stained positively for S100 and GFAP. Transplanted BMCs differentiated into cells with phenotypes similar to those of Schwann cells under the influence of neurochemical factors and survived by obtaining nutrients from vessels that had been preinserted into the tube. They thus functioned similarly to Schwann cells, promoting nerve regeneration.
Collapse
Affiliation(s)
- Tomoyuki Yamakawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Ryosuke Kakinoki
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Ryosuke Ikeguchi
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Ken Nakayama
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshihide Morimoto
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
10
|
|
11
|
Simon NG, Spinner RJ, Kline DG, Kliot M. Advances in the neurological and neurosurgical management of peripheral nerve trauma. J Neurol Neurosurg Psychiatry 2016; 87:198-208. [PMID: 25922080 DOI: 10.1136/jnnp-2014-310175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 04/03/2015] [Indexed: 12/31/2022]
Abstract
Peripheral nerve trauma frequently affects younger people and may result in significant and long-lasting functional disability. Currently, diagnosis and monitoring of peripheral nerve injury relies on clinical and electrodiagnostic information, supplemented by intraoperative electrophysiological studies. However, in a significant proportion of nerve injuries, the likelihood of spontaneous regeneration resulting in good functional outcome remains uncertain and unnecessary delays to treatment may be faced while monitoring for recovery. Advances in non-invasive imaging techniques to diagnose and monitor nerve injury and regeneration are being developed, and have the potential to streamline the decision-making process. In addition, advances in operative and non-operative treatment strategies may provide more effective ways to maximise functional outcomes following severe peripheral nerve trauma. This review discusses these advances in light of the current state of the art of management of peripheral nerve trauma.
Collapse
Affiliation(s)
- Neil G Simon
- Prince of Wales Clinical School, University of New South Wales, Randwick, New South Wales, Australia Brain and Mind Research Institute, The University of Sydney, Camperdown, New South Wales, Australia
| | - Robert J Spinner
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - David G Kline
- Department of Neurosurgery, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - Michel Kliot
- Department of Neurological Surgery, Northwestern Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
12
|
Epineural Tube Repair. Plast Reconstr Surg 2015. [DOI: 10.1007/978-1-4471-6335-0_57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Kim YT, Hei WH, Kim S, Seo YK, Kim SM, Jahng JW, Lee JH. Co-treatment effect of pulsed electromagnetic field (PEMF) with human dental pulp stromal cells and FK506 on the regeneration of crush injured rat sciatic nerve. Int J Neurosci 2014; 125:774-83. [DOI: 10.3109/00207454.2014.971121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Song Y, Wang Z, Wang Z, Zhang H, Li X, Chen B. Use of FK506 and bone marrow mesenchymal stem cells for rat hind limb allografts. Neural Regen Res 2014; 7:2681-8. [PMID: 25337114 PMCID: PMC4200736 DOI: 10.3969/j.issn.1673-5374.2012.34.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/29/2012] [Indexed: 01/08/2023] Open
Abstract
Dark Agouti rat donor hind limbs were orthotopically transplanted into Lewis rat recipients to verify the effects of bone marrow mesenchymal stem cells on neural regeneration and functional recovery of allotransplanted limbs in the microenvironment of immunotolerance. bone marrow mesenchymal stem cells were intramuscularly (gluteus maximus) injected with FK506 (tacrolimus) daily, and were transplanted to the injured nerves. Results indicated that the allograft group not receiving therapy showed severe rejection, with transplanted limbs detaching at 10 days after transplantation with complete necrosis. The number of myelinated axons and Schwann cells in the FK506 and FK506 + bone marrow mesenchymal stem cells groups were significantly increased. We observed a lesser degree of gastrocnemius muscle degeneration, and increased polymorphic fibers along with other pathological changes in the FK506 + bone marrow mesenchymal stem cells group. The FK506 + bone marrow mesenchymal stem cells group showed significantly better recovery than the autograft and FK506 groups. The results demonstrated that FK506 improved the immune microenvironment. FK506 combined with bone marrow mesenchymal stem cells significantly promoted sciatic nerve regeneration, and improved sensory recovery and motor function in hind limb allotransplant.
Collapse
Affiliation(s)
- Youxin Song
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Zhujun Wang
- Department of Research, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Zhixue Wang
- Department of Anesthesia, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Hong Zhang
- Department of Surgery, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Xiaohui Li
- Department of Research, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, China
| | - Bin Chen
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, China
| |
Collapse
|
15
|
Kim J, Baek G, Chung M, Park H, Sun J. Effects of FK-506 and CTLA4–Ig on nerve allografts in mice. J Plast Reconstr Aesthet Surg 2014; 67:e49-53. [DOI: 10.1016/j.bjps.2013.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/28/2013] [Accepted: 09/13/2013] [Indexed: 11/16/2022]
|
16
|
Myckatyn TM, Hunter DA, Mackinnon SE. The effects of cold preservation and subimmunosuppressive doses of FK506 on axonal regeneration in murine peripheral nerve isografts. THE CANADIAN JOURNAL OF PLASTIC SURGERY = JOURNAL CANADIEN DE CHIRURGIE PLASTIQUE 2013; 11:15-22. [PMID: 24115844 DOI: 10.1177/229255030301100110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND FK506 is a frequently used immunosuppressant with neuroregenerative effects. The neuroregenerative and immunosuppressive mechanisms of FK506, however, are distinct, suggesting that FK506 may stimulate nerve regeneration at lower doses than are needed to induce immunosuppression. The effects of cold preservation, a technique known to improve axonal regeneration through nerve allografts, are not well studied in nerve isografts and are also reported here. OBJECTIVES To determine the effects of subimmunosuppressive doses of FK506 and cold preservation on nerve regeneration in isografts. METHODS The neuroregenerative properties of immunosuppressive and subimmunosuppressive doses of FK506 were compared in a murine model receiving either fresh or cold preserved nerve isografts. Sixty female BALB/cJ mice were randomized into six groups. Animals in groups I, III and V received fresh nerve isografts. Animals in groups II, IV and VI received cold-preserved nerve isografts. Mice in groups I and II received no medical therapy, while those in groups III and IV received subimmunosuppressive doses of FK506, and those in groups V and VI received immunosuppressive doses as confirmed by mixed lymphocyte reactivity assays. Nerve regeneration was evaluated with histomorphometry and functional recovery was evaluated with walking track analysis. RESULTS Pretreatment with cold preservation did not significantly affect neural regeneration. The potent neuroregenerative effect of immunosuppressive doses of FK506 was confirmed, and the ability of subimmunosuppressive doses of FK506 to stimulate axonal regeneration in murine nerve isografts is reported. CONCLUSIONS Less toxic subimmunosuppressive doses of FK506 retaining some neuroregenerative properties may have a clinical role in treating extensive nerve injuries.
Collapse
Affiliation(s)
- Terence M Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | |
Collapse
|
17
|
Squintani G, Bonetti B, Paolin A, Vici D, Cogliati E, Murer B, Stevanato G. Nerve regeneration across cryopreserved allografts from cadaveric donors: a novel approach for peripheral nerve reconstruction. J Neurosurg 2013; 119:907-13. [DOI: 10.3171/2013.6.jns121801] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The use of allografts from cadaveric donors has attracted renewed interest in recent years, and pretreatment with cryopreservation and immunosuppression methods has been investigated to maximize axonal regrowth and minimize allograft rejection. The authors wanted to assess the outcome of treatments of brachial plexus stretch injuries with cryopreserved allografts from cadaveric donors in nonimmunosuppressed patients.
Methods
Ten patients with brachial plexus lesions were submitted to electromyography (EMG) testing 1 and 3 months after a traumatic event and 1 week before surgery to localize and identify the type of lesion. Intraoperative EMG recordings were performed for intraoperative monitoring to select the best surgical strategy, and postoperative EMG was used to follow up patients and determine surgical outcomes. If nerve action potentials (NAPs) were present intraoperatively, neurolysis was performed, whereas muscular/nerve neurotization was performed if NAPs were absent. Cryopreserved allografts obtained from selected cadaveric donors and provided by the tissue bank of Treviso were used for nerve reconstruction in patients who were not treated with immunosuppressive drugs.
Results
The surgical strategy was selected according to the type and site of the nerve lesion and on the basis of IOM results: 14 cryopreserved allografts were used for 7 muscular neurotizations and for 7 nerve neurotizations, and 5 neurolysis procedures were performed. All of the patients had regained motor function at the 1- and 2-year follow-ups.
Conclusions
Some variables may affect functional recovery after allograft surgery, and the outcome of peripheral nerve reconstruction is more favorable when patients are carefully evaluated and selected for the surgery. The authors demonstrated that using cryopreserved allografts from cadaveric donors is a valid surgical strategy to restore function of the damaged nerve without the need for any immunosuppressive treatments. This approach offers new perspectives on procedures for extensive reconstruction of brachial and lumbosacral plexuses.
Collapse
Affiliation(s)
- Giovanna Squintani
- 1Unità Operativa Neurologia, Azienda Ospedaliera Universitaria Integrata, Verona
| | - Bruno Bonetti
- 2Dipartimento di Neuroscienze, Università di Verona, Verona
| | | | - Daniela Vici
- 3Banca dei Tessuti, Ospedale di Treviso, Treviso
| | | | - Bruno Murer
- 4Servizio di Anatomia Patologica, Ospedale dell'Angelo, Mestre, Venice; and
| | - Giorgio Stevanato
- 5Unità Operativa Neurochirurgia, Ospedale dell'Angelo, Mestre, Venice, Italy
| |
Collapse
|
18
|
Rau CS, Yang JCS, Wu SC, Chen YC, Lu TH, Lin MW, Wu YC, Tzeng SL, Wu CJ, Hsieh CH. Profiling circulating microRNA expression in a mouse model of nerve allotransplantation. J Biomed Sci 2013; 20:64. [PMID: 24011263 PMCID: PMC3844622 DOI: 10.1186/1423-0127-20-64] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 08/13/2013] [Indexed: 01/09/2023] Open
Abstract
Background The lack of noninvasive biomarkers of rejection remains a challenge in the accurate monitoring of deeply buried nerve allografts and precludes optimization of therapeutic intervention. This study aimed to establish the expression profile of circulating microRNAs (miRNAs) during nerve allotransplantation with or without immunosuppression. Results Balb/c mice were randomized into 3 experimental groups, that is, (1) untreated isograft (Balb/c → Balb/c), (2) untreated allograft (C57BL/6 → Balb/c), and (3) allograft (C57BL/6 → Balb/c) with FK506 immunosuppression. A 1-cm Balb/c or C57BL/6 donor sciatic nerve graft was transplanted into sciatic nerve gaps created in recipient mice. At 1, 3, 7, 10, and 14 d after nerve transplantation, nerve grafts, whole blood, and sera were obtained for miRNA expression analysis with an miRNA array and subsequent validation with quantitative real-time PCR (qRT-PCR). Three circulating miRNAs (miR-320, miR-762, and miR-423-5p) were identified in the whole blood and serum of the mice receiving an allograft with FK506 immunosuppression, within 2 weeks after nerve allotransplantation. However, these 3 circulating miRNAs were not expressed in the nerve grafts. The expression of all these 3 upregulated circulating miRNAs significantly decreased at 2, 4, and 6 d after discontinuation of FK506 immunosuppression. In the nerve graft, miR-125-3b and miR-672 were significantly upregulated in the mice that received an allograft with FK506 only at 7 d after nerve allotransplantation. Conclusions We identified the circulating miR-320, miR-762, and miR-423-5p as potential biomarkers for monitoring the immunosuppression status of the nerve allograft. However, further research is required to investigate the mechanism behind the dysregulation of these markers and to evaluate their prognostic value in nerve allotransplantation.
Collapse
Affiliation(s)
- Cheng-Shyuan Rau
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Center for Vascularized Composite Allotransplantation, No, 123, Ta-Pei Road, Kaohsiung City, Niao-Sung District, 833, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Szynkaruk M, Kemp SWP, Wood MD, Gordon T, Borschel GH. Experimental and clinical evidence for use of decellularized nerve allografts in peripheral nerve gap reconstruction. TISSUE ENGINEERING PART B-REVIEWS 2012; 19:83-96. [PMID: 22924762 DOI: 10.1089/ten.teb.2012.0275] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the inherent capability for axonal regeneration, recovery following severe peripheral nerve injury remains unpredictable and often very poor. Surgeons typically use autologous nerve grafts taken from the patient's own body to bridge long nerve gaps. However, the amount of suitable nerve available from a given patient is limited, and using autologous grafts leaves the patient with scars, numbness, and other forms of donor-site morbidity. Therefore, surgeons and engineers have sought off-the-shelf alternatives to the current practice of autologous nerve grafting. Decellularized nerve allografts have recently become available as an alternative to traditional nerve autografting. In this review, we provide a critical analysis comparing the advantages and limitations of the three major experimental models of decellularized nerve allografts: cold preserved, freeze-thawed, and chemical detergent based. Current tissue engineering-based techniques to optimize decellularized nerve allografts are discussed. We also evaluate studies that supplement decellularized nerve grafts with exogenous factors such as Schwann cells, stem cells, and growth factors to both support and enhance axonal regeneration through the decellularized allografts. In examining the advantages and disadvantages of the studies of decellularized allografts, we suggest that experimental methods, including the animal model, graft length, follow-up time, and outcome measures of regenerative progress and success be consolidated. Finally, all clinical studies in which decellularized nerve allografts have been used to bridge nerve gaps in patients are reviewed.
Collapse
Affiliation(s)
- Mark Szynkaruk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
20
|
Geldanamycin accelerated peripheral nerve regeneration in comparison to FK-506 in vivo. Neuroscience 2012; 223:114-23. [DOI: 10.1016/j.neuroscience.2012.07.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/10/2012] [Accepted: 07/12/2012] [Indexed: 11/21/2022]
|
21
|
Bhashyam AR, Mogayzel PJ, McGrath-Morrow S, Neptune E, Malinina A, Fox J, Laube BL. A pilot study to examine the effect of chronic treatment with immunosuppressive drugs on mucociliary clearance in a vagotomized murine model. PLoS One 2012; 7:e45312. [PMID: 23028925 PMCID: PMC3447941 DOI: 10.1371/journal.pone.0045312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 08/20/2012] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Previously, we have demonstrated that mucociliary clearance (MCC) is diminished within the first months after surgery in lung transplant patients and the explanation for the reduction in MCC is unknown. We hypothesized that chronic treatment with a commonly prescribed regimen of immunosuppressive drugs significantly impairs MCC. We tested this hypothesis in a murine model of lung transplantation. METHODS Fifteen C57BL/6 mice underwent vagotomy on the right side to simulate denervation associated with lung transplantation in humans. For 6 days, seven mice (controls) were intraperitoneally injected with three 100 µL doses of phosphate buffered saline and eight mice (immunosuppressed) were injected with three 100 µL injections of tacrolimus (1 mg/kg), mycophenolate mofetil (30 mg/kg), and prednisone (2 mg/kg) once daily. Then, mice inhaled the radioisotope (99m)technetium and underwent gamma camera imaging of their lungs for 6.5 hrs. Counts in the right lung at 1-1.5 hrs and at 6-6.5 hrs were first background-corrected and then decay-corrected to time 0 counts. Decay-corrected counts were then divided by time 0 counts. Retention at each time point was subtracted from 1.00 and multiplied by 100% to obtain percent removed by mucociliary clearance. RESULTS Although there was a slowing of MCC at 1-1.5 hrs for the immunosuppressed mice, there was no statistical difference in MCC measured at 1-1.5 hrs for the two groups of mice. At 6-6.5 hrs, MCC was significantly slower in the immunosuppressed mice, compared to controls, with 7.78±5.9% cleared versus 23.01±11.7% cleared, respectively (p = 0.006). CONCLUSIONS These preliminary results suggest that chronic treatment with immunosuppressive medications significantly slows MCC in vagotomized C57BL/6 mice. These findings could shed light on why MCC is reduced in lung transplant patients whose lungs are denervated during surgery and who are chronically treated with immunosuppressive drugs post surgery.
Collapse
Affiliation(s)
- Abhiram R Bhashyam
- Department of Biomedical Engineering, The Johns Hopkins Medical Institutions, Baltimore, Maryland, United States of America
| | | | | | | | | | | | | |
Collapse
|
22
|
Phan DQD, Schuind F. Tolerance and effects of FK506 (tacrolimus) on nerve regeneration: a pilot study. J Hand Surg Eur Vol 2012; 37:537-43. [PMID: 22084488 DOI: 10.1177/1753193411427826] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In adults, the outcome of nerve suture and nerve autograft remains generally unsatisfactory. FK506 (tacrolimus), an immunosuppressant drug used in transplantation, has been reported in animal studies to enhance nerve regeneration. In hand transplantation patients, nerve regeneration was unexpectedly good and rapid, and this observation has been attributed to FK506. The present Phase II experiment investigated the tolerance to FK506 after nerve suture or autograft, and the potential effects of the drug on axonal regeneration. Following strict criteria, five patients were included in this study. Within 7 days of nerve repair (median, ulnar and sciatic transections), patients received FK506 (aiming for blood concentrations between 5 and 8 ng/ml) for a total duration of 60 days. The patients were carefully followed with clinical and biological monitoring in order to detect side-effects. A clinical and electrophysiological assessment of the effect of FK506 on nerve regeneration was conducted. No undesirable side-effect was observed during or after FK506 treatment, but one non-compliant patient discontinued treatment. There was no evident improvement of sensory, motor or functional recovery at the end of the follow-up period (average duration 39.8 months), as compared to the expected clinical result without treatment. Although statistically non-significant, FK506 seemed to accelerate the progression of the Hoffmann-Tinel sign, but without impact on the final result.
Collapse
Affiliation(s)
- D Q D Phan
- Service d'Orthopédie-Traumatologie, Cliniques Universitaires de Bruxelles, Hôpital Erasme, Brussels, Belgium
| | | |
Collapse
|
23
|
FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury 2012; 43:553-72. [PMID: 21269624 DOI: 10.1016/j.injury.2010.12.030] [Citation(s) in RCA: 506] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/27/2010] [Indexed: 02/02/2023]
Abstract
Several nerve guidance conduits (NGCs) and nerve protectant wraps are approved by the US Food and Drug Administration (FDA) for clinical use in peripheral nerve repair. These devices cover a wide range of natural and synthetic materials, which may or may not be resorbable. This review consolidates the data pertaining to all FDA approved materials into a single reference, which emphasizes material composition alongside pre-clinical and clinical safety and efficacy (where possible). This article also summarizes the key advantages and limitations for each material as noted in the literature (with respect to the indication considered). In this context, this review provides a comprehensive reference for clinicians which may facilitate optimal material/device selection for peripheral nerve repair. For materials scientists, this review highlights predicate devices and evaluation methodologies, offering an insight into current deficiencies associated with state-of-the-art materials and may help direct new technology developments and evaluation methodologies thereof.
Collapse
|
24
|
Yan Y, Johnson PJ, Glaus SW, Hunter DA, Mackinnon SE, Tung TH. A novel model for evaluating nerve regeneration in the composite tissue transplant: the murine heterotopic limb transplant. Hand (N Y) 2011; 6:304-12. [PMID: 22942855 PMCID: PMC3153617 DOI: 10.1007/s11552-011-9343-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE For individuals who have experienced debilitating upper extremity injury or amputation, hand transplantation holds the potential for drastic quality of life improvement. This potential depends on adequate nerve regeneration into the transplant and reanimation of graft musculature. In this study, we demonstrate the use of a murine heterotopic limb transplant model for evaluation of nerve regeneration in a composite tissue allograft (CTA). We also compare the effects of various immunosuppressive regimens on nerve regeneration in this model. METHODS The study consisted of five groups of mice, all of which underwent heterotopic limb transplant with coaptation of the recipient and donor sciatic nerves. The groups received the following immunosuppressive regimens: group A (positive control)-syngeneic transplant, no immunosuppression; group B (negative control)-allogeneic transplant, no immunosuppression; group C-allogeneic transplant, FK-506 + MR1; group D-allogeneic transplant, MR1 + CTLA4-Ig; group E-syngeneic transplant, FK-506 treatment with preloading. RESULTS Group B animals showed signs of transplant rejection as early as 5 days postoperatively. Except for one mouse from group C and one mouse from group D, all other animals had viable transplants and nerve regeneration present in the donor sciatic nerve at the 3-week endpoint of the study. CONCLUSIONS To our knowledge, this represents the first report of the use of a mouse CTA model for evaluation of nerve regeneration. The mouse heterotopic limb transplant model will be a valuable tool for CTA research since it can be performed with more ease, and with less host morbidity and mortality than the mouse orthotopic model.
Collapse
Affiliation(s)
- Ying Yan
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110 USA
| | - Philip J. Johnson
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110 USA
| | - Simone W. Glaus
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110 USA
| | - Daniel A. Hunter
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110 USA
| | - Susan E. Mackinnon
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110 USA
| | - Thomas H. Tung
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110 USA
| |
Collapse
|
25
|
Yu VM, Mackinnon SE, Hunter DA, Brenner MJ. Effect of sialodacryoadenitis virus infection on axonal regeneration. Microsurgery 2011; 31:458-64. [PMID: 21866574 PMCID: PMC4088328 DOI: 10.1002/micr.20914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/31/2011] [Accepted: 04/05/2011] [Indexed: 11/12/2022]
Abstract
The effect of sialodacryoadenitis virus (SDAV) infection on axonal regeneration and functional recovery was investigated in male Lewis rats. Animals underwent unilateral tibial nerve transection, immediate repair, and treatment with either FK506 (treated) or control vehicle (untreated). Serial walking track analyses were performed to assess functional recovery. Nerves were harvested for morphometric analysis on postoperative day 18 after an SDAV outbreak occurred that affected the 12 experimental animals. Histomorphometry and walking track data were compared against 36 historical controls. Rats infected with SDAV demonstrated severely impaired axonal regeneration and diminished functional recovery. Total fiber counts, nerve density, and percent neural tissue were all significantly reduced in infected animals (P < 0.05). Active SDAV infection severely impaired nerve regeneration and negated the positive effect of FK506 on nerve regeneration in rats. Immunosuppressive risks must be weighed carefully against the potential neuroregenerative benefits in the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Vivian M Yu
- Department of Otolaryngology - Head and Neck Surgery, St. Elizabeth's Medical Center, Brighton, MA, USA
| | | | | | | |
Collapse
|
26
|
Hollenbeck S, Senghaas A, Turley R, Ravindra K, Zenn M, Levin L, Erdmann D. The Extended Abdominal Wall Flap for Transplantation. Transplant Proc 2011; 43:1701-5. [DOI: 10.1016/j.transproceed.2011.01.176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 01/11/2011] [Indexed: 11/26/2022]
|
27
|
Kehoe S, Zhang XF, Boyd D. Composition-property relationships for an experimental composite nerve guidance conduit: evaluating cytotoxicity and initial tensile strength. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:945-959. [PMID: 21369711 DOI: 10.1007/s10856-011-4263-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/18/2011] [Indexed: 05/30/2023]
Abstract
The objective of this work was to examine the main (individual), combined (interaction) and second-order (quadratic) effects of: (i) poly(D,L-lactide-co-glycolide) (PLGA), (ii) F127, and (iii) a zinc-silicate based bioactive glass, on the cytotoxicity and ultimate tensile strength of an experimental nerve guidance conduit (NGC). The experimental plan was carried out according to a Box-Behnken design matrix. The effects of each compositional factor were quantified using response surface methodology (RSM) techniques. Linear and quadratic polynomial equations were developed to examine cytotoxicity (after incubation at 3, 7 and 28 days) and initial ultimate tensile strength (UTS(0)). Multiple regression analyses showed that the developed models yielded a good prediction for each response examined. It was observed that the beneficial effects of PLGA and bioactive glass on controlling cytotoxicity appeared greater than that of F127. Furthermore, the experimental conduits (with the exception of CNGC-I and CNGC-K) generally showed superior cytocompatibility when compared with the comparable literature for the clinically used nerve guidance conduit Neurolac(®). In this investigation, optimal compositions for cell viability were obtained for the following composition: PLGA = 18.89 wt%/F127 = 0.52 wt%/glass = 12.71 wt%. The optimization of composition with respect to ultimate tensile strength was also established (desired UTS(0) being based on the properties of the control device Neurolac(®) whose UTS is c.20 MPa). The desired UTS(0) of ≤ 20 MPa was found for the composition: PLGA = 18.63 wt%/F127 = 0.77 wt%/glass = 5.54 wt%. A UTS(0) ≤ 30 MPa was recorded for the composition: PLGA = 18.34 wt%/F127 = 0.62 wt%/glass = 9.83 wt%, such tensile strengths are comparable to, reported values for Neurolac(®). Examination of the composition-property relationships with respect to combining cell viability and UTS(0) indicated preferred compositions in the range 17.97-19.90 wt% PLGA, 0.16-1.13 wt% F127 and between 5.54 and ≤ 20 wt% glass. This research demonstrates the value of a design of experiments approach for the design of novel nerve guidance conduits, and shows that the materials examined may have potential for the repair of peripheral nerve discontinuities.
Collapse
Affiliation(s)
- S Kehoe
- Department of Applied Oral Sciences, Dalhousie University, 5981 University Ave, Halifax, NS B3H 4R2, Canada.
| | | | | |
Collapse
|
28
|
Nakayama K, Kakinoki R, Ikeguchi R, Yamakawa T, Ohta S, Fujita S, Noguchi T, Duncan SF, Hyon SH, Nakamura T. Storage and allogeneic transplantation of peripheral nerve using a green tea polyphenol solution in a canine model. J Brachial Plex Peripher Nerve Inj 2010; 5:17. [PMID: 21110896 PMCID: PMC3003657 DOI: 10.1186/1749-7221-5-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/28/2010] [Indexed: 12/13/2022] Open
Abstract
Background In our previous study, allogeneic-transplanted peripheral nerve segments preserved for one month in a polyphenol solution at 4°C could regenerate nerves in rodents demonstrated the same extent of nerve regeneration as isogeneic fresh nerve grafts. The present study investigated whether the same results could be obtained in a canine model. Methods A sciatic nerve was harvested from a male beagle dog, divided into fascicules of < 1.5 mm diameter, and stored in a polyphenol solution (1 mg/ml) for one month at 4°C. The nerve fascicles were transplanted into 10 female beagle dogs to bridge 3-cm right ulnar nerve gaps. In the left ulnar nerve in each dog, a 3-cm nerve segment was harvested, turned in the opposite direction, and sutured in situ. Starting one day before transplantation, the immunosuppressant FK506 was administered subcutaneously at doses of 0.1 mg/kg daily in four dogs (PA0.1 group), 0.05 mg/kg daily in four dogs (PA0.05 group), or 0.05 mg/kg every other day in two dogs (PA0.025 group). Twelve weeks after surgery, electrophysiological and morphological studies were performed to assess the regeneration of the right and left ulnar nerves. The data for the right ulnar nerve were expressed as percentages relative to the left ulnar nerve. Polymerase chain reaction (PCR) was used to identify the sex-determining region of the Y-chromosome (Sry) and β-actin to investigate whether cells of donor origin remained in the allogeneic nerve segments. FK506 concentration was measured in blood samples taken before the animals were killed. Results The total myelinated axon numbers and amplitudes of the muscle action potentials correlated significantly with the blood FK506 concentration. Few axons were observed in the allogeneic-transplanted nerve segments in the PA0.025 group. PCR showed clear Sry-specific bands in specimens from the PA0.1 and PA0.05 groups but not from the PA0.025 group. Conclusions Successful nerve regeneration was observed in the polyphenol-treated nerve allografts when transplanted in association with a therapeutic dose of FK506. The data indicate that polyphenols can protect nerve tissue from ischemic damage for one month; however, the effects of immune suppression seem insufficient to permit allogeneic transplantation of peripheral nerves in a canine model.
Collapse
Affiliation(s)
- Ken Nakayama
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Whitlock EL, Myckatyn TM, Tong AY, Yee A, Yan Y, Magill CK, Johnson PJ, Mackinnon SE. Dynamic quantification of host Schwann cell migration into peripheral nerve allografts. Exp Neurol 2010; 225:310-9. [PMID: 20633557 DOI: 10.1016/j.expneurol.2010.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/24/2010] [Accepted: 07/07/2010] [Indexed: 12/21/2022]
Abstract
Host Schwann cell (SC) migration into nerve allografts is the limiting factor in the duration of immunosuppression following peripheral nerve allotransplantation, and may be affected by different immunosuppressive regimens. Our objective was to compare SC migration patterns between clinical and experimental immunosuppression regimens both over time and at the harvest endpoint. Eighty mice that express GFP under the control of the Schwann cell specific S100 promoter were engrafted with allogeneic, nonfluorescent sciatic nerve grafts. Mice received immunosuppression with either tacrolimus (FK506), or experimental T-cell triple costimulation blockade (CSB), consisting of CTLA4-immunoglobulin fusion protein, anti-CD40 monoclonal antibody, and anti-inducible costimulator monoclonal antibody. Migration of GFP-expressing host SCs into wild-type allografts was assessed in vivo every 3 weeks until 15 weeks postoperatively, and explanted allografts were evaluated for immunohistochemical staining patterns to differentiate graft from host SCs. Immunosuppression with tacrolimus exhibited a plateau of SC migration, characterized by significant early migration (< 3 weeks) followed by a constant level of host SCs in the graft (15 weeks). At the endpoint, graft fluorescence was decreased relative to surrounding host nerve, and donor SCs persisted within the graft. CSB-treated mice displayed gradually increasing migration of host SCs into the graft, without the plateau noted in tacrolimus-treated mice, and also maintained a population of donor SCs at the 15-week endpoint. SC migration patterns are affected by immunosuppressant choice, particularly in the immediate postoperative period, and the use of a single treatment of CSB may allow for gradual population of nerve allografts with host SCs.
Collapse
Affiliation(s)
- Elizabeth L Whitlock
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ray WZ, Kale SS, Kasukurthi R, Papp EM, Johnson PJ, Santosa KB, Yan Y, Hunter DA, Mackinnon SE, Tung TH. Effect of cold nerve allograft preservation on antigen presentation and rejection. J Neurosurg 2010; 114:256-62. [PMID: 20560721 DOI: 10.3171/2010.5.jns10111] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Nerve allotransplantation provides a temporary scaffold for host nerve regeneration and allows for the reconstruction of significant segmental nerve injuries. The need for systemic immunosuppression, however, limits the current clinical utilization of nerve allografts, although this need is reduced by the practice of cold nerve allograft preservation. Activation of T cells in response to alloantigen presentation occurs in the context of donor antigen presenting cells (direct pathway) or host antigen-presenting cells (indirect pathway). The relative role of each pathway in eliciting an alloimmune response and its potential for rejection of the nerve allograft model has not previously been investigated. The objective of this investigation was to study the effect of progressive periods of cold nerve allograft preservation on antigen presentation and the alloimmune response. METHODS The authors used wild type C57Bl/6 (B6), BALB/c, and major histocompatibility Class II-deficient (MHC-/-) C57Bl/6 mice as both nerve allograft recipients and donors. A nonvascularized nerve allograft was used to reconstruct a 1-cm sciatic nerve gap. Progressive cold preservation of donor nerve allografts was used. Quantitative assessment was made after 3 weeks using nerve histomorphometry. RESULTS The donor-recipient combination lacking a functional direct pathway (BALB/c host with MHC-/- graft) rejected nerve allografts as vigorously as wild-type animals. Without an intact indirect pathway (MHC-/- host with BALB/c graft), axonal regeneration was improved (p < 0.052). One week of cold allograft preservation did not improve regeneration to any significant degree in any of the donor-recipient combinations. Four weeks of cold preservation did improve regeneration significantly (p < 0.05) for all combinations compared with wild-type animals without pretreatment. However, only in the presence of an intact indirect pathway (no direct pathway) did 4 weeks of cold preservation improve regeneration significantly compared with 1 week and no preservation in the same donor-recipient combination. CONCLUSIONS The indirect pathway may be the predominant route of antigen presentation in the unmodified host response to the nerve allograft. Prolonged duration of cold nerve allograft preservation is required to significantly attenuate the rejection response. Cold preservation for 4 weeks improves nerve regeneration with a significant effect on indirect allorecognition.
Collapse
Affiliation(s)
- Wilson Z Ray
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Low-Dose FK506 After Contralateral C7 Transfer to the Musculocutaneous Nerve Using Two Different Tubes. Ann Plast Surg 2010; 64:622-31. [DOI: 10.1097/sap.0b013e3181b6aae1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Administration of low-dose FK 506 accelerates histomorphometric regeneration and functional outcomes after allograft nerve repair in a rat model. J Craniomaxillofac Surg 2010; 38:134-40. [DOI: 10.1016/j.jcms.2009.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 03/17/2009] [Accepted: 03/24/2009] [Indexed: 12/26/2022] Open
|
33
|
Ray WZ, Kasukurthi R, Papp EM, Moore AM, Yee A, Hunter DA, Solowski NL, Mohanakumar T, Mackinnon SE, Tung TH. The role of T helper cell differentiation in promoting nerve allograft survival with costimulation blockade. J Neurosurg 2010; 112:386-93. [PMID: 19663546 DOI: 10.3171/2009.7.jns09187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Peripheral nerve allografts provide a temporary scaffold for host nerve regeneration and allow for the repair of significant segmental nerve injuries. Despite this potential, nerve allograft transplantation requires temporary systemic immunosuppression. Characterization of the immunological mechanisms involved in the induction of immune hyporesponsiveness to prevent nerve allograft rejection will help provide a basis for optimizing immunomodulation regimens or manipulating donor nerve allografts to minimize or eliminate the need for global immunosuppression. METHODS The authors used C57Bl/6 mice and STAT4 and STAT6 gene BALB/c knockout mice. A nonvascularized nerve allograft was used to reconstruct a 1-cm sciatic nerve gap in the murine model. A triple costimulatory blockade of the CD40, CD28/B7, and inducible costimulatory (ICOS) pathways was used. Quantitative assessment was performed at 3 weeks with nerve histomorphometry, walking track analysis, and the enzyme-linked immunospot assay. RESULTS The STAT6 -/- mice received 3 doses of costimulation-blocking antibodies and had axonal regeneration equivalent to nerve isografts, while treated STAT4 -/- mice demonstrated moderate axonal regeneration but inferior to the T helper cell Type 2-deficient animals. Enzyme-linked immunospot assay analysis demonstrated a minimal immune response in both STAT4 -/- and STAT6 -/- mice treated with a costimulatory blockade. CONCLUSIONS The authors' findings suggest that Type 1 T helper cells may play a more significant role in costimulatory blockade-induced immune hyporesponsiveness in the nerve allograft model, and that Type 2 T helper differentation may represent a potential target for directed immunosuppression.
Collapse
Affiliation(s)
- Wilson Z Ray
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Moore AM, Ray WZ, Chenard KE, Tung T, Mackinnon SE. Nerve allotransplantation as it pertains to composite tissue transplantation. Hand (N Y) 2009; 4:239-44. [PMID: 19306048 PMCID: PMC2724627 DOI: 10.1007/s11552-009-9183-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 11/06/2008] [Indexed: 12/29/2022]
Abstract
Nerve allografts provide a temporary scaffold for host nerve regeneration and allow for the repair of significant segmental nerve injuries. From rodent, large animal, and nonhuman primate studies, as well as clinical experience, nerve allografts, with the use of immunosuppression, have the capacity to provide equal regeneration and function to that of an autograft. In contrast to solid organ transplantation and composite tissue transfers, nerve allograft transplantation requires only temporary immunosuppression. Furthermore, nerve allograft rejection is difficult to assess, as the nerves are surgically buried and are without an immediate functional endpoint to monitor. In this article, we review what we know about peripheral nerve allograft transplantation from three decades of experience and apply our current understanding of nerve regeneration to the emerging field of composite tissue transplantation.
Collapse
Affiliation(s)
- Amy M. Moore
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 S. Euclid Avenue, St. Louis, MO 63110 USA
| | - Wilson Z. Ray
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63116 USA
| | - Kristofer E. Chenard
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 S. Euclid Avenue, St. Louis, MO 63110 USA
| | - Thomas Tung
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 S. Euclid Avenue, St. Louis, MO 63110 USA
| | - Susan E. Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 S. Euclid Avenue, St. Louis, MO 63110 USA
| |
Collapse
|
35
|
Song JW, Yang LJ, Russell SM. Peripheral nerve: what's new in basic science laboratories. Neurosurg Clin N Am 2009; 20:121-31, viii. [PMID: 19064185 DOI: 10.1016/j.nec.2008.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Peripheral nerve regeneration research has unfolded a wealth of basic science knowledge in the last century. Today, that knowledge has become the fundamental groundwork for evolving clinical applications to treat peripheral nerve defects. This article discusses two clinical applications that have been investigated thoroughly in the laboratory setting for decades and recently tested in the clinical setting: nerve allotransplantation to graft nerve defects, and brief electrical stimulation to promote nerve regeneration. It also discusses the generation of Thy-1-XFP transgenic mice, which express fluorescent proteins in the nervous system and provide new avenues for investigating peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jae W Song
- Department of Neurosurgery, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
36
|
Chapter 18: Enhancement of nerve regeneration and recovery by immunosuppressive agents. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:347-62. [PMID: 19682647 DOI: 10.1016/s0074-7742(09)87018-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clinically, little can be done to induce restoration of good to excellent neurological function following nervous system trauma, and time is required before an effective technique is developed and applied clinically. However, there are novel techniques that have not been tested experimentally or clinically that may induce significantly faster, reliable, and extensive neurological recovery following nervous system trauma than is presently possible, even for techniques currently being tested on animal models. To repair peripheral nerves following trauma in which a length of the nerve pathway is destroyed, many clinicians consider autologous sensory nerve grafts to be the "gold standard" for inducing neurological recovery. However, this technique has severe limitations, such as being effective only across gaps less than 2 cm, for repairs performed less than 2 months posttrauma, and in young patients. As a consequence, many patients suffer permanent neurological deficits or recover only limited neurological function, and they frequently develop irreversible neuropathic pain. This review examines the clinical role that immunosuppressants might play, in the presence or absence of autologous, allografts, or xenografts, in increasing the rate, success, and extent of neurological recovery following nervous system trauma.
Collapse
|
37
|
Hayashi A, Moradzadeh A, Tong A, Wei C, Tuffaha SH, Hunter DA, Tung TH, Parsadanian A, Mackinnon SE, Myckatyn TM. Treatment modality affects allograft-derived Schwann cell phenotype and myelinating capacity. Exp Neurol 2008; 212:324-36. [PMID: 18514192 PMCID: PMC2806227 DOI: 10.1016/j.expneurol.2008.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/28/2008] [Accepted: 04/04/2008] [Indexed: 01/23/2023]
Abstract
We used peripheral nerve allografts, already employed clinically to reconstruct devastating peripheral nerve injuries, to study Schwann cell (SC) plasticity in adult mice. By modulating the allograft treatment modality we were able to study migratory, denervated, rejecting, and reinnervated phenotypes in transgenic mice whose SCs expressed GFP under regulatory elements of either the S100b (S100-GFP) or nestin (Nestin-GFP) promoters. Well-differentiated SCs strongly expressed S100-GFP, while Nestin-GFP expression was stimulated by denervation, and in some cases, axons were constitutively labeled with CFP to enable in vivo imaging. Serial imaging of these mice demonstrated that untreated allografts were rejected within 20 days. Cold preserved (CP) allografts required an initial phase of SC migration that preceded axonal regeneration thus delaying myelination and maturation of the SC phenotype. Mice immunosuppressed with FK506 demonstrated mild subacute rejection, but the most robust regeneration of myelinated and unmyelinated axons and motor endplate reinnervation. While characterized by fewer regenerating axons, mice treated with the co-stimulatory blockade (CSB) agents anti-CD40L mAb and CTLAIg-4 demonstrated virtually no graft rejection during the 28 day experiment, and had significant increases in myelination, connexin-32 expression, and Akt phosphorylation compared with any other group. These results indicate that even with SC rejection, nerve regeneration can occur to some degree, particularly with FK506 treatment. However, we found that co-stimulatory blockade facilitate optimal myelin formation and maturation of SCs as indicated by protein expression of myelin basic protein (MBP), connexin-32 and phospho-Akt.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alexander Parsadanian
- Department of Neurology and Hope Center for Neurological Disorders, Box 8518, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
38
|
Chen B, Song Y, Liu Z. Promotion of nerve regeneration in peripheral nerve by short-course FK506 after end-to-side neurorrhaphy. J Surg Res 2008; 152:303-10. [PMID: 18952227 DOI: 10.1016/j.jss.2008.03.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 03/18/2008] [Accepted: 03/25/2008] [Indexed: 01/29/2023]
Abstract
BACKGROUND/AIMS To discuss the feasibility of peripheral nerve injury treated by end-to-side neurorrhaphy in clinic and to evaluate the effect of short-course FK506 on promoting nerve regeneration after end-to-side neurorrhaphy. METHODS Thirty adult male Sprague Dawley rats were randomly divided into 3 groups: Group A, 10 rats received end-to-end anastomosis; Group B, 10 rats received end-to-side neurorrhaphy; Group C, 10 rats received the same operation as Group B. After operation, rats in Groups B and C received muscle injection with saline water (1 mg/kg x d(-1)) and FK506 (1 mg/kg x d(-1)), respectively, both for 4 wk. Histological and morphological examinations were performed 12 wk after the operation. In the 2nd, 4th, 6th, 8th, and 12th wk after operation, function recovery analysis was performed. RESULTS The results of histological and immunochemistry study (the total number of Schwann cells and the axon numbers at the distal stump of the peroneal nerve, wet weight of extensor digitorum longus muscle) suggested that there were significant differences between Group B (saline water group) and Group C (FK506 group) (P < 0.05), also between Group A (end-to-end group) and Group C (P < 0.05). There were statistically significant differences in function recovery (peroneal functional index and sciatic functional index) between Groups B and C (P < 0.05) and also between Groups A and C (P < 0.05). CONCLUSION End-to-side repair combined with FK506 has a potential for application in selected cases of peripheral nerve injury in clinic.
Collapse
Affiliation(s)
- Bin Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | | | | |
Collapse
|
39
|
Hunter DA, Moradzadeh A, Whitlock EL, Brenner MJ, Myckatyn TM, Wei CH, Tung THH, Mackinnon SE. Binary imaging analysis for comprehensive quantitative histomorphometry of peripheral nerve. J Neurosci Methods 2007; 166:116-24. [PMID: 17675163 PMCID: PMC2587177 DOI: 10.1016/j.jneumeth.2007.06.018] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 06/22/2007] [Accepted: 06/25/2007] [Indexed: 11/26/2022]
Abstract
Quantitative histomorphometry is the current gold standard for objective measurement of nerve architecture and its components. Many methods still in use rely heavily upon manual techniques that are prohibitively time consuming, predisposing to operator fatigue, sampling error, and overall limited reproducibility. More recently, investigators have attempted to combine the speed of automated morphometry with the accuracy of manual and semi-automated methods. Systematic refinements in binary imaging analysis techniques combined with an algorithmic approach allow for more exhaustive characterization of nerve parameters in the surgically relevant injury paradigms of regeneration following crush, transection, and nerve gap injuries. The binary imaging method introduced here uses multiple bitplanes to achieve reproducible, high throughput quantitative assessment of peripheral nerve. Number of myelinated axons, myelinated fiber diameter, myelin thickness, fiber distributions, myelinated fiber density, and neural debris can be quantitatively evaluated with stratification of raw data by nerve component. Results of this semi-automated method are validated by comparing values against those obtained with manual techniques. The use of this approach results in more rapid, accurate, and complete assessment of myelinated axons than manual techniques.
Collapse
Affiliation(s)
- Daniel A Hunter
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, Saint Louis, MO 63110, United States.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Larsen M, Habermann TM, Bishop AT, Shin AY, Spinner RJ. Epstein–Barr virus infection as a complication of transplantation of a nerve allograft from a living related donor. J Neurosurg 2007; 106:924-8. [PMID: 17542543 DOI: 10.3171/jns.2007.106.5.924] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
✓Reconstruction of extensive nerve defects is hampered by the amount of autogenous nerve tissue available for transplantation and by donor site morbidity. Nerve allografts, being of foreign origin and potentially unlimited in supply, provide a solution to these problems. Studies have shown that nerve allotransplants require immunosuppression only until end-organ connections are made and that immunosuppressant therapy may be subsequently discontinued with no negative effect on functional outcome. Also, recent experimental and clinical focus has been on shorter periods of immunosuppression in order to reduce risk, even stopping immunosuppression after regeneration has reached the distal suture line rather than before recovery of end-organ connections. In the pediatric population, the increased disease burden and increased potential for nerve regeneration as well as the frequent availability of a living related donor make allografts all the more attractive as solutions to nerve reconstructive problems. Nevertheless, the risks of immunosuppression must not be underemphasized, and they deserve more attention in the current nerve transplantation literature.
The authors report on a child who, at the age of 1 year, received a nerve allograft from a living related donor who was positive for Epstein–Barr virus (EBV). The child quickly developed a symptomatic EBV infection concurrent with immunosuppressant drug therapy. The immunosuppression regimen was stopped prematurely, and the patient suffered only a short illness, but the EBV infection could have developed into a life-threatening posttransplant lymphoproliferative disorder (PTLD). The patient is consequently predisposed to develop PTLD and will have to be monitored for the rest of his life. This case highlights the importance of considering the potentially fatal risks associated with this elective procedure. Future studies are needed to quantify and minimize this complication. Nevertheless, it should be weighed against the potential functional benefit from using nerve allografts.
Collapse
Affiliation(s)
- Mikko Larsen
- Department of Orthopedic Surgery, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.
| | | | | | | | | |
Collapse
|
41
|
Aubá C, Hontanilla B, Arcocha J, Gorría O. Peripheral nerve regeneration through allografts compared with autografts in FK506-treated monkeys. J Neurosurg 2006; 105:602-9. [PMID: 17044565 DOI: 10.3171/jns.2006.105.4.602] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The clinical use of nerve allografts combined with immunosuppressant therapy has become a genuine possibility that could supersede the classic use of autografts. However, contradictory data have been reported on whether immunosuppressant therapy should be temporarily administered. The purpose of this study was to compare the nerve regeneration obtained using ulnar nerve allografts in nonhuman primates temporarily treated with FK506 (tacrolimus) with that obtained using nerve autografts.
Methods
Four-centimeter nerve autografts or allografts were placed in the distal ulnar motor nerve of eight monkeys. The FK506 was temporarily administered to the animals of the allograft group for 2 months. At periods of 3, 5, and 8 months postsurgery, quantitative electrophysiological recordings were obtained to estimate muscle response. A quantitative analysis of ulnar motor neurons in the spinal cord was performed and axons were counted stereologically.
No statistically significant differences were found in the neuronal and axonal counts between autograft and allograft groups at 8 months. The electrophysiological studies showed no differences relative to the amplitude, but the autograft group presented with a greater nerve conduction velocity (NCV). However, no statistically significant differences were found between the number of neurons and distal axonal counts in the two groups.
Conclusions
Nerve regeneration through cold-preserved allografts in a primate model temporarily treated with FK506 was similar to that obtained using nerve autografts, in terms of neuronal and axonal counts. Nevertheless, temporary immunosuppression produced lower NCV when allografts were used, with less maturation of the myelinated fibers, which indicated that a partial rejection had taken place.
Collapse
Affiliation(s)
- Cristina Aubá
- Department of Plastic and Reconstructive Surgery, Clínica Universitaria, Universidad de Navarra, Pamplona, Spain
| | | | | | | |
Collapse
|
42
|
Snyder AK, Fox IK, Nichols CM, Rickman SR, Hunter DA, Tung THH, Mackinnon SE. Neuroregenerative Effects of Preinjury FK-506 Administration. Plast Reconstr Surg 2006; 118:360-7. [PMID: 16874203 DOI: 10.1097/01.prs.0000227628.43867.5b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND FK-506 is used in organ transplantation because it promotes neurite outgrowth in vitro and enhances neuroregeneration in peripheral nerve injury transection models. Immunosuppressive mechanisms of FK-506 are well defined, with demonstration of decreased neuroregenerative effects with delayed administration. The purpose of this study was to describe the effects of preinjury administration of FK-506 in rats with tibial nerve transection injury. METHODS Eight inbred male Lewis rats per group in three separate groups underwent tibial nerve transection with primary repair. Group I received placebo, group II received FK-506 treatment at 1 day before surgery, and group III received FK-506 preloading 3 days before surgery. RESULTS Histologic and histomorphometric results demonstrated the preload FK-506 group had superior results compared with the immediate FK-506 group. Both FK-506 groups were superior to the placebo group. The preload FK-506 demonstrated superior regeneration in mean total nerve fiber counts (p < 0.05), greater percentage neural tissue (p < 0.05), greater mean nerve fiber density (p < 0.05), and lower percentage of debris (p > 0.05). Mean nerve fiber widths were similar in the preload and immediate FK-506 groups but superior to the placebo group. CONCLUSION These data suggest that enhancement of FK-506's neuroregenerative effect is enhanced when administered before nerve injury such as when performing elective surgery.
Collapse
Affiliation(s)
- Alison K Snyder
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Mo. 63110, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Hontanilla B, Aubá C, Arcocha J, Gorría O. Nerve Regeneration through Nerve Autografts and Cold Preserved Allografts using Tacrolimus (FK506) in a Facial Paralysis Model: A Topographical and Neurophysiological Study in Monkeys. Neurosurgery 2006; 58:768-79; discussion 768-79. [PMID: 16575341 DOI: 10.1227/01.neu.0000204319.37546.5f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Nerve regeneration through cold preserved nerve allografts is demonstrated, and treatment of nerve allografts with FK506 induces better regeneration than other immunosuppressants. We study nerve regeneration through cold preserved nerve allografts temporarily treated with FK506 and compare it with the regeneration obtained using classic nerve autografts in a facial paralysis model in monkeys. METHODS A trunk of the facial nerve on both sides was transected in eight monkeys and immediately repaired with a 3 to 4 cm nerve autograft or allograft. FK506 was administered to the animals of the allograft group for 2 months, and nerve allografts were cold preserved for 3 weeks. At periods of 3, 5, and 8 months after surgery, quantitative electrophysiological assessment and video recordings were performed. At the end of the study, quantitative analysis of neurons in the facial nucleus was carried out, and axons were stereologically counted. RESULTS After the regenerative period, neuronal density was higher in the autograft group. However, distal axonal counts were similar in both groups. Serial electrophysiological recordings and histology of nerve allografts showed that the grafts were partially rejected after cessation of the immunosuppressant. CONCLUSION The regeneration through nerve allografts temporarily treated with FK506 does not achieve the electrophysiological results and neuronal counts achieved with nerve autografts, but axonal collateralization in the allografts induces a similar activation of mimic muscles.
Collapse
Affiliation(s)
- Bernardo Hontanilla
- Department of Plastic and Reconstructive Surgery, Clínica Universitaria, University of Navarra, Pamplona, Spain.
| | | | | | | |
Collapse
|
44
|
Abstract
A major limitation to overall success in peripheral nerve surgery is time for regeneration. Although one can help speed up the regenerative process to some extent, success is hindered by issues such as number of coaptation sites, supply of donor nerves, and the limitations of nerve substitutes. In the case of a large gap, a nerve graft is often used to fill in the deficit. Autogenous nerve grafts are in limited supply, with sural nerve grafts being the primary source. Alternatives to the standard treatment include vein grafts, synthetic nerve conduits, nerve transfers, and nerve transplantation. Schwann cell-lined nerve conduits and tissue-engineered substitutions are still in their infancy and have some limited clinical application.
Collapse
Affiliation(s)
- Renata V Weber
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
45
|
Sosa I, Reyes O, Kuffler DP. Immunosuppressants: neuroprotection and promoting neurological recovery following peripheral nerve and spinal cord lesions. Exp Neurol 2005; 195:7-15. [PMID: 15935348 DOI: 10.1016/j.expneurol.2005.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 04/28/2005] [Indexed: 12/17/2022]
Abstract
No clinical techniques induce restoration of neurological losses following spinal cord trauma. Peripheral nerve damage also leads to permanent neurological deficits, but neurological recovery can be relatively good, especially if the ends of a transected nerve are anastomosed soon after the injury. The time until recovery generally depends on the distance the axons must regenerate to their targets. Neurological recovery following the destruction of a length of a peripheral nerve requires a graft to bridge the gap that is permissive to, and promotes, axon regeneration. But neurological recovery is slow and limited, especially for gaps longer than 1.5 cm, even using autologous peripheral nerve grafts. Without a reliable means of bridging long nerve gaps, such injuries commonly result in amputations. Promoting extensive neurological recovery requires techniques that simultaneously provide protection to injured neurons and increase the numbers of neurons that extend axons, while inducing more rapid and extensive axon regeneration across long nerve gaps. Although conduits filled with various materials enhance axon regeneration across short nerve gaps, pure sensory nerve graft remains the gold standard for use across long nerve gaps, even though they lead to only limited neurological recovery. Consistent results demonstrate that several immunosuppressive agents enhance the number of axons and the rate at which they regenerate. This review examines the roles played by immunosuppressants, especially FK506, with primary focus on its role as a neuroprotectant and neurotrophic agent, and its potential clinical use to promote improved neurological recovery following peripheral nerve and spinal cord injuries.
Collapse
Affiliation(s)
- I Sosa
- Section of Neurosurgery, Medical Sciences Campus, UPR, 201 Boulevard del Valle, San Juan 00901, Puerto Rico
| | | | | |
Collapse
|
46
|
Affiliation(s)
- S Hall
- Department of Anatomy and Human Sciences, King's College London, School of Biomedical Sciences, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
47
|
Brenner MJ, Lowe JB, Fox IK, Mackinnon SE, Hunter DA, Darcy MD, Duncan JR, Wood P, Mohanakumar T. Effects of Schwann cells and donor antigen on long-nerve allograft regeneration. Microsurgery 2005; 25:61-70. [PMID: 15481042 DOI: 10.1002/micr.20083] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nerve allotransplantation has been used successfully in human subjects to restore function after traumatic nerve injury and avoid subsequent limb amputation. However, due to the morbidity associated with nonspecific immunosuppression, this reconstructive approach has been limited to patients with particularly severe nerve injuries. It would be desirable to broaden the indications for such procedures through development of less toxic antirejection therapies. A miniature swine model of nerve transplantation was used to investigate the effects of preoperative ultraviolet-B (UV-B)-irradiated donor alloantigen portal venous infusion and injection of cultured major histocompatibility complex (MHC)-matched Schwann cells into the nerve graft. The transplanted ulnar nerves were harvested at 20 weeks. Histomorphometry showed marked enhancement in nerve regeneration through allografts injected with Schwann cells. Serial mixed lymphocyte assays demonstrated suppression of the recipient immune response to the donor antigen after pretreatment, but no additional neuroregenerative effect of donor alloantigen pretreatment.
Collapse
Affiliation(s)
- Michael J Brenner
- Department of Otolaryngology, Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jensen JN, Brenner MJ, Tung TH, Hunter DA, Mackinnon SE. Effect of FK506 on Peripheral Nerve Regeneration Through Long Grafts in Inbred Swine. Ann Plast Surg 2005; 54:420-7. [PMID: 15785285 DOI: 10.1097/01.sap.0000151461.60911.c0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Numerous small-animal studies have demonstrated that FK506 enhances nerve regeneration and accelerates functional recovery after nerve injury. However, no experimental study has corroborated these neuroregenerative effects in larger animals. This study investigated the effects of FK506 on nerve regeneration in inbred miniature swine. Eight animals received 8-cm ulnar nerve autografts and allografts. Treated animals received 0.1 to 0.4 mg/kg FK506 injections twice weekly to maintain immunosuppressive serum FK506 levels. At 24 weeks posttransplant, nerve grafts were harvested for histomorphometric analysis. Mixed lymphocyte cultures demonstrated alloreactivity in 1 treated animal and all untreated animals. In autografts, mean fiber count, nerve density, and percent neural tissue were doubled with FK506 therapy. In allografts, significant neuroregeneration was observed in animals treated with FK506, whereas untreated animals had no regeneration. Treatment with FK506 resulted in a trend toward enhanced axonal regeneration through nerve autografts and allografts in a large-animal model with defined histocompatibility barriers.
Collapse
Affiliation(s)
- John N Jensen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
49
|
Bunting S, Di Silvio L, Deb S, Hall S. Bioresorbable glass fibres facilitate peripheral nerve regeneration. ACTA ACUST UNITED AC 2005; 30:242-7. [PMID: 15862363 DOI: 10.1016/j.jhsb.2004.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 11/05/2004] [Indexed: 11/27/2022]
Abstract
This is a proof of principle report showing that fibres of Bioglass 45S5 can form a biocompatible scaffold to guide regrowing peripheral axons in vivo. We demonstrate that cultured rat Schwann cells and fibroblasts grow on Bioglass fibres in vitro using SEM and immunohistochemistry, and provide qualitative and quantitative evidence of axonal regeneration through a Silastic conduit filled with Bioglass fibres in vivo (across a 0.5 cm interstump gap in the sciatic nerves of adult rats). Axonal regrowth at 4 weeks is indistinguishable from that which occurs across an autograft. Bioglass fibres are not only biocompatible and bioresorbable, which are absolute requirements of successful devices, but are also amenable to bioengineering, and therefore have the potential for use in the most challenging clinical cases, where there are long inter-stump gaps to be bridged.
Collapse
Affiliation(s)
- S Bunting
- Wolfson Centre for Age-Related Diseases, King's College London, UK.
| | | | | | | |
Collapse
|
50
|
Ikeguchi R, Kakinoki R, Matsumoto T, Hyon SH, Nakamura T. Peripheral Nerve Allografts Stored in Green Tea Polyphenol Solution. Transplantation 2005; 79:688-95. [PMID: 15785375 DOI: 10.1097/01.tp.0000155417.87823.17] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We previously demonstrated the successful 1-month storage of peripheral nerve segments in a green tea polyphenol extract. We investigated whether this method could reduce the donor-host immune reaction associated with peripheral nerve allotransplantation. METHODS Sciatic nerve segments (20 mm long) were harvested from Dark Agouti (DA) rats, stored in polyphenol solution (1 mg/mL) for 1 month, and transplanted into recipient major histocompatibility complex-mismatched Lewis rats to bridge 15-mm-long sciatic nerve gaps (polyphenol-treated allograft group). The controls were an isograft group (nerve segments harvested from Lewis rats were immediately transplanted into Lewis rats), a polyphenol-treated isograft group (nerve segments harvested from Lewis rats were treated by polyphenol in the same method and transplanted into Lewis rats), and a fresh allograft group (nerve segments harvested from DA rats were transplanted into Lewis rats without storage). To investigate the origins of the cells in the transplanted nerves, sciatic nerve segments harvested from the male DA rat donors were transplanted into female Lewis rat recipients; genomic DNA was extracted from each nerve segment and amplified by polymerase chain reaction using primers specific for the rat sex-determining region of the Y-chromosome (Sry). RESULTS Nerve regeneration in the polyphenol-treated allograft group was similar to that in the isografted group. Sry-specific bands were detected in all samples in the sex-mismatched polyphenol-treated allograft specimens despite their major histocompatibility complex incompatibility. CONCLUSIONS Storage in green tea polyphenol solution can reduce both ischemic damage to nerve tissue and donor-host immune reactions after allotransplantation.
Collapse
Affiliation(s)
- Ryosuke Ikeguchi
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | |
Collapse
|